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Math 56a: Introduction to Stochastic Processes and Models

Kiyoshi Igusa, Mathematics

August 31, 2006

A stochastic process is a random process which evolves with time. The basic model is the Markov
chain. This is a set of “states” together with transition probabilities from one state to another.
For example, in simple epidemic models there are only two states: S = “susceptible” and I =
“infected.” The probability of going from S to I increases with the size of I. In the simplest
model The S → I probability is proportional to I, the I → S probability is constant and time is
discrete (for example, events happen only once per day). In the corresponding deterministic model
we would have a first order recursion.

In a continuous time Markov chain, transition events can occur at any time with a certain prob-
ability density. The corresponding deterministic model is a first order differential equation. This
includes the “general stochastic epidemic.”

The number of states in a Markov chain is either finite or countably infinite. When the collection
of states becomes a continuum, e.g., the price of a stock option, we no longer have a “Markov
chain.” We have a more general stochastic process. Under very general conditions we obtain a
Wiener process, also known as Brownian motion. The mathematics of hedging implies that stock
options should be priced as if they are exactly given by this process. Ito’s formula explains how to
calculate (or try to calculate) stochastic integrals which give the long term expected values for a
Wiener process.

This course will be a theoretical mathematics course. The goal is to give rigorous mathematical
definitions and derive the consequences of simple stochastic models, most of which will be Markov
chains. I will not explain the principles of biology, economics and physics behind the models,
although I would invite more qualified guest lecturers to explain the background for the models.
There will be many examples, not just the ones outlined above.

The prerequisite for the course will be Math 36a (probability using calculus), linear algebra (Math
15) and multivariable calculus (Math 20). Basic linear differential equations will be reviewed at the
beginning of the course. Probability will not be reviewed. This is an advanced course for students
already familiar with probability. Linear algebra is also heavily used. Statistics is not required.
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Outline of course

1. Review of linear recursion and linear differential equations.

2. Definitions and general notions about stochastic processes

3. Finite Markov chains

4. Renewal processes

5. Continuous time Markov chains

6. Martingales

7. Wiener processes (Brownian motion)

8. Stochastic integration and Ito’s formula

9. Applications to population biology and epidemiology

10. Application to financial security analysis

Applications will vary according to the interests of students and teacher.

Required text Introduction to Stochastic Processes, Gregory Lawler, Chapman & Hall

Recommended books:

• Markov Chains, J.R. Norris, Cambridge University Press. (This is an excellent book which
develops Markov chains in a more leisurely way but does not have stochastic integrals.)

• Epidemic Modelling, An Introduction, D.J. Daley & J.Gani, Cambridge University Press

• Financial Derivatives, Pricing, Applications and Mathematics, Jamil Baz & George Chacko,
Cambridge University Press

• The Mathematics of Financial Derivatives, A Student Introduction, Paul Wilmott, Sam How-
ison, Jeff Dewynne, Cambridge University Press

Grading 50% homework, 50% in-class performance. Expected grade: A-/B+

There will be weekly homework. The first HW might have the problem: Find a formula for the
n-th Fibonacci number by solving the linear recurrence. Students are encouraged to work on
their homework in groups and to access all forms of aid including expert advice, internet and
other resources. The work you hand in should, however, be in your own words and in your own
handwriting. And you should understand what you have written.

In-class activities: “quizzes” will be given every week or other week. Students should form groups
of 3 or 4 to work on these problems in class, solve them and help other students in the group to
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understand them. Each group should hand in their answers signed by all members of the group.
Every student is required to give at least one short oral presentation in front of the class. Attendance
is required and counts as part of the grade.

Students with disability If you are a student with a documented disability at Brandeis University
and if you wish to request a reasonable accommodation for this class, please see the instructor
immediately.

Academic integrity All members of the Brandeis academic community are expected to main-
tain the highest standard of academic integrity as outlined in “Rights and Responsibilities.” Any
violations will be treated seriously.
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MATH 56A: STOCHASTIC PROCESSES
CHAPTER 0

0. Chapter 0

I “reviewed” basic properties of linear differential equations in one
variable. I still need to do the theory for several variables.

0.1. linear differential equations in one variable. In the first lec-
ture I discussed linear differential equations in one variable. The prob-
lem in degree n = 2 is to find a function y = f(x) so that:

(0.1) y′′ + ay′ + by + c = 0

where a, b, c are constants.
The general n-th order linear diff eq in one variable is:

y(n) + a1y
(n−1) + a2y

(n−2) + · · ·+ any + an+1 = 0

where a1, · · · , an+1 are constant.

0.1.1. associated homogeneous equation. The standard procedure is to
first take the associated homogeneous equation which is given by setting
an+1 = 0. For the 2nd order equation we get:

(0.2) y′′ + ay′ + by = 0

Lemma 0.1. If y = f(x) is a solution of the homogeneous equation
then so is y = αf(x) for any scalar α.

Lemma 0.2. If y = f0(x) is a solution of the original equation (0.1)
and y = f1(x) is a solution of the homogeneous equation (0.2) then
y = f0(x)+f1(x) is a solution of the original equation (0.1). Similarly,
if f0, f1 are solutions of the homogeneous equation then so is f0 + f1.

Theorem 0.3. The set of solutions of the homogenous equation is a
vector space of dimension equal to n (the order of the equation).

This means that if we can find n linearly independent solutions
f1, f2, · · · , fn of the homogeneous equation then the general solution
(of the homogenous equation) is a linear combination:

y = α1f1 + α2f2 + · · ·+ αnfn

Date: September 28, 2006.
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2 MATH 56A: STOCHASTIC PROCESSES CHAPTER 0

0.1.2. complete solution of linear diffeqs. A general solution of the lin-
ear diffeq is given by adding a particular solution f0 to the general
solution of the homogeneous equation:

y = f0 + α1f1 + α2f2 + · · ·+ αnfn

The particular solution is easy to find:

f0(x) = −an+1

an

if an 6= 0

f0(x) = −− an+1

an−1

x

if an = 0 but an−1 6= 0.
The solutions of the homogeneous equations are given by guessing.

We just need to find n linearly independent solutions. We guess that
y = eλx. Then

yk = λkeλx

So, the homogenous equation is:

λneλx + a1λ
n−1eλx + · · ·+ ane

λx = 0

Since eλx is never zero we can divide to get:

λn + a1λ
n−1 + · · ·+ an = 0

This is a monic (coefficient of λn is 1) polynomial of degree n. So, it
has n complex roots λ1, λ2, · · · , λn. If the roots are distinct then the
solutions

f1(x) = eλ1x, f2(x) = eλ2x, · · ·
are linearly independent and span the solution space.

If roots repeat, e.g., if λ1 = λ2 = λ3 then the functions f2, f3 are
given by

f2(x) = xeλ1x, f3(x) = x2eλ1x,

0.1.3. separation of variables. Finally, I talked about separation of vari-
ables. This just means put all the x’s on one side of the equation and
all the y’s on the other side. For example:

dy

dx
= xy

This is a nonlinear diffeq. Separating variables we get:

dy

y
= xdx
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Now integrate both sides: ∫
dy

y
=

∫
x dx

ln y =
x2

2
+ C

Note that there is only one constant. (You get a constant on both sides
and C is the difference between the two constants.) The final solution
is:

y = y0exp

(
x2

2

)
where y0 = eC .

0.2. Kermack-McKendrick. This is from the book Epidemic Mod-
elling, An Introduction, D.J. Daley & J.Gani, Cambridge University
Press. Kermack-McKendrick is the most common model for the gen-
eral epidemic. I made two simplifying assumptions:

• the population is homogeneous and
• no births or deaths by other means

Since there are no births, the size of the population N is fixed.
In this model there are three states:

S: = susceptible
I: = infected
R: = removed (immune)

Let x = #S, y = #I, z = #R. So

N = x + y + z

I assume that z0 = 0 (If there are any “removed” people at t = 0 we
ignore them.)

As time passes, susceptible people become infected and infected re-
cover and become immune. So the size of S decreases and the size of
R increases. People move as shown by the arrows:

S −→ I −→ R

The infection rate is given by the Law of mass action which says:

The rate of interaction between two different subsets of the population
is proportional to the product of the number of elements in each subset.

So,
dx

dt
= −βxy

where β is a positive constant.
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Infected people recover at a constant rate:

dz

dt
= γy

where γ is a positive constant.
This is a system of nonlinear equations. To solve it we make it linear

by dividing:
dx

dz
=

dx/dt

dz/dt
=
−βxy

γy
=
−βx

γ
This is a linear differential equation with solution

x = x0exp

(
−β

γ
z

)
= x0e

−z/ρ

where ρ = γ/β is the threshold population size.
Since x + y + z is fixed we can find y:

y = N − x− z = N − x0e
−z/ρ − z

Differentiating gives:
dy

dz
=

x0

ρ
e−z/ρ − 1

d2y

dz2
= −x0

ρ2
e−z/ρ < 0

So, the function is concave down with initial slope

dy

dz
=

x0

ρ
− 1

which is positive if and only if x0 > ρ. So, according to this model, the
number of infected will initially increase if and only if the number of
susceptibles is greater than the threshold value ρ = γ/β.

By plotting the graphs of the functions we also see that the infection
will taper off with a certain number of susceptibles x∞ who never get
infected.
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0.3. systems of first order equations. I explained that differential
equations involving second and higher order derivatives can be reduced
to a system of first order equations by introducing more variables. Then
I did the following example.

y′ = z

z′ = 6y − z

In matrix form this is:

d

dt

(
y
z

)
=

(
0 1
6 −1

)(
y
z

)
Which we can write as Y = AY with

Y =

(
y
z

)
, A =

(
0 1
6 −1

)
0.3.1. exponential of a matrix. The solution of this equations is

Y = etAY0

where Y0 =

(
y0

z0

)
and

etA := I2 + tA +
t2A2

2
+

t3A3

3!
+ · · ·

This works because the derivative of each term is A times the previous
term:

d

dt

tkAk

k!
=

ktk−1Ak

k!
=

tk−1Ak

(k − 1)!
= A

tk−1Ak−1

(k − 1)!

So,
d

dt
etA = AetA

0.3.2. diagonalization (corrected). Then I explained how to compute
rtA. You have to diagonalize A. This means

A = QDQ−1

where D is a diagonal matrix D =

(
d1 0
0 d2

)
.

I should have explained this formula so that I get it right: If X1, X2

are eigenvalues of A with eigenvalues d1, d2 then AX1 = X1d1, AX2 =
X2d2 and

A(X1X2) = (X1d1X2d2) = (X1X2)

(
d1 0
0 d2

)
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Solve for A gives

A = (X1X2)

(
d1 0
0 d2

)
(X1X2)

−1 = QDQ−1

where Q = (X1, X2).
This is a good idea because A2 = QDQ−1QDQ−1 = QD2Q−1 and

more generally, tkAk = tkQDkQ−1. Divide by k! and sum over k to
get:

etA = QetDQ−1 = Q

(
etd1 0
0 etd2

)
Q−1

0.3.3. eigenvectors and eigenvalues. The diagonal entries d1, d2 are the
eigenvalues of the matrix A and Q = (X1X2) where Xi is the eigenvec-
tor corresponding to di. This works if the eigenvalues of A are distinct.
The eigenvalues are defined to be the solutions of the equation

det(A− λI) = 0

but there is a trick to use for 2 × 2 matrices. The determinant of a
matrix is always the product of its eigenvalues:

det A = d1d2 = −6

The trace (sum of diagonal entries) is equal to the sum of the eigenval-
ues:

trA = d1 + d2 = −1

So, d1 = 2, d2 = −3. The eigenvalues are X1 =

(
1
2

)
and X2 =

(
1
−3

)
.

So

Q = (X1X2) =

(
1 1
2 −3

)
Q−1 =

1

det Q

(
−3 −1
−2 1

)
=

(
3/5 1/5
2/5 −1/5

)
The solution to the original equation is(

y
z

)
=

(
1 1
2 −3

)(
e2t 0
0 e−3t

)(
3/5 1/5
2/5 −1/5

)(
y0

z0

)
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0.4. Linear difference equations. We are looking for a sequence
of numbers f(n) where n ranges over all the integers from K to N
(K ≤ n ≤ N) so that

(0.3) f(n) = af(n− 1) + bf(n + 1)

I pointed out that the solution set is a vector space of dimension 2.
So we just have to find two linearly independent solutions. Then I
followed the book.

The solution has the form f(n) = cn where you have to solve for c:

cn = acn−1 + bcn+1

(0.4) bc2 − c + a = 0

c =
1±

√
1− 4ab

2b
There were two cases.

Case 1: (4ab 6= 1) When the quadratic equation (0.4) has two roots
C1, c2 then the linear combinations of cn

1 and cn
2 give all the solutions

of the homogeneous linear recursion (0.3).
Case 2: (4ab = 1) In this case there is only one root c = 1

2b
and the

two independent solutions are f(n) = cn and ncn. The reason we get
a factor of n is because when a linear equation has a double root then
this root will also be a root of the derivative. This gives f(n) = ncn−1

as a solution. But then you can multiply by the constant c since the
equation is homogeneous.

Example 0.4. (Fibonacci numbers) These are given by f(0) = 1, f(1) =
1 and f(n + 1) = f(n) + f(n− 1) or:

f(n) = f(n + 1)− f(n− 1)

This is a = −1, b = 1. The roots of the quadratic equation are c = 1±
√

5
2

.
So,

f(n) =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n

This is a rational number since it is Galois invariant (does not change
if you switch the sign of

√
5). However, it is not clear from the formula

why it is an integer.
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1. Finite Markov chains

For the sake of completeness of these notes I decided to write a
summary of the basic concepts of finite Markov chains. The topics in
this chapter are:

(1) definition of a Markov chain
(2) communication classes
(3) classification of states
(4) periodic/aperiodic
(5) invariant probability distribution
(6) return time
(7) substochastic matrix

1.1. definition. A stochastic process is a random process which evolves
with time. In other words, we have random variables Xt, Yt, etc. which
depend on time t. For example Xt could be your location at time t
(where t is in the future).

A finite Markov chain is a special kind of stochastic process with the
following properties

• There are only a finite number of states. If we are talking
about your location, this means we are only interested in which
building you are in and not your exact position in the building.

• Time is discrete: For example, things change only at 1pm, 2pm,
etc. and never at 1:12pm or any time in between. Xn is the
state at time n where n = 0, 1, 2, etc.

• No memory. Your (random) movement at time n depends only
on Xn and is independent of Xt for t < n (You forget the past
and your decision making process is based only on the present
state.)

• Time homogeneous: Your rules of movement are the same at
all times.

To summarize: You have a finite number of building that you can
move around in. You can only move on the hour. Your decision making
process is random and depends only on your present location and not

Date: December 15, 2006.
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2 MATH 56A: STOCHASTIC PROCESSES CHAPTER 1

on past locations and does not take into account what time it is. (You
move at midnight in the same way that you do at noon.)

Definition 1.1. A finite Markov chain is a sequence of random vari-
ables X0, X1, · · · which take values in a finite set S called the state
space and for any n and any values of x0, x1, · · · , xn we have:

P(Xn+1 = x |X0 = x0, X1 = x1, · · · , Xn = xn) = P(X1 = x |X0 = xn)

The S × S matrix P with entries

p(x, y) := P(X1 = y |X0 = x)

is called the transition matrix.

For example, suppose that you have 4 points: 0,1,2,3 and at each
step you either increase one or decrease one with equal probability
except at the end points. Suppose that, when you reach 0, you cannot
leave. (0 is called an absorbing state.) Suppose that when you reach 3
you always go to 2. (3 is called a reflecting wall.) Then the transition
matrix is

P =


1 0 0 0

1/2 0 1/2 0
0 1/2 0 1/2
0 0 1 0


Notice that the numbers are all nonnegative and the numbers in each
row add up to 1. This characterizes all transition matrices.

In the discussion of Markov chains, there are qualitative non-numerical
concepts and quantitative, computational concepts. The qualitative
concepts are: communication classes, their classification and periodic-
ity.

1.2. communication classes. Two states communicate with each other
if they are equal or if it is possible (with positive probability) to get
from either one to the other in a finite amount of time. We write x ↔ y.
This is an equivalence relation and the equivalence classes are called
communication classes.

In the example above, {0} and {1, 2, 3} are the communication classes.
A Markov chain is irreducible if it has only one communication class,

i.e., if it is possible to get from any state to any other state.

1.3. classification of states: transient and recurrent. There are
two types of communication classes: recurrent and transient. At this
point, I allowed the state space S to be infinite so that you don’t get
the wrong idea.
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A communication class C is recurrent if for any state x ∈ C, you
will keep returning to x an infinite number of times with probability
one. A communication class C is transient if, starting at any x ∈ C,
you will return to x only a finite number of times with probability one.

The theorem is that these are the only two possibilities. I proved
this in class:

Lemma 1.2. If p = p(i, j) > 0 and i is recurrent then so is j. In fact,
if you start in state i you will go to state j an infinite number of times
with probability one.

Proof. This is the same as saying that the probability of going to state
j only a finite number of times is zero. To prove this suppose that the
Markov chain goes to state j only a finite number of times. Then there
is a last time, say Xm = j. Then you can never return to j.

But i is recurrent. So, with probability one, you will go to i an infinite
number of times after time m. Say at times n1 < n2 < n3 < · · · (all
> m). But

P(Xn1+1 6= j |Xn1 = i) = 1− p

P(Xn2+1 6= j |Xn2 = i) = 1− p

The product is (1 − p)2, (1 − p)3, etc. which converges to 0. So, the
probability is zero that in all of these infinite times that you visit i you
will never go to j. This is what I was claiming. �

Theorem 1.3. Once you leave a communication class you can never
return.

Theorem 1.4. Recurrent communication classes are absorbing.

The lemma shows that, if you could leave a recurrent communication
class, you will with probability one. This would be a contradiction to
the definition of recurrent. So, you cannot leave a recurrent class.

The lemma that I proved can be rephrased as follows:

Lemma 1.5. If you make an infinite number of attempts and you have
a fixed positive probability p of success then, with probability one, you
will succeed an infinite number of times.

The strong law of large numbers says that, with probability one,
the proportion of trials which are successful will converge to p as the
number of trials goes to infinity. I.e., the experimental value of the
probability p will converge to the theoretical value with probability
one.
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1.4. periodic chains. We are interested in the time it takes to return
to a state i. The return time Ti to state i is the smallest positive integer
n so that Xn = i given that X0 = i. In other words, you start at state i
and count how many turns it takes to return to the same state i. This
number is Ti. It is random. For example, in the random walk example
given above, P(T3 = 2) = 1/2, P(T2 = 2) = 3/4.

The period of a state i is the greatest common divisor of all possible
return times to state i. For the random walk on an infinite straight
line (or on a finite line with reflecting walls), the period of every state
is 2 because it always takes an even number of steps (the same number
right as left) to get back to the same point.

A state i is aperiodic if the period is 1.

Theorem 1.6. States in the same communication class have the same
period.

1.5. Invariant probability distribution.

Definition 1.7. A probability distribution π is called invariant if

πP = π

Remember that a probability distribution is a vector with nonnegative
coordinates adding up to 1:

n∑
i=1

π(i) = 1, π(i) ≥ 0

where n is the number of states. As an application of the Perron-
Frobenius theorem we get:

Theorem 1.8. If the Markov chain is irreducible and aperiodic then
P n converges to a matrix in which every row is equal to the invariant
distribution π which is unique:

P∞ =


π
π
· · ·
π


If the Markov chain is periodic then P n depends on n modulo the

period d. However, the average value of P n will still converge:

Theorem 1.9. For any finite Markov chain the average value of P n

converges to a matrix in which every row is equal to the unique invariant
distribution π:

lim
n→∞

1

n

n∑
k=1

P k =

 π
· · ·
π
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Proof. Let

Sn =
1

n

n∑
k=1

P k

Then each row of Sn adds to 1 and

SnP = Sn +
1

n
(P n+1 − P )

So, SnP ≈ Sn and S∞P = S∞. Since each row of S∞ adds to 1,
each row is equal to the invariant distribution π (which is unique by
Perron-Frobenius). �

1.6. Return time. I explained in class the relation between the return
time Ti to state i and the value of the invariant distribution π(i):

E(Ti) =
1

π(i)

Proof. Begin with the last theorem:

π(j) = lim
n→∞

1

n

n∑
m=1

P(Xm = j)

Now use the fact that probability is the expected value of the indicator
function: P(A) = E(I(A)) and expected value is linear:

∑
E = E

∑
π(j) = lim

n→∞

1

n
E

(
n∑

m=1

I(Xm = j)

)
This is the average expected number of visits to state j. If, in n steps,
you visit a state k times then the average time from one visit to the
next is n/k and the average number of visits is k/n. So they are inverse
to each other:

π(j) =
k

n
=

1

n/k
=

1

E(Tj)

�

1.7. substochastic matrix. If there are both absorbing classes and
transient classes in the Markov chain then you get a substochastic
matrix Q which is the transient-to-transient transition matrix: Q =
(p(x, y)) where we take x, y only from transient states. (Actually, you
can take any subset of the set of states.) Since this is only part of the
transition matrix P , the rows may not add up to 1. But we know that
the entries are all nonnegative and the rows add up to at most 1.

Definition 1.10. A substochastic matrix is a square matrix Q whose
entries are all nonnegative with rows adding up to at most 1.
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I used a model from economics to explain what was the point of
doing this.

