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Preface

General topology, also called point set topology, has recently become an essential
part of the mathematical background of both graduate and undergraduate students.
This book is designed to be used either as a textbook for a formal course in topology
or as a supplement to all current standard texts. It should also be of considerable
value as a source and reference book for those who require a comprehensive and
rigorous introduction to the subject.

Each chapter begins with clear statements of pertinent definitions, principles and
theorems together with illustrative and other descriptive material. This is followed
by graded sets of solved and supplementary problems. The solved problems serve to
illustrate and amplify the theory, bring into sharp focus those fine points without
which the student continually feels himself on unsafe ground, and provide the repetition
of basic principles so vital to effective learning. Numerous proofs of theorems are
included among the solved problems. The supplementary problems serve as a complete
review of the material of each chapter.

Topics covered include the basic properties of topological, metric and normed spaces,
the separation axioms, compactness, the product topology, and connectedness. Theorems
proven include Urysohn’s lemma and metrization theorem, Tychonoff’s product theorem
and Baire’s category theorem. The last chapter, on function spaces, investigates the
topologies of pointwise, uniform and compact convergence. In addition, the first three
chapters present the required concepts of set theory, the fourth chapter treats of the
topology of the line and plane, and the appendix gives the basic principles of the
real numbers.

More material is included here than can be covered in most first courses. This
has been done to make the book more flexible, to provide a more useful book of
reference, and to stimulate further interest in the subject.

I wish to thank many of my friends and colleagues, especially Dr. Joan Landman,
for invaluable suggestions and critical review of the manuscript. I also wish to
express my gratitude to the staff of the Schaum Publishing Company, particularly
to Jeffrey Albert and Alan Hopenwasser, for their helpful cooperation.

SEYMOUR LIPSCHUTZ

Temple University
May, 1965
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Chapter 1

Sets and Relations

SETS, ELEMENTS

The concept set appears in all branches of mathematics. Intuitively, a set is any well-
defined list or collection of objects, and will be denoted by capital letters A,B,X,Y,....
The objects comprising the set are called its elements or members and will be denoted by
lower case letters a,b,x,¥%,.... The statement “p is an element of A” or, equivalently,
“p belongs to 4 is written

pEA
The negation of p € A is written p € A.

There are essentially two ways to specify a particular set. One way, if it is possible,
is by actually listing its members. For example,

r A = {a,e1,0,u)

denotes the set A whose elements are the letters a,¢,i,0 and u. Note that the elements
are separated by commas and enclosed in braces { }. The other way is by stating those
properties which characterize the elements in the set. For example,

* B = {x:x is an integer, x > 0}

which reads “B is the set of x such that x is an integer and x is greater than zero,”
denotes the set B whose elements are the positive integers. A letter, usually z, is used
to denote an arbitrary member of the set; the colon is read as ‘such that’ and the comma
as ‘and’.

%« Example 1.1: The set B above can also be written as B = {1,2,3,...}. Note that —6&€B, 3€B

and = & B.
» Example 1.2: Intervals on the real line, defined below, appear very often in mathematics. Here
a and b are real numbers with a < b.
Open interval from a to b = (a,b) = {x: a<2x2<b}
Closed interval from a to b = [a,b] = {&:a=x=05}
Open-closed interval from a to b = (e,b] = {z: a <z = b}
Closed-open interval from a to b = [a,b) = {x: a =2z < b}

The open-closed and closed-open intervals are also called half-open intervals.

Two sets 4 and B are equal, written A =B, if they consist of the same elements, i.e.
if each member of A belongs to B and each member of B belongs to A. The negation of
A =B is written A+ B.

¥ Example 1.3: Let E = {x: 22— 3x+2=0}, F=1{2,1} and G={1,2,2,1}. Then E=F =G.
Observe that a set does not depend on the way in which its elements are displayed.
A set remains the same if its elements are repeated or rearranged.

Sets can be finite or infinite. A set is finite if it consists of » different elements,
where » is some positive integer; otherwise a set is infinite. In particular, a set which
consists of exactly one element is called a singleton set.

1




2 SETS AND RELATIONS [CHAP. 1

SUBSETS, SUPERSETS
A set A is a subset of a set B or, equivalently, B is a superset of A, written

ACB or BDA

iff each element in A also belongs to B; that is, if x € A implies x € B. We also say that
A is contained in B or B contains A. The negation of ACB is written A¢B or BpA
and states that there is an x € A such that x € B.

Example 2.1: Consider the sets
A = {1,8,5,7,...}, B = {5,10,15,20,...}
C = {x: x is prime, « > 2} = {8,5,7,11,...}

Then C C A since every prime number greater than 2 is odd. On the other hand,
B ¢ A since 10 € B but 10 € 4.

Example 2.2: We will let N denote the set of positive integers, Z denote the set of integers, @ de-
note the set of rational numbers and R denote the set of real numbers. Accordingly,

NcZcQCR

Observe that A C B does not exclude the possibility that A=B. In fact, we are able
to restate the definition of equality of sets as follows:

Definition: | Two sets A and B are equal if and only if ACB and BCA.

In the case that ACB but 4 = B, we say that A is a proper subset of B or B contains
A properly. The reader should be warned that some authors use the symbol C for a
subset and the symbol C only for a proper subset.

Our first theorem follows from the preceding definitions.

Theorem 1.1: Let A, B and C be any sets. Then (i) ACA; (ii) if ACB and BCA then
A=B; and (iii) if ACB and BCC then ACC.

UNIVERSAL AND NULL SETS

In any application of the theory of sets, all sets under investigation are subsets of a
fixed set. We call this set the universal set or universe of discourse and denote it in this
chapter by U. It is also convenient to introduce the concept of the empty or null set,
that is, a set which contains no elements. This set, denoted by @, is considered finite and
a subset of every other set. Thus, for any set A, @CACU.

Example 3.1: In plane geometry, the universal set consists of all the points in the plane.
Example 3.2: Let A = {x:22 =4, xis odd}. Then A is empty, ie. A = Q.

Example 33: Let B = {{}. Then B+ () for B contains one element.

CLASSES, COLLECTIONS, FAMILIES AND SPACES

Frequently, the members of a set are sets themselves. For example, each line in a set
of lines is a set of points. To help clarify these situations, we use the words “class”,
“collection” and “family”’ synonymously with set. Usually we use class for a set of sets,
and collection or family for a set of classes. The words subclass, subcollection and
subfamily have meanings analogous to subset.

Example 4.1: The members of the class {{2,3}, {2}, {5,6}} are the sets {2,3}, {2} and {5, 6}.
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Example 42:  Consider any set A. The power set of A, denoted by P(A) or 24, is the class of all
subsets of A. In particular, if A = {a,b, ¢}, then

PA) = {4, {a,b}, {a,¢}, {b,c}, {a}, {b}, {c}, D} -
In general, if A is finite, say 4 has n elements, then P(A) will have 2" elements.

The word space shall mean a non-empty set which possesses some type of mathematical
" structure, e.g. vector space, metric space or topological space. In such a sitwation, we.
will call the elements in a space points. '

SET OPERATIONS

The union of two sets A and B, denoted by AUB, is the set of all elements which
belong to A or B, ie.,
AUB = {x:2€A or x & B}
Here “or” is used in the sense of “and/or”.
The intersection of two sets A and B, denoted by ANB, is the set of elements which
belong to both A and B, i.e.,

ANB :.{x:xeA and x € B}

If ANB = (), that is, if A and B do not have any elements in common, then A and B are
said to be disjoint or non-intersecting. A class o4 of sets is called a disjoint class of sets
if each pair of distinct sets in o4 is disjoint. ’

The relative complement of a set B with respect to a set A or, simply the difference of
A and B, denoted by A\ B, is the set of elements which belong to A but which do not
belong to B. In other words, ;

ANB = {(x:z€A, x&B)

Qbserve that AN\ B and B are disjoint, i.e. (ANB)NB = .

The absolute complement or, simply, complement of a set A, denoted by A¢, is the set
of elements which do not belong to A4, i.e,, J

A = {x:z€U, 2 & A}

In other words, A¢ is the difference of the universal set U and A.

Example 5.1:  The following diagrams, called Venn diagrams, illustrate the above set operations.
Here sets are represented by simple plane areas and U, the universal set, by the
area in the entire rectangle.

ANB is shaded

A\ B is shaded , Ac ig shaded
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Sets under the above operations satisfy various laws or identities which are listed
in the table below (Table 1). In fact, we state

Theorem 1.2: Sets satisfy the laws in Table 1.

LAWS OF THE ALGEBRA OF SETS

Idempotent Laws

la. AvA = 4 1b. AnA = A
Associative Laws

2a. (AUB)UC = AU(BUC) 2b. (ANB)NC = An(BNC)
Commutative Laws

3a. AUB = BUA 3b. AnB = BnNA
Distributive Laws

4a. AUBNC) = (AUB)N(AUC) 4b. AN(BUC) = (AnB)UANC)

Identity Laws

5a. Aup = A 5b. AnU = A

6a. AuU = U 6b. AN® = @
Complement Laws

7a. AUAc = U 7b. ANAc = @

8a. (A°)c = A 8b. Uc=0Q, @c=U
De Morgan’s Laws

9a. (AUB)c = AcnBe 9b. (ANnB)c = AcuBc

Table 1

Remark: Each of the above laws follows from an analogous logical law. For example,
ANB = {x:x€A and *€B}) = {x:x€B and x€A} = BNA

Here we use the fact that the composite statement “p and ¢, written p A q, is logically
equivalent to the composite statement “q and p”, ie. ¢ AD. :

The relationship between set inclusion and the above set operations follows.

Theorem 1.3: Each of the following conditions is equivalent to ACB:
(i) AnB=A4 (ili) BcC A (v) BUAc =T
(ii) AUB =B (iv) ANBc= @

PRODUCT SETS

Let A and B be two sets. The product set of A and B, written A X B, consists of all
ordered pairs (a,b) where a € A and b€ B, ie.,

AXB = {{a,b): a€A, bEB)}
The product of a set with itself, say A X A, will be denoted by 42.

Example 6.1: The reader is familiar with the Cartesian plane R2 = RX R (Fig. 1-1 below).
Here each point P represents an ordered pair (a, b) of real numbers and vice versa.

Example 62: Let A = {1,2,3} and B = {a,b}. Then
AXB = {{1,a),1,b, 2 a), 20, 3,a), (3,b)}
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Since A and B do not contain many elements, it is possible to represent 4 X B by
a coordinate diagram as shown in Fig. 1-2 above. Here the vertical lines through
the points of A and the horizontal lines through the points of B meet in 6 points
which represent A X B in the obvious way. The point P is the ordered pair (2, b).
In general, if a set A has s elements and a set B has ¢ elements, then A X B has
s times t elements.

Remark: The notion “ordered pair” (g, b) is defined rigorously by {(a,b) = {{a}, {e,b}}
From this definition, the “order” property may be proven:
(a,b) = (¢,d) implies a=c and b=4d

The concept of product set can be extended to any finite number of sets in a natural
way. The product set of the sets A, ...,An, denoted by

A1 XAsX - X An or [[-, A

consists of all m-tuples (ai,a., ...,an) where a; € A; for each 1.

RELATIONS

A binary relation (or relation) R from a set A to a set B assigns to each pair (a,b)
in A X B exactly one of the following statements:

(i) “a is related to b”, written a R b
(ii) “a is not related to b”, written a R b
A relation from a set A to the same set A is called a relation in A.

Example 7.1:  Set inclusion is a relation in any class of sets. For, given any pair of sets 4 and B,
either ACB or A¢B.

Observe that any relation R from a set A to a set B uniquely defines a subset R* of
A X B as follows: R* = (ab): aRb)

On the other hand, any subset R* of A X B defines a relation R from A to B as follows:
aRb iff (a,b) € R*

In view of the correspondence between relations R from A to B and subsets of A X B, we
redefine a relation by

Definition:]| A relation R from A to B is a subset of A X B.

The domain of a relation R from A to B is the set of first coordinates of the pairs in R
and its range is the set of second coordinates, i.e.,

domainof R = {a:(a,b)€ R}, rangeofR = {b:(a,b)ER}

The inverse of R, denoted by R}, is the relation from B to A defined by
R = [(,a): a,b)ER}
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Note that R~! can be obtained by reversing the pairs in R.

Example 7.2: Consider the relation

R = {12, 13, 2,3}
in 4 = {1,2,3}. Then the domain of R = {1,2}, the range of R = {2,3}, and
R-1 = (&0, 3,1, 3,2)}

Observe that B and E~1 are identical, respectively, to the relations < and > in

A: i oy .
€ @HER iff a<b and (¢,b)ER-1 iff a>b

The identity relation in any set A, denoted by A or A,, is the set of all pairs in A X4

with equal coordinates, i.e., A, = {((@ay:a€A}

The identity relation is also called the diagonal by virtue of its position in a coordinate
diagram of A X A.

EQUIVALENCE RELATIONS

A relation R in a set A4, i.e. a subset B of 4 X 4, is termed an equivalence relation iff
it satisfies the following axioms:

[Ei] For every a € A, (a,a) € R.

[E;] If (a,b) € R, then (b,a) € R.

[Es]1 If (a,b) € R and (b,c¢) € R, then (a,c¢) € R.

In general, a relation is said to be reflexive iff it satisfies [E:], symmetric iff it satisfies [E:]

and transitive iff it satisfies [Es]. Accordingly, a relation R is an equivalence relation iff
it is reflexive, symmetric and transitive.

Example 8.1: Consider the relation C, i.e. set inclusion. Recall, by Theorem 1.1, that ACcA for

every set A, and
if ACB and BCC then AcCC

Hence C is both reflexive and transitive. On the other hand,
ACB and A#B implies B¢A

Accordingly, C is not symmetric and hence is not an equivalence relation.

Example 8.2: In Euclidian geometry, similarity of triangles is an equivalence relation. For if
a, B and y are any triangles then: (i) « is similar to itself; (ii) if « is similar to 8,
then g is similar to «; and (iii) if « is similar to 8 and g is similar to y then « is
similar to y.

If R is an equivalence relation in A, then the equivalence claés of any element a € 4,
denoted by [a], is the set of elements to which «a is related:

[e] = {x: (a,x) € R}
The collection of equivalence classes of 4, denoted by A/R, is called the quotient of A by R:
A/R = {la]l:a € A}
The quotient set A/R possesses the following properties:
Theorem 1.4: Let R be an equivalence relation in A and let [a] be the equivalence class
of a € A. Then:
(i) For every a €A, a € [a].
(ii) [a]l=1[b] if and only if (a,b) € R.
(iii) If [al = [b], then [a] and [b] are disjoint.
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A class ¢4 of non-empty subsets of A is called a partition of A iff (1) each a €A
belongs to some member of ¢4 and (2) the members of ¢4 are pair-wise disjoint. Accord-
ingly, the previous theorem implies the following fundamental theorem of equivalence
relations:

Theorem 1.5: Let R be an equivalence relation in A. Then the quotient set A/R is a
partition of A.

Example 8.3: Let Rj5 be the relation in Z, the set of integers, defined by
z = y (mod5)

which reads “x is congruent to y modulo 5” and which means “x —y is divisible
by 5”. Then Ej; is an equivalence relation in Z. There are exactly five distinct
equivalence classes in Z/Rj:

E, = {...,—10,-5,0,5,10,...} = -+- = [—10] = [-5] = [0] = [5] = ---
E, = {...,—9,—-4,1,6,11,...} = = [-9] = [-4] = [1] = [6] =
E, ={...,-8-821712,...} = - =[-8] =[-381=1[2] =[7] = ---
E, ={...,-7,-2,8,8,13,...} = = [-71 =1-2] = 1[3] = [8] =
Ey={...,—6,-1,4,9,14, ...} = -+ = [-6] = [-1] = [4] = [9] = -

Observe that each integer x, which is uniquely expressible in the form « = 5q+7r
where 0 = » < 5, is a member of the equivalence class E, where r is the
remainder. Note that the equivalence classes are pairwise disjoint and that
Z = E,UE,UE,UE;UE,.

COMPOSITION OF RELATIONS

Let U be a relation from A to B and let V be a relation from B to C, ie. UCAXRB
and VCBXC. Then the relation from A to C which consists of all ordered pairs
(a,¢) € AXC such that, for some b €B,

(@,b) € U and (b,c) €V
is called the composition of U and V and is denoted by VoU. (The reader should be
warned that some authors denote this relation by UoV.)
It is convenient to introduce some more symbols:
3, there exists s.t., such that V, for all =, implies
We may then write:
VoU = {(x,y):x€A,yeC;, IbEB st. (x, )€U, b,y) EV}
Example 9.1: Let A = {1,2,3,4}, B = {x,y,2,w} and C = {5,6,7,8}, and let
U =A@, Ly, &=, 3w, 4w} and V = {b5),¥,6),(8), w7}

That is, U is a relation from A to B and V is a relation from B to C. We may
illustrate U and V as follows:

A B C

Accordingly,
@1,y € VoU since y€B and 4, y) €U, W,5 €V

(1,6) € VoU since y&€B and L,y €U, 6 €V
3,7 € VoU since w€B and B,wyeE U, w,H"EV
4,7 € VoU since w€B and 4, wyeE U, (w,HEV
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No other ordered pairs belong to Vo U, that is,
VeU = {{,5),1,6), 3,7, ¢,0}

Observe that V o U consists precisely of those pairs (x,y) for which there exists, in
the above diagram, a “path” from x € A to y € C composed of two arrows, one fol-

lowing the other.

Example 9.2: Let U and V be the relations in R defined by
U = {wy:22+y2=1} and V = {{y,2):2y+32=4}

Then the relation Vo U, the composition of U and V, can be found by eliminating
y from the two equations z2+y2 =1 and 2y + 3z = 4. In other words,
VoU = {&,2): 422+ 922 — 242+ 12 = 0}

Example 9.3: Let N denote the set of positive integers, and let B denote the relation < in N, i.e.
(@, b) € R iff a<b. Hence (a,b)ER-! iff a >b. Then

RoR-1 = {(,y):%y€EN; IDEN st. (z,b)ERL, (b,y) ER}
= {{x,y:2yEN; IDEN st b<x, b<y}
= (N\{1H x(N\{1}) = {@&w:2,yE€N; x,y+*1}
and
R-1oR = {@y):2y€EN; IbEN st. (,b)ER, (b,y) ER1}
{y): x,y€EN; IBEN st. b>w, b>y}
= NXN

Note that RoR-1 # R-10oR,

Solved Problems

SETS, ELEMENTS, SUBSETS

+ 1.

v 4

Let A = {x:3x=6}. Does A =27

Solution:
A is the set which consists of the single element 2, i.e. A ={2}. The number 2 belongs to A; it
does not equal A. There is a basic difference between an element p and the singleton set {p}.

Determine which of the following sets are equal: @, {0}, {@).

Solution:
Each is different from the other. The set {0} contains one element, the number zero. The set @
contains no elements; it is the null set. The set {(} also contains one element, the null set.

Determine whether or not each of the following sets is the null set:

(i) X = {x:2°=9,2x=4}, (i) Y = {xg: x>z}, (ili) Z={x:2+8=8}.
Solution: .

(1) There is no number which satisfies both 2 =9 and 2x = 4; hence X = Q.

(i) We assume that any object is itself, so ¥ is empty. In fact, some texts define the null set by
D = {x:x* x}.

{iii) The number zero satisfies x+8 = 8; hence Z = {0}. Accordingly, Z+ Q.

Prove that A = {2,38,4,5} is not a subset of B = {z:x is even}.

Solution:
It is necessary to show that at least one member of A does not belong to B. Since 3€ A and
3¢& B, A is not a subset of B.
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+ 5.

+ 8

Prove Theorem 1.1 (iii): If ACB and BCC then ACC.
Solution:

We must show that each element in A also belongs to C. Let x€A. Now ACRB implies x €B.
But BCC, so x €C. We have therefore shown that x €A implies x€C, or ACC.

Prove: If A is a subset of the null set ¢, then A=0.
Solution:

The null set ¢ is a subset of every set; in particular, @CA. But, by hypothesis, 4 C®; hence,
by Definition 1.1, A = @.

Find the power set P(S) of the set S = {1,2,3).
Solution:

Recall that the power set P(S) of S is the class of all subsets of S. The subsets of S are
{1,2,3}, {1,2}, {1,3}, {2,3}, {1}, {2}, {3} and the empty set (. Hence

P8y = {8, {1,38), {2,3}, {1,2}, {1}, {2}, {8}, @}
Note that there are 23 = 8 subsets of S.

Find the power set P(S) of S = {3, {1,4}).
Solution:

Note first that S contains two elements, 3 and the set {1,4}. Therefore P(S) contains 22=4
elements: S itself, the empty set ), the singleton set {3} containing 8 and the singleton set {{1,4}}
containing the set {1,4}. In other words,

PE) = S, 8%, L4,

SET OPERATIONS

< 9.

Let U=1{12,...,89}, A ={1,2,8,4}, B={2,4,6,8) and C = {3,4,5,6}.
Find: (i) 4¢, (ii) (ANC), (iii) B\.C, (iv) (AUB)-.
Solution:
(i) Ac consists of the elements in U that are not in 4; hence Ac = {5,6,7,8,9}.
(i)  ANC consists of the elements in both A and C; hence
ANC = {3,4} and (ANC)y = {1,2,5,6,7,8,9}
(iii) B\ C consists of the elements in B which are not in C; hence B\ C = {2,8},
(iv) AUB consists of the elements in 4 or B (or both); hence
AuB = {1,2,3,4,6,8} and (AUB) = {5,7,9}

10. Prove: (ANBYN B = .

Solution: (AN B)NnB

{x:x€B, € A\ B}
= {x:x€B,x€A, x&€B} = @

since there is no element « satisfying *€ B and x € B.

~11. Prove De Morgan’s Law: (AU B)® = A°nN Be,

Solution: (AuB)e = {x:x€AuUB)}
= {x:2&A, «&B}
= {x:0x€A x€ B} = AcnBec

+12. Prove: B\_A = BN A-.

Solution: B\NA = {x:2€B,x¢&Ay = {x:x€B,x€ A} = BnAc
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13.

%14,

SETS AND RELATIONS

Prove the Distributive Law: AN(BUC) = (ANB)U(ANCQ).
Solution: ANBUC) = {x:x€A; x€BUC}
= {x:x€A;x€Bor x€C(C}
= {x:2€A, xEB,;or x €A, x€C}
= {x:z2z€AnBor x€ ANC)
= (AnB)UANC)
Observe that in the third step above we used the analogous logical law
pArlgvr) = (PA@Q VDAY
where A reads “and” and v reads “or”.

Prove: For any sets A and B, ANBCACAUB.

Solution:

Let € AnB; then x€A4 and x € B. In particular, x €A. Accordingly, ANBCA.
then x €A or x€EB, i.e. x € AUB. Hence ACAUB. In other words, ANBCACAUB.

15. Prove Theorem 1.3 (i): ACB if and only if ANB = A.

Solution:

[CHAP. 1

If x€A,

Suppose ACB. Let x€A; then by hypothesis, *€B. Hence x€A and x€B, ie. x €EANB.

Accordingly, AcCAnB. But by the previous problem, ANBCA. Hence AnB = A.

On the other hand, suppose ANB = A. Then in particular, ACANB. But, by the
problem, ANBCB. Hence, by Theorem 1.1, ACB.

PRODUCT SETS, RELATIONS, COMPOSITION OF RELATIONS
Let A={a,b), B=1{2,3) and C = (3,4}. Find: (i) 4 X (BUC), (ii) (4 X B)U(4 X C).

+ 16.

Solution:
(i) First compute BUC = {2,3,4}. Then
AX(BUC) = {{a,2),(a,3) (a,4),(b,2),(b,3),(b,4)}
(ii) First ind A X B and A X C:
A X B = { (aJ 2)) (a’ 3)’ (b) 2), (b) 3) }7 A x C = { (aJ 3)) <a, 4)) <bJ 3), (b) 4> }
Then compute the union of the two sets:
AXBU@AXC = {{(a2),(a38),(b,2),,3), (a4, 4}
Observe, from (i) and (ii), that A X (BUC) = (A X ByU (4 X C).

17. Prove: AX(BNC) = (A X B)N(A X C).

i 18.

Solution: AXBNC) = {=y:z2z€4, yE€BNC}
= {(x,y:x€A yEB, yEC}
= {@y: & HEAXB, x,y) EAXC(C}
= (AXB)N(AXC)

Let R be the relation < from A = {1,2,3,4} to

previous

B = {1,3,5}, ie, (a,b)€R iff a<b.

(i) Write R as a set of ordered pairs. J 3
ii) Plot R on a coordinate diagram of A X B. .

(
(iii) Find domain of R, range of R and R~
(iv) Find RoR™%. 1 2 3
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Solution:

(i) R consists of those ordered pairs (a,b) € A X B such that a < b; hence
B = {{1,38),(1,5),(2,38),(2,5),3,5), 4,5}

(ii) R is displayed on the coordinate diagram of 4 X B as shown above.

(ili) The domain of R is the set of first coordinates of the pairs in R; hence domain of R = {1, 2,3,4}.
The range of R is the set of second coordinates of the pairs in R; hence range of R = {8,5}.
R~1 can be obtained from R by reversing the pairs in R; hence

R™1 = {3,1),(,1),3,2),,2),(5,3, 5,4}

(iv) To find ReR~1, construct diagrams of R~ and R as shown below. Observe that B!, the
second factor in the product Ro R—1, is constructed first. Then

EoR-1 = {(3,3),(3,5),,3),(5,5)}

E 19. Let T be the relation in the set of real numbers R defined by ,
2Ty if both z € [n,n+1] and y € [n,n+1] for some integer n
Graph the relation T.

Solution:
T consists of the shaded squares below.

i 20. Let T be the reiation in the set of real numbers R defined by Ty iff 0 = z—y = 1.
(i) Express T and T ' as subsets of R X R and graph.-
(ii) Show that ToT~! = {(x,7): |z —z| = 1}.
Solution:
(i) T = {(xy: cy€ER 0=x—y=1}
‘ T = {(y: ynE€lTy = {&: 2,yER 0=y—x=1}

The relations T and T~ are graphed below.

2

Graph of T Graph of T—?
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(ii) By definition of composition of relations,
ToT-1 = {(@=2: IYyER st. (Z,HET 1, (y,2)ET)
= {(@z2: WER st. W, W2 ET)
= {(®2: WYER st 0=y—2=1,0=y—2=1)
Let S = {(x,2):|x—2] =1}, We want to show that ToT-1 = §.
Let (x,2) belong to ToT-1. Then Iy st. 0=y—2x, y—2=1. But
Sy—x,y~—2=1 > y—z=1

> y—z=1l+y—x
> x—z2=1

Also, =y—2,y—2=1 o> y—x=1
> y—x=1l+y—=z
> —-1=zx—2

J
ot

In other words, 0=y—2x, y—2=1 >
Accordingly, (x,2)E€ S, ie. ToT-1CS.
Now let (x,z) belong to S; then |x—z| =1.
Let y = max(x,2); then 0=y—2=1 and 0=y—2z=1.
Thus (x, z) also belongs to ToT~1 je. SCToT-1. Hence ToT-1=g,

21. Prove: For any two relations RC X XY and SCYXZ, (SoR)"'= R 181,
Solution: (SeR)"! = {@ux): (x,2ESoR}
= {&x):YEY st. &, PER, (y,2ES)
= {&a)y: WEY st (ZYWES, (y,x) ER1}
— R-lo§-1

22. Prove: For any three relations RC Wx X, SCXXY and TCYXZ, (ToS)oR =
To(SoR).
Solution: (ToS)oR = {(w,2): 3xEX st. (w,x)ER, (x,2) E ToS}

{w,z): IwE€X, IYEY st (wW,2)ER, (x,x) €S, W,2) ET}

{(w,2): IYEY st. (w,y) ESoR, (y,2)ET}

= To(SoR)

REFLEXIVE, SYMMETRIC, TRANSITIVE AND EQUIVALENCE RELATIONS
23. Prove: Let R be a relation in A4, i.e. RC A X A. Then:
(i) R is reflexive iff A, CR;
(ii) R is symmetric iff R =R
(iii) R is transitive iff RoR C R;
(iv) R reflexive implies RoR D R and RoR is reflexive;
(v) R symmetric implies RoR™! = R-1oR;
(vi) R transitive implies Ro R is transitive.
Solution:
(i) Recall that the diagonal A, = {(g,a): ¢ € A}. Now R is reflexive iff, for every a € 4,
(a,a) ER iff A,CR.
(ii)  Follows directly from the definition of B~ ! and symmetric.
(ili) Let (a,c)€ RoR; then IbE A such that (¢,b) ER and (b,c) ER. But, by transitivity,
(a, b),(b,cy € R implies (a,c) € R. Consequently, RoR C R.

On the other hand, suppose RoR CR. If (a,b),(b,c) ER, then (a,c)ER°RCR. In
other words, R is transitive.
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(iv) Let (a,b)€ R. Now, Ro°R = {(a,¢): IbE A s.t. (a0,b)ER, (b,c) ER}.

But (a,b) € R and, since R is reflexive, (b,b) € R. Thus (a,b)E€ R°R, ie. RCRoR.
Furthermore, Ay, CRC RoR implies R°oR is also reflexive.

(v) RoR-1 = {{a,¢): IbEA st. (a,b) ERL, (b,c)E R}
= {(a,¢): IbE A st. (a,b)ER, (b,eER 1}
R-1oR
(vi) Let (a,b),(b,c) E RoR. By (iii), R°R C R; hence (a,b),(bc) ER. So (a,¢) ER°R, i.e. RoR is
transitive.

24

Consider the relation R = {(1,1), (2,38),(3,2)} in X = {1,2,3}). Determine whether
or not R is (i) reflexive, (ii) symmetric, (iii) transitive.

Solution:

(i) R is not reflexive since 2€ X but (2,2) € R.

(ii) R is symmetric since R~ = R.

(iii) R is not transitive since (3,2) € R and (2,3 € R but (3,3) € R.

25

Consider the set N X N, i.e. the set of ordered pairs of positive integers. Let R be the
relation ~ in N X N which is defined by
(@,by = {¢,dy iff ad = be

Prove that R is an equivalence relation.
Solution:

Note that, for every (a,b) ENXN, (a,b) =~ (a,b) since ab = ba; hence R is reflexive.

Suppose (a,bd) = (¢,d). Then ad = be, which implies ¢b =da. Hence (c,d) = (a,b) and, therefore
B is symmetric,

Now suppose (a,b) =~ (c,d) and (c,d) =~ (e,f). Then ad =be and c¢f =de. Thus

(ad)(ef) = (be)(de)

and, by cancelling from both sides, af = be. Accordingly, (a,b) ~ (¢,f) and R is transitive.

Since R is reflexive, symmetric and transitive, B is an equivalence relation.

Observe that if the ordered pair (a, b) is written as a fraction %, then the above relation R is,

in fact, the usual definition of the equality of two fractions, i.e. Za = c%’ iff ad = be.
26. Prove Theorem 1.4: Let R be an equivalence relation in A and let [a] be the equivalence
class of a € A. Then:
(if For every a €A, a € [a].
(ii) [a] =[b] if and only if (a,b) € R.
(iii) If [a] = [b], then [a] and [b] are disjoint.
Solution:

Proof of (i). Since R is reflexive, (a,a) € R for every a € A and therefore a € [al.

Proof of (ii). Suppose (a,b)E R. We want to show that [a]=1[b]. Let x &€[b]l; then
(b,x) € R. But by hypothesis, (a,b) € B; hence by transitivity, (a,z) &€ R. Accordingly, = € [a],
ie. [b] C[a]l. To prove that [a] C [b], we observe that (a,b) € R implies, by symmetry, that
(b,a) € R. Then by a similar argument, we get [e¢] C [b]. So [a] = [b].

On the other hand, if [a] = [b], then by reflexivity, b € [b] = [al, ie. (a,b) € R.

Proof of (iii). We prove the equivalent contrapositive statement, i.e. if [a]N[b]* @, then
[a]l = [b). If [aln[d] = @, there exists an element € A with x € [a]ln[b]. Hence {(a,x)ER
and (b,x) € R. By symmetry, (x,b) € R and, by transitivity, (a,d) € R. Consequently by (i),
[a] = [b].
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Supplementary Problems

SETS, ELEMENTS, SUBSETS

27. Determine which of the following sets is the empty set:
i) {x:1<2z<2, ¢€R} (iii) {x:2€Q}
) {x:1<2<2 €N} (iv) {xz: x2<z, xER}

28. Let A =1{1,2,...,8,9}, B ={2,4,6,8), C ={1,8,5,7,9}, D = {3,4,5} and E = {3,5}. Which
of these sets can equal X if we are given the following information?

(i) X and B are disjoint, (ii) XCD and X¢B, (iii) XCA and X¢C, (iv) XcCC and X¢A.

29. State whether each of the following statements is true or false.
(i) Every subset of a finite set is finite. (ii) Every subset of an infinite set is infinite.

30. Discuss all inclusions and membership relations among the following three sets: @, {®}, {@, {®}}.

31. Prove that the closed interval [a, b] is not a subset of the open interval (a, b).

32. Find the power set P(U) of U = {0,1,2} and the power set P(V) of V = {0, {1,2}}.

33. State whether each of the following is true or false. Here S is any non-empty set and 25 is the
power set of 8- se2s ) Sc2s (i) (€2 (iv) {Spc2s

SET OPERATIONS

34, Let A ={1,2,8,{1,2,3})}, B={1,2,{1,2}}. Find: AUB, AnB, A\ B, B\ A.

35. In each of the Venn diagrams below shade: (i) An(BUC), (ii) C\\(ANB).

AN @

(@) (b)
36. Prove and show by Venn diagrams: A<\ B¢ = B\ A.

37. (i) Prove An(B\C) = (AnB)\(4AnC).
(ii) Give an example to show that AU(B\C) * (AUB)\ (AUQ).

38. Prove: 24N 2B = 24NB; 24 2B C24UB,  Give an example to show that 24U 2B +# 24UB,

39. Prove Theorem 1.3: Each of the following conditions is equivalent to A CB:
(i) AnB = A, (ii) AUB = B, (ili) B¢CA¢, (iv) AnBc =0, (v) BuAc =U
(Note. ANB = A was already proven equivalent to ACB in Problem 15.)

40. Prove that ACB iff (BNC)UA = BN(CUA) for any C.

PRODUCT SETS, RELATIONS, COMPOSITION OF RELATIONS
41, Prove: A X (BUC) = (AXB)U(A XC).

42. Using the definition of ordered pair, ie. (a,b) = {{a}, {a, b)Y, prove that (a,b)y = (c,dy iff
a=c and b=d.

43. Determine the number of distinct relations from a set with m elements to a set with n elements,
where m and n are positive integers.
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44. Let R be the relation in the positive integers N defined by
R = {(x,9:xyEN, x+2y =12}

(i) Write R as a set of ordered pairs. (ii) Find domain of R, range of B and R—! (iii) Find EoR.
(iv) Find R~1oR.

45. Consider the relation R = {{4,5), (1,4, (4,6), (7,6), (3,7} in N.
(i) Find domain of R, range of R and BR~!. (ii) Find RoR. (iti) Find R~1oR.

46. Let U and V be the relations in R defined by U = {(z, ) : 22+ 2y =5} and V = {(x,y): 20—y = 3}.
(i) Find VoU. (ii) Find UoV. 3

47. Consider the relations < and < in R. Show that <UA = = where A is the diagonal.

EQUIVALENCE RELATIONS

48. State whether each of the following statements is true or false. Assume R and S are (non-empty)
relations in a set A.

(1) If B is symmetric, then R—1 is symmetric.

(2) If R is reflexive, then RNR~1 % @,

(8) If R is symmetric, then RNR~1 # (.

(4) If R and S are transitive, then RUS is transitive.
(5) If R and S are transitive, then RN S is transitive.

AU
(6) If R and S are symmetric, then RUS is symmetric. &
(7) If R and S are symmetric, then ENS is symmetric, -
(8) If R and S are reflexive, then BN S is reflexive. (:\

49, Consider N X N, the set of ordered pairs of positive integers. Let ~ be the relation in N X N defined by
(a,b) ~ (¢,dy iff a+d =>b+c¢c

(i) Prove =~ is an equivalence relation. (ii) Find the equivalence class of 2,5y, i.e. [(2,5)].

50. Let ~ be the relation in R defined by x ~y iff x —y is an integer. Prove that ~ is an equivalence
relation. L

51. Let ~ be the relation in the Cartesian plane R? defined by (x,%) ~ (w,2) iff = = w.
Prove that ~ is an equivalence relation and graph several equivalence classes.

52. Let o and b be arbitrary real numbers. Furthermore, let ~ be the relation in R? defined by
(@, y) ~ (w,z) if ILEZ st. x—w =ka, y—2z =kbd

Prove that ~ is an equivalence relation and graph several equivalence classes.

Al{swers to Supplementary Problems

27. The sets in (ii) and (iii) are empty.
31. ¢ €[a,b] but a€ (a,b).

32. P(V) = {V, {0}, {{1,2}}, 9}

33. () T, (ii) F, (i) F, (iv) T

34, AUB = {1,2,3,{1,2},(1,2,3}}, AnB = {1,2}, A\B = {3,{1,2,3}}, B\ 4 = {{1,2}}.
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(ii)

3. IVC=9Q, A=B+9

38. Example: A = {1}, B = {2}
43, 2mn

4. () R = {{10,1),(8,2),(6,3),(4,4),(2,5)}

(i1 domain of B = {10,8,6,4,2}, rangeof B = {1,2,8,4,5},
R‘_‘l = { (1} 10)’ (2) 8)’ <3) 6)7 (4) 4), <5’ 2) }

(iii) BoR = {(8,5),{4,4)} .
(iv) R~1oR = {(10,10), (8,8),(6,6), 4,4),(2,2)}

45, (1) deain of R = {4; 1,7,38}, ;‘ange OfR = {5y 4,6, 7}: R-1 = {<5: 4), (4,1), (6,45, (6,7, {, 3)} '
(i) RoR = {{,5),(1,6),(3,6)}
(i) R-1oR = {{4,4), 1, 1), &1, (T,4,(7,7), 3,3}

46. VoU = {,y): 22+y =2Y, UoV = {{(w,y): 402 —122+2y+4=0}
8. (T, @T, BT, @F, BT, 6T, (NT, &T

49. (i) [2,5] = {(1,4,(2,5),3,6, &N, ..., mn+38), ...}

51. ¥ ﬁ\)’

The equivalence classes are the vertical lines.

(
52. :
[ ] e P [ ] [ ]

&

® ® [ ] [ ]
[ a o
[ |

[ ® ® [ ]

. [ ] ® [ ]

The above gives a typical equivalence class. The distance between adjacent horizontal points is ¢ and
the distance between adjacent vertical points is b.



Chapter 2

Functions

FUNCTIONS

Suppose that to each element of a set A there is assigned a unique element of a set B;
the collection, f, of such assignments is called a function (or mapping) from (or on) A
into B and is written s
f:A— B or A— B
The unique element in B assigned to a € A by f is denoted by f(a), and called the value of
f at a or the image of a under f. The domain of f is A, the co-domain is B. To each
function f: A - B there corresponds the relation in A X B given by

{(a,fla)y:a €A}

We call this set the graph of f. The range of f, denoted by f[A], is the set of images, i.e.
flA] = (f(@): a € A},

Two functions f:A—-B and ¢:A-> B are defined to be equal, written f=g, iff
f(a) = g(a) for every a €A, ie. iff they have the same graph. Accordingly, we do not
distinguish between a_function and its graph. A subset f of A X B, i.e. a relation from
A to B, is a function iff it possesses the following property:

[F1 Each ¢ € A appears as the first coordinate in exactly one ordered pair {a, b) in f.
The negation of f =g is written f+ ¢ and is the statement: 3a € A for which f(a)+#g(a).

