Sociology 761	John Fox	 Introduction to Survival Analysis Introduction Survival analysis encompasses a wide variety of the timing of events. 	¹ of methods for analyzing
Lecture Notes Introduction to Surviv		 The prototypical event is <i>death</i>, which accourt these methods. But survival analysis is also appropriate for masuch as criminal recidivism, divorce, child-be and graduation from school. The wheels of survival analysis have been rein in different disciplines, where terminology varidiscipline: survival analysis in biostatistics, which has tharea; failure-time analysis in engineering; event-history analysis in sociology. 	any other kinds of events, earing, unemployment, nvented several times ies from discipline to
 Introduction to Survival Analysis Sources for these lectures on survival analy Paul Allison, Survival Analysis Using the S 1995. George Barclay, Techniques of Population D. R. Cox and D. Oakes, Analysis of Surviv 1984. David Hosmer, Jr. and Stanley Lemeshow Wiley, 1999. Terry Therneau and Patricia Grambsch, Springer, 2000. 	SAS System, SAS Institute, Analysis, Wiley, 1958. val Data, Chapman and Hall, v, Applied Survival Analysis,	 Introduction to Survival Analysis Outline: The nature of survival data. Life tables. The survival function, the hazard function, and Estimating the survival function. The basic Cox proportional-hazards regression Topics in Cox regression: Time-dependent covariates. Model diagnostics. Stratification. Estimating the survival function. 	

2. The Nature of Survival Data: Censoring

- ► Survival-time data have two important special characteristics:
- (1) Survival times are non-negative, and consequently are usually positively skewed.
 - This makes the naive analysis of untransformed survival times unpromising.
- (2) Typically, some subjects (i.e., units of observation) have *censored* survival times
 - That is, the survival times of some subjects are not observed, for example, because the event of interest does not take place for these subjects before the termination of the study.
 - Failure to take censoring into account can produce serious bias in estimates of the distribution of survival time and related quantities.

- ▶ It is simplest to discuss censoring in the context of a (contrived) study:
 - Imagine a study of the survival of heart-lung transplant patients who are followed up after surgery for a period of 52 weeks.
 - The event of interest is death, so this is literally a study of *survival time*.
 - Not all subjects will die during the 52-week follow-up period, but all will die eventually.
- ► Figure 1 depicts the survival histories of six subjects in the study, and illustrates several kinds of censoring (as well as uncensored data):
 - My terminology here is not altogether standard, and does not cover all possible distinctions (but is, I hope, clarifying).
 - Subject 1 is enrolled in the study at the date of transplant and dies after 40 weeks; this observation is *uncensored*.
 - The solid line represents an observed period at risk, while the solid circle represents an observed event.

Sociology 761	Copyright ©2006 by John Fox	Sociology 761	Copyright ©2006 by John Fox
Introduction to Survival Analysis start of study end of study figure 1. Data from an imagined study illustrating various bistoriae: Subject 1 uncensored: 2 fixed-right consoring	100 s kinds of subject	 weeks; this is an example of fit The broken line represents a box represents the censoring an <i>unobserved event</i>. The censoring is fixed (as a determined by the procedur observation ceases 52 week This subject dies after 90 we thus cannot be taken into ac the study. Fixed-right censoring can also 	an <i>unobserved period at risk</i> ; the filled g time; and the open circle represents opposed to random) because it is re of the study, which dictates that

histories: Subject 1, uncensored; 2, fixed-right censoring; 3, random-right censoring; 4 and 5, late entry; 6, multiple intervals of observation.

Introduction to Survival Analysis

kind.

Sociology 761

12

Introduction to Survival Analysis

Figure 3 shows calendar time and survival time for subjects in a study

with a fixed *date* of termination: observation ceases in 2000.

- Thus, the observation for subject 3, who is still alive in 2000, is fixed-right censored. (b) - Subject 1, who drops out in 1999 before the termination date of the (a) start of study end of study study, is randomly censored. ► Methods of survival analysis will treat as at risk for an event at survival subjects subject 5 time t those subjects who are under observation at that survival time. - O 3 • By considering only those subjects who are under observation, unbiased estimates of survival times, survival probabilities, etc., can 1990 1995 2000 0 5 10 be made, as long as those under observation are representative of all survival time, t calendar time subjects. Figure 2. Calendar time (a) vs. survival time (b). • This implies that the censoring mechanism is unrelated to survival time, perhaps after accounting for the influence of explanatory variables. Copyright © 2006 by John Fox Sociology 761 Sociology 761 Copyright ©2006 by John Fox Introduction to Survival Analysis 14 Introduction to Survival Analysis 15 That is, the distribution of survival times of subjects who are censored at a particular time t is no different from that of subjects who are still under observation at this time. • When this is the case, censoring is said to be noninformative (i.e., (a) (b) about survival time). termination date start of study With fixed censoring this is certainly the case. • 🕤 subjects C • With random censoring, it is quite possible that survival time is not independent of the censoring mechanism. - 0 E 3 - For example, very sick subjects might tend to drop out of a study shortly prior to death and their deaths may consequently go 1990 0 10 1995 2000 5 unobserved, biasing estimated survival time upwards. survival time, t calendar time - Another example: In a study of time to completion of graduate Figure 3. A study with a fixed date of termination. degrees, relatively weak students who would take a long time to finish are probably more likely to drop out than stronger students who tend to finish earlier, biasing estimated completion time downwards. Sociology 761 Copyright © 2006 by John Fox Sociology 761 Copyright © 2006 by John Fox

Introduction to Survival Analysis 16	Introduction to Survival Analysis 17
– Where random censoring is an inevitable feature of a study, it is important to include explanatory variables that are probably related to both censoring and survival time — e.g., seriousness of illness in the first instance, grade-point average in the second.	 Right-censored survival data, therefore, consist of two or three components: (1) The survival time of each subject, or the time at which the observation for the subject is censored.
	(2) Whether or not the subject's survival time is censored.
	 (3) In most interesting analyses, the values of one or more explanatory variables (covariates) thought to influence survival time. The values of (some) covariates may vary with time.
	Late entry and multiple periods of observation introduce complications, but can be handled by focusing on each interval of time during which a subject is under observation, and observing whether the event of interest occurs during that interval.
Sociology 761 Copyright ©2006 by John Fox	Sociology 761 Copyright ©2006 by John Fox
Introduction to Survival Analysis 18	Introduction to Survival Analysis 19
3. Life Tables	 Censoring is not a serious issue in constructing a life table.
At the dawn of modern statistics, in the 17th century, John Graunt and William Petty pioneered the study of mortality.	Here is an illustrative life table constructed for Canadian females using mortality data for the period 1995-1997:
The construction of life tables dates to the 18th century.	Age x l_x d_x p_x q_x L_x T_x e_x
 A life table records the pattern of mortality with age for some population and provides a basis for calculating the expectation of life at various ages. These calculations are of obvious actuarial relevance. 	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
 Life tables are also a good place to start the study of modern methods of survival analysis: Given data on mortality, the construction of a life table is largely straightforward. Some of the ideas developed in studying life tables are helpful in understanding basic concepts in survival analysis. 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Copyright ©2006 by John Fox

20

22

- ► The columns of the life table have the following interpretations:
 - x is age in years; in some instances (as explained below) it represents exact age at the xth birthday, in others it represents the one-year interval from the xth to the (x + 1)st birthday.
 - This life table is constructed for single years of age, but other intervals — such as five or ten years — are also common.
 - *l_x* (the lower-case letter "el") is the number of individuals surviving to their *x*th birthday.
 - The original number of individuals in the cohort, l_0 (here 100,000), is called the *radix* of the life table.
 - Although a life table can be computed for a real *birth cohort* (individuals born in a particular year) by following the cohort until everyone is dead, it is more common, as here, to construct the table for a *synthetic cohort*.
 - A synthetic cohort is an imaginary group of people who die according to current age-specific rates of mortality.