1.7.1. Leontief model. In this model we have r factories which produce
goods. For every dollar worth of goods that factor i produces, it needs
qij dollars worth of the output of factory j. In order to be profitable
or to at least break even we need the production cost to be less than
or equal to one dollar:

qi1 + qi2 + · · ·+ qir ≤ 1

In other words, each row of the matrix Q = (qij) must add up to at
most 1. So, Q is a substochastic matrix.

To analyze how this works we follow the dollar. qij represents goods
going from j to i and it represents money going from i to j.

Now look at the total amount of money and what happens to it. Out
of each dollar that factory i gets, it must give

∑
qij to other factories.

What remains:
1−

∑
qij

is profit. Let’s say it puts this money in the bank. When we add the
bank to the system we get a Markov chain with r + 1 states. The
transition matrix is P = (p(i, j)) where

p(i, j) =


qij if i, j 6= 0

1−
∑

k qik if i 6= 0, j = 0

0 if i = 0, j 6= 0

1 if i = j = 0

Note that this formula can be used to convert any substochastic matrix
into a Markov chain by adding one absorbing state.

Problem The problem is to figure out how much each factory needs
to produce in order for the net production (not counting inter-industry
consumption) to be equal to a fixed vector γ. This is the consumption
vector. The consumer wants γi dollars worth of stuff from factory i.
To find the answer we just follow the money after the consumer buys
the goods.

I explained it in class like this: The consumer orders γi worth of
goods from factory i. On day zero, each factory i produces the re-
quested goods using its inventory of supplies. Then it orders supplies
from the other factories to replenish its inventory. On day one, each
factory produces goods to fill the orders from the other factories using
its inventory. And so on. Eventually, (in the limit as n → ∞), the
inventories are all back to normal and all the money is in the bank as-
suming that all the factories are transient states. The total production
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is given by adding up the production on each day. Factory i produces
γi on day 0, ∑

j

γjqji = (γQ)i

on day 1, ∑
j

γjqjk

∑
k

qki = (γQ2)i

on day 2, (γQ3)i on day 3, etc. So, the total production of factory i is

(γ(I + Q + Q2 + Q3 + · · · ))i = (γ(I −Q)−1)i

Lemma 1.11. The factories are all transient states if and only if I−Q
is invertible.

Proof. If the factories are all transient then the money will all even-
tually end up in the bank. Equivalently, the matrices Qn converge to
zero. So I −Q is invertible. Conversely, if there is a recurrent class, it
must consist of nonprofit organizations which require only the output
from other nonprofits. Then these nonprofit factories give a Markov
process with equilibrium distribution π. This will be a vector with
πQ = π. So, it is a null vector of I − Q showing that I − Q is not
invertible. �

1.7.2. avoiding states. Substochastic matrices are used to calculate the
probability of reaching one set of states A before reaching another set
B (assuming that they are disjoint subsets of S). To do this you first
combine them into two recurrent states. You also need to assume
there are no other recurrent states (otherwise the Markov chain could
get stuck in a third state and never reach A or B).

Suppose that there are n transient states and two absorbing states
A and B. Let Q be the n× n transient-to-transient transition matrix
and let S be the n × 2 transient-to-recurrent matrix. Then the (i, A)
entry of QkS is the probability of getting from state i to state A in
exactly k + 1 steps. So, the total probability of ending up in state A is

Pi(A) = ((I + Q + Q2 + Q3 + · · · )S)iA = ((I −Q)−1S)iA
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2. Countable Markov Chains

I started Chapter 2 which talks about Markov chains with a count-
ably infinite number of states. I did my favorite example which is on
page 53 of the book.

2.1. Extinction probability. In this example we consider a popu-
lation of one cell creatures which reproduce asexually. At each time
interval, each creature produces X offspring and then dies. Here X is a
random variable equal to 0, 1, 2, 3 etc with probabilities pk = P(X = k).

You can read the complete analysis in the book, but what I explained
in class was the most striking part: if the average number of offspring
is equal to 1 (and it is somewhat random, i.e., not always equal to 1)
then the probability of extinction of the population is one.

In this model the state space is the set of nonnegative integers. If
the state is i then there are i creature in the population. At each time
interval each of these creatures dies and produces a random number
of offspring. The state 0 is an absorbing state. We want to know the
probability that we eventually land in that state. We start with the
definition:

a := P(Xn = 0 eventually|X0 = 1)

So, a is the probability that the species eventually becomes extinct if
it starts out with exactly one creature. The theorem is that a = 1.
This implies that population dies out if we start with any number of
creatures. The reason is that, because of asexual reproduction, the
descendants of each individual will not mix and so, assuming indepen-
dence of the probabilities of extinction for each “family,” we get that

ak = P(Xn = 0 eventually|X0 = k)

The point is that, if a = 1 then ak = 1 for any k ≥ 0.
To calculate a we look at what happens after one time interval.

a =
∑

k

P(Xn = 0 eventually|X1 = k)P(X1 = k) =
∑

k

akpk

Date: September 28, 2006.
1
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But this is the generating function for pk which is defined by

φ(s) := E(sX) =
∑

k

skP(X = k) =
∑

k

skpk

The extinction probability is equal to the generating function!!

a = φ(a)

The generating function has the property that φ(1) = 1. Here is the
proof:

φ(1) =
∑

k

1kpk =
∑

k

pk = 1

The derivative of φ(s) is

(2.1) φ′(s) =
∑

k

ksk−1pk

If we put s = 1 we get the expected value of X (the number of offspring)
which we are assuming is equal to 1.

φ′(1) =
∑

k

kpk = E(X) = 1

The second derivative is

φ′′(s) =
∑
k≥2

k(k − 1)sk−2pk > 0

This is greater than zero (for all s) if p2 > 0 or pk > 0 for some k ≥ 2.
But, if X has average 1 and is not always equal to 1 then it must be
sometimes more and sometimes less than 1. So, there is a positive
probability that X ≥ 2. So, φ′′(s) > 0.

Now, graph the function y = φ(s). Since φ(1) = 1 and φ′(1) = 1, the
graph goes through the point (1, 1) with slope 1. Since it is concave
up, it has to curve away from the line y = s on both sides of that point.
So, the only solution to the equation a = φ(a) is a = 1.

For the general analysis we need the following lemma.

Lemma 2.1. a is the smallest nonnegative solution to the equation
a = φ(a).

Proof. The eventual extinction probability is a limit of finite extinction
probabilities:

a = lim
n→∞

an

where

an = P(Xn = 0|X0 = 1)
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These finite extinction probabilities are calculated recursively as fol-
lows:

an =
∑

k

P(Xn = 0|X1 = k)P(X1 = k|X0 = 1)

=
∑

k

P(Xn−1 = 0|X0 = k)P(X1 = k|X0 = 1) =
∑

k

ak
n−1pk = φ(an−1)

Let â be the smallest nonnegative real number so that â = φ(â). Then
we just have to show that an ≤ â for every n ≥ 0. This is true for
n = 0 since

a0 = P(X0 = 0|X0 = 1) = 0 ≤ â

Suppose by induction that an−1 ≤ â. Then we have to show that
an ≤ â. But, if you look at the equation (2.1) you see that φ′(s) ≥ 0.
So,

an = φ(an−1) ≤ φ(â) = â

Therefore, an ≤ â for all n ≥ 0. So, a ≤ â. So, a = â. �

Theorem 2.2. If E(X) > 1 then the probability of extinction is less
than 1. If E(X) ≤ 1 then the probability of extinction is one, except in
the case when the population is constant (i.e., when p1 = 1).

Proof. By the lemma, the extinction probability a is the first point of
intersection of the graph of y = φ(s) with the graph of y = s. But φ(s)
goes through the point (1, 1) with slope E(X) and is always concave
up. A drawing of the graphs proves the theorem. �
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2.2. Random walk in an integer lattice. Today I want to explain
the proof that the simple random walk in the lattice Zd is recurrent if
d ≤ 2 and transient if d ≥ 3.

2.2.1. One dimensional case. First look at the case d = 1. Then the
state space is Z the set of all integers. At each step we go either left or
right with probability 1

2
. This is periodic with period 2. We need an

even number of steps to get back to the starting point. Let’s say the
starting point is 0.

p2n(0, 0) = C(2n, n)

(
1

2

)2n

=
(2n)!

n!n!

(
1

2

)2n

Use Stirling’s formula:

n! ∼ e−nnn
√

2πn

where ∼ means the ratio of the two sides converges to 1 as n → ∞.
So,

(2n)! ∼ e2n(2n)2n
√

4πn

and
(2n)!

n!n!
∼ e2n(2n)2n

√
4πn

e2nn2n2πn
=

22n

√
πn

which means that

p2n(0, 0) ∼ 1√
πn

The expected number of return visits to 0 is
∞∑

n=1

p2n(0, 0) ≈
∑ 1√

πn
= ∞

So, 0 is recurrent in Z. Since there is only one communication class,
all states are recurrent.

2.2.2. Higher dimensions. In the planar lattice Z2, both coordinates
must be 0 at the same time in order for the particle to return to the
origin. Therefore,

p2n(0, 0) ∼ 1

πn
and

∞∑
n=1

p2n(0, 0) ≈
∑ 1

πn
= ∞

and Z2 is recurrent.
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When d > 2 we get

p2n(0, 0) ∼ 1

(πn)d/2

and
∞∑

n=1

p2n(0, 0) ≈
∑ 1

(πn)d/2

which converges by the integral test. So, the expected number of visits
is finite and Z3, Z4, etc are transient.

2.2.3. Stirling’s formula. Exercise 2.18 on page 62 gives a rigorous
proof of Stirling’s formula. I will give a simpler proof which misquotes
(!) the central limit theorem. It starts with Yn the Poisson random
variable with mean n. It has probability distribution

P(Yn = k) = e−n nk

k!
The variance of a Poisson variable is equal to its mean. So, the standard
deviation is

√
n. The central limit theorem says that, as n → ∞

the Poisson distribution is approximated by the normal distribution
N(n,

√
n) with µ = n, σ =

√
n. But Poisson is discrete so you have to

take integer steps:

P(Yn = n) ∼
∫ n+ 1

2

n− 1
2

N(n,
√

n) =

∫ 1
2

− 1
2

N(0,
√

n)

e−n nn

n!
∼ 1√

2πn

∫ 1
2

− 1
2

e−x2/n dx

But,

lim
n→∞

∫ 1

0

e−x2/n dx =

∫ 1

0

e0 dx = 1

So,

e−n nn

n!
∼ 1√

2πn
This is Stirling’s formula when you solve for n!.

Note: the central limit theorem does not actually give approxima-
tions for single values of discrete probability distributions, it only ap-
proximates sums of values over a range of values which is a fixed mul-
tiple of the standard deviation. However, the book points out that the
Poisson distribution is fairly uniform in its values. So, the sum over
a range is approximated by a single value times the size of the range.
(This is the point of part (b) of the exercise.)
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2.3. Transient-recurrent. If Xn is an irreducible aperiodic Markov
chain then there are 3 possibilities:

(1) Xn is transient
(2) Xn is null recurrent
(3) Xn is positive recurrent

What do these mean and how can you tell which category you are
in?

First of all, in the finite case, you always have positive recurrence.
Null recurrence is something that happens only in the infinite case.

To tell whether Xn is transient or recurrent we look at the function
α(x) defined as follows.

Fix a state z ∈ S. (S is the set of all states. |S| = ∞.)
Take α(x) to be the probability that you go from x to z. I.e., you

start at x and see whether you are ever in state z:

α(x) := P(Xn = z for some n ≥ 0 |X0 = x)

This function satisfies three equations:

(1) 0 ≤ α(x) ≤ 1 (since α(x) is a probability)
(2) α(z) = 1 (since you start at x = z)
(3) If x 6= z then

α(x) =
∑
y∈S

p(x, y)α(y)

(To get from x 6= z to z you take one step to y and then go
from y to z.)

The above three equations are always true. The next equation tells
us whether the chain is transient or recurrent.

(4) infx α(x) = 0 iff Xn is transient
(5) α(x) = 1 for all x ∈ S iff Xn is recurrent.

Theorem 2.3. α(x) is the smallest solution of equations (1),(2),(3).
I.e., if α̂(x) is another solution then

α(x) ≤ α̂(x)

for all x ∈ S.

Remark 2.4. I pointed out in class that α(x) = 1 is always a solution
of equations (1),(2),(3) since (3), in matrix form is

A = PA

I.e., A = (α(x)) is a right eigenvector of P with eigenvalue 1.
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Proof. α(x) = limn→∞ αn(x) where αn(x) is the probability that you
get from x to z in n steps or less:

αn(x) := P(Xk = z for some 0 ≤ k ≤ n |X0 = x)

Then, I claim that

(2.2) αn(x) ≤ α̂(x)

for all n and all x. This is true for n = 0 since α0(x) = 0 for all x 6= z.
Suppose that (2.2) holds for n− 1. Then

αn(x) =
∑

y

p(x, y)αn−1(y) ≤
∑

y

p(x, y)α̂(y) = α̂(x)

So, (2.2) holds for n. By induction it holds for all n. So, α(x) =
lim αn(x) ≤ α̂(x). �

Corollary 2.5. Given that Xn is irreducible and aperiodic, Xn is tran-
sient iff there is a solution α̂(x) of equations (1)-(4).

Proof. The real probability α(x) is ≤ α̂(x). So, 0 ≤ α(x) ≤ α̂(x) → 0
implies that α(x) → 0. So, Xn is transient. �

2.4. example. Take a random walk on S = {0, 1, 2, 3, · · · } with par-
tially reflecting wall at 0. So, the probability of going left (or standing
still at 0) is p > 0 and the probability of going right is q = 1− p > 0:

p(n, n + 1) = q, p(n, n− 1) = p, p(0, 0) = p

Let z = 0. We want to find the smallest solution α(n) of (1),(2),(3).
But we already know how to do this. Equation (3) says:

α(n) = pα(n− 1) + qα(n + 1)

The solution is α(x) = rn where

r = p + qr2

So,

r =
1±

√
1− 4pq

2q
=

1−
√

1− 4pq

2q

(We want the smaller solution.)

2.4.1. p = 1/2. In this case r = 1. So, α(n) = rn = 1 and the Markov
chain is recurrent. In fact we will see that it is null recurrent.
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2.4.2. p < 1/2. In this case we can write

p =
1

2
− ε, pq =

1

4
− ε2

q =
1

2
+ ε, 4pq = 1− 4ε2

2q = 1 + 2ε, 1− 4pq = 4ε2

r =
1− 2ε

1 + 2ε
< 1

So, α(n) = rn → 0 and Xn is transient.

2.4.3. p > 1/2. This is the part I skipped in class.

p =
1

2
+ ε, pq =

1

4
− ε2

q =
1

2
− ε, 4pq = 1− 4ε2

2q = 1− 2ε, 1− 4pq = 4ε2

r =
1− 2ε

1− 2ε
= 1

So, α(n) = rn = 1 for all n and Xn is recurrent.

2.5. Null recurrence-positive recurrence.

Definition 2.6. An irreducible aperiodic Markov chain is called null
recurrent if it is recurrent but

lim
n→∞

pn(x, y) = 0

for all states x, y. It is called positive recurrent if it is recurrent but
not null recurrent.

Theorem 2.7. If a Markov chain is positive recurrent then

lim
n→∞

pn(x, y) = π(y) > 0

is an invariant probability distribution. Also,

E(T ) =
1

π(y)

where T is the first return time to y:

T = smallest n > 0 so that Xn = y given that X0 = y

Remember that an invariant distribution is a left eigenvector of P :

πP = π

with
∑

π(x) = 1.
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Corollary 2.8. There is an invariant probability distribution π if and
only if the Markov chain is positive recurrent.

Proof. Since π is invariant,∑
x

π(x)pn(x, y) = π(y)

But π(y) is positive and constant (does not change as we increase n).
Therefore, the probabilities pn(x, y) cannot all go to zero and Xn cannot
be null recurrent. �

2.6. example, continued. Going back to the random walk on S =
{0, 1, 2, 3, · · · } with partially reflecting wall at 0, the definition of in-
variant distribution says:

π(y) =
∑

x

π(x)p(x, y)

In the random walk this is:

(2.3) π(n) = qπ(n− 1) + pπ(n + 1)

which has solution

π(n) =
rn

1− r

(We have to divide by 1− r = 1 + r + r2 + · · · so that
∑

π(n) = 1.)

r =
1−

√
1− 4pq

2p

If p = 1
2

+ ε then q = 1
2
− ε and

r =
1− 2ε

1 + 2ε
, 1− r =

4ε

1 + 2ε

So, we get an invariant distribution:

π(n) =
rn

1− r
=

1− 2ε

4ε

Therefore, the chain is positive recurrent if p > 1/2.
If p = 1/2 then r = 1 and π(n) = 1 or π(n) = n and neither solution

can be normalized (scaled so that the sum is 1). Therefore, Xn is null
recurrent if p = 1/2.
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2.7. Chart. An irreducible aperiodic Markov chain has three possible
types of behavior:

lim
n→∞

pn(x, y) E(T ) P(T < ∞) α(x)

transient = 0 = ∞ < 1 inf α(x) = 0
0 recurrent = 0 = ∞ = 1 α(x) = 1 ∀x
+ recurrent = π(y) > 0 = 1

π(y)
< ∞ = 1 α(x) = 1 ∀x

In the transient case, P(T < ∞) < 1 is the same as P(T = ∞) > 0.
This implies transient because it says that there is a chance that you
never return. If a guy keeps leaving and there is a chance that he
doesn’t return each time then eventually, with probability one, he will
not return. So, the number of visits if finite. If P(T = ∞) = 0 then
he always returns and so he will keep coming back an infinite number
of times. Since P(T = ∞) is either 0 or positive, this proves that we
either have transience or recurrence!!
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Plan for rest of semester

(1) st week (8/31, 9/6, 9/7) Chap 0: Diff eq’s and linear recursion
(2) nd week (9/11...) Chap 1: Finite Markov chains
(3) rd week (9/18...) Chap 1: Finite Markov chains
(4) th week (9/25...) Chap 2: Countable Markov chains
(5) th week (oct 3,4,5) Chap 3: Continuous time Markov chains
(6) th week (oct 9,11,12) Ch 4: Stopping time
(7) th week (oct 16,18,19) Ch 5: Martingales
(8) th week (oct 23,25,26) Ch 6: Renewal processes
(9) th week (oct 30,1,2) Ch 7: Reversible Markov chains

(10) th week (nov 6,8,9 ) Ch 8: Weiner process
(11) th week (nov 13,15,16) Ch 8: more
(12) th week (nov 20,22) (short week) Ch 9: Stochastic integrals
(13) th week (nov 27,29,30,4) (extra day) Ch 9: more

3. Continuous Markov Chains

The idea of continuous Markov chains is to make time continuous
instead of discrete. This idea only works when the system is not jump-
ing back and forth at each step but rather moves gradually in a certain
direction.

3.1. making time continuous. On the first day I discussed the prob-
lem of converting to continuous time. In the discrete Markov chain we
have the transition matrix P with entries p(i, j) giving the probability
of going from i to j in one unit of time. The n-th power, say P 5 has
entries

p5(i, j) = P(X5 = j |X0 = i)

We want to interpolate and figure out what happened for all positive
time t. (Negative time is discussed in Chapter 7.) We already know
how to do that. You write:

P = QDQ−1

Date: October 9, 2006.
1
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where D is a diagonal matrix whose diagonal entries are the eigenvalues
of P and Q is the matrix of right eigenvectors of P . The first eigenvector
of P is 1 and the first right eigenvector is the column vector having all
1’s.

If the eigenvalues are all positive then we can raise them to arbitrary
values:

P t = QDtQ−1

Usually you take logarithms. For example, if there are 3 states:

D =

1 0 0
0 d2 0
0 0 d3

 =

e0 0 0
0 eln d2 0
0 0 eln d3


Then P t = etA where

A = Q(ln D)Q−1 = Q

0 0 0
0 ln d2 0
0 0 ln d3

 Q−1

This uses:

Theorem 3.1. P = QDQ−1 = Qeln DQ−1 = eQ ln DQ−1

Proof. Let L = ln D then

D = eL := I + L +
L2

2
+

L3

3!
+ · · ·

Conjugate by Q:

QeLQ−1 = QQ−1 + QLQ−1 +
QL2Q−1

2
+

QL3Q−1

3!
+ · · ·

This is equal to eQLQ−1
since QLnQ−1 = (QLQ−1)n. �

The other theorem I pointed out was:

Theorem 3.2.
d

dt
P t = P tA = AP t

Proof. This is just term by term differentiation.

d

dt
P t =

∑ d

dt

QtnLnQ−1

n!
=

∑ Qntn−1LnQ−1

n(n− 1)!

= QLQ−1
∑ QtnLnQ−1

n!
= AP t

�
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3.2. Poisson processes. On the second day I explained continuous
Markov chains as generalizations of Poisson processes.

A Poisson process is

• an event which occurs from time to time
• is time homogeneous (i.e., the probability that it will occur

tomorrow is the same as the probability that it will occur today)
• and the occurrences are independent

The independence of occurrences of a Poisson event means that
the probability of future occurrence is independent of both past and
present. Markov processes are independent of the past. They depend
only on the present. We will transform a Poisson processes so that it
looks more like a Markov process.

