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1. If z = re®, f(2) = u+iv, where r, 6, u, v are real and f(z) is an analytic
function, show that the Cauchy-Riemann differential equations are
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2. Show that the conjugates of the complex numbers sin z and cos z are
sin zZ and cos Z respectively. Hence show that
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|sin 2|2 = i(cosh 2y — cos 2z), | cos z|* = §(cosh 2y + cos 2z).

3. Find the first few terms of the Laurent series for
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about z = 0. Hint: long division will do the trick ...

4. Each of the functions
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has a pole at the origin. Find its order and residue in each case.

5. For positive numbers a and b, with a # b, show that
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Compute the value of the integral in the case a = b.

6. (Extra for experts.) An integral formula of CAUCHY.

By integrating z/(1 — ae™**) round the rectangle with vertices at +,
+7 + iR, prove that if a > 1,

g arsinz
dx = wlog(1 +a™1).
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What is the value of the integral if 0 < a < 17



