1. If $z = re^{i\theta}$, f(z) = u + iv, where r, θ, u, v are real and f(z) is an analytic function, show that the Cauchy-Riemann differential equations are

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \qquad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}.$$

2. Show that the conjugates of the complex numbers $\sin z$ and $\cos z$ are $\sin \bar{z}$ and $\cos \bar{z}$ respectively. Hence show that

$$|\sin z|^2 = \frac{1}{2}(\cosh 2y - \cos 2x), \qquad |\cos z|^2 = \frac{1}{2}(\cosh 2y + \cos 2x).$$

3. Find the first few terms of the Laurent series for

$$f(z) = \frac{1}{e^z - 1}$$

about z = 0. Hint: long division will do the trick ...

4. Each of the functions

(a)
$$f(z) = \cot z$$
 (b) $g(z) = \frac{z}{\sin z - \tan z}$

has a pole at the origin. Find its order and residue in each case.

5. For positive numbers a and b, with $a \neq b$, show that

$$\int_{-\infty}^{+\infty} \frac{\cos x}{(x^2 + a^2)(x^2 + b^2)} \, dx = \frac{\pi}{a^2 - b^2} \left(\frac{e^{-b}}{b} - \frac{e^{-a}}{a}\right).$$

Compute the value of the integral in the case a = b.

6. (Extra for experts.) An integral formula of CAUCHY.

By integrating $z/(1 - ae^{-iz})$ round the rectangle with vertices at $\pm \pi$, $\pm \pi + iR$, prove that if $a \ge 1$,

$$\int_0^{\pi} \frac{ax \sin x}{1 - 2a \cos x + a^2} \, dx = \pi \log(1 + a^{-1}).$$

What is the value of the integral if 0 < a < 1?