Here is an example where a Poisson event occurs three times in a
time interval ∆t = t1 − t0. (We put t0 = 0 in class so that ∆t = t1.)

x

x + 1

x + 2

x + 3

a Poisson event 
(birth)

occurs three times
in a time interval

each Poisson event 
(birth)

gives a jump in
the Markov state
(total population)

T

Figure 1. Poisson to Markov

The Poisson process has one parameter λ called the rate. This is
measured in inverse time units (number of occurrences per unit time).
Thus λ∆t is the expected number of occurrences in any time interval
of length ∆t.

3.2.1. variables associated to a Poisson process. There are two random
variables associated with a Poisson process:
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Poisson variable (nonnegative integer) Exponential variable (positive real)

X = number of occurrences in ∆t T = time until 1st occurrence

P(X = k) = eλt1
λktk1
k!

P(event does not occur) = P(event does not occur) =

P(X = 0) = eλt1 = 1− λt1 +
λ2t21
2

− · · · P(T > t1) = eλt1

P(event occurs) = P(event occurs in time ∆t) =
P(X ≥ 1) = 1− eλ∆t = λ∆t + o(∆t) P(T ≤ ∆t) = 1− eλ∆t ≈ λ∆t

Here the book uses the “little oh” notation o(∆t) to denote anything
which vanishes faster than ∆t:

o(∆t)

∆t
→ 0 as ∆t → 0

3.2.2. Poisson to Markov. There are two changes we have to make to
transform a Poisson process into a continuous time Markov process.

a) Every time an event occurs, you need to move to a new state in
the Markov process. Figure 1 shows an example where the state is the
total population:

Xt := population at time t = X0 + #births−#deaths

b) The rate α(x) depends on the state x. For example, the rate at
which population grows is proportional to the size of the population:

α(x) = λx, λ : constant

Notice that, when the rate increases, the events will occur more fre-
quently and the waiting time will decrease. So, there is the possibility
of explosion, i.e., an infinite number of jumps can occur in a finite
amount of time.

3.3. Definition of continuous Markov chain. This is from Lawler,
p. 69.

We need to start with an infinitesmal generator A which is a matrix
with entries α(x, y) for all states x, y ∈ S so that α(x, y) ≥ 0 for x 6= y
and α(x, x) ≤ 0 and so that the sum of the rows is zero:∑

y∈S

α(x, y) = 0
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We use the notation

α(x) = −α(x, x) =
∑
y 6=x

α(x, y)

Definition 3.3. A continuous time Markov chain with infinitesmal
generator A = (α(x, y)) is a function X : [0,∞) → S so that

(1) X is right continuous. I.e., Xt is equal to the limit of Xt+∆t as
∆t goes to zero from the right (the positive side).

(2) P(Xt+∆t = x |Xt = x) = 1− α(x)∆t + o(∆t)
(3) P(Xt+∆t = y |Xt = x) = α(x, y)∆t + o(∆t) for y 6= x.
(4) Xt is time homogeneous
(5) Xt is Markovian (X∆t depends on Xt but is independent of the

state before time t.)

I pointed out that the numbers α(x), α(x, y) were necessarily ≥ 0
and that

α(x) =
∑
y 6=x

α(x, y)

since Xt+∆t must be in some state. The (x, x) entry of the matrix A is
α(x, x) = −α(x). So, the rows of the matrix A add up to zero and all
negative numbers lie on the diagonal.

3.4. probability distribution vector. At any time t we have a prob-
ability distribution vector telling what is the probability of being in each
state.

px(t) := P(Xt = x)

This should not be confused with the time dependent probability tran-
sition matrix:

pt(x, y) := P(Xt = y |X0 = x)

Theorem 3.4. The time derivative of the probability distribution func-
tion px(t) is given by

d

dt
px(t) =

∑
y∈S

py(t)α(y, x)

In matrix notation this is

d

dt
p(t) = p(t)A

The unique solution of this differential equation is:

p(t) = p(0)etA

This implies that Pt := etA is the time t probability transition matrix.
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Proof. The difference px(t+∆t)−px(t) is equal to the probability that
the state moves into x minus the probability that it will move out of x
in the time period from t to t + ∆t. So,

px(t+∆t)−px(t) = P(Xt+∆t = x, Xt = y 6= x)−P(Xt+∆t = y 6= x, Xt = x)

=
∑
y 6=x

P(Xt = y)P(Xt+∆t = x |Xt = y)−
∑
y 6=x

P(Xt = x)P(Xt+∆t = y |Xt = x)

≈
∑
y 6=x

py(t)α(y, x)∆t−
∑
y 6=x

px(t)α(x, y)∆t

=
∑
y 6=x

py(t)α(y, x)∆t− px(t)α(x)∆t

=
∑

y

py(t)α(y, x)∆t

So,
px(t + ∆t)− px(t)

∆t
≈

∑
y

py(t)α(y, x)

Take the limit as ∆t → 0 to get the theorem. �

3.5. example. What is the probability that X4 = 1 given that X0 = 0
if the infinitesmal generator is

A =

(
−1 1
2 −2

)
?

The answer is given by the (0, 1) entry of the matrix e4A. The given
information is that p(0) = (1, 0) and the question is: What is p1(4)?
The solution in matrix terms is the second coordinate of

p(4) = (p0(4), p1(4)) = (1, 0)e4A

We worked out the example: Since the trace of A is −1+−2 = −3 =
d1 + d2 and d1 = 0 we must have d2 = −3. So, A = QDQ−1 where

D =

(
0 0
0 −3

)
and Q is the matrix of right eigenvectors of A:

Q =

(
1 1
1 −2

)
, Q−1 =

(
2/3 1/3
1/3 −1/3

)
The time 4 transition matrix is

e4A = Qe4DQ−1 =

(
1 1
1 −2

) (
1 0
0 e−12

) (
2/3 1/3
1/3 −1/3

)
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= P4 =

 2 + e−12

3

1− e−12

3
2− 2e−12

3

1 + 2e−12

3


So, the answer is

p1(4) =
1− e−12

3

3.6. equilibrium distribution, positive recurrence. An equilib-
rium distribution does not change with time. In other words, the time
derivative is zero:

d

dt
π(t) = π(t)A = 0

So, π(t) = π(0) is the left eigenvector of A normalized by:∑
x∈S

π(x) = 1

Since π does not change with time, we forget the t and write π(x) for
πx(t). Recall that irreducible Markov chains are positive recurrent if
and only if there is an equilibrium distribution.

The example above is irreducible and finite, therefore positive recur-
rent. The equilibrium distribution is π = (2/3, 1/3).

3.7. birth-death chain.

Definition 3.5. A birth-death chain is a continuous Markov chain
with state space S = {0, 1, 2, 3, · · · } (representing population size) and
transition rates:

α(n, n + 1) = λn, α(n, n− 1) = µn, α(n) = λn + µn

representing births and deaths which occur one at a time.

Notice that the total flow between the set of states {0, 1, 2, · · · , n}
to the states {n + 1, n + 2, · · · } is given by the birth rate λn and the
death rate µn+1. So, π(n) is an equilibrium if and only if

π(n)λn = π(n + 1)µn+1

Solving for π(n + 1) gives:

π(n + 1) =
λn

µn+1

π(n) =
λnλn−1

µn+1µn

π(n− 1) = · · · = λnλn−1 · · ·λ0

µn+1µn · · ·µ1

π(0)

If we can normalize these numbers we get an equilibrium distribution.
So,
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Theorem 3.6. The birth-death chain is positive recurrent if and only
if

∞∑
n=0

λnλn−1 · · ·λ0

µn+1µn · · ·µ1

< ∞

3.8. birth and explosion. If there is no death, the birth-death chain
is obviously transient. The population is going to infinity but how fast?
Suppose that Tn is the time that the population stays in state n. Then
(when µn = 0) Tn is exponential with rate λn. So,

E(Tn) =
1

λn

Theorem 3.7. a) If
∑∞

n=0
1

λn
< ∞ then explosion occurs with proba-

bility one.
b) If

∑∞
n=0

1
λn

= ∞ then the probability of explosion is zero.

For example, in the Yule process with λn = nλ, explosion will not
occur since ∑ 1

λn

=
∑ 1

λn
=

1

λ

∑ 1

n
= ∞

3.9. transient birth-death chains. Recall that an irreducible Markov
chain is transient if and only if there is a right eigenvector of P with en-
tries converging to zero corresponding to eigenvector 1. In the continu-
ous time case, this is the same as a right eigenvector of A corresponding
to eigenvalue 0. So, we want numbers a(n) such that

a(n− 1)µn + a(n)(−λn − µn) + a(n + 1)λn = 0

This equation can be rewritten as

[a(n + 1)− a(n)]λn = [a(n)− a(n− 1)]µn

[a(n + 1)− a(n)] =
µn

λn

[a(n)− a(n− 1)] =
µnµn−1 · · ·µ1

λnλn−1 · · ·λ1

[a(1)− a(0)]

a(k + 1) is the sum of these numbers:

a(k+1) = a(0)+
k∑

n=0

[a(n+1)−a(n)] = a(0)+
k∑

n=0

µnµn−1 · · ·µ1

λnλn−1 · · ·λ1

[a(1)−a(0)]

Theorem 3.8. A birth-death chain is transient if and only if
k∑

n=0

µnµn−1 · · ·µ1

λnλn−1 · · ·λ1

< ∞

Proof. Let L be this limit. Let a(0) = 1 and a(1) = 1 − 1/L. Then
a(k + 1) given by the above formula will converge to zero. Conversely,
if the a(k + 1) goes to zero, the infinite sum must converge. �
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4. Optimal stopping time

On the first day I explained the basic problem using the example
in the book. On the second day I explained how the solution to the
problem is given by a “minimal superharmonic” and how you could find
one using an iteration algorithm. Also, a simple geometric construction
gives the solution for fair random walks. On the third day I explained
the variations of the game in which there is a fixed cost per move or if
the payoff is discounted. I also explained the transition to continuous
time.

4.1. The basic problem. The problem is to find a “stopping time”
which optimizes the expected value of a payoff function. I think I gave
the same example as in the book: You roll a die. If you get a 6 you lose
and get nothing. But if you get any other number you get the value
on the die (1,2,3,4 or 5 dollars). If the value is too low you can roll
over. The question is: When should you stop? The answer needs to be
a strategy: “Stop when you get 4 or 5.” or maybe “Stop when you get
3,4 or 5.” You want the best “stopping time.”

4.1.1. stopping time.

Definition 4.1. In a stochastic process a stopping time is a time T
which has the property that you can tell when it arrives. I.e., whether
or not T is the stopping time is determined by the information that you
have at time T .

Basically, a stopping time is a formula which, given X1, X2, · · · , Xn

tells you whether to stop at step n. (Or in continuous time, given Xt

for t ≤ T , tells you whether T is the stopping time.)
Some examples of stopping time are:

(1) the 5th visit to state x
(2) the smallest time T at which X1 + X2 + · · ·+ XT > 100.
(3) the first visit to the set {3, 4, 5}.

Date: October 22, 2006.
1
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If T is the first visit to state x then T − 1 is not a stopping time.
(You cannot say “stop right before you get to x.” since the process is
stochastic and you can’t tell the future.)

4.1.2. payoff function. The payoff function assigns to each state x ∈ S
a number f(x) ∈ R which can be positive or negative. This represents
what you gain (or lose) if you stop at state x. To figure out whether to
stop you need to look at what you can expect to happen if you don’t
stop.

(1) If you stop you get f(x).
(2) If, starting at x, you take one step and then stop you get∑

p(x, y)f(y)

We assume that there is only one transient communication class and
f(x) = 0 on all recurrent classes.

4.1.3. value function. The value function v(x) is the expected payoff
using the optimal strategy starting at state x.

v(x) = E(f(XT ) |X0 = x)

Here T is the optimal stopping time. If you don’t know what T is then
you need another equation:

v(x) = max
T

E(f(XT ) |X0 = x)

This says you take all possible stopping times T and take the one which
gives the maximal expected payoff.

Theorem 4.2. The value function v(x) satisfies the equation

v(x) = max(f(x),
∑

y

p(x, y)f(y))

The basic problem is to find the optimal stopping time T and calcu-
late the value function v(x).

4.2. Solutions to basic problem. On the second day I talked about
solutions to the optimal stopping time problem. I started with an
outline:

(1) Minimal superharmonic is optimal.
(2) Iteration algorithm converges to minimal solution.
(3) Random walks have concave solutions.
(4) Solution for continuous time.

I explained the solutions for discrete time, then converted these into
solutions for continuous time.
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4.2.1. minimal superharmonic.

Definition 4.3. A superharmonic for the Markov chain Xn is a real
valued function u(x) for x ∈ S so that

u(x) ≥
∑
y∈S

p(x, y)u(y)

In matrix form the definition is

u(x) ≥ (Pu)(x)

where u is a column vector.

Example 4.4. Roll one die and keep doing it until you get a 6. (6 is
an absorbing state.) The payoff function is:

states x payoff f(x) probability P

1 150 1/6
2 150 1/6
3 150 1/6
4 300 1/6
5 300 1/6
6 0 1/6

The transition matrix in this example is actually 6 × 6. But I sim-
plified this to 3 states: A = 1, 2 or 3, B = 4 or 5 and C = 6:

states x payoff f(x) probability P

A 150 1/2
B 300 1/3
C 0 1/6

Then P is a 3× 3 matrix:

P =

1/2 1/3 1/6
1/2 1/3 1/6
0 0 1


The best payoff function you can hope for is u = the column matrix
(300, 300, 0). Then

Pu =

1/2 1/3 1/6
1/2 1/3 1/6
0 0 1

 300
300
0

 =

250
250
0
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The equation u(x) ≥ (Pu)(x) means the x-entry of the matrix x is ≥
the x-entry of the matrix Pu. So, 300 ≥ 250 makes u = (300, 300, 0)
superharmonic.

Theorem 4.5. The value function v(x) is the minimal superharmonic
so that v(x) ≥ f(x) for all states x.

This gives a theoretical solution which is useful in some cases (such
as the simple random walk).

4.2.2. iteration algorithm. As I explained it, u(x) is your estimated
expected payoff. The algorithm works like this. You start with u1

which is the most optimistic. This the payoff you get if you cheat on
the next roll.

u1(x) =

{
0 if x is absorbing

max f(y) if x is transient

Next, u2 is your expected payoff if you play fair for one round and
then cheat. un is your payoff if you wait n turns before cheating. The
recursive formula for un+1 given un is

un+1(x) = max(f(x), (Pun)(x))

At each stage un is superharmonic and un(x) ≥ f(x) but the values
get smaller and smaller and become minimal in the limit:

v(x) = lim
n→∞

un(x)

v(x) is your expected payoff if you put off cheating indefinitely.
In the example,

u1 = (300, 300, 0)
u2 = (250, 300, 0)
u3 = (225, 300, 0)
u4 = (212.5, 300, 0)

v = u∞ = (x, 300, 0)

where x = 200 is the solution of the equation:

x =
x

2
+

300

3

4.2.3. convex value function. Suppose you have a simple random walk
with absorbing walls. Then a function u(x) is superharmonic if

u(x) ≥ u(x− 1) + u(x + 1)

2

In other words, the point (x, u(x)) is above the point which is midway
between (x − 1, u(x − 1)) and (x + 1, u(x + 1)). So, superharmonic is
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the same as convex (concave down). So, the theorem that the value
function v(x) is the minimal superharmonic so that v(x) ≥ f(x) means
that the graph of v(x) is the convex hull of the graph of f(x).

4.2.4. continuous time. In a continuous Markov chain you have an in-
finitesmal generator A which is a matrix with transition rates α(x, y)
which are all nonnegative except for α(x, x) = −α(x). Since the rows
add to zero we have

α(x) =
∑
y 6=x

α(x, y)

So, you get a probability matrix P with entries

p(x, y) :=
α(x, y)

α(x)

for x 6= y (and p(x, x) = 0). This is the probability of first jumping to
y from x:

p(x, y) = P(XJ = y |X0 = x)

where J is the first jump time:

J = J1 := inf{t |Xt 6= X0}

Anyway, you use the discrete probability transition matrix P and trans-
form it into continuous time by looking only at jump times: The op-
timal stopping time for the continuous process is JT , the T -th jump
time where T is the stopping time for the discrete process.

4.3. Cost functions. The cost function g(x) gives the price you must
pay to continue from state x. If T is your stopping time then you
continued T times. So your total cost is

g(X0) + g(X1) + · · ·+ g(XT−1) =
T−1∑
j=0

g(Xj)

So, your net gain is

f(XT )−
T−1∑
j=0

g(Xj)

The value function v(x) is the expected net gain when using the optimal
stopping time starting at state x. It satisfies the equation:

v(x) = max(f(x), (Pv)(x)− g(x))
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4.3.1. iteration algorithm. First, you take u1(x) to be your most op-
timistic estimate of expected gain. If you go one step in the Markov
chain then you have to pay g(x) so your best possible net gain would
be

max
y∈S

f(y)− g(x)

If this is less than f(x) you can’t possibly do better by continuing. So

u1(x) =


0 if x is absorbing

f(x) if f(x) ≥ maxy∈S f(y)− g(x)

maxy∈S f(y)− g(x) otherwise

un+1 is given in terms of un by:

un+1(x) = max(f(x), (Pun)(x)− g(x))

where (Pun)(x) =
∑

p(x, y)un(y).

4.3.2. random walk. For the simple random walk with absorbing walls,
the value function is the smallest function v(x) ≥ f(x) so that

v(x) ≥ v(x− 1) + v(x + 1)

2
− g(x)

4.4. Discounted payoff. Here we assume that the payoff is losing
value at a fixed rate so that after T steps it will only be worth αT f(x)
where α is the discount rate, say α = .90. Then the value function
satisfies the equation

v(x) = max(f(x), α(Pv)(x))

Again there is a recursive formula converging to this answer:

un+1(x) = max(f(x), α(Pun)(x))

where you start with

u1(x) =


0 if x is absorbing

f(x) if f(x) ≥ αf(y) for all y

max αf(y) otherwise
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5. Martingales

On the first day I gave the intuitive definition of “information,” con-
ditional expectation and martingale using the fair value of your place
in a game. On the second day I gave you the mathematical definition of
“information.” On the third day I explained the mathematical defini-
tion of conditional expected value. We also discussed the definition of
“integrability” and “uniform integrability” and the two theorems: Op-
timal Sampling Theorem and the Martingale Convergence Theorem.

5.1. Intuitive description of martingale. In the previous chapter
we talked about optimal stopping time in a game in which the worst
thing that could happen is you don’t get anything. This time we are
talking about a martingale: You have the opportunity to buy a “share”
in a random game that someone else is playing. The game may or may
not be fair. The question is: How much should you pay? This question
becomes easier if you assume that you can sell your share after one
round of play. So the formula or strategy should tell you how much your
share of the game will be tomorrow. If we don’t have any transaction
fees or discount rate then the fair price you should pay today should
be exactly equal to the price that you expect to sell it for tomorrow
given the information that you have today.

5.1.1. information. We have a stochastic process Xn in discrete time
n. Xn is not necessarily Markovian.
Fn represents all the information that you have about Xn for time

≤ n. This is basically just X0, X1, · · · , Xn. Suppose that we have a
function

Yn = f(X0, X1, · · · , Xn).

Then, given Fn, Yn is known. Given F0, Yn is random but E(Yn | F0) is
known. As time progresses (gets closer to n), you usually have a better
idea of what Yn might be until finally,

E(Yn | Fn) = Yn

Date: November 12, 2006.
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5.1.2. example: Bernoulli. Suppose that X1, X2, · · · , are independent
identically distributed (i.i.d.) with distribution

Xn =

{
1 with probability p

−1 with probability 1− p

Let Yn = Sn be the sum:

Yn = Sn = X1 + X2 + · · ·+ Xn

The information at time 0 (before we flip the first coin) is F0 : (S0 = 0).
Suppose first that p = 1/2 Then Sn is simple random walk on Z. The

expected value of Sn changes with time. At the beginning we expect
it to be zero: E(Sn | F0) = 0. But later our estimate changes. For
example,

E(Sn | Fn−1) = Sn−1

Why is that? Given Fn−1 we know Sn−1 but Xn is still random:

Sn = Sn−1︸︷︷︸
known

+ Xn︸︷︷︸
±1

When p = 1/2 the expected value of Xn is zero: E(Xn) = 0.

5.1.3. expectation. Before doing the case of general p I reviewed the
definition of expectation:

E(Y ) :=
∑

y

yP(Y = y) for discrete Y

E(Y ) :=

∫ ∞

−∞
yf(y) dy for continuous Y

So,
E(Xn) = 1 · P(Xn = 1) + (−1) · P(Xn = −1)

= 1 · p + (−1)(1− p)
= p− 1 + p = 2p− 1

The expected value is what we use when we don’t know Xn:

E(Xn | Fm) =

{
2p− 1 if n > m
Xn if n ≤ m

Recall that E is a linear function. So,

E(Sn) = E(X1) + E(X2) + · · ·+ E(Xn) = n(2p− 1)

E(Sn | Fn−1) = E(X1 | Fn−1) + · · ·+ E(Xn−1 | Fn−1)︸ ︷︷ ︸
not random

+ E(Xn | Fn−1)︸ ︷︷ ︸
random

= X1 + X2 + · · ·+ Xn−1 + 2p− 1
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So,
E(Sn | Fn−1) = Sn−1 + 2p− 1

In general,

E(Sn | Fm) =

{
Sm + (n−m)(2p− 1) if n > m

Sn if n ≤ m

If p 6= 1/2 the value of Sn is expected to change in the future. If Sn

is the payoff function you want to play this game if p > 1/2 and you
don’t want to play if p < 1/2.