Sociology 761	Copyright ©2006 by John Fox

Introduction to Survival Analysis

- L_x is the number of person-years lived between birthdays x and x + 1.
- At most ages, it is assumed that deaths are evenly distributed during the year, and thus $L_x = l_x \frac{1}{2}d_x$.
- In early childhood, mortality declines rapidly with age, and so during the first two years of life it is usually assumed that there is more mortality earlier in the year. (The details aren't important to us.)
- T_x is the number of person-years lived after the *x*th birthday.
- $-T_x$ simply cumulates L_x from year x on.
- A small censoring problem occurs at the end of the table if some individuals are still alive after the last year. One approach is to assume that those still alive live on average one more year.
 - \cdot In the example table, 8 people are alive at the end of their $109 \mbox{th}$ year.
- e_x is the expectation of life remaining at birthday x that is, the number of additional years lived on average by those making it to their xth birthday.

Introduction to Survival Analysis

- Because mortality rates typically change over time, a synthetic cohort does not correspond to any real cohort.
- d_x is the number of individuals dying between their xth and (x + 1)st birthdays.
- p_x is proportion of individuals age x who survive to their (x + 1)st birthday that is, the conditional probability of surviving to age x + 1 given that one has made it to age x.
- q_x is the age-specific mortality rate that is, the proportion of individuals age x who die during the following year.
- $-q_x$ is the key column in the life table in that all other columns can be computed from it (and the radix), and it is the link between mortality data and the life table (as explained later).
- $-q_x$ is the complement of p_x , that is, $q_x = 1 p_x$.

Sociology 761

Copyright ©2006 by John Fox

23

Introduction to Survival Analysis

$$-e_x = T_x/l_x.$$

- $-e_0$, the expectation of life at birth, is the single most commonly used number from the life table.
- ► This description of the columns of the life table also suggests how to compute a life table given age-specific mortality rates q_x:
 - Compute the expected number of deaths $d_x = q_x l_x$.
 - $-d_x$ is rounded to the nearest integer before proceeding. This is why a large number is used for the radix.
 - Then the number surviving to the next birthday is $l_{x+1} = l_x d_x$.
 - The proportion surviving is $p_x = 1 q_x$.
 - Formulas have already been given for L_x , T_x , and e_x .

Sociology 761

24

- Figure 4 graphs the age-specific mortality rate q_x and number of survivors l_s as functions of age for the illustrative life table.
- \blacktriangleright As mentioned, the age-specific mortality rates q_x provide the link between the life table and real mortality data.
 - q_x must be *estimated* from real data.
 - The nature of mortality data varies with jurisdiction, but in most countries there is no population registry that lists the entire population at every moment in time.
 - Instead, it is typical to have estimates of population by age obtained from censuses and (possibly) sample surveys, and to have records of deaths (which, along with records of births, constitute so-called vital statistics).

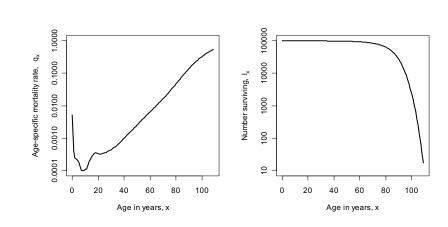


Figure 4. Age-specific mortality rates q_x and number of individuals surviving l_x as functions of age x, for Canadian females, 1995-1997. Both plots use logarithmic vertical axes.

```
Sociology 761
```

Introduction to Survival Analysis

Copyright ©2006 by John Fox

Introduction to Survival Analysis

27

- Population estimates refer to a particular point in time, usually the middle of the year, while deaths are usually recorded for a calendar vear.
- There are several ways to proceed, and a few subtleties, but the following simple procedure is reasonable.
- Let P_x represent the number of individuals of age x alive at the middle of the year in question.
- Let D_x represent the number of individuals of age x who die during the year.
- $-M_x = D_x/P_x$ is the age-specific death rate. It differs from the age-specific mortality rate q_x in that some of the people who died during the year expired before the mid-year enumeration.

- Assuming that deaths occur evenly during the year, an estimate of q_x is given by

$$q_x = \frac{D_x}{P_x + \frac{1}{2}D_x}$$

- Again, an adjustment is usually made for the first year or two of life.

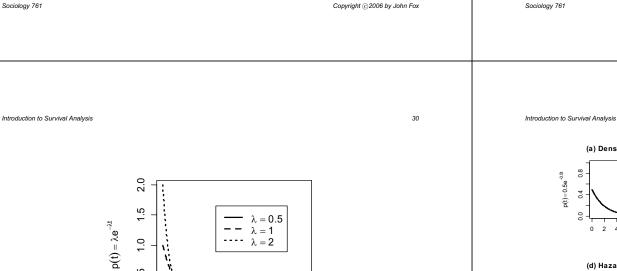
Sociology 761

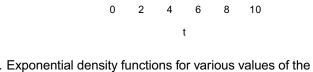
Introduction to Survival Analysis

Sociology 761

Copyright © 2006 by John Fox

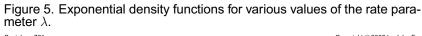
Introduction to Survival Analysis


28


4. The Survival Function, the Hazard **Function, and their Relatives**

- \blacktriangleright The survival time T may be thought of as a random variable.
- ► There are several ways to represent the distribution of *T*: The most familiar is likely the probability-density function.
 - The simplest parametric model for survival data is the exponential distribution, with density function

$$p(t) = \lambda e^{-\lambda t}$$


- The exponential distribution has a single rate parameter λ ; the interpretation of this parameter is discussed below.
- Figure 5 gives examples of several exponential distributions, with rate parameters $\lambda = 0.5$, 1, and 2.
- It is apparent that the larger the rate parameter, the more the density is concentrated near 0.

0.5

0.0

Sociology 761

Sociology 761

Copyright © 2006 by John Fox

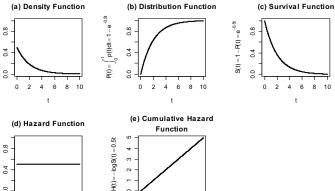
Introduction to Survival Analysis

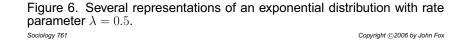
p(t)/S(t)=0.5

hÊ.

0

2 4 6 8 10


- The mean of an exponential distribution is the inverse of the rate parameters, $E(T) = 1/\lambda$.
- ▶ The cumulative distribution function (CDF), P(t) = Pr(T < t), is also familiar.
 - For the exponential distribution


$$P(t) = \int_0^t p(x)dx = 1 - e^{-\lambda t}$$

• The exponential CDF is illustrated in panel (b) of Figure 6 for rate parameter $\lambda = 0.5$.