Example 1.1: Let f:R — R be the function which assigns to each real number its square, i.e. for
each x €R, f(x) = 22, Here f is a real-valued function. Its graph, {(x,2?):x €R},
is displayed in Fig. 2-1 below. The range of f is the set of non-negative real num-
bers, i.e. f[R] = {x:x ER, 2 = 0}.

Fig. 2-1 Fig.2-2

Example 1.2: Let A = {a,b,¢,d} and B = {w,y,2,w}. Then the diagram in Fig. 2-2 above
defines a function f from A into B. Here f[A] = {x,y,w}. The graph of f is the

relation
{{a, ), (b, %), (¢, ), (d, W)}

Example 1.3: A function f:A — B is called a constant function if, for some by € B, f(a) = bo
for all o € A. Hence the range f[A] of any constant function f is a singleton
set, i.e. f[A] = {by}.

17
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Consider now functions f:4->B and g¢g:B->(C, illustrated below:

¥
@ - - (©
The function from A into C which maps the element ¢ € A into the element g(f(a)) of C
is called the composition or product of f and g and is denoted by gof. Hence, by definition,
(gofila) = 9(f(a))

We remark that, if we view fC A X B and ¢g C B X C as relations, we have already
defined a product g-f (Chapter 1). However, these two products are the same in that
if f and ¢ are functions then g-f is a function and g+f = gof.

If f:X->Y and A C X, then the restriction of f to A, denoted by f| A, is the function

from A into Y defined by
flA(a) = f(a) forall a€ A

Equivalently, f|A = fN(AXY). On the other hand, if f: XY is the restriction of
some function g: X*->Y where X C X*, then g is called an extension of f.

ONE-ONE, ONTO, INVERSE AND IDENTITY FUNCTIONS

A function f: A - B is said to be one-to-one (or one-one, or 1-1) if distinct elements
in A have distinct images, i.e. if
f@=f) > a=a

A function f:A4~ B is said to be onto {or f is a function from A onto B, or f maps
A onto B) if every b € B is the image of some a € A, ie. if
bEB > 3Fa € A for which f(a) =10
Hence if f is onto, f[A]=B.

In general, the inverse relation f~! of a function f C A X B need not be a function.
However, if f is both one-one and onto, then f~! is a function from B onto 4 and is called
the inverse function.

The diagonal A, C AX A is a function and called the identity function on A. It is
also denoted by 1. or 1. Here, 1la(a) =a for every a€A. Clearly, if f:A~> B, then

Lof =1 = fol,
Furthermore, if f is one-one and onto, and so has an inverse function f~?, then
flof =1, and fof'=1,
The converse is also true:
Proposition 2.1: Let f:A—>B and g:B—> A satisfy
gef =1, and fog =1,
Then f~':B-> A existsand g =f"1.

Example 2.1: Let f:R—>R, g:R—~R and h:R—>R be defined by
fx) = e*, g(x) = a®—x and h(r) = a2

The function f shown in Fig. 2-3(¢) below is one-one; geometrically, this means
that each horizontal line does not contain more than one point of f. The function g
shown in Fig. 2-3(b) below is onto; geometrically this means that each horizontal
line contains at least one point of g. The function k shown in Fig. 2-3(c) below is
neither one-one nor onto, for h(2) = h(—2) =4 and h[R] is a proper subset of R,
e.g. —16 € h[R].
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/

(@) flx) = e b gx) = 2>—u (¢) h{z) = «2

Fig. 2-3

INDEXED SETS, CARTESIAN PRODUCTS
An indexed class of sets, denoted by
{Aiziel}, {A),., orsimply {Ay

assigns a set A; to each 7 €1, i.e. is a function from I into a class of sets. The set I is
called the index set, the sets A; are called indexed sets, and each © € I is called an index.
When the index set I is the set of positive integers, the indexed class {4, A, ...} is called
a sequence (of sets).

Example 31: For each n € N, the positive integers, let
D, = {x:x €N, x is a multiple of n}
Then D; = {1,2,8,...}, D, = {2,4,6,...}, Ds = {8,6,9,...},

The Cartesian product of an indexed class of sets, ¢4 = {A::1 €I}, denoted by
[T{Ai:i€l} or ], A orsimply ] A
is the set of all functions p: I - U;A; such that p(i) = a: € Ai. We denote such an element
of the Cartesian product by p = (a:;:i €I). For each i €1 there exists a function Tioo
called the icth projection function, from the product set HiAi into the 4th coordinate set
A;, defined by )
Wi0(<ai: tel)) = a;

Example 3.2: Recall that R3 = R X R X R consists of all 3-tuples p = (a4, a5, a3) of real numbers.
Now let R,, B, and R;3 denote copies of R. Then p can be viewed as a function on
I = {1,2,3) where p(l) = ¢, €ER), p(2) = a; €R, and p8) = a3 € R;. In
other words,

R? = JI{R,:i€l R, =R}
GENERALIZED OPERATIONS

The notion of union and intersection, originally defined for two sets, may be generali‘zed
to any class ¢4 of subsets of a universal set U. The union of the sets in <4, denoted by
U{A: A €4}, is the get of elements which belong to at least one set in oA4:

U{Ad:A€ed) = {w:x €U, JA €A st. x €A}
The intersection of the sets in ¢4, denoted by M{4A: A € <4}, is the set of elements which
belong to every set in cA4:
NA:Accd} = {x:x€U, €A for every A € cA}

For an indexed class of subsets of U, say o4 = {A:i:1 €I}, we write

U{di:i e 1}, U4 or U4
for the union of the sets in <4, and

N{4i:t €I}, N,.,A or NA;
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for the intersection of the sets in ¢4. We will also write
UZ, A = A;UAU- - and N1 A; = AUAU- -

for the union and intersection, respectively, of a sequence {Ai, A, ...} of subsets of U.

Example 41: For each nEN, the positive integers, let D, = {x: 2 €N, 2z is a multiple of =}
(see Example 3.1). Then

u{D;:i=10} = {10,11,12,...} and n2,D;, = P
Example 42: Let I = [0,1] and, for each i€ 1, let A; = [0,5]. Then
U;4; = [0,1] and n;4; = {0}
The distributive laws and De Morgan’s laws also hold for these generalized operations:
Theorem 2.2: For any class of sets <4 = {4;) and any set B,
(iy BU(NiA) = Ni(BUA) (i) BN(UiA) = Ui(BNA)
Theorem 2.3: Let <4 = {A;} be any class of subsets of U. Then:
G) (Ui Ay = niA7 (1) (Nid)e = UiAY
The following theorem will be used frequently.

Theorem 2.4: Let A be any set and, for each p €A, let G, be a subset of A such that
PEG,CA. Then A = U{G,:p € A).

Remark: In the case of an empty class () of subsets of a universal set U, it is convenient
to define
Ud:A€p) =0 and N{A: A€} =U
Hence Udi:i€e@) =@ and N{4i:tep}y =U

ASSOCIATED SET FUNCTIONS

Let f: X > Y. Then the image f[A] of any subset A of X is the set of images of points
in A, and the inverse image f~! [B] of any subset B of Y is the set of points in X whose
images lie in B. That is,

flA] = {f(x):x € A} and f7![B] = {z: 2z €X, f(x) €EB}

Example 5.1: Let f:R—>R be defined by f(x) = x2. Then
f1{1,8,4,73]1 = {1,9,16,49}, f1A,2)) = 1,4
Also, f~1{4,9)] = {-3,-2,2,3}, f-1[Q, 4] = (1,2)u(-2,-1)

Thus a function f:X Y induces a function, also denoted by f, from the power set
P(X) of X into the power set P(Y) of Y, and a function f~! from P(Y) into P(X). The
induced functions f and f~! are called set functions since they are maps of classes (of sets)
into classes.

We remark that the associated set function f~! is not in general the inverse of the
associated set function f. For example, if f is the function in Example 5.1, then

f7ref((1,2)] = fH(LA4)] = (L,2)U(=2,-1)

Observe that different brackets are used to distinguish between a function and its associated
set functions, i.e. f(a) denotes a value of the original function, and f[{A] and f~* [B] denote
values of the associated set functions.
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The associated set functions possess various properties. In particular we state:

Theorem 2.5: Let f:X Y. Then, for any subsets 4 and B of X,

(i) fl[AUB] = fl[A]Uf[B] (iif) fl[A N\ B] 2 fl[A]\ f[B]

(ii) f[ANB]Cf[A]Nf[B] (iv) A CB implies f[A]C f[B]
and, more generally, for any indexed class {A;} of subsets of X,

(1,) f[Ui Al] = Ui f[Al] (ll') f[ﬂi Az] cC Ny f[Al]

The following example shows that the inclusions of (ii) and (iii) cannot in general be
replaced by equality.

Example 5.2: Consider the subsets
A = [1,2]x[L,2] and B = [1,2] X [3,4]
of the plane R? and the projection =:R2 - R, into @
the first coordinate set, i.e. the xz-axis. Observe that
#[A] =[1,2] and [B]=[1,2], and that ANB = ¢ 2
implies 7[ANB] = @. Hence
7[A]N=[B] = [1,2] # «[ANB] =0 .
Furthermore, A\ B = A4, so ce 1 T‘[,ll 2
7[ANB] ={1,2] #* @ =7[A]\ 7[B]
On the other hand, the inverse set function is much more “well-bchaved” in the sense
that equality holds in both cases. Namely,
Theorem 2.6: Let f:X =Y. Then for any subsets A and B of Y,
(i) [F'AUB] = ft{A]Uft[B]
(i) f*[ANB] = f1A]nf1[B]
(iii) f'[ANB] = f71[A]\\/'B]
(iv) ACB implies f~'[A]Cf " |B]
and, more generally, for any indexed class {A:} of subsets of Y,
iy FHUA] = Uif A
(i) N Al = Nuf A
Since f~!{Y] = X, we have, as a special case of (iii),
Corollary 2.7: Let f:X~>Y and let ACY. Then f'[A°] = (f~'[A4))"
Next follows an important relationship between the two set functions.
Theorem 2.8: Let f:X~>Y andlet ACX and BCY. Then:
(i) ACflof[A] (i) B2 fof '[B]

As shown previously, the inclusion in (i) cannot in general be replaced by equality.

ALGEBRA OF REAL-VALUED FUNCTIONS

Let F(X,R) denofe the collection of all real-valued functions defined on some set X.
Many operations are inherited by #(X, R) from corresponding operations in R. Specifically,
let f: X->R and ¢g: X—>R and let k€ R: then we define

(f+9):X->R by (f+9)(x) = f(z)+g9(x)
(k< f):X=>R by (k:f)lw) = k(f(x)).
(f:X-R by (fh@) = [f(2)|
9): 9)(x)

X>R by (f f(x) 9(x)

I

(f

X
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It is also convenient to identify the real number k € R with the constant function f(x) =k
for every t€R. Then (f+k):X >R is the function

(F+8)@) = f) +k

Observe that (fg): X - R is not the composition of f and ¢ discussed previously.

Example 6.1:

Consider the functions
f = { (ay 1)’ (b; 3) } and g = { <0/, 2)) (by _1> }
with domain X = {a,b}. Then

(8f —2g)(a) = 3f(a) — 2g(a) = 3(1) —2(2) = —1
(8f —29)(b) = Bf(b) —29(b) = 3(3) —2(—1) = 11
that is, 3f —2¢ = {{a,—1),(b,11)}

Also, since |g|(x) = |g(x)] and (g + 3)(x) = g(x) + 3,
gl = {{a,2), (b,1)} and g+38 = {(a,5),(b,2)}

The collection F(X,R) with the above operations possesses various properties of which
some are included in the next theorem.

Theorem 2.9: The collection (X, R) of all real-valued functions defined on a non-empty
set X together with the above operations satisfies the following axioms
of a real linear vector space:

[Vi] The operation of addition of functions f and ¢ satisfies:

[V:]

[Vs]

Example 6.2:

Example 6.3:

1) (F+9)+h=7f+@+h)

2 f+9g=9+f

(3) 0 € F(X,R), i.e. 0:X >R, such that f+0 = f.

(4) Foreach f€ F(X,R), 3—f € F(X,R), i.e. —f:X -~ R, such that
f+(=fH=0.

The operation of scalar multiplication k- f of a function f by a real

number k satisfies:

1) k-(k-f) = (kk)-f

@2 1-f=7

The operations of addition and scalar multiplication satisfy:

1) k- (f+g) =k f+k-g

2y (k+EkYf=kf+ kK- f
Let X = {1,2,...,m}. Then each function f&€ F(X,R) may be written as an
ordered m-tuple (f(1), ..., f(m)). Furthermore, if

f = (@, ...,0, and g = (by, ..., by

then f+g = {ay+by, ag+ by, ..., ap+ by

and, for any kK €R, kef = (kay, ..., kay

In this case, the real linear (vector) space F(X, R) is called m-dimensional Euclidean
space.

A function f € F(X,R) is said to be bounded iff
3M € R suchthat |f(x)] = M forevery 2 €X

Let B(X, R) denote the collection of all bounded functions in F(X,R). Then 8(X,R)
possesses the following properties:

(i} If f,g € BX,R), then f+g € B(X,R).
(i) If fEBX,R) and kER, then k+f € p(X,R).
Any subset of F(X, R) satisfying (i) and (ii) is called a (linear) subspace of F(X,R).
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Solved Problems
FUNCTIONS

1. State whether or not each of the diagrams defines a function from A = {a,b,c} into
B = {2,¥,2).

| > e - Y
. 4 > ‘
() (i) (iii)
Solution:
(i) No. There is nothing assigned to the element b € A.

(i1) No. Two elements, x and 2, are assigned to ¢ € A.
(iii)  Yes.

2. Let X = {1,2,8,4}. State whether or not each of the following relations is a functiofl
from X into X.
B f = {23),1,4,21),3,2),44}
(i) ¢ ={31),42),{11)}
i) A = {(2,1),3,4),(1,4),@2,1),4 4}
Solution:

Recall that a subset f of X X X is a function f:X—> X iff each % € X appears as the first
coordinate in exactly one ordered pair in f.

(i) No. Two different ordered pairs (2, 3) and (2,1) in f have the same first coordinate.
{(ii) No. The element 2 € X does not appear as the first coordinate in any ordered pair in g.

(iii) Yes. Although 2€ X appears as the first coordinate in two ordered pairs in h, these two
ordered pairs are equal.

3. Consider the functions
{(1,3),(2,5),(3,3), (4, 1), (5,2) }

g = {1, 4),(2,1), (3,1), (4, 2), (5,3) }
from X = {1,2,3,4,5} into X.
(i) Determine the range of f and of g.
(ii) Find the composition functions gof and fog.

Solution:
(i) Recall that the range of a function is the set of image values, i.e. the set of second coordinates.
Hence range of f = {3,5,1,2}) and rangeofyg = {4,1,2,8}

(ii) Use the definition of the composition function and compute:
(goHM) =g(f Q) =93 =1 {feg)) =flg) =f4) =1
(9°H@2) =9(f2) =9() =3 (Feg)(@) = flg(2) = f(1) =3
{goNHB) =g(fB) =9(3) =1 (Fog)3) = fegB) = f1l) =3
(9°oN4) = 9(f(4)) = g(1) = 4 (feg)d) = flg) = f(Q) =5
(o) = g(f6) =9(2) =1 (Fog)5) = flgB)) = f(3) =3

Il

In other words, gof {1,1),(2,8), 3, 1), 4,4), (5, 1) }
fog = {{,1),42,8),(3,3), (4,5, (5,8}
Observe that fog # gof.
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4, Let the functions f:R—~> R and g:R—-> R be defined by
flx) = 22 +1, g(x) = 22— 2
Find formulas defining the product functions gof and fog.

Solution:
Compute gof:R—> R as follows:

(goNz) = g(f@) = g@ax+1) = @r+1)2-2 = 4do2+42x—1
Observe that the same answer can be found by writing
y=fl@) =2x+1, z=gy) =y2—-2
and then eliminating y from the two equations:
2 = y?—2 = Qe+1)2—2 = 422+ 4z —1

Now compute fog:R—R:
(fog)x) = flgx) = f(@2—2) = 2x2—2)+1 = 222—3

5. Prove the associative law for composition of functions, i.e. if f:A->B, ¢:B—>C and
h:C- D, then (hog)of = ho(gof). :
Solution:

Since the associative law was proven for composition of relations in general, this result follows.
We also give a direct proof:

((hog)ofia) = (hog)(f(a)
(kelgoMNa) k{{g © f)(a))
Hence (hog)of = ho(gof).

!
I

hg(f(@))), Va€A
h(g(f(a))), Va€A

Il
Il

ONE-ONE AND ONTO FUNCTIONS

6. Let f:A>B, g:B~>C. Prove:
(i) If f and g are onto, then gof:A - C is onto.
(iiy If f and g are one-one, then gof:A - C is one-one.
Solution:

(i) Let c€C. Since g is onto, 3b € B s.t. g(b) =c¢. Since f is onto, 3a €A s.t. f(a) =b. But
then (gof)a) = g(f(a)) = ¢, ie. gof is also onto.

(ii) Suppose (gof)(a) = (gof)a’); ie. g(f(a) = g(f(e’)). So fla) = f(¢’) since g is one-one; hence
a=a' since f is one-one. Accordingly, gof is also one-one.

7. Let A =]-1,1) andlet f:A—->A, g:A>A and h: A—> A be defined by

f(x) = sinz, g(x) = sin=w, hx) = sin%x
State whether or not each of the functions is (i) one-one, (ii) onto, (iii) bijective
(i.e. one-one and onto). .
Solution:

The graphs of the functions are as follows:
1 1

—1 -1

f() g(x)
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9.

The function f is one-one; each horizontal line does not contain more than one point of f. It is
not onto since, for example, sinz # 1 for any *x €A. On the other hand, g is onto; each horizontal
line contains at least one point of f. But ¢ is not one-one since, for example, g(—1) = g(0) = 0. The
function h is both one-one and onto; each horizontal line contains exactly one point of A.

Prove: Let f:A—>B and ¢:B—> C be one-one and onto; then (geof)™':C~> A exists
and equals f~log~t':(C~ A.
Solution:
Utilizing Proposition 2.1, we show that:
(frlog=lo(gef) =1, and (geof)o(flog™?l) =1
Using the associative law for composition of functions,
(flog Yo(gof) frlo(g=lo(gof))
= frlo({g7leg)of)
= fto(lof)
= flof

= 1,

since g~log =1 and 1of = f = fol, Similarly,
4 (geflo(f~log=1l) = go(fo(f~log1)
= go{(fof~Yog™Y
ge(leg—1)
gog?!

= 1p

When will a projection function =, : [1{Ai:iel} > Ay, Ai,+ D, be an onto function?

Solution:
A projection function is always onto, providing the Cartesian product [] {A;: 1< I} is non-empty,
i.e. provided no A; is the empty set.

INDEXED SETS, GENERALIZED OPERATIONS

10.

11.

Let A, = {x:z is a multiple of n}, where n €N, the positive integers, and let
B: = [i,i+ 1], where ¢ €Z, the integers. Find: (i) AsNAs (ii) U{Ai:7 € P}, where
P is the set of prime numbers; (iii) Bs N\ By; (iv) W{Bi:t € Z}; (v) (U{Bi:i=17}) N As.
Solution:

(i) Those numbers which are multiples of both 3 and 5 are the multiples of 15; hence AznAdy; = Ay;.

(ii) Every positive integer except 1 is a multiple of at least one prime number; hence U{4;: i€ P} =
{2,3,4, ...} = N\ ({1}.
(iii) BgnNBy = {x:3=x=4,4=x =5} = {4}

(iv) Since every real number belongs to at least one interval [i,i+ 1], U{B;: 1€ Z} = R, the set
of real numbers.

v) (U{B;:i=T)nAs; = {x:« is a multiple of 5, « = 7} = A;\ {6} = {10,15,20,...}.

Let D, = (0,1/n), where n» €N, the positive integers. Find:
(i) DsUDs (iii) DsU Dy (v) U{Di:i€ ACN}
(i) D3N Da (iv) DsN Dy (vi) MN{D::i €N}
Solution:
(i) Since (0,1/7)C(0,1/3), D3uD, = Dy,
(i) Since (0,1/20)C (0,1/3), D3N Dyy = Dy
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(ili) Let m = min {s,t}, i.e. the smaller of the two numbers s and t; then D,, equals D or D, and
contains the other. So D,uD, = D,,.

(iv) Let M = max{s, £}, i.e. the larger of the two numbers. Then D, ND, = Dy,.
(v) Let a €A be the smallest number in A. Then U{D;:i€ACN} = D,.
(viy If x€R, then FIEN st. =& (0,1/?). Hence N{D;:1EN} = Q.

Prove (Distributive Law) Theorem 2.2 (ii): BN(U;er di) = U;e (BNAY).
Solution: Bn(Ujerd) = {x:a2€B, x&€ U;jer4;}

= {v:2€B, €I st. €A}

= {x:3,€] st. x€EBNA}

= Uier(Bn4y

13. Prove: Let {4i:i €1} be an indexed class of sets and let % €I. Then

14.

Nierdi C Ay, C User 4
Solution:
Let x € Nnje;A; then 2 € A; for every i€ 1. In particular, xeAio. Hence n,—eIAiCAio.

Now let y Gd‘lio. Since i, €1, ¥y € U;c; A;. Hence A,-0 C User 4,

Prove Theorem 2.4: Let A be any set and, for each p € A, let G, be a subset of A such
that p€ G, CA. Then A = U{Gp:p € 4}.
Solution:

Let € U{G,:p€ A}. Then 3p,€ A4 st x € Gl’o C A; hence x€A, s0o U{G,:pE A4} CA.
(In other words, if each G, is a subset of A, then the union of the G, is also a subset of A.)

Now let y €A. Then y€ Gy, so y€ U{G,:p€ A}, Thus 4 C U{G,: pE€ A} and the two
sets are equal.

ASSOCIATED SET FUNCTIONS

15.

16.

Let A ={1,2,3,4,5) and let f: 4> A be defined by the diagram:

1 S
0 ,

\3

g
5
f

Find (i) f[{1,3,5)), (i) /- [{2,8,4}], (ii}) F*[(3,5})-
Solution:
dy  f1{1,8,5}] = {f(), f(3), /(6)} = {4}
() f-1[{2,3,4} = {4,1,3,5}
(iii) f-1[{3,5}] = @ since no element of A has 3 or 5 as an image.

[ O VU

Consider the function f:R-> R defined by f(x)=«*> Find:

(i) F1[{25)], () F[(=9], (i) F[{e:a=0}), (iv) [T [{z:4=10=25}]
Solution:

(i) f-1[{25}] = {5, —5} since f(5) =25, f(-5) =25 and since the square of no other number is 25.
(i) f-1[{—9} = @ since the square of no real number is —9.
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(dii) f1[{w:2=0}] = {0} since f(0) =0 =0 and since the square of every other real number is
greater than 0.

(iv) f71{{w:4 = a = 25}] consists of those numbers x such that 4 = &2 =25. Accordingly,

frl{w:4 =2 =25}] = [2,5]U[-5,—2]

17. Prove: Let f:X->7Y be one-one. Then the associated set function f:P(X)-> P(Y)
is also one-one.
Solution:

If X=0@, then P(X) = {®}; hence f:P(X)-P(Y) is one-one, for no two different members
of P(X) can have the same image, as there are no two different members in P(X).

If X+ (), P(X) has at least two members. Let A,B € P(X), but A+ B. Then IpEX s.t. pEA4,
p&B (or pEB, p&A). Thus f(p) € f[A] and, since f is one-one, f(p) &€ f[B] (or f(p) € f[B] and
f(p) € fl[A]). Hence f[A]# f[B], and so the induced set function is also one-one.

18. Prove (Theorem 2.5, (i) and (iii)): :

(@) fJAUB] = fl[AJUf[B], (b) fl[A]\\fIB]Cfl[AN\ B].

Solution:

(@) We first show f[AUB]C fl[A]JUf[B]. Let y € f[AUB], ie. Ar €A UB st f(x) =y. Then
either t €A or x € B, but . .

x €A implies f(z) = y € f[4]

or x € B implies f(x) = y € f[B]
In either case, y € f[A] U f[B].

We now prove the reverse inclusion, i.e. fl[A] U f[B) C flJAUB]. Let y &€ f[A] U f[B]. Then
y € f[A] or y € f[B], but
y € fl[A] implies Ix €A st flx)=y
y € f[B] implies IcE€EB st flx) =y
In either case, y = f(x) with *x € AUB, ie y€ f[AUB].

(b) Let yeflA]\f[B]. Then Ir€ A st fl®)=y, but y&{f(x):x € B}. Hence x&B, or
x € B\ A. Accordingly, y € f[A\ B].

19. Prove (Theorem 2.6, (ii) and (iii)):
(@ fANnB] = f[A]nf*[B], (b) f'[ANB] = fTHA]N\f[B]

Solution:

(¢) We first show f-1{ANB]Cf1[Alnf-1[B]. Let xE€f1[ANnB]. Then flx) €EANB so
f@) €A and f(x) EB, or &€ f~1[A] and 2 € f~1[B]. Hence xz € f-t[A] nf1[B]

For the reverse inclusion, let € f~1[A]nf~1[B]. Then f(x)€A and f(x) EB, Iie.
f@x)e An B, Hence x € f-t{A N B].

(b) To show f~Y[ANB|Cf1[A]\f1[B], assume z€ f~1[ANB]. Then f(zx)€ ANB, ie
flx) €A and f(x)€B. Thus € f~1[A] but =& f 1[B], ie. x € f L1[A]\f1[B].

For the reverse inclusion, let z & f~1[A]\ f~1[B]. Then f(z)€A but flx) € DB, ie.
flx) € AN\ B. Hence z &€ f~1[AN\ B].
ALGEBRA OF REAL-VALUED FUNCTIONS
20. Let X = {a,b,¢}) and let f,9 € F(X,R) be as follows:
f= {{a,1),(b,-2),(¢,3)}, g = {{a,—2),(b,0), (¢c,1)}
Find: (i) f +2g, (i) fg —2f, (i) f+4, Gv)|f], v) =

Solution:

(i) Compute as follows: (f+29)a) = fla) +2g(a) = 1—4 = —3
(f+29)(b) = f(b) +29(b) = —2+0 = -2
(F+29)e) = fle) +29{c) = 8+2 =5
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In other words, f -+ 29 = {(a,—3), (b, —2), (¢, 5)}.
(i)  Similarly, (fg —2ta) = f(a) g(e) — 2f(a) = (1)(=2) —2(1) = —4
(fg —2)(b) = f(b)g(b) — 2f(b) (=2)(0) —2(-2) = 4
(fg — 2f)(0) f(e) gle) — 2f(c) @M —23) = -3
That is, fg —2f = {(a,—4),(b,4), {¢,—3)}

i
Il

(iii) Since, by definition, (f+4)(x) = f(x) +4, add 4 to each image value, i.e. to the second
coordinate in each pair in f. Thus

f+4 = {(a,5),(,2),,7}
(iv) Since |f|(x) = |f(x)|, replace the second coordinate of each pair in f by its absolute value. Thus
Ifl = {{a, 1), (b,2), (¢, 3)}
(v) Since f2(x) = (ff)(x) = f(x) f(x) = (f(x))2, replace the second coordinate of each pair in f by its
square. Thus
. 2 = {{a,1), (b, 4), (c,9)}
Let 0 € F(X,R) be defined by 0(z) = 0 for all z € X.
Prove: For any f€ F(X,R), (i) f+0 =7 and (i) 0 = 0.

Solution: “ n
A
(i) Q’ +0)x = flx) +0(x) = f(x)+0 = f(x) for every ¥ € X; hence f+ 0 = f. Observe that

0 satisfies the conditions of the 0 in the axiom [V;] of Theorem 2.9.

() (FO)x) = f(@)0(x) = flx)+(©) = 0 = O(x) forall € X; hence f0 = 0.

Prove: F(X,R) satisfies the axiom [V3;] of Theorem 2.9, ie. if f,g € F(X,R) and
k, kK € R, then:

(i) k(f+g) =k-f+k-g, (i) (K+E)f=Fkf+Fk-f.

Solution:

(1) [ke(f +o)@) = E[(f+9)@)] = k[f(x) +g@)] = kiflx)) + kig(x))
(kef+keg)w) = (kHlo)+ k-g)x) = ki(f(x) + klg(x))

for all x€X; hence k+(f+g) = k+f+ k+g. Observe that we use the fact that k, f(x) and
g{x) are real numbers and satisfy the distributive law.

(if) (B+E) ) = (k+E)flx) = k(f(x)) + K'(f(x)
kef+E-Nx) = (kHlx) + &N = kif(x) + K(flx))
for all 2 €X; so (k+k)f = kf+ k-f.

Supplementary Problems

FUNCTIONS

23, Let f:R—>R and g:R~- R be defined by f(x) = {

24.

2x —5 if x>2

, 9(@) = 3z +1.
22—l if w=2’ Y@ T3

Find (i) f(-2), (ii) g(=3), (iil) f(4), (v) (g°)(1), (V) (fog)2), (vi) (F°f)3).

Let f:R->R and ¢g:R->R be defined by f(x) = 224+ 8x+1, g(z) = 2x—3.
Find formulas which define the composition functions (i) feg, (ii) geof, (i) fef.
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25. Let k: X~ X Dbe a constant funection. Prove that for any function f:X - X, kof = k. What can
be said about fok?

26. Consider the function f(x) =« where xz €R, « = 0. State whether or not each of the following
functions is an extension of f.

(i)  gy&) = |&| forall x €R (iii) gslx) = (@ + |x[)/2 for all x €ER
(i) go(x) =« where x € [—1,1] (iv). 1z:R-R

27. Let AcX and let f: X > Y. The inclusion function j from A into X, denoted by j:ACX, is
defined by j(a) =a for all a €A. Show that f]A, the restriction of f to A, equals the composition
foj, ie. flA = foj.

ONE-ONE, ONTO, IyVERSE AND IDENTITY FUNCTIONS
28. Prove: For any function f: A - B, fol, = f = lpof.

29. Prove: If f: A > B is both one-one and onto, then f~lof = 1, and fof~1 = 1.
30. Prove: If f:A—> B and ¢g:B—> A satisfy gof = 14, then f is one-one and g is onto.

31. Prove Proposition 2.1: Let f:A > B and g:B—~ A satisfy gof = 1, and fecg = 1z. Then
f71:B—> A exists and g = f~L '

32. Under what conditions will the projection Tiy [14;: i1}~ Ai0 be one-to-one?
33. Let f:(—1,1) > R be defined by f(x) = «/(1— |x]). Prove that f is both one-one and onto.

34, Let R be an equivalence relation in a non-empty set A. The natural function » from A into the
quotient set A/R is defined by 3(a) = [@], the equivalence class of a. Prove that » is an onto function.

35. Let f:A - B. The relation R in A defined by aRa’ iff f(a) = f(a¢’) is an equivalence relation.
Let /f\denote the correspondence from the quotient set A/R into the range f{A] of f by f‘. [a} = f(a).

(i)  Prove that ?: A/R - f[A] 1is a function which is both one-one and onto.

(ii) Prove that f = jO?O n, where 5:A = A/R is the natural function and j:f[A] C B is the
inclusion function. g - e wg e

A 19 A/R L> f[A] “19 B 1- h_.ia—*-m—-f—-h::“ﬂ«‘.«’...'un

1
) Wi - YAy
INDEXED SETS AND GENERALIZED OPERATIONS
36. Let A4, = {x:% is a multiple of n} = {n,2n,3n,...}, where nEN, the positive integers. Find:

(i) AynAy (i) Agndg; (ili) AgUApy; (iv) AznAp; (v) AgUAg, where s,t€N; (vi) ANA,
where s,t € N. (vii) Prove: If JCN is infinite, then N {A;:1€ J} = Q.

37. Let B; = (4, i+1], an open-closed interval, where i€ Z, the integers. Find:
(i) B,UB; Giiy U2,B; v)  UiZ,Bg.;
(ii) Bgn By, (ivy BgUBg, UBg,, s€EZ (vi) UjezBg+

38. Let D, = [0,1/»], S, = (0,1/n] and T, = [0, 1/n) where nEN, the positive integers. Find:
(i) N{D,:n€N}, (i) N{S,:n€N}, (i) N{T,:n€EN}.

39. Prove DeMorgan’s Laws: (i) (U; 4)c = n; A7, (i) (n; 4)° = U; Af.
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40. Let o4 = {A,;: 1€ I} be an indexed class of sets and let JC K CI. Prove:
(i) WU{A;:ieJ} c U{4;:1 €K}, (i) N{4;:i€J} D N{4;:i €K}

ASSOCIATED SET FUNCTIONS

41, Let f:R-R be defined by f(x) = a2+ 1. PFind: (i) f[{—1,0,1)], (i) F~1[{10,17)], (iii) f[(—2,2)],
(iv) f~1[(5,10)], (v) f[R], (vi) f~1[R].

42. Prove: A function f:X - Y is one-one if and only if f[ANB] = f{A]n f[B], for all subsets A and
B of X.

43. Prove: Let f: X =Y. Then, for any subsets A and B of X,
(a) fI[ANB] C fl4] n f[B], () A c B implies f[A] C f|B]

44. Prove: Let f: X - Y. Then, for any subsets A and B of Y,
(@) f~1[AUB) = f~1[A] U f~1{B], (b) A CB implies f-1{A] C f~1[B]

45. Prove Theorem 2.8: Let f:X—>Y andlet ACX and BCY. Then
(i) Acf-tef[A], (i) B D fof 1[B]

46. Prove: Let f: X > Y be onto. Then the associated set function f: P(X)-> P(Y) is also onto.

47. Prove: A function f:X —Y is both one-one and onto if and only if f[Ac] = (f[A])¢ for every
subset A of X.

48. Prove: A function f:X —> Y is one-one if and only if 4 = f~1of[A] for every subset'A of X.

ALGEBRA OF REAL-VALUED FUNCTIONS
49, Let X = {a,b,c} and let f and g be the following real valued functions on X:
= { ((1/, 2>r (b: —3>! <c» —1) }; g = { (a’; _2>y (b’ 0)) (C, 1) }
Find (i) 8/, (ii) 2f — by, (iii) fg, (iv) Ifl, (v) f3 (vi) |3f — fgl.

50. Let A be any subset of a universal set U. Then the real-valued function X, U > R defined by

@ - [Lifeca
Xa 0if e A

is called the characteristic function of A. Prove:

i x

AnB — XaXg’ () X405 = Xa T Xg = X4npr () X4\~ X4 ™ Xanp

51. Prove: F(X,R) satisfies the axiom [V,] of Theorem 2.9; ie. if f€ F(X,R) and k,k’'ER, then
(i) ke(F'f) = (kK)-f, () 1f=/f

52. For each K ER, let ;c\ € F(X,R) denote the constant function ;c\(x) =k for all € X.

(i) Show that the collection  of constant functions, ie. ( = {,IE: k € R}, is a linear subspace of
FX,R).

(ii) Let a:(C ~ R be defined by a(;c\) = k. Show that « is both one-one and onto and that, for
k, k' €R,
any B+ 8 = alk) + alf)
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23.

24,

26.

32.

36.

37.

38.

1.

49.

Answers to Supplementary Problems
(i) 0, (iiy —8, (iii) 8, (iv) —2, (v) 9, (vi) —1
(i) (fog)w) = 4dx2—6x+1, (ii) (gof)lx) = 222 +62x—1, (ili) (fof)(x) = x*+ 623+ 1422+ 162+ 5
The function fok is a constant function.
(i) yes, (ii) no, (iii) yes, (iv) yes
A, is a singleton set, say A; = {a;}, for i i,
(1) Ay, (i1) Aoy, (iii) Ag, (iv) Age, (V) Ay, (vi) Ay
(i) (4,6], (i) @, (i) (4,21], (iv) (s,8+3], (v) (s,8+16], (vi) R
(@) {0}, (i) @, (i) {0}
(i) {1,2}, (i) {8,—8,4,—4}, (i) 1,5), (@{iv) (—8,-2), (2,8), v) {x:x=1}, (vi)i R

) 3f = {(a,6), b, —9), (¢,~3))

() 2f —5g = {(a,14), (b, —6), (c,~T)}
(i) fg = {(@~4), (5,0, ,~1)}

(iv) [fl = {(,2),(b,8), (c, 1)}

@) £ = {(@8), (b, —27), ¢, ~1)}

(vi) |8f—fg| = {(a,10),(b,9), {c,2)}



Chapter 3

Cardinality, Order

EQUIVALENT SETS

A set A is called equivalent to a set B, written A ~ B, if there exists a function f: A~ B
which is one-one and onto. The function f is then said to define a one-to-one correspond-
ence between the sets 4 and B.

A set is finite iff it is empty or equivalent to {1,2,...,n} for some n €N; otherwise
it is said to be infinite. Clearly two finite sets are equivalent iff they contain the same
number of elements. Hence, for finite sets, equivalence corresponds to the usual meaning
of two sets containing the same number of elements.

Example 1.1: Let N = {1,2,3,...} and E = {2,4,6,...}. The function f:N > E defined by
f(x) = 22 is both one-one and onto; hence N is equivalent to E.

Example 1.2: The function f:(—1,1) > R defined by f(x) = /(1 — |z|) is both one-one and onto.
Hence the open interval (—1,1) is equivalent to R, the set of real numbers.

Observe that an infinite set can be equivalent to a proper subset of itself. This
property is true of infinite sets generally.

Proposition 3.1: The relation in any collection of sets defined by A ~B is an equivalence
relation.

DENUMERABLE AND COUNTABLE SETS

Let N be the set of positive integers {1,2,8,...}. A set X is called denumerable and
is said to have cardinality 8, (read: aleph-null) iff it is equivalent to N. A set is called
countable iff it is finite or denumerable.

Example 2.1: The set of terms in any infinite sequence
ay, G2, A3z, . ..

of distinct terms is denumerable, for a sequence is essentially a function f(n) = a,
whose domain is N. So if the @, are distinct, the function is one-one and onto.
Accordingly, each of the following sets is denumerable:

{17 %r %; v -}v {1y —-21 3: —4y .. }’ {(1) 1>’ (478>, (9; 27}7 cevy <1’L2,7'L3), e }
Example 2.2: Consider the product set N X N as exhibited below. '
{1, 1) <1; 2)y—=(1, 3) {1, 4)—>-

/|
/

2,1 2,2 &3 29

/

(3 1 32

VS
/

(3, 8) 3, 4

\\
NN

41y 4,2 &3 44

\
AN

(]

2
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The set N X N can be written in an infinite sequence of distinct elements as follows:
(LD, 2,0, 1,2, 3,3, 2,2, ...

(Note that the sequence is determined by “following the arrows” in the above
diagram.) Thus we see that N X N is denumerable.

