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1 Introduction

1.1 Catastrophic Shifts in Ecosystems

Biological systems are not resting on stationary levels. Rather, they are constantly
changing within a defined range of deviations from a certain mean condition [5].
This behavior fits well to the notion of Sustainability or Resilience, with which
a system can tolerate fluctuations and maintain the current status. However, an
ecological system can sometimes collapse, or experience a catastrophic regime shift,
if the destructive forces go beyond what the system resilience can handle.

Nowadays, major global-scale forcings are going far beyond the highest level
we’ve ever experienced [14]. An abrupt and irreversible shift in the essential struc-
ture of the macro ecosystem can be expected, once a critical threshold is reached.
While the local-scale regime shift effect has been carefully characterized in various
literatures [6][9], we do not know much about the nature of possible planetary-
scale state shifts, since existing theoretical models often fail to take into account
the complex interactions and feedback loops [5].

Thus, our aim is to present a model that accounts for both regional and global
factors with emphasises on temporal-changing parameters. Since a uniform mea-
sure for Earth’s overall health condition is hard to set, we exclusively focus our
attention on air/atmospheric pollution, which is a major forcing to the global
environment and a suitable measurement for the ecosystem’s quality [10].

1.2 Our Modeling Approach

A good global-scale ecosystem model should be able to accomplish several objec-
tives:

• Effectively synthesizing various regional information, especially human-activity-
related information. (population, industry size, political constrains, etc.)

• Tracking temporal changes within the model. For a network model, mecha-
nisms governing nodal entities and connection status should be set to cope with
time development.

• Being able to reflect the potential catastrophic regime shift in the global level,
and offer adequate warning signals before the critical threshold is reached.

Based on the above considerations, we construct our model as follows. A
schematic representation is given in figure 1.

2
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Figure 1: Schematic Representation of Our Model

Firstly, we construct a local-level network modeling regional air conditions.
Every node represents a country. Parameters associated with a node describe how
the air pollution is generated, resolved, and distributed. Links among the nodes
represent possible pathways for pollution transfer. We set a time parameter for
every node and link, thus reflecting changes in air pollution conditions over time.
We define every node’s pollution accumulation to be the local air health measure.

At the global level, we construct a special node called Global Regime Shift Mo-
mentum(GRSM), aiming at modeling the air pollution accumulated at the macro
level and the overall tendency for the global ecological system to collapse. This
node is connected to every local node and receives pollution transfer from them,
in analog to the actual process of regional air pollution distribution to the atmo-
sphere [10]. We also model feedbacks from the GPSM to local nodes, in an effort
to reflect the global forcing’s feedback loop to the local entities.

We associate a kernel function with the GRSM, whose parameters are directly
affected by the local network properties. The kernel function itself is actually a
differential equation describing the dynamical process of bifurcation, which will
fall from a normal state to an alternative destruction state after a tipping point is
reached. We define the kernel to be the global air health measure.

We perform simulations on the model to predict both the local and global air
pollution status in the future, detect the tipping point, and establish a warning
signal. Following that, we perform further analysis on the network properties and
identify the most significant nodes in the network, thus providing information for
possible ways to prevent the global ecological regime shift. Finally, we discuss
strengths and weaknesses of our model.

3
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2 Constructing the Temporal Network

In this section, we will describe definitions for the nodal entities and links of our
network model, together with its functional mechanism and underlying signifi-
cance.

2.1 Major Assumptions

Before formally introducing the model, we commence with the following assump-
tions:

•Major countries are perceived as entities representing local ecological systems.
They are also viewed as the source of air pollution.

• Air pollution produced by a country can be stored/resolved in the local
environment, released to the upper atmosphere or transferred to other countries
through economic collaborations.

• The upper atmosphere applies a global forcing feedback to every individual
country.

• A country’s ability to produce/resolve air pollution is related to various local
factors.

2.2 Basic Structure Description

Countries with divergent local statuses behave differently in air pollution produc-
ing/desolving. And they are entities that highlight human activity, with them-
selves being the major ecological systems on the Earth. As displayed in figure 2,
countries around the world are marked with different levels of air pollution, which
gives us the justification to define a basic node in the network to be a country. We

Figure 2: PM values for different countries in the world
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model the local nodes to be countries around the world, together with a special
node termed Global Regime Shift Momentum(GRSM), as shown in figure 3.