Copyright ©2006 by John Fox

31

0 2 4 6 8 10

32

- ► The survival function, giving the probability of surviving to time t, is the complement of the cumulative distribution function, S(t) = Pr(T > t) = 1 P(t).
 - For the exponential distribution, therefore, the survival function is

$$S(t) = \int_{t}^{\infty} p(x) dx = e^{-\lambda}$$

• The exponential survival function is illustrated in Figure 6 (c) for rate parameter $\lambda=0.5.$

4.1 The Hazard Rate and the Hazard Function

- ▶ Recall that in the life table, q_x represents the conditional probability of dying before age x + 1 given that one has survived to age x.
 - If *r* is the radix of the life table, then the probability of living until age *x* is $l_x^* = l_x/r$ (i.e., the number alive at age *x* divided by the radix).
 - Likewise the *unconditional* probability of dying between birthdays x and x + 1 is $d_x^* = d_x/r$ (i.e., the number of deaths in the one-year interval divided by the radix).
 - The *conditional* probability of dying in this interval is therefore $Pr(\text{death between } x \text{ and } x + 1 \mid alive at age x)$

$$= \frac{\Pr(\text{death between } x \text{ and } x+1)}{\Pr(\text{alive at age } x)}$$
$$q_x = \frac{d_x^*}{l_x^*} = \frac{d_x/r}{l_x/r} = \frac{d_x}{l_x}$$

Sociology 761

Copyright ©2006 by John Fox

35

33

Sociology 761

Copyright ©2006 by John Fox

34

Introduction to Survival Analysis

▶ Now, switching to our current notation, consider what happens to this conditional probability at time *t* as the time interval shrinks towards 0:

$$h(t) = \lim_{\Delta t \to 0} \frac{\Pr[(t \le T < t + \Delta t) | (T \ge t)]}{\Delta t}$$
$$= \frac{p(t)}{S(t)}$$

- ► This continuous analog of the age-specific mortality rate is called the *hazard rate* (or just the *hazard*), and *h*(*t*), the hazard rate as a function of survival time, is the *hazard function*.
- Note that the hazard is not a conditional probability (just as a probabilitydensity is not a probability).
 - In particular, although the hazard cannot be negative, it can be larger than 1.

Introduction to Survival Analysis

- The hazard is interpretable as the expected number of events per individual per unit of time.
 - Suppose that the hazard at a particular time t is h(t) = 0.5, and that the unit of time is one month.
 - This means that on average 0.5 events will occur per individual at risk per month (during a period in which the hazard remains constant at this value).
 - Imagine, for example, that the 'individuals' in question are light bulbs, of which there are 1000.
 - Imagine, further, that whenever a bulb burns out we replace it with a new one.
 - Imagine, finally, that the hazard of a bulb burning out is 0.5 and that this hazard remains constant over the life-span of bulbs.
 - Under these circumstances, we would expect 500 bulbs to burn out on average per month.

- .
- Put another way, the expected life-span of a bulb is 1/0.5 = 2 months.
- When, as in the preceding example, the hazard is constant, survival time is described by the exponential distribution, for which the hazard function is

$$h(t) = \frac{p(t)}{S(t)} = \frac{\lambda e^{-\lambda t}}{e^{-\lambda t}} = \lambda$$

- This is why λ is called the *rate* parameter of the exponential distribution.
- The hazard function h(t) for the exponential distribution with rate $\lambda = 0.5$ is graphed in Figure 6 (d).
- More generally, the hazard need not be constant.
- Because it expresses the instantaneous risk of an event, the hazard rate is the natural response variable for regression models for survival data.

Copyright © 2006 by John Fox

Introduction to Survival Analysis

- ► Return to the light-bulb example.
 - The cumulative hazard function H(t) represents the expected number of events that have occurred by time t; that is,

$$H(t) = \int_0^t h(x)dx = -\log_e S(t)$$

• For the exponential distribution, the cumulative hazard is proportional to time

$$H(t) = \lambda t$$

- This is sensible because the hazard is constant.
- See Figure 6 (e) for the cumulative hazard function for the exponential distribution with rate $\lambda = 0.5$.
- In this distribution, expected events accumulate at the rate of $1/2\ {\rm per}$ unit time.
- Thus, if our 1000 light bulbs burn for 12 months, replacing bulbs as needed when they fail, we expect to have to replace $1000 \times 0.5 \times 12 = 6000$ bulbs.

```
Sociology 761
```

Copyright © 2006 by John Fox

Introduction to Survival Analysis

- 38
- Although the exponential distribution is particularly helpful in interpreting the meaning of the hazard rate, it is not a realistic model for most social (or biological) processes, where the hazard rate is not constant over time.
 - The hazard of death in human populations is relatively high in infancy, declines during childhood, stays relatively steady during early adulthood, and rises through middle and old age.
 - The hazard of completing a nominally four-year university undergraduate degree is essentially zero for at least a couple of years, rises to four years, and declines thereafter.
 - The hazard of a woman having her first child rises and then falls with time after menarche.

Introduction to Survival Analysis

- There are other probability distributions that are used to model survival data and that have variable hazard rates.
 - Two common examples are the Gompertz distributions and the Weibull distributions, both of which can have declining, increasing, or constant hazards, depending upon the parameters of the distribution.
 - For a constant hazard, the Gompertz and Weibull distributions reduce to the exponential.
 - We won't pursue this topic further, however, because we will not model the hazard function parametrically.

40

Introduction to Survival Analysis

Introduction to Survival Analysis

Sociology 761

41

- ► More generally, suppose that we have *n* observations and that there are *m* unique event times arranged in ascending order, $t_{(1)}, t_{(2)}, ..., t_{(m)}$.
- ► The Kaplan-Meier estimator, the most common method of estimating the survival function S(t) = Pr(T > t), is computed as follows:
 - Between t = 0 and $t = t_{(1)}$ (i.e., the time of the first event), the estimate of the survival function is $\widehat{S}(t) = 1$.
 - Let n_i represent the number of individuals at risk for the event at time $t_{(i)}$.
 - The number at risk includes those for whom the event has not yet occurred, including individuals whose event times have not yet been censored.
 - Let d_i represent the number of events ("deaths") observed at time $t_{(i)}$.
 - If the measurement of time were truly continuous, then we would never observe "tied" event times and $t_{(i)}$ would always be 1.

Copyright © 2006 by John Fox

46

- Introduction to Survival Analysis
 - Real data, however, are rounded to a greater or lesser extent, resulting in *interval censoring* of survival time.
 - For example, the recidivism data are collected at weekly intervals.
 - Whether or not the rounding of time results in serious problems for data analysis depends upon degree.
 - Some data are truly discrete and may require special methods: For example, the number of semesters required for graduation from university.
- The *conditional* probability of surviving past time $t_{(i)}$ given survival to that time is estimated by $(n_i d_i)/n_i$.
- Thus, the *unconditional* probability of surviving past any time t is estimated by

$$\widehat{S}(t) = \prod_{t(i) \le t} \frac{n_i - d_i}{n_i}$$

• This is the Kaplan-Meier estimate.

```
Sociology 761
```

Copyright ©2006 by John Fox

47

Introduction to Survival Analysis

Sociology 761

- ► For the small example:
 - The first arrest time is 17 weeks, and so $\widehat{S}(t) = 1$ for $t < t_{(1)} = 17$.
 - $d_1 = 1$ person was arrested at week 17 , when $n_1 = 10$ people were at risk, and so

$$\widehat{S}(t) = \frac{10 - 1}{10} = .9,$$

for $t_{(1)} = 17 \le t < t_{(2)} =$

• As noted, the second arrest occurred in week 27, when $d_2 = 1$ person was arrested and $n_2 = 9$ people were at risk for arrest:

27

$$\widehat{S}(t) \ = \ \frac{10-1}{10} \times \frac{9-1}{9} = .8,$$
 for $t_{(2)} = 27 \le t \ < t_{(3)} = 32$

Introduction to Survival Analysis

• At $t_{(3)} = 32$, there was $d_3 = 1$ arrest and, because the observation for prisoner 999 was censored at week 30, there were $n_3 = 7$ people at risk:

$$\widehat{S}(t) = \frac{10-1}{10} \times \frac{9-1}{9} \times \frac{7-1}{7} = .6857,$$

for $t_{(3)} = 32 \le t < t_{(4)} = 43$

At
$$t_{(4)} = 43$$
, there were $d_4 = 2$ arrests and $n_4 = 6$ people at risk:

$$\widehat{S}(t) = \frac{10-1}{10} \times \frac{9-1}{9} \times \frac{7-1}{7} \times \frac{6-2}{6} = .4571,$$
for $t_{(4)} = 43 \le t < t_{(5)} = 47$