Example 23: Let M = {0,1,2,3,...} = NU{0}. Now each positive integer ¢« €N can be
written uniquely in the form a« = 27(2s+1) where »,s € M. The function
f:N->M X M defined by fla) = (r,8)

where  and s are as above, is one-one and onto. Hence M X M is denumerable.
Note that N X N is a subset of M X M.

The following theorems concern denumerable and countable sets.

Theorem 3.2: Every infinite set contains a denumerable subset.
Theorem 3.3: Every subset of a countable set is countable.

Lemma 3.4: Let {A:1As ...} be a denumerable disjoint class of denumerable sets.
Then U;Z;A; is also denumerable.

Theorem 3.5: Let {A;:i €I} be a countable class of countable sets, i.e. I is countable
and A; is countable for each i€I. Then U{A4::¢ €I} is countable.

A set which is neither finite nor denumerable is said to be non-denumerable or non-
countable.

THE CONTINUUM

Not every infinite set is denumerable; in fact, the next theorem gives a specific and
extremely important example.

Theorem 3.6: The unit interval [0, 1] is non-denumerable.

A set X is said to have the power of the continuum or is said to have cardinality ¢ iff
it is equivalent to the unit interval [0, 1].

We show, in a solved problem, that every interval, open or closed, has cardinality e.
By Example 1.2, the open interval (—1,1) is equivalent to R. Hence,

Proposition 3.7: R, the set of real numbers, has cardinality e.

SCHROEDER-BERNSTEIN THEOREM
We write A B if A is equivalent to a subset of B, i.e.,
A<XB iff 3§ B*CB suchthat A ~ B*
We also write A <B if A XB but A+ B, i.e. A is not equivalent to B.

Example 3.1:  Since N is a subset of R, we may write N <R. On the other hand, by Proposition
3.7, R is not denumerable, i.e. R # N. Accordingly, N <R.

Given any pair of sets 4 and B, then at least one of the following must be true:
(i) A~B, (ii) A<Bor B<A, (iii) AXB and BSA, (iv) A£LB, A+B and B£A

The celebrated Schroeder-Bernstein Theorem states that, in Case (iii) above, 4 is
- equivalent to B. Namely,

Theorem (Schroeder-Bernstein) 3.8: If A <B and B XA, then A ~ B,

The Schroeder-Bernstein Theorem can be restated as follows:
Theorem 3.8: Let XDOYDX,; and let X~ X;. Then X~Y,
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We remark that Case (iv) above is impossible. That is,

Theorem (Law of Trichotomy) 3.9: Given any pair of sets A and B, either A<B, A~B
or B<A.

CONCEPT OF CARDINALITY

If A is equivalent to B, i.e. A~ B, then we say that A and B have the same cardinal
number or cardinality. We write #(A) for “the cardinal number (or cardinality) of A”. So

#(A)= #(B) iff A~B
On the other hand, if A <B then we say that A has cardinelity less than B or B has
cardinality greater than A. That is,

#(A) < #(B) iff A<B
So #(A)=#(B) if A< B. Accordingly, the Schroeder-Bernstein Theorem can be re-
stated as follows:
Theorem 3.8: If #(A)= #(B) and #(B) = #(A), then #(A) = #(B).

The cardinal number of each of the sets

D, P}, D, (D3}, D, (D}, {D: (D11}

is denoted by 0,1,2,3,..., respectively, and is called a finite cardinal. The cardinal
numbers of N and [0,1] are denoted by

N, = #(N), ¢ = #(0,1))

Accordingly, we may write 0<1<2<3< - <R <e

CANTOR’S THEOREM AND THE CONTINUUM HYPOTHESIS

It is natural to ask if there are infinite cardinal numbers other than 8, and e¢. The
answer is yes. In fact, Cantor’s Theorem determines a set with cardinality greater than
any given set. Namely,

Theorem (Cantor) 3.10: The power set P(A) of any set A has cardinality greater than A.

It is also natural to ask if there exists a set whose cardinality lies between 8  and c.
The conjecture that the answer to this question is negative is known as the Continuum
Hypothesis. That is,

Continuum Hypothesis: There does not exist a set A with the property that 8 <#(4) <e.

In 1963 it was shown that the Continuum Hypothesis is independent of our axioms
of set theory in somewhat the same sense that Euclid’s Fifth Postulate on parallel lines
is independent of the other axioms of geometry.

PARTIALLY ORDERED SETS

A relation < in a set A is called a partial order (or order) on A iff, for every a,b,c € A:
(i) aga; (i) a<b and b<a implies a=D>; and (iii) e <b and b<c implies a $c. The
set A together with the partial order, i.e. the pair (A, <), is called a partially ordered set.
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Recall that a relation is reflexive iff it satisfies (i), and transitive iff it satisfies (iii).
A relation is said to be anti-symmetric iff it satisfies (ii). In other words, a partial order
is a reflexive, anti-symmetrie, transitive relation.

Example 4.1: Set inclusion is a partial order in any class of sets since: (i) ACA for any set A;
(ii) ACB and BCA implies A =B; and (iii) ACB and BCC implies ACC.

Example 4.2: Let A be any set of real numbers. Then the relation in A defined by * =y is a
partial order and is called the natural order in A.

Example 43: Let X = {a,b,c,d,e}. Then the diagram
a
b/ \c
\ g P \ .

defines a partial order in X as follows: « <y iff « =y or if one can go from
x to ¥ in the diagram, always moving in the indicated direction, i.e. upward.

If a<b in an ordered set, then we say that a precedes or is smaller than b and that
b follows or dominates or is larger than a. Furthermore, we write a <b if a b but a #b.

A partially ordered set A4 is said to be totally (or linearly) ordered if, for every a,b € A,
either ¢ b or b <a. R, the set of real numbers, with the natural order defined by x=y
is an example of a totally ordered set.

Example 44: Let A and B be totally ordered. Then the product set A X B can be totally
ordered as follows:
(a,b) < (2, by if a<a orif e=4a and b<¥
This order is called the lexicographical order of A X B since it is similar to the

way words are arranged in a dictionary.

Remark: If a relation R in a set A defines a partial order, i.e. is reflexive, anti-symmetric
and transitive, then the inverse relation R~! is also a partial order; it is called
the nverse order.

SUBSETS OF ORDERED SETS

Let A be a subset of 7a partially ordered set X. Then the order in X induces an
order in A in the following natural way: If a,b € A, then a b as elements in A iff
a<b as elements in X. More precisely, if R is a partial order in X, then the relation
Es = RN(A X A), called the restriction of R to A, is a partial order in A. The ordered set
(A, R4) is called a (partially ordered) subset of the ordered set (X, R).

Some subsets of a partially ordered set X may, in fact, be totally ordered. Clearly
if X itself is totally ordered, every subset of X will also be totally ordered.

Example 5.1: Consider the partial order in W = {a,b,c,d,e} defined by the diagram

a b
~.,”
d / \ e
The sets {a,¢,d} and {b, e} are totally ordered subsets; the sets {a, b,¢} and {d, e}
are not totally ordered subsets.

FIRST AND LAST ELEMENTS

Let X be an ordered set. An element a0 € X is a first or smallest element of X iff
a0 Sz for all z € X. Analogously, an element by € X is a last or largest element of X
iff x <by forall z€X.
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Example 6.1: Let X = {a,b,c,d,e} be ordered by the diagram

a
b / \ ¢
N, T\,
Then « is a last element since a follows every element. Note that X has no first

element. The element d is not a first element since d does not precede e.

Example 6.2: The positive integers N with the natural order has 1 as a first element. The
integers Z with the natural order has no first element and no last element.

MAXIMAL AND MINIMAL ELEMENTS

Let X be an ordered set. An element ao, € X is maximal iff ap<x implies x=a, i.e.
if no element follows ao except itself. Similarly, an element bo € X is minimal iff z < b
implies x = by, i.e. if no element precedes by except itself.

Example 71: Let X = {a,b,¢,d,e} be ordered by the diagram in Example 6.1. Then both d
and e are minimal elements. The element ¢ is a maximal element.

Example 7.2: Although R with the natural order is totally ordered it has no minimal and no
maximal elements.

Example 7.3: Let A = {ay,a5, ...,a,} be a finite totally ordered set. Then A contains pre-
cisely one minimal element and precisely one maximal element, denoted respec-
tively b
vy min {ay, ..., @y} and max {ay, ..., Uy}

UPPER AND LOWER BOUNDS

Let A be a subset of a partially ordered set X. An element m € X is a lower bound
of A iff m<x for all x € A, i.e. if m precedes every element in A. If some lower bound
of A follows every other lower bound of A, then it is called the greatest lower bound
(g.1.b.) or infimum of A and is denoted by inf (4).

Similarly, an element\M € X is an upper bound of A iff x<M for all x €4, ie. if
M follows every element in 4. If some upper bound of A precedes every other upper
bound of A, then it is called the least upper bound (l.u.b.) or supremum of A and is denoted
by sup (4).

A is said to be bounded above if it has an upper bound, and bounded below if it has a
lower bound. If A has both an upper and lower bound, then it is said to be bounded.

Example 81: Let X = {a,b,c,d,e,f,9} be ordered by the following diagram:

a b
<L
d/ \e B
f .)\0
Let B = {c,d,e¢}. Then a, b and ¢ are upper bounds of B, and f is the only lower

bound of B. Note that ¢ is not a lower bound of B since g does not precede d.
Furthermore, ¢ = sup (B) belongs to B, while f = inf (B) does not belong to B.

Example 8.2: Let A be a bounded set of real numbers. Then a fundamental theorem abbut real
numbers states that, under the natural order, inf (4) and sup (A) exist.
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Example 8.3: Let Q be the set of rational numbers. Let
B = {x:2€Q, x>0, 2<22<3}

that is, B consists of those rational points which lie between \/5 and \/§ on the
real line. Then B has an infinite number of upper and lower bounds, but inf (B)
and sup (B) do not exist. Note that the real numbers V2 and V/3 do not belong to Q
and cannot be considered as upper or lower bounds of B.

ZORN’S LEMMA

Zorn’s Lemma is one of the most important tools in mathematics; it asserts the

existence of certain types of elements although no constructive process is given to find
these elements.

Zorn’s Lemma 3.11: Let X be a non-empty partially ordered set in which every totally

ordered subset has an upper bound. Then X containsg at least one
maximal element.

Remark. Zorn’s Lemma is equivalent to the classical Axiom of Choice and the Well-

ordering Principle. The proof of this fact, which uses the concept of ordinal
numbers, is beyond the scope of this text.

Solved Problems

EQUIVALENT SETS, DENUMERABLE SETS

1.

Consider the concentric circles
C:r = {{(z,y): 22 +y>=0a?}, C: = {{x,y): 22+ y>=0b%}
where, say 0 <a <b. Establish, geometrically, a one-
to-one correspondence between C; and C..
Solution:
Let = € C,. Consider the function f:C,—> C;, where f(x)

is the point of intersection of the radius from the center of C,
(and C;) to », and C;, as shown in the adjacent diagram.

Note that f is both one-one and onto. Thus f defines a one-
to-one correspondence between C, and C,.

Prove: The set of rational numbers is denumerable.

Let Q* be the set of positive rational numbers and let Q— be the set of negative rational numbers.
Then Q@ = Q U {0} UQ* is the set of rational numbers.

Let the function f:Q* > N X N be defined by
fole) = @

where p/q is any positive rational number expressed as the ratio of two positive integers. Note f is
one-one; hence Q+* is equivalent to a subset of N X N, But N X N is denumerable (see Example 2.2);
hence Q@+ is also denumerable. Similarly Q~ is denumerable. Accordingly, by Theorem 3.5, the union
of Q—, {0} and QT, i.e. the set of rational numbers, is also denumerable.

Prove Proposition 8.1: The relation in any collection of sets defined by A ~B is an
equivalence relation. That is, (i) A~ A for any set 4; (ii) if A ~B then B~ A; and
(iii) if A~B and B~C then A~C.

Solution:

(i) The identity function 1,: A4 - A is one-one and onto; hence A ~ A4.
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(i) If A ~ B, then there exists f:A —» B which is one-one and onto. But then f has an inverse
f~1: B—> A which is also one-one and onto. Hence

A ~B implies B~ A

(iiiy If A~B and B~ C, then there exist functions f: A —~B and g:B - C which are one-one
and onto. Thus the composition function gof: A — C is also one-one and onto. Hence

A~B and B~C implies A~C

Prove: The collection P of all polynomials
p(x) = @+ ax + - + Gnx™
with integral coefficients, i.e. where aq, a4, ...,an are integers, is denumerable.

Solution:
For each pair of positive integers (n,m) € N XN, let P,, denote the set of polynomials p(x) of

degree m in which
lagl + faqf + 0 + lapn] = =2

Observe that P, is finite. Accordingly,
P = U{Pn: (n,m) € NXN}

is countable since it is a countable union of countable sets. In particular, since P is not finite, P is
denumerable.

A real number 7 is called an algebraic number if r is a solution to a polynomial equation

() = @ +ax + -+ ama™
with integral coefficients. Prove that the set A of algebraic numbers is denumerable.
Solution:
Note, by the preceding problem, that the set £ of polynomial equations is denumerable:
E = {p&) =0, ps{®) =0, pslx) =0, ...}
Let A; = {z: x is a solution of p,(x) = 0}

Since a polynomial of degree n can have at most = roots, each A; is finite. Hence 4 = U{4;:iE N}
is denumerable.

Prove Theorem 38.2: Every infinite set X contains a subset D which is denumerable.

Solution:

Let f:9P(X)—> X be a choice function, i.e. for each non-empty subset 4 of X, f(4) € A. (Such
a function exists by virtue of the Axiom of Choice.) Consider the following sequence:

a; = f(X)
FX N A{ay})
a3 = X\ {ay,as})

a, = f(X\Aey, .., a,-1})

Qg

Since X is infinite, X\ {ay,...,a,—,} is not empty for every n€N. Furthermore, since f is a

ice functi .
choice function, a,#a, for i<n
Thus the a, are distinet and D = {ay,ay, ...} is a denumerable subset of X.

Essentially, the choice function f “chooses” an element @, € X, then chooses an element a, from
those elements which “remain” in X, etc. Since X is infinite, the set of elements which “remain” in X
is non-empty.
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7.

10.

11.

Prove: Let X be any set and let C(X) be the collection of characteristic functions on X,
i.e. the collection of functions f:X - {1,0). Then the power set of X is equivalent
to C(X), i.e. P(X)~ C(X).

Solution:
Let A be any subset of X, ie. A € P(X). Let f:P(X)-> C(X) be defined by
0 ifegAd
A = =
&= x {1 if v €A

Then f is one-one and onto. Hence P(X) ~ C(X).

Prove: A subset of a denumerable set is either finite or denumerable, i.e. is countable.

Solution:
Let X = {a;,ay ...} be any denumerable set and let A be a subset of X. If A =@, then 4 is
finite. If A # @, then let n; be the least positive integer such that a,, € A let ny be the least positive

integer such that =, > n; and anZEA; etc. Then A = {anl,a"2, ...}. If the set of integers
{ny, My, ...} is bounded, then A is finite. Otherwise A is denumerable.

Prove Theorem 3.3: Every subset of a countable set is countable.

Solution:
If X is countable, then X is either finite or denumerable. In either case, its subsets are countable.

Prove Lemma 3.4: Let {A: As ...} be a denumerable disjoint class of denumerable
sets. Then UL, A; is denumerable.
Solution:
Since the sets A; are denumerable, we can write
A = {ayp a3, 093 ...}
Ay = {agy, a9y €23, ...}
An = ey Qg Oy, }

Then Ui=;A; = {a;;: (¢,j) € NXN}. The function f: U1 A;» N X N defined by flay) = 6,9
is clearly one-one and onto. Hence U;—; A; is denumerable since N X N is denumerable.

Prove: Let A be an infinite set, let B = {b,bs, ...} be denumerable, and let A and B
be disjoint. Then AUB ~ A.

Solution:
Since A is infinite, A contains a denumerable subset D = {d;,dy, ...}. Let f: AUB->A be
defined by the following diagram:

[l

AUB = (A\D)U (DUB)

A = (ANDUD

Il

In other words,
x if x€ AN\D

f(x) = d2n—1 if = dn
dzn if = b"

Observe that f is one-one and onto; hence AUB ~ A.
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CONTINUUM, CARDINALITY
12. Prove that the intervals (0, 1), [0, 1) and (0, 1] have cardinality ¢, i.e. is equivalent to [0, 1.

Solution:
(i) Note that [6,1 = {0,1,1/2,1/3, ...} U A, (0,1) = {1/2,1/3,1/4, ... U A

where A = 0,11\ {0,1,1/2,1/3, ...} = (0,1)\{1/2,1/3,1/4, ...}

Consider the function f:[0,1] = (0,1) defined by the following diagram

{0,1,1/2,1/3, ...} U A

1a
{1/2,1/8,1/4,1/5, ...} U A
In other words,
1/2 if =0
fl®) = 1/(n+2) if x=1/n, nEN
x if 0, 1/n, nEN, le.if x €A

The function f is one-one and onto. Accordingly, [0,1] ~ (0,1).
(ii) The function f:{0,1] = [0,1) defined by

{Um+1)ifx=1m,n€N

f@) = if x#£1/n, nEN

is one-one and onto. (It is similar to the function in Part (i)). Hence [0,1] ~ [0,1).

(iiiy Let f:[0,1)—~(0,1] be defined by f(») = 1—=. Then f is one-one and onto. Hence
[0,1) ~ (0,1} and, by transitivity, [0,1] ~ (0,1].

In other words, (0,1), [0,1) and (0,1] have cardinality e.

13. Prove: Each of the following intervals has the power of the continuum, i.e. has
cardinality e: [a,b], (a,b), |a,b) and (a,b]. Here a <b.

Solution:
Let each of the following functions be defined by f(z) = a + (b — a)x:

(0,1 %> [a,b] [0,1) > [a,b) ©,1) %> (a,b) 0,1 L (a,8]

Each function is one-one and onto. Hence by the preceding problem and Proposition 3.1, each interval
is equivalent to [0,1], i.e. has cardinality e.

14. Prove Theorem 3.6: The unit interval A = [0,1] is non-denumerable.

Solution:
Method 1. Assume the contrary; then

A = {w, %y %3, ...}
i.e. the elements of A can be written in a sequence.

Each element in A can be written in the form of an infinite decimal as follows:

2y = 0.ayy Qo013 ... Qg - .-
Ly ZO.a21a22a23...a2n...
3 = 0.a3 O30 Q33 ... A3y .-

.............................
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15.

where a; € {0,1,...,9} and where each decimal contains an infinite number of non-zero elements,
i.e. for those numbers which can be written in the form of a decimal in two ways, e.g.,
1/2 = .5000... = .4999...

we write the infinite decimal in which all except a finite set of digits are nines.

Now construct the real number
Yy = 0. bl b2b3 bn

which will belong to A, in the following way: choose b; so by a;; and b; # 0, choose b, s0 by ay,y
and by +#0, ete.

Observe that y # x, since b, % a1, Yo7 ¥y since by # ayy, ete., that is, y+x,, for nEN. Hence
y &€ A, which is impossible. Thus the assumption that A is denumerable has led to a contradiction.
Consequently, A4 is non-denumerable.
Method 2. Assume the contrary. Then, as above,
A = {x), 29,25 ...}

Now construct a sequence of closed intervals as follows: Consider the following three closed
sub-intervals of A = [0,1], .
0, %, [33, I[31] (1)

each having length 1. Now 2, cannot belong to all three intervals. Let I; = [ay,b;] be one of the
intervals in (I) such that x, & I,.

Now consider the following three closed sub-intervals of I; = [ay, b,],
[a, e+ 1], [eg+3,e0+2], [ar+2 0] (2)
each having length 1. Similarly, let I, be one of the intervals in (2) such that «, & I,. )
By continuing in this manner, we obtain a sequence of closed intervals
I1DI,DI3D - 3
such that «, &I, for all n € N. By the Nested Interval Property (see Appendix A) of the real
numbers, there exists a real number y €A = [0,1] such that y belongs to every interval in (3). But

yE€A = {xg, 29, ...7 implies y= Ly for some myEN

Then by our construction y = L2 & I’"o’ which contradicts the fact that y belongs to every interval

in (3). Thus our assumption that A is denumerable has led to a contradiction. In other words, A is
non-denumerable.

Prove Theorem (Schroeder-Bernstein) 3.8: Let X DY D X, and let X ~ X;; then X ~Y.

Solution:
Since X ~ X, there exists a function f:X — X; which is one-one and onto. But XDY; hence
the restriction of f to Y, which we shall also denote by f, is also one-one. So Y is equivalent to a
subset of X,, i.e. Y ~Y,; where
! ! XoYDoX, 0V,

and f:Y - Y, is one-one and onto. But now YDX,; hence, for similar reasons, X ~ X, where
X>2Y>X,0Y;0X,

and f:X,— X, is one-one and onto. Consequently, there exist equivalent sets X, X5, X3, ... and
equivalent sets Y;,Y,, Y3 ... such that

XoYDX; DY DX;,0Y,D -

Let B = XnYnX;nY nXon¥yn--:
Then X = X\YVNu@\X)uEX\Y)u---uB
Y = I\X)UX\Y)Yu( \X)u - --UB

Note further that (XN\Y) ~ (X;\Yy) ~ (Xa\Yy) ~ -

Specifically, the function f:(X,\Y,) 2> (X,+1\ Y, is one-one and onto.
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Consider the function g:X = Y defined by the following diagram:

@@q®

In other words, _ Jfw) if x€X,\Y,0or e€X\Y
9@ = V. i x€V,\X orvEB

Then ¢ is one-one and onto. Therefore X ~ Y.

16. Prove Theorem (Cantor) 3.10: The power set P(4) of any arbitrary set A has
cardinality greater than A4, i.e. A <P(A) and hence #(A4) < #(P(A)).
Solution:
The function g¢:A - P(A) which sends each element a €A into the singleton set {a}, ie.
g(a) = {a}, is one-one; hence A < P(A4).

If we show that A is not equivalent to P(4), then the theorem will follow. Suppose the contrary,
i.e. let there exist a function f: A — P(A) which is one-one and onto. Call a€ A a “bad” element
if @ is not a member of the set which is its image, i.e. if a & f(a). Let B be the set of “bad”

elements, i.e.,
B = {x:x€A, €& fla)}

Observe that B is a subset of A, that is, B € P(4). Since f:4 - P(A) is onto, there exists
an element b € A with the property that f(b) = B. Question: Is b “bad” or “good”? If b€ B then,
by definition of B, b & f(b) = B which is a contradiction. Likewise, if b& B, then b €& f(b) = B
which is also a contradiction. Thus the original assumption, that A ~ P(A), has led to a contra-
diction. Accordingly A ~ P(A) is false, and so the theorem is true.

ORDERED SETS AND SUBSETS

17. Let N, the positive integers, be ordered as follows: each pair of elements a,0’ €N can
be written uniquely in the form

a =27(2s+1), o« = a"(as’+1)
where r,7,s,8" € {0,1,2,8,...}. Let
a<a if r<r orif r=17r but s<¢

Insert the correct symbol, < or >, between each of the following pairs of numbers.
(Here x >y iff y <2.)

(i) 514, (ii) 6

9, (iii) 3__20, (iv) 14__21
Solution:
The elements in N can be written as follows:

@
r
0

0

1
1 2 611014 | 18 | 22 | 26 | 30
2 4112 |20 | 28 |36 |44 | 52 | 60

Then a number in a higher row precedes a number in a lower row and, if two numbers are in the
same row, the number to the left precedes the number to the right. Accordingly,

(i) 5 <14, (i) 6>9, (iii) 3<20, (v)14>21
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18. Let A = {a,b,c} be ordered as in the diagram on the right.

a
Let o4 be the collection of all non-empty totally ordered subsets / \
of A, and let ¢4 be partially ordered by set inclusion. Construct b

c

a diagram of the order of 4.

Solution:

The totally ordered subsets of A are: {a}, {b}, {c}, {a,b}, {a¢,¢}. Since o4 is ordered by set

inclusion, the order of ¢4 is the following:

{a, b} {a, ¢}

(b}/ \{a}/ \{c}

19. Let A =1{2,8,4,...} = N\ (1}, and let A be ordered by “z divides y”. (i) Determine
the minimal elements of A. (ii) Determine the maximal elements of A.
Solution:

(1)

(i)

If p€A is a prime number, then only p divides p (since 1€ A); hence all prime numbers are
minimal elements. Furthermore, if a €A is not prime, then there is a number b€ A such that
b divides a, i.e. b<a; hence a is not minimal. In other words, the minimal elements are
precisely the prime numbers.

There are no maximal elements since, for every a € A4, a divides 2a, for example.

20. Let B = (2,3,4,5,6,8,9,10} be ordered by “x is a multiple of ¥”. (i) Find all maximal
elements of B. (ii) Find all minimal elements of B.
Solution:

Construct a diagram of the order of B as follows:
3 2 5
AN /1‘\1 v
9 6 411 10

8

(i) The maximal elements are 2, 3 and 5. (ii) The minimal elements are 6, 8, 9 and 10.

21. Let W = {1,2,...,7,8) be ordered as follows:

N\, Y

Consider the subset V = {4,5,6} of W. (i) Find the set of upper bounds of V.
(ii) Find the set of lower bounds of V. (iii) Does sup (V) exist? (iv) Does inf (V) exist?

Solution:

)]
(i)
(iii)

@iv)

Each of the elements in {1, 2, 3}, and only these elements, follows every element in ¥V and hence
is an upper bound.

Only 6 and 8 precede every element in V; hence {6,8} is the set of lower bounds.
Since 3 is a first element in the set of upper bounds of V, sup (V) = 8. Note that 3& V.
Since 6 is a last element in the set of lower bounds of V, inf (V) = 6. Note that 6E€ V.
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Let ¢4 be a collection of sets partially ordered by set inclusion, and let B be a sub-

collection of 4. (i) Prove that if A €4 is an upper bound of B, then {J{B: B € B} C A.

(ii) Is W{B: B € B} an upper bound of B?

Solution:

(i) Let x € U{B: B € B}; then IB, € B st. x € By. But A is an upper bound of B; so By,cA
and hence x € A. Accordingly, U{B: B &€ B} C A.

(ii) Even though B is a subcollection of ¢4, it need not be true that the union of members of B, i.e.
U{B: B & B}, is a member of c4. In other words, U{B:B € B} is an upper bound of B
if and only if it belongs to cA.

APPLICATIONS OF ZORN’S LEMMA

23.

24,

Prove: Let X be a partially ordered set. Then there exists a totally ordered subset
of X which is not a proper subset of any other totally ordered subset of X.
Solution: .

Let c4 be the class of all totally ordered subsets of X. Let ¢4 be partially ordered by set inclusion.

We want to show, by Zorn’s Lemma, that <4 possesses a maximal element. So suppose B = {B;: i€ I}
is a totally ordered subclass of 4. Let A = U{B;:1€I}. .

Observe that B;,CX forall B,€%B implies ACX

We next show that 4 is totally ordered. Let a,b € A; then
3B;, B, €B suchthat a€B;, b€ By

But B is totally ordered by set inclusion; hence one of them, say B, is a subset of the other. Conge-
quently, @,b € By. Recall that B, € B is a totally ordered subset of X; so either ¢« <b or b <a.
Then A is a totally ordered subset of X, and so A € 4.

But B;CA for all B;€B; hence A is an upper bound of B. Since every totally ordered subset
of <4 has an upper bound in <4, by Zorn’s Lemma, ¢4 has a maximal element, i.e. a totally ordered
subset of X which is not a proper subset of any other totally ordered subset of X.

Prove: Let R be a relation from A to B, i.e. R C A X B, and suppose the domain of

R is A. Then there exists a subset f* of R such that f* is a function from A into B.

Solution:

Let o4 be the class of subsets of R such that each f €A is a function from a subset of A into B.
Partially order <4 by set inclusion. Observe that if f:A; > B is a subset of g:4,—> B then
A, C A,

Now suppose B = {f;: Ai—’B}iel is a totally ordered subset of c4. Then (see Problem 44)
f = U;f; is a function from U;A; into B. Furthermore, fCE. Hence f is an upper bound of <B.
By Zorn’s Lemma, ¢4 possesses a maximal element f*: A* - B, If we show that A* = A, then the
theorem is proven.

Suppose A*#* A. Then Fa €A st. a& A*. By hypothesis, the domain of R is A; hence
there exists an ordered pair (a,b) &€ R. Then f* U {(a,b)} is a function from A* U {a¢} into B.
But this contradicts the fact that f* is a maximal element in ¢4. So A* = A, and the theorem is
proven.

Supplementary Problems

EQUIVALENT SETS, CARDINALITY

25.

26.

27,

Prove: Every infinite set is equivalent to a proper subset of itself.
Prove: If A and B are denumerable, then A X B is denumerable,

Prove: The set of points in the plane R2 with rational coordinates is denumerable.
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28. A real number «x is called transcendental if x is not algebraic, i.e. if x is not a solution to a polynomial
equation
px) = ap+ax+ - Fauem = 0
with integral coefficients (see Problem 5). For example, = and ¢ are transcendental numbers.
(1) Prove that the set T of transcendental numbers is non-denumerable.

(ii) Prove that T has the power of the continuum, i.e. has cardinality e.

29. An operation of multiplication is defined for cardinal numbers as follows:
#(A) #(B) = #(A X B)
) Show that the operation is well-defined, i.e.,
#(A) = #(A’) and #(B) = #(B’) implies #(A) #(B) = #(4") #(B)

or, equivalently, A~A and B~B implies (4 X B) ~ (A’ X B L¢ voa) = { 4l §tar)

] 4 > &' F o
(ii) Prove: (a) 8oy = 8y, (b)) Rge=1¢, (¢) ce=c

30. An operation of addition is defined for cardinal numbers as follows:
#(A) + #(B) = #(A X {1} U B X {2})
(i) Show that if AnNB = @, then #(A) + #(B) = #(AUB).
(ii) Show that the operation is well-defined, i.e.,
#(A) = #(A4') and #(B) = #(B’) implies #(A) + #(B) = #(4") + #(B')

EI0) , X - A

qby ¥ (- 1)

R
N
—,

31. An operation of powers is defined for cardinal numbers as follows:
#A)*® = #{f : f:B->A})
(i) Show that if #(A) = m and #(B) = n are finite cardinals, then
#A)EB® = o

i.e. the operation of powers for cardinals corresponds, in the case of finite cardinals, to the usual
operation of powers of positive integers.

(ii) Show that the operation is well-defined, i.e.,
#(A) = #(A’) and #(B) = #(B’) implies #(A)#¥B = #(A")#B")
(iii) Prove: For any set A, #(P(A)) = 2#),

32. Let ~ be the equivalence relation in R defined by « ~ y iff x — y is rational. Determine the cardinality
of the quotient set R/~.

33. Prove: The cardinal number of the class of all functiops from [0, 1] into R is 2€

34. Prove that the following two statements of the Schroeder-Bernstein Theorem 3.8 are equivalent:
(i) If A<XB and B<A4, then A ~ B.
(ify If XDY DX, and X ~ X,, then X ~ Y.

35. Prove Theorem 3.9: Given any pair o\f sets A and B, ei'ther A<B,A~Bor B<A.
(Hint. Use Zorn’s Lemma.)

ORDERED SETS AND SUBSETS

36. Let A = (N, =), the positive integers with the natural order; and let B = (N,=), the positive
integers with the inverse order. Furthermore, let A X B denote the lexicographical ordering of N X N
according to the order of A and then B. Insert the correct symbol, < or >, between each pair of
elements of N X N.

@ &,8) @1, ()2, (2,8, (i) 3,3)——@3,1), ({v) 4,9 (7,15
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37.

38.

39.

40.

41.

42.

CARDINALITY, ORDER [CHAP. 3
1
Let X = {1,2,3,4,5,6} be ordered as in the adjacent diagram. Consider '
the subset A = {2,3,4} of X. (i) Find the maximal elements of X. 2

(ii) Find the minimal elements of X. (iii) Does X have a first element? / \

(iv) Does X have a last element? (v) Find the set of upper bounds of A. 3 4
(vi) Find the set of lower bounds of A. (vii) Does sup (4) exist? (viii) Does w

inf (A) exist? 5 6

Consider @, the set of rational numbers, with the natural order, and its subset A = {x : x € Q, x3 < 3}.
(i) Is A bounded above? (ii) Is A bounded below? (iii) Does sup (4) exist? (iv) Does inf (4) exist?

Let N, the positive integers, be ordered by “x divides y”, and let ACN. (i) Does inf(4) exist?
(il) Does sup (4) exist?

Prove: Every finite partially ordered set has a maximal element.

Give an example of an ordered set which has exactly one maximal element but does not have a last
element.

Prove: If R is a partial order on A, then R—1 is also a partial order on A.

ZORN’S LEMMA

43.

44.

45.

46.

32,

36.

37.

38.

39.

41.

Consider the proof of the following statement: There exists a finite set of positive integers which is
not a proper subset of any other finite set of positive integers.

Proof. Let o4 be the class of all finite sets of positive integers. Partially order ¢4 by set inclusion.
Now let B = {B;: 1 €I} be a totally ordered subclass of 4. Consider the set A = U;B;. Observe
that B; C A for every B; € B; hence A is an upper bound of B.

Since every totally ordered subset of <4 has an upper bound, by Zorn’s Lemma, ¢4 has a maximal
element, a finite set which is not a proper subset of another finite set.

Question: Since the statement is clearly false, which step in the proof is incorrect?

Prove the following fact which was assumed in the proof in Problem 24: Let {f;: A; > B} be a class
of functions which is totally ordered by set inclusion. Then U;f; is a function from U;A; into B.

Prove that the following two statements are equivalent:

(i) (Axiom of Choice.) The product []{A;:iE€ 1} of a non-empty class of non-empty sets is
non-empty.

(ii) If 4 is a non-empty class of non-empty disjoint sets, then there exists a subset B C U{4: A €4}
such that the intersection of B and each set A € <4 consists of exactly one element.

Prove: If every totally ordered subset of an ordered set X has a lower bound in X, then X has a
minimal element.

Answers to Supplementary Problems
¢
1) >, (i) >, (i) <, (iv) <
(i) {1}; (i) {5,6}; (iii) No; (iv) YeJ,l; (v) {1,2}; (vi) {5,6}; (vii) Yes, 2; (viii) No
(i) Yes, (ii) No,, (iii) No, (iv) No
(i) inf (A) exists iff A # . (ii) sup (4) exists iff A is finite.
o
1—>2—>3—eder- -

Here a is maximal but a is not a last element.



Chapter 4

Topology of the Line and Plane

REAL LINE

The set of real numbers, denoted by R, plays a dominant role in mathematics and, in
particular, in analysis. In fact, many concepts in topology are abstractions of properties
of sets of real numbers. The set R can be characterized by the statement that R is a
complete, Archimedean ordered field. These notions are explained in the Appendix. Here
we use the order relation in R to define the ‘“usual topology’ for R.

We assume the reader is familiar with the geometric representation of R by means of
the points on a straight line. As in Fig. 4-1, a point, called the origin, is chosen to repre-
sent 0 and another point, usually to the right of 0, to represent 1. Then there is a natural
way to pair off the points on the line and the real numbers, i.e. each point will represent a
unique real number and each real number will be represented by a unique point. For
this reason we refer to the line as the real line or real axis. Furthermore, we will use
the words point and number interchangeably.

! ! n Il
T T T T

-2 -1 0 1 2

OPEN SETS IN R

Let A be a set of real numbers. A point p € A is an interior point of A iff p belongs
to some open interval S? which is contained in A:

peES, CA

The set A is open (or U-open) iff each of its points is an interior point. (The significance
of U in U-open will appear in the next chapter.)

Example 1.1:  An open interval A = (a, b) is an open set, for we may choose S, = A for each p € A.
Example 1.2:  The real line R, itself, is open since any open interval S, must be a subset of R, i.e.
pES,CR.

Observe that a set is not open iff there exists a point in the set that is not an interior
point.
Example 13: The closed interval B = [a,b] is not an open set, for any open interval containing

a br b must contain points outside of B. Hence the end points @ and b are not
interior points of B.

Example 1.4: The empty set () is open since there is no point in ¢ which is not an interior point.

Example 1.5: The infinite open intervals, i.e. the subsets of R defined and denoted by
:vx€R, x>0} = (¢,%), {:2ER, x<a} = (—=,q),
{x:x€R} = R = (—», )
are open sets. On the other hand, the infinite closed intervals, i.e. the subsets of R
defined and denoted by
{x:2€ER, x=a} = [0,%), {2:0€ER, x=a} = (—»,q]
are not open sets, since a € R is not an interior point of either [a, ®) or (—«,a].

47
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We state two fundamental theorems about open sets.
Theorem 4.1: The union of any number of open sets in R is open.
Theorem 4.2: The intersection of any finite number of open sets in R is open.

The next example shows that the finiteness condition in the preceding theorem cannot
be removed.

Example 1.6: Consider the class of open intervals and, hence, open sets
{An = (_1/71: 1/7[) TnE N}y i.e. {(_1) 1)! (_%) %)) (_%! é)y .. '}

Observe that the intersection
n:LQ=1An = {0}

of the open intervals consists of the single point 0 which is not an open set. In
other words, an arbitrary intersection of open sets need not be open.

ACCUMULATION POINTS

Let A be a subset of R, i.e. a set of real numbers. A point p €R is an accumulation
point or limit point of A iff every open set G containing p contains a point of A different
from p; 1.e., Gopen, p €G impliess A NG\ {p}))#= O
The set of accumulation points of A, denoted by A’, is called the derived set of A.

Example 2.1: Let 4 = {1, %,%,%, ...}. The point 0 is an accumulation point of A since any

open set G with 0 € G contains an open interval (—a;,a,) C G with —a; < 0 < a,
which contains points of A.

T T T T Y T T | | 'l I
e R

Observe that the limit point 0 of A does not belong to A. Observe also that A does

not contain any other limit points; hence the derived set of A is the singleton set
{0}, i.e. A" = {0}.

Example 2.2: Consider the set Q of rational numbers. Every real number p € R is a limit point
of Q since every open set contains rational numbers, i.e. points of Q.

Example 2.3: The set of integers Z = {...,—-2,—-1,0,1,2,...} does not have any points of
accumulation. In other words, the derived set of Z is the empty set @.

Remark: The reader should not confuse the concept “limit point of a set” with the
different, though related, concept “limit of a sequence”. Some of the solved
and supplementary problems will show the relationship between these two
concepts.

BOLZANO-WEIERSTRASS THEOREM

The existence or non-existence of accumulation points for various sets is an important
question in topology. Not every set, even if it is infinite as in Example 2.3, has a limit
point. There does exist, however, an important general case which gives a positive answer.

Theorem (Bolzano-Weierstrass) 4.3: Let A be a bounded, infinite set of real numbers.
Then A has at least one accumulation point.

CLOSED SETS

A subset A of R, i.e. a set of real numbers, is a closed set iff its complement A¢ is an
open set. A closed set can also be described in terms of its accumulation points.

Theorem 4.4: A subset A of R is closed if and only if A contains each of its points of
accumulation.
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Example 3.1: The closed interval [a, b] is a closed set since its complement (—=,a) U (b, »), the
union of two open infinite intervals, is open.

Example 3.2: The set A4 = {1,1,1,1,...} is not closed since, as seen in Example 2.1, 0 is a
limit point of A but does not belong to A.

