
Based on slides © McGraw-Hill

Additional material © 2004/2005/2006 Lewis/Martin

Chapter 7

Assembly

Language

7-2CSE 240

Revisited: Counting Characters (From Ch 5 & 6)

 Count the occurrences of a character in a file
Remember this?

Count = 0
(R2 = 0)

Ptr = 1st file character
(R3 = M[x3012])

Input char

from keybd
(TRAP x23)

Done?
(R1 ?= EOT)

Load char from file
(R1 = M[R3])

Match?
(R1 ?= R0)

Incr Count
(R2 = R2 + 1)

Load next char from file
(R3 = R3 + 1, R1 = M[R3])

Convert count to

ASCII character
(R0 = x30, R0 = R2 + R0)

Print count
(TRAP x21)

HALT
(TRAP x25)

NO

NO

YES

YES

7-3CSE 240

Revisited: Counting Characters (From Ch 5 & 6)

Count = 0
(R2 = 0)

Ptr = 1st file character
(R3 = M[x3012])

Input char

from keybd
(TRAP x23)

Done?
(R1 ?= EOT)

Load char from file
(R1 = M[R3])

Match?
(R1 ?= R0)

Incr Count
(R2 = R2 + 1)

Load next char from file
(R3 = R3 + 1, R1 = M[R3])

Convert count to

ASCII character
(R0 = x30, R0 = R2 + R0)

Print count
(TRAP x21)

HALT
(TRAP x25)

NO

NO

YES

YES

 R2 ! 0 (Count)

 R3 ! M[x3012] (Ptr)

 Input to R0 (TRAP x23)
 R1 ! M[R3]

 R4 ! R1 – 4 (EOT)

 BRz x????
 R1 ! NOT R1

 R1 ! R1 + 1

 R1 ! R1 + R0

 BRnp x????
 R2 ! R2 + 1

 R3 ! R3 + 1

 R1 ! M[R3]

 BRnzp x????
 R0 ! M[x3013]

 R0 ! R0 + R2

 Print R0 (TRAP x21)

 HALT (TRAP x25)

 x3012: x4000

 x3013: x0030

7-4CSE 240

Assembly Language: Opcode + Operands

 R2 ! 0 (Count)

 R3 ! M[x3012] (Ptr)

 Input to R0 (TRAP x23)
 R1 ! M[R3]

 R4 ! R1 – 4 (EOT)

 BRz x????
 R1 ! NOT R1

 R1 ! R1 + 1

 R1 ! R1 + R0

 BRnp x????
 R2 ! R2 + 1

 R3 ! R3 + 1

 R1 ! M[R3]

 BRnzp x????
 R0 ! M[x3013]

 R0 ! R0 + R2

 Print R0 (TRAP x21)

 HALT (TRAP x25)

 x3012: x4000

 x3013: x0030

.ORIG x3000

AND R2,R2,#0

LD R3,???

TRAP x23

LDR R1,R3,#0

ADD R4,R1,#-4

BRz ????

NOT R1,R1

ADD R1,R1,#1

ADD R1,R1,R0

BRnp ???

ADD R2,R2,#1

ADD R3,R3,#1

LDR R1,R3,#0

BRnzp ???

LD R0,???

ADD R0,R0,R2

TRAP x21

TRAP x25

.FILL x4000

.FILL x0030

.END

7-5CSE 240

Introducing Labels for PC-Relative Locations
.ORIG x3000

AND R2,R2,#0

LD R3,???

TRAP x23

LDR R1,R3,#0

ADD R4,R1,#-4

BRz ???

NOT R1,R1

ADD R1,R1,#1

ADD R1,R1,R0

BRnp ???

ADD R2,R2,#1

ADD R3,R3,#1

LDR R1,R3,#0

BRnzp ???

LD R0,???