Sociology 761

Copyright © 2006 by John Fox

- At $t_{(5)} = 47$, there was $d_5 = 1$ arrest and $n_5 = 4$ people at risk: $\widehat{S}(t) = \frac{10-1}{10} \times \frac{9-1}{9} \times \frac{7-1}{7} \times \frac{6-2}{6} \times \frac{4-1}{4} = .3429$, for $t_{(5)} = 47 \le t < t_{(6)} = 52$
- At $t_{(6)} = 52$, there was $d_6 = 1$ arrest and $n_6 = 3$ people at risk (since censored observations are treated as observed *up to and including* the time of censoring):

$$\widehat{S}(t) = \frac{10-1}{10} \times \frac{9-1}{9} \times \frac{7-1}{7} \times \frac{6-2}{6} \times \frac{4-1}{4} \times \frac{3-1}{3} = .2286,$$

for $t = t_{(6)} = 52$

Introduction to Survival Analysis

- Because the last two observations are censored, the estimator is undefined for $t > t_{(6)} = 52$.
- Were the last observation an event, then the estimator would descend to 0 at $t_{(m)}$.
- The Kaplan-Meier estimate is graphed in Figure 7.
- It is, of course, useful to have information about the sampling variability of the estimated survival curve.
 - An estimate of the variance of $\widehat{S}(t)$ is given by *Greenwood's formula*:

$$\widehat{V}[\widehat{S}(t)] = [\widehat{S}(t)]^2 \sum_{t(i) \le t} \frac{d_i}{n_i(n_i - d_i)}$$

• The square-root of $\widehat{V}[\widehat{S}(t)]$ is the standard error of the Kaplan-Meier estimate, and $\widehat{S}(t) \pm 1.96 \sqrt{\widehat{V}[\widehat{S}(t)]}$ gives a point-wise 95-percent confidence envelope around the estimated survival function.

Sociology 761	Copyright © 2006 by John Fox	Sociology 761	Copyright ©2006 by John Fox
Introduction to Survival Analysis	50	Introduction to Survival Analysis ► Figure 8 shows the Kapla full recidivism data set.	51 an-Meier estimate of time to first arrest for the
$\underbrace{\widehat{(0)}}_{C_{0}} \underbrace{\widehat{(0)}}_{C_{0}} \underbrace{\widehat{(0)}}_$	on for 10 observa-		
Figure 7. Kaplan-Meier estimate of the survival functions drawn from the recidivism data. The censored weeks is marked with a "+."	observation at 30	Sociology 761	Copyright ©2006 by John Fox

48

52

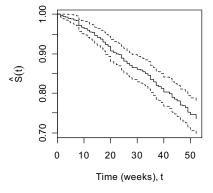


Figure 8. Kaplan-Meier estimate of the survival function for Rossi et al.'s recidivism data. The broken lines give a 95-percent point-wise confidence envelope around the estimated survival curve.

Introduction to Survival Analysis

54

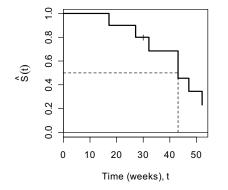


Figure 9. Determining the median survival time for the sample of 10 observations drawn from Rossi et al.'s recidivism data. The median survival time is $\hat{t}_{.5} = 43$.

Introduction to Survival Analysis

5.1 Estimating Quantiles of the Survival-Time Distribution

- Having estimated a survival function, it is often of interest to estimate quantiles of the survival distribution, such as the median time of survival.
- If there are any censored observations at the end of the study, as is often the case, it is not possible to estimate the expected (i.e., the mean) survival time.
- ▶ The estimated *p*th quantile of survival time is

$$\hat{t}_p = \min(t; S(t) \le p)$$

• For example, the estimated median survival time is

 $\widehat{t}_{.5} = \min(t: \widehat{S}(t) \le .5)$

• This is equivalent to drawing a horizontal line from the vertical axis to the survival curve at $\widehat{S}(t) = .5$; the left-most point of intersection with the curve determines the median, as illustrated in Figure 9 for the small sample of 10 observations drawn from Rossi et al.'s data.

```
Sociology 761
```

Copyright ©2006 by John Fox

55

Introduction to Survival Analysis

• It is not possible to estimate the median survival time for the full data set, since the estimated survival function doesn't dip to .5 during the 52-week period of study.

Copyright ©2006 by John Fox

5.2 Comparing Survival Functions

- There are several tests to compare survival functions between two or among several groups.
- Most tests can be computed from contingency tables for those at risk at each event time.
 - Suppose that there are two groups, and let $t_{(i)}$ represent the *i*th ordered event time in the two groups combined.
 - Form the following contingency table:

	Group 1	Group 2	Total
Event	d_{1i}	d_{2i}	d_i
No event	$n_{1i} - d_{1i}$	$n_{2i} - d_{2i}$	$n_i - d_i$
At Risk	n_{1i}	n_{2i}	n_i

where

 $-d_{ji}$ is the number of people experiencing the event at time $t_{(i)}$ in group j;

Copyright © 2006 by John Fox

58

56

- $-n_{ji}$ is the number of people at risk in group j at time $t_{(i)}$;
- $-d_i$ is the total number experiencing the event in both groups;
- $-n_i$ is the total number at risk.
- Unless there are tied event times, one of d_{1i} and d_{2i} will be 1 and the other will be 0.
- Under the hypothesis that the population survival functions are the same in the two groups, the estimated expected number of individuals experiencing the event at $t_{(i)}$ in group j is

$$\widehat{e}_{ji} = \frac{d_i n_{ji}}{n_i}$$

• The variance of \widehat{e}_{ji} may be estimated as

$$\widehat{V}(\widehat{e}_{ji}) = \frac{n_{1i}n_{2i}d_i(n_i - d_i)}{n_i^2(n_i - 1)}$$

• There is one such table for every observed event time, $t_{(1)}, t_{(2)}, \ldots, t_{(m)}$.

```
Sociology 761
```

Copyright ©2006 by John Fox

59

Introduction to Survival Analysis

• A variety of test statistics can be computed using the expected and observed counts; probably the simplest and most common is the *Mantel-Haenszel* or *log-rank test*,


$$Q = \frac{\left(\sum_{i=1}^{m} d_{1i} - \sum_{i=1}^{m} \widehat{e}_{1i}\right)^2}{\sum_{i=1}^{m} \widehat{V}(\widehat{e}_{1i})}$$

- This test statistic is distributed as χ_1^2 under the null hypothesis that the survival functions for the two groups are the same.
- The test generalizes readily to more than two groups.

Introduction to Survival Analysis

- Consider, for example, Figure 10 which shows Kaplan-Meier estimates separately for released prisoners who received and did not receive financial aid.
 - At all times in the study, the estimated probability of not (yet) reoffending is greater in the financial aid group than in the no-aid group.
 - The log-rank test statistic is Q = 3.84, which is associated with a *p*-value of almost exactly .05, providing marginally significant evidence for a difference between the two groups.

Figure 10. Kaplan-Meier estimates for released prisoners receiving financial aid and for those receiving no aid.

Sociology 761

Copyright ©2006 by John Fox

6. Cox Proportional-Hazards Regression

- Most interesting survival-analysis research examines the relationship between survival — typically in the form of the hazard function — and one or more explanatory variables (or *covariates*).
- ▶ Most common are linear-like models for the log hazard.
 - For example, a parametric regression model based on the exponential distribution:

$$\log_e h_i(t) = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik}$$

or, equivalently,

$$h_i(t) = \exp(\alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik})$$

= $e^{\alpha} \times e^{\beta_1 x_{i1}} \times e^{\beta_2 x_{i2}} \times \dots \times e^{\beta_k x_{ik}}$

where

- *i* indexes subjects;

 $-x_{i1}, x_{i2}, \ldots, x_{ik}$ are the values of the covariates for the *i*th subject.