Example 3.3: The empty set @ and the entire line R are closed sets since their complements R
and @, respectively, are open sets.
Sets may be neither open nor closed as seen in the next example.

Example 34: Consider the open-closed interval A = (a,b]. Note that A is not open since b€ A
is not an interior point of A, and is not closed since a € A but is a limit point of A.

HEINE-BOREL THEOREM

One of the most important properties of a closed and bounded interval is given in the
next theorem. Here a class of sets, o4 = {A;}, is said to cover a set A if A is contained
in the union of the members of ¢4, i.e. A C U; A,

Theorem (Heine-Borel) 45: Let A = [¢,d] be a closed and bounded interval, and let
G = {Gi:1 €I} be a class of open intervals which covers A4,.
ie. ACU;Gi. Then G contains a finite subclass, say
{Gi,, - - -, Gi,}, which also covers 4, i.e.,

A CGi1 U Gi2U oo U Gim
Both conditions, closed and bounded, must be satisfied by A or else the theorem is not
true. We show this by the next two examples.
Example 4.1: Consider the open, bounded unit interval A = (0,1). Observe that the class

_ - (1 1),
¢ = {G"“<n+2’n>'neN}

of open intervals covers A4, i.e.,
AcEhuGthovEGy v

"%,
P 3y
I i : nGZ
i : | Jl- G
IR -9
~— [ i 4
T ke l1 1 1 T
-1 0 i 3 3 1
But the union of no finite subclass of G contains A.
Example 4.2: Consider the closed infinite interval A = [1, »). The class
¢ = {(0,2),(1,3), (2,4), ...}
of open intervals covers A, but no finite subclass does.
® o o

3,5) = o——

249 = ¢

1,3) = 0

\/

T |
-2 -1

w—--——0-|

e )

©2 = o
0

o—4-O-—F

H-(L)—A -

SEQUENCES

A sequence, denoted by
(81,82, ...), (Sa:m EN) or (s»)
is a function whose domain is N = {1,2,3, ...}, i.e. a sequence assigns a point s. to each
positive integer n € N. The image s, or s(n) of n €N is called the nth term of the sequence.
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Example 5.1: The sequences
(sn> - <1, 3) 5; )) (tn> = (_%; i’y '—%; ﬁ: ), (un) = (1’ 0, 1! 07 '-->
can be defined, respectively, by the formulas

1 if nis odd

s(n) = 2n—1, tm) = (172" um) = 1+ (=H»*h) = {0 if n is even

A sequence (s,:7n € N) is said to be bounded if its range {s.:n € N} is a bounded set.

Example 5.2: Consider the three sequences in Example 5.1. The range of (s,) is {1,3,5,...}; so

(sy) is not a bounded sequence. The range of (t,) is {—%,1,—%,...} which is

bounded; hence (t,) is a bounded sequence. The range of (u,) is the finite set {0,1};
so (u,) is also a bounded sequence.

Observe that (s.:n € N) denotes a sequence and is a function. On the other hand,
{sn:m € N} denotes the range of the sequence and is a set.

CONVERGENT SEQUENCES
The usual definition of a convergent sequence is stated as follows:

‘ Deﬁnition:l The sequence (ai,as, ...) of real numbers converges to b € R or, equivalently,
‘ the real number b is the limit of the sequence (a.:n &€ N), denoted by

lima, = b, lima. = or a,-b

n=—

if for every ¢ > 0 there exists a positive integer no such that
n>ne implies |a,—Db| <e

Observe that |a, —b| < ¢ means that b —e¢ < a. < b+ or, equivalently, that a. belongs
to the open interval (b —¢ b+¢) containing b. Furthermore, since each term after the
noth lies inside the interval (b—¢, b +¢), only the terms before a., and there are only a
finite number of them, can lie outside the interval (b —¢ b +¢). Hence we can restate the
preceding definition as follows.

Definition:] The sequence (a.:n € N) converges to b if every open set containing b con-
tains almost all, i.e. all but a finite number, of the terms of the sequence.

Example 6.1: A constant sequence (a, &, @y, - ..), such as (1,1,1,...) or (—3,~3,-3, .. .),\/Eon-
verges to a, since each open set containing a, contains every term of the sequence.
Example 6.2: Each of the sequences
<19—2l,%’%7"')7 (170’%’0’%’0,%70?"'>7 (1,—%,%’_-%"")

converges to 0 since any open interval containing 0 contains almost all of the terms
of each of the sequences.

Example 6.3: Consider the sequence (},1,%, 4, %, & 13, .. .), i.e. the sequence
1 P
PRIV if n is even
a, = 1
1-— —W if n is odd

The points are displayed below:

___QOH | i i é | H¢r

Observe that any open interval containing either 0 or 1 contains an infinite number
of the terms of the sequence. Neither 0 nor 1, however, is a limit of the sequence.
Observe, though, that 0 and 1 are accumulation points of the range of the sequence,
that is, of the set {{,1,3,%, % ...}
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SUBSEQUENCES

Consider a sequence (ai, ds, @3, ...). If (i) is a sequence of positive integers such that
11 <22 < ---, then
) (ail, aiz, ai3, . )

is called a subsequence of {(a.:n € N).
Example 7.1:  Consider the sequence (a,) = (1,4,%,1,...). Observe that (1,1,},4,...) is a

subsequence of (a,), but that (§,1,4,1, %, 1, ...) is not a subsequence of (a,) since
1 appears before % in the original sequence.

Example 7.2:  Although the sequence (§,1,2,%,%,...) of Example 6.3 does not converge, it does
have convergent subsequences such as (5, 1,4, & ...) and (4,4,%,43,...). On
the other hand, the sequence (1,3,5,...) does not have any convergent sub-
sequences.

As seen in the preceding example, sequences may or may not have convergent subse-
quences. There does exist a very important general case which gives a positive answer.

Theorem 4.6: Every bounded sequence of real numbers contains a convergent subsequence.

CAUCHY SEQUENCES

A sequence (a.:7m € N) of real numbers is a Cauchy sequence iff for every «>0 there
exists a positive integer n, such that

n,m > ne implies [@n—an| <e

In other words, a sequence is a Cauchy sequence iff the terms of the sequence become
arbitrarily close to each other as n gets large.

Example 81: Let {(a,:n € N) be a Cauchy sequence of integers, i.e. each term of the sequence
bel()ngs to Z={...,—1,0,1,...}. Then the sequence must be of the form
(@y, g, ..., Qs b,b,b,...)

i.e. the sequence is constant after some ngth term. For if we choose ¢ =1, then

Uy, €Z and |a, —a,| < i implies a,=a,

Example 8.2: We show that every convergent sequence is a Cauchy sequence. Let o, > b and let
e > 0. Then there exists ny € N sufficiently large such that
n > ny implies |a,—b| < 4e and m > ny implies |ap — b < e
Consequently, =n,m > n, implies
@, —@an] = le,—b+b—ay,l = la,—bl+ [b—a,l < det le =

Hence {a,) is a Cauchy sequence.

COMPLETENESS
A set A of real numbers is said to be complete if every Cauchy sequence (a. € A : n € N)
of points in A converges to a point in A.

Example 91: The set Z = {...,—2,—1,0,1,2,...} of integers is complete. For, as seen in
Example 8.1, a Cauchy sequence (@, : n € N) of points in Z is of the form
(@y, Aoy « - -y gy b,b,b,...)
which converges to the point b € Z.

Example 9.2: The set Q of rational numbers is not complete. For we can choose a sequence of
rational numbers, such as (1,1.4,1.41,1.412, ...) which converges to the real num-

ber V2, which is not rational, i.e. which does not belong to Q.
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A fundamental property of the entire set R of real numbers is that R is complete.
Namely,

Theorem (Cauchy) 4.7: Every Cauchy sequence of real numbers converges to a real
© number. ’ o

CONTINUOUS FUNCTIONS
The usual « — § definition of a continuous function is stated as follows:

U

Definition: | A function f: R~ R is continuous at a point x, if for every > 0 there exists

a 8> 0 such that , .
[ —xol <8 implies |f(@) — f(xo)] <e

The function f is a continuous function if it is continuous at every point.

Observe that |r—wxo < & means that 2,—8 < & < wo+8, or equivalently that x
belongs to the open interval (wo— 38, 2o +8). Similarly, |f(x)—f(®0)| < ¢ means that f(x)
belongs to the open interval (f(wo) —e, f(%0) +¢). Accordingly, the statement

[t —x| <8 implies [f(x)— f(xo)] <e
is equivalent to the statement 7
xE(Xo—8, x0+8) implies f(x) € (f(@o) — ¢ f(X0) +¢)
which is equivalent to the statement
fl(@o—8, 2o +3)] iscontained in  (f(%o) — ¢, f(%0) +¢)
Hence we can restate the previous definition as follows.

A function f:R-> R is continuous at a point p €R if for any open set Vip

- containing f(p) there exists an open set U, containing p such that f[U,] C Viq.
The function f is a continuous function if it is continuous at every point.

The Venn diagram below may be helpful in Visualizing this definition.

A continuous function can be completely characterized in terms of open sets as follows:

Theorem 4.8: A function is continuous if and only if the inverse image of every open set
is open.

Observe that Theorem 4.8 also states that a function is not continuous iff there exists
an open set whose inverse image is not open.

Example 10.1: Consider the function f:R >R defined by

o) = x—1 if =3
T i +5) if 2>3

and illustrated in the adjacent diagram.
Note that the inverse of the open interval
(1,8) is the open-closed interval (2,3] which
is not an open set. Hence the function f is
not continuous. :
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We now state one important property of continuous functions which we will refer to
later in the text.

Theorem 4.9: Let f:R~>R be continuous on a closed interval [a,b]. Then the function
assumes every value between f(a) and f(b).

In other words, if yo is a real number for which f(a) =yo=/f(b) or f(D)=yo= f(a),
then Fz0 €ER suchthat a=20=0 and f(xo) = Yo
This theorem is known as the Weierstrass Intermediate Value Theorem.

Remark: A function f:R-> R is said to be continuous on a subset D of R if it is con-
tinuous at each point in D.

TOPOLOGY OF THE PLANE

An open disc D in the plane R? is the set of points inside a circle, say, with center
p = (ai, @) and radius § >0, ie, -

D = {z,y:(x—a)>+y—a)? <8’ = {q€ER?:d(pg) <8}

l

P = <a’1; a’2>

Here d{p, g) denotes the usual distance between two points
P = {(a1,02) and q = (by, by) in R%

- dw,q) = V(a1—Dbi)? + (€2— by)?

The open disc plays a role in the topology of the plane R?
that is analogous to the role of the open interval in the
topology of the line R.

Let A be a subset of R%. A point p € A is an interior point of A i{f p belongs to some

open disc D, which is contained in A:
pED, C A

The set A is open (or U-open) iff each of its points is an interior point.

Example 11.1: Clearlyy an open disc, the entire plane R2 and the empty set ) are open subsets
of R2,. We now show that the intersection of any two open discs, say

D, = {4ER:dp,@ <8} "and Dy = {gER?: d(pyq) <3}
is also an open set. For let po€D; N D, so

L d(py,pe) < 8y and  d(py, po) < 82

Set r = min{8; —d(py, p), 82— d(papo)} > 0
and let D = {g€ER?: dpy,q) <4r}
Then pyED Cc Dyn Dy or, pyis an interior point of Dy N D,.

A point p € R? is an accumulation point or limit point of a subset A of R? iff every open
set G containing p contains a point of A different from p, i.e.,

GCR?open, pEG implies ANG\{P)+#D
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Example 11.2: Consider the following subset of R%:

A = {(x,y) Ty = sin%, w>0}
The set A is illustrated in the adjacent
diagram. Observe that the curve, go-
ing from right to left, fluctuates faster
and faster, i.e. that the points where
the curve crosses the wx-axis become
closer and closer. The point p = (0,%)
‘is a limit point of A since 4 will
eventually pass through any open disc
containing p. In fact, each point on B
the y-axis between —1 and 1, i.e. each
point in the set
B = {&xy:2a=0—-1=y=1} u
_1.

is a limit point of A.
A subset A of R2? is closed iff its complement A¢ is an open subset of R

A sequence (p1, D, ...) of points in R? converges to the point g € R? iff every open’ set
containing ¢ contains almost all of the terms of the sequence. Convergence in the plane
R? can be characterized in terms of convergence in R as follows.

Proposition 4.10: Consider the sequence (p: = (a1,b1), P2=(a2,bs2), ...) of point in R* and
the point ¢ = (a,b) € R%2. Then

p.>q ifandonlyif a.~>a and b.—>b

A function f:R2-> R? is continuous at a point p € R? iff for any open set V) contain-
ing f(p) there exists an open.set U, containing p such that f[U,] C Vip.

We list theorems for the plane R? which are analagous to theorems for the line R
stated earlier in this chapter.
Theorem 4.1*: The union of any number of open subsets of R? is open.

Theorem 4.2%: The intersection of any finite number of open subsets of R? is open.

Theorem 4.4*: A subset A of R? is closed if and only if A contains each of its accumula-
tion points. .

Theorem 4.8%: A function f:R?-> R? is continuous if and only if the inverse image of
every open set is open. '

Solveyd Problems

OPEN SETS, ACCUMULATION POINTS
1. Determine the accumulation points of each set of real numbers:
(i) N; (i) (e, b]; (iii) Q¢, the set of irrational points. ;o

Solution:
(i) N, the set of positive integers, does not have any limit peints. For if e is any real number, we
can find a § >0 so small that the open set (¢ —§, @+ 8) contains no point of N other than a.

(ii)  Every point p in the closed interval [a, ] is a limit point of the open-closed interval (a, b], since
every open interval containing p € [a,b] will contain points of (e, b] other than p.

(iii) Every real number p €R is a limit point of Q¢ since every open interval containing pER will
contain points of Q¢, i.e. irrational numbers, other than p.
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2.

"Dy = {g €ER? : d(py, q) <8}, with center p; and radius 8, such

Recall that A’ denotes the derived set, i.e. set of limit points, of a set A. Find sets A

such that (i) A and A’ are disjoint, (ii) A is a proper subset of A’, (iii) A4’ is a proper

subset of A, {iv) 4=A4".

Solution: ;

(i) The set 4 = {1,4,%,...} has 0 as its only point of accumulation. Hence A’ = {0} and

’ A and A’ are disjoint.

(ii) Let A = (a,b], an open-closed interval. As seen in the preceding problem A’ = [a,b], the
closed interval, and so A C A’,

(i) Let A = {0,1,4,4,...}. Then 0, which belongs to A4, is the only limit point of A. Hence
A’ ={0} and A’ C A.

(iv) Let A = [a,b], a closed interval. Then each point in A is a limit point of A and they are the
only limit points. So A = A’ = [a, b].

Prove Theorem 4.1*: The union of any number of open subsets of R? is open.

Solution:

- Let o4 be a class of open subsets of R2, let H = U{G: G & 4}, and let p€EH. The theorem is
proved if we show that p is an interior point of H, i.e. there exists an open disc D,, containing p such ’
that D,, is contained in H.

Since p&€H = U{G:GE 4},
4G, € 4 such that p & Gy
But G, is an open set; hence there exists an open disc D, containing p such that
pED, C Gy
Since Gy is a subset of H = U{G: G € 4}, D, is also a subset of H. Thus H is open.

Prove: Every open subset G of the plane R? is the union of open discs.

Solution: . . }
Since G is open, for each point p EG there is an open disc D, such that p&€D, C G. Then
G = U{D,:pEG}. )

Prove Theorem 4.2%: The intersection of any finite number of open subsets of R?
is open. ' ‘ '
Solution:

We prove the theorem in the case of two open subsets of R2. The theorem will then follow by
induction. :

Let G and H be open subsets of R? and let pE€G N H; so pEG and p&EH. Hence there exist
open dises D; and D, such that ‘
pED;CG and pEDy, CH
Then pE€D;N DyC Gn H. By Example 11.1, the intersection of any two open dises is open; so
there exists an open disc D such that

peEDCcDiNnDy,cGn H

Hence p is an interior point of G N H and, so, G N H is open.
7

Prove: Let p €G, an open subset of R% Then there exists an open disc D with center p
such that p€D C G.

Solution: .
By definition of an interior point, there exists an open disc

that pED; C G So d{py,p) <8 Set
r = 3 _d(pl) p) >0

and let ; ‘D = {q€ER2:d@pq < ir}

Then, as indicated in the diagram, pE€D C D, C G where D is
an open disc with center p.
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7.

10.
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Prove: Let p be an accumulation point bf a subset A of the plane R2 Then every
open set containing p contains an infinite number of points of A. '

Selution:

Suppose G is an open set containing p and containing only
a finite number of points, say a4, ..., ay, of A different from p.
By the preceding problem, there exists an open disc D, with
center p and, say, radius § such that p € D, C G. Choose
>0 to be less than § and less than the distance from p to

any of the points a4, ..., a,; and let
D = {geR?: dp,q <ir}
Then the open disc D containing p does not contain ay, ..., a,

and, since D C D, C G, does not contain any other points of
A different from p.

The last statement contradicts the fact that p.is a limit point of A. Hence every open set
containing p contains an infinite number of points of A.

Remark: A similar statement is true for the real line R, i.e. if a €R is a limit point of ACR,
then every open subset of R containing @ contains an infinite number of points of A.

Prove: Consider any open disc D, with center p €R? and radius §. Then there exists
an open disc D such that (i) the center of D has rational coordinates, (ii) the radius
of D is rational, and (iii) p € D C D,.
Solution:

Suppose p = {(a,b). Then there exist rational numbers
¢ and d such that

a <c¢<a+t+is and b<d<b+ls

Let g = (¢c,d). Note that d(p,q) < 18. Now choose a ra-
tional number » such that 16 <r < £§; and let D be the
open disc with center ¢, which has rational coordinates, and
radius r which is rational. Then, as indicated in the diagram,
pE€D C D,

Prove: Every open subset G of the plane R? is the union of a countable number of
open discs. : '

Solution:

Since G is open, for -each point p € G there exists an open disc D, with center p such that’
pE€D, C G. But, by the preceding problem, for each disc D, there exists 'an open disc E, such that
(i) the center of E, has rational coordinates, (ii) the radius of E), is rational, and (iii) p€ E, € D). So

p » C D, C G

Accordingly, G 7’: U{E,: pEG}

, !
The theorem now follows from the fact that there are only a countable number of open discs whose
center has rational coordinates and whose radius is rational.

Prove Theorem (Bolzano-Weierstrass) 4.3: ILet A be a bounded infinite set of real
numbers. Then A contains at least one accumulation point.

Solution:

Since A is bounded, 4 is a subset of a closed interval I; = [ay, b;]. Bisect I; at 1(a; +b;). Note
that both of the closed subintervals of I, ) .

[ag, Hlag +by)]  and * [$lag + by), by @)

cannot contain a finite number of points of 4 since A is infinite. Let. I, = [ay, by] be one of the
intervals in (1) which contains an infinite number of points of A.
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Now bisect I,. As before, one of the two closed intervals
lag, $(as +by)] and  [Llag+ by), by)

must contain an infinite number of points of A. Call that interval I.

Continuing this procedure we obtain a sequence of nested closed intervals

I,>I,5I3D -
such that each interval I, contains an infinite number of points of A and
lim il = 0

where |I,] denotes the length of the interval I,,.

By the Nested Interval Property of the real numbers (see Appendix A), there exists a point p
in each interval I,. We show that p is a limit point of A and then the theorem will follow.

Let S, = (a,b) be an open interval containing p. Since lim |I,] = 0,
An, € N  such that }In“[ < min(p—a, b —p)
Then the interval In0 is a subset of the open interval S, = (a,b) as indicated in the diagram below.

e ——

PIIIIITIIIIIIFIPIIII
@ PITIITIIITITIIIIPIF 7

a P b

Since I,,0 contains an infinite number of points of A, so does the open interval S,. Thus each open
interval containing p contains points of A other than p, i.e. p is a limit point of A.

CLOSED SETS

11.

12.

13.

14.

Prove: A set F is closed if and only if its complement F¢ is open.

Solution:
Note that (Fc)c = F; so F is the complement of F¢. Thus, by definition, F is closed iff F¢ is open.

Prove: The union of a finite number of closed sets is closed.

Solution:
Let Fy, ..., F,, be closed sets and let F = F,u---UF,. By DeMorgan’s Law,

Fe = (F,u---UF) = F{inFyn---nF;,

So F¢ is the intersection of a finite number of open sets F;, and thus Fc is also open. Hence its
complement Fecc = F is closed.

Prove: The intersection of any number of closed sets is closed.

Solution: /
Let {F;} be a class of closed sets and let F = n; F;. By DeMorgan’s Law,

Fe = (n;Fye = U F;

So F¢ is the union of open sets and, hence, is open itself. Consequently, Fcc = F is closed.

Prove Theorem 4.4*: A subset of R? is closed if and only if it contains each of its
accumulation points.

Solution:

Suppose p is a limit point of a closed set F. Then every open disc containing p contains points
of F other than p. Hence there cannot be an open disc D, containing p which is completely contained
in the complement of F. In other words, p is not an interior point of F¢. But F¢ is open since F is
closed; so p does not belong to F¢, ie. p EF.

On the other hand, suppose a set A contains each of its limit points. We claim that A is closed
or, equivalently, that its complement A¢ is open. Let p € Ac. Since A contains each of its limit points,
p is not a limit point of A. Hence there exists at least one open dise D, containing p such that D,
does not contain any points of A. So D, C A¢, and hence p is an interior point of Ac. Since each
point p € A¢ is an interior point, A¢ is open and so A is closed.
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15.

16.

17.
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Prove: The derived set A’, i.e. set of accumulation points, of an arbitrary subset A
of R? is closed.

Solution:

Let p be a limit point of A’. By Theorem 4.4%, the theorem is proved if we show that p€ A4’
that is, that p is also a limit point of A.

Let G, be an open set containing p. Since p is a limit point of A’, G, contains at least one point
g€ A’ different from p. But G, is an open set containing ¢ € A’; hence G, contains (infinitely many)

points of A. So,
3o €A suchthat a+#p, a+#q, and ¢ €G,

That is, each open set containing p contains points of A other than p; so pE€A’.

Prove: Let A be a closed and bounded set of real numbers and let sup(4) = p. Then
pEA.
Solution:
Suppose p&€ A. Let G be an open set containing p. Then G contains an open interval (b, ¢) con-
taining p, i.e. such that b < p <¢. Since sup(4)=p and p & A, .
Ja €A suchthat b<a<p<e

for otherwise b would be an upper bound for A. So a€(b,¢) C G. Thus each open set containing p
contains a point of A different from p; hence p is a limit point of A. But A is closed; hence, by
Theorem 4.4%, pE A.

Prove Theorem (Heine-Borel) 4.5:
Let I, = [c1,di] be covered by a class G = {(a;, bi):i €I} of open intervals. Then
G contains a finite subclass which also covers I,.

Solution:
Assume that no finite subclass of G covers I;. We bisect I; = [¢1,d;] at 4(¢(+d,;) and consider
the two closed intervals
[e, (e +dy)]  and  [I{e  +dy), dy] (2)

At least one of these two intervals cannot be covered by a finite subelass of ¢ or else the whole interval
I, will be covered by a finite subclass of G. Let Iy = ¢, dy] be one of the two intervals in (1) which
cannot be covered by a finite subclass of G. We now bisect I,. As before, one of the two closed intervals

[ea, $(eg+dy)]  and  [L(eg + dy), dy]
cannot be covered/by a finite subclass of g. Call that interval I5.

We continue this procedure and obtain a sequence of nested closed intervals [, D1, D> 13D ---
such that each interval I, cannot be covered by a finite subclass of ¢ and lim|l,| = 0 where |I,]
denotes the length of the interval I,.

By the Nested Interval Property of the real numbers (see Appendix), there exists a point p
in each interval I,. In particular, p&€I,. Since G is a cover of I, there exists an open interval
(@i bio) in ¢ which contains p. Hence 0, <p < bio‘ Since lim|I,| = 0,

Ay €N such that |l | < min(p—a, b; —p)

Then, as indicated in the diagram below, the interval In0 is a subset of the one interval (aio’ b"o) in G.

I
]
e 555555555 -
7777,
Ty p by,

But this contradicts our choice of I"o’ Thus the original assumption that no finite subclass of ¢
covers I; is false and the theorem is true.
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SEQUENCES
18. Write the first six terms of each of the following sequences:
n—1 if nisodd B L ifn=1
(i) sny = . o (i) tm) = 42 ifn=2
v pmnaseven th—1) + t(n—2) if n>2
Solution:

19,

-

(1) Two formulas are used to define this function. Substitute 1, 3 and 5 into s(n) = n—1 to get
81 =0, s3=2 and s; =4. Then substitute 2,4 and 6 into s(n) = n? to get s, =4, s, =16 and
sg =36. Thus we have (0,4,2,16,4,36,...).

(ii) Here the function is defined recursively. Each term after the second is found by adding the
two previous terms. Thus:

t, = 1 = t;+t, = 3+2 = 5
t2:2 t5:t4+t3:5+3=8
ts = tytt, = 241 = 3 tg = t;+ 8, = 8+5 = 13

Hence we have (1,2,3,5,8,13,...).

Consider the sequence (a, = (=1)""'(2n—1)):
a,-3,5,-7,9,-11,13, =15, .. .)
Determine whether or not each of the following sequences is a subsequence of (a.).
(i) (b = (1,5,-3,-7,9,18,-11, =15, ...)
(il)  (cn) 1,8,5,7,9,11,13, .. .)
(iii) (dny = (=3, -7, —11, =15, —-19, =28, ...)

fl

Solution:
(i) Note that 5 appears before —3 in (b,), but —3 appears before 5 in (a,). Hence (b,) is not a
subsequence of (a,).

(ii) The terms 3, 7 and 11 do not even appear in (a,); hence (c¢,) is not a subsequence of (a,).

(iii) The sequence (d,) is a subsequence of (a,), for (i, =2n) = (2,4,6,...) is a sequence of positive
integers such that i <idy, <iz<---; so
(@i, @iy ) = (g, ag, G, .. o= (=8, =1, 11, ...

is a subsequence of (a,).

20. Determine the range of each sequence:

21.

i OL,LLLLLE 0 (iii) (2,4,6,8,10,...)
(i) (,0,-1,0,1,0,-1,0,1,0, 1,0, ...)

Solution:
The range of a sequence is the set of image points. Hence the ranges of the sequences are

{1,444 ... ) {1,0,-1}, (i) {2,4,6,8, ...}

Prove: If the range of a sequence (a,) is finite, then the sequence has a convergent
subsequence.
Solution:

If the range {a,} of (a,) is finite, then one of the image points, say b, appears an infinite number
of times in the sequence. Hence (b,5,5,b,...) is a subsequence of (a,) and it converges.
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22. Prove: If lima, =b and lima, = ¢, then b = c.

Soelution:

Suppose that b and ¢ are distinct. Let 8 = |b —¢| > 0. Then the open intervals B = (b — 13,
b+18) and C = (¢ — 48, ¢+ 18), containing b and ¢ respectively, are disjoint. Since (a,) converges
to b, B must contain all except a finite number of the terms of the sequence. Hence C can only
contain a finite number of the terms of the sequence. But this contradicts the fact that (a,) converges
to ¢. Accordingly, b and ¢ are not distinct.

23. Prove: If the range {a.) of a sequence (a,) contains an accumulation point b, then the
sequence (a.) contains a subsequence (a; ) which converges to b.

Solution:
Since b is a limit point of {a,}, each of the open intervals

S, = (b—1,b+1), S, = (b—4,b+Y), Sz = (b—4b+1),

contains an infinite number of elements of the set {a,} and, hence, an infinite number of the terms
of the sequence (a,). We choose a sequence (a;) as follows:

Choose a;, to be a point in S;.

Choose a;, to be a point in S, such that i, > ¢;, i.e. such that a;, appears after a;
in the sequence (a,).

Choose a;, to be a point in Sy such that i3 > i,
We continue in the same manner.
Observe that we are always able to choose the next term in the sequence (ain) since there are an
infinite number of the terms of the original sequence (a,) in each interval S,.

We claim that (ain) satisfies the conditions of the theorem. Recall that we choose the terms of
the sequence (ain) so that 4, <1y <i3< ---; hence (ai"> is a subsequence of (a,). We need to show
that lim a;, = b. Let G be an open set containing b. Then G contains an open interval (d;,ds) con-
taining b; so d; < b <d,. Let § = min(b—d;, dy—5b) > 0; then

Ay € N such that 1/ny < 8
Hence S,,O C (dy,dy) € G, and so
n>mny implies @; €8, C S"o C (d,dy) C© G

Thus G contains almost all the terms of the sequence (ain); that is, lim @ = b.

24, Prove Theorem 4.6: Every bounded sequence {(a.) of real numbers contains a con-
vergent subsequence.

Solution:

Consider the range {a,} of the sequence (a,). If the range is finite, then by Problem 21 the
sequence contains a convergent subsequence. On the other hand, if the range is infinite, then, by the
Bolzano-Weierstrass Theorem, the bounded infinite set {a,} contains a limit point. But then, by the
previous problem, the sequence in this case also contains a convergent subsequence.

25. Prove: Every Cauchy sequence (a.) of real numbers is bounded.

Solution:
Let ¢ = 1. Then, by definition of a Cauchy sequence,

Iny € N such that #n,m =n, implies |a,—a,} <1

In parti\qiular, m =mn, implies ]avno —an| <1, or, Uy — 1 <ay < Ay, + 1
Let e = max(ay, ay, ..., Upy U,y + 1)
B = min(ay, ay, ..., ngs Ongy ™ 1)

Then « is an upper bound for the range {a,} of the sequence (a,) and g is a lower bound. Accordingly,
{a,) is a bounded sequence.
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26.

27,

28.

Prove: Let (a.) be a Cauchy sequence. If a subsequence (a;) of (a,) converges to a
point b, then the Cauchy sequence itself converges to b.

Solution:
Let ¢ > 0. We need to find a positive integer n, such that

n>mn, implies |a,—b] <e
Since (a,) is a Cauchy sequence,

Ing €N such that  n,m > ny, implies |a, — ay,| < le

Also, since the subsequence <ai") converges to b,
i, € N such that {a,,-m — b < Le
Observe that we can choose 7, so that 7, > n,  Accordingly,
n>mng implies |a,—bl = lay—a; +a; — bl
= lap—e | + la; —b
< %e + %e = ¢
Hence (a,) converges to b.

Observe that we need 1, > 1, in order to state that: =n > n, implies |a,— “im‘ < Le
Prove Theorem (Cauchy) 4.7: Every Cauchy sequence mof real numbers converges
to a real number.

Solution:
By Problem 25, the Cauchy sequence {(a,) is bounded. Hence, by Theorem 4.6, the bounded
sequence (a,) contains a convergent subsequence (a; ). But, by the preceding problem, the Cauchy

sequence (a,) converges to the same limit as its subsequence (a; ). In other words, the Cauchy
sequence {(a,) converges to a real number.

Determine whether or not each of the following subsets of R is complete:
(i) N, the set of positive integers; (ii) Q¢, the set of irrational numbers.

Solution:
(1) Let (a,) be a Cauchy sequence of positive integers. If e =%, then
la, —ay| <e=% implies @, =a,
Therefore, the Cauchy sequence (a,) is of the form (a;, a,, ..., 2 b,b,b,...) which converges
to the positive integer b. Hence N is complete.

(il)  Observe that each of the open intervals
(-1, 1), (—%9 %)y (_%; %)y
contains irrational points. Hence there exists a sequence (a,) of irrational numbers such that
a, belongs to the open interval (—1/n, 1/n). The sequence (a,) will be a Cauchy sequence of
points in Q¢ and it will converge to the rational number 0. Hence Q¢ is not complete.

CONTINUITY
29. Prove: If,\ the function f:R->R is constant, say f(x)=a for every z €R, then
f is contintious.
Solution: .
Method 1. The function f is continuous iff the inverse f—![G] of any open set G is also open. Since
f(x) = a for every x €R, g = O if €@
) R if a€EQG

for any open set G. In either case, f~![G] is open since both R and () are open sets.
Method 2. We show that f is continuous at any point x, using the ¢ — & definition of continuity. Let
e > 0. Then for any § >0, say 8§ =1,
le —xg| < 1 implies |f(@)~flaxg) = la—al =0 <
Hence f .is continuous.
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30.

31.

32.

33.
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Prove: The identity function f: R- R, that is, the function defined by f(x) ==, is
continuous.

Solution:

Method 1. Let G be any open set. Then f~1[G] = G is also an open set. Accordingly, f is continuous.

Method 2. We show that f is continuous at any point x, using the ¢ — 8 definition of continuity. Let
e > 0. Then choosing ¢ =3,

e —2ol < § implies |f(x) —f(zg)] = jx—a) < § = e

Accordingly, f is continuous.

Prove: Let the functions f: R~ R and g: R- R be continuous. Then the composition
function gof: R—> R is also continuous. yan

Solution:

We show that the inverse (g of)~1[{G] of any open set G is also open. Since g is continuous, the
inverse g—![G] is an open set. But since f is continuous, the inverse f~1[g—![G]] of g~ '[G] is also
open. Recall that .

(gef)~! = frlog~t

Hence (goN)~1[G] = (f~leg—1HG) = f~ 19~ 1[G]]

is an open set. Thus the composition function gof: R— R is continuous.

Prove: Let f: R-> R be continuous and let f(q) = 0 for every rational number ¢ € Q.
Then f(x) =0 for every real number x € R.

Solution:
Suppose f(p) is not zero for some real number p € R, i.e. suppose

IpER suchthat f(p) =7, [y >0

Choose e = L|y|. Since f is continuous,
35 >0 such that lx—p| <8 implies [f(x) —f(D) < e = L[v]
Now there are rational points in every open interval. In particular,

3¢€Q suchthat q€{x:le—pl <3§)

which implies flo—fe) = If)] = |yl < e = vl

an impossibility. Hence f(x) =0 for every « €ER.

Prove Theorem 4.8: A function f:R2->R? is continuous if and only if the inverse
image of every open set is open.

Solution:

Let f:R2- R2 be continuous and let V be an open subset of R?>. We want to show that f~1[V]
is also an open set. Let p&y '[V]. Then f(p) € V. By definition of continuity, there exists an
open set U, containing p such that flU,) € V. Hence (as indicated in the diagram below)

U, C FI,) © V]
We have shown that, for every point p € f~1[V], there exists an open set U, such that
p€EU, C f1[V]
Accordingly, -V = U{u,: pEef1[V])

So f~1[V] is the union of open sets and is, therefore, open itself.
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3.

35.

36.

On the other hand, suppose the inverse of every open set is open. We want to show that f is
continuous at any point-p € R. Let V be an open set containing f(p), i.e. f(p) € V. Then f~1{V] is
an open set containifg p with the property that f{f~1[V]] ¢ V. Hence f is continuous at p.

Give an example-of two functions f:R—>R and ¢:R->R such that f and ¢ are each
discontinuous (not continuous) at every point and such that the sum f+ g is continuous
at every point in R.
Solution:

Consider the funections f and g defined by

o) = [0 if @ is rational o) = {1 if « is rational

11 if & is irrational ’ 0 if # is irrational

The functions f-and ¢ are discontinuous at every point in R, but the sum f 4 g is the constant function
(f + ¢)x) = 1 which is continuous.

Prove: Let the function f: R—> R be continuous at a point p €R.

(1) If f(p) is positive, i.e. f(p) > 0, then there exists an open interval S containing p
such that f is positive at every point in S.

(if) If f(p) is negative, i.e. f(p) <0, then there exists an open interval S containing p
such that f is negative at every point in S.
Solution:

We prove (i). The proof of (ii) is similar and will be omitted. Suppose f(p) = ¢ > 0. Since f is
continuous at p,
5 >0 such that e —p| <8 implies |[f(®)—f(p)] <e

or, equivalently,
r€(p—38,p+s) implies flx) € (f(p)—e f(p)+e = (0,2)

Thus for every point x in the open interval (p — 8, p + 8), f(x) is positive.

Prove: Let f:R - R becontinuous at every point 4
in a closed interval [a, b], and let f(a) <0 < f(b).
Then there exists a point p € [¢,b] such that
f(») = 0. (In other words, the graph of a contin-
uous function defined on a closed interval which
lies both below and above the z-axis must cross
the x-axis at at least one point, as indicated in
the diagram.)

__({i,,__.____
)

e 4
[~
8

Solution:
Let A be the set of points in [a, b] at which f is negative, i.e,,

A = {x:x€]Jab], flx) <0}
Observe that A is not empty since, for example, s €A. Let p = sup(4) be the least upper bound

for A. Since e €4, a = p; and since b is an upper bound for A, p=25b. So p belongs to the interval
[a, B].
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We claim that f(p) = 0. If f(p) <0, then, by the preceding problem, there is an open interval
(p—38, p+8) in which f is negative, i.e,,
(p—8,pt+td C A

So p cannot be an upper bound for A. On the other hand, if f(p) > 0, then there exists an interval
(p—8§, p+8) in which f is positive; so

p—8pt&Hnd = 0
which implies that p cannot be a least upper bound for 4. Thus f(p) can only be zero, ie, f(p) = 0.

Remark. The theorem is also true and proved similarly in the case f(b) < 0 < f(a).

Prove Theorem (Weierstrass) 4.9: Let f:R—>R be continuous on a closed interval
la, D]. Then the function assumes every value between f(a) and f(b).
Solution:

Suppose f(a) < f(b) and let y, be a real number such that f(a) <y, < f(b). We want to prove

that there is a point p such that f(p) = y,- Consider the function g(x) = f(x) —y, which is also
continuous. Observe that g(a) < 0 < g(b).

By the preceding problem, there exists a point p such that g{(p) = f(p) —y, = 0. Hence f(p) = y,.

The case when f(b) < f(a) is proved similarly.

Supplementary Problems

OPEN SETS, CLOSED SETS, ACCUMULATION POINTS

38. Prove: If A is a finite subset of R, then the derived set A’ of A is empty, ie. A" = Q.

39. Prove: Every finite subset of R is closed.

40. Prove: If AcCB, then A'CHB’".

41, Prove: A subset B of R? is closed if and only if d(p,B) = 0 implies p € B, where d(p,B) =
inf {d(p,q) : ¢ € B}.

42, Prove: AUA’ is closed for any set A.

43. Prove: AUA’ is the smallest closed set containing A, i.e. if F is closed and A CF C A U A’ then
F=AuUA.

44. Prove: The set of interior points of any set A, written int (4), is an open set.

45. Prove: The set of interior points of A is the largest open set contained in A4, ie. if G is open and
int(4) C G C 4, then int(4)=G.

46. Prove: The only subsets of R which are both open and closed are ¢ and R.

SEQUENCES

47. Prove: If the sequence (a,) converges to b &R, then the sequence (|a,~— b|) converges to 0.

48. Prove: If the sequence {(a,) converges to 0, and the sequence (b,) is bounded, then the sequence
(a,b,) also converges to 0.

49, Prove: If a,—>a and b, b, then the sequence (a,+ b,) converges to a+ b.

50. Prove: If a,-a and b, b, then the sequence (a,b,) converges to ab.
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51, Prove: If a,—a and b,—b where b, = 0 and b #* 0, then the sequence (a,/b,) converges to a/b.