ADD R0,R0,R2

TRAP x21

TRAP x25

.FILL x4000

.FILL x0030

.END

 .ORIG x3000

 AND R2,R2,#0

 LD R3,PTR

 TRAP x23

 LDR R1,R3,#0

 ADD R4,R1,#-4

TEST BRz OUTPUT

 NOT R1,R1

 ADD R1,R1,#1

 ADD R1,R1,R0

 BRnp GETCHAR

 ADD R2,R2,#1

GETCHAR ADD R3,R3,#1

 LDR R1,R3,#0

 BRnzp TEST

OUTPUT LD R0,ASCII

 ADD R0,R0,R2

 TRAP x21

 TRAP x25

PTR .FILL x4000

ASCII .FILL x0030

 .END 7-6CSE 240

Assembly: Human-Readable Machine Language

 Computers like ones and zeros…

 Humans like mnemonics …

 Assembler

• A program that turns mnemonics into machine instructions

• ISA-specific

• Mnemonics for opcodes

• One assembly instruction translates to one machine instruction

• Labels for memory locations

• Additional operations for allocating storage and initializing data

ADD R6, R2, R6 ; increment index reg.
Opcode Dest Src1 Src2 Comment

0001110010000110

7-7CSE 240

An Assembly Language Program
 ;
 ; Program to multiply a number by the constant 6
 ;
 .ORIG x3050
 LD R1, SIX
 LD R2, NUMBER
 AND R3, R3, #0 ; Clear R3. It will
 ; contain the product.
 ; The inner loop
 ;
 AGAIN: ADD R3, R3, R2
 ADD R1, R1, #-1 ; R1 keeps track of
 BRp AGAIN ; the iteration.
 HALT
 ;
 NUMBER: .BLKW 1
 SIX: .FILL x0006
 ;
 .END

7-8CSE 240

LC-3 Assembly Language Syntax

 Each line of a program is one of the following:

• An instruction

• An assembler directive (or pseudo-op)

• A comment

 Whitespace (between symbols) and case are ignored

 Comments (beginning with “;”) are also ignored

 Labels for instructions can be followed by “:”

 An instruction has the following format:

LABEL: OPCODE OPERANDS ; COMMENTS

optional mandatory

7-9CSE 240

Opcodes and Operands

 Opcodes
• Reserved symbols that correspond to LC-3 instructions

• Listed in Appendix A

!ex: ADD, AND, LD, LDR, …

 Operands
• Registers -- specified by R0, R1, …, R7

• Numbers -- indicated by # (decimal) or x (hex) or b (binary)

!Examples: “#10” is “xA” is “b1010”

• Label -- symbolic name of memory location

• Separated by comma

• Number, order, and type correspond to instruction format

!ex:
ADD R1,R1,R3
ADD R1,R1,#3
LD R6,NUMBER
BRz LOOP

7-10CSE 240

Labels and Comments

 Label

• Placed at the beginning of the line

• Assigns a symbolic name to the address corresponding to line

!ex:
LOOP: ADD R1,R1,#-1

BRp LOOP

 Comment

• Anything after a semicolon is a comment

• Ignored by assembler

• Used by humans to document/understand programs

• Tips for useful comments:

!Avoid restating the obvious, as “decrement R1”

!Provide additional insight, as in “accumulate product in R6”

!Use comments to separate pieces of program

7-11CSE 240

Assembler Directives

 Pseudo-operations

• Do not refer to operations executed by program

• Used by assembler

• Look like instruction, but “opcode” starts with dot

allocate multiple words of storage,

value unspecified

number.BLKW

MeaningOperandOpcode

allocate n+1 locations,

initialize w/characters and null

terminator

n-character

string

.STRINGZ

allocate one word, initialize with

value

value.FILL

end of program.END

starting address of programaddress.ORIG

7-12CSE 240

Muti-Word Assembler Directives

 .BLKW #4 shorthand for:

• .FILL x0

• .FILL x0

• .FILL x0

• .FILL x0

 .STRINGZ “Hello” shorthand for:

• .FILL x48 ; ‘H’

• .FILL x65 ; ‘e’

• .FILL x6C ; ‘l’

• .FILL x6C ; ‘l’

• .FILL x6F ; ‘o’

• .FILL x0 ; NULL terminator

7-13CSE 240

Trap Codes

 LC-3 assembler provides “pseudo-instructions” for

each trap code, so you don’t have to remember them

DescriptionEquivalentCode

Write null-terminated string to console.