Figure 3: Basic network structure

2.2.1 Nodal Definition

We then describe parameters for every local node as follow:
• Pollution Producing Capacity (PPC) Amount of pollution produced by a

country at a certain instant. The value of the current PPC for a certain country
is calculated combining the local information of gross domestic product (GDP),
population, land area, total energy consumption, since these values are observed
to be variate with PPC [1].We denote PPC by Pp(t).

• Pollution Resolving Capacity (PRC) Amount of pollution resolved by a
country at a certain instant. This value is calculated combining the local infor-
mation of domestic forest size, land area, technology level, and annual rainfall
amount. We assume these values to be variate with PRC. We denote PRC by
Pr(t).

• Pollution Accumulation (PA) Amount of air pollution accumulated within
the local node. We denote PA by Pa(t). If we define the pollution released to the
upper atmosphere by R(t), the pollution transferred to other countries by T (t),
and the pollution feedback given by the upper atmosphere by F (t) then PA is
given by

Pa(t+ 1)− Pa(t) = Pp(t)− Pr(t)−R(t)− T (t) + F (t) (1)

The time increment in the model is month. The property of R(t) , T (t) and F (t)
is discussed in the Link definition.

5
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We still have a special node GRSM:
• The GRSM is a global node connected to every local node in the network. It

receive pollution released from local nodes, and give feedbacks to them respectively.
It has an PA value denoted by PA(t), but it does not have PPC and PRC. Detailed
discussions are given later.

2.2.2 Link Definition

As shown in figure 3, our network has 3 kinds of links:
• Local Pollution Transfer (LPT) We define a directed LPT from one country

to another if practical data show there exist industrial collaboration between the
two countries. Countries with a higher PPC typically have better economic status
and tend to transfer their pollution to other countries; For countries with lower
PPCs, vice versa. Thus, we denote LPT by Tαβ(t), and a directed LPT from
country α to country β is given by

| Tαβ(t) |= k1 ·
[
Pα
p (t)− P β

p (t)
]
· Pα

a (t) (2)

Where k1 is a scaling factor. We would expect a higher T (t) if the discrepancy
in PPC between the two countries is large, and if PA of the initiating country is
large. For country α, Tαβ(t) is positive, while for country β it’s negative.

• Pollution Release (PR) The PRs are directed from local nodes to the
GRSM. Since countries with larger PAs will generally release more air pollution
to the upper atmosphere, we denote PR by R(t) and define it as

R(t) = k2 · Pa(t) (3)

Where k2 is a scaling factor.
• Pollution Feedback (PF) We assume the upper atmosphere give pollution

feedbacks to local nodes proportional to their country land areas. Countries with
larger lands would receive more feedbacks. On the other hand, when the PA of
GRSM is higher, we should also expect a higher PF. Thus, we denote the country
land area by S and the PF by F (t). The value is given by

F (t) = k3 · S · PA(t) (4)

Where k3 is a scaling factor.

2.2.3 Special Node: Global Regime Shift Momentum

Our atmospheric ecosystem is exposed to gradual changes from different regions in
the world. In our model, These changes are modeled as PR from local nodes to the
global node. Faced with those changes, the global system can maintain a stable

6
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state within a certain extent, but once a tipping point is reached, the system can
experience an irreversible collapse to an alternative stable state.

Here we utilize a kernel function associated with the GRSM to simulate this sys-
tem behavior. R.M.May has established a practical model accounting for grazing
systems [9], and we observe an analogue between the biomass in grazing system-
s and Sustainability/Resilience of our atmospheric ecosystem. Thus, we employ
May’s model and define the kernel function as

dS

dt
= rS

(
1− S

Smax

)
− c

S2

S2 + S2
0

+ σSηS(t) (5)

Explanations for model parameters are given in table 1. We then describe the

Model Parameters Description and/or values

S Sustainability of the atmospheric ecosystem
r Sustainability recovery rate. Here r = 1

Smax The maximum Sustainability the system can theoretically reach
c Chaos Index, a global forcing applied to the system
S0 The value of Sustainability in the alternative state
σS Standard Deviation of external noise applied to the system.