52. Prove: If the sequence {(a,) converges to b, then every subsequence (@) of (a,) also converges to b.

53. Prove: If the sequence (a,) converges to b, then either the range {a,} of the sequence (a,) is finite,
or b is an accumulation point of the range {a,}.

54. Prove: If the sequence (a,) of distinct elements is bounded and the range {a,} of (a,) has exactly one
limit point b, then the sequence (a,) converges to b.
(Remark: The sequence (1,%, 2,%,3,%,4, ...) shows that the condition of boundedness cannot be
removed from this theorem.)

CONTINUITY

55. Prove: A function f:R — R is continuous at a € R if and only if for every sequence (a,) converging
to a, the sequence (f(a,)) converges to f(a).

56. Prove: Let the function f: R —> R be continuous at p € R. Then there exists an open interval S
containing p such that f is bounded on the open interval S.

57. Give an example of a function f:R—> R which is continuous at every point in the open interval

58.

*+ 59,

60.

61.

62.

63.

64.

57.

58.

S = (0,1) but which is not bounded on the open interval S.

Prove: Let f:R — R be continuous at every point in a closed interval A = [a,b]. Then f is bounded
on A. (Remark: By the preceding problem, this theorem is not true if A is not closed.)

Prove: Let f:R—>R and ¢:R—-R be continuous. Then the sum (f+g): R~ R is continuous,
where f+ g is defined by (f+ g)(x) = f(x) + g(x).

Prove: Let f:R— R be continuous, and let k¥ be any real number. Then the function (kf):R—>R
is continuous, where kf is defined by (kf)(x) = k(f(x)).

Prove: Let f:R—->R and g:R- R be continuous. Then {z€R: f(z) = g(x)} is a closed set.
Prove: The projection =,:R?—> R is continuous where =, is defined by =,((a,d)) = a.

Consider the functions f:R—=R and g:R—> R defined by

_ fsin(/w) if x#0 _ Jasin(/w) if x>0
e =1, it 2=0" 9@ = 1, if x=0

Prove g is continuous at 0 but f is not continuous at 0.

Recall that every rational number q £Q can be written uniquely in the form ¢ = a/b where a €Z,
bEN, and a and b are relatively prime. Consider the function f: R >R defined by

[0 if x is irrational
ll/b if x is rational and « = a/b as above

floy =

Prove that f is continuous at every irrational point, but f is discontinuous at every rational point.

Answers to Supplementary Problems

1
Consider the funection y

= it x=0
= Ve it 2>0

The function f is continuous at every point in R except at 0 as
indicated in the adjacent graph of f. Hence f is continuous at
every point in the open interval (0,1). But f is not bounded on .
(0,1).

Hint. Use the result stated in Problem 56 and the Heine-Borel
Theorem.




Chapter 5

Topological Spaces: Definitions

TOPOLOGICAL SPACES
Let X be a non-empty set. A class T of subsets of X is a topology on X iff T satisfies
the following axioms.
[0:] X and @ belong to 7.
[0:] The union of any number of sets in T belongs to T.
[0s] The intersection of any two sets in T belongs to 7.

The members of T are then called T-open sets, or simply open sets, and X together with T,
i.e. the pair (X, T) is called a topological space.

Example 1.1:  Let U denote the class of all open sets of real numbers discussed in Chapter 4.
Then U is a topology on R; it is called the usual topology on R. Similarly, the
class U of all open sets in the plane R? is a topology, and also called the usual
topology, on R2. We shall always assume the usual topology on R and R2 unless
otherwise specified.

Example 1.2: Consider the following classes of subsets of X = {a, b,¢,d, e}.

Tl = {Xr @; {a}) {C, d}’ {a‘y c, d}) {b! c, d) 6}}
‘T2 = {Xr @) {a’}’ {C, d}: {a; c, d}) {br C, d}}
‘T3 = {Xy Q)y {a/}) {C, d}, {ay [ d}r {ax b: dr G}}

Observe that T, is a topology on X since it satisfies the necessary three axioms
[0.], [0:] and [03]. But T, is not a topology on X since the union

{ai c! d} U {b’ c} d} = {a, b’ c, d}
of two members of T, does not belong to T, i.e. T, does not satisfy the axiom [0,].

Also, T3 is not a topology on X since the intersection
{a/’ c’ d} m {a, b! d’ e} = {a’ d}

of two sets in T3 does not belong to T, i.e. T3 does not satisfy the axiom [0,].

Example 1.3: Let .0 denote the class of all subsets of X. Observe that .7) satisfies the axioms
for a topology on X. This topology is called the discrete topology; and X together
with its discrete topology, i.e. the pair (X, D), is called a discrete topological space
or simply a discrete space.

Example 1.4:  As seen by axiom [0;], a topology on X must contain the sets X and (3. The class
g = {X, 0}, consisting of X and @ alone, is itself a topology on X. It is called
the indiscrete topology; and X together with its indiscrete topology, ie. (X, g is
called an indiscrete topological space or simply an indiscrete space.

Example 1.5: Let T denote the class of all subsets of X whose complements are finite together
with the empty set . This class T is also a topology on X. It is called the
cofinite topology or the T'i-topology on X. (The significance of the T; will appear
in a later chapter.)

66
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Example 1.6: The intersection T, N T3 of any two topologies T, and T, on X is also a topology
on X. For, by [0,], X and © each belongs to both T, and T,; hence X and @ each
belongs to the intersection T, N T, ie. T{N T, satisfies [0,1. Furthermore, if
G,H € T;N T, then, in particular, G, H € T, and G,H € T,. But since T; and
T, are topologies, GNH &€ T, and GNHE T, Accordingly,

GNHE€ T NT,
In other words T, N T, satisfies [03]. Similarly, T, N T, satisfies [O,].

The statement in the preceding example can, in fact, be generalized to any collection
of topologies. Namely,

Theorem 5.1: Let {T::7 &I} be any collection of topologies on a set X. Then the inter-
section N;T; is also a topology on X.
In our last example, we show that the union of topologies need not be a topology.

Example 1.7:  Each of the classes
Ty = {X,0,{a}} and T, = {X,0,{b}}
is a topology on X = {a,b,¢}. But the union
T,V Ty, = {X, 9, {a}, {b}}
is not a topology on X since it violates [0,]. That is, {a} € T, U T,, {b} €T, UT,
but {a} U {b} = {e, b} does not belong to T U T,.

If G is an open set containing a point p € X, then G is called an open neighborhood of p.
Also, G without p, i.e. G\ _{p), is called a deleted open neighborhood of p.

Remark: The axioms [O1], [02] and [O:] are equivalent to the following two axioms:

[0{] The union of any number of sets in T belongs to 7.
[05] The intersection of any finite number of sets in T belongs to T.

For [0 implies that () belongs to T since
\ U{GET:GEQP} = @

i.e. the empty union of sets is the empty set. Furthermore, [Q;] implies that X belongs to
T since
NGET:Ge} = X

i.e. the empty intersection of subsets of X is X itself.

ACCUMULATION POINTS

Let X be a topological space. A point p € X is an accumulation point or limit point
(also called cluster point or derived point) of a subset A of X iff every open set G containing
p contains a point of ‘A different from p, i.e,

= Gopen, p €G  implies (GN{P)Y)NA=D
The set of accumulation points of A4, denoted by A’, is called the derived set of A.

Example 2.1: The class T = {X, 90, {a}, {c,d}, {a,¢c,d}, {b,c,de}}

defines a topology on X = {a,b,¢,d,¢}. Consider the subset 4 = {a,d,¢c} of X.
Observe that b € X is a limit point of A since the open sets containing b are
{b,e,d,e} and X, and each contains a point of A different from b, i.e. ¢. On the
other hand, the point a € X is not a limit point of A since the open set {a}, which
contains a, does not contain a point of A different from a. Similarly, the points
d and e are limit points of A and the point ¢ is not a limit point of A.
So A’ = {b,d,e} is the derived set of A.
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Example 2.2: Let X be an indiscrete topological space, i.e. X and @ are the only open subsets
of X. Then X is the only open set containing any point p € X. Hence p is an
accumulation point of every subset of X except the empty set () and the set con-
sisting of p alone, i.e. the singleton set {p}. Accordingly, the derived set A’ of any
subset A of X is as follows:

0 itA=0
A = {pye = X\ A{p} if A ={p}
X if A contains two or more points

Observe that, for the usual topology on the line R and the plane R?, the above definition
of an accumulation point is the same as that given in Chapter 4.

CLOSED SETS
Let X be a topological space. A subset A of X is a closed set iff its complement Ac is
an open set.
Example 3.1: The class T = {X, @, {a}, {¢e,d}, {a,¢,d}, {b,¢c,d,e}}
defines a topology on X = {a,b,¢,d,e}. The closed subsets of X are
0, X, {b,c,d,e}, {a,b,e}, {b,e}, {a}

that is, the complements of the open subsets of X. Note that there are subsets
of X, such as {b, ¢, d, ¢}, which are both open and closed, and there are subsets of X,
such as {a, b}, which are neither open nor closed.

Example 3.2: Let X be a discrete topological space, i.e. every subset of X is open. Then every
subset of X is also closed since its complement is always open. In other words,
all subsets of X are both open and closed.

Recall that (A« = A, for any subset A of a space X. Hence
Proposition 5.2:\ In a topological space X, a subset A of X is open if and only if its com-

lement is closed.
The axioms [0:], [0:] and [O:} of a topological space and DeMorgan’s Laws give

Theorem 5.3: Let X be a topological space. Then the class of closed subsets of X
possesses the following properties:

(i) X and ¢ are closed sets.
(ii) The intersection of any number of closed sets is closed.
(iii) The union of any two closed sets is closed.

Closed sets can also be characterized in terms of their limit points as follows:

Theorem 5.4: A subset A of a topological space X is closed if and only if A contains
each of its accumulation points.

In other words, a set A is closed if and only if the derived set A’ of A is a subset of A4,
ie. A’ CA.

CLOSURE OF A SET
Let A be a subset of a topological space X. The closure of A, denoted by
A or A-
is the intersection of all closed supersets of A. In other words, if {Fi:¢ €I} is the class
of all closed subsets of X containing A, then

A - ﬂiFi
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Obs_erve first that 4 is a closed set since it is the intersection of closed sets. Further-
more, A is the smallest closed superset of A, that is, if F is a closed set containing A, then

AcAcF

Accordingly, a set A is closed if and only if A =A. We state these results formally:

Proposition 5.5: Let A be the closure of a set A. Then: (i) A is closed; (ii) if F is a closed
superset of A, then A C A C F; and (iii) A is closed iff A=A.

Example 4.1: Consider the topology T on X = {«,b,¢,d,e} of Example 3.1 where the closed
subsets of X are
D, X, {b,¢,d, e}, {a,b,e}, {b,e}, {a}

Accordingly, (b} = {b,er, {a,c} = X, {b,d} = {b,¢,d, e}

Example 4.2: Let X be a cofinite topological space, i.e. the complements of finite sets and @ are
the open sets. Then the closed sets are precisely the finite subsets of X together
with X. Hence if A C X is finite, its closure A is A itself since A is closed. On
the other hand, if A C X is infinite then X is the only closed superset of 4; so 4
is X. More concisely, for any subset A of a cofinite space X, .

] [A if A is finite
A = . .
IX if A is infinite
The closure of a set can be completely described in terms of its limit points as follows:
Theorem 5.6: Let A be a subset of a topological space X. Then the closure of A is the
union of A and its set of accumulation points, i.e.,
A = Au 4

A point p € X is called a closure point or adherent point of ACX iff p belongs to the
closure of A, ie. p€A. In view of the preceding theorem, p € X is a closure point of
ACX iff p € A or p is a limit point of A.

Example 4.3: Consider the set Q of rational numbers. As seen previously, in the usual topology
for R, every real number o € R is a limit point of Q. Hence the closure of Q is
the entire set R of real numbers, i.e. Q = R.

A subset A of a topological space X is said to be dense in BCX if B is contained in
the closure of A, i.e. BCA. In particular, A is dense in X or is a dense subset of X
iff A=2X.

Example 4.4: Observe in Example 4.1 that
{a,c¢} = X and {b,d} = {b,c,d, e}
where X = {a, b, ¢,d, e}. Hence the set {a, ¢} is a dense subset of X but the set {b, d}

is not.

Example 45:  As noted in Example 4.3, Q = R. In other words, in the usual topology, the set Q
of rational numbers is dense in R.

The operator “closure”, assigning to each subset A of X its closure A CX satisfies the
(four properties appearing in the proposition below, called the Kuratowski Closure Axioms.
In fact, these axioms may be used to define a topology on X, as we shall prove subsequently.

Proposition 5.7: (i) @ =@; (i) ACA; (iii) AUB = AUB; and (iv) (A7) = A.

INTERIOR, EXTERIOR, BOUNDARY

Let A be a subset of a topological space X. A point p € A is called an interior point
of A if p belongs to an open set G contained in A:

peGCA where G is open
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The set of interior points of 4, denoted by
int(4), A or A°
is called the interior of A. The interior of A can also be characterized as follows:

Proposition 5.8: The interior of a set A is the union of all open subsets of A. Further-
more: (i) A° is open; (ii) A° is the largest open subset of 4, ie. if G
is an open subset of 4 then G C A° C A; and (iii) A is open iff A =A°,

The exterior of A, written ext (A4), is the interior of the complement of A, i.e. int(A°).
The boundary of A, written b (4), is the set of points which do not belong to the interior
or the exterior of A. Next follows an important relationship between interior, exterior
and closure.

Theorem 5.9: Let A be any subset of a topological space X. Then the closure of A is the
union of the interior and boundary of 4, ie. A = A° Ub(A).

Example 5.1: Consider the four intervals [a,b], (a,b), (a,b] and [a,b) whose endpoints are a
and b. The interior of each is the open interval (¢, b) and the boundary of each
is the set of endpoints, i.e. {a, b}.

Example 5.2: Consider the topology
T = {X, 0, {a}, {e,d}, {a,¢,d}, {b,¢,d,¢})}

on X = {a,b,¢,d,e}, and the subset A = {b,¢,d} of X. The points ¢ and d are

each interior points of A since
e, d € {¢,d} C A

where {¢,d} is an open set. The point b€ A is not an interior point of 4;
so int(A) = {¢,d}. Only the point ¢ € X is exterior to A, i.e. interior to the
complement A¢ = {a,e} of A; hence int(4A¢) = {a}. Accordingly the boundary
“of A consists of the points & and e, i.e. b(4) = {b,e}.

Example 5.3: Consider the set Q of rational numbers. Since every open subset of R contains
both rational and irrational points, there are no interior or exterior points of Q;
so int(Q) = @ and int(Q¢) = ). Hence the boundary of @ is the entire set of
real numbers, i.e. b(Q) =R.

A subset 4 of éz\tonlogical space_X is said to be nowhere dense in X if the interior
of the closure of A is empty, i.e. int(4) = Q.

Example 54: Consider the subset A = {1,1,%,4,...} of R. As noted previously, A has exactly

one limit point, 0. Hence A= {0,1,5, 4, 1,...}. Observe that A has no interior
points; so A is nowhere dense in R.

Example 5.5: Let A consist of the rational points between 0 and 1,1ie. A = {x:2€Q, 0<x <1}.
Observe that the interior of A is empty, i.e. int(4) = . But A is not nowhere
dense in R; for the closure of A is [0,1], and so

int (4) = int([0,1)) = (0,1)
is not empty.

NEIGHBORHOODS AND NEIGHBORHOOD SYSTEMS

Let p be a point in a topological space X. A subset N of X is a meighborhood of ¢
iff N is a superset of an open set G containing p:

pEGCN where G is an open set

In other words, the relation “N is a neighborhood of a point p” is the inverse of the relation
“p is an interior point of N”. The class of all neighborhoods of p € X, denoted by N, is
called the netghborhood system of p.

Example 6.1: Let ¢ be any real number, i.e. ¢ € R. Then each closed interval [a— 8§, a+ 8],
with center @, is a neighborhood of ¢ since it contains the open interval (a—§, a+8)
containing a. Similarly, if p is a point in the plane R?, then every closed disc
{g €ER2 : d(p,q) < § # 0}, with center p, is a neighborhood of p since it contains
the open disc with center p.
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The central facts about the neighborhood system N, of any point p € X are the four
properties appearing in the proposition below, called the Neighborhood Axioms. In fact,
these axioms may be used to define a topology on X, as we shall note subsequently.

Proposition 5.10: (i) N, is not empty and p belongs to each member of N,

(ii) The intersection of any two members of N, belongs to N,
(iii) Every superset of a member of N, belongs to N,
(

iv) Each member N € N, is a superset of a member G € ‘N, where G
is a neighborhood of each of its points, i.e. G € ‘N, for every g € G.

CONVERGENT SEQUENCES
A sequence (ai,as, ...) of points in a topological space X converges to a point b € X,
or b is the limit of the sequence (a.), denoted by
lima, = b, lima, =b or a.,~>b

n=— o

iff for each open set G containing b there exists a positive integer no € N such that
‘ n>mne implies a,E€G
that is, if G contains almost all, i.e. all except a finite number, of the terms of the sequence.

Example 7.1:  Let (a;,a,, ...) be a sequence of points in an indiscrete topological space (X, 9).
Note that: (i) X is the only open set containing any point b € X; and (ii) X con-
+ tains every term of the sequence (a,). Accordingly, the sequence (a;, a5, ...) con-

verges to every point b € X.

Example 7.2: Let (¢;,aq, ...) be a sequence of points in a discrete topological space (X, .)). Now
for every point b € X, the singleton set {b} is an open set containing b. So, if
a, = b, then the set {b} must contain almost all of the terms of the sequence.
In other words, the sequence (a,) converges to a point b € X iff the sequence is of
the form ({(aq, ay, ..., By b,b, b, ...).

Example 7.3: Let T be the topology on an infinite set X which consists of ¢ and the complements
of countable sets (see Problem 56). We claim that a sequence (@, a4, ...) in X
converges to b € X iff the sequence is also of the form (a, a,, ..., Uy b,b,b, ...,

i.e. the set A consisting of the terms of (a,) different from b is finite. Now A is
countable and so A¢ is an open set containing b. Hence if a, > b then A¢ contains
all except a finite number of the terms of the sequence, and so A is finite.

COARSER AND FINER TOPOLOGIES

Let 71 and T2 be topologies on a non-empty set X. Suppose that each Ti-open subset
of X is also a T:-open subset of X. That is, suppose that T, is a subclass of T, i.e.
T1C T2. Then we say that T, is coarser or smaller (sometimes called weaker) than T.
or that T, is finer or larger than T:. Observe that the collection T = {T:} of all topologies
on X is partially ordered by class inclusion; so we shall also write

T1 T2 for T,:CT.

and we shall say that two topologies on X are not comparable if neither is coarser than
{ the other.

Example 8.1:  Consider the discrete topology .0, the indiscrete topology 4 and any other topology
T on any set X. Then T is coarser than 0 and T is finer than ¢. That is,
JIT LD

Example 8.2: Consider the cofinite topology T and the usual topology U on the plane R2. Recall
that every finite subset of R? is a U-closed set; hence the complement of any finite
subset of R2, i.e. any member of T, is also a U-open set. In other words, T is
coarser than U, ie. T <U.
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SUBSPACES, RELATIVE TOPOLOGIES

Let A be a non-empty subset of a topological space (X, T). The class T, of all inter-
sections of A with T-open subsets of X is a topology on A; it is called the relative topology
on A or the relativization of T to A, and the topological space (A,T,) is called a subspace
of (X,T). In other words, a subset H of A is a T,-open set, i.e. open relative to 4, if and
only if there exists a T-open subset G of X such that

H=GnA

Example 9.1: Consider the topology
T = {X, 0, {a}, {¢,d}, {a,¢,d}, {b,c,d,e}}
on X = {a,b,c,d, e}, and the subset A = {a,d,e} of X. Observe that
XnAdA = A, {a}n A = {a}, {a,c,d} N A = {a,d}
PonAd =@, {edinA = {d}, {b,c,d,e} N A = {d,e}

Hence the relativization of T to 4 is
TA = {A) @) {a’}y {d}y {a” d}, {d, 6}}
Example 9.2: Consider the usual topology U on R and the relative topology T4 on the closed

interval 4 = [3,8]. Note that the closed-open interval [3,5) is open in the relative
topology on A, i.e. is a T,-open set, since

[3,5) = (2,5)n 4

where (2,5) is a T-open subset of R. Thus we see that a set may be open relative
to a subspace but be neither open nor closed in the entire space.

s

EQUIVALENT DEFINITIONS OF TOPOLOGIES

Our definition of a topological spacé gave axioms for the open sets in the topological
space, that is, we used the open set as the primitive notion for the topology. We now
state two theorems which exhibit alternate methods of defining a topology on a set, using
as primitives the notions of “neighborhood of a point” and ‘“closure of a set”.

Theorem 5.11: Let X be a non-empty set and let there be assigned to each point p€ X a
class ¢4, of subsets of X satisfying the following axioms: ,
[Ai] oA, is not empty and p belongs to each member of c4,.
[A:] The intersection of any two members of ¢4, belongs to c4,.
[A;] Every superset of a member of ¢4, belongs to c4,.
[A:] Each member N € ¢4, is a superset of a member G € o4, such that
G € A4, for every ¢ € G.

Then there exists one and only one topology 7 on X such that ¢4, is the
T-neighborhood system of the point p € X.

Theorem 5.12: Let X be a non-empty set and let & be an operation which assigns to each
subset A of X the subset A* of X, satisfying the following axioms, called
the Kuratowski Closure Axioms:

Kl 9F=0

[K:] 4 C AF

[Kil (AUB) = AU Bk
[Ki] (A = Ak

Then there exists one and only one topology T on X such that A* will be
the T-closure of the subset A of X.
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Solved Problems

TOPOLOGIES, OPEN SETS

1

Let X = {a,b,¢,d,e}. Determine whether or not each of the following classes of
subsets of X is a topology on X.

(1) T, = {X’ Q’ {(l}, {arb}: {CL,C}}

(i) T. = {X, 9, {a,b,c}, {ab,d}, {ab,cd}}
(iii) Ts X, 9, {a}, {a,b}, {a,¢,d}, {a,b,c,d}}
Solution:

(i) T, is not a topology on X since
{a,b},{a,c} € T; but {a,b}U {a,c} = {a,b,c} &€ T,

"

(ii) T, is not a topology on X since
{a,b,c},{a,b,d} € T, but {a,b,¢c} N {a, b d} = {a,b} & T,

(iii) T4 is a topology on X since it satisfies the necessary axioms.

Let T be the class consisting of R, @ and all infinite open intervals A, = (g, ©) with
q € Q, the rationals. Show that T is not a topology on R.
Solution:

Observe that A = U{Aq:qEQ,q>\/§} = (\/5,00)

is the union of members of T, but A &€ T since V/2 is irrational. Hence T violates [0,] and is therefore
not a topology on R.

Let T be a topology on a set X consisting of four sets, i.e.

T = {X,0,4,B}
where A and B are non-empty distinct proper subsets of X. What conditions must
A and B satisfy?

Solution:
Since A N B must also belong to T, there are two possibilities:
Case . ANB =0
Then AUB cannot be A or B; hence AUB = X. Thus the class {4, B} is a partition of X.

Case II. ANB=A or AnB =8B

In either case, one of the sets is a subset of the other, and the members of T are totally ordered
by inclusion: P cAcBcX or QcBCACX.

List all topologies on X = {a,b,c¢} which consist of exactly four members.

Solution:
Each topology T on X with four members is of the form T = {X,®,A,B} where A and B
correspond to Case I or Case II of the preceding problem.

Case I. {A,B} is a partition of X.
The topologies in this case are the following:
Ty = {X,0,{a}, {b,e}}, Ty = {X,0,{b},{a,¢}}, Ty = {X, D, {c}, {a,b}}
Case II. The members of T are totally ordered by inclusion.
The topologies in this case are the following:
T, = {X, 0, {a}, {a, b}} T; = {X, 0, {b}, {a, b}}
T5 = {X, 9, {a}, {a,c}} Ty = {X, 9, {c}, {a,c}}
Ts = {X, 0, {b}, {b,c}} Ty = {X, D, {c}, {b,c}}

i
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Let f: X~>Y be a function from a non-empty set X into a topological space (Y, U).
Furthermore, let T be the class of inverses of open subsets of ¥Y:

T = {f1'G]: Geuy
Show that T is a topology on X.

Solution:
Since U is a topology, Y, €U. But X = f71[Y] and @ = f~1[Q], so X,0 €T and T
satisfies [04].

Let {4;} be a class of sets in T. By definition, there exist G; € U for which A; = f~![G]. But
1A = U TG = U G
Since U is a topology, U;G;E€ U, so U;A; €T, and T satisfies [0,].
Lastly, let A,,A, €T. Then
1G,G, € U suchthat A; =7F"1{Gy], 4, = f~1{G,]

U

But AiNn4, = fFHGI N LGy = f71[G N Gy
and G NG, € U. Thus A;NA; €T and [0;] is also satisfied.

Consider the second axiom for a topology T on a set X:
[0:] The union of any number of sets in T belongs to 7.

Show that [0:] can be replaced by the following weaker axiom:
[07] The union of any number of sets in T\ {X, @} belongs to T.

In other words, show that the axioms [0.], [0z] and [Os] are equivalent to the axioms
[0:], [O:] and [Os].

Solution:
Let 7 be a class of subsets of X satisfying [04], [Oé] and [0;], and let ¢4 be a subclass of 7.
We want to show that T also satisfies [Q,], ie. that U{EF:E€c4} € T.

Case I. X € cA.
Then WU{E :E € cA} = X and therefore belongs to T by [0,].

Case I1I. X & cA.

Then U{E:E€cd} = U{E:E €A {X}}
But the empty set @ does not contribute any elements to a union of sets; hence
U{E:E€cdA} = ULE:E€A\{X})} = WU{E: EcA{X,0} 1)

Since ¢4 is a subclass of T, o4 \ {X,®} is a subclass of T\ {X,0}, so by [0;] the union in (1)
belongs to T.

Prove: Let A be a subset of a topological space X with the property that each point
p € A belongs to an open set G, contained in A. Then A is open.
Solution:

For each point p€ A, pEG,CA. Hence U{G,: pE A} = A and so A is a union of open sets
and, by [0,], is open.

Let T be a class of subsets of X totally ordered by set inclusion. Show that T satisfies
[0:], i.e. the intersection of any two members of T belongs to 7.
Solution:
Let A,BE€ T. Since T is totally ordered by set inclusion,
either ANB=A or AnB =18

In either case A NB € T, and so T satisfies [03].
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9.

10.

Let T be the class of subsets of R consisting of R, ¢ and all open infinite intervals
E, = (a,~) with a € R. Show that T is a topology on R.

Solution:
Since R and ) belong to 7, T satisfies [0;]. Observe that T is totally ordered by set inclusion;
hence T satisfies [0;].

Now let o4 be a subclass of T\ {X, )}, that is o4 = {E;:i€ 1} where I is some set of real
numbers. We want to show that U; E; belongs to 7. If I is not bounded from below, ie. if
inf (I) = —=, then U;E; = R. If I is bounded from below, say inf (I) = i,, then U B = (4, ) = Eio'
In either case, U;E;, € T, and T satisfies [O;].

Let T be the class of subsets of N consisting of ¢ and all subsets of N of the form
E. = {n,n+1,n+2, ...} with n €N.

(i) Show that T is a topology on N.

(ii) List the open sets containing the positive integer 6.

Solution:

(i) Since ¥ and E, = {1,2,3,...} = N belong to T, T satisfies [0;]. Furthermore, since T is
totally ordered by set inclusion, T also satisfies [0s].

Now let ¢4 be a subclass of T\ {N, 9D}, that is, ¢4 = {E,:n €I} where I is some set of
positive integers. Note that I contains a smallest positive integer n, and
U{E,:n€l} = {ngng+1,n+2 ...} = E"o

which belongs to T. Hence T satisfies [0;], and so T is a topology on N.

(ii)  Since the non-empty open sets are of the form

E, = {nn+1,n+2 ...}
with n €N, the open sets containing the positive integer 6 are the following:
E, = N = {1,2,8,...} E, = {4,5,6,...}
E, = {2,8,4,...} E; = {5,6,7,...}
E; = {3,4,5,...} Es = {6,7,8,...}

ACCUMULATION POINTS, DERIVED SETS

11.

Let T be the topology on N which consists of ¢ and all subsets of N of the form
E, = {n,n+1,n+2, ...} where n €N as in Problem 10.

(i) Find the accumulation points of the set 4 = {4,13,28,37}.
(ii) Determine those subsets E of N for which E’ = N.

Solution:

(i) Observe that the open sets containing any point p EN are the sets K, where i =p. If ny = 36,
then every open set containing =, also contains 37 € A which is different from n,; hence n,= 36
is a limit point of A. On the other hand, if n, > 36 then the open set E"o = {ng,ny+1,n5+2,...}
contains no point of A different from n,. So n,>36 is not a limit point of A. Accordingly,
the derived set of 4 is A’ = {1,2,8,..., 34, 35,36).

(if) If E is an infinite subset of N then E is not bounded from above. So every open set containing
any point p €N will contain points of E other than p. Hence E’ =N.

On the other hand, if E is finite then E is bounded from above, say, by ngEN. Then the
open set Enoﬂ contains no point of E. Hence n;+1€N is not a limit point of E, and so
E’ #“ N.
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Let A be a subset of a topological space (X,T). When will a point p € X not be a
limit point of A?

Solution:
The point p € X is a limit point of A iff every open neighborhood of p contains a point of A other

than p, ie.,
pEG and GET implies (G\A{p})n4d # O

So p is not a limit point of A if there exists an open set G such that

pPEG and (GN\{pHNnN4d =9

or, equivalently, pEG and GNA =@ or GNA = {;)
or, equivalently, pEG and GnNnAC{p}
Let A be any subset of a discrete topological space X. Show that the derived set A’

of A is empty.

Solution:
Let p be any point in X. Recall that every subset of a discrete space is open. Hence, in particular,
the singleton set G = {p} is an open subset of X. But

pEG and GnA = ({p}nA)C{p}

Hence, by the above problem, p € A’ for every p€ X, ie. A’ = (.

Consider the topology
T = {X,Q,{a}, {a,b}, {a,¢cd}, {a,b,cd}, {ab,e}}
on X = {a,b,c,d,e}). Determine the derived sets of (i) A = {¢,d, e} and (ii) B = {b}.

Solution:
(i) Note that {a, b} and {a, b, ¢} are open subsets of X and that

a,b € {a,b} and {a,b}N A = @
e€ {a,b,e} and {a,b,e}nN A = {e}

Hence a, b and e are not limit points of A. On the other hand, every other point in X is a limit
point of A since every open set containing it also contains a point of A different from it.
Accordingly, A’ = {¢,d}.

(ii)  Note that {a}, {a, b} and {a, ¢, d} are open subsets of X and that
ea€{a} and {a}NB = O
b€ {a,b} and {a,b}NB = {b}
¢,d € {a,e,d} and {a,c,d}NB = @

Hence a, b, ¢ and d are not limit points of B = {b}. But ¢ is a limit point of B since the open sets
containing ¢ are {a, b, e} and X and each contains the point b € B different from e. Thus B’ = {e}.

Prove: If A is a subset of B, then every limit point of A is also a limit point of B, i.e.,
A CB implies A’ C B,

Solution:
Recall that p€ A’ iff (G\ {p})NA # () for every open set G containing p. But B D A; hence

(GN\{pHnB D (G\{pHnA * O

So pE€ A’ implies p € B’, ie. A’ CB".
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16. Let 7, and T be topologies on X such that T C T», i.e. every Ti:-open subset of X is

also a T.-open subset of X. Furthermore, let A be any subset of X.

14

‘1) Show that every T:-limit point of A is also a T:-limit point of A.
(ii) Construct a space in which a 7,-limit point is not a T»-limit point.
Solution:

(i) Let p be a T,-limit point of 4; ie. (GN\ {p}) N A # B for every GE T, such that pE€G. But
T{CTy; so, in particular, (G\ {p}) N A # @ for every G& T, such that pE€G, ie p is a

T ,-limit point of A.

(ii) Consider the usual topology U and the discrete topology .2 on R. Note that U C ) since D

contains every subset of R. By Problem 13, 0 is not a ./»-limit point of the set A = {1
since A’ is empty. But 0 is a limit point of A with respect to the usual topology on R.

:f’%,"'}

17. Prove: Let A and B be subsets of a topological space (X, T). Then (A UB) = A4’ U B".

Solution:
Utilizing Problem 15, A CAUB implies 4’ C (AUBY

BCAUB implies B C (AUBY
So A’UB’ C (AUB)’, and we need only show that
(AUBY C A’UB'
Assume p € A’ U B’; thus 3G,H € T such that
pEG and Gn A C {p} and pEH and HnN B C {p}
But GNHE T, p€ GNH and

(GNH)N(AuB) = (GNHNA)U (GNHNB) C (GNA)UHNB) C {pyu{p} = {p}

Thus p € (AUBY, and so (AUB) C (A'UB’).

CLOSED SETS, CLOSURE OPERATION, DENSE SETS
18. Consider the following topology on X = {a, b, ¢, d, e}:
T = {X,Q,{a},{a,b}, {a,cd}, {a,b,cd} {ab,e}}
(i)  List the closed subsets of X.
(ii) Determine the closure of the sets {a}, {b} and {c, e}.
(iii) Which sets in (ii) are dense in X?

Solution:

(i) A set is closed iff its complement is open. Hence write the complement of each set in T:

D, X, {b,c,d, e}, {¢,d, e}, {b,e}, {e}, {c,d}

(i) The closure A of any set A is the intersection of all closed supersets of A. The only
superset of {a} is X; the closed supersets of {b} are {b,e}, {b,c,d,e} and X; and the

supersets of {c,e} are {c,d, e}, {b,c,d,e} and X. Thus,
{a} =X, (b} ={b,e}, {c,e} = {c,d, e}

(iii) A set A is dense in X iff A = X; so {a} is the only dense set.

19. Let T be the topology on N which consists of ¢ and all subsets of N of the

E.={n,n+1,n+2, ...} where n € N as in Problem 10.

(i) Determine the closed subsets of (N, 7).

(i1) Determine the closure of the sets {7,24,47,85} and {3,6,9,12, ...}.
(iii) Determine those subsets of N which are dense in N.

Solution:

(i) A set is closed iff its complement is open. Hence the closed subsets of N are as follows:

N, @, {1}, {1,2}, {1,2,8}, ..., {1,2,...,m}, ...

closed
closed

form
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(i)  The closure of a set is the smallest closed superset. So
{7,24,47,85} = {1,2,...,84,85}, {3,6,9,12,...} = {1,2,3,...} = N

(iiiy If a subset 4 of N is infinite, or equivalently unbounded, then A =N, ie. A is dense in N. If
A is finite then its closure is not N, i.e. A is not dense in N.

Let T be the topology on R consisting of R, ¢ and all open infinite intervals E. = (a, »)
where a € R. ]

(i) Determine the closed subsets of (R, T).

(i) Determine the closure of the sets [3,7), {7,24,47,85} and {3,6,9,12,...}.

Solution:
(i) A set is closed iff its complement is open. Hence the closed subsets of (R,T) are ©, R and all
closed infinite intervals E = (—=,a].

(ii)  The closure of a set is the smallest closed superset. Hence
[8,7) = (—=,7], {7,24,47,85} = (—=,85], {8,6,9,12, ...} = (—=»,») = R

Let X be a discrete topological space. (i) Determine the closure of any subset A of X.
(ii) Determine the dense subsets of X.
Solution:

(i) Recall that in a discrete space X any A C X is closed; hence A = A.
(ii) Aisdensein X iff A =2X. But A = A, so X is the only dense subset of X.

Let X be an indiscrete space. (i) Determine the closed subsets of X. (ii) Determine
the closure of any subset A of X. (iii) Determine the dense subsets of X.

Solution:

(i) Recall that the only open subsets of an indiscrete space X are X and (; hence the closed subsets
of X are also X and .

(i) If A=@, then A=@. If A= @, then X is the only closed superset of A; so A =X. That is,

for any ACX,
i = O ifA=0
- X ifA=0Q

(ili) ACX is dense in X iff A = X; hence every non-empty subset of X is dense in X.

Prove Theorem 5.4: A subset A of a topological space X is closed if and only if A
contains each of its accumulation points, i.e. A’ C A.

Solution:
Suppose A is closed, and let p&€ A, ie. pE€Ac. But A¢, the complement of a closed set, is open;
hence p& A’ for A¢ is an open set such that
pEAc and ANA =@
Thus A'C A if A is closed.

Now assume A'CA; we show that Ac is open. Let pE€ Ac; then p&A’, so 3 an open set G
such that
a p€EG and (G\{pH)NA =0

But p € A; hence GNA = (G\{pH)nd =0

So G c Ac. Thus p is an interior point of A€, and so A¢ is open.

Prove: If F' is a closed superset of any set A, then A’ CF.

Solution:
By Problem 15, A C F implies A’ C F'. But F’ C F, by Theorem 5.4, since F is closed. Thus
A’ C F' C F, which implies A’ C F.
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25. Prove: A U A’ is a closed set.

Solution:
Let pE(AUA’)e., Since p& A’, 3 an open set G such that

PpEG and GNA = @ or {p}
However, p € A; hence, in particular, GN A = Q.
We also claim that GN A’ = (. For if g € G, then
gEG and GNA = @
where G is an open set. So g € A’ and thus GN A’ = @. Accordingly,
GN(AUA) = (GRA)u(GnA) = QU = O

and so G C (AUAe, Thus p is an interior point of (AUA’)c which is therefore an open set.
Hence AUA’ is closed.

26. Prove Theorem 5.6: A = A U A’

Solution:

Since A C A and A_is closed, A’ C (fi)’_c A and hence A U A’ c A. But AUA’ is a closed set
containing A, so ACACAUA’. Thus 4 = Aud’.

27. Prove: If A CB then A CB.

Solution:
If ACB, then by Problem 15, A’CB’. So AUA’CBUB’ or, by the preceding problem, 4 C B.

28. Prove: AUB = AUB.
Solution:
Utilizing the preceding problem, A CA UB and BCAUB; hence (AUB)CcAUB. But
(AUuBYc(AUB), a closed set since it is the union of two closed sets. Then (Proposition 5.5)
(AUB)CAUBC(AUB) and therefore AUB = A UB.

29. Prove Proposition 5.7: (i) @ = @; (i) A C 4; (i) AUB=AUB; and (iv) (A7) =4".
Solution:
(i) and (iv): @ and A are closed; hence they are equal to their closures. ) AcAuAd = A

(Problem 26). (iii) Preceding problem.

INTERIOR, EXTERIOR, BOUNDARY
30. Consider the following topology on X = {a,b,c,d,e}:

T = {X © {a}, {e,b}, {a,cd}, {ab,cd} {ab,e}}

(i) Find the interior points of the subset A = {a,b,¢} of X. (ii) Find the exterior
points of A. (iii) Find the boundary points of A.

Solution:
(i) The points a and b are interior points of A since

a,b € {a,b} c A = {a,b,c}

where {a,b} is an open set, i.e. since each belongs to an open set contained in A. Note that ¢
is not an interior point of 4 since ¢ does not belong to any open set contained in A. Hence
int (4) = {a, b} is the interior of A.

(ii) The complement of A is Ac¢ = {d,e}. Neither d nor e are interior points of Ac¢ since neither
belongs to any open subset of A¢ = {d,e}. Hence int(Ac) = (), ie. there are no exterior
points of A.