Sociology 761

Copyright ©2006 by John Fox

63

61

Introduction to Survival Analysis

62

- This is therefore a linear model for the log-hazard or a multiplicative model for the hazard itself.
- The model is *parametric* because, once the regression parameters $\alpha, \beta_1, \ldots, \beta_k$ are specified, the hazard function $h_i(t)$ is fully characterized by the model.
- The regression constant α represents a kind of *baseline hazard*, since $\log_e h_i(t) = \alpha$, or equivalently, $h_i(t) = e^{\alpha}$, when all of the *x*'s are 0.
- Other parametric hazard regression models are based on other distributions commonly used in modeling survival data, such as the Gompertz and Weibull distributions.
- Parametric hazard models can be estimated with the survreg function in the survival package.

Introduction to Survival Analysis

► Fully parametric hazard regression models have largely been superseded by the Cox model (introduced by David Cox in 1972), which leaves the baseline hazard function $\alpha(t) = \log_e h_0(t)$ unspecified:

 $\log_e h_i(t) = \alpha(t) + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik}$

or equivalently,

 $h_i(t) = h_0(t) \exp(\beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik})$

• The Cox model is termed *semi-parametric* because while the baseline hazard can take any form, the covariates enter the model through the *linear predictor*

$$\eta_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik}$$

 Notice that there is no constant term (intercept) in the linear predictor: The constant is absorbed in the baseline hazard.

64

- The Cox regression model is a proportional-hazards model:
- Consider two observations, i and i', that differ in their x-values, with respective linear predictors

$$\eta_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik}$$

and

Sociology 761

$$\eta_{i'} = \beta_1 x_{i'1} + \beta_2 x_{i'2} + \dots + \beta_k x_{i'k}$$

The hazard ratio for these two observations is

$$\frac{h_i(t)}{h_{i'}(t)} = \frac{h_0(t)e^{\eta_i}}{h_0(t)e^{\eta_{i'}}} = \frac{e^{\eta_i}}{e^{\eta_{i'}}} = e^{\eta_i - \eta_{i'}}$$

- This ratio is constant over time.
- In this initial formulation, I am assuming that the values of the covariates x_{ii} are constant over time.
- As we will see later, the Cox model can easily accommodate timedependent covariates as well.

6.1 Partial-Likelihood Estimation of the Cox Model

- ▶ In the same remarkable paper in which he introduced the semiparametric proportional-hazards regression model, Cox also invented a method, which he termed partial likelihood, to estimate the model.
 - Partial-likelihood estimates are not as efficient as maximum-likelihood estimates for a correctly specified parametric hazard regression model.
 - But not having to assume a possibly incorrect form for the baseline hazard more than makes up for small inefficiencies in estimation.
 - Having estimated a Cox model, it is possible to recover a nonparametric estimate of the baseline hazard function.

Introduction to Survival Analysis 66

Copyright © 2006 by John Fox

- ► As is generally the case, to estimate a hazard regression model by maximum likelihood we have to write down the probability (or probability density) of the data as a function of the parameters of the model.
 - To keep things simple, I'll assume that the only form of censoring is right-censoring and that there are no tied event times in the data. - Neither restriction is an intrinsic limitation of the Cox model.
 - Let $p(t|\mathbf{x}, \boldsymbol{\beta})$ represent the probability density for an event at time t given the values of the covariates x and regression parameters β . – Note that \mathbf{x} and $\boldsymbol{\beta}$ are vectors.
 - A subject *i* for whom an event is observed at time t_i contributes $p(t_i | \mathbf{x}_i, \boldsymbol{\beta})$ to the likelihood.
 - For a subject *i* who is censored at time t_i , all we know is that the subject survived to that time, and therefore the observation contributes $S(t_i | \mathbf{x}_i, \boldsymbol{\beta})$ to the likelihood.
 - Recall that the survival function S(t) gives the probability of surviving to time t.

Sociology 761

Introduction to Survival Analysis

Sociology 761

- It is convenient to introduce the *censoring indicator variable* c_i , which is set to 1 if the event time for the *i*th subject is observed and to 0 if it is censored.
- Then the likelihood function for the data can be written as

$$L(\boldsymbol{\beta}) = \prod_{i=1}^{n} \left[p(t_i | \mathbf{x}_i, \boldsymbol{\beta}) \right]^{c_i} \left[S(t_i | \mathbf{x}_i, \boldsymbol{\beta}) \right]^{1-c_i}$$

- From our previous work, we know that h(t) = p(t)/S(t), and so p(t) = h(t)S(t).
- Using this fact:

$$L(\boldsymbol{\beta}) = \prod_{i=1}^{n} [h(t_i | \mathbf{x}_i, \boldsymbol{\beta}) S(t_i | \mathbf{x}_i, \boldsymbol{\beta})]^{c_i} [S(t_i | \mathbf{x}_i, \boldsymbol{\beta})]^{1-c_i}$$
$$= \prod_{i=1}^{n} [h(t_i | \mathbf{x}_i, \boldsymbol{\beta})]^{c_i} S(t_i | \mathbf{x}_i, \boldsymbol{\beta})$$

Sociology 761

Copyright ©2006 by John Fox

Copyright ©2006 by John Fox

According to the Cox model,

$$h(t_i | \mathbf{x}_i, \boldsymbol{\beta}) = h_0(t_i) \exp(\beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik})$$

= $h_0(t_i) \exp(\mathbf{x}'_i \boldsymbol{\beta})$

• Similarly, we can show that

$$S(t_i | \mathbf{x}_i, \boldsymbol{\beta}) = S_0(t_i)^{\exp(\mathbf{x}_i' \boldsymbol{\beta})}$$

where $S_0(t)$ is the baseline survival function.

• Substituting these values from the Cox model into the formula for the likelihood produces

$$L(\boldsymbol{\beta}) = \prod_{i=1}^{n} \left[h_0(t_i) \exp(\mathbf{x}'_i \boldsymbol{\beta}) \right]^{c_i} S_0(t_i)^{\exp(\mathbf{x}'_i \boldsymbol{\beta})}$$

• Full maximum-likelihood estimates would find the values of the parameters β that, along with the baseline hazard and survival functions, maximize this likelihood, but the problem is not tractable.

Introduction to Survival Analysis

Cox's proposal was instead to maximize what he termed the partiallikelihood function

$$L_p(\boldsymbol{eta}) = \prod_{i=1}^n \left[rac{\exp(\mathbf{x}'_i \boldsymbol{eta})}{\sum_{i' \in R(t_i)} \exp(\mathbf{x}'_{i'} \boldsymbol{eta})}
ight]$$

- The *risk set* $R(t_i)$ includes those subjects at risk for the event at time t_i , when the event was observed to occur for subject *i* (or at which time subject *i* was censored) that is, subjects for whom the event has not yet occurred or who have yet to be censored.
- Censoring times are effectively excluded from the likelihood because for these observations the exponent $c_i = 0$.

Sociology 761 Copyright © 2006 by John Fox Sociology 761 Copyright ©2006 by John Fox Introduction to Survival Analysis 70 Introduction to Survival Analysis 71 • Thus we can re-express the partial likelihood as The ratio $\exp(\mathbf{x}_i'\boldsymbol{\beta})$ $L_p(\boldsymbol{\beta}) = \prod_{i=1}^m \frac{\exp(\mathbf{x}'_i \boldsymbol{\beta})}{\sum \exp(\mathbf{x}'_{i'} \boldsymbol{\beta})}$ $\sum \exp(\mathbf{x}'_{i'}\boldsymbol{\beta})$ has an intuitive interpretation: where *i* now indexes the *m* observed event times, t_1, t_2, \ldots, t_m . - According to the Cox model, the hazard for subject *i*, for whom the event was actually observed to occur at time t_i , is proportional to $\exp(\mathbf{x}_i'\boldsymbol{\beta}).$ - The ratio, therefore, expresses the hazard for subject *i* relative to the cumulative hazard for all subjects at risk at the time that the event occurred to subject *i*. - We want values of the parameters that will predict that the hazard was high for subjects at the times that events actually were observed to occur to them.

