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1. Introduction
I Survival analysis encompasses a wide variety of methods for analyzing

the timing of events.

• The prototypical event is death, which accounts for the name given to

these methods.

• But survival analysis is also appropriate for many other kinds of events,

such as criminal recidivism, divorce, child-bearing, unemployment,

and graduation from school.

I The wheels of survival analysis have been reinvented several times

in different disciplines, where terminology varies from discipline to

discipline:

• survival analysis in biostatistics, which has the richest tradition in this

area;

• failure-time analysis in engineering;

• event-history analysis in sociology.
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I Sources for these lectures on survival analysis:

• Paul Allison, Survival Analysis Using the SAS System, SAS Institute,

1995.

• George Barclay, Techniques of Population Analysis, Wiley, 1958.

• D. R. Cox and D. Oakes, Analysis of Survival Data, Chapman and Hall,

1984.

• David Hosmer, Jr. and Stanley Lemeshow, Applied Survival Analysis,

Wiley, 1999.

• Terry Therneau and Patricia Grambsch, Modeling Survival Data,

Springer, 2000.
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I Outline:

• The nature of survival data.

• Life tables.

• The survival function, the hazard function, and their relatives.

• Estimating the survival function.

• The basic Cox proportional-hazards regression model

• Topics in Cox regression:

– Time-dependent covariates.

– Model diagnostics.

– Stratification.

– Estimating the survival function.
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2. The Nature of Survival Data: Censoring
I Survival-time data have two important special characteristics:

(1) Survival times are non-negative, and consequently are usually

positively skewed.

– This makes the naive analysis of untransformed survival times

unpromising.

(2) Typically, some subjects (i.e., units of observation) have censored

survival times

– That is, the survival times of some subjects are not observed, for

example, because the event of interest does not take place for these

subjects before the termination of the study.

– Failure to take censoring into account can produce serious bias in

estimates of the distribution of survival time and related quantities.
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I It is simplest to discuss censoring in the context of a (contrived) study:

• Imagine a study of the survival of heart-lung transplant patients who

are followed up after surgery for a period of 52 weeks.

• The event of interest is death, so this is literally a study of survival

time.

• Not all subjects will die during the 52-week follow-up period, but all will

die eventually.

I Figure 1 depicts the survival histories of six subjects in the study, and

illustrates several kinds of censoring (as well as uncensored data):

• My terminology here is not altogether standard, and does not cover all

possible distinctions (but is, I hope, clarifying).

• Subject 1 is enrolled in the study at the date of transplant and dies

after 40 weeks; this observation is uncensored.

– The solid line represents an observed period at risk, while the solid

circle represents an observed event.
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Figure 1. Data from an imagined study illustrating various kinds of subject
histories: Subject 1, uncensored; 2, fixed-right censoring; 3, random-right
censoring; 4 and 5, late entry; 6, multiple intervals of observation.

Sociology 761 Copyright c°2006 by John Fox

Introduction to Survival Analysis 7

• Subject 2 is also enrolled at the date of transplant and is alive after 52

weeks; this is an example of fixed-right censoring.

– The broken line represents an unobserved period at risk ; the filled

box represents the censoring time; and the open circle represents

an unobserved event.

– The censoring is fixed (as opposed to random) because it is

determined by the procedure of the study, which dictates that

observation ceases 52 weeks after transplant.

– This subject dies after 90 weeks, but the death is unobserved and

thus cannot be taken into account in the analysis of the data from

the study.

– Fixed-right censoring can also occur at different survival times for

different subjects when a study terminates at a predetermined date.
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• Subject 3 is enrolled in the study at the date of transplant, but is lost to

observation after 30 weeks (because he ceases to come into hospital

for checkups); this is an example of random-right censoring.

– The censoring is random because it is determined by a mechanism

out of the control of the researcher.

– Although the subject dies within the 52-week follow-up period, this

event is unobserved.

– Right censoring — both fixed and random — is the most common

kind.
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• Subject 4 joins the study 15 weeks after her transplant and dies 20

weeks later, after 35 weeks; this is an example of late entry into the

study.

– Why can’t we treat the observation as observed for the full 35-week

period? After all, we know that subject 4 survived for 35 weeks after

transplant.

– The problem is that other potential subjects may well have died

unobserved during the first 15 weeks after transplant, without

enrolling in the study; treating the unobserved period as observed

thus biases survival time upwards.

– That is, had this subject died before the 15th week, she would not

have had the opportunity to enroll in the study, and the death would

have gone unobserved.

• Subject 5 joins the study 30 weeks after transplant and is observed

until 52 weeks, at which point the observation is censored.

– The subject’s death after 80 weeks goes unobserved.
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• Subject 6 enrolls in the study at the date of transplant and is observed

alive up to the 10th week after transplant, at which point this subject

is lost to observation until week 35; the subject is observed thereafter

until death at the 45th week.

– This is an example of multiple intervals of observation.

– We only have an opportunity to observe a death when the subject is

under observation.

I Survival time, which is the object of study in survival analysis, should be

distinguished from calendar time.

• Survival time is measured relative to some relevant time-origin, such

as the date of transplant in the preceding example.

• The appropriate time origin may not always be obvious.

• When there are alternative time origins, those not used to define

survival time may be used as explanatory variables.

– In the example, where survival time is measured from the date of

transplant, age might be an appropriate explanatory variable.
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• In most studies, different subjects will enter the study at different dates

— that is, at different calendar times.

• Imagine, for example, that Figure 2 represents the survival times

of three patients who are followed for at most 5 years after bypass

surgery:

– Panel (a) of the figure represent calendar time, panel (b) survival

time.

– Thus, subject 1 is enrolled in the study in 1990 and is alive in 1995

when follow-up ceases; this subject’s death after 8 years in 1998

goes unobserved (and is an example of fixed-right censoring).

– Subject 2 enrolls in the study in 1994 and is observed to die in 1997,

surviving for 3 years.

– Subject 3 enrolls in 1995 and is randomly censored in 1999, one

year before the normal termination of follow-up; the subject’s death

after 7 years in 2002 is not observed.
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Figure 2. Calendar time (a) vs. survival time (b).
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• Figure 3 shows calendar time and survival time for subjects in a study

with a fixed date of termination: observation ceases in 2000.

– Thus, the observation for subject 3, who is still alive in 2000, is

fixed-right censored.

– Subject 1, who drops out in 1999 before the termination date of the

study, is randomly censored.

I Methods of survival analysis will treat as at risk for an event at survival

time those subjects who are under observation at that survival time.