ηS(t) External noise applied to the system. i.e. Human activity

Table 1: Parameter Description for the kernel function

rationale for such modeling: S will go through a bifurcation dynamic, which is
consistent with the behavior of an ecological system [5]. We set r to be 1 since
we assume sustainability of the air ecosystem can stay stable without forcing and
noise. ηS(t) is a Gaussian noise term, and is used to simulate human activity
influence here. And most importantly, we use c to model the direct forcing to the
system.

Behavior of the kernel function is illustrated in figure 4. As can be observed,
S value can go along two stable trajectories. The two trajectories are calculated
by setting dS/dt to be 0, aiming at obtaining the stable status. Any value that
deviates from the trajectories will be attracted to one of them. While the upper
trajectory in our model represent the current air ecosystem sustainability, the lower
one stands for a destructive state where the global air quality becomes intolerable.
We say the ecosystem experiences a regime shift if S value goes from the upper
trajectory to the lower one.

We illustrate two possible ways for the regime shift to take place, respectively
in subfigure A and subfigure B:

• Increasing chaos index. As the global forcing becomes increasingly intense,
the tipping point is reached and a regime shift is unavoidable.

• Large standard deviation (SD) of the noise term, which means the regional
human activity is utmost abrupt. (a nuclear war, etc.)

7



Team 18434 Page 8 of 20

Figure 4: Illustration for the bifurcation behavior. Subfigure A: Regime shift caused by in-
creasing chaos index; Subfigure B : Regime shift caused by large SD of the noise. i.e. Abrupt
human activity.

As pointed out by [4], although diverse events can trigger such shifts, loss of
sustainability is the key reason for a state switch. Hence, we focus our modeling
exclusively on the global forcing, i.e. the chaos index.

We view global forcing as a factor that increases over time. Since the global
forcing is implicitly modulated by regional factors, we associate the local network
property with c by defining:

dc

dt
= k4 ·

Sum of local PAs

Entropy of local network
= k4 ·

∑n
i=1 P

i
a

−
∑n

i=1 ϕilnϕi

(6)

With ϕi = kout
i /

∑
kout
i (7)

Where P i
a is the PA for a single node, and kout

i is the out-degree of an individual
node. k4 is a scaling factor. Rationale for such a design is clear:

• Since the global forcing is driven by the sum of local forcings, a larger sum
of local PA over the world implies a higher rate for global forcing increasing; and

• Since ecosystems are more vulnerable to pollution centralized at one region
than distributed to multiple regions, a larger entropy of the local network would
make a smaller rate for global forcing increasing: local pollution is more uniformly
distributed in a network with a higher entropy.

By modeling the kernel function in this manner, we can expect a local-forcing-
modulated increase in the global forcing (chaos index) over time, which can provide
insights into forecasting the tipping point.

8
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2.3 Metric for Health Measure

We propose metric at 2 different levels for the earth atmospheric health measure:
• Local measure: The local measure is directly reflected by the pollution accu-

mulation (PA) for every individual node. A higher value of PA means a heavier
air pollution in that region, hence a worse air health condition.

• Global measure: The global measure is directly reflected by the Sustainability
(S) in the kernel function. If S stays along the upper trajectory, we say it’s
acceptable and the air ecosystem is functioning normally; If S falls to the lower
trajectory, we say the system has collapsed and Earth’s atmosphere is no longer
healthy.

3 Running the Model

We include 41 major countries around the word as nodes in our model. By run-
ning the model for a certain period of time, we can forecast both local air health
conditions and the global air health condition. Before the model simulation, we
need to determine several parameters for the model:

• The pollution producing capacity (PPC) and pollution resolving capacity
(PRC) for every local node. We use various human activity factors to estimate the
parameter value.

• Directed connections (LPTs) among local nodes. We determine the existence
of a link with practical information regarding industrial collaborations

• Scaling factors in equation (2), (3), (4), (5) and (6). We give a subjective
raw estimation and discuss what data is needed in order to form an accurate one.

3.1 Parameter Estimation

3.1.1 PPC and PRC

We estimate the PPC and PRC for local nodes using accessible data. Since they
have similar intrinsic property , we only illustrate the calculation of PPC here.
As stated before, PPC for a chosen country is co-varying with local information
including GDP, population, land area and total energy consumption. The 4 factors
are then termed GDP, POP, ARE, and ENE respectively. We define the value of
PPC (Pp) as a linear combination of these four factors:

Pp =
4∑

i=1

wiIi (8)

Where Ii are the normalized values for the 4 factors respectively. Applying the
Analytical Hierarchy Process (AHP) [11], we first build a 4X4 matrix by pair

9
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comparison:
GDPPOPAREENE

GDP
POP
ARE
ENE


1
1/2
1/6
2

2
1
1/4
3

6
4
1
9

1/2
1/3
1/9
1

 (9)

The numbers’ meanings are explained in [12], while the numbers themselves are
determined by our subjective decisions.