(iii) The boundary b (4) of A consists of those points which are neither interior nor exterior to A.
So b(A) = {¢,d,e}.
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Prove Proposition 5.8: The interior of a set A is the union of all open subsets of A.
Furthermore: (i) A° is open; (ii) A° is the largest open subset of 4, i.e. if G is an open
subset of A then G C A° C A; and (iii) A is open iff A = A",

Solution:
Let {G;} be the class of all open subsets of A. If x € A°, then x belongs to an open subset of 4, i.e.,

3i; suchthat =z € Gio
Hence # € U;&; and so A° C U;G;. On the other hand, if y € U;G,, then y & Gio for some <,
Thus y € A°, and U;G; C A°. Accordingly, A° = U,G;
(i) A° = U;G; is open since it is the union of open sets.
(ii) If G is an open subset of A then G € {G;}; so GcC U;G;, = A° C A.
(iii) If A isopenthen A CA°CA4 or 4 =A° If A =A° then A is open since A° is open.

Let A be a non-empty proper subset of an indiscrete space X. Find the interior,
exterior and boundary of A.
Solution:

X and () are the only open subsets of X. Since X A4, ¢J is the only open subset of A; hence
int(A) = @. Similarly, int(A¢) = @, i.e. the exterior of A is empty. Thus b(4) = X.

Let T be the topology on R consisting of R, ¢ and all open infinite intervals E, = (a, )
where ¢ € R. Find the interior, exterior and boundary of the closed infinite interval
A = [7, »}.
Solution:

Since the interior of A is the largest open subset of A, int(4) = (7, «). Note that Ac¢ = (—,7)

contains no open set except (9; so int(4¢) = ext(4) . The boundary consists of those points
which do not belong to int (A) or ext (A); hence b (4) (—=,17].

Prove Theorem 5.9: A = int(4) U b(4)
Solution: »

Since X = int(A)Ub(4A)Uext(4), (int(A)ub(4)) = ext(4) and it suffices to show
(A)e = ext (4).

Let p € ext(4); then 3 an open G such that

pE G C A  which implies Gn A = @

So p is not a limit point of A, ie. p& A’, and p&A. Hence p € A’ UA = A. In other words,
ext (4) C (A)e,

Now assume p € (A)¢ = (AUA’). Thus p € A’, so T an open set & such that

pEG and (GN{pHNA = 0O

But also p&@A, so GNA =@ and pE GcC Ac. Thus p € ext(4), and (A)° = ext (4).

Show by a counterexample that the function f which assigns to each set its interior, i.e.
f(A) = int(A), does not commute with the function g which assigns to each set its
closure, ie. g(4) = A.

Solution:
Consider Q, the set of rational numbers, as a subset of R with the usual topology. Recall
(Example 5.3) that the interior of Q is empty; hence

(g°H@ = 9(fQ) = g(int(@) = g(@) = O = P
On the other hand, @ = R and the interior of R is R itself. So
(fen)(Q = fg@) = f@Q = /B = R
Thus gof # fog, or f and g do not commute.
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NEIGHBORHOODS, NEIGHBORHOOD SYSTEMS

36.

37.

38.

39.

40.

41.

Consider the following topology on X = {a,b,¢,d, e}:
T = {X,0,{a}, {a,b}, {a,cd}, {a,D,c,d}, {ab,e}}
List the neighborhoods (i) of the point e, (ii) of the point ¢.

Solution:

(i) A neighborhood of ¢ is any superset of an open set containing e. The open sets containing e are
{a,b,e} and X. The supersets of {a,b,e} are {a,b,e}, {a,b,c,e}, {a,b,d, e} and X; the only
superset of X is X. Accordingly, the class of neighborhoods of e, i.e. the neighborhood system

of e, is
N, = {{a,b,¢}, {a,b,¢, ¢}, {a,b,d, e}, X}

(ii) The open sets containing ¢ are {a,¢,d}, {a,b,¢,d} and X. Hence the neighborhood system of ¢ is

N, = {{a,ed}, {a,b,¢,d}, {a,¢,d, ¢}, X}

Determine the neighborhood system of a point p in an indiscrete space X.

Solution:
X and @ are the only open subsets of X; hence X is the only open set containing p. In addition,
X is the only superset of X. Hence N, = {X}.

Prove: The intersection N N M of any two neighborhoods N and M of a point p is
also a neighborhood of ».

Solution:
N and M are neighborhoods of p, so 3 open sets G, H such that

pEGCN and pEHCM
Hence p € GNH C NNM, and GNH is open, or NNM is a neighborhood of p.

Prove: Any superset M of a neighborhood N of a point p is also a neighborhood of p.

Solution:
N is a neighborhood of p, so 3 an open set G such that p € G C N. By hypothesis, N C M, so

pEGCNCM which implies pEGCM
and hence M is a neighborhood of p.

Determine whether or not each of the following intervals is a neighborhood of 0 under
the usual topology for the real line R. (i) (—4, %], (ii) (-=1,0], (ii) [0,%), (iv) (0,1].

Solution:

(i) Note that 0 € (—1,4) C (—4,4] and (—1,3) is open; so (—4,&] is a neighborhood of 0.

(if} and (iii) Any U-open set G containing 0 contains an open interval (a,b) containing 0, ie.
a < 0 < b; hence G contains points both greater and less than 0. So neither (—1,0] nor [0,})
is a neighborhood of 0.

(iv) The interval (0,1] does not even contain 0 and hence is not a neighborhood of 0.

Prove: A set G is open if and only if it is a neighborhood of each of its points.

Solution:
Suppose G is open; then each point p € G belongs to the open set G contained in G. Hence G is a
neighborhood of each of its points.

Conversely, suppose G is a neighborhood of each of its points. So, for each point pE€G, I an
open set G, such that p € G, C G. Hence G = U {G,: p € G} and is open since it is a union of
open sets.
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42. Prove Proposition 5.10: Let N, be the neighborhood system of a point p in a topological

space X. Then:
(i) N, is not empty and p belongs to each member of N,

ii) The intersection of any two members of N belongs to N,

(ii

(iii) Every superset of a member of N, belongs to N,

(iv) Each member N € N, is a superset of a member G € N, where G is a neighbor-
hood of each of its points.

Solution:
(i) If NEN,, then 3 an open set G such that p € G C N; hence p&€N. Note X €N, since X is
an open set containing p; so N, 7 D.

(ii) Proven in Problem 388. (iii) Proven in Problem 39.

(iv) If NEN,, then N is a neighborhood of p, so 3 an open set G such that p€ G C N. But by
the preceding problem G € N, and G is a neighborhood of each of its points.

SUBSPACES, RELATIVE TOPOLOGIES
43. Consider the following topology on X = {a,b,c¢,d,e}:

44

45.

46

‘T - {X7 @’ {a}’ {a7 b}) {ar C, d}! {a’: b) C, d}; {a; b) e}}

List the members of the relative topology T, on A = {a,c,e}.

Solution:
Ta = {ANG : GET} so the members of T, are:
AnNnX = A An{a} = {a} A n{a,e,d} = {a,c} A n{a,b,e} = {a,e}
AN =290 An{a,b} = {a} A n{a,b,ed} = {a,c}

In other words, T, = {4, @, {a}, {a,¢}, {a,¢}}. Observe that {a,c} is not open in X, but is
relatively open in A, i.e. is T 4-open.

Consider the usual topology U on the real line R. Describe the relative topology U,
on the set N of positive integers.
Solution:
Observe that, for each positive integer ny € N,
{ng} = NN (mg—4L ng+3)
and (ng— %, Ng + %) is a U-open set; so every singleton subset {n,} of N is open relative to N. Hence

every subset of N is open relative to N since it is a union of singleton sets. In other words, Uy is
the discrete topology on N.

Let A be a T-open subset of (X,T) and let A CY C X. Show that 4 is also open
relative to the relative topology on Y, i.e. A is a T -open subset of Y.

Solution:
Ty = {YNnG : GET}, But ACY and AET; so A = YNAE€Ty.

Consider the usual topology U on the real line R. Determine whether or not each of
the following subsets of I = [0,1] are open relative to I, i.e. T,-open: (i) (,1],
(i) (3, %), (iii) (0, %].

Solution:

(1) Note that (%, 1] =1In (%,3) and (%,3) is open in R; hence (%,1] is open relative to I.

(ii)  Since (4, 2) is open in R, i.e. ({, %) € U, it is open relative I by the preceding problem. In fact,
L3 =102,

(iii) ~ Since (0, }] is not the intersection of I with any U-open subset of R, it is not U-open.
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47.

48.

Let A be a subset of a topological space (X, T). Show that the relative topology T, is
well-defined. In other words, show that T, = {ANG : GE€ T} is a topology on A.

Solution:
Since T is a topology, X and @ belong to 7. Hence ANX = A4 and AN ® = @ both belong
to T,, which then satisfies [0].
Now let {H;: 1€ 1} be a subclass of T,. By definition of T,, for each i€l I a T-open set
G, such that H, = A n G;. By the distributive law of intersection over union,
U;H, = U;(ANG) = An(U;G)
But U;G; € T as it is the union of T-open sets; hence U;H; € T,. Thus T, satisfies [0,].

Now suppose H;,H,€T,;. Then 3 G;,G, €T such that Hy = An G, and Hy, = A 0 G,.
But Gy, n G, € T since T is a topology. Hence :
H nHy, = (AnG) N (AnGy) = AN (GiNGy)
belongs to T,. Accordingly, T, satisfies [04] and is a topology on A.

Let (X, T) be a subspace of (Y, T*) and let (Y, T*) be a subspace of (Z,T**). Show

that (X, T7) is also a subspace of (Z, T**).

Solution: » .
Since X CcY CZ, (X,T) is a subspace of (Z,T**) if and only if T3 =T. Let GE&T; now

Th = T, so 3G* €Ty for which G = XN G* But T* = T}% so 3IG** € T** such that

X
G* Y n G¥*,  Thus

G=XnG" =XNnYnNnG*™ = XnG¥*
since X CY; so GETL* Accordingly, T C T3%
Now assume G € T%", i.e. FHE T#* suchthat G = XnH. But YNnHET = T* so
XN(YnH) €T =T. Since XA(¥YnH) = XnH = G

MISCELLANEOUS PROBLEMS

49,

50.

51.

Let (X)) be the power set, i.e. class of subsets, of a non-empty set X. Furthermore,
let k:P(X)-> P(X) be the identity mapping, i.e. for each A C X, k(A) = A.

(i) Verify that k satisfies the Kuratowski Closure Axioms of Theorem 5.12.

(ii) Determine the topology on X induced by k.

Solution:
(1) k@) = @, so [K,] is satisfied. AUB)Y = AU B = k(A) U k(B), so [K;l is satisfied.
k(A) = A DA, so [K,] is satisfied. k(k(A)) = k(A), so [K,] is satisfied.

(ii) A subset FCX is closed in the topology induced by k if and only if k(F)=F. But k(4A) = A4
for every ACX, so every set is closed and k induces the discrete topology.

Let T be the cofinite topology on the real line R, and let (a1, a2, ...} be a sequence in R
with distinct terms. Show that (a.) converges to every real number p € R.

Solution:

Let G be any open set containing p €R. By definition of the cofinite topology, G¢ is a finite set
and hence can contain only a finite number of the terms of the sequence (a,) since the terms are
distinct. Thus G contains almost all of the terms of (a,), and so (a,) converges to p.

Let T be the collection of all topologies on a non-empty set X, partially ordered by class
inclusion. Show that T is a complete lattice, i.e. if S is a non-empty subcollection of T
then sup () and inf (S) exist.
Solution:

Let T, = n{T:T €S}. By Theorem 5.1, T, is a topology; so T; €T and T, = inf (§).

Now let B be the collection of all upper bounds of §. Observe that B is non-empty since, for
example, the discrete topology .0 on X belongs to B. Let T, = N {T: T € B}. Again by Theorem 5.1,
T, is a topology on X and, furthermore, T, = sup (S)-
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52. Let X be a non-empty set and, for each point p € X, let ¢4, denote the class of subsets
of X containing p.
(i) Verify that <4, satisfies the Neighborhood Axioms of Theorem 5.11.
(ii) Determine the induced topology on X.

Solution:
(1) Since pE€ X, X €4, and, so, e4, # P. By hypothesis, p belongs to each member of o4,. Hence
[A,] is satisfied.
If M,NE€cA4, then pEM and pEN, and so pEMNN. Hence M NNEcq, and so
[A,] is satisfied.
If NEed, and NC M, ie. if pENCM, then pEM. Hence MEec4, and so [Ag] is
satisfied.
By definition of o4, every A CX has the property that A €cA4, for every pEA. Hence [A4]
is satisfied.

(i) A subset A C X is open in the induced topology if and only if A €c4, for every pE A, Since
every subset of X has this property, the induced topology on X is the discrete topology.

Supplementary Problems

TOPOLOGICAL SPACES
53. List all possible topologies on the set X = {a,b}.

54. Prove Theorem 5.1: Let {T,:i€ I} be any collection of topologies on a set X. Then the intersection
N; T; is also a topology on X.

55. Let X be an infinite set and let T be a topology on X in which all infinite subsets of X are open. Show
that T is the discrete topology on X. ;
56. Let X be an infinite set and let T consist of @ and all subsets of X whose complements are countable.
(1) Prove that (X, T) is a topological space.
(i) If X is countable, describe the topology determined by 7.
57. Let T = {R%, Q) U {Gy: k€ R} be the class of subsets of the plane R? where
Gk = {<x1y>xyy€R7x>y+k}
(i) Prove that T is a topology on R2.
(i) Is T a topology on R2 if “k € R” is replaced by “4 €N”? by “k€Q”?

58. Prove that (R2, T) is a topological space where the elements of T are () and the complements of finite
sets of lines and points.

59. Let {p) be an arbitrary singleton set such that p €R; e.g. {R}. Furthermore, let R* = RU {p} and
let T be the class of subsets of R* consisting of all U-open subsets of R and the complements (relative
to R*) of all bounded U-closed subsets of R. Prove that T is a topology on R*.

60. Let {p} be an arbitrary singleton set such that p€R; and let R* = RU {p}. Furthermore, let T
be the class of subsets of R* consisting of all subsets of R and the complements (relative to R*) of all
finite subsets of R. Prove that T is a topology on R*.

ACCUMULATION POINTS, DERIVED SETS
61. Prove: A'’UB = (AuB).

62. Prove: If p is a limit point of the set A, then p is also a limit point of A \ {p}.
63. Prove: Let X be a cofinite topological space. Then A’ is closed for any subset A of X.

64. Consider the topological space (R,T) where T consists of R, ® and all open infinite intervals
E, = (a,%), « €R. Find the derived set of: (i) the interval (4,10); (ii) Z, the set of integers.
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65.

66.

Let T be the topology on R* = R U {p} defined in Problem 59.

(i) Determine the accumulation points of the following sets:
(1) open interval {(a, b), a,b €ER (2) infinite open interval (a, ), ¢ € R (3) R.

-

(ii) Determine those subsets of R* which have p as a limit point.

Let T, and T, be topologies on a set X with T, coarser than Ty, ie. T;C T,

(1) Show that every T,-accumulation point of a subset A of X is also a Tj-accumulation point.
{(ii) Construct an example in which the converse of (i) does not hold.

CLOSED SETS, CLOSURE OF A SET, DENSE SUBSETS

67.
68.
69.

70.
71.

72.

73.
74.

Construct a non-discrete topological space in which the closed sets are identical to the open sets.
Prove: A N B C A n B. Construct an example in which equality does not hold.
Prove: AN B C (AN B). Construct an example in which equality does not hold.

Prove: If A is open, then AN B c AN B.

Prove: Let A be a dense subset of (X,T), and let B be a non-empty open subset of X. Then
AnB # Q.

Let T, and T, be topologies on X with T, coarser than T, Show that the T,-closure of any subset
A of X is contained in the T -closure of A.

Show that every non-finite subset of an infinite cofinite space X is dense in X.

Show that every non-empty open subset of an indiscrete space X is dense in X.

INTERIOR, EXTERIOR, BOUNDARY

75.

76.

1.

78.

79.

80.

81.

Let X be a discrete space and let ACX. Find (i) int(4), (ii) ext(4), and (i) b (4).

Prove: (i) b(A)C A if and only if A is closed.

(i) bA)nA = @ if and only if A is open.

(iii) b(A) = if and only if A is both open and closed.
Prove: If AnB = @, then b(AUB) = b(4) U b(B).

Prove: (i) A°NB° = (AnB)°; (i) A° U B° C(AUB)°. Construct an example in which equality
in (ii) does not hold.

Prove: b(A°) c b(A). Construct an example in which equality does not hold.
Show that int (4) U ext (A) need not be dense in a space X. (It is true if X =R)

Prove: Let 7, and T, be topologies on X with T coarser than Ty, i.e. T,C Ty, and let A C X. Then:
(i)  The T-interior of A is a subset of the T,-interior of A.
(ii) The Ty-boundary of A is a subset of the T,-boundary of A.

NEIGHBORHOODS, NEIGHBORHOOD SYSTEMS

82.
83.
84.

Let X be a cofinite topological space. Show that every neighborhood of a point p € X is an open set.
Let X be an indiscrete space. Determine the neighborhood system N, of any point p€X.

Show that if N, is finite, then N{N : N € N,} belongs to N,.

SUBSPACES, RELATIVE TOPOLOGIES

85.
86.

Show that every subspace of a discrete space is also discrete.

Show that every subspace of an indiscrete space is indiscrete.
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87.

88.

89.

90.
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Let (Y, Ty) be a subspace of (X, 7). Show that ECY is Ty-closed if and only if E = Y N F, where
F is a T-closed subset of X.

Let (A, T,) be a subspace of (X,T). Prove that T, consists of the members of T contained in 4, i.e.
Th = {G:GCA,GET), if and only if A is a T-open subset of X.

Let (Y, Ty) be a subspace of (X, T). For any subset A of ¥, let A and A° be the closure and interior
of A with respect to T and let (A)y and (A°)y be the closure and interior of A with respect to Ty.
Prove (i) Ay = ANnY, (i) 4° = (A%)yNnY°.

Let A, B and C be subsets of a topological space X with Cc AuB. If A, B and AUB are given

the relative topologies, prove that C is open with respect to AUB if and only if Cn A is open with
respect to A and Cn B is open with respect to B.

EQUIVALENT DEFINITIONS OF TOPOLOGIES

91.

92.

93.

94.

95.

53.
56.
64.
65.
67.
75.
80.

Prove Theorem 5.11: Let X be a non-empty set and let there be assigned to each point pE€ X a class
eA,, of subsets of X satisfying the following axioms:

[A;] cA,, is not empty and p belongs to each member of o4,

[A;] The intersection of any two members of o4, belongs to o4,

[A;] Every superset of a member of c4, belongs to A4, :
[A;] Each member N E€cA, is a superset of a member G E€cA, such that GEcA, for every g€ G.

Then there exists one and only one topology T on X such that o4, is the T-neighborhood system of
the point p€ X.

Prove Theorem 5.12: Let X be a non-empty set and let k:P(X)—> P(X) satisfy the following
Kuratowski Closure Axioms: .
[K,1 k) =0, (K] Ack@), [K; KAUB) = k(4) U Kk(B), [Kl k(k(4)) = k(A)

Then there exists one and only one topology T on X such that k(4) will be the T-closure of AcX.
Prove: Let X be a non-empty set and let i:P(X)— P(X) satisfy the following properties:

(i) 4X)y=2X, (i) {4)cC A, (i) {(AUB) = i(A) U iB), (iv) i(i(4)) =1i(A)
Then there exists one and only one topology T on X such that i#(A) will be the T-interior of ACX.

Prove: Let X be a non-empty set and let ¥ be a class of subsets of X satisfying the following

properties:
(i) X and @ belong to ¥.
(ii) The intersection of any number of members of J' belongs to F.
(iii) The union of any two members of F belongs to F.

Then there exists one and only one topology T on X such that the members of F are precisely the
T-closed subsets of X.

Let a neighborhood of a real number p €R be any set containing p and containing all the rational

numbers of some open interval (a,b) where a < p <b.

(i) Show that these neighborhoods actually satisfy the neighborhood axioms and hence define a
topology on the real line R.

(ii) Show that any set of irrational numbers does not contain any accumulation points.

(iii) Show that any sequence of irrational numbers, such as ¢ 7/2,7/8,7/4, ... ) does not converge.

Answers to Supplementary Problems
{X, 0}, {X, {a}, 0}, {X,{b}, 0} and {X,{a},{b}, D}.
(ii) Discrete topology.
(i) (—,10] (i) R
(i): () [e,b]), (2) [a, =)V {p}, (38) R*. (ii) Unbounded subsets of R.
X = {a,b,c}, T =A{X, 9, {a,b} {c}}
(i) A, (ii) A, (iii) @
Let X = {a,b} be an indiscrete space and let A = {a}.



Chapter 6

Bases and Subbases

BASE FOR A TOPOLOGY

Let (X, T) be a topological space. A class“B of open subsets of X, ie. BC T, is a base
for the topology T iff -
(i) every open set G € T is the union of members of B.

Equivalently, B C T is a base for T iff
(i) for any point p belonging to an open set G, there exists B € B with p €B C G.

Example 1.{1’: The open intervals form a base for the usual topology on the line R. For if GC R
is open and p € G, then by definition, 3 an open interval (a, b) with p € (e, b) CG.
imilarly, the open discs form a base for the usual topology on the plane R2,

Example 1.2: The open rectangles in the plane R2,
bounded by sides parallel to the z-axis
and y-axis, also form a base B for the
ugual topology on R2. For, let G C R2
be Z)pen and p € G. Hence there exists

J N an open disc D, centered at p with
\p €D, C G. Then any rectangle BESB
whose vertices lie on the boundary of

" D, satisfies

T pEBCD,cG or pEBCG

as indicated in the diagram. In other
words, B satisfies (ii) above.

Example 1.3: Consider any discrete space (X, ). Then the class B = {{p}:p€ X} of all
singleton subsets of X is a base for the discrete topology 2 on X. "For each single-
ton set {p} is D-open, since every A C X is Z-open; furthermore, every set is the
union of singleton sets. In fact any other class B* of subsets of X is a base for
D if and only if it is a superclass of B, i.e. B* D B.

We now ask the following question: Given a class B of subsets of a set X, when will
the class B be a base for some topology on X? Clearly X = | J{B:B € B} is necessary
since X is open in every topology on X. The next example shows that other conditions
are also needed. ,

Example 14: Let X = {a,b,¢}. We show that the class B consisting of {a, b} and {b,c}, i.'e.«
B = {{a, b}, {b,c}}, cannot be a base for any topology on X. For-then {a,b} and

" {b,¢} would themselves be open and therefore their intersection {a,b} n {b,e} = {b}
would also be open; but {b} is not the union of members of B.

The next theorem gives both necessary and sufficient conditions for a class of sets to
be a base for some topology.

Theorem 6.1: L\’et B be a class of subsets of a non-empty set X. Then B is a base for sc;me
topology on X if and only if it possesses the following two properties:

(i) X = U{B:B€E®B).
(ii) For any B,B* €8, BN B* isg the union of members of B, or, equiva-
lently, if p € BNB* then 3B, € B such that p € B, C BN B*,

87
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Example 15: Let B be the class of open-closed intervals in the real line R:
B = {(a,b]: a,bER, a <b}

Crlearly R is the union of members of B since every real number belongs to some
open-closed intervals. In addition, the intersection (a,d] N (¢,d] of any two open-
closed intervals is either empty or another open-closed interval. For example,

if e<e<b<d then (a,b] N (c,d] = (e, b]
as indicated in the diagram below.

~ ¥

Thus the class T consisting of unions of open-closed intervals is a topology on R, i.e.
B is a base for a topology T on R. This topology T is called the upper limit
topology on R. Observe that T = U.

Similarly, the class of closed-open intervals,
B* = {la,b): a,b ER, a < b}
is a base for a topology T* on R called the lower limit topology on R.

’

<

SUBBASES

Let (X, T) be a topological space. A class of of open subsets of X, ie. JCT, is a
subbase for the topology T on X iff finite intersections of members of <f form a base for T

Example 2.1: Observe that every open interval (a,b) in the line R is the intersection of two
: ~infinite open intervals (a, ©) and (—«,b): (a,b) = (a, ©) N (—«,b). But the open
.\,{ intervals form a base for the usual topology on R; hence the class of of aII infinite

open inteérvals is a subbase for R.

Example 2.2: The intersection of a vertical and a horizontal infinite open strip in the plane R2
: is an open rectangle as indicated in the diagram below.

|
I
|
!

But, as noted previously, the open rectangles form a base for the usual topology
on R2.  Accordingly, the class of of all infinite open strips is a subbase for R2

TOPOLOGIES GENERATED BY CLASSES OF SETS ' . ‘

Let o4 be any class of subsets of a non-empty set X. As seen previously, ¢4/ may not

be a base for a topology on X. However, ¢4 always generates a topology on X in the
following sense:

Theorem 6.2: Any class o4 of subsets of a non-empty set X is the subbase for a unique

‘ topology T on X. That is, finite mtersectlons of members of ¢4 form &

base for the topology T on X.

Example 3.1:  Consider the following class of subsets of X = {a, b, ¢, d}:
A = {{a,b}, {b,c}, {d}}
Finite intersections of members of o4 gives the class

B = {{Gf, b}) {b) C}, {d}) {b}’ @? X}
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(Note X € B since, by definition, it is the empty mtersectmn of members of oA4. }
Taking unions of members of B gives the class
T = {{a,b}, {b,c}, {d}, {8}, O, X, {a,b,d}, {b,¢,d}, {b,d}, {a,b,c}}
which is the topology on X generated by the class A. -
Example 3.2: Let (X, <) be any non-empty totally ordered set. The topology on X generated by
the subsets of X of the form
{eX :z<p, pEX} or {#x€X :p<z peEX}

is called the order topology on X. Observe, by Example 2.1, that the usual topology
on R is, in fact, identical to the (natural) order topology on R.

The topology generated by a class of sets can also be characterized as follows:

Proposition 6.3: Let ¢4 be a class of subsets of a non-empty set X. Then the topology T
on X generated by <4 is the mtersectlon of all topologies on X which

contain cA4.
"

LOCAL BASES

Let p be anyLarbitrary point in a topological space X. A class B, of open sets con-
taining p is called a local base at p iff for each open set G contalnmg p, AG, € By Wlth the
property » € G, C G.

Example 4.1: Consider the usual topology on the plane R2 and any pomt pE R2,. Then the class

B, of all open discs centered at p is a local base at p. For, as proven previously,
A any open set G containing p also contains an open disc D whose center is p.

The following relationship between a base (“in the large”) for a topology and a local
base (“in the small”) at a point clearly holds:

Proposition 6.4: Let B be a base for a topology 7 on X and let p € X. Then the members
: of the base B which contain p form a local base at the point p.

Similarly, the class of all open intervals (@ — §, ¢ + §) in the line B with center
a € R is a local base at the. point a.

Some coﬁeépts previously defined in terms of the open sets containing a point p can
also be defined merely in terms of the members of a local base at p. For example,

Proposition 6.5: A point p in a topological space X is an accumulation point of ACX iff
each member of some local base B, at p contains a point of A different
from p. .

Proposition 6.6: A sequence (@, @s, ...) of points in a topological space X converges to
‘ p € X iff each member of some local base B, at p contains almost all of
the terms of the sequence.

The previous three propositions imply the following useful corollary.

Corollary 6.7: Let B be a base for a topo]ogy T on X. Then:

(i) p€X is an accumulation point of A CX iff each open base set B € B
containing p contains a point of A different from p;

(i) a sequence (a1, @z, ...) of points in X converges to p € X iff each open
base set B € B containing p contains almest all of the terms of the
sequence.
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Example 42: Consider the lower limit topology T on the real line R which has as a base the class
of closed-open intervals {a, b), and let A = (0,1). Note that G = [1,2) is a T-open
set containing 1 € R for which GNA = ©; hence 1 is not a'limit point of A.
On the other hand, 0 € R is a limit point of 4 since any open base set [a, b) con-
taining 0, i.e. for which a = 0 < b, contains points of A other than 0.

Solved Problems

BASES

1.

3.

Show the equlvalence of both definitions of a base for a topology, that is, if B is a sub-
clags of T then the following statements are equivalent:

(i) Each G é ‘T is the union of members of B.
(ii) For any point p belonging to an open set G, 3B, € B such that p € B, C G.

Solution: o
If G AJU B; where B; € B, then each point pEG = U, iB; belongs to at least one member
Bi in the um,gn S0 - 0

) pEBIO C UiBi - G

On the other hand, if for each p €6, 3B, € B such that p € B, CG, thep
G = U{B,: pEG}

and G is the u;io\nof members of B.

Determine whether or not each of the following classes of subsets of the plane R? is a
base for the usual topology on R% (i) the class of open equilateral triangles; (ii) the
class of open squares with horizontal and vertical sides. S :

Solution: \

Both of the above classes are a base for the usual topology on R2. For let G be an open subset
of R? and let pE€G. Then 3 an open disc D, centered at p such that p€ D, C G. Observe that either
an equilateral triangle or a square can be 1nscr1bed in D, as indicated in the diagrams below. i

Hence each class satisfies the second definition of a base for a topology.

Let B be a base for a topology T on X and let B* be a class of open sets containing B,
ie. BCB*CT. Show that B* ig also a base for T.
Solution: }

‘Let G be an open subset of X. Since B is a base for (X, T), G is the union of members of B, i.e.
G = U;B; where B; € B. But B C B*; hence each B; € B also belongs to B*. So G is the union

of members of B*, and therefore B* is also a base for (X, 7).
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4.

Let X be a discrete space and let B be the class of all singleton subsets of X, i.e.
B = {{p}:p € X}. Show that any class B* of subsets of X is a base for X if and
only if it is a superclass of B.
Solution:

Suppose B* is a base for X. Since any singleton set {p} is open in a discrete space, {p} must be
a union of members of B* But a singleton set can only be the union of itself or itself with the
empty set (). Hence {p} must be a member of B*, so B C B*.

On the other hand, since B is a base for the discrete space X (see Example 1.3), any superset of B
is also a base for X.

Prove Theorem 6.1: Let B be a class of subsets of a non-empty set X. Then B is a
base for some topology on X if and only if it satisfies the following two properties:

i) X = U{B: Bes).

(ii) For any B,B* € B, BN B* is the union of members of ‘B, or, equivalently, if
p € BN B* then 3B,€ B such that p € B, C Bn B*.

Solution:

Suppose B is a base for a topology T on X. Since X is open, X is the union of members of B.
Hence X is the union of all the members of B, ie. X = U{B: B & B). Furthermore, if B,B* € B
then, in particular, B and B* are open. Hence the intersection B N B* is also open and, since B is
a base for T, it is the union of members of B. Thus (i) and (ii) are satisfied.

Conversely, suppose B is a class of subsets of X which satisfy (i) and (ii) above. Let T be the
class of all subsets of X which are unions of members of B. We claim that T is a topology on X.
Observe, that B C T will be a base for this topology.

By (i), X = U{B: B € B}; so XE€ T. Note that ¢ is the union of the empty subclass of B, i.e.
O = WB: BEPYCB};, hence PET, and so T satisfies [0,].

Now let {G;} be a class of members of 7. By definition of 7, each G; is the union of members
of B; hence the union U;G; is also the union of members of B and so belongs to 7. Thus 7
satisfies [O].

Lastly, suppose G,H € T. We need to show that G n H also belongs to 7. By definition
of T, there exist two subclasses {B;:{€ 1} and {B;j:j€J} of B such that G = U;B; and
H = u;B;. Then, by the distributive laws,

GNH = (UiB)n(U;B) = UB,NB;:i€l jEJ}

But by (ii), B; N B; is the union of members of B; hence GNH = U{B,nB;:i€l,jE€J} is also
the union of members of B and so belongs to T which therefore satisfies [0;]. Hence T is a topology
on X with base B.

Let B and B* be bases, respectively, for topologies T and T* on a set X. Suppose
that each B €<B is the union of members of B*. Show that T is coarser than T*, i.e.
T C T*,
Solution:

Let G be a T-open set. Then & is the union of members of B, i.e. G = U;B; where B; € B.

But, by hypothesis, each B; € B is the union of members of B*, and so G = U;B; is also the union
of members of B* which are T*-open sets. Hence G is also a T*-open set, and so T C T*.

Show that the usual topology U on the real line R is coarser than the upper limit
topology T on R which has as a base the class of open-closed intervals (a, b].
Solution:
Note first that any open interval is the union of open-closed intervals. For example,
(0,8) = WU{(a,b—1/n] : n EN}
Since the class of open intervals is a base for U, by the preceding problem, U C T, i.e. any TU{-open
set is also T-open.
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Consider the upper limit topology T on the real line R which hag as a base the class of
open-closed intervals (a, b]. (i) Show that the open infinite interval (4, <) and the closed
infinite interval (—,2] are T-open sets. (ii) Show that any open infinite interval
(@, ) and any closed infinite interval (—o,b] are T-open sets. (iii) Show that any
open-closed interval (a b] is both T-open and T-closed.

Solution:

(i)  Observe that 4,») = (4,5]U (4,6] U (4,71 U (4,8] U

(=»,2] = (0,2] U (—1,2] U (—2,2] U

Hence each is T-open since each is the union of members of the base for T.

(ii) ‘Similarly, ) (@, ) = (a,a+1] U (¢, a+2] U (a,a+3] U
(=»,b] = (b—1,b U (b-2,bU((d-3>b U ((B-—4>b U
Hence eaéh is T-open.

(iii) - (@, b]c = (—=,a] U (b,=), and the two intervals on the right are open, so their union is open
and therefore (a, b] is closed. But (a, b] belongs to the base for T and so is also open.

SUBBASES, TOPOLOGIES GENERATED BY CLASSES OF SETS

9.

10.

Let X = {a,b,¢,d,e} and let 4 = {{a,b,¢}, {¢,d}, {d,e}}. Find the topology on X
enerated by 4. - ’ .

N

‘Solution:

First compute the class B of all finite intersections of sets in oA4:

B = (X {abc}, {e,d}, {d, e}, {c}, {d}, P}

(Note that X € B, since by definition X is the empty lntersectlon of members of cA4.) Takmg' unions

of members of B gives the class
T = {X, Ha,b, 6}, {e,d}, {d, e}, {c}, {d}, @, {a,b,¢,d}, {c,d,e}}
which is the fopology on X generated by cA.
-

e

Determine the t’opol;ogy T on the Teal line R generated by the class <4 of all closed
intervals [a, a+1] with length one. ‘
Solution:

Let p be any point in R. Note that the closed intervals [p—1,p] and [p,p+1] belong to 034

as they have length one. Hence
[p—1,p] np,p+1] = {p}

belongs to the topology T, i.e. all singleton sets {p} are T-open, and so T is the discrete topology on X.

)

11. Let 4 be the class of all open half-planes H in the plane R? of the form

H = {x,9:z<a, orz>a, ory <a, ory > a}

U

(See diagrams below.)

r<a ) x> a y<a Yy>a

Find the topology on R? generated by 4.
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12

13.

14.

15.

16.

Solution:
Observe that every open rectangle B = {(x,¥):a<x<b, ¢<y<d} is the intersection of the

four half-planes
Hy = {x, ) a<uwx} Hy = {0 1 c<y}

Hy = {{x,y) 1 x < b} Hy = {,y) 1y <d}
Since each H € o4 is U-open, and since the class of all open rectangles B is a base for the usual

topology U on R2, the class ¢4 is a subbase for U{. That is, c4 generates the usual topology on the
plane R2.

Consider the discrete topology &2 on X = {a,b,¢,d,e}. Find a subbase of for 0 which
does not contain any singleton sets.

Solution:

Recall that any class B of subsets of X is a base for the discrete topology 0 on X iff it contains
all singleton subsets of X. Hence ~f is a subbase for . iff finite intersections of members of ~f gives
{a}, {b}, {\.C}’ {d} and {e}. So of = {{a,b}, {b,c}, {¢c,d}, {d, e}, {e,a}} is a subbase for ..

Let o/ be a subbase for a topology T on X and let A be a subset of X. Show that the
class of, = {ANS : SE} isa subbase for the relative topology T, on A.

Solution
m%et H be a T,-open subset of A. Then H = AN G where G is a T-open subset of X. By
hypothesis, ~f is a subbase for T; so

G = Ui(Sil n Si2 n--nN Sini) where §; € of
Hence H = AnG = An[uiS;n- - nSiy)
= UilANSy) N0 (AN Sy)]

Thus H is the union of finite intersections of members of -f, and therefore f, is a subbase for 7 ,4.

Show that all intervals (a,1] and [0,b), where 0 <a,b <1, form a subbase for the
relative usual topology on the unit interval I = [0,1].

Solution:
Recall that the infinite open intervals (a, ) and (—«,b) form a subbase for the usual topology
on the real line R. The intersection of these infinite open intervals with I = [0,1] are the sets

0,1, (a,1] and [0,b) which, by the preceding problem, form a subbase for I = [0,1]. But we can
exclude the empty set ( and the whole space I from any subbase; so the intervals (a,1} and [0,b)
form a subbase for I.

Show that if «f is a subbase for topologies T and T* on X, then T = T*.

Solution:
Suppose G € T. Since f is a subbase for T, G = U; (Si1 n---nN Sini) where Sik € of.
But ~f is also a subbase for T* and so ~f C T%; hence each Sik € T*. Since T* is a topology,

S; NN Sini € T* and hence G& T* Thus 7 ¢ T*. Similarly 7* C T, and so T = T*.

4

Prove Theorem 6.2: Any class ¢4 of subsets of a non-empty set X is the subbase for
a unique topology on X. That is, finite intersections of members of <4 form a base
for a topology T on X.
Solugion:
We show that the class B of finite intersections of members of o4 satisfies the two conditions in

Theorem 6.1 for it to be a base for a topology on X:

i) X = U{B: B&®B}

(ii) For any G,H € B, G N H is the union of members of B.
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Note X € 8, since X by definition is the empty intersection of members of c4; so
X = U{B: B€E®B}
Furthermore, if G,H € B, then G and H are finite intersections of members of <4. Hence

G N H is also a finite intersection of members of <4 and therefore belongs to B. Accordingly, B is a
base for a topology T on X for which o4 is a subbase. The preceding problem shows that T is unique.

Prove Proposition 6.3: Let c4 be a class of subsets of a non-empty set X. Then the
topology T on X generated by <4 is the intersection of all topologies on X which
contain oA4.

Solution:

Let {T;} be the collection of topologies on X containing o4, and let T* = N;T;. Note that
ed C T*. We want to prove that 7 = 7* Since T is a topology containing c4, and T* is the
intersection of all such topologies, we have T* C T.

On tjxe other hand, suppose G € T. Then by the definition of T,
G = u; (S,-1 N Si2 NN Sini) where Sik €A
’B{t e4 C T*, hence each Sik € T*., Accordingly, S,-1 NN Sini € T* and so
G = u,»(Si1 NN Siy) € T*

We have shown that G € T implies GE T*; hence T C T*. Consequently T = T*,

-

LOCAL BASES

18.

19.

20.

Prove Proposition 6.5: A point p in a topological space (X, T) is an accumulation point
of A C X iff each member of some local base B, at p contains a point of A different
from p.