• By considering only those subjects who are under observation,

unbiased estimates of survival times, survival probabilities, etc., can

be made, as long as those under observation are representative of all

subjects.

• This implies that the censoring mechanism is unrelated to survival

time, perhaps after accounting for the influence of explanatory

variables.
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Figure 3. A study with a fixed date of termination.
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• That is, the distribution of survival times of subjects who are censored

at a particular time is no different from that of subjects who are still

under observation at this time.

• When this is the case, censoring is said to be noninformative (i.e.,

about survival time).

• With fixed censoring this is certainly the case.

• With random censoring, it is quite possible that survival time is not

independent of the censoring mechanism.

– For example, very sick subjects might tend to drop out of a study

shortly prior to death and their deaths may consequently go

unobserved, biasing estimated survival time upwards.

– Another example: In a study of time to completion of graduate

degrees, relatively weak students who would take a long time to

finish are probably more likely to drop out than stronger students who

tend to finish earlier, biasing estimated completion time downwards.
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– Where random censoring is an inevitable feature of a study, it is

important to include explanatory variables that are probably related

to both censoring and survival time — e.g., seriousness of illness in

the first instance, grade-point average in the second.
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I Right-censored survival data, therefore, consist of two or three compo-

nents:

(1) The survival time of each subject, or the time at which the observation

for the subject is censored.

(2) Whether or not the subject’s survival time is censored.

(3) In most interesting analyses, the values of one or more explanatory

variables (covariates) thought to influence survival time.

– The values of (some) covariates may vary with time.

I Late entry and multiple periods of observation introduce complications,

but can be handled by focusing on each interval of time during which

a subject is under observation, and observing whether the event of

interest occurs during that interval.
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3. Life Tables
I At the dawn of modern statistics, in the 17th century, John Graunt and

William Petty pioneered the study of mortality.

I The construction of life tables dates to the 18th century.

I A life table records the pattern of mortality with age for some population

and provides a basis for calculating the expectation of life at various

ages.

• These calculations are of obvious actuarial relevance.

I Life tables are also a good place to start the study of modern methods

of survival analysis:

• Given data on mortality, the construction of a life table is largely

straightforward.

• Some of the ideas developed in studying life tables are helpful in

understanding basic concepts in survival analysis.
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• Censoring is not a serious issue in constructing a life table.

I Here is an illustrative life table constructed for Canadian females using

mortality data for the period 1995-1997:

Age

0 100000 512 99488 00512 99642 8115174 81 15
1 99488 40 99960 00040 99464 8015532 80 57
2 99448 24 99976 00024 99436 7916068 79 60
3 99424 23 99977 00023 99413 7816632 78 62
4 99401 21 99979 00021 99391 7717219 77 64
5 99380 18 99982 00018 99371 7617828 76 65
... ... ... ... ... ... ... ...

107 69 34 50529 49471 52 98 1 42
108 35 18 47968 52032 26 46 1 31
109 17 9 45408 54592 12 20 1 18
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I The columns of the life table have the following interpretations:

• is age in years; in some instances (as explained below) it represents

exact age at the th birthday, in others it represents the one-year

interval from the th to the ( + 1)st birthday.

– This life table is constructed for single years of age, but other

intervals — such as five or ten years — are also common.

• (the lower-case letter “el”) is the number of individuals surviving to

their th birthday.

– The original number of individuals in the cohort, 0 (here 100 000), is

called the radix of the life table.

– Although a life table can be computed for a real birth cohort

(individuals born in a particular year) by following the cohort until

everyone is dead, it is more common, as here, to construct the table

for a synthetic cohort.

– A synthetic cohort is an imaginary group of people who die according

to current age-specific rates of mortality.
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– Because mortality rates typically change over time, a synthetic

cohort does not correspond to any real cohort.

• is the number of individuals dying between their th and ( + 1)st

birthdays.

• is proportion of individuals age who survive to their ( + 1)st

birthday — that is, the conditional probability of surviving to age + 1
given that one has made it to age .

• is the age-specific mortality rate — that is, the proportion of

individuals age who die during the following year.

– is the key column in the life table in that all other columns can be

computed from it (and the radix), and it is the link between mortality

data and the life table (as explained later).

– is the complement of , that is, = 1 .
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• is the number of person-years lived between birthdays and + 1.
– At most ages, it is assumed that deaths are evenly distributed during

the year, and thus = 1
2 .

– In early childhood, mortality declines rapidly with age, and so during

the first two years of life it is usually assumed that there is more

mortality earlier in the year. (The details aren’t important to us.)

• is the number of person-years lived after the th birthday.

– simply cumulates from year on.

– A small censoring problem occurs at the end of the table if some

individuals are still alive after the last year. One approach is to

assume that those still alive live on average one more year.

· In the example table, 8 people are alive at the end of their 109th
year.

• is the expectation of life remaining at birthday — that is, the

number of additional years lived on average by those making it to their

th birthday.
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– = .

– 0, the expectation of life at birth, is the single most commonly used

number from the life table.

I This description of the columns of the life table also suggests how to

compute a life table given age-specific mortality rates :

• Compute the expected number of deaths = .

– is rounded to the nearest integer before proceeding. This is why

a large number is used for the radix.

• Then the number surviving to the next birthday is +1 = .

• The proportion surviving is = 1 .

• Formulas have already been given for , , and .
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I Figure 4 graphs the age-specific mortality rate and number of

survivors as functions of age for the illustrative life table.

I As mentioned, the age-specific mortality rates provide the link

between the life table and real mortality data.

• must be estimated from real data.

• The nature of mortality data varies with jurisdiction, but in most

countries there is no population registry that lists the entire population

at every moment in time.

• Instead, it is typical to have estimates of population by age obtained

from censuses and (possibly) sample surveys, and to have records of

deaths (which, along with records of births, constitute so-called vital

statistics).
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Figure 4. Age-specific mortality rates and number of individuals surviv-
ing as functions of age , for Canadian females, 1995-1997. Both plots
use logarithmic vertical axes.
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• Population estimates refer to a particular point in time, usually the

middle of the year, while deaths are usually recorded for a calendar

year.

• There are several ways to proceed, and a few subtleties, but the

following simple procedure is reasonable.

– Let represent the number of individuals of age alive at the

middle of the year in question.

– Let represent the number of individuals of age who die during

the year.

– = is the age-specific death rate. It differs from the

age-specific mortality rate in that some of the people who died

during the year expired before the mid-year enumeration.
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– Assuming that deaths occur evenly during the year, an estimate of

is given by

=
+ 1
2

– Again, an adjustment is usually made for the first year or two of life.
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4. The Survival Function, the Hazard

Function, and their Relatives
I The survival time may be thought of as a random variable.