6.2 An Illustration Using Rossi et al.'s Recidivism Data

- Recall Rossi et al.'s data on recidivism of 432 prisoners during the first year after their release from Maryland state prisons.
 - Survival time is the number of weeks to first arrest for each former prisoner.
 - Because former inmates were followed for one year after release, those who were not rearrested during this period were censored at 52 weeks.

Introduction to Survival Analysis

- The Cox regression reported below uses the following time-constant covariates:
- fin: A dummy variable coded 1 if the former prisoner received financial aid after release from prison and 0 otherwise.
- age: The former prisoner's age in years at the time of release.
- race: A dummy variable coded 1 for blacks and 0 for others.
- wexp: Work experience, a dummy variable coded 1 if the former prisoner had full-time work experience prior to going to prison and 0 otherwise.
- mar: Marital status, a dummy variable coded 1 if the former prisoner was married at the time of release and 0 otherwise.
- paro: A dummy variable coded 1 if the former prisoner was released on parole and 0 otherwise.
- prio: The number of prior incarcerations.

Copyright ©2006 by John Fox

74

Sociology 761

76

The results of the Cox regression for time to first arrest are as follows:

Covariate	b_j	e^{b_j}	$SE(b_j)$	z_j	p_j
fin	-0.379	0.684	0.191	-1.983	.047
age	-0.057	0.944	0.022	-2.611	.009
race	0.314	1.369	0.308	1.019	.310
wexp	-0.150	0.861	0.212	-0.706	.480
mar	-0.434	0.648	0.382	-1.136	.260
paro	-0.085	0.919	0.196	-0.434	.660
prio	0.091	1.096	0.029	3.195	.001

where:

- b_i is the maximum partial-likelihood estimate of β_i in the Cox model.
- e^{b_j} , the exponentiated coefficient, gives the effect of x_j in the multiplicative form of the model more about this shortly.
- SE(*b_j*) is the standard error of *b_j*, that is the square-root of the corresponding diagonal entry of the estimated asymptotic coefficient-covariance matrix.

Copyright © 2006 by John Fox

Introduction to Survival Analysis

- $z_j = b_j/SE(b_j)$ is the Wald statistic for testing the null hypothesis H_0 : $\beta_j = 0$; under this null hypothesis, z_j follows an asymptotic standard-normal distribution.
- p_j is the two-sided *p*-value for the null hypothesis H_0 : $\beta_j = 0$.
- Thus, the coefficients for age and prio are highly statistically significant, while that for fin is marginally so.
- ► The estimated coefficients *b_j* of the Cox model give the linear, additive effects of the covariates on the log-hazard scale.
 - Although the *signs* of the coefficients are interpretable (e.g., other covariates held constant, getting financial aid decreases the hazard of rearrest, while an additional prior incarceration increases the hazard), the *magnitudes* of the coefficients are not so easily interpreted.

Sociology 761

Copyright ©2006 by John Fox

79

77

Introduction to Survival Analysis

78

► It is more straightforward to interpret the exponentiated coefficients, which appear in the multiplicative form of the model,

 $\widehat{h_i(t)} = \widehat{h_0(t)} \times e^{b_1 x_{i1}} \times e^{b_2 x_{i2}} \times \dots \times e^{b_k x_{ik}}$

- Thus, increasing x_j by 1, holding the other *x*'s constant, multiplies the estimated hazard by e^{bj} .
- For example, for the dummy-regressor fin, $e^{b_1} = e^{-0.379} = 0.684$, and so we estimate that providing financial aid *reduces* the hazard of rearrest other covariates held constant by a factor of 0.684 that is, by 100(1 0.684) = 31.6 percent.
- Similarly, an additional prior conviction *increases* the estimated hazard of rearrest by a factor of $e^{b_7} = e^{0.091} = 1.096$ or 100(1.096 1) = 9.6 percent.

Introduction to Survival Analysis

7. Topics in Cox Regression

7.1 Time-Dependent Covariates

- It is often the case that the values of some explanatory variables in a survival analysis change over time.
 - For example, in Rossi et al.'s recidivism data, information on exinmates' employment status was collected on a weekly basis.
 - In contrast, other covariates in this data set, such as race and the provision of financial aid, are time-constant.
 - The Cox-regression model with time-dependent covariates takes the form

$$\log_e h_i(t) = \alpha(t) + \beta_1 x_{i1}(t) + \beta_2 x_{i2}(t) + \dots + \beta_k x_{ik}(t)$$

= $\alpha(t) + \mathbf{x}'_i(t)\boldsymbol{\beta}$

– Of course, not *all* of the covariates have to vary with time: If covariate x_j is time-constant, then $x_{ij}(t) = x_{ij}$.

```
Sociology 761
```

Copyright ©2006 by John Fox

Sociology 761

Copyright ©2006 by John Fox

80

► Although the inclusion of time-dependent covariates can introduce nontrivial data-management issues (that is, the construction of a suitable data set can be tricky), the Cox-regression model can easily handle such covariates.

- Both the data-management and conceptual treatment of timedependent covariates is facilitated by the so-called "counting-process" representation of survival data.
- We focus on each time interval for which data are available, recording the start time of the interval, the end time, whether or not the event of interest occurred during the interval, and the values of all covariates during the interval.
- This approach naturally accommodates censoring, multiple periods of observation, late entry into the study, and time-varying data.
- In the recidivism data, where we have weekly information for each ex-inmate, we create a separate data record for each week during which the subject was under observation.

Copyright © 2006 by John Fox

Introduction to Survival Analysis

- For example, the complete initial data record for the first subject is as follows:

> Rossi[1,]

	week	arrest	fin ag	ge race	e wexp	mar p	aro pr	io edu	c empl
1	20	1	0 2	27 2	L O	0	1	3	3 0
	emp2	emp3 er	np4 emp	p5 emp6	6 emp7	emp8	emp9 e	mp10 e	mp11
1	0	0	1	1 (0 0	0	0	0	0
	emp12	emp13	emp14	emp15	emp16	emp17	emp18	emp19	emp20
1	0	0	0	0	0	0	0	0	0
	emp21	emp22	emp23	emp24	emp25	emp26	emp27	emp28	emp29
1	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
	emp30	emp31	emp32	emp33	emp34	emp35	emp36	emp37	emp38
1	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
	emp39	emp40	emp41	emp42	emp43	emp44	emp45	emp46	emp47
1	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
	emp48	emp49	emp50	emp51	emp52				
1	NA	NA NA	NA	NA	NA				

Sociology 761

Copyright ©2006 by John Fox

83

81

Introduction to Survival Analysis

- 82
- Subject 1 was rearrested in week 20, and consequently the employment dummy variables are available only for weeks 1 through 20 (and missing thereafter).
 - · The subject had a job at weeks 4 and 5, but was otherwise unemployed when he was under observation.
 - · Note: Actually, this subject was unemployed at all 20 weeks prior to his arrest — I altered the data for the purpose of this example.