Solution:
Recall p € X is an accumulation point of A iff (G\{P})NA#*=@ for all G& T such that
pE€G. But B, C T, so in particular (B\{p}) N A #* @ for all BE B,.

Conversely, suppose (B\ {p})) N4+ @ for all BE B,, and let G be any open subset of X
containing p. Then 3B, € B, for which p € ByCG. But then

GN{PH NnA D B\PHnNA # 0
So (GN\{p))NA #* @, or p is an accumulation point of A.

Prove Proposition 6.6: A sequence (a;, s, ...) of points in a topological space (X, T)
converges to p € X iff each member of some local base B, at p contains almost all of
the terms of the sequence.

Solution:
Recall that a, — p iff every open set G € T containing p contains almost all the terms of the
sequence. But B, C T, so in particular each B € B, contains almost all the terms of the sequence.

On the other hand, suppose every B € B, contains almost all the terms of the sequence, and
let G be any open set containing p. Then 3B, € B, for which p € B, C G. Hence G also contains
almost all the terms of the sequence, and so (a,) converges to p.

Show that every point p in a discrete space X has a finite local base.

Solution:

Note that the singleton set {p} is open since every subset of a discrete space is open. Accordingly
the class B, = {{p}}, ie. the class consisting of the singleton set {p}, is a local base at p since
every open set G containing p must be a superset of {p}.
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21. Consider the upper limit topology T on the real line R which has as a base the class of

%

open-closed intervals (a,b]. Determine whether or not each of the following sequences
converges to 0:

(0) L) (i) 1,44 ...)
Solution: )
((1) No. For the T-open set (—2,0] containing 0 does not contain any term of the sequence.

(ii) Yes. For any open basic set (a,b] containing 0, i.e. for which & <0 =18, 3ny, €N such that
o < —1/ny < 0. Henece = > n, implies. —1/n € (a, b].

Supplementary Problems

=

BASES FOR TOPOLOGIES

22.

23.

- 26.

Show that the class of closed. intervals [?" b], where ¢ and b are rational and o <, is not a base for-

a topology on the real line R.

Show that the class of closed intervals [a, b], where a is rational and b is irrational and ¢ <9, is a
base for a topology on the real line R.

24. Let B be a base for a topology T on X and let A C X. Show that the class By = {ANG:GE B}
is a base for the relative topology T, on A.
25. Let B be the class of hal%—open rectangles in the plane R? indi-
cated in the diagram.on the right, i.e. of the form
{@/,y) rasx<b, ec=y<d}
(i)  Show that B isﬁa base for a topology T on R2.
d [Va)
(if) Show that the relative topology T, on the line
A = {7(9c,y):x-l—y:0} ’
is the discrete topology on A. A B
" (4i) Show that the relative topology T on the line
S~
B = {&y :x=y}
is not the diserete topology on B.
Let B be a class of subsets of a non-empty set X totally ordered by set inclusion. Show that B is a
base for a topology on X provided that X = U{B: B € B}.
27. +Show that a topology T -on X is finite if and only if 7 has a finite base.
SUBBASES .
25, Let X = {a,b,c,d,e}. Find the topology T on X generated by o4 = {{a}, {a,b,¢}, {c,d}}.
29. Determine the smallest subbase of for the discrete topology T on any non-empty set X.
—
30. "Let of be the class of all closed intervals [e,b] where a and b are rational, i.e. a,b €Q, and a < b.
Showat_hat of U {{p} : p€Q}L is a base for the topology T on the real line R generated by ¢f.
31. Show that if of is a subbase for a topology T on X, then of \{X, ¢} is also a subbase for T.
32. Let T and T7* be the topologies on X generated respectively by o4 and c4*.

Show that: (i) &4 C eA4* i}nplies T CT% and (ii) A CeA* C T implies T = T*

o
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33. Let ~f be a subbase for a topological space X and let G C X be an open set containing a point p € X.
Show that there exists a finite number of members of f, say S, S, ...,S,,, Wwith the property that
pES NS,Nn---nS,CQqG.

LOCAL BASES

34. Let (X, T) be a topological space and let ¢4 be a T-local base at p € X. Consider any subset 4 of X
such that p € A C X, and consider the relative topology T4 on A. Show that the following class of
subsets of A is a T,-local base at pE€ A4: Ay = {ANG: GE A}

35. Let X be a topological space, let p € X, let N, be the neighborhood system at p and let B, be a local
base at p. Show that every neighborhood of p contains a member of the local base at p; i.e. for every
N €N, 3G € B, for which G CN.

36. Show that if a point p has a finite local base B, then it also has a local base consisting of exactly
one set.

37. Consider the upper limit topology T on the real line R which has as a base the class of open-closed
intervals (a,b]. Determine whether or not each of the following sequences converges:

(1) (1’ '%9 %: ceds (ll) <_1, _%7 —%) e ) (lll) <-1y %y —_%7 %: e

38. Let 7 be the topology on the real line R generated by the class of of all closed intervals [a, b) where
a and b are rational (see Problem 30).

(i) Determine whether or not each of the following sequences converges:
@ @+3 2+5 244, ..., () V2+4,V2+E,V2+L, 0.

(ii) Determine the closure of each of the following subsets of R:
(@) (2,4, (b) (V2,5], (o) (-8,7), () A ={L,L%.. .}

(iii) Show that any finite subset of R is T-closed.

39. Let of be a subbase for a topological space X and let p € X.
(1) Show by a counterexample that the class of, = {SE€ of : p €S} need not be a local base at p.
(ii)  Show that finite intersections of members of of, do form a local base at p.

(iii) Show that a sequence (a,) in X converges to p if and only if every S € of, contains all except a
finite number of the terms of the sequence.

Answers to Supplegnentary Problems

28. T = {X, @, {a}, {¢}, {a,¢}, {c,d}, {a,b,¢}, {a,¢,d}, {a,b,c,d}}
37. (i) No (ii) Yes (iii) No.
38. (i): (a) No, (b) Yes. (il): (a) (2,4), (b) [\/—5,5], (¢) (—3,=], (d) A.

39. (ii) Hint. Use Problem 33.



Chapter 7

Continvity and Topological Equivalence

CONTINUOUS FUNCTIONS

Let (X, T) and (Y, T*) be topological spaces. A function f from X into Y is continuous
relative to T and T*, or T-T* continuous, or simply continuous, iff the inverse image
f~'[H] of every T*-open subset H of Y is a T-open subset of X, that is, iff

HeT* implies f'H €T

We shall write f:(X,T)~> (Y,T*) for a function from X into ¥ when it is convenient to
indicate the topologies involved.

Example 1.1:  Consider the following topologies on X = {a,b,¢,d} and Y = {x,y,z, w} respec-
tively:
T = {X, 0, {a},{a, b}, {a,b,¢}}, T* = {Y, 0, {a}, {y}, {=, 4}, {y,2,w}}
Also consider the functions f: X ~->Y and g:X—>Y defined by the diagrams

below:
o x
b )/L'] ‘ Yy
c z
d w
f g

The function f is continuous since the inverse of each member of the topology T*
on Y is a member of the topology T on X. The function g is not continuous since
{y,2,w} € T*, ie. is an open subset of Y, but its inverse image g~ 1[{y, 7, w}] =
{¢,d} is not an open subset of X, i.e. does not belong to T.

Example 1.28  Consider any discrete space (X, 0) and any topological space (Y,T). Then every
function f: X - Y is /)-T continuous. For if H is any open subset of Y, its inverse
f71[H] is an open subset of X since every subset of a discrete space is open.

Example 13: Let f:X =Y where X and Y are topological spaces, and let B be a base for the

topology on Y. Suppose for each member B € B, f~1[B] is an open subset of X;

- then f is a continuous function. For let H be an open subset of Y; then H = U; By,
a union of members of B. But

fmYH] = f1uiB] = U f1[B)
and each f~1![B)] is open by hypothesis; hence f~1[H] is the union of open sets and
is therefore open. Accordingly, f is continuous.

We formally state the result of the preceding example.

Proposition 7.1: A function f: X~ Y is continuous iff the inverse of each member of a
base B for Y is an open subset of X.

This proposition can in fact be strengthened as follows:

Theorem 7.2: Let of be a subbase for a topological space Y. Then a function f: X~>Y
is continuous iff the inverse of each member of of is an open subset of X.

97
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Example 1.4:~ The projection mappings from the plane R? into the line R are both continuous
relative to the usual topologies. Consider, for example, the projection »:R2—>R
defined by =((z,%)) = y. Then the inverse of any open interval (a, b) is an infinite
open strip as illustrated below:

771 [(a, b)] is shaded

r  Hence by Propesition 7.1, the inverse of every open subset of R is open in R?, ie.

» R .
7 is continuous.

Example 1.5: The absolutej'value function f on R, ie. f(x) = || for x €R, is continuous.
For if A =4a,b) is an open interval in R, then
o if a<b=0
4] = (—b,b) if a<0<b
(=b,—a) U (a,b) if 0=a<b
as illustrated gelow. In each case f~1[A] is open; hence f is continuous.

~ IAN

F-1A] = 0 F-1[A] = (=b,b) F-1[A] = (=b,—a) U (a, b)

Continuous functions can be characterized by their behavior with respect to closed sets, L
as follows:
Theorem 7.3: A function f:X Y is continuous if and only if the inverse image of
every closed subset of Y is a closed subset of X.

CONTINUOUS FUNCTIONS AND ARBITRARY CLOSENESS

Let X be a topological space. A point p € X is said to be arbitrarily close to a set |
AcX if o
either (i) p €A or (ii) p is an accumulation point of 4 ‘
Recall that A = A U 4’; so the closure of A consists precisely of those points in X which
are arbitrarily close to A. Recall also that A = A° U b (A); hence p is arbitrarily close to
A if p is either an interior or a boundary point of 4.
Continuous functions can also be characterized as those functions which preserve
arbitrary closeness, namely,
Theorem 7.4: A function f: X ~>7Y is continuous if and only if, for any p € X and any
ACX, )
, p arbitrarily close to A = f(p) arbitrarily close to f[4]

or ‘ peEA > f(p) € flA]

or flA] c f[A4]
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CONTINUITY AT A POINT

Continuity as we have defined it is a global property, that is, it restricts the way in
which a function behaves on the entire set X. There also exists a corresponding local
concept of continuity at a point.

A function f: XY is continuous at p € X iff the inverse image f~'[H]| of every
open set H C Y containing f(p) is a superset of an open set G C X containing p or,
equivalently, iff the inverse image of every neighborhood of f(p) is a neighborhood of p, i.e.,

NewnN,, > /TN EN,

Notice that, with respect to the usual topology on the real line R, this definition coin-
cides with the « — 8 definition of continuity at a point for functions f: R—> R. In fact, the
relationship between local and global continuity for functions f:R -~ R holds true in
general; namely,

Theorem 7.5: Let X and Y be topological spaces. Then a function f: X > Y is continuous
if and only if it is continuous at every point of X.

SEQUENTIAL CONTINUITY AT A POINT

A function f: X —>Y is sequentially continuous at a point p € X iff for every sequence
{(ay in X converging to p, the sequence (f(a.)) in Y converges to f(p), i.e.,

a.~>p implies  f(ax) = f(p)

Sequential continuity and continuity at a point are related as follows:

Proposition 7.6: If a function f: X —>Y is continuous at p € X, then it is sequentially
continuous at p.

Remark: The converse of the previous proposition is not true. Consider, for example,
the topology T on the real line R consisting of ¢ and the complements of
countable sets. Recall (see IExample 7.3 of Chapter 5) that a sequence (a.)
converges to p if and only if it has the form

<a1; A2, ..., a’"o) »,v,D,.. ')

Then for any function f: (R, T) > (X,T%),
(flan)) = (f(ar), ..., f(any), (D), F(), F(D), . ..)

converges to f(p). In other words, every function on (R, T) is sequentially con-
tinuous. On the other hand, the function f(R,7T) - (R,U) defined by f(z) =2,
i.e. the identity function, is not T-U continuous since f~*[(0,1)] = (0,1) is
not a T-open subset of R.

OPEN AND CLOSED FUNCTIONS

A continuous function has the property that the inverse image of every open set is
open and the inverse image of every closed set is closed. It is natural then to ask about
the following types of functions:

(1) A function f: X ~->Y is called an open (or interior) function if the image of every
open set is open.

(2) A function g: XY is called a closed function if the image of every closed set
is closed.

In general, functions which are open need not be closed and vice versa. In fact, the
function in our first example is open and continuous but not closed.
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Exgnple 2.1:
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Consider the projection mapping = :R2—-> R of the plane R? into the x-axis, i.e.
7({&, ) = «. Observe that the projection #[D] of any open dise D C'R? is an
open interval. Hence any point #(p) in the image #[G] of an open set G C R?
belongs to an open interval contained in #[G], or #[G] is open. Accordingly, = is

an open function. On the other hand, r is not a closed function, for the set -
-~ A = {{&,y): xy =1, x > 0} is closed, but its projection #[A] = (0, ) is not
“ closed. (See diagrams below.)

7[A]

HOMEOMORPHIC SPACES,

A topological space (X,T) is, as we have seen, a set X together with a distinguished
class T of subsets of X, satisfying certain axioms. Between any two such spaces (X, T)
and (Y, T%) there are many functions f: X > Y. We chooseto discuss continuous, or open,
or closed functions rather than arbitrary functions since it is these functions which preserve
some agpect of the structure of the spaces (X, T) and (Y, T%).... :

“Now suppose there is some bijective (i.e. one-one and onto) maﬁping f: X->Y. Then
f induces a bijective function f:P(X)-> P(Y) from the power set of X, i.e. the class of
subsets of X, into the power set of Y. If this induced function also takes T onto T%, i.e.
defines a one-to-one correspondence between the open sets in X and the open sets in Y,
then the spaces (X,T) and (Y,T*) are identical from the topological point of view.

Specifically: -

Definition: | - Two topological spaces X and Y are called homeomorphic or topologically
equivalent if there exists a bijective (i.e. one-one, on’co}> function f: X->Y
such that f and f~! are continuous. The function f is called a homeomorphism.

A function f is called bicontinuous or topological if f is open and continuous. Thus
f: X->7Y is a homeomorphism iff f is bicontinuous and bijective.

Example 3.1:

Example 3.2:

Let X = (—=1,1). The functlon f: X >R defined by f(x) = tan frx is one-one,
onto and continuous.  Furthermore, the inverse function f~1 is also continuous.
Hence the real line R and the open interval (—1,1) are homeomorphic.

Let X and Y be discrete spaces. - Then, as seen in Example 1.2, all functions from
one to the other are continuous. Hence X and Y are homeomorphic iff there exists
a one-one, onto function from one to the other, i.e. iff they are cardinally equivalent.

’ v
Proposition 7.7: The relation in any collection of topological spaces defined by “X is

§

homeomorphic to Y’ is an equivalence relation.

Thus, by the Fundamental Theorem on Equivalence Relations, any collectlon of topo-
logical spaces can be partitioned into classes of topologically equivalent spaces. ‘

TOPOLOGICAL PROPERTIES

A property P of sets is called topological or a topological mva'rumt if Whenever a
topological space (X, T) has P then every space homeomorphic to (X, T) also has P.
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Example 4.1: As seen in Example 3.1, the real line R is homeomorphic to the open interval
X = (—1,1). Hence length is not a topological property since X and R have different
lengths, and boundedness is not a topological property since X is bounded but R
is not.

Example 4.2: Let X be the set of positive real numbers, i.e. X = (0, ). The function f: X > X
defined by f(x) =1/x is a homeomorphism from X onto X. Observe that the
sequence

<an> = <1’ %Y }T’ .. '>

corresponds, under the homeomorphism, to the sequence

flan))y = 1,2,8,..0
The sequence (g,) is a Cauchy sequence; the sequence (f(a,)) is not. Hence the
property of being a Cauchy sequence is not topological.

Most of topology is an investigation of the consequences of certain topological properties
as compactness and connectedness. In fact, formally topology is the study of topological
invariants. In the next example, connectedness is defined and is shown to be a topological
property.

Example 4.3: A topological space (X, T) is disconnected iff X is the union of two open, non-empty,
disjoint subsets, i.e.
X =GUH where GHET, GNH =@ but GH==Q
If /: X - Y is a homeomorphism then X = G U H if and only if Y = f{G} v f{H]
and so Y is disconnected if and only if X is.

The space (X, T) is connected iff it is not disconnected.

N
TOPOLOGIES INDUCED BY FUNCTIONS

Let {(Y,T,)} be any collection of topological spaces and for each Y, let there be given
a function f,: X > Y, defined on some arbitrary non-empty set X. We want to investigate
those topologies on X with respect to which all the functions f, are continuous. Recall that
f, is continuous relative to some topology on X provided the inverse image of each open
subset of Y, is an open subset of X. Thus we consider the following class of subsets of X:

J = U 'H:HET}

That is, <f consists of the inverse image of each open subset of every space Y. The
topology T on X generated by f is called the topology induced (or generated) by the func-
tions f. The main properties of T are listed in the next theorem.

Theorem 7.8: (i) All the functions f, are continuous relative to 7.

(ii) T is the intersection of all the topologies on X with respect to which
the functions f, are continuous.

(ili) T is the smallest, i.e. coarsest, topology on X with respect to which
the functions f, are continuous.

(iv) of is a subbase for the topology T.
We shall call -f the defining subbase for the topology induced by the functions f, i.e.
the coarsest topology on X with respect to which the functions f, are continuous.

Example 5.1: Let 7; and =, be the projections of the plane R? into R, i.e,,
iz, y) =« and  w{(x,y)) =y

Observe, as illustrated below, that the inverse image of an open interval (a, b) in R
is an infinite open strip in R2
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il
Recall that these infinite open strips form a subbase for the usual topology on R2.

Accordingly, the usual topology on R2 is the smallest topelogy on R? with respect
to which the projections =, and =, are continuous.

Solved Problems

CONTINUOUS FUNCTIONS

1.

Prove: Let f:X-Y be a constant function, say f(x) =p €Y, for every z &€ X.
Then f is continuous relative to any topology 7 on X and any topology T% on Y.
Solution:

We need to show that the inverse image of any T*-open subset of Y is a T-open subset of X.

Let H € T*. Now f(x) = p for all x = X, so
X if peEH
f-1 [H] { ' P

QO if peH
In either case f~1[H] is an open subset of X since X and @ belong to every topology T on X.

Prove: Let f:X~>Y be any function. If (Y, 9) is an indiscrete space, then
f:(X,T)~ (Y, 9) is continuous for any T. '
Solution: ( y .
We want to show that the inverse image of every open subset of Y is an open subset of X.
Since (Y, (7) is an indiscrete space, ¥ and @ are the only open subsets of Y. But
Y =X, gl =9
and X and © belong to any topology 7 on X. }{ence f is continuous for any 7.

Let U be the usual topology on the real line R and
let T be the upper limit topology on R which is gen-
erated by the open-closed intervals (a, b]. Further- 4
more, let f:R—> R be defined by

@) = T if =1
@ = Jeye >t

(See diagram on the right.)

(i) Show that f is not U-U continuous.
(i) Show that f is T-T continuous.

Solution:
(i) Let A = (—3,2). Then f~1[A] = (=8,1]. Now AEU but f1[A]&U, so f is not U-U
continuous. ’ .
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4.

5.

{(ii) Let A = (a,b]. Then:

(a, b] if a<bd=1
(a,1} if a<1<b=3
F1[4] _ (a, b—2] if a<<1<3<b
%) it 1=a<b=3
(1, b—2] if 1=a<3<b

(@a—2,b6—2] if 3=a<b

In each case, f~1[A] is a T-open set. Hence f is T-T continuous.

Suppose a function f:(X,T:)~>(Y,T:) is not T:-T: continuous. Show that if TF is
a topology on X coarser than T, and if T; is a topology on Y finer than T», i.e. T} C T,
and T, C T, then f is also not TF-TJ continuous.

Solution:
Since f:(X,T;) > (Y,T,) is not continuous,

3GE€ T, for which f~1[G] & T,

Now, T, CT, and T, C T2 Hence GE T, implies GE€T,, and f-1 [G] € T; implies
f~1[G] & T{. Thus f is not continuous with respect to 77 and T,.

Show that the identity function ¢: (X, T)-> (X,T*) is continuous if and only if T is
finer than T%, ie. T*CT.

Solution:
By definition, 7 is T-T* continuous if and only if

GeT* > 1[G ET

But i~1[G] = G, so iis T-T* continuous, if and only if

GET* > GET
that is, T* C T. :

Prove Theorem 7.2: Let f:(X,T)- (Y,T*), and let of be a subbase for the topology
T* on Y. Then f is continuous if and only if the inverse of every member of the sub-
base of is an open subset of X, i.e. f~![S] €T for every S € of.

Solution:
Suppose f~1[S] €T for every S € f. We want to show that f is continuous, ie. G € T*

implies f~1[G] € T. Let G € T*. By definition of subbase,
G =y, (Si1 NN Sini) where Sik € of

Hence, 1[G = f“‘[Ui(Silﬂ ﬂSini)] = Uif—l[Silﬂ ﬂSini]

= WS, 0 e 0 T[Sk, )
But S; €of implies f! [Sik] € T. Hence f~![G] €T since it is the union of finite intersections
of open sets. Accordingly, f is continuous.

On the other hand, if f is continuous then the inverse of all open sets, including the members
of ~f are open.

Let f be a function from a topological space X into the unit interval [0,1]. Show
that if f~![(a,1]] and f~*[[0,b)] are open subsets of X for all 0<a,b<1, then
f is continuous.

Solution:
Recall that the intervals (a,1] and [0, b) form a subbase for the unit interval I = [0,1]. Hence

f is continuous by the preceding problem, i.e. by Theorem 7.2.
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8. Prove: Let the functions f: X-Y and ¢g:Y~>Z be continuous. Then the compo-
sition function gof: X > Z is also continuous.
Solution:

Let G be an open subset of Z. Then g~ ![G] is open in Y since g is continuous. But f is also
continuous, so f~1[g~![G]] is open in X. Now

(goN~G) = j~llg7'[G])

Thus (g ©f)~1[G] is open in X for every open subset G of Z, or, g of is continuous.

9. Prove: Let {T:} be a collection of topologies on a set X. If a function f: X->Y is
continuous with respect to each T;, then f is continuous with respect to the intersection
topology 7 = N7
Solution:

Let G be an open subset of Y. Then, by hypothesis, f~1[G] belongs to each T;. Hence f~![G]
belongs to the intersection, i.e. f~1{G] € N;T; = T, and so f is continuous with respect to 7.

10. Prove Theorem 7.3: A function f: X —>Y is continuous if and only if the inverse
image of every closed subset of Y is a closed subset of X.

Solution:
Suppose f:X — Y is continuous, and let F be a closed subset of Y. Then F¢ is open, and so
f1[F¢] is open in X. But f~1[F¢] = (f~1[F])c; therefore f~1{F] is closed.

Conversely, assume F closed in Y implies f~! [F] closed in X. Let G be an open subset of Y.
Then G¢ is closed in Y, and so f~1[G¢] = (f~1[G])¢ is closed in X. Accordingly, f~1[G] is open and
therefore f is continuous.

11. Prove Theorem 7.4: A function f: X —>Y is continuous if and only if, for every

subset 4 C X, f[A] C f[A4].

Solution: o
Suppose f: X - Y is continuous. Now f[A] C f[A], so

A C jUflA]l c FrHA(A]

But f[A] is closed, and so f~![f[A]] is also closed; hence

A c A c f1fl4])

and therefore ' flA] c flA} = fIfLfIA]]]

Conversely, assume f[A] C f[A] for any A CX, and let F be a closed subset of Y. Set
A = f~1[F]; we wish to show that A is also closed or, equivalently, that A=A. Now

flA] = fIFFF)] c fTIF] = F = F

Hence A c fUflA]] c fUF] = A

But ACA, so A=A and f is continuous.

12. Prove: Let f:(X,T)->(Y,T*) be continuous. Then f,:(4,T,)~>(Y,T* is con-
tinuous, where A C X and f, is the restriction of f to A.

Solution:
Observe that f;'[G] = A n f~1{G] for any GCY.

Let GET* Then f~1[G] €T, and so A N f~1[G] € T, by definition of the induced topology.
Thus 4 N f1[{G] = f;'[G] € T4, so fa is continuous.
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CONTINUITY AT A POINT

13.

14.

15.

16.

17.

Under what conditions will a function f: XY not be continuous at a point p € X?

Solution:

A function f: X —>Y is continuous at p € X iff, for every open set H CY containing f(p),
f~1[H] is a superset of an open set containing p. Hence f is not continuous at p € X if there exists
at least one open set H C Y containing f(p) such that f—1 [H} does not contain an open set containing p.

Equivalently, f: X ->Y is not continuous at p € X iff 3 a neighborhood N of f(p) such that
f~1[N] is not a neighborhood of p.

Consider the following topology defined on X =

{a,b,c,d): .
aQ
T = {X’ @’ {(l}, {b}’ {a: b}; {b’ <, d}} b b
Let the function f:X = X be defined by the adjoin-
[ [+

ing diagram.
(i) Show that f is not continuous at c. d d
(ii) Show that f is continuous at d.

Solution:
(i) Observe that {a, b} is an open set containing f(¢) = b and that f~![{a,b}] = {a,c}. Hence f is
not continuous at ¢ since there exists no open set containing ¢ which is contained in {g, ¢}.

(ii) The only open sets containing f(d) = ¢ are {b,c,d} and X. Note that f~1[{b,¢,d}] = X and
f~1[X] = X. Hence f is continuous at d since the inverse of each open set containing f(d) is an
open set containing d.

Suppose a singleton set {p} is an open subset of a topological space X. Show that for
any topological space Y and any function f:X - Y, f is continuous at p € X.

Solution:
Iet HCY be an open set containing f(p). But

flpy€H = pefi[H > {picf1[H]

Hence f is continuous at p.

Prove: If f: X~ Y is continuous at p € X, then the restriction of f to a subset con-
taining p is also continuous at p. More precisely, let A be a subset of a topological
space (X,T) such that p€A CX, and let f,: A>Y denote the restriction of
f:X~->Y to A. Then if f is T-continuous at p, f, will be T,-continuous at p where
T, is the relative topology on A.

Solution:
Let HCY be an open set containing f(p). Since f is continuous at p,

3GET suchthat p€ GCf1[H]

A

and so PEANGCANJ[IH = f{'[H

But, by definition of the induced topology, A N G € T,; hence f, is T s-continuous at p.

Prove Theorem 7.5: Let X and Y be topological spaces. Then a function f: X->Y
is continuous if and only if it is continuous at every point p € X.
Solution:

Assume f is continuous, and let H C Y be an open set containing f(p). But then p €& f~1[H],
and f—![H] is open. Hence f is continuous at p.

Now suppose f is continuous at every point p € X, and let H C Y be open. For every p € f~![H],
there exists an open set G, C X such that p € G, C f~![H]. Hence f1[H] = U{G,: pEfL[H]}
a union of open sets. Accordingly, f~![H] is open and so f is continuous.
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18. Prove Proposition 7.6: If a function f:X->Y is continuous at p € X, then it is
sequentially continuous at p, i.e. a.=>p > f(a.) = f(p).

Solution:
We need to show that any neighborhood N of f(p) contains almost all the terms of the sequence

(flay), flag), ...

Let N be a neighborhood of f(p). By hypothesis, f is continuous at p; hence M = f~1[N] is a
neighborhood of p. If the sequence (a,) converges to p, then M contains almost all the terms of the
sequence (da,, ds, ...), i.e. a, € M for almost all n € N. But

e, €M > fla,) € f[M] = f[f"1[N]] = N

Hence f(a,) € N for almost all » € N, and so the sequence (f(a,)) converges to f(p). Accordingly, f is
sequentially continuous at p.

OPEN AND CLOSED FUNCTIONS, HOMEOMORPHISMS

19. Give an example of a real function f: R-> R such that f is continuous and closed, but
not open.
Solution: j

Let f be a constant function, say f(x) = 1 for all x € R. Then f{A] = {1} for any AcC R. Hence
f is a closed function and is not an open function. Furthermore, f is continuous.

20. Let the real function f: R— R be defined by f(x) = 22. Show that f is not open.
Solution:
Let A = (—1,1), an open set. Note that f[A] = [0,1), which is not open; hence f is not an open

function.
1

21. Let B be a base for a topological space X. Show that if f: X —>Y has the property
that f[B] is open for every B € B, then f is an open function.
Solution: '
We want to show that the image of every open subset of X is open in Y. Let G C X be open. By
definition of a base, G = U;B; where B,€ B. Now [f[G] = f[u;B;j] = U,f[B]. By hypothesis,
each f [B;] is open in Y and so f[G], a union of open sets, is also open in Y; hence f is an open function.

22. Show that the closed interval A = [a,b] is homeomorphic to the closed unit interval
I=10,1].
Solution:

The linear function f:I-> A defined by f(x) = (b —a)x + a is one-one, onto and bicontinuous.
Hence f is a homeomorphism.

23. Show that area is not a topological property.

Solution:

The open disc D = {(,6):r < 1} with radius 1 is homeomorphic to the open disc
D* = {(r,6): r <2} with radius 2. In fact, the function f:D - D* defined by f((r,6) = (2r,6)
is a homeomorphism. Here (r, §) denotes the polar coordinates of a point in the plane R2

24. Let f:(X,T)~> (Y,T*) be one-one and open, let A C X, and let f[A] = B. Show that
the function f£,:(4,T,) ~ (B, T5%) is also one-one and open. Here f, denotes the
restriction of f to A, and T, and T % are the relative topologies.

Solution:
If f is one-one, then every restriction of f is also one-one; hence we need onl§ show that f, is open.
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Let H C A be T -open. Then by definition of the relative topology, H = ANG where G € T.
Since f is one-one, f[A N G] = f[A] n f[G], and so

falH} = flH] = flAnG] = flA] 0 flG] = BnflG]

Since f is open and G € T, f[G] € T*. Thus B n f[G] € ‘Tz and so f,: (A, Ty~ (B,T;’;) is open.

25. Let f:(X,T)=(Y,T*) be a homeomorphism and let (4, T,) be any subspace of (X, T).

26.

27.

Show that f,:(4,T,)~> (B,T;) is also a homeomorphism where f, is the restriction
of f to A, f[A] =B, and T} is the relative topology on B.

Solution:

Since f is one-one and onto, f4: A —> B, where B = f[A], is also one-one and onto. Hence we
need only show that f, is bicontinuous, i.e. open and continuous. By the preceding problem f, is open.
Furthermore, the restr\iction of any continuous function is also continuous; hence f,: (A, T, )~ (B,‘T;;)
is a homeomorphism,

-

Show that any interval A = (a,b) is connected as a subspace of the real line R. (See
Example 4.3 for the definition of connectedness.)
Solution:

Suppose A is not connected. Then 3 open sets G,H C R such that AN G and A n H are non-
empty, disjoint and satisfy (A N G) U (4 N H) = A. Define the function f: A >R by

1 if e€AnG
0 if x€ANnH

Then f is continuous, for the inverse of any open set is either AN G, An H, ® or A and so is open.
But then the intermediate value theorem applies, so Ixy; € A for which flxy) = % But this is
impossible, so A is connected.

f(ax)

-

Show that the following subsets of the plane R? are not homeomorphic, where the
topologies are the relativized usual topologies:

X = {x: d(x, po) =1 or d(x,lh) =1; po=10,-1), p1 =0, 1)}

Y = {z:d{x,p)=1, p=(0,5))

Solution:
Suppose there exists a homeomorphism f: X - Y; let ¢ = f(0), X* = X\ {0}, and Y* =Y \ {¢}.
Then f:X*->Y* is also a homeomorphism with respect to the relative topologies (see Problem 25).

We show that Y* is connected. For if g = (56 + cos 4y, sin 6y), then the function
g:(0,27) > Y* definedby g(8) = (5 cos (6y+ 6), sin(6,+ 6))
is a homeomorphism. But the interval (0,27) is connected, so Y* is also connected.
On the other hand, X* is not connected; for the sets
G = {a,y): x> 0} and ‘H = {(x,¥): x <0}

are both open in R2, so G* = X*NG and H* = X*NH are open subsets of X*. Furthermore,
G* and H* are non-empty, disjoint and satisfy G*UH* = X*. Since connectedness is a topological
property, X* is not homeomorphic to Y* and therefore there can exist no such function f.
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TOPOLOGIES INDUCED BY FUNCTIONS

29.

30.

28 Let {fi:X~ (Y, T:)} be a collection of constant functions from an arbitrary set X

into the topological spaces (Y, T:). Determine the coarsest topology on X with respect
to which the functions f; are continuous.

Solution:

Recall (see Problem 1) that a constant function f: X —>Y is continuous with respect to every
topology on X. Hence all the constant funections f; are continuous with respect to the indiscrete
topology {X, @} on-X. Since the indiscrete topology {X, @} on X is the coarsest topology on X, it is
also the coarsest topology on X with respect to which the constant functions are continuous.

Consider the following topology on Y = {a,b,¢,d):

T = {Y, 9, {¢}, {a,b,¢c}, {c,d}}
Let X ={1,2,3,4} \ﬁind let the functions f: X > (Y,T) and ¢g: X > (Y,T) be defined by

g

Find the defining subbase of for the topology T# on X induced by f and g, i.e. the
coarsest topology with respect to which f and g are continuous.

S

Solution: oo
Recall that o = {f1H:HeT}u{g l[H:HET}
that is, of consists of the inverses under f and g of the open subsets of Y. Hence

o = {X, 0 {124} {8}, {2,3}, {1,2,8}, {2,3,4}}

Let T be the topology on the real line R generated by the closed-open intervals [a, D), and
let T* be the topology on R induced by the collection of all linear functions

f:R->(R,T) defined by f(x) =axr+b, a,bER
Show thaf T* is the discrete topology on R.

Solution:
We want to show that, for every p € R, the singleton set {p} is a T*-open set. Consider the
T-open set A = [1,2) and the functions f:R->(R,T) and ¢:R- (R, T) defined by
’ fo) = z—p+1 and g) = —z—p+1
and illustrated below.
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31.

Now A € T implies

f~HA] = [p,p+1) and g 1[A] = (p—1,p|
belong to the defining subbase ~f for the topology T* Hence the intersection
p-—Lplnpp+l) = {p}

belongs to T#, and so T* is the discrete topology on R.

Prove Theorem 7.9: Let {f:X - (Y,T,)} be a collection of functions defined on an
arbitrary non-empty set X, let

| S = U 'H :HeT)
and let T be the topology on X generated by /. Then:

(i)  All the functions f, are continuous relative to 7.

(i) If T%is the intersection of all topologies on X with respect to which the functions
f, are continuous, then T = T*,

(iii) T is the coarsest topology on X with respect to which the functions f, are continuous.

(iv) < is a’'subbase for 7.

Solution:

(1) For any function f;:(X,T)-> (Y, T), if HET,; then f;l [Hl € of ¢ T. Hence all the f;
are continuous with respect to 7.

(i) By Problem 9, all the functions f; are also continuous with respect to T+; hence of C T* and,
since T is the topology generated by of, T C T*. On the other hand, T is one of the topologies
with respect to which the f; are continuous; hence T% ¢ T and so T = T*.

(iii) Follows from (ii).

(iv) Follows from the fact that any class of sets is a subbase of the topology it generates.

Supplementary Problems

CONTINUOUS FUNCTIONS

32.

33.

34.

35.

36.

Prove that f: X —>Y is continuous if and only if f 1[4°] C (f~1[A])° for every 4 C X.

Let X and Y be topological spaces with X = FUF. Let f:E-Y and g:F - Y, with f=¢ on
ENF, be continuous with respect to the relative topologies. Note that h = fUg is a function from
X into Y. (i) Show, by an example, that & need not be continuous. (ii) Prove: If E and F are both
open, then h is continuous. (iii) Prove: If E and F are both closed, then % is continuous.

Let 7: X > Y be continuous. Show that f:X - f[X] is also continuous where f[X] has the relative
topology.

Let X be a topological space and let X, X-> R be the characteristic function for some subset A
of X. Show that X, is continuous at p € X, if and only if p is not an element of the boundary of A.
(Recall XA(x) =1 if x €A, and XA(x) =0 if x € Ac)

Consider the real line R with the usual topology. Show that if every function f: X — R is continuous,
then X is a discrete space.

OPEN AND CLOSED FUNCTIONS

317.

Let f:(X,T)—->(Y,T*). Prove the following:
(i)  f is closed if and only if fm C f[/i] for every A C X;
(ii)  f is open if and only if f[A°] C (f[A])° for every A C X.
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38. Show that the function f: (0, ») - [—1,1] defined by f(x) = sin (1/x) is continuous, but neither open
nor closed, where (0, =) and [—1,1] have the relativized usual topologies.

39. Prove: Let f:(X,T)— (Y, T*) be open and onto, and let B be a base for T. Then {f[B]:B € B}
is a base for T*.

40. Give an example of a function f: X —>Y and a subset A C X such that f is open but f,, the
restriction of f to A, is not open.

HOMEOMORPHISMS, TOPOLOGICAL PROPERTIES

41. Let f:X—->Y and ¢g:Y > Z be continuous. Show that if gof:X — Z is a homeomorphism, then
g one-one (or f onto) implies that f and g are homeomorphisms.

42. Prove that each of the following is a topological property: (i) accumulation point, (ii) interior,
(iii) boundary, (iv) density, and (v) neighborhood.

43. Prove: Let f: X ~—>Y be a homeomorphism and let A C X have the property that A n A’ = D.
Then f[A] N (f]A])’ = @. (A subset A C X having the property AN A’ = @ is called isolated. The
property of being isolated is thus a topological property.)

TOPOLOGIES INDUCED BY FUNCTIONS

44. Consider the following topology on Y = {a,b,¢,d}: T = {Y, @, {a, b}, {¢,d}}. Let X = {1,2,3,4,5}
andlet f: X~->Y and g: XY be as follows:

Fo={1,a),2a),38,b,4,b, 5 d}, g {d,¢), (2,0), 3,d), 4,a), 5,0}
Find the defining subbase for the topology on X induced by f and g.

45. Let f:X - (Y,T*). Show that if ~f is the defining subbase for the topology T induced by the one
function f, then ~f = T.

46. Prove: Let {f;: X > (Y, T;)} be a collection of functions defined on an arbitrary set X, and let of; be
a subbase for the topology T, on Y;. Then the class of* = U,;{f; '[S]: S € of;} has the following
properties: (i) ~/* is a subclass of the defining subbase of of the topology T on X induced by the
functions f;; (ii) ~f* is also a subbase for T.

47. Show that the coarsest topology on the real line R with respect to which the linear functions
f:R=>R,U defined by flx) = ax+b, a,bER

are continuous is also the usual topology U.

Answers to Supplementary Problems

33. (i) Let X = (0,2) and let¢ E = (0,1) and F = [1,2). Then f(x) =1 and g(x) =2 are each con-
tinuous, but h = fUg is not continuous. )

4. {X, 9, {1,2,3,4}, {5}, {2,4}, {1,3,5}}

45. Hint. Show that of is a topology.



Chapter 8

Metric and Normed Spaces

METRICS

Let X be a non-empty set. A real-valued function d defined on X X X, i.e. ordered pairs
of elements in X, is called a metric or distance function on X iff it satisfies, for every
a,b,c € X, the following axioms:

[M:] d(a,d)=0 and d(a,a)=0.
IM:] (Symmetry) d(a,d) = d(D,a).
[M:] (Triangle Inequality) d(e,c) = d(a,b) + d(b,c).
[Ms] If o«-+0b, then d(e,b) > 0.
The real number d(a, b) is called the distance from a to b.
Observe that [M] states that the distance from any point to another is never negative,
and that the distance from a point to itself is zero. The axiom [M.] states that the

distance from a point a to a point b is the same as the distance from b to a; hence we speak
of the distance between a and b.