I There are several ways to represent the distribution of : The most

familiar is likely the probability-density function.

• The simplest parametric model for survival data is the exponential

distribution, with density function

( ) =

• The exponential distribution has a single rate parameter ; the

interpretation of this parameter is discussed below.

• Figure 5 gives examples of several exponential distributions, with rate

parameters = 0 5, 1, and 2

• It is apparent that the larger the rate parameter, the more the density

is concentrated near 0.
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• The mean of an exponential distribution is the inverse of the rate

parameters, ( ) = 1 .

I The cumulative distribution function (CDF), ( ) = Pr( ), is also

familiar.

• For the exponential distribution

( ) =

Z
0

( ) = 1

• The exponential CDF is illustrated in panel (b) of Figure 6 for rate

parameter = 0 5.
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Figure 5. Exponential density functions for various values of the rate para-
meter .
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Figure 6. Several representations of an exponential distribution with rate
parameter = 0 5.
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I The survival function, giving the probability of surviving to time , is the

complement of the cumulative distribution function, ( ) = Pr( ) =
1 ( ).
• For the exponential distribution, therefore, the survival function is

( ) =

Z
( ) =

• The exponential survival function is illustrated in Figure 6 (c) for rate

parameter = 0 5.

Sociology 761 Copyright c°2006 by John Fox

Introduction to Survival Analysis 33

4.1 The Hazard Rate and the Hazard Function

I Recall that in the life table, represents the conditional probability of

dying before age + 1 given that one has survived to age .

• If is the radix of the life table, then the probability of living until age

is = (i.e., the number alive at age divided by the radix).

• Likewise the unconditional probability of dying between birthdays

and + 1 is = (i.e., the number of deaths in the one-year

interval divided by the radix).

• The conditional probability of dying in this interval is therefore

Pr(death between and + 1 | alive at age )

=
Pr(death between and + 1)

Pr(alive at age )

= = =
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I Now, switching to our current notation, consider what happens to this

conditional probability at time as the time interval shrinks towards 0:

( ) = lim
0

Pr[( + )|( )]

=
( )

( )

I This continuous analog of the age-specific mortality rate is called the

hazard rate (or just the hazard), and ( ), the hazard rate as a function

of survival time, is the hazard function.

I Note that the hazard is not a conditional probability (just as a probability-

density is not a probability).

• In particular, although the hazard cannot be negative, it can be larger

than 1.
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I The hazard is interpretable as the expected number of events per

individual per unit of time.

• Suppose that the hazard at a particular time is ( ) = 0 5, and that

the unit of time is one month.

• This means that on average 0 5 events will occur per individual at risk

per month (during a period in which the hazard remains constant at

this value).

• Imagine, for example, that the ‘individuals’ in question are light bulbs,

of which there are 1000.

– Imagine, further, that whenever a bulb burns out we replace it with a

new one.

– Imagine, finally, that the hazard of a bulb burning out is 0 5 and that

this hazard remains constant over the life-span of bulbs.

– Under these circumstances, we would expect 500 bulbs to burn out

on average per month.
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– Put another way, the expected life-span of a bulb is 1 0 5 = 2months.

• When, as in the preceding example, the hazard is constant, survival

time is described by the exponential distribution, for which the hazard

function is

( ) =
( )

( )
= =

– This is why is called the rate parameter of the exponential

distribution.

– The hazard function ( ) for the exponential distribution with rate

= 0 5 is graphed in Figure 6 (d)

• More generally, the hazard need not be constant.

• Because it expresses the instantaneous risk of an event, the hazard

rate is the natural response variable for regression models for survival

data.
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I Return to the light-bulb example.

• The cumulative hazard function ( ) represents the expected number

of events that have occurred by time ; that is,

( ) =

Z
0

( ) = log ( )

• For the exponential distribution, the cumulative hazard is proportional

to time

( ) =
– This is sensible because the hazard is constant.

• See Figure 6 (e) for the cumulative hazard function for the exponential

distribution with rate = 0 5.
– In this distribution, expected events accumulate at the rate of 1 2 per

unit time.

– Thus, if our 1000 light bulbs burn for 12 months, replacing bulbs as

needed when they fail, we expect to have to replace 1000×0 5×12 =
6000 bulbs.
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I Although the exponential distribution is particularly helpful in interpreting

the meaning of the hazard rate, it is not a realistic model for most social

(or biological) processes, where the hazard rate is not constant over

time.

• The hazard of death in human populations is relatively high in

infancy, declines during childhood, stays relatively steady during early

adulthood, and rises through middle and old age.

• The hazard of completing a nominally four-year university undergrad-

uate degree is essentially zero for at least a couple of years, rises to

four years, and declines thereafter.

• The hazard of a woman having her first child rises and then falls with

time after menarche.
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I There are other probability distributions that are used to model survival

data and that have variable hazard rates.

• Two common examples are the Gompertz distributions and the Weibull

distributions, both of which can have declining, increasing, or constant

hazards, depending upon the parameters of the distribution.

– For a constant hazard, the Gompertz and Weibull distributions

reduce to the exponential.

• We won’t pursue this topic further, however, because we will not model

the hazard function parametrically.
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5. Estimating the Survival Function
I Allison (1984,1995) discusses data from a study by Rossi, Berk, and

Lenihan (1980) on recidivism of 432 prisoners during the first year after

their release from Maryland state prisons.

• Data on the released prisoners was collected weekly.

• I will use this data set to illustrate several methods of survival analysis.

• The variables in the data set are as follows (using the variable names

employed by Allison):

– week: The week of first arrest of each former prisoner; if the prisoner

was not rearrested, this variable is censored and takes on the value

52.

– arrest: The censoring indicator, coded 1 if the former prisoner was

arrested during the period of the study and 0 otherwise.
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– fin: A dummy variable coded 1 if the former prisoner received

financial aid after release from prison and 0 otherwise. The study

was an experiment in which financial aid was randomly provided to

half the prisoners.

– age: The former prisoner’s age in years at the time of release.

– race: A dummy variable coded 1 for blacks and 0 for others.

– wexp: Work experience, a dummy variable coded 1 if the former

prisoner had full-time work experience prior to going to prison and 0

otherwise.

– mar: Marital status, a dummy variable coded 1 if the former prisoner

was married at the time of release and 0 otherwise.