The calculated weights are then given in table 2.

Factor GDP POP ARE ENE

Weight 0.2877 0.1661 0.0479 0.4983

Table 2: Calculated weights for PPC

To test the consistency of our weight estimation, we employ the method de-
scribed in [2]. A good estimate requires:

• The principle eigenvalue λmax of the matrix should be close to number of
alternatives. Here we have 4 alternatives and λmax = 4.02.

• The consistency index (CI) should be close to 0. Here we have CI =
(λmax − n) / (n− 1) = 0.0069

• The consistency ratio (CR) should be less than 0.01. Here we have CR =
CI/RI = 0.0077, where RI is the average value for CI in terms of random matrices.

Thus, we conclude our estimate for PPC weights is reasonable and robust.
PRC is calculated in a manner identical to PPC, except for the fact that it’s co-

varying with local information including domestic forest size, land area, technology
level, and annual rainfall amount. We then term the 4 factors by FOR, ARE, TEC
and RAI respectively. The calculated weights for PRC are given in table 3 Similar
consistency analysis also qualifies the estimate for PRC as robust.

Factor FOR ARE TEC RAI

Weight 0.4959 0.1542 0.2672 0.0827

Table 3: Calculated weights for PRC

Next we get data for the multiple factors, i.e. the Ii s. Data value for some
major countries we consider to be representative and the data source are shown in
table 4 and table 5 as an illustration.

The divergent factors have different Units in their measurements, which can
cause confusions during the data processing. Thus, we perform a scale normaliza-
tion before calculation. This normalizes values for all factors to a [0, 1] interval.
The calculated PPC and PRC for the listed countries are shown in figure 5.

10
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GDP/ Population/ Surface Area/ Energy consumption/
Billion USD 104 people 104 sq.km 104 tons of standard oil

United States 142969 31689 963.2 168640
Great Britain 26575 4820 24.4 15891

China 45218 136292 959.8 208494
Australia 10394 2167 774.1 31070
Venezuela 3111 2845 91.2 20353

South Africa 2753 4840 121.9 16064

Table 4: Values for estimating PPC. Source: http://data.worldbank.org/

Forest Area/ Tech. Expenditure/ Rainfall/ Surface Area/
104 sq.km Billion USD Million CBM 104 sq.km

United States 319 3946 6440000 963.2
Great Britain 2.9 489 275029 24.4

China 211 674 6172800 959.8
Australia 166 168 3630635 774.1
Venezuela 49 11.8 1406154 91.2

South Africa 9.3 27.4 524600 121.9

Table 5: Values for estimating PRC. Source: http://data.worldbank.org/

We can observe from the figure: USA is in a near-balance between PPC and
PRC, which implies a relatively stable atmospheric pollution condition. On the
other hand, China (CHN)’s PPC clearly surpasses its PRC, forecasting a trend
toward heavier air pollution. For Australia (AUS), PRC is far larger than PPC
and implies the country has a potential for better air quality. This fits well to the
reality [14].

Figure 5: PPC and PRC values for the listed countries

11
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3.1.2 Network Connection Establishment

We determine the existence of a link from one country to another by the following
rule:

If country α and β are engaged in a certain industrial relationship,
through which α can potentially transfer air pollution burden to α, then
a link from node α to β is identified.

Such information is collected by searching past news. If no relevant information
between a certain country pair is available, we consider the link to be non-existent.
The connection status of the previously listed 6 countries is given in table 6 as an
illustration.

United States Great Britain China Australia Venezuela South Africa

United States / z z z
Great Britain /

China X / z z
Australia X X / z
Venezuela X /

South Africa X X /

Table 6: XLink from row country to column country. zLink from column country to row
country.