5.1.4. the martingale. Continuing with the same example, let

Mn = X1 + · · ·+ Xn − n(2p− 1) = Sn − n(2p− 1)

This is the random number Sn minus its expected value. Then

E(Mn | Fm) = E(Sn | Fm)− n(2p− 1)

=

{
Sm −m(2p− 1) = Mm if n > m

Sn − n(2p− 1) = Mn if n ≤ m

Definition 5.1. A sequence of random variables M0, M1, · · · with E(|Mi|) <
∞ is a martingale with respect to {Fn} if

E(Mn | Fm) = Mm

It follows by induction on n that this definition is equivalent to the
condition:

E(Mn | Fn−1) = Mn−1

For example,

E(M2 | F0) = E(E(M2 | F1) | F0) = E(M1 | F0) = M0

(using the rule of iterated expectation)

5.2. theory: conditional expectation with respect to informa-
tion. On the second and third days I tried to explain the mathematical
definition of information as a σ-subalgebra of the σ-algebra of all events.
I started with a review of basic probability.

5.2.1. basic probability.

Definition 5.2. A probability space (Ω,F , P) consists of

• Ω = the sample space,
• F = the σ-algebra of all measurable subsets of Ω, (elements of
F are called events) and

• P = the probability measure which assigns a measure P(A) for
every A ∈ F .
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The only condition is: P(Ω) = 1. Note that

A ∈ F ⇐⇒ P(A) is defined

This definition assumes the definition of “measure.” “measurable”
and “σ-algebra.”

Definition 5.3. A σ-algebra on a set Ω is a collection F of subsets A
(called measurable subsets of Ω) satisfying the following axioms:

(1) F is closed under countable union. I.e., if A1, A2, · · · are mea-
surable (elements of F) then

∞⋃
i=1

Ai ∈ F

(2) If A is measurable then so is its complement Ω − A. (This
implies that F is closed under countable intersection.)

(3) ∅, Ω ∈ F .

A measure P : F → [0,∞) is a function which assigns to each A ∈ F a
nonnegative real number s.t. P takes countable disjoint union to sum:

P
(∐

Ai

)
=

∑
P(Ai).

(Compare with the definition: A topology on Ω is a collection of
subsets called open subsets which is closed under finite intersection and
arbitrary union. The complement of an open set may not be open.)

Definition 5.4. A function X : Ω → R is called measurable with
respect to F if the inverse image of every measurable subset of R is
measurable, i.e., an element of F . (This is the same as saying that
the inverse images of open, closed and half open intervals (a, b), [a, b],
(a, b], [a, b) are measurable or, equivalently, the subset of Ω on which
a < X ≤ b is measurable and therefore the measure

P(a < X ≤ b)

is defined.) Measurable functions on Ω are called random variables.

(Compare with the definition: A function is continuous if the inverse
image of every open set is open.)

5.2.2. information. is defined to be a σ-subalgebra of the σ-algebra F
of all events A ⊆ Ω. When the book says that Fn is the information
given by X0, · · · , Xn it means that Fn is the collection of all subsets of
Ω which are given by specifying the values of X0, X1, · · · , Xn.

A random variable Y ′ is Fn-measurable if it can be written as a
function of X0, X1, · · · , Xn:

Y ′ = f(X0, X1, · · · , Xn)
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5.2.3. filtration. {Fn} is called a filtration. I drew the following dia-
grams to illustrate what that means in the case when X1 takes 3 values
and X2 takes two values:

Table 1. The σ-subalgebra F0 has only the two re-
quired elements F0 = {∅, Ω}

X0: known
X0 = one value

Ω

Table 2. The σ-subalgebra F1 has 23 = 8 elements
given by the values of X0, X1

X1 = 1, 2, 3

F1 = {∅, A,B,C, A ∪B, A ∪ C, B ∪ C, Ω}

A B C

X1 = 1 X1 = 2 X1 = 3

Ω

Table 3. The σ-subalgebra F2 has 26 = 64 elements
given by the values of X0, X1, X2

X2 = 1, 2

X1 = 1 X1 = 2 X1 = 3
X2 = 2 X2 = 2 X2 = 2

X1 = 1 X1 = 2 X1 = 3
X2 = 1 X2 = 1 X2 = 1

Ω
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The increasing sequence of σ-algebras

F0 ⊆ F1 ⊆ F2 ⊆ · · ·

is an example of a filtration.

Definition 5.5. A filtration is an increasing sequence of σ-subalgebras
of F .

Y ′ is F0 −measurable ⇐⇒ Y ′ is constant

Y ′ is Fn −measurable ⇐⇒ Y ′ = f(X0, X1, · · · , Xn)

5.2.4. conditional expectation. The definition of martingale uses condi-
tional expectation with respect to information. This is defined mathe-
matically by:

E(Y | Fn) := Y ′: the Fn-measurable function which best approximates Y

In the example above, Y ′ = E(Y | F2) is a random variable which takes
only 6 values, one for each of the 6 blocks in the third figure above.
For example, in the lower left corner we have

Y ′ = E(Y |X1 = 1, X2 = 2)

Theorem 5.6 (rule of iterated expectation). If Fn is a filtration and
n > m then

E(E(Y | Fn) | Fm) = E(Y | Fm)

Assuming that E(|Y | | Fm) < ∞.

Proof. I gave the proof in the case when n = m + 1 assuming that Xm

is given and X = Xn is random. Then we have to show

E(E(Y |X)) = E(Y )

The RHS is given by

E(Y ) =

∫ ∞

−∞
yfY (y) dy

Substituting the formula for fY (y) in terms of the joint distribution
f(x, y):

fY (y) =

∫ ∞

−∞
f(x, y) dx

gives

E(Y ) =

∫∫
R2

yf(x, y) dxdy
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On the LHS we have

E(Y |X = x) =

∫∞
−∞ yf(x, y) dy

fX(x)

E(E(Y |X)) is the expected value of this function:

E(E(Y |X)) =

∫ ∞

−∞
E(Y |X = x)fX(x) dx

=

∫ ∞

−∞

∫∞
−∞ yf(x, y) dy

fX(x)
fX(x) dydx

=

∫∫
R2

yf(x, y) dydx = E(Y )

assuming that |y|f(x, y) has a finite integral. (This is Foubini’s Theo-
rem. You can reverse the order of integration only when the absolute
value has a finite integral.) �

5.3. Optimal sampling theorem. The optimal sampling theorem
says that, under certain conditions,

E(MT | F0) = M0

where Mn is a martingale and T is a stopping time. We know that this
is not always true because of the Monte Carlo gambling strategy:

5.3.1. Monte Carlo stopping time. This is the strategy where you stop
when you win and double your bet if you lose. You can express it as a
stopping time for a martingale as follows.

Suppose that X1, X2, · · · are independent Bernoulli variables where
Xn takes values ±2n−1 with equal probability. Then

Mn = Sn = X1 + · · ·+ Xn

is a martingale with M0 = 0. It represents the game where you keep
doubling your bet no matter what happens.

Now, let T be the first time that you win:

T = inf{n ≥ 1 |Xn > 0}
Since the simple random walk on Z is (null) recurrent, your probability
is 1 that T < ∞. And when you stop, you will have MT = 1. So,

E(MT | F0) = 1 6= M0 = 0

The optimal sampling theorem does not hold for Monte Carlo. So,
we had better make sure that the statement excludes this case and all
“similar” cases.

One way to avoid this counterexample is to put an upper bound (a
time limit) on T .
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Theorem 5.7 (1st OST). Suppose that Mn is a martingale. Then
E(MT ) = M0 if T is a bounded stopping time (i.e., T < C).

5.3.2. integrability. Now we have a bunch of theorems that assume in-
tegrability. A random variable Y is called integrable (or, more precisely,
L1) if E(|Y |) < ∞. I don’t remember if I got to this in class but it is
in my notes:

Theorem 5.8. Suppose that Fn is a filtration and Yn is Fn measurable.
Suppose

(1) T is a stopping time and
(2) P(T < ∞) = 1

Then Mn := E(YT | Fn) is a martingale assuming that each Mn is in-
tegrable.

Proof. By definition we have:

E(Mn+1 | Fn) = E(E(YT | Fn+1) | Fn)

By Theorem 5.6 this is

= E(YT | Fn) = Mn

�

5.3.3. 2nd OST and uniform integrability. The second optimal sam-
pling theorem requires “uniform integrability.”

Theorem 5.9 (2nd OST). Suppose that M0, M1, · · · is a martingale
with respect to the filtration Fn and T is a stopping time. Then

E(MT | F0) = M0

provided that

(1) P(T < ∞) = 1
(2) E(|MT |) < ∞ (MT is integrable).
(3) M0, M1, · · · are uniformly integrable

When you say that Y is integrable, you mean that the improper
integral ∫ ∞

−∞
yf(y) dy = lim

K→∞

∫ K

−K

yf(y) dy

converges.

Definition 5.10. The functions M0, M1, · · · are uniformly integrable
if the corresponding improper integrals for Mn converge uniformly. In
other words, for every ε > 0 there is a K > 0 so that∫ −K

−∞
|y|fn(y) dy +

∫ ∞

K

|y|fn(y) dy < ε
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for all n ≥ 0 where fn is the density function for Mn: The tails are
getting smaller at the same rate.

In the book the sum of the two tails is written as a single integral:∫ −K

−∞
|y|fn(y) dy +

∫ ∞

K

|y|fn(y) dy =

∫ ∞

−∞
I|y|≥K |y|f(y) dy

where I|y|≥K is the indicator function equal to 1 when the condition
(|y| ≥ K) is true and 0 when it is false.

5.3.4. example: random walk. The OST can be used in reverse. If
E(MT | F0) 6= M0 then it must be because one of the conditions does
not hold. I gave an example using simple random walk on Z. You take
X0 = 0 and let T be the first visit to 1. Then Mn is a martingale, but

MT = 1 6= M0 = 0

So, the (conclusion of) OST does not hold. Let’s check the conditions:

(1) P(T < ∞) = 1. This holds because the Markov chain is recur-
rent.

(2) MT = 1 is constant and therefore integrable. E(|MT |) = 1 < ∞.

The conclusion is that the third condition must fail: M0, M1, · · · are
not uniformly integrable. “The tails remain fat.”

5.3.5. example: optimal stopping time. Suppose that Xn ∈ {1, 2, 3, 4, 5, 6}
and T is the 1st visit to the set {1, 3, 4, 5, 6}, i.e., this is the optimal
stopping time in the game that we analyzed in the last chapter when
the payoff is equal to Xn when it is > 1 and zero if you every reach 1.

Let
Mn = v(Xn) = E(f(XT ) | Fn)

Then,

(1) Mn is a martingale and
(2) Optimal sampling holds. I.e., E(MT | F0) = M0.

In your homework you computed the value function v using the itera-
tion algorithm which assumes that v(Xn) is a Martingale.

5.4. Martingale convergence theorem. The other question we dealt
with is: When does a martingale converge?

Theorem 5.11 (Martingale convergence theorem). Suppose that {Mn}
is a martingale with respect to the filtration {Fn}.

(1) If there exists C < ∞ so that E(|Mn|) < C for all n then

Mn → M∞

where M∞ is some integrable random variable.
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(2) If Mn are uniformly integrable and Mn → M∞ then

E(Mn) → E(M∞)

5.4.1. example: log normal distribution. Suppose that X1, X2, · · · are
i.i.d. where each Xi can take only two values 3/2 and 1/2 with equal
probability:

P(Xi = 3/2) =
1

2
= P(Xi = 1/2)

The expected value of each Xi is

E(Xi) =
1

2
(3/2 + 1/2) = 1

Let M0 = 1 and Mn = X1X2 · · ·Xn (the product). Since these are
independent we have

E(Mn) = E(X1)E(X2) · · ·E(Xn) = 1

E(Mn+1 | Fn) = X1 · · ·Xn︸ ︷︷ ︸
Mn

E(Xn+1 | Fn)︸ ︷︷ ︸
1

= Mn

So, Mn is a martingale. Also, since Mn > 0 it is equal to its absolute
value and

E(|Mn|) = E(Mn) = 1 is bounded

Therefore, the first part of the martingale convergence theorem tells us
that Mn converges to some function M∞. But, the following calculation
shows that E(M∞) = 0. Therefore, the second part of the theorem tells
us that Mn are not uniformly integrable.

Here is the calculation. Take the natural log of Mn:

ln Mn =
n∑

i=1

ln Xi

For each i,

E(ln Xi) =
1

2
(ln 3/2 + ln 1/2) ≈ −.1438

By the strong law of large numbers we have that

1

n
ln Mn → E(ln Xi) ≈ −.1438

with probability one. Therefore, ln Mn → −∞ and Mn → 0 with
probability one.

By the central limit theorem, 1
n

ln Mn becomes normal for large n.
Then Mn becomes “log normal” which means that its logarithm is
normal. For example, the size of grains of sand is distributed approxi-
mately log normally since each time it breaks the size is multiplied by
a random factor.
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6. Renewal

Mathematically, renewal refers to a continuous time stochastic pro-
cess with states 0, 1, 2, . · · ·

Nt ∈ {0, 1, 2, 3, · · · }

so that you only have jumps from x to x + 1 and the probability of
jumping from x to x+ 1 depends only on how long the process was at
state x. Renewal occurs at each jump.

Nt := number of jumps that occur in time interval (0, t]

The jumps (renewals) occur at times Y, Y + T1, Y + T1 + T2, etc. and

Y + T1 + · · ·+ Tn = inf{t |Nt = n+ 1}

The interpretation is that there is an object or process which lasts
for a certain amount of time which is random. When the object dies
or the process stops then you replace the object with a new one or you
restart the process from the beginning: You “renew” the process each
time it stops. The number Nt is equal to the number of times renewal
has taken place up to time t. Y is the lifetime of the initial process,
T1 is the lifetime of the second one, T2 is the lifetime of the third one,
etc. If the first process starts from the beginning then Y = 0 and the
numbering is different. Tn becomes the lifetime of the nth process:

T1 + · · ·+ Tn = inf{t |Nt = n}

I gave a light bulb as an example. There are three kinds of light
bulbs:

(1) The guaranteed light bulb which will last exactly 1000 hours.
(2) The Poisson light bulb. This light bulb is as good as new as

long as it is working. Assume it has an expected life of 1000
hours. (λ = 1/1000).

(3) A general light bulb which has a general probability distribution
with the property that its expected life is 1000 hours.

Date: November 14, 2006.
1
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In all three cases,

µ = E(T ) = 1000

where T is the length of time that the light bulb lasts.
The first question is: Which light bulb is worth more? The answer

is that they are all worth the same. They all give an expected utility
of 1000 hours of light. With the general light bulb, there is another
question: How long do you expect the last light bulb to last after it
has been used for a certain amount of time? This depends on the light
bulb. For example, if the guaranteed light bulb has been used for 500
hours then it is only worth half as much as a new one. If the Poisson
light bulb lasts 500 hours then it is still worth the same as a new one.
We will look at the value of a general light bulb (or a nenewal process
with a general distribution.)

6.1. Renewal theorem. The guaranteed light bulb is an example of
a periodic renewal process. Each renewal occurs at multiples of 1000
hours.

Definition 6.1. A renewal process is periodic if renewals always occur
at (random) integer multiples of a fixed time interval ∆t starting with
the first renewal which occurs at time Y .

The renewal theorem says that, if renewal is not periodic, then the
occurrences of the renewal will be spread out evenly around the clock.
The probability that it will occur will depend only on the length of
time you wait. Since the average waiting time is µ, the probability is
approximately the proportion of µ that you wait: P ∼= ∆t/µ.

For the lightbulb, suppose you install a million lightbulbs at the same
time. Then after a while the number of light bulbs that burn out each
day will be constant. This (after dividing by one million) will be the
equilibrium distribution.

Theorem 6.2 (Renewal Theorem). If a renewal process is aperiodic
then, as t→∞,

P(renewal occurs in time (t, t+ dt]) → dt

µ

where µ = E(T ). This is equivalent to saying that

lim
t→∞

E(number of renewals in time (t, t+ s]) =
s

µ

lim
t→∞

E(Nt+s −Nt) =
s

µ
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6.2. age of current process. At any time t, let At be the life of the
current process. This would be the answer to the question: How long
ago did you replace the light bulb? The book says that the pair (Nt, At)
determines the future of the process. Bt denotes the remaining life of
the current process. (How long will the current light bulb last?) First
I needed the following lemma.

6.2.1. picture for an expected value.

Figure 1. The shaded area above the distribution func-
tion F (t) is equal to the expectation.

Lemma 6.3. If T ≥ 0 is a nonnegative random variable then the
expected value of T is given by

E(T ) =

∫ ∞

0

1− F (t) dt

Proof. The expected value of T is defined by the integral

E(T ) =

∫ ∞

0

tF (t) dt

Substituting the integral

t =

∫ t

0

ds =

∫
0≤s≤t

ds

we get:

E(T ) =

∫∫
0≤s≤t

f(t) dsdt

On the other hand,

1− F (s) = P(T > s) =

∫ ∞

s

f(t) dt
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So,∫ ∞

0

1− F (s) ds =

∫ ∞

0

∫ ∞

s

f(t) dtds =

∫∫
0≤s≤t

f(t) dsdt = E(T )

�

6.2.2. distribution of current age. What is the density function for the
current age At for large t? I.e., what is P(s < At ≤ s + ∆s)? This is
given by

P(s < At ≤ s+ ∆s) ∼=t→∞
∆s

µ
(1− F (s))

because: The renewal event must occur in a time interval ∆s: By the
renewal theorem this has probability approximately ∆s/µ. Then the
next renewal event must occur at some time greater than s. That has
probability 1−F (s) where F (s) is the distribution function of the length
of time that each renewal process lasts. This is an approximation for
large t which depends on the Renewal Theorem. See the figure.

X

Figure 2. The age of the current process tells when was
the last renewal.

To get the density function of the current age function At we have
to take the limit as ∆s→ 0:

ψA(s) = lim
∆s→0

1

∆s
P(s < At ≤ s+ ∆s) =

1− F (s)

µ

The lemma says that the integral of this density function is 1 (as it
should be): ∫ ∞

0

ψA(s) ds =

∫
1− F (s)

µ
ds =

µ

µ
= 1
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For the case of the exponential distribution we have 1−F (t) = e−λt

and µ = 1/λ. So

f(t) = λe−λt = λ(1− F (t)) =
1− F (t)

µ
= ψA(t)

and the age of the current process has the same distribution as the
entire lifespan of the process.

6.2.3. distribution of remaining life. The remaining life or residual life
of the process at time t is simply how long we have to wait for the next
renewal. It is called Bt. It is a little more complicated to analyze.

XX

Figure 3. The residual life Bt seems to depend on the
time of the last renewal.

We want to calculate the distribution function ΨB(x) = P(Bt ≤ x). In
order for this even to occur, we first need the last renewal to occur in
some interval ds before t. This has probability ds/µ. Then we need
the event not to occur again during the time interval s before time t
but we need it to occur sometime in the time interval x after time t.
This occurs with probability F (s + x)− F (s). But s ≥ 0 is arbitrary.
So we sum over all s and get:

ΨB(x) =

∫ ∞

0

ds

µ
(F (s+ x)− F (s))

(See the figure.) To get the density function we should differentiate
with respect to x:

ψB(x) = Ψ′
B(x) =

∫ ∞

0

ds

µ
f(s+ x)

If we substitute t = s+ x, dt = ds we get:

ψB(x) =

∫ ∞

x

dt

µ
f(t) =

1− F (x)

µ
= ψA(x)
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In other words, the current age At and the residual life Bt have the
same probability distribution.

6.2.4. relativity argument. The symmetry between past and future was
the point which I wanted to explain using “relativity.” Instead of hav-
ing a fixed time t and looking at the renewal process as occurring at
random times, you could think of the renewals as fixed and pick your
current time t at random. If you pick t in some renewal period of length
C then the point of time that you choose is uniformly distributed (has
equal probability of being at any point in the interval). In particular,
the left and right parts have the same distribution.

The sum Ct := At + Bt is equal to the total duration of the cur-
rent process. To find the distribution function for Ct you can use this
relativity argument. Assume that renewal has occurred a very large
number of times, say N . By the law of large number, the total amount
of time this takes is very close to Nµ. Of these N renewals, f(x)dx
represents the proportion of renewal period of duration x to x + dx.
So, Nf(x)dx is the number of times this occurs. Since the renewal pe-
riods all have the same length, the total length of time for all of these
renewal periods is just the product xNf(x)dx. If you pick a time at
random then the probability that the time you pick will be in one of
these intervals is

P(x < Ct ≤ x+ dx) =
xNf(x)dx

Nµ
=
xf(x)

µ
dx

Therefore, the density function for Ct is ψC(x) = xf(x)/µ.
For example, for the exponential distribution with rate λ, we get:

ψC(x) =
xf(x)

µ
=
xλe−λx

1/λ
= λ2xe−λx

This is the Gamma-distribution with parameters λ and α = 2. The
reason is that, in this case, Ct is the sum of two independent exponential
variables At, Bt with rate λ.

6.3. Convolution. The convolution is used to describe the density
function for the sum of independent random variables. It occurs in this
chapter because the lifespan of the renewal periods are independent.
So, the density function for the n-th renewal is given by a convolution.