– paro: A dummy variable coded 1 if the former prisoner was released

on parole and 0 otherwise.

– prio: The number of prior incarcerations.
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– educ: Level of education, coded as follows:

· 2: 6th grade or less

· 3: 7th to 9th grade

· 4: 10th to 11th grade

· 5: high-school graduate

· 6: some postsecondary or more

– emp1–emp52: 52 dummy variables, each coded 1 if the former

prisoner was employed during the corresponding week after release

and 0 otherwise.

I For the moment, we will simply examine the data on week and arrest

(that is, survival or censoring time and the censoring indicator).

• The following table shows the data for 10 of the former prisoners

(selected not quite at random) and arranged in ascending order by

week.
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• Where censored and uncensored observations occurred in the same

week, the uncensored observations appear first (this happens only in

week 52 in this data set).

• The observation for prisoner 999, which is censored at week 30, is

made up, since in this study censoring took place only at 52 weeks.

Prisoner week arrest

174 17 1

411 27 1

999 30 0

273 32 1

77 43 1

229 43 1

300 47 1

65 52 1

168 52 0

408 52 0
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I More generally, suppose that we have observations and that there are

unique event times arranged in ascending order, (1) (2) ( ).

I The Kaplan-Meier estimator, the most common method of estimating

the survival function ( ) = Pr( ), is computed as follows:

• Between = 0 and = (1) (i.e., the time of the first event), the estimate

of the survival function is b( ) = 1.
• Let represent the number of individuals at risk for the event at time

( ).

– The number at risk includes those for whom the event has not yet

occurred, including individuals whose event times have not yet been

censored.

• Let represent the number of events (“deaths”) observed at time ( ).

– If the measurement of time were truly continuous, then we would

never observe “tied” event times and ( ) would always be 1.
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– Real data, however, are rounded to a greater or lesser extent,

resulting in interval censoring of survival time.

– For example, the recidivism data are collected at weekly intervals.

– Whether or not the rounding of time results in serious problems for

data analysis depends upon degree.

– Some data are truly discrete and may require special methods: For

example, the number of semesters required for graduation from

university.

• The conditional probability of surviving past time ( ) given survival to

that time is estimated by ( ) .

• Thus, the unconditional probability of surviving past any time is

estimated by b( ) = Y
( )

• This is the Kaplan-Meier estimate.
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I For the small example:

• The first arrest time is 17 weeks, and so b( ) = 1 for (1) = 17.

• 1 = 1 person was arrested at week 17 , when 1 = 10 people were at

risk, and so b( ) = 10 1

10
= 9

for (1) = 17 (2) = 27

• As noted, the second arrest occurred in week 27, when 2 = 1 person

was arrested and 2 = 9 people were at risk for arrest:b( ) = 10 1

10
×
9 1

9
= 8

for (2) = 27 (3) = 32
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• At (3) = 32, there was 3 = 1 arrest and, because the observation for

prisoner 999 was censored at week 30, there were 3 = 7 people at

risk: b( ) = 10 1

10
×
9 1

9
×
7 1

7
= 6857

for (3) = 32 (4) = 43

• At (4) = 43, there were 4 = 2 arrests and 4 = 6 people at risk:b( ) = 10 1

10
×
9 1

9
×
7 1

7
×
6 2

6
= 4571

for (4) = 43 (5) = 47
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• At (5) = 47, there was 5 = 1 arrest and 5 = 4 people at risk:b( ) = 10 1

10
×
9 1

9
×
7 1

7
×
6 2

6
×
4 1

4
= 3429

for (5) = 47 (6) = 52

• At (6) = 52, there was 6 = 1 arrest and 6 = 3 people at risk (since

censored observations are treated as observed up to and including

the time of censoring):b( ) = 10 1

10
×
9 1

9
×
7 1

7
×
6 2

6
×
4 1

4
×
3 1

3
= 2286

for = (6) = 52
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• Because the last two observations are censored, the estimator is

undefined for (6) = 52.
– Were the last observation an event, then the estimator would

descend to 0 at ( ).

• The Kaplan-Meier estimate is graphed in Figure 7.

I It is, of course, useful to have information about the sampling variability

of the estimated survival curve.

• An estimate of the variance of b( ) is given by Greenwood’s formula:b [b( )] = [b( )]2 X
( )

( )

• The square-root of b [b( )] is the standard error of the Kaplan-Meier

estimate, and b( ) ± 1 96qb [b( )] gives a point-wise 95-percent

confidence envelope around the estimated survival function.
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Figure 7. Kaplan-Meier estimate of the survival function for 10 observa-
tions drawn from the recidivism data. The censored observation at 30
weeks is marked with a “+.”
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I Figure 8 shows the Kaplan-Meier estimate of time to first arrest for the

full recidivism data set.
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Figure 8. Kaplan-Meier estimate of the survival function for Rossi et al.’s
recidivism data. The broken lines give a 95-percent point-wise confidence
envelope around the estimated survival curve.
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5.1 Estimating Quantiles of the Survival-Time

Distribution

I Having estimated a survival function, it is often of interest to estimate

quantiles of the survival distribution, such as the median time of survival.

I If there are any censored observations at the end of the study, as is

often the case, it is not possible to estimate the expected (i.e., the mean)

survival time.

I The estimated th quantile of survival time isb = min( : b( ) )

• For example, the estimated median survival time isb5 = min( : b( ) 5)

• This is equivalent to drawing a horizontal line from the vertical axis

to the survival curve at b( ) = 5 ; the left-most point of intersection

with the curve determines the median, as illustrated in Figure 9 for the

small sample of 10 observations drawn from Rossi et al.’s data.
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Figure 9. Determining the median survival time for the sample of 10 ob-
servations drawn from Rossi et al.’s recidivism data. The median survival
time is b5 = 43.
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• It is not possible to estimate the median survival time for the full data

set, since the estimated survival function doesn’t dip to 5 during the

52-week period of study.
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5.2 Comparing Survival Functions

I There are several tests to compare survival functions between two or

among several groups.

I Most tests can be computed from contingency tables for those at risk at

each event time.

• Suppose that there are two groups, and let ( ) represent the th

ordered event time in the two groups combined.

• Form the following contingency table:

Group 1 Group 2 Total

Event 1 2

No event 1 1 2 2

At Risk 1 2

where

– is the number of people experiencing the event at time ( ) in

group ;
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– is the number of people at risk in group at time ( );

– is the total number experiencing the event in both groups;

– is the total number at risk.

• Unless there are tied event times, one of 1 and 2 will be 1 and the

other will be 0.