3.1.3 Scaling Factors

We next determine the scaling factors in our model. For an accurate estimation
of the scaling factors, we must obtain more direct and detailed data regarding

• countries’ economic/technological development; and
• portion of air pollution that can be transferred to another country and release

to the upper atmosphere during a certain period of time; and
• an overall measure of the global air quality.
We give a raw estimation of all scaling factors, which are listed in table 7.

Scaling factor Which equation Estimated Value

k1 (2) 1/Pβ
p (t0)for every country pair

k2 (3) 0.618
k3 (4) 0.2 · 10−4

Smax (5) 10
S0 (5) 1
σS (5) 0.5
k4 (6) 0.073

Table 7: Estimated scaling factors

12
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3.2 Results

In running the model, we set the minimum time increment for t as 1 month. We
wish to predict Earth’s air health after 50 years, hence the time interval is set to
be 600 months. We now discuss the running results respectively for the local level
and global level.

3.2.1 Local Air Health

The local health measure is reflected in the PA value of every local node. We
normalize the PA values as percentages compared with the total amount of local
PAs. Final PA distribution is given in figure 6. Previously selected countries are
highlighted. Though the parameter settings are not ideally accurate, the distribu-

Figure 6: Final local PA distribution

tion is still reasonable to a certain magnitude. We can be more confident about
the result once precise parameters are provided.

3.2.2 Global Air Health

As predicted, a global environmental collapse is observed at around 400 months
later. This is due to the increase in c (chaos index) over time. After the tipping
point is reached, the regime shift is irreversible and S (Sustainability) stays at a
destructive low level. A prediction signaling the upcoming tipping point is highly
desirable. The only available information aiding the prediction is the value of S,
which can be quantified by a air quality measure. Hence we employ the method

13
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Figure 7: Modeling of global air health

described in [7]. By observing the probability distribution of S value during a
relatively short time interval (compared with the total simulation time), we can
establish a correlation between the skewness of the probability distribution and
the current value of chaos index.

For an illustration, we selected 2 time points with one close to the tipping point
and the other far away from it. Then we choose a time interval of 300 days (10
months) centered at the 2 points and record the 2 probability distributions, which
are given in figure 8. Clearly, a higher skewness level can be seen from the near
point. Motivated by this fact, we then perform a correlation analysis between the
skewness and the chaos index. We start by quantitatively defining the skewness
as

γ =

∫
(x− µ)3p(x)dx

σ3
(10)

Where p(x) is the density function of the distribution, and µ and σ are the mean
and standard deviation of the distribution respectively. Next, we choose time
points along the overall interval and calculated their skewnesses together with
corresponding chaos indexes, as shown in figure 9. As chaos index approaches
the tipping point, the relative change in skewness gets increasingly abrupt. This
provides a possible way for signaling the regime shift.

3.3 Sensitivity Analysis

We perform sensitivity analysis regarding the network structure. Since unexpected
hazardous events (nuclear exploration, etc.) can happen without warning in local
areas, it’s necessary to see how the final PA distribution can change if local param-

14
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Figure 8: Probability distributions of S for the 2 time intervals. Left figure: Time point close
to the tipping point. Right figure: Time point far away from the tipping point

Figure 9: Skewness and chaos index

eters alter abruptly. We thus simulate unexpected local events in a certain node by
doubling the initial value of PPC. An illustration is given in figure 10. Adjustment
for China induces a relatively large fluctuation in the RA distribution, while the
same doubling on PA applied to South Africa does not produce such a result. In
order to measure the influence of an adjustment on a certain node, we utilize the
concept of Kendall’s tau coefficient [13] to analyze the PA ranking change among
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Figure 10: Final PA distribution after adjustment for China/South Africa

the 41 countries. The kendall’s tau coefficient is formally defined as

τ =
(number of concordant pairs)-(number of discordant pairs)

1
2
n(n− 1)

(11)

Where n is the number of IDs. In our model, n = 41. τ ranges within [−1, 1], with
1 meaning no change in the ranking and −1 meaning the ranking is completely
reversed. We compute kendall’s taus for adjustments in all 41 countries. Results
for the previously listed countries are shown in table 8 as an example.

Country CAN USA GBR AUS VEN RSA

Kendall’s tau 0.46 0.32 0.88 0.82 0.96 0.97

Table 8: kendall’s taus for the 6 countries

While China and USA have kendall’s tau coefficients that approach 0, the other
4 countries’ coefficients are near 1. This reflects a higher influence of local forcing
from the former country group.

