AE2 Mathematics

Solutions to Example Sheet 2: Fourier Series

 $f(x) = |\sin x|$ on $(-\pi, \pi)$ with $L = \pi$: f(x) is an even function so $b_n = 0$. On $[0, \pi]$ we have $|\sin x| = \sin x.$

$$a_0 = \frac{2}{\pi} \int_0^\pi |\sin x| \, dx = \frac{2}{\pi} \int_0^\pi \sin x \, dx$$
$$= \frac{4}{\pi} = \frac{4}{\pi}$$

where $\cos n\pi = (-1)^n$.

$$a_n = \frac{2}{\pi} \int_0^\pi \sin x \, \cos nx \, dx$$

We also know that $2\sin x \cos nx = \sin[(n+1)x] - \sin[(n-1)x]$ so for $n \ge 2$ (note: $a_1 = 0$)

$$a_n = \frac{1}{\pi} \int_0^{\pi} \sin[(n+1)x] \, dx - \frac{1}{\pi} \int_0^{\pi} \sin[(n-1)x] \, dx$$

= $-\frac{1}{\pi} \left[\frac{\cos[(n+1)x]}{n+1} \right]_0^{\pi} + \frac{1}{\pi} \left[\frac{\cos[(n-1)x]}{n-1} \right]_0^{\pi}$
= $-\frac{1}{\pi} \left[(-1)^{n+1} - 1 \right] \left[\frac{1}{n+1} - \frac{1}{n-1} \right] = \frac{2 \left[(-1)^{n+1} - 1 \right]}{\pi (n^2 - 1)}$

Therefore

$$a_n = \begin{cases} 0 & n = 2m + 1 \pmod{4} \\ -\frac{4}{\pi(4m^2 - 1)} & n = 2m \pmod{4} \end{cases}$$

and so

$$|\sin x| = \frac{2}{\pi} - \frac{4}{\pi} \sum_{m=1}^{\infty} \frac{\cos 2mx}{(4m^2 - 1)}$$

$$f(x) = \begin{cases} x(1-x) & 0 \le x \le 1 \\ 0 & -1 \le x \le 0 \end{cases}$$

 $L=1\ \&$ the function is neither odd nor even.

$$a_0 = \int_{-1}^{1} f(x) \, dx = \int_{0}^{1} x(1-x) \, dx = 1/6$$

$$b_n = \int_0^1 x(1-x)\sin n\pi x \, dx$$

$$b_n = \begin{cases} rac{4}{(2m+1)^3 \pi^3} & n = 2m+1 \ 0 & n = 2m \end{cases}$$
 (odd)
0 $n = 2m$ (even)

$$a_n = \begin{cases} 0 & n = 2m + 1 & (\text{odd}) \\ -\frac{1}{2m^2 \pi^2} & n = 2m & (\text{even}) \end{cases}$$

thus giving the answer. The odd extension of f(x) = x(1-x), originally defined on $0 \le x \le 1$, on the range $-1 \le x \le 1$, has $b_n = 2 \int_0^1 x(1-x) \sin(n\pi x) dx$. Thus the answer is an odd sine-series with coefficient twice that above, namely $\frac{8}{(2m+1)^3\pi^3}$.

3) $x \sin x$ is an even function over $(-\pi, \pi)$ so $b_n = 0$ and $a_n = \frac{2}{\pi} \int_0^{\pi} x \sin x \cos nx \, dx$. Using the fact that $2 \sin x \cos nx = \sin[(n+1)x] - \sin[(n-1)x]$, we have (except for n = 1)

$$a_n = \frac{1}{\pi} \int_0^{\pi} x \sin[(n+1)x] - \sin[(n-1)x] \, dx = \frac{2(-1)^{n+1}}{n^2 - 1} \qquad \text{by parts}$$

Thus $a_0 = 2$ and a_1 is

4)

$$\therefore \quad a_1 = \frac{2}{\pi} \int_0^\pi x \sin x \cos x \, dx = \frac{1}{\pi} \int_0^\pi x \sin 2x \, dx = -\frac{1}{2} \qquad \text{(by parts)}$$
$$x \sin x = 1 - \frac{1}{2} \cos x + 2 \sum_{n=2}^\infty \frac{(-1)^{n+1}}{n^2 - 1} \cos nx$$

The figure shows that f(x) is even about x = 0; thus $L = \pi$ and $b_n = 0$ and

$$a_{0} = \frac{2}{\pi} \left\{ \int_{0}^{\pi/2} x \, dx + \int_{\pi/2}^{\pi} (x - \pi) \, dx \right\} = 0$$
$$a_{n} = \frac{2}{\pi} \left\{ \int_{0}^{\pi/2} x \cos nx \, dx + \int_{\pi/2}^{\pi} (x - \pi) \cos nx \, dx \right\}$$
$$= \frac{2}{\pi} \int_{0}^{\pi} x \cos nx \, dx - 2 \int_{\pi/2}^{\pi} \cos nx \, dx$$

By parts

$$\int_0^{\pi} x \cos nx \, dx = \frac{1}{n^2} \left[nx \sin nx + \cos nx \right]_0^{\pi} = \frac{(-1)^n - 1}{n^2} = -\frac{2}{(2m+1)^2}$$

when n = 2m + 1 and zero when n is even. Moreover,

$$\int_{\pi/2}^{\pi} \cos nx \, dx = \frac{1}{n} \left[\sin nx \right]_{\pi/2}^{\pi} = -\frac{\sin \frac{1}{2}n\pi}{n} = -\frac{(-1)^m}{2m+1}$$

thus giving the answer as advertised.