• Under the hypothesis that the population survival functions are the

same in the two groups, the estimated expected number of individuals

experiencing the event at ( ) in group is

b =

• The variance of b may be estimated as

b (b ) = 1 2 ( )
2( 1)

• There is one such table for every observed event time, (1) (2) ( ).
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• A variety of test statistics can be computed using the expected and

observed counts; probably the simplest and most common is the

Mantel-Haenszel or log-rank test,

=

µP
=1

1

P
=1
b1 ¶2

P
=1

b (b1 )
• This test statistic is distributed as 2

1 under the null hypothesis that the

survival functions for the two groups are the same.

• The test generalizes readily to more than two groups.
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I Consider, for example, Figure 10 which shows Kaplan-Meier estimates

separately for released prisoners who received and did not receive

financial aid.

• At all times in the study, the estimated probability of not (yet) re-

offending is greater in the financial aid group than in the no-aid

group.

• The log-rank test statistic is = 3 84, which is associated with a

-value of almost exactly 05, providing marginally significant evidence

for a difference between the two groups.
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Figure 10. Kaplan-Meier estimates for released prisoners receiving finan-
cial aid and for those receiving no aid.
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6. Cox Proportional-Hazards Regression
I Most interesting survival-analysis research examines the relationship

between survival — typically in the form of the hazard function — and

one or more explanatory variables (or covariates).

I Most common are linear-like models for the log hazard.

• For example, a parametric regression model based on the exponential

distribution:

log ( ) = + 1 1 + 2 2 + · · · +

or, equivalently,

( ) = exp( + 1 1 + 2 2 + · · · + )

= × 1 1 × 2 2 × · · · ×

where

– indexes subjects;

– 1 2 are the values of the covariates for the th subject.
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• This is therefore a linear model for the log-hazard or a multiplicative

model for the hazard itself.

• The model is parametric because, once the regression parameters

1 are specified, the hazard function ( ) is fully character-

ized by the model.

• The regression constant represents a kind of baseline hazard, since

log ( ) = , or equivalently, ( ) = , when all of the ’s are 0.

• Other parametric hazard regression models are based on other

distributions commonly used in modeling survival data, such as the

Gompertz and Weibull distributions.

• Parametric hazard models can be estimated with the survreg

function in the survival package.
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I Fully parametric hazard regression models have largely been super-

seded by the Cox model (introduced by David Cox in 1972), which

leaves the baseline hazard function ( ) = log 0( ) unspecified:

log ( ) = ( ) + 1 1 + 2 2 + · · · +

or equivalently,

( ) = 0( ) exp( 1 1 + 2 2 + · · · + )

• The Cox model is termed semi-parametric because while the baseline

hazard can take any form, the covariates enter the model through the

linear predictor

= 1 1 + 2 2 + · · · +

– Notice that there is no constant term (intercept) in the linear

predictor: The constant is absorbed in the baseline hazard.
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• The Cox regression model is a proportional-hazards model :

– Consider two observations, and 0, that differ in their -values, with

respective linear predictors

= 1 1 + 2 2 + · · · +

and

0 = 1 01 + 2 02 + · · · + 0

– The hazard ratio for these two observations is
( )

0( )
=

0( )

0( ) 0
=

0
= 0

– This ratio is constant over time.

• In this initial formulation, I am assuming that the values of the

covariates are constant over time.

• As we will see later, the Cox model can easily accommodate time-

dependent covariates as well.
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6.1 Partial-Likelihood Estimation of the Cox Model

I In the same remarkable paper in which he introduced the semi-

parametric proportional-hazards regression model, Cox also invented a

method, which he termed partial likelihood, to estimate the model.

• Partial-likelihood estimates are not as efficient as maximum-likelihood

estimates for a correctly specified parametric hazard regression

model.

• But not having to assume a possibly incorrect form for the baseline

hazard more than makes up for small inefficiencies in estimation.

• Having estimated a Cox model, it is possible to recover a nonparamet-

ric estimate of the baseline hazard function.
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I As is generally the case, to estimate a hazard regression model by

maximum likelihood we have to write down the probability (or probability

density) of the data as a function of the parameters of the model.

• To keep things simple, I’ll assume that the only form of censoring is

right-censoring and that there are no tied event times in the data.

– Neither restriction is an intrinsic limitation of the Cox model.

• Let ( |x ) represent the probability density for an event at time

given the values of the covariates x and regression parameters .

– Note that x and are vectors.

• A subject for whom an event is observed at time contributes

( |x ) to the likelihood.

• For a subject who is censored at time , all we know is that the

subject survived to that time, and therefore the observation contributes

( |x ) to the likelihood.

– Recall that the survival function ( ) gives the probability of surviving

to time .
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• It is convenient to introduce the censoring indicator variable , which

is set to 1 if the event time for the th subject is observed and to 0 if it

is censored.

• Then the likelihood function for the data can be written as

( ) =
Y
=1

[ ( |x )] [ ( |x )]1

• From our previous work, we know that ( ) = ( ) ( ), and so

( ) = ( ) ( )

• Using this fact:

( ) =
Y
=1

[ ( |x ) ( |x )] [ ( |x )]1

=
Y
=1

[ ( |x )] ( |x )
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• According to the Cox model,

( |x ) = 0( ) exp( 1 1 + 2 2 + · · · + )

= 0( ) exp(x
0 )

• Similarly, we can show that

( |x ) = 0( )
exp(x0 )

where 0( ) is the baseline survival function.

• Substituting these values from the Cox model into the formula for the

likelihood produces

( ) =
Y
=1

[ 0( ) exp(x
0 )] 0( )

exp(x0 )

• Full maximum-likelihood estimates would find the values of the

parameters that, along with the baseline hazard and survival

functions, maximize this likelihood, but the problem is not tractable.

Sociology 761 Copyright c°2006 by John Fox

Introduction to Survival Analysis 69

I Cox’s proposal was instead to maximize what he termed the partial-

likelihood function

( ) =
Y
=1

exp(x0 )X
0 ( )

exp(x00 )

• The risk set ( ) includes those subjects at risk for the event at time

, when the event was observed to occur for subject (or at which

time subject was censored) — that is, subjects for whom the event

has not yet occurred or who have yet to be censored.

• Censoring times are effectively excluded from the likelihood because

for these observations the exponent = 0.
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• Thus we can re-express the partial likelihood as

( ) =
Y
=1

exp(x0 )X
0 ( )

exp(x00 )

where now indexes the observed event times, 1 2 .
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• The ratio
exp(x0 )X

0 ( )

exp(x00 )

has an intuitive interpretation:

– According to the Cox model, the hazard for subject , for whom the

event was actually observed to occur at time , is proportional to

exp(x0 ).