6.3.1. density of X + Y . Suppose that X, Y are independent random
variables with density functions f(x), g(y) respectively. Then we dis-
cussed in class that there are two ways to find the density h(z) of
Z = X + Y . The first method is intuitive and the second is rigorous.
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Method 1. I assumed that X, Y are ≥ 0. But this assumption was
not necessary. It just made it easier to talk about.
h(z)dz is the probability that X+Y will lie in the interval [z, z+dz].

But in order for this to happen we first need X to lie in some interval
[x, x + dx] where 0 ≤ x ≤ z. This occurs with probability f(x)dx.
Then we need Y to be in the interval [z − x, z − x + dz]. This occurs
with probability g(z − x)dz. So,

h(z)dz =

∫ z

0

f(x)g(z − x) dxdz

Divide by dz to get

h(z) =

∫ z

0

f(x)g(z − x) dx

This is the convolution:

h = f ∗ g
Method 2. Suppose that the distribution functions of X, Y, Z are

F,G,H. Then

H(z) = P(X + Y ≤ z) =

∫ ∞

−∞
G(z − x)f(x)dx

Differentiate both sides to get

h(z) =

∫ ∞

−∞
g(z − x)f(x)dx

6.3.2. Γ distribution. Suppose that you have a Poisson process with
rate λ. Let T be the length of time you have to wait for the αth
occurrence of the event. Then T has a Γ distribution with parameters
λ and α. Since the expected value of the waiting time for the Poisson
event is 1/λ the expected value of T must be E(T ) = α/λ.

To get the density function of T we take the convolution of α expo-
nential densities:

f = φ ∗ φ ∗ φ ∗ · · · ∗ φ︸ ︷︷ ︸
α

For example when α = 2 we get:

f(t) =

∫ t

0

φ(x)φ(t− x) dx =

∫ t

0

λe−λxλe−λ(t−x) dx

=

∫ t

0

λ2e−λt dx = λ2te−λt
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In general you get:

f(t) =
1

(α− 1)!
λαtα−1e−λt

if α is an integer and for any α:

f(t) =
1

Γ(α)
λαtα−1e−λt

where Γ(α) is what it has to be when λ = 1:

Γ(α) =

∫ ∞

0

tα−1e−t dt

One example of the Γ-distribution is χ2
r, the chi-squared distribution

with r degrees of freedom. This is the Γ-distribution with λ = 1/2 and
α = r/2.

6.4. M/G/1-queueing. In this model, we have people lining up in a
queue and one server taking care of these people one at a time. Let’s
assume the server is a machine.

In the notation “M/G/1” the “1” stands for the number of servers.
The “M” means that the “customers” are entering the queue according
to a Poisson process with some fixed rate λ. The “G” means that the
servers does its job according to some fixed probability distribution
which is “general.” i.e., it could be anything. This is a renewal process
where “renewal” occurs at the moment the queue is empty. At that
time, the system is back in its original state with no memory of what
happened.
Xn = # people who enter the line during the n-th service period.
Un = length of time to serve the n-th person.

So, E(Xn) = λµ where µ = E(Un). We need to assume that λµ < 1.
Otherwise, the line gets longer and long.

Yn = # people in queue right after the n-th person has been served.

Then

Yn+1 − Yn = Xn+1 − 1

becauseXn+1 is the number of people who enter the line and one person
leaves. (Let Y0 = 1 so that the equation also holds for n = 0.)

6.4.1. stopping time. Busy period is when the queue and server are
active. Rest periods are when there is noone in the line. The queue will
alternate between busy periods and rest periods. Define the stopping
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time τ to be the number of people served during the first busy period.
Then the first busy time (duration of the 1st busy period) is

S1 = U1 + U2 + · · ·+ Uτ

To find a formula for τ we used exercise 5.16 on p.128:

(a) Mn = X1 + X2 + · · · + Xn − nE(X) is a uniformly integrable
martingale.

(b) M0 = 0
(c) OST ⇒ E(Mτ ) = E(M0) = 0. This gives us:
(d) (Wald’s equation)

E (X1 + · · ·+Xτ ) = E(τ)E(X)

But the sum of the numbers Xn gives the total number of people who
entered the line after the first person. So:

X1 + · · ·+Xτ = τ − 1

Put this into Wald’s equation and we get:

E(τ)− 1 = E(τ)E(X) = E(τ)λµ

where µ = E(U). Solve for E(τ) to get

E(τ) =
1

1− λµ

6.4.2. equilibrium distribution. We want to know about the equilibrium
distribution of the numbers Yn. The stopping time τ is the smallest
number so that Yτ = 0. This means that τ is the time it takes for Yn

to go from state Y0 = 1 to state Yτ = 0. So τ + 1 is the number of
steps to go from 0 to 0. (In one step it goes to 1.) Therefore, in the
equilibrium distribution π of the Markov chain Yn we have

E(τ) + 1 =
1

π0

or

π0 =
1

E(t) + 1
=

1− λµ

2− λµ
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7. Reversal

This chapter talks about time reversal. A Markov process is a state
Xt which changes with time. If we run time backwards what does it
look like?

7.1. Basic equation. There is one point which is obvious. As time
progresses, we know that a Markov process will converge to equilibrium.
If we reverse time then it will tend to go away from the equilibrium
(contrary to what we expect) unless we start in equilibrium. If a process
is in equilibrium, it will stay in equilibrium (fluctuating between the
various individual states which make up the equilibrium). When we
run the film backwards, it will fluctuate between the same states. So,
we get a theorem:

Theorem 7.1. A Markov process with equilibrium distribution π re-
mains a Markov process (with the same equilibrium) when time is re-
versed provided that

(1) left limits are replaced by right limits,
(2) the process is irreducible
(3) and nonexplosive.

The time revered process has a different transition matrix

P̂ = Π−1P tΠ

where P = (p(x, y)) is the transition matrix for the original process
and

Π =

π(1) 0 · · ·
0 π(2) · · ·
0 0 · · ·


is the diagonal matrix with diagonal entries π(1), π(2), · · · given by the
equilibrium distribution. In other words,

p̂(x, y) = π(x)−1p(y, x)π(y)

or
π(x)p̂(x, y) = π(y)p(y, x)

Date: December 14, 2006.
1
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This makes sense because π(y)p(y, x) is the equilibrium probability
that a random particle will start at y and then go to x. When we run
the film backwards we will see that particle starting at x and moving
to y. So, the probability of that is π(x)p̂(x, y)

x• p(y,x)←−−− •π(y)y

x•π(x)
p̂(x,y)−−−→ •y

7.1.1. Example 1. Take the continuous Markov chain with infinitesmal
generator

A =

−2 2 0
0 −4 4
1 1 −2


The row are required to have sum zero and terms off the diagonal must
be nonnegative. The equilibrium distribution (satisfying πA = 0) is

π = (1/4, 1/4, 1/2)

So, the time reversed process is

Â = Π−1AtΠ =

4
4

2

 −2 0 1
2 −4 1
0 4 −2

 1/4
1/4

1/2


Â =

−2 0 2
2 −4 2
0 2 −2


7.2. Reversible process.

Definition 7.2. A Markov process is called reversible if P̂ = P . This

is the same as Â = A. We say it is reversible with respect to a measure
π if

π(x)p(x, y) = π(y)p(y, x)

Example 1 is not a reversible process because Â 6= A.

Theorem 7.3. If a Markov chain is reversible wrt a measure π then

(1) If
∑

π(k) <∞ then

λ(j) =
π(j)∑
π(k)

is the (unique) invariant probability distribution.
(2) If

∑
π(k) =∞ then the process is not positive recurrent.
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7.2.1. example 2. Take the random walk on S = {0, 1, 2, · · · } where the
probability of going right is p. I.e., p(k, k + 1) = p, p(k + 1, k) = 1− p.

(1) Show that this is a reversible process.
(2) Find the measure π
(3) What is the invariant distribution λ?

To answer the first two questions we have to solve the equation:

π(k)p(k, k + 1) = π(k + 1)p(k + 1, k)

or:
π(k + 1) =

p

1− p
π(k)

This has an obvious solution:

π(k) =

(
p

1− p

)k

Therefore, the random walk is reversible.
Now we want to find the invariant distribution λ.
If p < 1/2 then

∞∑
k=0

π(k) =
1− p

1− 2p

So, the equilibrium distribution is

λ(k) =
pk(1− 2p

(1− p)k+1

If p ≥ 1/2 then
∞∑

k=0

π(k) =∞

since the terms don’t go to zero. So the process is not positive recurrent
and there is no equilibrium.

7.3. Symmetric process.

Definition 7.4. A Markov chain is called symmetric if p(x, y) =
p(y, x). This implies reversible with respect to the uniform measure:
π(x) = 1 for all x and the process is positive recurrent if and only if
there are finitely many states.

I talked about one example which is related to the final exam. It is
example 3 on page 160: Here S is the set of all N -tuples (a1, a2, · · · , aN)
where ai = 0, 1 and the infinitesimal generator is

α(a, b) =

{
1 if a, b differ in exactly one coordinate

0 otherwise
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This is symmetric: α(a, b) = α(b, a).
We want to find the second largest eigenvalue

2 of A. (The largest eigenvalue is λ1 = 0. The second largest is negative
with minimal absolute value.) The eigenvectors of A are also eigenvec-
tors of P = eA with eigenvalue eλ, the largest being e0 = 1 and the
second largest being eλ2 < 1.

The first thing I said was that these eigenvectors are π-orthogonal.

Definition 7.5.

〈v, w〉π :=
∑
x∈S

v(x)w(x)π(x)

When π(x) = 1 (as is the case in this example) this is just the dot
product. v, w are called π-orthogonal if

〈v, w〉π = 0

According to the book the eigenvalues of A are

λj = −2j/N

for j = 0, 1, 2, · · · , N . This implies that the distance from Xt to the
equilibrium distribution decreases at the rate of −2/N on the average:

E(||Xt − π||) ≤ e−2t/N ||X0 − π||

7.4. Statistical mechanics. I was trying to explain the Gibbs poten-
tial in class and I gave you a crash course in statistical mechanics.

The fundamental assumption is that All states are equally likely.
Suppose that we have two systems A, B with energy E1, E2. Suppose
that

ΩA(E1) = #states of A with energy E1

ΩB(E2) = #states of B with energy E2

Then

ΩA(E1)ΩB(E2) = #states of (A, B) with energy E1 for A, E2 for B

Suppose that the two systems can exchange energy. Then they will
exchange energy until the number of states is maximal. This is the
same as when the log of the number of states is maximal:

ln ΩA(E1 + ∆E) + ln ΩB(E2 −∆E) = 0

or:
∂

∂E1

ln ΩA(E1) =
∂

∂E2

ln ΩB(E2) = β (constant)
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Define the entropy of the system A to be S(E) = ln ΩA(E). In equi-
librium we have to have

∂

∂E
S(E) = β

We think of B as an infinite reservoir whose temperature will not
change if we take energy out.

Every state has equal probability. But, a state x of A with energy
E(x) cannot exist without taking E(x) out of the environment B. Then
the number of states of the environment decreases by a factor of e−βE(x).
Therefore, the probability of the state is proportional to e−βE(x). So,
the probability of state x is

P(x) =
e−βE(x)∑
y∈S e−βE(y)

The denominator is the partition function

Z(β) =
∑
y∈S

e−βE(y)

We looked at the Ising model in which there are points in a lattice
and a state x is given by putting a sign εi(x) = ±1 at each lattice point
i and the energy of the state x is given by

E(x) =
∑
i−j

|εi(x)− εj(x)| ·H

(This is 2H times the number of adjacent lattice point i, j so that
the signs εi(x), εj(x) are different.) Then I tried to explain the Gibbs
sampler which is the Markov process which selects a lattice site i at
random (with probability 1/#lattice points) and then changes εi(x)
according to the probability of the new state y. So,

p(x, y) =
1

#lattice points

P(y)

P(y) + P(y′)

if x, y differ at only one possible location i and y′ is the other possible
state which might differ from x at location i. (So, x = y or x = y′.)

The Gibbs sampler has the effect of slowly pushing every state to-
wards equilibrium.
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8. Brownian motion

We will be spending the rest of the course on Brownian motion and
integration with respect to Brownian motion (stochastic integrals). The
topics in the book are closely interrelated so we need to go over every-
thing in the book plus additional material such as Lévy’s remarkable
theorem which I will explain today. Here is an outline of the chapter.

(0) Definition of Brownian motion
(1) Martingales and Lévy’s theorem
(2) Strong Markov property and reflection principle
(3) Fractal dimension of the zero set
(4) Brownian motion and the heat equation in several dimensions
(5) Recurrence and transience
(6) Fractal dimension of the path
(7) Scaling and the Cauchy distribution
(8) Drift

8.0. Definition of Brownian motion. First of all this is a random
process in continuous time and continuous space. We will start with
dimension one: Brownian motion on the real line.

The idea is pretty simple. A particle is bouncing around and its
position at time t is Xt. The process is

(1) memoryless : What happens for time s > t depends only on its
position Xt and not on how it got there.

(2) time and space homogeneous : The behavior of the particle re-
mains the same if we reset both time and space coordinates.
I.e., the distribution of Yt = Xs+t −Xs depends only on t and
is independent of the time s and position Xs.

(3) continuity : The particle moves on a continuous path (without
jumping from one point to another).

These conditions almost guarantee that we have Brownian motion.
But we need a little more. Here is the definition.

Date: November 16, 2006.
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8.0.1. definition.

Definition 8.1. A random function X : [0,∞) → R written Xt is
Brownian motion with variance σ2 starting at 0 if:

(1) X0 = 0
(2) For any s < t1 ≤ s2 < t2 ≤ · · · ≤ sn < tn the random variables

Xt1 −Xs1 , Xt2 −Xs2 , · · · , Xtn −Xsn are independent.
(3) The path Xt is continuous
(4) For s < t,

Xt −Xs ∼ N(0, (t− s)σ2)

i.e., Xt −Xs is normally distributed with mean 0 and variance
(t− s)σ2.

Theorem 8.2. The last condition is equivalent to the condition:

(4’) Xt −Xs and Xt+c −Xs+c are identically distributed with mean
0 and variance (t− s)σ2.

Proof. (Outlined in the book.) Certainly (4) ⇒ (4′). To prove the
converse, assume (4′). Let ∆t = (t− s)/N for large N . Then

Xt −Xs = (Xs+∆t −Xs) + (Xs+2∆t −Xs+∆t) + · · ·+ (Xt −Xt−∆t)

This is a sum ofN independent identically distributed random variables
with mean 0 and variance (∆t)σ2. By the central limit theorem we get

Xt −Xs ≈ N(0, N∆t σ2) = N(0, (t− s)σ2)

Now take the limit as N → ∞. (This is not rigorous because we are
not using the precise statement of the CLT.) �

Recall that the variance of a random variable X is defined by

V ar(X) := E((X − E(X))2) = E(X2)− E(X)2

and it has the property that it is additive for independent random
variables:

V ar(X1 +X2 + · · ·+Xn) = V ar(X1) + V ar(X2) + · · ·+ V ar(Xn)

8.0.2. as limit of random walk. Brownian motion can be obtained as
a limit of random walks: Take time to be integer multiples of a fixed
interval ∆t and we take points on the line at integer multiples of σ

√
∆t.

For each unit time assume that position changes by ±σ
√

∆t with equal
probability. This is Bernoulli with mean 0 and variance

(±σ
√

∆t) = σ2∆t

In a time interval N∆t the change of position is given by a sum of
N independent random variables. So, the mean would be 0 and the
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variance would be N∆tσ2. The point is that this is σ2 times the length
of the time interval. As ∆t → 0, assuming the sequence of random
walks converges to a continuous function, the limit gives Brownian
motion with variance σ2 by the theorem.

8.0.3. nowhere differentiable. Notice that, as ∆t goes to zero, the change
in position is approximately σ

√
∆t which is much bigger than ∆t. This

implies that the limit

lim
t→0

Xt

t
diverges. So, Brownian motion is, almost surely, nowhere differentiable.
(Almost surely or a.s. means “with probability one.”)

8.1. Martingales and Lévy’s theorem.

Theorem 8.3. Suppose that Xt is Brownian motion. Then

(1) Xt is a continuous martingale.
(2) X2

t − tσ2 is a martingale

Proof. (1) is easy: If t > s then

E(Xt | Fs) = E(Xt −Xs | Fs) + E(Xs | Fs)
= 0 + Xs

where Fs is the information contained in Xr for all r ≤ s.
For (2), we need the equation:

(Xt −Xs)
s = X2

t − 2XtXs + 2X2
s −X2

s

= X2
t − 2(Xt −Xs)Xs −X2

s

Taking E(− |Fs) of both sides gives:

E((Xt −Xs)
2 | Fs) = V ar(Xt −Xs) = (t− s)σ2 =

E(X2
t | Fs)− 2E(Xt −Xs | Fs)Xs −X2

s = E(X2
t | Fs)−X2

s

Which gives
E(X2

t − tσ2 | Fs) = X2
s − sσ2

�

Lévy’s theorem is the converse:

Theorem 8.4 (Lévy). Suppose that Xt is a continuous martingale
and X2

t − tσ2 is also a martingale. Then Xt is Brownian motion with
variance σ2

This famous theorem has been proved many times. I will try to find
the proof using stochastic integrals. One amazing consequence is the
following.

kigusa
Text Box
starting at any point!

kigusa
Text Box
The proof does notuse the assumption

kigusa
Text Box
X =0

kigusa
Text Box
0

kigusa
Text Box
(with X  arbitrary)

kigusa
Text Box
0
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Corollary 8.5. Any continuous martingale Mt is Brownian motion
reparametrized and starting at C = M0. I.e.

Mt = Xφ(t) + C

where Xs is standard Brownian motion (with σ = 1).

Proof. (When I did this in class I forgot to “center” the martingale by
subtracting M0.) The idea is to let φ(t) = E((Mt − C)2) and apply
Lévy’s theorem. (I’ll look for the details). �

8.2. Strong Markov property and Reflection principle.

Theorem 8.6 (strong Markov property). Let T be a stopping time for
Brownian motion Xt. Let

Yt = Xt+T −XT

Then Yt is independent of FT (for t > 0).

One consequence of this is the reflection principle which the book
uses over and over.

8.2.1. reflection principle.

Corollary 8.7 (reflection principle). Suppose that a < b then the prob-
ability that you will reach b from a within time t is twice the probability
that at time t you will be past b. I.e.:

P(Xs = b for some 0 < s < t |X0 = a) = 2P(Xt > b |X0 = a)

Proof. If you reach the point b at some time before time t then half the
time you will end up above b and half the time you will end up below
b since the probability that Xt = b is zero. So,

P( Xs reaches b sometime before t and ends up higher |X0 = a)

=
1

2
P(Xs = b for some 0 < s < t |X0 = a)

But the event “Xs reaches b sometime before t and ends up higher” is
the same as the event “Xt > b” since Xt is continuous and therefore
cannot get to a point Xt > b starting at a < b without passing through
b. This proves the reflection principle.

Why is the reflection principle a corollary of the strong Markov prop-
erty? The reason is that we are using the stopping time T = the first
time that XT = b. And Y = Xt − XT . For every fixed T this is
normally distributed with mean 0 and variance (t− T )σ2. So,

P(Y > 0 |T < t) =
1

2
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By the formula for conditional probability, this is

1

2
= P(Y > 0 |T < t) =

P(Y > 0 and T < t)

P(T < t)

But “Y > 0 and T < t” is the same as “Xt > b” and “T < t” is the
same as “Xs reaches b sometime before t.” So, this gives the reflection
principle again. �

8.2.2. density function. If X0 = a, then Xt − a ∼ N(0, tσ2). The
normal distribution N(0, tσ2) has density function

φt(x) =
1√

2πtσ2
e−x2/2σ2t

The probability density function for Xt is given by shifting the normal
distribution by a = X0.

fXt(x) = φt(x− a) = pt(a, x) =
1√

2πtσ2
e−(x−a)2/2σ2t

It is called pt(a, x) because it is the (infinitesimal) transition matrix:

pt(a, x)dx = P(x < Xt ≤ x+ dx |X0 = a)

The integral of this over any interval I is equal to the probability that
Xt will lie in I. E.g.,

P(Xt > b |X0 = a) =

∫ ∞

b

pt(a, x) dx =

∫ ∞

b

1√
2πtσ2

e−(x−a)2/2σ2t dx

In the reflection principle we get twice this number:

P(Xs = b for some 0 < s < t |X0 = a) = 2

∫ ∞

b

1√
2πtσ2

e−(x−a)2/2σ2t dx

If we make the substitution

y =
x− a

σ
√
t
, dy =

dx√
σ2t

we get the standard normal distribution:

2

∫ ∞

(b−a)/σ
√

t

1√
2π
e−y2/2 dy

This is the well-know rule: To convert to standard normal, subtract the
mean then divide by the standard deviation. It works for integrals.
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8.2.3. The Chapman-Kolmogorov equation. is an example of a formula
which is easy to understand using Brownian motion:

ps+t(x, y) =

∫ ∞

−∞
ps(x, z)pt(z, y) dz

This is just a continuous version of the matrix equation

Ps+t = PsPt

and it holds for all Markov processes.
In the particular case of Brownian motions, the integral is a convo-

lution and the Chapman-Kolmogorov equation can be rewritten as:

φs+t = φs ∗ φt

As I explained to you last week, convolution of density functions gives
the density function for the sum of two random variables. In this case:

pdf(Xs+t −X0) = pdf(Xs −X0) ∗ pdf(Xt+s −Xs)

8.2.4. example 1. Here we want the probability that standard Brow-
nian motion, starting at 0, will return to 0 sometime between time 1
and time t > 1.