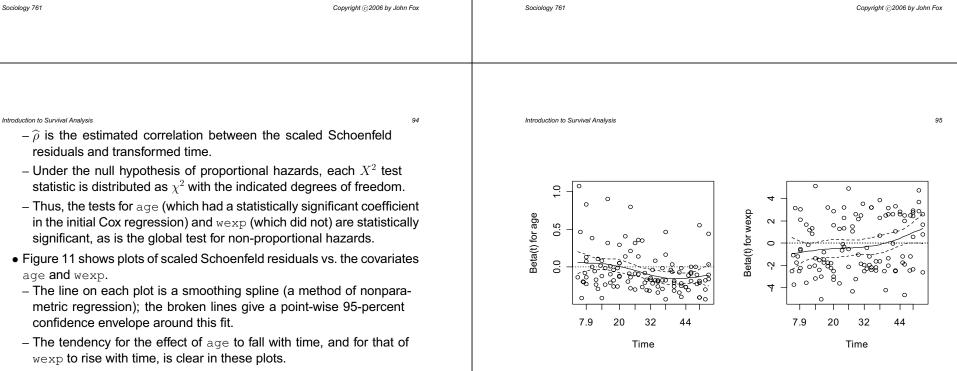
Introduction to Survival Analysis

- We therefore have to create 20 records for subject 1:

									-				
		start	stop	arrest	fin	age	race	•	•	•	educ	emp	
1.	1	0	1	0	0	27	1	•			3	0	
1.	2	1	2	0	0	27	1				3	0	
1.	3	2	3	0	0	27	1				3	0	
1.	4	3	4	0	0	27	1				3	1	
1.	5	4	5	0	0	27	1				3	1	
1.	6	5	6	0	0	27	1		•		3	0	
1.	18	17	18	0	0	27	1				3	0	
1.	19	18	19	0	0	27	1				3	0	
1.	20	19	20	1	0	27	1				3	0	

– The subject \times time-period data set has many more records than the original data set: 19,809 vs. 432.

Introduction to Survival Analysis 84	Introduction to Survival Analysis 85				
 Except for missing data after subjects were rearrested, the data- collection schedule in the recidivism study is regular. 	For Rossi et al.'s recidivism data, we get the following results when the time-dependent covariate employment status is included in the model:				
 That is, all subjects are observed on a weekly basis, starting in week 	$egin{array}{c c} egin{array}{cc} egin{array}{cc} egin{array}{cc} egin{array}{cc} egin{array}{cc} b_j & e^{b_j} & SE(b_j) & z_j & p_j \end{array} \end{array}$				
1 of the study and ending (if the subject is not arrested during the	fin $-0.357 \ 0.700 \ 0.191 \ -1.866 \ .062$				
period of the study) in week 52.	age $-0.046 \ 0.955 \ 0.022 \ -2.132 \ .033$				
 The counting-process approach, however, does not require regular 	race 0.339 1.403 0.310 1.094 .270				
observation periods.	wexp -0.026 0.975 0.211 -0.121 .900				
• Once the subject \times time-period data set is constructed, it is a simple	mar $-0.294 \ 0.745 \ 0.383 \ -0.767 \ .440$				
matter to fit the Cox model to the data.	paro $-0.064 \ 0.938 \ 0.195 \ -0.330 \ .740$				
 In maximizing the partial likelihood, we simply need to know the 	prio 0.085 1.089 0.029 2.940 .003				
risk set at each event time, and the contemporaneous values of the covariates for the subjects in the risk set.	emp $-1.328 \ 0.265 \ 0.251 \ -5.30 \ \ll .001$				
\bullet This information is available in the subject \times time-period data.					
Sociology 761 Copyright © 2006 by John Fox	Sociology 761 Copyright ©2006 by John Fox				
Introduction to Survival Analysis 86	Introduction to Survival Analysis 87				
• The time-dependent employment covariate has a very large apparent effect: $e^{-1.328} = 0.265$.	7.1.1 Lagged Covariates				
 That is, other factors held constant, the hazard of rearrest is 73.5 percent lower during a week in which an ex-inmate is employed 	 One way to address this kind of problem is to used a <i>lagged covariate</i>. Rather than using the contemporaneous value of the employment dummy variable, we can instead use the value from the previous week. 				
 As Allison points out, however, the direction of causality here is 	– When we lag employment one week, we lose the observation for				


• As Allison points out, nowever, the direction of causality here ambiguous, since a subject cannot work when he is in jail.

 When we lag employment one week, we lose the observation for each subject for the first week.

Introduction to Survival Analysis 88 Introduction to Survival Analysis 89 - For example, person 1's subject \times time-period data records are as With employment lagged one week, a Cox regression for the recidivism follows: data produces the following results: Covariate start stop arrest fin age race . . . educ emp b_i e^{b_j} $SE(b_i)$ z_i p_j 27 2 Ω 0 3 1.2 1 1 . . . 0 fin -0.351 0.704 0.192 - 1.831.067 1.3 2 3 0 0 27 1 . . . 3 0 -0.050 0.951 0.022 - 2.774.023 age 3 27 3 0.321 1.379 .300 1.4 4 0 0 1... 0 0.3091.040 race 1.5 4 5 0 0 27 3 1 0.213 - 0.223.820 1 . . . -0.048 0.953 wexp 5 0 27 3 -0.345 0.708 1.6 6 0 1 . . . 1 0.383-0.900.370 mar -0.471 0.954 -0.240.810 paro 0.196. . . 1.18 17 18 0 0 27 1... 3 0 prio 0.092 1.096 0.029 3.195 .001 1.19 18 19 0 0 27 3 0 1 . . . emp (lagged) -0.787 0.455 0.218-3.608 < .0011.20 27 3 0 19 20 1 0 1 . . . - Recall that subject 1 was (supposedly) employed at weeks 4 and 5. The coefficient for the time-varying covariate employment is still large and statistically significant, but much smaller than before: $e^{-0.787} = 0.455$, and so the hazard of arrest is 54.5 percent lower following a week in which an ex-inmate is employed. Sociology 761 Copyright © 2006 by John Fox Sociology 761 Copyright ©2006 by John Fox Introduction to Survival Analysis 90 Introduction to Survival Analysis 91 7.2 Cox-Regression Diagnostics 7.2.1 Checking for Non-Proportional Hazards ► A departure from proportional hazards occurs when regression coeffi-► As for a linear or generalized-linear model, it is important to determine cients are dependent on time - that is, when time interacts with one or whether a fitted Cox-regression model adequately represents the data. more covariates. ▶ I will consider diagnostics for three kinds of problems, along with Tests and graphical diagnostics for interactions between covariates and possible solutions: time may be based on the scaled Schoenfeld residuals from the Cox violation of the assumption of proportional hazards; model. influential data; The formula and rationale for the scaled Schoenfeld residuals are nonlinearity in the relationship between the log-hazard and the complicated, and so I won't give them here (but see Hosmer and covariates. Lemeshow, 1999, or Therneau and Grambsch, 2000). • The scaled Schoenfeld residuals comprise a matrix, with one row for each record in the data set to which the model was fit and one column for each covariate. Copyright © 2006 by John Fox Sociology 761 Copyright ©2006 by John Fox Sociology 761

92

- Plotting scaled Schoenfeld residuals against time, or a suitable transformation of time, reveals unmodelled interactions between covariates and time.
- One choice is to use the Kaplan-Meier estimate of the survival function to transform time.
- A systematic tendency of the scaled Schoenfeld residuals to rise or fall more or less linearly with (transformed) time suggests entering a linear-by-linear interaction (i.e., the simple product) between the covariate and time into the model.
- A test for non-proportional hazards can be based on the estimated correlation between the scaled Schoenfeld residuals and (transformed) time.
- This test can be performed on a per-covariate basis and also cumulated across covariates.

Copyright © 2006 by John Fox

Figure 11. Plots of scaled Schoenfeld residuals against transformed time for the covariates age and wexp.