– The ratio, therefore, expresses the hazard for subject relative to the

cumulative hazard for all subjects at risk at the time that the event

occurred to subject .

– We want values of the parameters that will predict that the hazard

was high for subjects at the times that events actually were observed

to occur to them.
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I Although they are not fully efficient, maximum partial-likelihood estimates

share the other general properties of maximum-likelihood estimates.

• We can obtain estimated asymptotic sampling variances from the

inverse of the information matrix.

• We can perform likelihood ratio, Wald, and score tests for the

regression coefficients.

I When there are many ties in the data, the computation of maxi-

mum partial-likelihood estimates, though still feasible, becomes time-

consuming.

• For this reason, approximations to the partial likelihood function are

often used.

• Two commonly employed approximations are due to Breslow and to

Efron.
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• Breslow’s method is more popular, but Efron’s approximation is

generally the more accurate of the two (and is the default for the

coxph function in the survival package in R).
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6.2 An Illustration Using Rossi et al.’s Recidivism Data

I Recall Rossi et al.’s data on recidivism of 432 prisoners during the first

year after their release from Maryland state prisons.

• Survival time is the number of weeks to first arrest for each former

prisoner.

• Because former inmates were followed for one year after release,

those who were not rearrested during this period were censored at 52

weeks.
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• The Cox regression reported below uses the following time-constant

covariates:

– fin: A dummy variable coded 1 if the former prisoner received

financial aid after release from prison and 0 otherwise.

– age: The former prisoner’s age in years at the time of release.

– race: A dummy variable coded 1 for blacks and 0 for others.

– wexp: Work experience, a dummy variable coded 1 if the former

prisoner had full-time work experience prior to going to prison and 0

otherwise.

– mar: Marital status, a dummy variable coded 1 if the former prisoner

was married at the time of release and 0 otherwise.

– paro: A dummy variable coded 1 if the former prisoner was released

on parole and 0 otherwise.

– prio: The number of prior incarcerations.
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I The results of the Cox regression for time to first arrest are as follows:

Covariate SE( )
fin 0 379 0 684 0 191 1 983 047
age 0 057 0 944 0 022 2 611 009
race 0 314 1 369 0 308 1 019 310
wexp 0 150 0 861 0 212 0 706 480
mar 0 434 0 648 0 382 1 136 260
paro 0 085 0 919 0 196 0 434 660
prio 0 091 1 096 0 029 3 195 001

where:

• is the maximum partial-likelihood estimate of in the Cox model.

• , the exponentiated coefficient, gives the effect of in the multi-

plicative form of the model — more about this shortly.

• SE( ) is the standard error of , that is the square-root of the

corresponding diagonal entry of the estimated asymptotic coefficient-

covariance matrix.
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• = SE( ) is the Wald statistic for testing the null hypothesis

0: = 0; under this null hypothesis, follows an asymptotic

standard-normal distribution.

• is the two-sided -value for the null hypothesis 0: = 0.
– Thus, the coefficients for age and prio are highly statistically

significant, while that for fin is marginally so.

I The estimated coefficients of the Cox model give the linear, additive

effects of the covariates on the log-hazard scale.

• Although the signs of the coefficients are interpretable (e.g., other

covariates held constant, getting financial aid decreases the hazard of

rearrest, while an additional prior incarceration increases the hazard),

the magnitudes of the coefficients are not so easily interpreted.
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I It is more straightforward to interpret the exponentiated coefficients,

which appear in the multiplicative form of the model,d( ) =[0( )× 1 1 × 2 2 × · · · ×

• Thus, increasing by 1, holding the other ’s constant, multiplies the

estimated hazard by .

• For example, for the dummy-regressor fin, 1 = 0 379 = 0 684,
and so we estimate that providing financial aid reduces the hazard of

rearrest — other covariates held constant — by a factor of 0 684 —

that is, by 100(1 0 684) = 31 6 percent.

• Similarly, an additional prior conviction increases the estimated hazard

of rearrest by a factor of 7 = 0 091 = 1 096 or 100(1 096 1) = 9 6
percent.
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7. Topics in Cox Regression

7.1 Time-Dependent Covariates

I It is often the case that the values of some explanatory variables in a

survival analysis change over time.

• For example, in Rossi et al.’s recidivism data, information on ex-

inmates’ employment status was collected on a weekly basis.

• In contrast, other covariates in this data set, such as race and the

provision of financial aid, are time-constant.

• The Cox-regression model with time-dependent covariates takes the

form

log ( ) = ( ) + 1 1( ) + 2 2( ) + · · · + ( )

= ( ) + x0( )

– Of course, not all of the covariates have to vary with time: If covariate

is time-constant, then ( ) = .
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I Although the inclusion of time-dependent covariates can introduce non-

trivial data-management issues (that is, the construction of a suitable

data set can be tricky), the Cox-regression model can easily handle

such covariates.

• Both the data-management and conceptual treatment of time-

dependent covariates is facilitated by the so-called “counting-process”

representation of survival data.

• We focus on each time interval for which data are available, recording

the start time of the interval, the end time, whether or not the event of

interest occurred during the interval, and the values of all covariates

during the interval.

– This approach naturally accommodates censoring, multiple periods

of observation, late entry into the study, and time-varying data.

• In the recidivism data, where we have weekly information for each

ex-inmate, we create a separate data record for each week during

which the subject was under observation.
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– For example, the complete initial data record for the first subject is

as follows:

> Rossi[1,]

week arrest fin age race wexp mar paro prio educ emp1

1 20 1 0 27 1 0 0 1 3 3 0

emp2 emp3 emp4 emp5 emp6 emp7 emp8 emp9 emp10 emp11

1 0 0 1 1 0 0 0 0 0 0

emp12 emp13 emp14 emp15 emp16 emp17 emp18 emp19 emp20

1 0 0 0 0 0 0 0 0 0

emp21 emp22 emp23 emp24 emp25 emp26 emp27 emp28 emp29

1 NA NA NA NA NA NA NA NA NA

emp30 emp31 emp32 emp33 emp34 emp35 emp36 emp37 emp38

1 NA NA NA NA NA NA NA NA NA

emp39 emp40 emp41 emp42 emp43 emp44 emp45 emp46 emp47

1 NA NA NA NA NA NA NA NA NA

emp48 emp49 emp50 emp51 emp52

1 NA NA NA NA NA
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– Subject 1 was rearrested in week 20, and consequently the

employment dummy variables are available only for weeks 1 through

20 (and missing thereafter).