4 A Further Look into the Network Structure

In our sensitivity analysis, adjustments in some countries produce huge fluctuations
in PA ranking, while PA ranking is not so sensitive to other countries. This
motivates us to find the important nodes in the network. We start by considering
the practical meaning of our network and how its connections are formulated.

16
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4.0.1 Power Law in the Network

A directed link from country α to β implies the former are transferring air pollution
to the latter through certain industrial activities. Thus, we consider how industrial
collaborations are establish in the real world. Since less-developed countries always
tend to establish connections with the most developed countries, our network has
an interesting property: Some nodes have very large out-degrees (rich countries),
while the others out-degree value is relatively small (poor countries).

For our networkG(V,E), where V is the set of nodes and E is the set of links, we
simulate the process how our network is formulated: once a new node is inserted
into the network, it establishes connections with m nodes with a probability of
pi = kout

i / |E|, where kout
i is the out-degree of the ith node and |E| is the total

number of links. Thus, nodes with a large out-degree tend to ”absorb” more ”new
comers”, and consequently gain a even larger out-degree. On the other hand,
nodes with a low According to [3], the degree distributions of such networks obey
the Power Law, i.e.

Pk(Degree Distribution) ∝ 2m2k−3 (12)

We then plot the out-degree distribution in our network, with the x-axis adjusted to
logarithmic, as shown in figure 11. Though the distribution does not fits perfectly

Figure 11: Out-degree distribution in our network

to the drawn line, such tendency is clear. Actually, our network can be viewed
to obey power law, where pk decreases slowly even when k is relatively large,
compared with random networks.
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4.0.2 Finding Important Nodes via Leader Rank

After mining out the network property, we are interested in identifying important
nodes in our network. Since the out-degree value does not provide a good measure
for influence of a node, we employ the Leader Rank method described in [8]. The
method inserts a leading node into the network, which can aid the process of im-
portance score assignment. This method outperforms others in its non-sensitivity
to node initial values, which is exactly needed in our network. If we define node
i’s importance score as Si(t), then the score evolves over time as

Si(t+ 1) =

|V |+1∑
j=1

αij

kin
j

Sj(t) (13)

Where kin
j is the in-degree of a node. αij = 1 if there exist a link from i to j, and

αij = 0 if the link is non-existent. When the score-assignment converges, the final
importance score for every node is given by

Si = Si(+∞) +
Sg(+∞)

|V |
(14)

Where Sg(+∞) is the final score of the inserted leading node.
We then calculate the final scores of all nodes in our network. All initial scores

are set to be 1 due to the parameter non-sensitivity of the ranking method. As a
result, the top 5 most important nodes are identified in table 9.

Country USA China Russia India Canada

Leader Score 6.28 5.33 4.58 4.05 2.69

Table 9: Leader score for the top 5

5 Avoid the Inevitable: Suggestions for Govern-

ments

Based on our analysis regarding the model, we propose 3 major suggestions for
governors:

• At the local level, since we’ve identified the most influential nodes in the
local network, those countries should pay special attention to air pollution
control. Possible solutions include reducing pollution production (shutting
down factories with heavy pollution, etc.) and increasing pollution resolving
capacity (enlarging forests, etc.)

18
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• At the global level, since the catastrophic shift can be slowed down or avoid-
ed by balancing air pollution accumulated in countries around the world
(increasing the network entropy), we recommend the relatively developed
countries stop transferring air pollution to other countries through indus-
trial bounds. On the other hand, those technologically advanced countries
should, if possible, provide others with techniques for air pollution cleaning.

• Our model predicts a global regime shift in air quality at around 2045 (400
months later). Time is short, and immediate action is highly desirable.

6 Strengths and Weaknesses

• Strengths Our model accounts for air health both at the local level and
the global level, respectively with a temporal network and a bifurcation dy-
namic. We intricately simulate local forcings’ effect on global forcing by
associating entropy of the local network and chaos index in the global bifur-
cation. Feedbacks from the global forcing to local regions are also reflected
by such a method. By running and analyzing the model, We successfully
identify the most influential countries on air pollution, and give predictions
of global regime shift together with its warning signal.

• Weaknesses Our model requires more direct and detailed data for a more
accurate estimation. Since the model is based on intrinsic properties of air
pollution, it’s relatively difficult to generate it to fit other health measures.
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