Address of string is in R0.

TRAP x22PUTS

Read one character from keyboard.

Character stored in R0[7:0].

TRAP x20GETC

Write one character (in R0[7:0]) to console.TRAP x21OUT

Print prompt on console,

read (and echo) one character from keybd.

Character stored in R0[7:0].

TRAP x23IN

Halt execution and print message to

console.

TRAP x25HALT

7-14CSE 240

Style Guidelines

 Improve the readability of your programs

• Formatting: start labels, opcode, operands in same column

• Use comments to explain what each register does

• Give explanatory comment for most instructions

• Use meaningful symbolic names

• Provide comments between program sections

• Each line must fit on the page -- no wraparound or truncations

!Long statements split in aesthetically pleasing manner

 Use structured programming constructs

• From chapter 6

• Don’t be overly clever (may make it harder to change later)

 High-level programming style is similar

7-15CSE 240

Char Count in Assembly Language (1 of 3)
 ;
 ; Program to count occurrences of a character in a file.
 ; Character to be input from the keyboard.
 ; Result to be displayed on the monitor.
 ; Program only works if no more than 9 occurrences are found.
 ;
 ;
 ; Initialization
 ;
 .ORIG x3000
 AND R2, R2, #0 ; R2 is counter, initially 0
 LD R3, PTR ; R3 is pointer to characters
 GETC ; R0 gets character input
 LDR R1, R3, #0 ; R1 gets first character
 ;
 ; Test character for end of file
 ;
 TEST: ADD R4, R1, #-4 ; Test for EOT (ASCII x04)
 BRz OUTPUT ; If done, prepare the output

7-16CSE 240

Char Count in Assembly Language (2 of 3)
 ;
 ; Test character for match. If a match, increment count.
 ;
 NOT R1, R1
 ADD R1, R1, #1 ; R1 = -R1
 ADD R1, R1, R0 ; R1 == R0?
 BRnp GETCHA ; If no match, do not increment
 ADD R2, R2, #1
 ;
 ; Get next character from file.
 ;
 GETCHA: ADD R3, R3, #1 ; Point to next character.
 LDR R1, R3, #0 ; R1 gets next char to test
 BRnzp TEST
 ;
 ; Output the count.
 ;
 OUTPUT: LD R0, ASCII ; Load the ASCII template
 ADD R0, R0, R2 ; Covert binary count to ASCII
 OUT ; ASCII code in R0 is displayed.
 HALT ; Halt machine

7-17CSE 240

Char Count in Assembly Language (3 of 3)
 ;
 ; Storage for pointer and ASCII template
 ;
 ASCII: .FILL x0030
 PTR: .FILL x4000
 .END

7-18CSE 240

Assembly Process

 Program that converts assembly language file (.asm)

into an executable file (.obj) for the LC-3 simulator

 First Pass:

• Scan program file

• Find all labels and calculate the corresponding addresses;

this is called the symbol table

 Second Pass:

• Convert instructions to machine language, using information

from symbol table

7-19CSE 240

First Pass: Constructing the Symbol Table

1. Begin with the .ORIG statement, which tells us the

address of the first instruction

• Initialize location counter (LC), which keeps track of the

current instruction

2. For each non-blank line in the program:

a) If line contains a label, put label/LC pair into symbol table

b) Increment LC

– NOTE: If statement is .BLKW or .STRINGZ, increment LC

by the number of words allocated

– A line with only a comment is considered “blank”

3. Stop when .END statement is reached

7-20CSE 240

Second Pass: Generating Machine Code

 For each executable assembly language statement

• Generate the corresponding machine language instruction

• If operand is a label, look up the address from the symbol table

 Potential errors:

• Improper number or type of arguments

!ex: NOT R1,#7

ADD R1,R2

ADD R3,R3,NUMBER

• Immediate argument too large

!ex: ADD R1,R2,#1023

• Address (associated with label) more than 256 from instruction

!Can’t use PC-relative addressing mode

7-21CSE 240

Assembly Process Example: First Pass
 .ORIG x3000

x3000 AND R2,R2,#0

x3001 LD R3,PTR

x3002 TRAP x23

x3003 LDR R1,R3,#0

x3004 ADD R4,R1,#-4

x3005 TEST BRz OUTPUT

x3006 NOT R1,R1

X3007 ADD R1,R1,#1

x3008 ADD R1,R1,R0

x3009 BRnp GETCHAR

x300A ADD R2,R2,#1

x300B GETCHAR ADD R3,R3,#1

x300C LDR R1,R3,#0

x300D BRnzp TEST

x300E OUTPUT LD R0,ASCII

x300F ADD R0,R0,R2

x3010 TRAP x21

x3011 TRAP x25

x3012 ASCII .FILL x0030

x3013 PTR .FILL x4000

 .END

x3013PTR

x3012ASCII

x300EOUTPUT

x300BGETCHAR

x3005TEST

AddressSymbol

7-22CSE 240

Assembly Process Example: Second Pass
 .ORIG x3000

x3000 AND R2,R2,#0

x3001 LD R3,PTR

x3002 TRAP x23

x3003 LDR R1,R3,#0

x3004 ADD R4,R1,#-4

x3005 TEST BRz OUTPUT

x3006 NOT R1,R1

x3007 ADD R1,R1,#1

x3008 ADD R1,R1,R0

x3009 BRnp GETCHAR

x300A ADD R2,R2,#1

x300B GETCHAR ADD R3,R3,#1

x300C LDR R1,R3,#0

x300D BRnzp TEST

x300E OUTPUT LD R0,ASCII

x300F ADD R0,R0,R2

x3010 TRAP x21

x3011 TRAP x25

x3012 ASCII .FILL x0030

x3013 PTR .FILL x4000

 .END

x3013PTR

x3012ASCII

x300EOUTPUT

x300BGETCHAR

x3005TEST

AddressSymbol

0101 010 010 1 00000

0010 011 000010001

1111 0000 00100011

.

.

7-23CSE 240

LC-3 Assembler

 Generates two different output files

 Object file (.obj)

• Binary representation of the program

 Symbol file (.sym)

• Includes names of labels (also known as symbols)

• Used by simulator to make code easier to read

• A text file of symbol mappings

7-24CSE 240

Object File Format

LC-3 object file contains

• Starting address (location where program must be loaded),

followed by…

• Machine instructions

• (Real-world object file formats can be more complicated)

LC-3 Example

• Beginning of “count character” object file looks like this:

0011000000000000

0101010010100000

0010011000010001

1111000000100011

.

.

.

.ORIG x3000

AND R2, R2, #0

LD R3, PTR

TRAP x23

7-25CSE 240

Using Multiple Object Files

 An object file is not necessarily a complete program

• System-provided library routines

• Code blocks written by multiple developers

 For LC-3 simulator

• Load multiple object files into memory, then start executing

at a desired address

• System routines, such as keyboard input, are loaded with OS

!OS code starts at 0x0200

!User code should be loaded between x3000 and xFDFF

• Each object file includes a starting address

• Be careful not to load overlapping object files

7-26CSE 240

Linking and Loading

 Loading is the process of copying an executable image

into memory

• More sophisticated loaders are able to relocate images to fit

into available memory

• Must readjust branch targets, load/store addresses

 Linking is the process of resolving symbols between

independent object files

• Suppose we define a symbol in one module, and want to use it

in another

• Some notation, such as .EXTERNAL, is used to tell assembler

that a symbol is defined in another module

• Linker will search symbol tables of other modules to resolve

symbols and complete code generation before loading