P(Xs = 0 for some 1 < s < t |X0 = 0) =?

We first look at where the particle is at time 1. Half the time X1 will be
positive and half the time it will be negative. So, we will assume that
X1 > 0 then multiply by 2. By the reflection principle, the probability
of returning to 0 before time t is twice the probability that Xt < 0. So,
the answer will be

4P(X1 > 0 and Xt < 0 |X0 = 0)

= 4P(X1 = b > 0 and Xt −X1 < −b |X0 = 0)

The probability for fixed b (in the interval (b, b+ db]) is

φ1(b)dbΦt−1(−b)

where Φt−1 is the cumulative distribution function:

Φt−1(−b) =

∫ −b

−∞
φt−1(x) dx =

∫ ∞

b

φt−1(x) dx =

∫ ∞

b/
√

t−1

φ1(y) dy

where we used the “convert to standard normal” rule. The answer is
now given by integrating over all b > 0 and multiplying by 4:

4

∫ ∞

0

∫ ∞

b/
√

t−1

φ1(b)φ1(y) dydb
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The integrand is

φ1(b)φ1(y) =
1√
2π

e−b2/2 1√
2π

e−y2/2 =
1

2π
e−(b2+y2)/2

Now convert to polar coordinates:

φ1(b)φ1(y) dy db =
1

2π
e−r2/2 rdrdθ

The answer is

4

∫ ∞

0

∫ π/2

arctan(1/
√

t−1)

1

2π
e−r2/2 rdθdr

= 4
(
π/2− arctan(1/

√
t− 1)

) 1

2π

∫ ∞

0

e−r2/2 rdr

= 1− 2

π
arctan

1√
t− 1

8.2.5. example 2. In this example we have to show that, a.s.,

lim
t→∞

Xt

t
= 0

where Xt is standard Brownian motion.
First, let t = n be an integer going to infinity. Then

Xn = (X1 −X0) + (X2 −X1) + · · ·+ (Xn −Xn−1)

This is a sum of n iid random variables. So, by the strong law of
large numbers, the average will converge to the expected value with
probability one:

lim
n→∞

Xn

n
= E(X1 −X0) = 0

Next, we have to show that, as t goes from one integer n to the next
n + 1, Xt doesn’t deviate too far from Xn. What the book shows is
that, a.s., for all but a finite number of n, the difference

|Xt −Xn| < 2
√

lnn = a

When we divide by n the difference between Xt and Xn will go to zero.
Dividing by t is even better because t > n.

We want the probability that at some time t ∈ (n, n + 1), Xt −Xn

goes above a or below −a. By symmetry this is twice the probability
that it will go above a. By the reflection principle this is 4 times the
probability that it will end up above a:

P(|Xt −Xn| > a for some n < t < n+ 1) = 4P(Xn+1 −Xn > a)

= 4

∫ ∞

a

1√
2π

e−x2/2 dx ≤ 4

∫ ∞

a

1√
2π

e−ax/2
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=
8

a
√

2π
e−a2/2 =

8

2
√

lnn
√

2πn2

(because −a2/2 = −2 lnn = lnn−2)
This is an upper bound for the probability that Xt deviates too far

from Xn for a single n. If we sum over all n we get an upper bound for
the expected number of times that this will happen. But

∞∑
n=2

8

2
√

lnn
√

2πn2
≤ C

∑ 1

n2
<∞

So, the expected number is finite. So, a.s., the deviation occurs only
finitely many times. (If there were a nonzero probability p that the
event occurs an infinite number of times then the expected number
would be at least p · ∞ = ∞.)

8.3. Fractal dimension of the zero set. The zero set Z is just the
set of all times t so that Xt = 0. This is a subset of the positive real
line: Z ⊂ [0,∞). The zero set is a fractal in the sense that it looks
the same on the small scale as it does on the big scale. The “fractal
dimension” of the set measures the scale at which the set is self-similar.
We use the box dimension definition.

8.3.1. self-similarity of Z.

Theorem 8.8. Suppose that Xt is Brownian motion with variance σ2.
Then

(1) Yt = bXat is Brownian motion with variance b2aσ2 (= σ2 if
b2 = 1/a).

(2) Yt = tX1/t is Brownian motion with variance σ2.

Proof. For (2) you need to use the fact that, a.s.,

lim
t→0

tX1/t = lim
1/t→∞

X1/t

1/t
= 0

Therefore, Yt = tX1/t is continuous at t = 0. This settles the continuity
condition. The other conditions are clear: Since the functions at and
1/t are monotonic, Yt is a memoryless process in both cases. We just
have to calculate the variance (and see that it is constant). This is
easy:

V ar(bXat) = E(b2X2
at) = b2atσ2

V ar(tX1/t) = E(t2X2
1/t) = t2(1/t)σ2 = tσ2

Here is a more careful proof (mainly for my reference).
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We have to show that Yt − Ys is normally distributed with variance
proportional to t− s. (It obviously has zero mean.) In case (1) this is
easy:

Yt − Ys = bXat − bXas ∼ bN(0, (at− as)σ2) = N(0, b2a(t− s)σ2)

In case (2) we have:

Yt − Ys = tX1/t − sX1/s = (t− s)X1/t + s(X1/t −X1/s)

∼ N(0, (t− s)2 1

t
σ2) +N(0, s2

(
1

t
− 1

s

)
σ2)

Then use the fact that the sum of independent normal distributions is
normal with mean the sum of the means and variance the sum of the
variances. Then calculate:

(t− s)2 1

t
σ2 + s2

(
1

t
− 1

s

)
σ2 = (t− s)σ2

�

What does this mean in terms of the set Z?
First of all, if we multiply Xt by a constant, the zero set is unchanged

since bXt = 0 ⇔ Xt = 0. Therefore, the theorem says:

(1) Z looks like aZ for any positive constant a.
(2) Z looks like 1/Z.
(3) Z does not depend of the variance σ2. (So, we assume σ2 = 1.)

When I say “looks like” I mean it “has the same probability distri-
bution as.”

8.3.2. gaps in Z. Example 1 from 8.2 calculates the probability that
Z meets the set [1, t]

P(Z ∩ [1, t] 6= ∅) = 1− 2

π
arctan

(
1√
t− 1

)
or:

P(Z ∩ [1, t] = ∅) =
2

π
arctan

(
1√
t− 1

)
This is equal to 1/2 when t = 2. And as t → ∞ this probability goes
to zero (arctan 0 = 0). So,

P(Z ∩ [1,∞) = ∅) = 0

The scaling theorem now says the same is true for any rescaling:

P(Z ∩ [t, 2t] = ∅) =
1

2
and

P(Z ∩ [t,∞) = ∅) = 0
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for any t > 0.

8.3.3. fractal dimension. First I’ll explain the simple version of the idea
and do some examples. Then I’ll give the mathematical definition.

Take the unit square. If we scale this by a factor of 10 then we get
something which can be cut into 102 = 100 squares. If we take a cube
and scale by 10 we get 103 = 1, 000 cubes. The dimension is equal to
the exponent that we need to take the scaling factor to. For the Cantor
set C, if you scale by a factor of 3 then you get 2 Cantor sets. So, its
dimension D is the solution of the equation

2 = 3D

Taking the log of both sides gives

D = dimC =
ln 2

ln 3
≈ 0.631

Instead of scaling the object and seeing how big it gets, you could
just as well scale the units down and sees how many smaller units you
need. For example take a unit square. How many little 1/10 × 1/10
squares do you need to cover it? It is 102 = (1/10)−2 just like before
except that now the dimension is the negative of the exponent of the
scale of the little pieces. It is the same concept.

Definition 8.9. The box dimension of a bounded subset A of Rd is
equal to the infimum of D > 0 so that as ε → 0, the number of cubes
with sides ε needed to cover A becomes < Cε−D where C is a constant.

The set A needs to be bounded otherwise you need an infinite number
of little cubes to cover it.

8.3.4. dimension of Z. Take the bounded set Z1 = Z ∩ [0, 1]. What
is the expected number of intervals of length ε = 1/n needed to cover
Z1? It should be ∼ nD where D is the dimension of Z1.

The expected number of intervals needed is equal to the sum of
probabilities

E(number of intervals [k/n, (k + 1)/n] that meet Z1)

=
n−1∑
k=0

P(Z1 ∩
[
k

n
,
k + 1

n

]
6= ∅)

But the scaling theorem tells us that

P(Z1 ∩
[
k

n
,
k + 1

n

]
6= ∅) = P(Z ∩

[
1,
k + 1

k

]
6= ∅)

= 1− 2

π
arctan

√
k
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So, the expected number of intervals is
n−1∑
k=0

1− 2

π
arctan

√
k

x n 0 1 2 - 1 n 

1

Figure 1. The sum is equal to the integral plus the
little triangles which can be stacked up to give about 1/2

This is a Riemann sum. (See Figure 1.) So, it is approximately equal
to

1

2
+

∫ n

0

1− 2

π
arctan

√
x dx

=
1

2
+ n− 2

π
(n+ 1) arctan

√
n+ 2

√
n

Using the approximation

arctanx ≈ π

2
− 1

x
this becomes

≈ 1

2
+ n−

(
n+ 1− 2n+ 2

π
√
n

)
+ 2

√
n ≈

√
n

(
2− 2

π

)
≈ 1.36

√
n

The dimension of Z1 is the exponent of n which is D = 1/2.
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8.4. Brownian motion and the heat equation in several dimen-
sions. (When you read this section ask yourself: What do people mean
when they say:

“The infinitesmal generator of Brownian motion is 1
2

∂2

∂x2 ” ?)

8.4.1. definition. With several variables, Brownian motion can be writ-
ten in rectangular or polar coordinates. I prefer the version which is
obviously rotationally invariant. (You can rotate the coordinates and
the equation does not change.)

Definition 8.10. Standard d-dimensional Brownian motion is a vector
valued stochastic process, i.e., random function X : [0,∞) → Rd so that

(1) X0 = 0
(2) For any s < t1 ≤ s2 < t2 ≤ · · · ≤ sn < tn the random variables

Xt1 −Xs1 ,Xt2 −Xs2 , · · · ,Xtn −Xsn are independent.
(3) The path Xt is continuous
(4) For s < t, the random variable Xt −Xs has density function

φr(x) =
1

(2πr)d/2
e−||x||

2/2r

where r = t− s and ||x|| is the length of the vector x ∈ Rd.

The coordinates Xj
t − Xj

s of the vector Xt − Xs are independent
standard 1-dimensional Brownian motions with densities

1

(2πr)1/2
e−x2

j/2r

whose product is φr(x). The elapsed time or time increment is denoted
r = t− s in the definition. The covariance matrix is the d× d matrix[

E((X i
t −X i

s)(X
j
t −Xj

s ))
]

= (t− s)I

The transition density for time increment t is

pt(x,y) = φt(y − x) =
1

(2πt)d/2
e−||y−x||2/2t

One important feature is that the transition density is symmetric, i.e.,

pt(x,y) = pt(y,x)

This satisfies the Chapman-Kolmogorov equation just like any other
transition density.
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8.4.2. diffusion. If you have a large number of particles moving inde-
pendently according to the rules of Brownian motion, then the distri-
bution of these particles will change in a deterministic process called
diffusion.

Let ft(x) denote the density of particles at time t and position x.
After an increment of time δt, the density will change to

(8.1) ft+δt(y) =

∫
Rd

ft(x)pδt(x,y)dx

where I used the abbreviation dx = dx1dx2 · · · dxd. Since pδt(x,y) =
pδt(y,x) we can rewrite this as

ft+δt(y) =

∫
Rd

ft(x)pδt(y,x)dx

Now switch “x” and “y”:

(8.2) ft+δt(x) =

∫
Rd

ft(y)pδt(x,y)dy

These equations look similar but they mean different things. The first
equation (8.1) gives the density of particles as an sum over all places
where the particles came from. Equation (8.2) says that the future
density at x will be equal to the expected value of the present den-
sity function of the new (random) location of a single particle starting
at the point x. The first equation is deterministic and the second is
probabilistic!

Equation (8.2) can be written:

ft+δt(x) = Ex(ft(Xδt)) = E(ft(Xδt) |X0 = x)

where we use the abbreviation Ex = E(− |X0 = x). I changed the
equation from that in the book to clarify what is absolute time and
what is relative time.

8.4.3. the differential equation. Now take the limit as δt→ 0:

(8.3)
∂

∂t
ft(x) = lim

δt→0

1

δt
Ex(ft(Xδt)− ft(X0))

On the RHS we are taking density at a fixed time and variable position.
The book estimates the density first in the case d = 1:

ft(Xδt) = ft(X0)+
∂

∂x
ft(x)(Xδt−X0)+

1

2

∂2

∂x2
ft(x)(Xδt−X0)

2+o((Xδt−X0)
2)

Now take expected value

Ex(ft(Xδt)−ft(X0)) =
∂

∂x
ft(x)Ex(Xδt−X0)+

1

2

∂2

∂x2
ft(x)Ex((Xδt−X0)

2)+o(δt)
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But Ex(Xδt −X0) = 0 and Ex((Xδt −X0)
2) = (δt− 0)σ2 = δt. So,

Ex(ft(Xδt)− ft(X0)) =
1

2

∂2

∂x2
ft(x)δt+ o(δt)

Dividing by δt and taking the limit as δt→ 0 gives

∂

∂t
ft(x) =

1

2

∂2

∂x2
ft(x)

For the random vector Xδt we get:

ft(Xδt)− ft(X0) =∑
i

∂

∂xi

ft(x)(X i
δt−X i

0)+
∑
i,j

1

2

∂2

∂xi∂xj

ft(x)((X i
δt−X i

0)(X
j
δt−Xj

0))+o(δt)

Taking expected value, the first term gives zero. The expected value
of the second term is given by the covariance matrix δtI. So

Ex(ft(Xδt)− ft(X0)) =
∑

i

1

2

∂2

∂x2
i

ft(x)δt+ o(δt)

Referring back to the original differential equation (8.3) we get

∂

∂t
ft(x) =

1

2
∆ft(x)

where ∆ is the Laplacian

∆ =
d∑

i=1

1

2

∂2

∂x2
i

If the particles are moving according to Browning motion with vari-
ance σ2 then the density changes according to the equation

(8.4)
∂

∂t
ft(x) =

D

2
∆ft(x)

where D = σ2.

8.4.4. heat equation. The equation (8.4) is called the heat equation with
diffusion constant D. We will see how the time reversal trick explained
above can be used to solve this equation using stochastic methods.

Suppose that B is a region in Rd with boundary ∂B. Suppose we
start with a heat density function f on B which changes according
to the heat equation and a constant heat density of g on ∂B. If the
temperature in the interior point x at time t is u(t,x) then the prob-
abilistic interpretation is that u(t,x) is equal to the expected value of
the density at time 0 at the position a particle starting at x will end
up at time t.
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The boundary, which in forward time is emitting heat at a constant
rate, will, in backward time, act like flypaper for randomly moving par-
ticles. The particle starts at X0 = x and moves according to Brownian
motion and stops the first time it hits the boundary ∂B. This is a
stopping time. Call it τ = τ∂B.

The equation for this expected value is

u(t,x) = Ex(g(Xτ )I(τ < t) + f(Xt)I(t ≤ τ))

As t goes to infinity, the temperature reaches a steady state given by

v(x) = Ex(g(Xτ ))

So, this is the solution of the equation:

∆v(x) = 0

(in the interior of B) with boundary condition v = g on ∂B.

8.4.5. example 1: probabilistic method. Let d = 1 and B = (a, b) ⊂ R
where 0 ≤ a < b < ∞. Then the boundary is just two points ∂B =
{a, b}. Suppose the function on the boundary is g(a) = 0, g(b) = 1.
We start at some point x ∈ (a, b) and stopping time τ is when we reach
either a or b. This is the “gambler’s ruin” because it describes what
happens to a gambler playing a fair game who starts with $x and quits
when he reaches either a or b.

v(x) = Ex(g(Xτ )) = Px(Xτ = b)

By the strong Markov property, Ex(Xτ ) = Ex(X0) = x. So,

Ex(Xτ ) := aPx(Xτ = a) + bPx(Xt = b) = a(1− v(x)) + bv(x) = x

v(x) =
x− a

b− a

8.4.6. example 2: analytic method. Now consider the case when g(0) =
g(2π) = 0 and B = (0, π). The heat equation

∂

∂t
u(t, x) =

1

2

∂2

∂x2
v(t, x)

is homogeneous and has a complete list of basic solutions:

u(t, x) = e−tn2/2 sin(nx)

and any solution is an infinite linear combination

u(t, x) =
∞∑

n=1

Cne
−tn2/2 sin(nx)
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Where does this come from? The idea is to write u(t, x) = ψ(t)φ(x)
where

∂

∂t
ψ(t) = −λ

2

2
ψ(t) (ψ(t) = e−λ2t/2 works)

∆φ(x) = −λ2φ(x) (φ(x) = sin(λx) works as does cos(λx)

Then u(t, x) = ψ(t)φ(x) is a solution of the heat equation.
Start with f(x) = δy(x) being a Dirac delta function at some point

y ∈ (0, 2π). This means that

δy(x) =
∑

Cn sin(nx)

To determine the coefficients Cn we multiply by sin(mx) and integrate:∫ π

0

δy(x) sin(mx) dx =
∑ ∫ π

0

Cn sin(nx) sin(mx) dx

sin(my) =
π

2
Cm

So Cn = 2
π

sin(ny) and

u(t, x) =
∞∑

n=1

2

π
e−tn2/2 sin(ny) sin(nx)

The book points out that one of these terms lasts longer than the
others. For large values of t, the term e−tn2/2 tends to be really small
for larger n. So, the n = 1 term will dominate and we get the following
approximation for large t.

u(t, x) ≈ 2

π
e−t/2 sin(y) sin(x)

8.4.7. example 3: general solution. We already pointed out that we
should look for solutions of the form

e−tλ2
n/2φn(x)

where
∆φn(x) = −λnφ(x)

We can do the trick of multiplying by the m-th function φm(x) and
integrating to get the coefficient Cm provided that the functions are
orthogonal in the sense that∫ b

a

φn(x)φm(x) dx = 0

if n 6= m. We also need to have the complete list of functions, i.e., the
only function which is orthogonal to all the φn(x) should be zero. In
other words, we want a Hilbert space basis.
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8.5. Recurrence and transience. The question is: Does Brownian
motion make particle go off to ∞?

(1) Set up the probabilistic equation
(2) Convert to a differential equation by time reversal
(3) Solve the differential equation
(4) Reinterpret probabilitically

8.5.1. set up. We start at a point x which is off center between two
circles (or spheres in dimensions ≥ 3)

x ∈ B = {x ∈ Rd |R1 < ||x|| < R2}

x

Figure 2. Will x reach the outer circle before reaching
the inner circle?

Take the stopping time T to be the smallest time so that XT ∈ ∂B
given that X0 = x ∈ B. We now want to know: What is the probability
that ||XT || = R2? The answer is

f(x) = Px(||XT || = R2) = Ex(g(XT ))

where g(y) is given by

g(y) =

{
1 if ||y|| = R2

0 if ||y|| = R1

8.5.2. differential equation. By the time reversal argument explained
last time, f(x) is the solution of the differential equation

∆f = 0

on B with boundary condition

f(y) =

{
1 if ||y|| = R2

0 if ||y|| = R1
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Since everything is rotationally symmetric, we know that the solution
will be a function of ||x||. It is also a function of z = ||x||2 =

∑
x2

i

which I much prefer since it has no nasty square roots.

f(x) = φ(z) = φ(
∑

x2
i )

∂f

∂xi

= 2xiφ
′(z)

∂2f

∂x2
i

= 2φ′(z) + 4x2
iφ
′′(z)

Sum over all i = 1, 2, · · · , d to get

∆f(x) = 2dφ′(z) + 4zφ′′(z) = 0

8.5.3. solution of diffeq. Put ψ(z) = φ′(z). Then the equation is

2dimψ(z) + 4zψ′(z) = 0

where I replaced the dimension d by “dim” temporarily so that I can
write this as:

4zdψ/dz = −2dimψ

dψ

ψ
= −dim

2

dz

z

Integrate both sides to get

lnψ = −dim
2

ln z + C0

or:

ψ = φ′ = K0z
−dim/2

where K0 = eC0 . Integrate to get f = φ:

f(x) = φ(z) = K0
2z(2−d)/2

2− d
+ C = K||x||2−d + C

if d = dim 6= 2 and K = 2K0/(2− d).
Now we put in the boundary conditions. First, f(x) = 0 if ||x|| = R1.

This gives

C = −KR2−d
1

The other boundary condition is f(x) = 1 when ||x|| = R2. This gives

1 = KR2−d
2 −KR2−d

1

or

K =
1

R2−d
2 −R2−d

1
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So, the solution (for d 6= 2) is

f(x) =
||x||2−d −R2−d

1

R2−d
2 −R2−d

1

If we put d = 2 we get 0
0

and we can get the answer in the book by
taking the limit as d → 2 using l’Hostipal’s rule. (That’s called “di-
mensional regularization.” It isn’t rigorous but it works.) The answer
is:

f(x) =
ln ||x|| − lnR1

lnR2 − lnR1

8.5.4. interpret solution. Remember that f(x) is the probability that
||x|| will reach R2 before it reaches R1. So, we want to take the limit
as R1 → 0 and R2 →∞.

a) Take R1 → 0. When d > 2,

R2−d
1 =

1

Rd−2
1

→∞

So, f(x) → 1. Similarly, for d = 2,

lnR1 → −∞
So, f(x) → 1.