· The subject had a job at weeks 4 and 5, but was otherwise

unemployed when he was under observation.

· Note: Actually, this subject was unemployed at all 20 weeks prior

to his arrest — I altered the data for the purpose of this example.
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– We therefore have to create 20 records for subject 1:

start stop arrest fin age race . . . educ emp

1.1 0 1 0 0 27 1 . . . 3 0

1.2 1 2 0 0 27 1 . . . 3 0

1.3 2 3 0 0 27 1 . . . 3 0

1.4 3 4 0 0 27 1 . . . 3 1

1.5 4 5 0 0 27 1 . . . 3 1

1.6 5 6 0 0 27 1 . . . 3 0

. . .

1.18 17 18 0 0 27 1 . . . 3 0

1.19 18 19 0 0 27 1 . . . 3 0

1.20 19 20 1 0 27 1 . . . 3 0

– The subject × time-period data set has many more records than the

original data set: 19,809 vs. 432.
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• Except for missing data after subjects were rearrested, the data-

collection schedule in the recidivism study is regular.

– That is, all subjects are observed on a weekly basis, starting in week

1 of the study and ending (if the subject is not arrested during the

period of the study) in week 52.

– The counting-process approach, however, does not require regular

observation periods.

I Once the subject × time-period data set is constructed, it is a simple

matter to fit the Cox model to the data.

• In maximizing the partial likelihood, we simply need to know the

risk set at each event time, and the contemporaneous values of the

covariates for the subjects in the risk set.

• This information is available in the subject × time-period data.
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I For Rossi et al.’s recidivism data, we get the following results when the

time-dependent covariate employment status is included in the model:

Covariate SE( )
fin 0 357 0 700 0 191 1 866 062
age 0 046 0 955 0 022 2 132 033
race 0 339 1 403 0 310 1 094 270
wexp 0 026 0 975 0 211 0 121 900
mar 0 294 0 745 0 383 0 767 440
paro 0 064 0 938 0 195 0 330 740
prio 0 085 1 089 0 029 2 940 003
emp 1 328 0 265 0 251 5 30 ¿ 001
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• The time-dependent employment covariate has a very large apparent

effect: 1 328 = 0 265.
– That is, other factors held constant, the hazard of rearrest is 73.5

percent lower during a week in which an ex-inmate is employed

• As Allison points out, however, the direction of causality here is

ambiguous, since a subject cannot work when he is in jail.
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7.1.1 Lagged Covariates

I One way to address this kind of problem is to used a lagged covariate.

• Rather than using the contemporaneous value of the employment

dummy variable, we can instead use the value from the previous week.

– When we lag employment one week, we lose the observation for

each subject for the first week.
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– For example, person 1’s subject × time-period data records are as

follows:

start stop arrest fin age race . . . educ emp

1.2 1 2 0 0 27 1 . . . 3 0

1.3 2 3 0 0 27 1 . . . 3 0

1.4 3 4 0 0 27 1 . . . 3 0

1.5 4 5 0 0 27 1 . . . 3 1

1.6 5 6 0 0 27 1 . . . 3 1

. . .

1.18 17 18 0 0 27 1 . . . 3 0

1.19 18 19 0 0 27 1 . . . 3 0

1.20 19 20 1 0 27 1 . . . 3 0

– Recall that subject 1 was (supposedly) employed at weeks 4 and 5.
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I With employment lagged one week, a Cox regression for the recidivism

data produces the following results:

Covariate SE( )
fin 0 351 0 704 0 192 1 831 067
age 0 050 0 951 0 022 2 774 023
race 0 321 1 379 0 309 1 040 300
wexp 0 048 0 953 0 213 0 223 820
mar 0 345 0 708 0 383 0 900 370
paro 0 471 0 954 0 196 0 240 810
prio 0 092 1 096 0 029 3 195 001
emp (lagged) 0 787 0 455 0 218 3 608 001

• The coefficient for the time-varying covariate employment is still

large and statistically significant, but much smaller than before:
0 787 = 0 455, and so the hazard of arrest is 54.5 percent lower

following a week in which an ex-inmate is employed.
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7.2 Cox-Regression Diagnostics

I As for a linear or generalized-linear model, it is important to determine

whether a fitted Cox-regression model adequately represents the data.

I I will consider diagnostics for three kinds of problems, along with

possible solutions:

• violation of the assumption of proportional hazards;

• influential data;

• nonlinearity in the relationship between the log-hazard and the

covariates.
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7.2.1 Checking for Non-Proportional Hazards

I A departure from proportional hazards occurs when regression coeffi-

cients are dependent on time — that is, when time interacts with one or

more covariates.

I Tests and graphical diagnostics for interactions between covariates and

time may be based on the scaled Schoenfeld residuals from the Cox

model.

• The formula and rationale for the scaled Schoenfeld residuals are

complicated, and so I won’t give them here (but see Hosmer and

Lemeshow, 1999, or Therneau and Grambsch, 2000).

• The scaled Schoenfeld residuals comprise a matrix, with one row for

each record in the data set to which the model was fit and one column

for each covariate.
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• Plotting scaled Schoenfeld residuals against time, or a suitable

transformation of time, reveals unmodelled interactions between

covariates and time.

– One choice is to use the Kaplan-Meier estimate of the survival

function to transform time.

– A systematic tendency of the scaled Schoenfeld residuals to rise or

fall more or less linearly with (transformed) time suggests entering

a linear-by-linear interaction (i.e., the simple product) between the

covariate and time into the model.

• A test for non-proportional hazards can be based on the estimated

correlation between the scaled Schoenfeld residuals and (transformed)

time.

– This test can be performed on a per-covariate basis and also

cumulated across covariates.
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I For a simple illustration, I’ll return to the original Cox regression that I

performed for Rossi’s recidivism data.

• It is conceivable that a variable with a nonsignificant coefficient in the

initial model nevertheless interacts significantly with time, so I’ll start

with the model as originally specified.

• Tests for non-proportional hazards in this model are as follows:

Covariate b 2

fin 006 0 005 1 943
age 265 11 279 1 001
race 112 1 417 1 234
wexp 230 7 140 1 007
mar 073 0 686 1 407
paro 036 0 155 1 694
prio 014 0 023 1 879
Global Test 17 659 7 014
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– b is the estimated correlation between the scaled Schoenfeld

residuals and transformed time.