Sociology 761

- Figure 11 shows plots of scaled Schoenfeld residuals vs. the covariates age and wexp.
- The line on each plot is a smoothing spline (a method of nonpara-
- The tendency for the effect of age to fall with time, and for that of

- Introduction to Survival Analysis
- ► For a simple illustration, I'll return to the original Cox regression that I performed for Rossi's recidivism data.
 - It is conceivable that a variable with a nonsignificant coefficient in the initial model nevertheless interacts significantly with time, so I'll start with the model as originally specified.
 - Tests for non-proportional hazards in this model are as follows:

Covariate	$\widehat{ ho}$	X^2	df	p
fin	.006	0.005	1	.943
age	265	11.279	1	< .001
race	112	1.417	1	.234
wexp	.230	7.140	1	.007
mar	.073	0.686	1	.407
paro	036	0.155	1	.694
prio	014	0.023	1	.879
Global Test		17.659	7	.014

96

• I fit a respecified Cox regression model to the data, including fin, age, wexp, and prio, along with the products of time and age and of time and wexp:

Covariate	b_j	e^{b_j}	$SE(b_j)$	z_j	p_j
fin	-0.3575	0.699	0.1902	-1.88	.060
age			0.0400		.052
wexp	-1.4644				.002
prio	0.0876	1.092	0.0282	3.10	.002
age × time	-0.0053	0.995	0.0015	-3.47	< .001
wexp $ imes$ time					.003

– The products of time and <code>age</code> and of time and <code>wexp</code> are time-dependent covariates, and so the model must be fit to the subject \times time-period form of the data set.

Introduction to Survival Analysis

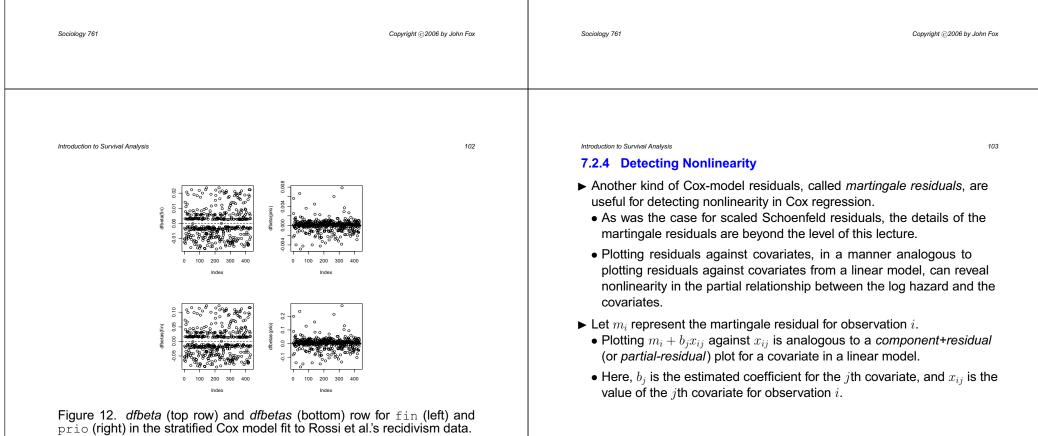
- Although interactions with time appear in the model, time itself does not appear as a covariate: The "main effect" of time is in the baseline hazard function.
- The effect of age on the hazard of re-offending is initially positive, but this effect declines with time and eventually becomes negative (by 15 weeks).
- The effect of wexp is initially strongly negative, but eventually becomes positive (by 34 weeks).
- The respecified model shows no evidence of non-proportional hazards: For example, the global test gives $X^2 = 1.12$, df = 6, p = .98.

Sociology 761	Copyright © 2006 by John Fox	Sociology 761		Copyright ©2006 by John Fox			
Introduction to Survival Analysis	98	Introduction to Survival Analysis		99			
7.2.2 Fitting by Strata		 When the stratifying covar 	-	•			
 An alternative to incorporating interactions with time is to into strata based on the values of one or more covariates Each stratum may have a different baseline hazard fur regression coefficients in the Cox model are assumed across strata. 	s. nction, but the	 of) values, stratification — which divides the data into graph practical. We can, however, recode a stratifying variable into a solution of relatively homogeneous categories. ▶ For the example, I divided age into three categories: those 					
An advantage of this approach is that we do not have particular form of interaction between the stratifying cova		or less; those 21 to 25 years • Cross-classifying categori	s old; and those older that zed age and work exper	an 25.			
 There are a couple of disadvantages, however: The stratifying covariates disappear from the linear probaseline hazard functions. Stratification is therefore most attractive when we a interested in the effects of the stratifying covariates, I to control for them. 	e not really	following contingency tabl <i>Work Experience</i> No Yes	e. Age 20 or less 21 – 25 26 87 73 40 102	<u>or more</u> 25 105			

97

Sociology 761

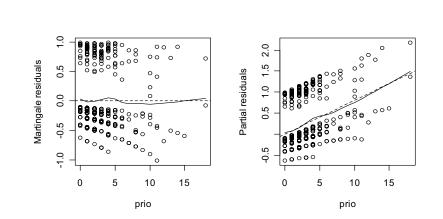
100


Covariate	b_j	e^{b_j}	$SE(b_j)$	z_j	p_j
fin	-0.387	0.679	0.192	-2.02	.043
prio	0.080	1.084	0.028	2.83	.005

• For this model, as well, there is no evidence of non-proportional hazards: The global test statistic is $X^2 = 0.15$ with 2 df, for which p = .93.

Introduction to Survival Analysis

7.2.3 Detecting Influential Observations


- As in linear and generalized linear models, we don't want the results in Cox regression to depend unduly on one or a small number of observations.
- Approximations to changes in the Cox regression coefficients attendant on deleting individual observations (*dfbeta*), and these changes standardized by coefficient standard errors (*dfbetas*), can be obtained for the Cox model.
- ▶ Figure 12 shows index plots of *dfbeta* and *dfbetas* for the two covariates, fin and prio, in the stratified Cox model that I fit to the recidivism data.
 - All of the *dfbeta* are small relative to the sizes of the corresponding regression coefficients, and the *dfbetas* are small as well.

Copyright © 2006 by John Fox

104

- As is the case for component+residual plots in a linear or generalizedlinear model, it aids interpretation to add a nonparametric-regression smooth and a least-squares line to these plots.
- Plotting martingale residuals and partial residuals against prio in the last Cox regression produces the results shown in Figure 13.
 - The plots appear quite straight, suggesting that nonlinearity is not a problem here.
 - As is typical of residuals plots for survival data, the patterned nature of these plots makes smoothing important to their visual interpretation.
- ► There is no issue of nonlinearity in the partial relationship between the log-hazard and fin (the other covariate in the model), since fin is a dummy variable.

Figure 13. Plots of Martingale residuals (left) and partial residuals (right) against prio.

```
Sociology 761
```

Introduction to Survival Analysis

Copyright ©2006 by John Fox

107

Introduction to Survival Analysis

Sociology 761

106

Copyright © 2006 by John Fox

7.3 Estimating Survival in Cox Regression Models

- Because of the unspecified baseline hazard function, the estimated coefficients of the Cox model do not fully characterize the distribution of survival time as a function of the covariates.
- By an extension of the Kaplan-Meier method, it is possible, however, to estimate the survival function for a real or hypothetical subject with any combination of covariate values.
- In a stratified model, this approach produces an estimated survival curve for each stratum.

Introduction to Survival Analysis

► To generate a simple example, suppose that a Cox model is fit to the recidivism data employing the time-constant covariates fin, age, and prio, producing the following results:

Covariate	b_j	e^{b_j}	$SE(b_j)$	z_j	p_{j}
fin	-0.347	0.707	0.190	-1.82	.068
age	-0.067	0.021	0.021	-3.22	.001
prio	0.097	0.027	0.027	3.56	< .001

- Figure 14 shows the estimated survival functions for those receiving and not receiving financial aid (i.e., for fin = 1 and 0, respectively) at average age ($\overline{age} = 24.6$) and average prior number of arrests (prio = 2.98).
- Similarly, an estimate of the baseline survival function can be recovered by setting all of the covariates to 0.

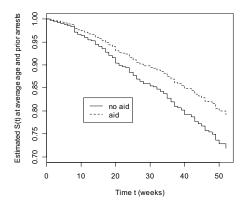


Figure 14. Estimated survival functions from the Cox regression model with fin, age, and prio as predictors — setting age and prio to their average values, and letting fin take on the values 0 and 1.