This means that, for d ≥ 2, the probability is zero that the particle
will ever return to the origin. When d = 1,

lim
R1→0

f(x) = ||x||/R2 < 1

The particle has a chance to go to the origin and therefore it eventually
will with probability one. Then it will keep coming back because it
can’t avoid probability one events.

b) Take R2 →∞ When d > 2,

R2−d
2 =

1

Rd−2
1

→ 0

So,

f(x) → R2−d
1 − ||x||2−d

R2−d
1

= 1−
(
R1

||x||

)d−2

> 0

This means the particle has a chance to go to infinity. So, eventually
it will with probability one. So, Brownian motion in dimensions > 2 is
transient.

When d = 2,

lnR2 →∞
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So,

f(x) → 0

The particle will never go to infinity. It will keep returning to the
circle of radius R1 about the origin no matter how small R1 > 0 is. So,
Brownian motion in R2 is (neighborhood) recurrent.

8.6. Fractal dimension of the path. The question is: What is the
dimension of the path of Brownian motion?

x

Figure 3. Count the number of little cubes needed to
cover the path.

Take a 2 × 2 × · · · × 2 cube in Rd. Cut it into Nd little cubes with
sides 2/N (so that it contains a disk of radius 1/N). According to
the definition, the box dimension of the path is given by counting the
number of little squares needed to cover the path and looking at the
exponent of N .

8.6.1. d = 1. In R1, the path is equal to all of the line R1. So, the
dimension is 1.

8.6.2. d = 2. In R2 the path is dense. I.e., it gets arbitrarily close
to every point. Therefore, we need all Nd = N2 little cubes and the
dimension is 2.

8.6.3. d > 2. For d > 2 we need to count. The expected number of
little cubes that will be needed to cover the path is equal to the sum
of the probability that the path will hit each little cube.

E(#little cubes needed) =
∑

P(path hits one (2/N)d-cube)

Since there are Nd little cubes this is approximately

NdP(path hits one (2/N)d-cube)
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But we have the formula for the probability that a point will hit a
sphere. So, I inserted the ratio between the volume of a cube and the
volume of a ball and I got:

Nd 2dΓ
(

d+2
2

)
πd/2

P(path hits ball of radius
1

N
)

We just calculated the probability of hitting the ball of radius R1 =
1/N before going off to infinity. (This was when we took the limit as
R2 →∞.) It was

P(hit ball of radius
1

N
) =

(
R1

||x||

)d−2

=
1

||x||d−2
·N2−d

So the number of cubes needed is a constant times NdN2−d = N2. So
the dimension of the path is 2.

8.7. Scaling and the Cauchy distribution. We skipped this be-
cause we talked about scaling at the beginning of the chapter and I
don’t think we need to know the Cauchy distribution.

8.8. Drift. Brownian motion with (constant) drift in Rd is given by

Yt = Xt + µt

where µ ∈ Rd is a vector.
Suppose we are given the information Ft up to time t. This is all

contained in the single vector Yt = x in the sense that

Ex(−) = E(− |Yt = x) = E(− |Ft)

Then
Yt+δt = Xδt + µδt+ x

where Xδt is a recentered standard Brownian motion.
Suppose that f(x) is the particle density at x at time t. (Density is

actually f(t,x) where the time t is just not written.)
Here I converted to d = 1. Then

f(Yt+δt) = f(x)+f ′(x)(Xδt+µδt)+
1

2
f ′′(x)(Xδt+µδt)

2+o((Xδt+µδt)
2)

I denoted the change in f by

δf = f(Yt+δt)− f(x)

So, the expected value of this is

Ex(δf) = f ′(x)Ex(Xδt + µδt) +
1

2
f ′′(x)Ex((Xδt + µδt)2) + o

The first expected value is

Ex(Xδt + µδt) = µδt
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Next, I used the formula E(Z2) = E(Z)2 + V ar(Z) to get

Ex((Xδt + µδt)2) = Ex(Xδt + µδt)2 + V ar(Xδt + µδt)

= (µδt)2 + V ar(Xδt) + V ar(µδt)

= µ2δt2 + δt

and I pointed out that the term µ2δt2 is negligible since it is a o(δt).
This also means that

o((Xδt + µδt)2) = o(µ2δt2 + δt) = o(δt)

and

Ex(δf(x)) = f ′(x)µδt+
1

2
f ′′(x)δt+ o(δt)

Dividing by δt and taking limit as δt→ 0 we get

ḟ(x) = µf ′(x) +
1

2
f ′′(x)

where the dot is time derivative and the primes are space derivatives.
This was for d = 1. In higher dimensions we get

∂f

∂t
=

d∑
i=1

µi
∂f

∂xi

+
1

2
∆f
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9. Stochastic integration

I will continue with the intuitive description of stochastic integrals
that I started last week.

9.0. the idea. I already talked about the probabilitistic and analytic
approach to Brownian motion. Stochastic integrals combine these
methods. A key idea is Lévy’s quadratic variation which is used in
Kunita and Watanabe’s [2] reformulation of stochastic integration.

9.0.1. quadratic variation. We want to define the stochastic integral

Zt =

∫ t

0

Ys dXs

where Xs is Brownian motion in R1. However, there is a big problem
because dXs has unbounded variation1. In other words,∫

|dXs| := lim
δt→0

∑
|Xti+1

−Xti| = ∞.

Fortunately, we can still define the stochastic integral because the “qua-
dratic variation” of Xt (denoted by 〈X〉t) is bounded:

Theorem 9.1 (Lévy).

〈X〉t =

∫ t

0

(dXs)
2 := lim

δt→0

∑
(Xti+1

−Xti)
2 = t

with probability one.

Proof. (p. 207) It is easy to see that the quadratic variation is approx-
imately equal to t since the summands have expected value:

E((Xti+1
−Xti)

2) = ti+1 − ti = δt

So the sum has expected value:

E
(∑

(Xti+1
−Xti)

2
)

=
∑

δt = t

Date: December 4, 2006.
1The Riemann sum converges if and only the function has bounded variation.

1
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The variance of each summand is2:

V ar((Xti+1
−Xti)

2) = E((Xti+1
−Xti)

4)− E((Xti+1
−Xti)

2)2 = 2δt2

So, the sum have variance:

V ar(
∑

(Xti+1
−Xti)

2) =
∑

2δt2 = 2tδt → 0

This means that, in the limit, the sum has zero variance and is therefore
not random. The value of this limit is almost sure equal to its expected
value which is t. �

This theorem is usually written in the differential form

(9.1) (dXt)
2 = dt

For arbitrary increments δt of t this is

(9.2) (δXt)
2 := (Xt+δt −Xt)

2 = δt + oeff (δt)

where I labeled the error term as an effective little-oh. Usual: o(δt)/δt →
0 as δt → 0. But effective little-oh means: If you take N ≈ 1/δt inde-
pendent copies of oeff (δt) you get:

(9.3)
∑

1/δt copies

oeff (δt) → 0 as δt → 0

These three equations (9.1), (9.2), (9.3) summarize the statement
and proof of Lévy’s theorem on quadratic variation of Brownian mo-
tion.

9.0.2. Itō’s formula. Using quadratic variation we can “prove” Itō’s
formula.

Suppose that we have a particle density function f(x) for x ∈ R
and Xt is Brownian motion. The probabilistic argument said that we
should look for the expected present value of f at the future position

2This is an easy calculation. The moment generating function for the standard
normal distribution is

E(eXt) =
∫

ext−x2/2dx/
√

2π = et2/2

∫
e−(x−t)2/2dx/

√
2π = et2/2

The coefficient of t2n in E(eXt) is E(X2n)/(2n)! and the coefficient of t2n in et2/2

is 1/n!2n. Therefore, for X ∼ N(0, 1),

E(X2n) =
(2n)!
n!2n

= (2n− 1)!! := 1 · 3 · 5 · 7 · · · (2n− 1)

You need to multiply by σ2n when X ∼ N(0, σ2).
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Xt. So, we assume that f(x) is not time dependent. It only varies with
position x. Do you remember the following formula?

f(Xt+δt)− f(Xt) = f ′(Xt)(Xt+δt−Xt) +
1

2
f ′′(Xt)(Xt+δt−Xt)

2 + o(δt)

This can be abbreviated:

δf(Xt) = f ′(Xt)δXt +
1

2
f ′′(Xt)(δXt)

2 + o(δt)

Use quadratic variation: (δXt)
2 = δt + oeff (δt). Then:

δf(Xt) = f ′(Xt)δXt +
1

2
f ′′(Xt)δt + oeff (δt)

Now take the sum from 0 to t. (We need to change t above to s so that
s can be the variable going from 0 to t: 0 ≤ s ≤ t.)

f(Xt)− f(X0) =
∑

f ′(Xs)δXs +
∑ 1

2
f ′′(Xs)δs +

∑
oeff (δs)

Now, take the limit as δs → 0. Then the last term goes to zero by
(9.3) and we get Itō’s formula:

(9.4) f(Xt)− f(X0) =

∫ t

0

f ′(Xs) dXs +

∫ t

0

1

2
f ′′(Xs) ds

Here the stochastic integral is∫ t

0

f ′(Xs) dXs := lim
δs→0

∑
f ′(Xs)δXs

9.0.3. discussion. Why is this not a proof of Itō’s formula? The main
thing is that we haven’t defined the stochastic integral:

Zt =

∫ t

0

Ys dXs

We only showed that the traditional “limit of Riemann sum” definition
makes sense and gives something which satisfies Itō’s formula in the
special case when Yt = f ′(Xt) is the derivative of a twice differentiable
function of standard Brownian motion Xt. In general we need the
integral defined for predictable stochastic processes Ys. This means Ys

must be Fs-measurable and left continuous. Some people (e.g., our
book) take Ys to be right continuous. However, following my “bible”
[4], it makes more intuitive sense to have information (Xt and Ft) be
right continuous and processes Yt based on this information should be
predictable.
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9.1. discrete stochastic integrals. Stochastic integrals are constructed
in three steps. First you have discrete time and finite state space (a
finite Markov process). Then you have continuous time and finite state
space (a continuous Markov chain). Then you take a limit.

The important properties of the construction are visible at each step:

• The construction is linear.
• The result is a martingale Zt.
• Z2

t − 〈Z〉t is also a martingale where 〈Z〉t is the quadratic vari-
ation of Zt.

Compare this with what you know about Brownian motion:

(1) Xt is a martingale.
(2) X2

t − t is also a martingale.
(3) 〈X〉t = t by Lévy’s theorem which we just proved.

9.1.1. set up. Take simple random walk on Z. This gives a martingale
Xn with X0 = 0 and increments Xn+1−Xn = ±1 with equal probability.
Suppose that Yn is a predictable process, i.e., Yn is Fn−1-measurable.
The discrete integral is

Zn :=
n∑

i=1

Yi(Xi −Xi−1) =
n∑

i=1

YiδXi

(This is supposed to resemble
∫

Y dX.)
The idea is that, at time n, you place a bet Yn+1 that Xn will increase.

The money that you win or lose at that step is

Yn+1(Xn+1 −Xn)

Since you cannot see the future, Yn+1 is only Fn-measurable.

9.1.2. linearity. This construction satisfies the following linearity con-
dition: ∑

(aYi + bVi)δXi = a
∑

YiδXi + b
∑

ViδXi

In short, Zn is a linear function of {Yi}.

9.1.3. martingale.

Theorem 9.2. Zn is a martingale and Z0 = 0.

Proof. This is easy to verify:

E(Zn | Fn−1) = Zn−1 + E(Yn(Xn −Xn−1) | Fn−1)

Since Yn is Fn−1-meaaurable, the last term vanishes:

E(Yn(Xn −Xn−1) | Fn−1) = YnE(Xn −Xn−1 | Fn−1) = 0
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So,
E(Zn | Fn−1) = Zn−1

�

9.1.4. quadratic variation. The quadratic variation of Zn is just the
sum of squares of differences:

〈Z〉n :=
n∑

i=1

(Zi − Zi−1)
2 =

∑
Y 2

i

since these differences are

Zi − Zi−1 = Yi(Xi −Xi−1) = ±Yi

Theorem 9.3. Suppose that E(Y 2
i ) < ∞ for each i. Then (Zn)2−〈Z〉n

is a martingale. In particular,

V ar(Zn) = E(Z2
n) =

n∑
i=1

E(Y 2
i )

Proof. The difference between Z2
n and the quadratic variation of Zn is

just the sum of the cross terms:

Z2
n − 〈Z〉n = 2

∑
1≤i<j≤n

YiYj(Xi −Xi−1)(Xj −Xj−1)

= Z2
n−1 − 〈Z〉n−1 + 2

n−1∑
i=1

YiYn(Xi −Xi−1)︸ ︷︷ ︸
Fn−1-measurable

(Xn −Xn−1)︸ ︷︷ ︸
E=0

So,
E(Z2

n − 〈Z〉n | Fn−1) = Z2
n−1 − 〈Z〉n−1

�
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9.2. Integration wrt Brownian motion. We take Wt to be standard
Brownian motion. This is also called the Wiener process, which might
explain the use of the letter “W.” We want to define the integral

Zt =

∫ t

0

Ys dWs

where Ys is a predictable process (left continuous Ft-measurable) which
we need to assume is square summable in the sense that

(9.5)

∫ t

0

E(Y 2
s ) ds < ∞

for all t.

9.2.1. simple processes. The first step is to take a step function Yt.
This is also called a simple predictable process. The book calls it a
“simple strategy” to emphasize the assumption that Yt is given by a
formula. “Simple” means that Yt takes only a finite number of values:
0, Y0, Y1, · · · , Yn

Yt =



0 if t = 0

Y0 if 0 < t ≤ t1
Y1 if t1 < t ≤ t2

· · ·
Yn if tn < t

The stochastic integral is the function

(9.6) Zt =

∫ t

0

Ys dWs :=
k∑

i=1

Yi−1(Wti −Wti−1
) + Yk(Wt −Wtk)

if tk < t ≤ tk+1.

Remark 9.4. You can subdivide the intervals (ti−1, ti] and the integral
Zt remains the same. For example, if you insert t3/2 between t1 and t2
and put Y3/2 = Y1 then

Y1(W2 −W1) = Y1(W3/2 −W1) + Y3/2(W2 −W3/2)

So the sum (9.6) remains the same after subdivision.

I want to go over the basic properties. Maybe I won’t prove them.

(1) Zt =
∫ t

0
Ys dWs is linear in Yt. I.e.,∫ t

0

(aXs + bYs) dWs = a

∫ t

0

Xs dWs + b

∫ t

0

Ys dWs

(2) Zt is a martingale which is square summable, i.e., E(Z2
t ) < ∞.

(3) Z2
t − 〈Z〉t is a martingale.
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(4)

E(Z2
t ) =

∫ t

0

E(Y 2
s ) ds

(So, Zt is square summable if and only if Yt is square summable.)

Here the quadratic variation 〈Z〉t is given by

〈Z〉t =

∫ t

0

Y 2
s ds

So, (3) ⇒ (4): If Z2
t − 〈Z〉t is a martingale, then

E(Z2
t − 〈Z〉t) = Z2

0 − 〈Z〉0 = 0

So,

E(Z2
t ) = E(〈Z〉t) = E

(∫ t

0

Y 2
s ds

)
=

∫ t

0

E(Y 2
s ) ds

Now, I am going to verify properties (2) and (3) (at least on paper).
The key point is that all cross terms have expectation zero.

9.2.2. vanishing expectation of cross terms.

Theorem 9.5. Zt is a martingale for simple processes.

Proof. The definition of a martingale is that E(Zt | Fs) = Zs if s < t.
By subdividing the interval, we can always assume that s is a jump
time (Remark 9.4). By induction it suffices to show this when s = tk
is the last jump time before t. In other words, we have to show that
the last term in Equation (9.6) has expectation 0:

E(Yk(Wt −Wtk) | Ftk) = YkE(Wt −Wtk | Ftk) = 0

The point is that this is a product where the first factor Yk is determined
when the second factor is still random with zero expectation. �

And now, here is a wonderful theorem that will save us a lot of time:

Theorem 9.6 (Meyer). Suppose that Zt is a square summable martin-
gale wrt Ft with Z0 = 0. Then Z2

t − 〈Z〉t is also a martingale.

In other words, (2) ⇒ (3)!

Proof. The idea is summarized in the following motto (from [1], 1.5.8).
“When squaring sums of martingale increments and taking the expec-
tation, one can neglect the cross-product terms.”

This theorem is supposed to proved property (3) in all cases simulta-
neously. So, Zt could be anything. However, we can always subdivide
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the interval [0, t] into parts of length δt and get Zt as a sum of incre-
ments:

Zt = Zt − Z0 =
∑

Zti − Zti−1
=

∑
δiZt

The increments δiZt = Zti − Zti−1
have expectation zero since Zt is a

martingale. When you square Zt you get:

Z2
t =

∑
(δiZt)

2 + 2
∑
i<j

δiZtδjZt

The sum of squares converges to the quadratic variation by definition:

〈Z〉t := lim
δt→0

∑
(δiZt)

2

and the cross terms δiZtδjZt have expectation zero because the first
term is determined when the second term is random with expectation
zero.

E(δiZtδjZt | Ftj−1
) = δiZtE(δjZt | Fti) = 0

and by the rule of iterated expectation,

E(δiZtδjZt | Fs) = E(E(δiZtδjZt | Ftj−1
) | Fs) = 0

for any s ≤ tj−1. �

9.2.3. general stochastic integral (wrt Wt). Now suppose that Yt is any
(square summable) predictable process. Then we convert to a simple

process by letting Y
(n)
s be the average value of Yt over the inverval

(k−1
n

, k
n
] if s lies in the next interval ( k

n
, k+1

n
]. This is to insure that, at

time t = k/n when we choose Y
(n)
s , we only use information from the

past and not from the future, i.e., it is predictable.

Since Y
(n)
s is a simple predictable process, we can define

Z
(n)
t :=

∫ t

0

Y (n)
s dWs

Without saying it, the book is using the following well-known theorem
in real analysis applied to the measure space (Ω,Ft, P).

Theorem 9.7. The space of square summable real valued functions on
any measure space is complete in the L2 metric.

The L2 metric is just

||Zt||2 := E(Z2
t )

The martingales Z
(n)
t form a Cauchy sequence in the L2 norm. I.e.,

E((Z
(n)
t − Z

(m)
t )2) = E(

〈
Z(n) − Z(m)

〉
t
) =

∫ t

0

(Y (n)
s − Y (m)

s )2 ds → 0
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as n, m → ∞. The book then uses the theorem about completeness

of L2 to concluded that the martingales Z
(n)
t converge to some square

summable process Zt

Zt =

∫ t

0

Ys dWs := lim Z
(n)
t

Since the limit of martingales is a martingale, Zt is a martingale. By
Theorem 9.6 that is all we have to show (linearity being obvious).

9.3. Itō’s formula. I will repeat the formula and do the examples in
the book but I won’t go over the proof since we already did it.

Theorem 9.8 (Itō’s first formula). Suppose that Wt is standard Brown-
ian motion and f(x) is C2, i.e., twice continuously differentiable. Then

f(Wt)− f(W0) =

∫ t

0

f ′(Ws) dWs +
1

2

∫ t

0

f ′′(Ws) ds

I just want to point out that the näıve definition of the stochastic
integral that we used in the earlier proof of this formula is equivalent
to the rigorous definition that I just explained because Yt = f ′(Wt) is
a continuous function of t. Continuity implies that the average value
over an interval (used in the rigorous definition) converges to the actual
value at one end (used in our näıve definition).

9.3.1. example 1. Let f(t) = t2. Then f ′(t) = 2t and f ′′(t) = 2. So,

f(Wt)− f(W0) = W 2
t =

∫ t

0

2Ws dWs +
1

2

∫ t

0

2 ds∫ t

0

Ws dWs =
1

2
W 2

t −
1

2
t

9.3.2. geometric Brownian motion. Take f(t) = et = f ′(t) = f ′′(t).
Then Itō’s formula is:

eWt − 1 =

∫ t

0

eWs dWs +
1

2

∫ t

0

eWs ds

If we write Xt := eWt this becomes:

Xt − 1 =

∫ t

0

Xs dWs +
1

2

∫ t

0

Xs ds

or

dXt = Xt dWt +
1

2
Xt dt
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9.4. Extensions of Itō’s formula. The key ideas are covariation and
the product rule.

9.4.1. covariation. This is also called the covariance process.

Definition 9.9. The covariation of At and Bt is defined to be

〈A, B〉t := lim
δt→0

∑
δiA δiB

= lim
δt→0

∑
(Ati − Ati−1

)(Bti −Bti−1
)

Properties

〈A, A〉t = 〈A〉t (quadratic variation)

d 〈A, B〉t = dAtdBt (by definition)

〈A + B〉+ t = 〈A〉t + 〈B〉t + 2 〈A, B〉t
Quick proof:∑

(δiA + δiB)2 =
∑

(δiA)2 +
∑

(δiB)2 + 2
∑

δiAδiB

9.4.2. product rule. The following formula holds without error. (See
picture.)