– Under the null hypothesis of proportional hazards, each 2 test

statistic is distributed as 2 with the indicated degrees of freedom.

– Thus, the tests for age (which had a statistically significant coefficient

in the initial Cox regression) and wexp (which did not) are statistically

significant, as is the global test for non-proportional hazards.

• Figure 11 shows plots of scaled Schoenfeld residuals vs. the covariates

age and wexp.

– The line on each plot is a smoothing spline (a method of nonpara-

metric regression); the broken lines give a point-wise 95-percent

confidence envelope around this fit.

– The tendency for the effect of age to fall with time, and for that of

wexp to rise with time, is clear in these plots.
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Figure 11. Plots of scaled Schoenfeld residuals against transformed time
for the covariates age and wexp.
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• I fit a respecified Cox regression model to the data, including fin,

age, wexp, and prio, along with the products of time and age and of

time and wexp:

Covariate SE( )
fin 0 3575 0 699 0 1902 1 88 060
age 0 0778 1 081 0 0400 1 95 052
wexp 1 4644 0 231 0 4777 3 07 002
prio 0 0876 1 092 0 0282 3 10 002
age × time 0 0053 0 995 0 0015 3 47 001
wexp × time 0 0439 1 045 0 0145 3 02 003

– The products of time and age and of time and wexp are time-

dependent covariates, and so the model must be fit to the subject ×
time-period form of the data set.
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– Although interactions with time appear in the model, time itself does

not appear as a covariate: The “main effect” of time is in the baseline

hazard function.

– The effect of age on the hazard of re-offending is initially positive,

but this effect declines with time and eventually becomes negative

(by 15 weeks).

– The effect of wexp is initially strongly negative, but eventually

becomes positive (by 34 weeks).

– The respecified model shows no evidence of non-proportional

hazards: For example, the global test gives 2 = 1 12, = 6,
= 98.
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7.2.2 Fitting by Strata

I An alternative to incorporating interactions with time is to divide the data

into strata based on the values of one or more covariates.

• Each stratum may have a different baseline hazard function, but the

regression coefficients in the Cox model are assumed to be constant

across strata.

I An advantage of this approach is that we do not have to assume a

particular form of interaction between the stratifying covariates and time.

I There are a couple of disadvantages, however:

• The stratifying covariates disappear from the linear predictor into the

baseline hazard functions.

– Stratification is therefore most attractive when we are not really

interested in the effects of the stratifying covariates, but wish simply

to control for them.
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• When the stratifying covariates take on many different (combinations

of) values, stratification — which divides the data into groups — is not

practical.

– We can, however, recode a stratifying variable into a small number

of relatively homogeneous categories.

I For the example, I divided age into three categories: those 20 years old

or less; those 21 to 25 years old; and those older than 25.

• Cross-classifying categorized age and work experience produces the

following contingency table:

Age

Work Experience 20 or less 21 – 25 26 or more

No 87 73 25

Yes 40 102 105
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• Fitting the stratified Cox model to the data:

Covariate SE( )
fin 0 387 0 679 0 192 2 02 043
prio 0 080 1 084 0 028 2 83 005

• For this model, as well, there is no evidence of non-proportional

hazards: The global test statistic is 2 = 0 15 with 2 , for which

= 93.
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7.2.3 Detecting Influential Observations

I As in linear and generalized linear models, we don’t want the results

in Cox regression to depend unduly on one or a small number of

observations.

I Approximations to changes in the Cox regression coefficients attendant

on deleting individual observations (dfbeta), and these changes

standardized by coefficient standard errors (dfbetas), can be obtained

for the Cox model.

I Figure 12 shows index plots of dfbeta and dfbetas for the two covariates,

fin and prio, in the stratified Cox model that I fit to the recidivism data.

• All of the dfbeta are small relative to the sizes of the corresponding

regression coefficients, and the dfbetas are small as well.
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Figure 12. dfbeta (top row) and dfbetas (bottom) row for fin (left) and
prio (right) in the stratified Cox model fit to Rossi et al.’s recidivism data.
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7.2.4 Detecting Nonlinearity

I Another kind of Cox-model residuals, called martingale residuals, are

useful for detecting nonlinearity in Cox regression.

• As was the case for scaled Schoenfeld residuals, the details of the

martingale residuals are beyond the level of this lecture.

• Plotting residuals against covariates, in a manner analogous to

plotting residuals against covariates from a linear model, can reveal

nonlinearity in the partial relationship between the log hazard and the

covariates.

I Let represent the martingale residual for observation .

• Plotting + against is analogous to a component+residual

(or partial-residual) plot for a covariate in a linear model.

• Here, is the estimated coefficient for the th covariate, and is the

value of the th covariate for observation .
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I As is the case for component+residual plots in a linear or generalized-

linear model, it aids interpretation to add a nonparametric-regression

smooth and a least-squares line to these plots.

I Plotting martingale residuals and partial residuals against prio in the

last Cox regression produces the results shown in Figure 13.

• The plots appear quite straight, suggesting that nonlinearity is not a

problem here.

• As is typical of residuals plots for survival data, the patterned nature of

these plots makes smoothing important to their visual interpretation.

I There is no issue of nonlinearity in the partial relationship between the

log-hazard and fin (the other covariate in the model), since fin is a

dummy variable.
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Figure 13. Plots of Martingale residuals (left) and partial residuals (right)
against prio.
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7.3 Estimating Survival in Cox Regression Models

I Because of the unspecified baseline hazard function, the estimated

coefficients of the Cox model do not fully characterize the distribution of

survival time as a function of the covariates.

I By an extension of the Kaplan-Meier method, it is possible, however, to

estimate the survival function for a real or hypothetical subject with any

combination of covariate values.

I In a stratified model, this approach produces an estimated survival curve

for each stratum.
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I To generate a simple example, suppose that a Cox model is fit to the

recidivism data employing the time-constant covariates fin, age, and

prio, producing the following results:

Covariate SE( )
fin 0 347 0 707 0 190 1 82 068
age 0 067 0 021 0 021 3 22 001
prio 0 097 0 027 0 027 3 56 001

• Figure 14 shows the estimated survival functions for those receiving

and not receiving financial aid (i.e., for fin = 1 and 0, respectively) at

average age (age = 24 6) and average prior number of arrests (prio

= 2 98).

• Similarly, an estimate of the baseline survival function can be

recovered by setting all of the covariates to 0.
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Figure 14. Estimated survival functions from the Cox regression model
with fin, age, and prio as predictors — setting age and prio to their
average values, and letting fin take on the values 0 and 1.
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