δAB = AδB + BδA + δAδB

Figure 1. The term δAδB becomes the covariation.

The infinitesmal version is

dAB = AdB + BdA + d 〈A, B〉t
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Example 9.10. This is example 1 on p.209 which I also did at the
end of the last section although I didn’t have time to do it in class. Let
At = Bt = Wt. Then

d 〈W, W 〉t = d 〈W 〉t = dt

So, the product rule gives:

dW 2
t = 2Wt dWt + dt

9.4.3. quadratic variation of Zt. is equal to the quadratic variation of
the stochastic part of Zt.

Lemma 9.11 (Lemma 1). If f is continuous with bounded variation
(e.g. if f is differentiable) then

〈f〉t = 0

(The quadratic variation of f is zero.)

Proof.

〈f〉t = lim
δt → 0
δf → 0

∑
(δf)2 = lim

δf→0
|δf |︸︷︷︸
→ 0

∑
|δf |︸ ︷︷ ︸

variation is bdd

= 0 · bdd = 0

�

Lemma 9.12 (Lemma 2). 〈f〉 = 0 ⇒ 〈f, X〉 = 0 ∀X.

Proof. If 〈f, X〉t > 0 then

〈X − af〉t = 〈X〉t − 2a 〈f, X〉t︸ ︷︷ ︸
fixed >0

+ a2 〈f〉t︸ ︷︷ ︸
0

If we make a really big then we can make 〈X − af〉t < 0. But this is
impossible because quadratic variations are sums of squares! �

Here is the theorem we need:

Theorem 9.13. Suppose that

Zt =

∫ t

0

Xs ds +

∫ t

0

Ys dWs

where Xs integrable (i.e.,
∫ t

0
|Xs| ds < ∞). The second integral is the

“stochastic part” of Zt. Written infinitesmally:

dZt = Xt dt + Yt dWt

The theorem is:
d 〈Z〉t = Y 2

t dt
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Proof. Let f =
∫ t

0
Xs ds and g =

∫ t

0
Ys dWs. Then Zt = f + g. So,

using the properties of covariation,

〈Z〉t = 〈f〉+ 〈g〉+ 2 〈f, g〉
But, 〈f〉 = 0 by Lemma 1 (9.11) since f has bounded variation. And
〈f, g〉 = 0 by Lemma 2 (9.12). So, 〈Z〉t = 〈g〉 and

d 〈Z〉t = (Yt dWt)
2 = Y 2

t dt

�

9.4.4. Itō’s second formula. Suppose that f(x) is C2, i.e., twice con-
tinuously differentiable. Then, the Taylor series of f gives is

(9.7) f(x + δx)− f(x) = f ′(x)δx +
1

2
f ′′(x)(δx)2 + o((δx)2)

Now, substitute x = Zt where Zt is as in the theorem above.

f(Zt+δt)− f(Zt) = f ′(Zt) δZt +
1

2
f ′′(Zt)(δZt)

2 + o

The infinitesmal version is:

df(Zt) = f ′(Zt) dZt +
1

2
f ′′(Zt) d 〈Z〉t

Substitute dZt = Xt dt + Yt dWt and d 〈Z〉t = Y 2
t dt and we get:

Theorem 9.14 (Itō II).

df(Zt) = f ′(Zt)Xt dt + f ′(Zt)Yt dWt +
1

2
f ′′(Zt)Y

2
t dt

9.4.5. Itō’s third formula. For this we need the vector version of the
Taylor series (9.7) and we need to apply it to x = (t, Zt). Then f ′

becomes the gradient ∇f = (f1, f2) and

f ′(x) dx = (f1, f2)

(
dt
dZt

)
= ḟ(t, Zt) dt + f ′(t, Zt) (Xt dt + Yt dWt)

and f ′′ becomes the Hessian D2f =

(
f11 f12

f21 f22

)
. So,

1

2
f ′′(x)(dx)2 = (dt, dZt)

(
f11 f12

f21 f22

) (
dt
dZt

)
=

1

2
f11 d 〈t〉︸︷︷︸

=0

+f12 d 〈t, Zt〉︸ ︷︷ ︸
=0

+
1

2
f22d 〈Z〉t =

1

2
f ′′(t, Zt)Y

2
t dt

Putting these together we get:
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Theorem 9.15 (Itō III).

df(t, Zt) = ḟ(t, Zt) dt + f ′(t, Zt) (Xt dt + Yt dWt) +
1

2
f ′′(t, Zt)Y

2
t dt

At this point we jumped ahead to the last section 9.8 on the Black-
Scholes formula.

9.5. Continuous martingales. We skipped this section. But this
looks like a good place for me to put the proof of Lévy’s theorem
which implies that all continuous martingales are reparametrizations
of Brownian motion.

Theorem 9.16 (Lévy). A continuous L2 martingale Mt starting at 0
is standard Brownian motion if and only if M2

t − t is a martingale.

What follows is from Kunita and Watanabe [2] which is considered
to be the most elegant. I also included proofs of the necessary lemmas.

9.5.1. first step.

Lemma 9.17. Assuming the conditions of Theorem 9.16, 〈M〉t = t.

The proof of this lemma uses Meyer’s theorem proved in class that

Theorem 9.18 (Meyer). If Mt is a continuous L2 martingale then
〈M〉t is the unique continuous increasing process starting at 0 so that

M2
t − 〈M〉t

is a martingale.

Except that I didn’t prove the uniqueness and I didn’t define “in-
creasing process.”

9.5.2. uniqueness of increasing process.

Definition 9.19. Xt is called an increasing process if

t > s ⇒ Xt ≥ Xs a.s.

(1) Clearly, Xt = t is a continuous increasing process.
(2) 〈M〉t is an increasing process starting at 0 since

〈M〉t − 〈M〉s = lim
δt→0

∑
(Mti −Mti−1

)2 ≥ 0

And 〈M〉t is continuous if Mt is continuous and square summa-
ble (by definition of square summable).
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Proof of uniqueness part of Meyer’s Theorem. Suppose that At, Bt are
continuous increasing processes starting at 0 and

M2
t − At, M2

t −Bt

are martingales. Then the difference

At −Bt

is also a continuous martingale starting at 0 with bounded variation
(for t bounded). By the following lemma this implies that At = Bt. So,
the continuous increasing process that we need to subtract from M2

t to
make it into a martingale is unique. �

Lemma 9.20. Suppose Mt is a continuous martingale starting at 0
and Mt has bounded variation for bounded t. Then Mt = 0 for all t.

Proof. By Lemma 1 (9.11), this implies that the quadratic variation of
Mt is identically zero: 〈M〉t = 0. Therefore, M2

t is also a martingale
by the first part of Meyer’s theorem that we already proved in (9.6).
But M2

t ≥ 0. So, E(Mt) = 0 only if Mt = 0 almost surely. �

9.5.3. Kunita-Watanabe. One of the main results of [2] was to general-
ize Itō’s formula to the case of L2 martingales. Or perhaps it would be
more fair to say that they formulated the theory of stochastic integrals
in such a way that it easily extends to this case.

Theorem 9.21 (Kunita-Watanabe). If Mt is a continuous L2 martin-
gale and f is C2 then

f(Mt)− f(M0) =

∫ t

0

f ′(Ms) dMs +
1

2

∫ t

0

f ′′(Ms) d 〈M〉s

Now we can prove Lévy’s theorem. Suppose that M2
t − t is a mar-

tingale. We know that M2
t − 〈M〉t is also a martingale. By Meyer’s

uniqueness theorem we can conclude that 〈M〉t = t.
Now, let f(x) = eixz, f ′(x) = izeixz, f ′′(x) = −z2eixz where z is a

formal variable. Then f(Mt) = eiMtz and

E(eiMtz) = 1 + iE(Mt)z −
1

2
E(M2

t )z2 − i

3!
E(M3

t )z3 +
1

4!
E(M4

t )z4 + · · ·

gives all of the moments of Mt. So, it suffices to show that these
moments are what they should be if Mt were Brownian motion. I.e., it
suffices to show that

E(eiMtz) = e−tz2/2



MATH 56A: STOCHASTIC PROCESSES CHAPTER 9 15

But the Kunita-Watanabe variation of Itō’s formula gives:

E(f(Mt)− f(M0)) =
1

2

∫ t

0

E(f ′′(Ms)) ds

since d 〈M〉s = ds and since anything predictable (like f(Ms)) times
dMs has expectation 0. Since f(M0) = e0 = 1 and f ′′(Ms) = −z2eiMtz

we have

E(eiMtz)− 1 =
1

2

∫ t

0

−z2E(eiMsz) ds

Let h(t) = E(eiMtz). Then

h(t)− 1 =
−z2

2

∫ t

0

h(s) ds

Differentiate both sides:

h′(t) =
−z2

2
h(t)

This is just exponential growth: h(t) = h(0)e−tz2/2. But h(0) = 1 since
M0 = 0. So,

h(t) = E(eiMtz) = e−tz2/2

as claimed.

9.6. Girsanov transformation. We skipped this section.
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9.7. Feynman-Kac. The formula of Feynman and Kac gives another
way to solve the Black-Scholes equation. First we need to understand
how bonds grow if their rates are variable.

9.7.1. variable bond rate. Suppose the bond rate changes with time:
r(t).Then the value of your bonds will grow by

(9.8) dYt = r(t)Yt dt

(9.9) Yt = Y0 exp

(∫ t

0

r(s) ds

)
Why is (9.9) the solution of (9.8)?

Yt+dt = Y0 exp

(∫ t

0

r(s) ds +

∫ t+dt

t

r(s) ds

)
= Yt exp(r(t)dt) = Yt(1 + r(t)dt + r(t)2dt2/2 + · · ·︸ ︷︷ ︸

=0

)

dYt = Ytr(t)dt

If we solve (9.9) for Y0 we get:

Y0 = Yt exp

(∫ t

0

−r(s) ds

)

9.7.2. the stochastic process. Now suppose we have a stochastic process
Zt satisfying the stochastic differential equation:

dZt = a(Zt)dt + b(Zt)dWt

Lemma 9.22. Zt is a martingale if and only if a(Zt) is identically zero
a.s.

Proof. Zt is a martingale iff E(dZt | Ft) = a(Zt)dt = 0 �

Let Jt be given by

Jt := exp

(∫ t

0

−r(s, Zs) ds

)
This is how much one dollar at time t was worth at time 0 if the bond
rate depends on time and on Zt.
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9.7.3. the payoff. If the payoff function is f(ZT ) then the value at time
0 of this payoff is

g(ZT )JT

How much of this value is determined by time t (0 ≤ t ≤ T )?

JT = exp

(∫ T

0

−r(s, Zs) ds

)

= exp

(∫ t

0

−r(s, Zs) ds +

∫ T

t

−r(s, Zs) ds

)
= Jt exp

(∫ T

t

−r(s, Zs) ds

)
9.7.4. the martingale.

Mt := E(g(ZT )JT | Ft)

= Jt E(g(ZT )exp

(∫ T

t

−r(s, Zs) ds

)
| Ft)︸ ︷︷ ︸

V (t,Zt)

= JtV (t, Zt)

with MT = g(ZT ). This is a martingale by the law of iterated expec-
tation:

E(Mt | Fs) = E(E(g(ZT )JT | Ft) | Fs) = E(g(ZT )JT | Fs) = Ms

Take the differential:

dMt = dJ V + J dV

= Jt(−r(t, Zt)V dt + Jt

(
V̇ dt + V ′ dZt +

1

2
V ′′ d 〈M〉t

)
= Jt(−r(t, Zt)V dt + Jt

(
V̇ dt + V ′a dt + V ′b dWt +

1

2
V ′′b2 dt

)
Since Mt is a martingale, the coefficient of dt must be zero (Lemma
9.22) Therefore, if x = Ztthen

(9.10) −r(t, x)V (t, x) + V̇ (t, x) + a(x)V ′(t, x) +
b2(x)

2
V ′′(t, x) = 0

(9.11) V (T, x) = g(x)
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Theorem 9.23. The solution of the stochastic differential equation
(9.10) with boundary condition (9.11) is given by

V (t, x) = Ex(g(ZT )exp

(∫ T

t

−r(s, Zs) ds

)
)

where
dZt = a(Zt) dt + b(Zt) dWt

9.7.5. application to Black-Scholes. If you apply this to the Black-
Scholes equation (9.12) you get

r(t, x) = r

a(x) = rx

b(x) = σx

So,
V (t, x) = Ex((ZT −K)+e−r(T−t))

dZt = rZt dt + σZt dWt

These equations say that the fair price of the option at time t is equal
to the expected value of the option at time T adjusted for inflation
assuming the stock has drift equal to the bond rate.
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9.8. Black-Scholes.

9.8.1. the set-up.

St = value of one share of stock at time t
dSt = µStdt + σSt dWt (= return)
µ = drift (constant in this model)
σ = volatility (also constant)
Wt = standard Brownian motion

We are looking at a European call option. This is an option to buy one
share of stock at price K at time T .

K = exercise price = strike price
T = expiry date
V (t, x) := fair price of the option at time t given that St = x

We want to calculate V (t, St). We know how much it will be worth at
expiry:

V (T, x) = (x−K)+ := max(x−K, 0)

But how much is the option worth today?

9.8.2. replicating portfolio. The theory is that there is a portfolio Ot

whose value at time T will be exactly (ST −K)+. Then the value of the
option should be the present value of the portfolio. Black and Scholes
assumed that there are no arbitrage opportunities. This implies that
Ot is unique. In [1] it says that there are always sure ways to lose
money. So, they don’t assume that the value of Ot is unique. Instead
it is proved that the fair price of the option is equal to the value of the
cheapest replicating portfolio. Who is right is a matter of debate.

Fortunately, in this case, the replicating portfolio (also called a hedg-
ing strategy) is unique.

Our portfolio is just a combination of stocks and bonds but we only
have one stock and one bond to choose from in this model. So,

Ot = XtSt + Yt

Xt = number of shares of stock
Yt = money in bonds
r = bond rate (assumed constant)

The problem is to find Xt and Yt so that Ot = V (t, St) for all t ≤ T .
Note: Ot needs to be self-financing. This means that we have to

continuously reinvest all profits. So, Ot grows in two steps:

(a) Stocks and bonds increase in value. (⇒ more $$)
(b) You immediately reinvest the profit. (zero net gain in this step)
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Step (a):

dOt = XtdSt + rYt dt

Step (b): Change Xt and Yt by dXt, dYt so that there is no net change

over what you got in step (a). Using the product rule this means:

dOt = XtdSt + rYt dt = SdXt + XtdSt + d 〈X, S〉t + dYt

We need to have V (t, St) = Ot. Using Itō’s third formula we get:

dV (t, St) = V̇ (t, St) dt + V ′(t, St) dSt +
1

2
V ′′(t, St)σ

2S2
t dt

= V̇ (t, St) dt + V ′(t, St)µStdt + V ′(t, St)σStdWt︸ ︷︷ ︸
stochastic part

+
1

2
V ′′(t, St)σ

2S2
t dt

If this is equal to

dOt = XtdSt + rYt dt = XtµStdt + XtσStdWt︸ ︷︷ ︸
stochastic part

+rYt dt

then the stochastic parts must be equal. So,

Xt = V ′(t, St)

Some people say it this way: If you are holding the option V (t, St) and
you sell off Xt = V ′(t, St) number of shares of stock then you have
hedged away all of your risk (since the stochastic parts will cancel).
Therefore, the financial instrument that you are holding: V (t, St)−XtSt

must be increasing in value at the bond rate which is exactly the case.
Now go back to the equation dV (t, St) = dOt and cross out the terms

which are equal (XtdSt and V ′(t, St)dSt) and divide by dt. Then we
have:

rYt = V̇ (t, St) +
1

2
V ′′(t, St)σ

2S2
t

But we also know that

Yt = Ot −XtSt = V (t, St)− V ′(t, St)St

So,

V̇ (t, St) +
1

2
V ′′(t, St)σ

2S2
t − rV (t, St) + rV ′(t, St)St = 0

which we can rewrite as:

(9.12) V̇ (t, x) +
1

2
σ2x2V ′′(t, x) + rxV ′(t, x)− rV (t, x) = 0

This is the Black-Scholes equation. This can be solved using Feynman-
Kac. But it can also be solved directly using some tricks.
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9.8.3. simplification of Black-Scholes equation. The first step is to no-
tice that the drift µ does not matter. It is not part of Equation (9.12).
Therefore, we may assume that µ = 0 and

(9.13) dSt = σSt dWt

The next step is: We may assume that r = 0. This is the same as
measuring value in terms of value at time T adjusted for inflation.
When r = 0 the equation becomes:

(9.14) V̇0(t, x) +
1

2
σ2x2V ′′

0 (t, x) = 0

When I say “we may assume r = 0” I mean that, if you can solve the
r = 0 equation then you can also solve the original equation. Sup-
pose V0(t, x) is the solution of this equation with boundary condition
V0(T, x) = (x−K)+. Then the solution of the original equation (9.12)
is

(9.15) V (t, x) = e−r(T−t)V0(t, e
r(T−t)x)

The reason is that V0 is in terms of time T dollars and x dollars today
(at time t) is worth er(T−t)x dollars at time T and the output V0 is in
terms of time T dollars. So, V0 of those dollars is worth e−r(T−t)V0 in
today’s dollars.

If you don’t believe it, you can just differentiate the expression in
(9.15):

V̇ = rV + e−r(T−t)V̇0 − rxV ′
0

V = e−r(T−t)V0

V ′ = V ′
0

V ′′ = er(T−t)V ′′
0

Then

V̇ +
1

2
σ2x2V ′′ + rxV ′ − rV

= (rV + e−r(T−t)V̇0 − rxV ′
0) +

1

2
σ2x2er(T−t)V ′′

0 + rxV ′ − rV

= e−r(T−t)V̇0 +
1

2
σ2x2er(T−t)V ′′

0 = 0
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9.8.4. solution of Black-Scholes. Remember that µ = 0 = r. Thus

(9.16) dSt = σSt dWt

dV0(t, St) = dOt = XtdSt + rYt = XtσSt dWt

So, St, Ot, V0(t, St) are all martingales. Therefore,

V0(t, St) = E(V0(T, ST ) | Ft)

But T is the payoff date. So, we get

V0(T, x) = g(x) = (x−K)+ = max(x−K, 0)

where g(x) represents the payoff function. So, the value of the option
is just the expected payoff which will depend on the value of the stock
at time T . So, we need to calculate ST .

Equation (9.16) can be solved for St as follows.

d ln St =
dSt

St

+
1

2

(
−1

S2
t

)
σ2S2

t dt

= σ dWt −
σ2

2
dt

So,

ln St = σWt −
σ2t

2
+ C

Plugging in t = 0 gives C = ln S0. So,

St = S0exp

(
σWt −

σ2t

2

)
Now attach a little timer on the stock certificate and set that timer

to zero at time T − t. When the timer reaches t the expiry date has
arrived:

V0(T − t, x) = E(g(St) |S0 = x)

= E
(
g(x eσWt−σ2t/2)

)
Letting y = x e−σ2t/2 we get:

V0(T − t, y eσ2t/2) = E
(
(y eσWt −K)+

)
But σWt ∼ N(0, σ2t). So we can use the following lemma with b =

σ
√

t, a = y = x e−σ2t/2 = xe−b2/2.

Lemma 9.24. Suppose that X = aebZ where Z ∼ N(0, 1). Then the
expected value of g(X) = (X −K)+ is

E((X −K)+) = aeb2/2Φ

(
ln(a/K) + b2

b

)
−KΦ

(
ln(a/K)

b

)
where Φ is the distribution function for N(0, 1).
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Theorem 9.25. The value of the European call option at time T − t
is

V0(T − t, x) = xΦ

(
ln(x/K) + σ2t/2

σ
√

t

)
−KΦ

(
ln(x/K)− σ2t/2

σ
√

t

)
if St = x assuming the bond rate is zero and

V (T − t, x) = e−rtV0(t, e
rtx)

= xΦ

(
ln(x/K) + rt + σ2t/2

σ
√

t

)
− e−rtKΦ

(
ln(x/K) + rt− σ2t/2

σ
√

t

)
if the bond rate is a constant r.

Proof of Lemma 9.24. The expected value is given by an integral which
is easy to compute:

E((aebZ −K)+) =

∫ ∞

−∞
(aebz −K)+φ(z) dz

Since aebz = K when z = 1
b
ln(K/a) we can write this as:∫ ∞

1
b

ln(K/a)

aebz−z2/2 −Ke−z2/2 dz√
2π

For the first part you can change variables by z = y + b, dz = dy to get∫ ∞

1
b

ln(K/a)

aebz−z2/2 dz√
2π

=

∫ ∞

1
b

ln(K/a)−b

aeb2/2−y2/2 dy√
2π

Changing y to −y this gives

aeb2/2

∫ 1
b

ln(a/K)+b

−∞
e−y2/2 dy√

2π
= aeb2/2Φ

(
1

b
ln(a/K) + b

)
The second term is easy:∫ ∞

1
b

ln(K/a)

−Ke−z2/2 dz√
2π

= −K

(
1− Φ

(
1

b
ln(K/a)

))

= −KΦ

(
1

b
ln(a/K)

)
�

I’ll stop here. (But in the lecture I have to go back to section 9.7 on
the Feynman-Kac formula.)

“The one thing probabilists can do which analysts can’t is stop...”
-Sid Port, analyst [3]
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