[M;] is called the Triangle Inequality because if a, b b
and ¢ are points in the plane R? as illustrated on the right,
then [Ms;] states that the length d(a, ¢) of one side of the oy )
triangle is less than or equal to the sum d(a, b) + d(b, ¢) g‘ N4

of the lengths of the other two sides of the triangle. The
last axiom [M.] states that the distance between two dis- a
tinct points is positive.

—e ¢

d(a, ¢)

We now give some examples of metrics. That they actually satisfy the required axioms
will be verified later.

Example 1.1:  The function d defined by d(a,b) = |a—b|, where a and b are real numbers, is
a metric and called the usual metric on the real line R. Furthermore, the function
d defined by
dp,q) = \/(‘h —b)? + (ag—by)?

where p = (a;,a5) and ¢q = (by, by) are points in the plane R2, is a metric and
called the usual metric on R2. We shall assume these metrics on R and R2, respec-
tively, unless otherwise specified. )

Example 1.2:  Let X be any non-empty set and let d be the function defined by
if a=0b

_Jo
R PR S

Then d is a metric on X. This distance function d is usually called the trivial
metric on X.

Example 13:  Let ([0, 1] denote the class of continuous functions on the closed unit interval ]0,1].
A metric is defined on the class ([0,1] as follows:

1
dfe) = | U@ - o) de
o

111
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Here d(f,g) is precisely the area of the region which lies between the functions
as illustrated below.

o

a*(f,9)

-

d(f, g) is shaded

Example 14: Again let C[O 1] denote the collection of contmuous functions on [0, 1],  Another
metric is defined on ([0, 1] as follows:
- a*(f,9) = sup{fx) —g(@)|: x €[0,1]}
' “Here d*(f, g) is precisely the greatest vertical gap between the functions as illus-
— trated above.

i

Example 1.5: Let p = {#,,a,) and ¢ = (b, by) be arbitrary points in the plane R?, i.e. ordered
pairs of real numbers. The functions d; and d, defined by

di(p,q) = max (Ja; — by, |ag — b)), do(p, @) = |ay— by ‘plaz— byl
are distinct metrics on R2. : :
A function p satisfying [Mi], [M:] and [Ms], i.e. not necessarily [Mi], is called a
pseudometric. Many of the results-for metrics are also true for pseudometrics.

DISTANCE BETWEEN SETS, DIAMETERS
Let d be a metric on a set X. Tﬁ’e distance between a point p € X and a non-empty
subset A of X is denoted and defined by
“d(p,A) = inf{d(p,a): a € A} %
i.e. the greatest lower bound of the distances from p to points of A. The distance between}
two non-empty subsets A and B of X is denoted and defined by
~ d(4,B) = 1nf{d(a b):a €A, bEB)}
i.e. the greatest lower bound of the distances from points in A to points in B,
The diameter of a non-empty subset 4 of X is denoted and defined by
d(A) = sup{de,a’): a,a €A}
i.e. the least upper bound of the distances between points in 4. If ‘k\the diameter of A is

finite, i.e. d(A) < o, then A is said-to be bounded; if not, i.e. d(A) = =, then A is said to
be unbounded.

Example 2.1:  Let d be the trivial metric on a non-empty set X. Then for p €X and A,Bc X,

{1 if pgA {1 if ANB=0 -

d(p, A) d(A, B)

0 if p€A’ 0 if ANB=0Q

Example 2.2:  Consider the following intervals on the real line R: A = [0,1), B = (1, 2].

\ If d denotes the usual metric on R, then d(4,B) = 0. On the other hand,
! if d* denotes the trivial metric on R, then d*(A,B) =1 since A and B are disjoint.

The next proposition clearly follows from the above definitions:

Proposition 8.1: Let A and B be non-empty subsets of X and let p € X. Then:
) d{p,A), d(A,B) and d(A4) are non-negative real numbers.

%

(ii) If p€ A, then d(p,4) = 0.
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(if\i) If AN B is non-empty, then d(A,B) = 0.
(iv) If A is finite, then d(4) < =, i.e. A is bounded.

Observe that the-converses of (ii), (iii) and (iv) are not true.

For the empty set ¢, the following conventions are adopted:

OPEN SPHERES

dp, Q) ==, dA,Q) =dP,A) ==, dP)=—=

Let d be a metric on a set X.. For any point p € X and any real number § > 0, we shall
let Sa(p, 8) or simply S(p, 8) denote the set of points within a distance of § from p:

S(p,8) = {z:d(p,x)<8)

We call S(p, §) the open sphere, or\mgly sphere, with center p and radius §. It is also

called a spherical nezghborhoad sor ball. \
3.1 * Consider the point p = (0,0) in th \Qlane R2,

Example 3.1:

Example 3.2:

-

Example 3.3:

Example 34:

and the real number § =1. If d is the usual
metric on R?2, then’ Su(p,s) is the open unit
disc illustrated on the right. On the other
hand, if d; and d, are the metrics on R2
which are defined in Example 1.5, then
Sdl(p, 8) and Sd2(p, §8) are the subsets of R2

which are illustrated below.

~&

Sdl(p, 3) is shaded Sdz(p, 8) 1s shaded

Let d denote the trivial metric on some set X, and let p € X. Recall that the
distance between p and every other point in X is exactly 1. Hence

X if s>1
S(p,8) = {{p} i 5=1

Let d be the usual metric on the real line R, i.e. d(a,b) = |a —b|. Then the open
sphere S(p, §) is the open interval (p — §, p + §).

Let d be the metric on the collection ([0,1] of all continuous functions on {0,1]

defined by
d(f,9) = sup{lf(x) — g(x)|: 2 €[0,1]}

(see Example 1.4). Given § >0 and a function f, &€ ([0,1], then the€ open
sphere S(fy, 8) consists of all continuous functions g which lie in the area bounded
by fo— 8 and fo+ 8, as indicated in the diagram below:
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One important/ property of open spheres in metric
spaces is given )qthe next lemma. ¢

Lemma 82: Let S be an open sphere with center » and
radius’3 8\ Then for every point ¢ €S there
exists an open sphere T centered at ¢ such
that T is contained in S. (See the adjacent
Venn diagram.)

METRIC TOPOLOGIES, METRIC SPACES

In general, the intersection of two open spheres need not be an open sphere. However,
we will show that every point in the intersection of two open spheres does belong to an -
open sphere contained in the 1ntersectlon Namely,

Lemma 83: Let S; and S: be open spheres and let p € S; N Ss. Then there exists an
' open sp};xere Sy with center p such that p €S, € S;1 N S..

Hence by virtue of Theorem 6.1-we have -

Theorem 8.4: The class of open spheres in a set X with metric d is a base for a topology
on X.

Definition: | Let d be a metric on a non-empty set X. The topology 7 on X generated by

the class of open spheres in X is called the metric topology (or, the topology
induced by the metric d). Furthermore, the set X together with the topology
T 1nduced by the metric d is called a metric space and is denoted by (X, d).

Thus a metric space is a topological space in which the topology is induced by a metric.
Accordingly, all concepts defined for topological spaces are also defined for metric spaces.
For example, we can speak about open sets, closed sets, neighborhoods, accumulation
points, closure, etc., for metric spaces.

Example 41: If d is the usual metric on the real line R, i.e. d(a,b) = |a—b], then the open
spheres in R are precisely the finite open intervals. Hence the usual metric on R
induces the usual topology on R. Similarly, the usual metric on the plane R2
induces the-usual topology on R2.

Example 4.2: Let d be the trivial metric on some set X. Note that for any p € X, S(p, 1) = {p}.
~ Hence every singleton set is open-and so every set is open. In other words, the
¢ trivial metric on X induces the discrete topology on X.

Example 4.3: Let (X, d) be a metric space and let Y be a non-empty subset of X. The restriction
of the function d to the points in the subset Y, also denoted by d, is a metric on Y.
We call (Y,d) a metric subspace of (X,d). In fact, (Y,d) is a subspace of (X, d),
i.e. has the relative topology.

Frequently the same symbol, say X, is used to denote both a metric space and the
underlying set on Wthh the metric is defined.

PROPERTIES OF METRIC TOPOLOGIES

~ Since the topology of a metric space X is derived from a metric, one would correctly
expect that the topological properties of X are related to the distance properties of X.
For example,

Theorem 8.5: Let p be a point in a metric space X. Then the countable class of open
‘ spheres, {S(p, 1}, Sp, %), S(p, %), ...} is a local base at p.

Theorem 8.6: The closure A of a subset A of a metric space X is the set of points whose
distance from A is zero, i.e. A = {x:d(x,A)=0}.
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Observe that ax1om [M4] implies that the only point with zero distance from a singleton
set {p} is the point‘p 1tse1f H.e.,

N

j d(z, {p}) = 0 implies z = p
Hence by the preéeding theorem, singleton sets {p} in a metric space are closed. Accord-

ingly, finite unions of singleton sets, i.e. finite sets, are also closed. We state this result
formally:

Coroliary 8.7: Ina metric space X all finite sets are closed.

gl us we see that a’ rnetrlc space X possesses certain topological properties which do
not old for topologlcal spaces in general.

Ne t follows an- lmportant “separatlon property of metric spaces.

Theorem ‘8.8 (Separatmn Axiom): Let A and B be closed disjoint subsets of a metric
space X. Then there exist disjoint open sets G and H
S Y such that ACG and BC H. (See Venn diagram

¢ ‘ below.)

”/

One mlght suspect from the above theorem that the distance between two disjoint
closed sets is greater than zero. The next example shows that this is not true.

Example 5.1: . ,Gpnsider the following sets in the plane R? which are illustrated below:
A = @y :ay=-1,2<0}, B = {(xy:a2y=1 >0}

Observe that A and B are both closed and disjoint. However, d(A,B) = 0.

EQUIVALENT METRICS

Two metrics d and d* on a set X are said to be equivalent iff they induce the same
topology on X, i.e. iff the d-open spheres and the d*-open spheres in X are bases for the
same topology on X.

Example 6.1. The usual metric d and the metrics dy and dy, defined in Example 1.5, all induce
the usual topology on the plane R2, since the class of open spheres of each metric
(illustrated below) is a base for the usual topology on R2.

N TEEa

L .

L 4 eetad
Sd(p) 8) Sdl(pr 8) Sdz(pr 8)

Hence the metries are equivalent.
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Example 6.2:  Consider the metric d on a non-empty set X defined by
2 if a#b
d{a, b
(a,) {0 if a=2b%
Observe that su(p,1) = {p}; so singleton sets are open and d induces the discrete
topology on X. Accordingly, d is equivalent to the trivial metric on X which also
induces the discrete topology.

The next proposition clearly follows from the above definition.

Proposition 8.9: The relation “d is equivalent to d*” is an equivalence relation in any
collection of metrics on a set X.

METRIZATION PROBLEM

Given any topological space (X, T), it is natural to ask whether or not there exists a
metric d on X which induces the topology T. The topological space (X, T) is said to be
metrizable if such a metric exists.

Example 7.1: Every discrete space (X, .D)) is metrizable since the trivial metric on X induces
the discrete topology 2.

Example 7.2:  Consider the topological space (R, U), the real line R with the usual topology U.
Observe that (R,U) is metrizable since the usual metric on R induces the usual
topology on R. Similarly, the plane R2 with the usual topology is metrizable.

Example 7.3: An indiscrete space (X, ) where X consists of more than one point is not metriz-
able. For X and () are the only closed sets in an indiscrete space (X, (ﬁ). But by
Corollary 8.7 all finite sets in a metric space are closed. Hence X and () cannot
be the only closed sets in a topology on X induced by a metric. Accordingly,
(X, ) is not metrizable.

The metrization problem in topology consists of finding necessary and sufficient topo-
logical conditions for a topological space to be metrizable. An important partial solution
to this problem was given in 1924 by Urysohn as a result of his celebrated Urysohn’s
Lemma. It was not until 1950 that a complete solution to this problem was given
independently by a number of mathematicians. We will prove Urysohn’s results later.
The complete solution to the metrization problem is beyond the scope of this text and the
reader is referred to the classical text of Kelley, General Topology.

ISOMETRIC METRIC SPACES

A metric space (X, d) is isometric to a metric space (Y,e¢) iff there exists a one-one,
onto function f:X - Y which preserves distances, i.e. for all p,q € X,

dp,q) = elf(p), [(q))
Observe that the relation “(X,d) is isometric to (Y,e)” is an equivalence relation in any
collection of metric spaces. Furthermore,
Theorem 8.10: If the metric space (X, d) is isometric to (Y, €), then (X, d) is also homeo-
morphic to (Y, e).

The next example shows that the converse of the above theorem is not true, i.e. two
metric spaces can be homeomorphic but not isometric.

Example 8.1:  Let d be the trivial metric on a set X and let ¢ be the metric on a set Y defined by
2 i #* b
cap = {2 e
10 if a=b
Assume that X and Y have the same cardinality greater than one. Then (X,d)
and (Y, e) are not isometric since distances between points in each space are differ-
ent. But both d and e induce the discrete topology, and two discrete spaces with
the same cardinality are homeomorphic; so (X,d) and (Y,e) are homeomorphic.
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EUCLIDEAN m-SPACE

Recall that R™ denotes the product set of m copies of the set R of real numbers, i.e.
consists of all m-tuples (a1, s, ...,an) of real numbers. The function d defined by

dp,q9) = V(—b)>+ - + (am—bn)® = ,{ﬁ(ai—bi)z = ﬂ/; |a; — D2

where p = (@4, ...,a») and g = (by, ..., bn), is a metric, called the Euclidean metric on
R™.  We assume this metric on R™ unless otherwise specified. The metric space R™ with
the Euclidean metric is called Euclidean m-space and will also be denoted by E™.

Theorem 8.11: Euclidean m-space is a metric space.

Observe that Euclidean 1-space is precisely the real line R with the usual metric, and
Euclidean 2-space is the plane R? with the usual metric.

HILBERT SPACE
The class of all infinite real sequences "
(@1, @z, ...) such that Y a) < =
n=1

i.e. such that the series a? + a2+ -+ converges, is denoted by R”.

Example 9.1: Consider the sequences
p = (,1,1, ... and g =85LbLE 00

Since 12+ 12+ -+ does not converge, p is not a point in R”. On the other
hand, the series 12+ (1)2+ (1)2 + --- does converge; hence ¢ is a point in R”.

Now let » = (a.) and q = (b,) belong to R®. The function d defined by

dp,q) = . / i o — Duf?

is a metric and called the l,-metric on R*. We assume this metric on R” unless otherwise
specified. The metric space consisting of R” with the l;-metric is called Hilbert space or
lr-space and will also be denoted by H. We formally state:

Theorem 8.12: Hilbert space (or l:-space) is a metric space.

Example 9.2: Let H,, denote the subspace of Hilbert space H consisting of all sequences of

the form @y, @2y oy G s Ay 0, 0,0, .. )

Observe that H,, is isometric and hence homeomorphic to Euclidean m-space by

the natural identification
(@yy « ooy By € {0y, ooy 0y, 0,0, .00

Hilbert space exhibits two phenomena (not occurring in Euclidean m-space) described
in the examples below:
Example 9.3: Consider the sequence (p,) of points in Hilbert space where pg = (@, tor, ...) is
defined by a; = 8;; ie. ay =1 if i =k, and ay = 0 if i+ k. Observe, as illus-
trated below, that the projection (z;(p,)) of (p,). into each coordinate space con-

verges to zero:
P = (150’0:0)

)
Py = <0y 1! 0! 0’ . >
Ps (090v1’01--->
D4 0,0,0,1, ...

Il

Il

LI
0,0,0,0,...)

But the sequence (p,) does not converge to 0, since d(py,0) =1 for every k € N;
in fact, (p,) has no convergent subsequence.

0 =

o~
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Example 94: Let H* denote the proper subspace of H which consists of all points in H
whose first coordinate is zero. Observe that the function f:H — H* defined by
fl(ay, ay, ...)) = (0,aq,ay, ...) is one-one, onto and preserves distances. Hence
Hilbert space is isometric to a proper subspace of itself.

CONVERGENCE AND CONTINUITY IN METRIC SPACES
The following definitions of convergence and continuity in metric spaces are frequently
used. Observe their similarity to the usual ¢ — 8§ definitions.
Definition: The sequence (ai, s, ...) of points in a metric space (X,d) converges to
b € X if for every « > 0 there exists a positive integer no such that
n >mne implies d(an, b) <e
Definition: Let (X, d) and (Y, d*) be metric spaces. A function f from X into Y is con-
tinuous at p € X if for every ¢ > 0 there exists a § > 0 such that
d(p,x) <8 implies d*(f(p), f(x)) <e

The above definitions are equivalent to the definitions of convergence and continuity
(in the metric topology) which were given for topological spaces in general.

NORMED SPACES

Let V be a real linear vector space, that is, V under an operation of vector addition
and of scalar multiplication by real numbers satisfies the axioms [V:i], [V:] and [Vs] of
Chapter 2, Page 22. A function which assigns to each vector v € V the real number |jv||
is a norm on V iff it satisfies, for all »,w € V and k € R, the following axioms:

[N:] |jv|[=0 and [jv||=0 iff »=0.
IN:]1 o +w]] = [Pl + |jwi|
INs] - [lko]] = [&] [l

A linear space V together with a norm is called a normed linear vector space or 51mply
a normed space. The real number ||v|| is called the norm of the vector v.

Theorem 8.13: Let V be a normed space. The function d defined by
dv,w) = [jv—w||
where v,w €V, is a metric, called the induced metric on V.

Thus every normed space with the induced metric is a metric space and hence is also
a topological space.
Example 10.1: The product set R™ is a linear vector space with addition defined by
(@ oe ey @) + by, by = ag by, o, a T by
and scalar multiplication defined by

kiag, ...,an = (kay, ..., kay)

The function on R™ defined by

Il (@1, coapll = \’a% +oee a;zn = \Ea% = \2 Iailz

is a norm and called the Euclidean norm on R™. Note that the Euclidean norm
on R™ induces the Euclidean metric on R™. If p = (a,ay, a3 is a point in R3,
then ||p|| corresponds precisely to the “length” of the arrow (or vector) from the
origin to the point p as illustrated below.
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< S~

x
g

Exampk? ‘i?).z: The following t':wo functions are also norms on the linear space R™:
ey, - am) |l = max(lay, |agl, ..., lan])
[y, - amd | = dag] + Jag] + -+ + |ayl
Let (X, R) be the collection of all real-valued functions on a non-empty set X. Recall

(see Theorem 2. §j that F(X,R) is a linear space with vector addition and scalar multipli-
cation defined as follows: - - J

F+o)@) = f@) +gle) and  (kH() = ki)

We shall frequently want to study classes of functions with certain other properties such
as boundedness, continuity, etc. We shall use the following result from linear algebra:

Proposmon 8.14: 7 Let c4(X,R) be a non-empty’ subcollectlon of F(X,R) satisfying the fol-
, / lowing two properties:

1/

- - (i) If f,g €cA(X,R), then the sum f+g € A(X,R).
C (ii) If f€A(X,R) and k € R, then the scalar multiple
kf € cA(X,R).
¢ Then<4 (X, R) is, itself, a linear vector space.
¢

Example 10.3: The class ([0,1] of all continuous real functions on the interval I =[0,1] is a
lingar space since the sum and scalar multiples of continuous functions are con-
__tinfuous.  The function on ([0,1] defined by

o= i)

0
is a norm which induces the metric on ([0,1] defined in Example 1.3.

Example 10.4: The function on the linear space ( [0,1] defined by
| , Il = sup {f@) : = €[0,1]}

is also a norm. This norm induces the metric on ([0,1] defined in Example 1.4.

Example 10.5: Let B(X, R) denote the subcollection of F(X,R) consisting of all bounded functions
f: X—>R. Then B(X,R) is a linear space since the sum and scalar multiples of
bounded functions are also bounded. The function on B(X,R) defined by

I/l = sup{lf(x): z € X}

is a norm. 7

Example 10.6: We show later that the class R” of all real sequences (a,) such that = |a,2 < «
is a linear space. The function on R” defined by

lanll = f2 eyl

is a norm and called the l;-norm on R™. Observe that this norm induces the
l;-metric in Hilbert space.
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Solved Problems
METRICS

1. Show that in the definition of a metric the axiom |Ms] can be replaced by the following
{weaker) axiom:
[M;] If a,b,c € X are distinct then d(a,c) = d(a,b) + d(b,c).
Solution:
Suppose a = b. Then
d(a,¢) = d(b,¢) = d(b,b) + d(b,e) = d(a,b) + d(b,c)
If b = ¢, the argument is similar. Lastly, suppose a = ¢; then
d(a,¢) = 0 = d(a,b) + d(b,¢)
Thus the Triangle Inequality follows from [M;] if the points «, b and ¢ are not all distinct.

2. Show that the trivial metric on a set X is a metric, i.e. that the function d defined by

1 if a#b
iy = |

@9 = 10 ira=»p
satisfies [M], [M:], [M;] and [Ms].

Solution:
Let a,b€ X. Then d(a,b)=1 or d(a,b)=0. In either case, d(a,b)=0. Also, if a=1b
then, by definition of d, d(a,d) = 0. Hence d satisfies [M;].

Let a,b€X. If a+#b, then b a. Hence d(a,b) =1 and d(b,a) = 1. Accordingly, d(a,b) =
d(b,a). On the other hand, if « = b then b = a and therefore d(a,b) = 0 = d(b,a). Hence d satisfies
[M,]. -

Now let a,b,¢ € X be distinet points. Then d(a,¢) =1, d(a,b) =1 and d(b,¢) =1. Hence

and d satisfies [M;‘]. d@,0) = 1 = 141 = da,b) +db,e)

Lastly, let a,6 € X and a* b. Then d(a,b) =1. Hence d(a,b)#* 0, and d satisfies [M,].

3. Let d be a metric on a non-empty set X. Show that the function e defined by
e{(a,b) = min(1,d(a,b))
where a,b € X, is also a metric on X.

Solution:
Let a,b € X. Since d is a metric, d(a, b) is non-negative. Hence e(a, b), which is either 1 or
d(a, b), is also non-negative. Furthermore, if ¢« = b then

e(a,b) = min(1,d(a,b)) = min(1,0) = 0
Hence e satisfies [M;].

Now let a,b € X. By definition e(a,b) = d(a,b) or e(a,b) = 1. Suppose e(a,b) = d(a,bd);
then d(a,b) < 1. Since d is a metric, d(b,a) = d(a,d) < 1. Consequently,
e(b,a) = d(b,a) = d(a,b) = ela,b)
On the other hand, suppose e(a,b) = 1; then d(a,b) = 1. Hence d(b,a) = d(a,b) = 1. Consequently,

e(b,a) = 1 = efa,b)
In either case e satisfies [M].

Now let a,b,c € X. We want to prove the Triangle Inequality
e(a,c) = ela,b) + e(d,c)
Observe that e(a,¢) = min(1, d(a,¢)) = 1. Hence if e(a,b) = 1 or e(b,¢) = 1, the Triangle
Inequality holds. But if both e(a,b) < 1 and e(b,¢) < 1, then e(a,b) = d(a,b) and e(b,¢c) = d(b,c).
Accordingly, 0 min(l, d(a,¢) = da,0) = d(a,b) + d(b,e) = e(a,b) + e(b, )
Thus in all cases the Triangle Inequality holds. Hance e satisfies [M,].

Finally, let a¢,b€ X and a>*b. Then dfa, b) # 0. Hence e(a,b) = min (1, d(a,bd)) is also
not zero. Thus e satisfies [M,]. o -
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4.

Let d be a metric on a non-empty set X. Show that the function e defined by

_ _d(Db)
A0 = T a0

where a,b € X, is also a metric on X.

Solution:
Since d is a metric, e clearly satisfies [M;], [M,] and [My]. Hence we only need to show that
e satisfies [M;], the Triangle Inequality. Let a,b,c € X; then

4, b) _ _db)
1 + d(a,b) + d(b,e) ~ 1 + d(a,b) e(a, b)
d(b, ) _ _dbo
and 1 + d(a,b) + db,e) 1+ d(b,0 e(b, ¢)

Since d is a metrie, d(a,¢) = d(a,b) + d(b,¢). Hence

d(a, ¢) _ d(a,b) + d(b,¢)
e(a, o) 1+ dla,e) 1+ dla,b) + dib,0)

1

- d(a, b) n
T 1+ da,b) + dib,0)

d(b, ¢)
1 + d(a,b) + d(b,c)

e(a, by + e(b,c)

Thus e is a metric.

OPEN SPHERES

5.

Prove Lemma 8.2: Let S be an open sphere with center p and radius §, i.e. S = S(p, §).
Then for every point g € S there exists an open sphere T centered at ¢ such that T is
contained in S.
Solution:
Now d(q,p) <8 since q€ 8 = S(p,8). Hence
e = §—d(g,p) > 0
We claim that the open sphere T = S(q,¢), with center ¢

and radius ¢, is a subset of S.

Let x €T =S8(q,¢). Then d(x,q) <e=8—d(q,p). So, by
the Triangle Inequality,
d(x,p) = d(x,q) + dlg,p) < [3—dlg,p)] + dlg,p) = 3

Thus x €8S = S(p,§) since its distance from p is less than 8.
So » €T implies 2 €S, i.e. T is a subset of S (as indicated in
the adjacent Venn diagram).

Let §; and 8» be real numbers such that 0 < 8§ = §,. Show that the open sphere S(p, §1)
is a subset of the open sphere S(p, 82).

Solution:
Let x & S(p,8;). Then d(z,p) < 8, =8,. Hence =€ S(p,§;) and thus S(p,§;) C S(p, §2).

Show that if S and T are open spheres with the same center, then one of them is a
subset of the other.

Solution:
Say S = S(p,8;) and T = S(p,8y), ie. S and T have the same center p with radii §; and &,
respectively. But either §; = 8§, or 8, = §;.. Hence by the preceding problem either SC I' or T C S.
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8. Prove Lemma 8.3: Let S; and S» be open spheres and let p € S; N S.. Then there
exists an open sphere S, with center p such that p €S, C SN S..
Solution:
Since p &€ S; and S; is an open sphere, there exists by
Lemma 8.2 an open sphere St with center p such that pGST cS;.
Similarly there exists an open sphere 82 with center p such that
pE S_) CS,. Now SI and SZ each has center p; so by Problem 7 S:
one of them, say S;, is contained in the other. Thus we have

pESICcS, and pES;CcS;cCS,

Accordingly, p€S; 8N S,. Hence we may take S, = s,
{See adjacent diagram.)

METRIC TOPOLOGIES ,

9. Prove: Let X be a metric space, and let 9, denote the class of open spheres with center
p € X. Then ./, is a local base at p.
Solution:

Let G be an open subset of X containing p. Since the open spheres in X form a base for the

metric topology, 3 an open sphere S such that p €S C G. But by Lemma 82 3 an open sphere
S, € .0, ie. with center p, such that p €S, C SCG. Hence ., is a local base at p.

10. Prove Theorem 8.5: Let X be a metric space. Then the countable class of open spheres

7 = {S(»1), S, %)’ S(p,%), .

with center p € X, is a local base at p.

Solution:
Let G be an open subset of X containing p. By the preceding problem, 3 an open sphere S(p, 8)
with center p such that p € S(p,8) C G. Since § >0,

An, €N such that 1/n, < 3§

Accordingly, p € S(p,1/ny) C S(p,8) C G where S(p,1/ny) € Z. Hence & is a local base at p.

11. Prove Theorem 8.6: The closure A of a subset A of a metric space X is the set of
points whose distance from A is zero: A = {x:d(x,A) = 0}.

Solution:
Suppose d(p,A) = 0. Then every open sphere with center p, and therefore every open set G
containing p, also contains at least one point of A. Hence p€ A or p is a limit point of A, and so

pE A.
On the other hand, suppose d(p,A) = e > 0. Then the open sphere S(p, {¢) with center p contains
no point of A. Henece p belongs to the exterior of A, and so p € A. Accordingly, A = {x:d(x,A) = 0}.

12. Show that a subset F of a metric space X is closed if and only if {x:d(x,F)=0} CF.

Solution:
This follows directly from Problem 11 and the fact that a set is closed iff it is equal to its closure.

13. If F is a closed subset of a metric space X and p € X does not belong to F, i.e. p & F,
then d(p,F) + 0.
Solution:
If d(p,F)=0 and F is closed, then by Problem 12, p € F. But by hypothesis p & F; so
d(p, F) 0.
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14. Prove Theorem 8.8: Let A and B be closed disjoint subsets of a metric space X. Then
there exist disjoint open sets G and H such that A C G and B C H.
Solution:

If either A or B is empty, say A = @, then @ and X are open disjoint sets such that 4 C @
and B C X. Hence we may assume A and B are non-empty.

.JLet a € A. Since A and B are disjoint, a € B.
But B is closed; hence by the preceding problem,
d(a, B) = §, > 0. Slmllarly, if b € B, then d(b,A4) =
Sb > 0. Set L

Sy = Sla, %Sa) and S, = S(b,—%&b)
so a € Sa and b€ Sb (See the adjacent Venn dia-
gram) .
We claim that the sets

G = U{S,:a€4) and H = U{S,:bEB)

satisfy the requlred conditions of the theorem Now G and H are open since they are each the union
ofi open spheres Furthermore, @ € S, 1mp11es A CG, and b € S, implies B c H. We must show that

G = 0.
) Supposé GNnH+# @, say p€GnH. Then ;

g, €A, byEB such that pGSao, pes,,o

> B

~ Y

Let d(ag, by) = e > 0. Then d(ay, B) = 34, = ¢ and d(by, A) = by = ¢ But p€ Sa0 and p € Sbo’ s0
dag,p) < }8s, and  d(p, b)) < %8y

Therefore by the Triangle Inequality,
d(ag, bg) = e = dlag,p) + d(p, by) < ls 3111, = Jet Le = Ze

an impossibility. Hence G and H are disjoint and the theorem is true

EQUIVALENT METRICS

15. Let d and e be metrics on a set X such that for each
d-open sphere Sq with center p € X there exists an
e-open sphere S. with center p» such that S.C Sa.
Show that the topology T« induced by d is coarser
(smaller) than the topology T. induced: by e, i.e.
Ta C Te.

Solution:

Let G& T,;. We want to show that G is also an e-open
set. Let p € G. Since G is d-open there exists a d-open
sphere S; with center p such that p € S; € G. By hypothesis,
there exists an e-open sphere S,(p) with center p such that
p ES.(p)CcS;CqG. Accordingly, G = WU{S.(p):p € G}.
Thus G ¢ the union of e-open spheres, and so it is e-open.
Hence T4,C T,.

16. Let d and e be metrics on a set X such that for each d-open sphere Si with center
p € X there exists an e-open sphere S. with center p such that S.C Ss, and for each
e-open sphere S¥ with center p € X there exists a d-open sphere S* such that S; c SF.
Show that d and ¢ are equivalent metrics, i.e. that they induce the same topology on X.
Selution:

By Problem 15, the topology T4 induced by d is coarser than the topology T, induced by e, ie.
T4C T, Also by Problem 15, T,C T4 Therefore T4= T,
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17. Show that the usual metric d on the plane R? is equivalent to ‘the metrics di and d» on

R? defined in Example 1.5.

Solution: .

Observe that we can inscribe a square in any circle as shown in Fig. (¢) below, and we can
insecribe a circle in a square as shown in Fig. (b). Now the points inside a circle form a d-open sphere
and the points inside a square form a d;-open sphere, so the metrics d and d, are equivalent by
Problem 16.

Furthermore, we can ‘inscribe a “diamond” in any circle as shown in Fig. (¢), and we can inscribe
a circle in any dianiond as shown in Fig. (d). Since the points inside a “diamond” form a d,-open
sphere, the metriesd and d, are equivalent by Problem 16.

Fig. () "~ Fig. (b) Fig. (c) Fig. (d)

L\e_t/Qfé 1] denote the collection of all real continuous functions defined on I = [0, 1].
Consider the metrics d and e on ([0, 1] defined by

dho) = suplfe) — d@: e €1, S elfg) = § @)~ g(@) do

(see Example 1.3 and VExample 1.4). Show that the topology T, induced by d is not
coarser than the topology T, induced by e, ie. T, ¢ T,
Solution: . .

Let.p be the constant function p(x) =2 and let ¢ = 1 Then the sphere Sy(p,e) consists of all

functions g for which g lies between the functions p—1 and p +1, ie. such that 1 < g(x) <3 for ~
all x€1. )

|
[} —jl
-1 |/V
It is sufficient to show that S;(p,e) contains .no ¢-open sphere with center p; i.e. for every 8 > 0,

S.(p,8) ¢ Sy(p,e). Let § > 0. Consider the function ¢ consisting of the line segments between the
points (0,4) and (4§, 2) and between (15,2) and (1, 2), i.e. defined by ~
[(~4w/8) +4  if 0= <5 -

12 if s=uw=1

(see diagram above). Observe that the “area” between p and ¢ is %8, ie. e(p,q

qE€ S,(p,8). But dp,q) =2; so q&Syp,e). Thus S.p,8) ¢ Se(p,e) for any &>
Tad Te. ,

gl@)y =

8. Then

1
]
0. Hence

19. Let (Cla,b] denote the collection of all continuous functions on a closed interval

X = [a,b]. Consider the metrics d and e on ([a,b] defined by

: d(f,9) = sup{|f(x) —g(@)|: x € X}, elf,9) = f flx) — g(x)| da

Show that the topology T, induced by e is coarser than the topology 7, induced by 4, i.e.
T,CT,
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Solution:

Let S,(p,¢) be any e-open sphere in ([a,b] with center p € Cla,b]. Let § = ¢/(b—a). In view
of Problem 15 it is sufficient to show that S,(p, 8), the d-open sphere with center p and radius §, is a
subset of S.(p,¢), i.e. Sylp, 8) C S.ip,e).

Let- f € Sy(p, 8); then sup {|p(x) — f(®)|]} < 8§ = €/(b—a)
Hence "

b b
) = | o)~ i@l = | spip@ - feh i < | db-gd =

So &€ S.p,e) and therefore Su(p,s) C S.p,e¢).

NORMED SPACES
20. Prove Theorem 8.13: The function d defined by d(v,w) = |[v—w||, where v and w

21.

are vectors in a normed space V, is a metric on V.

Solution:
Note that by [N,],

div,wy = llv—wl| =0 and dv,v) = Jlv—v] = [[0i] =0
Hence d satisfies [M;]. Also, by [N;l,
dw,w) = [o—w] = [=Dew—v)| = |1 [w—2i = lw—2l = dw,)

Hence d satisfies [Mp]. By [N,], |lv+w!| = |[v/l+llw|| for all v,w € V. Accordingly if «,b,cEYV,
then substituting v = a—b and w = b—¢ we have

la=ell = [lla=b)+ G0l = [vt+w] = [+ [lw]] = lla—b]l + {[b—cll
that is, d(a,c) = d(a,b) + d(b,c¢). Hence d satisfies [My].
Finally, if v w then v —w % 0; hence by [N,], d(v,w) = liv —wjl > 0. Thus d satisfies [M,].

Prove the Cauchy-Schwarz Inequality: For any pair of points p = (ai, ...,am) and
q = (by, ..., bn) in R™,

21 jasbil = [lpl/lel] = \[g jaif? \[21 b2

where !lplj is the Euclidean norm.

Solution:
If p=0 or ¢ =0, then the inequality reduces to 0 =0 and is therefore true. So we need only
consider the case in which p#0 and ¢+ 0, i.e. in which ||p|]# 0 and {lg|} # 0.

Now for any real numbers z,y€R, 0 = (x—y)2 = x2—2xy +y? or, equivalently,
2ey = 22 + y2 (3]
Since x and y are arbitrary real numbers, we can let x =la;//|'p|l and y = [b]/llql! in (). So,

for any i,
fal 10 1yl [b;]2

lpltliall — Tpl2 " [l
But by definition of the Euclidean norm, 2 |e;2 = l]pl|2 and b2 = ||q!|2. So summing (2) with

respect to ¢ and using leb;] = {e; |b;], we have

S laby S a2 S (b2

(2)

i=1 i=1 i=1 Hpl2 [lql2
2 = + = —= 4 - = 2
Il gl Hpl[2 |lqlf? IIpll2 g2
m
21 a; byl
that is, e =1
Upll llgll

Multiplying both sides by [Ip|| |/ql| gives us the required inequality.
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22.

23.

24.

25,

26.
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Prove Minkowski’s Inequality: For any pair of points » = (@i, ...,an) and ¢
<b1, ey bm> in Rm,

p+al = ol +lal ie ASlatop = Tlep + 2 b

Solution:

If |lp+gql| = 0, the inequality clearly holds. Hence we need only consider the case in which
ip+qll # 0.

Observe that, for real numbers a; b; € R, we have la;+ & = |y + [b]. Hence

Sle+b2 = e +by e+ by
3 la;+ ) (a] + b))
D lai+ 0 la] + 2 e+ by (b

Il

[lp + ql2

I

Il

But by the Cauchy-Schwarz Inequality,
Sla;+b)le] = p+alilpll  and  Zla+bl b = llp+adll llqll

Then lp+qi2 = |p+alilpll + llp+dllla] = llp+qldipll +alD

Since we are considering the case |lp+q|l # 0, we can divide by |lp+ ql|; this yields the required
inequality. )

Prove that the Euclidean norm,

P = V2 laf where p = (ay,...,an) € R"

satisfies the required axioms [N;], [N2] and [Ns].

Solution:

Now [N;] follows from properties of the real numbers, and [N,] is Minkowski’s Inequality which
was proven in the preceding problem. Hence we only need to show that [N;] holds. But for any

vector p = {ay,...,a,) and any real number k € R,
Hka = Hk<alr L] am)” = H<ka'1: vy kam)”

= ASkal = Skl = AJlk2 S e

= \/W\lzlailz = [k NSl = [k Ipll

Hence [N3] also holds.

Prove Theorem 8.11: Euclidean m-space is a metric space, i.e. the Euclidean metric

on R™ satisfies the axioms [M;] to [M.l.

Solution:

Use Problem 23 and the fact that the Euclidean metric on R™ is induced by the Euclidean norm

on Rm™.

Let (ai,as ...) be a convergent sequence of real numbers with the property that

an=0b for all n € N. Show that lima, = D.

Solution:
Suppose lima, = ¢>b and set ¢ = a—b > 0. Since a,~a,

3ny €N such that o —ay, = Ja—anol <e=a—b

Thus =0y, < —b and therefore b < Qng which contradicts the hypothesis. Accordingly, lim a,

Prove Minkowski’s inequality for infinite sums: If (a.),(b.) € R”, then

Kant bl = Nal + ] ie 4| S lantbp = \[i i + \[ 3 b

Solution:
By Minkowski’s inequality for finite sums,

= b.
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27.

28.

29.

30.

§ i(ln+ bn\2 '\’ ngl lanlz + '\‘ ngl |an§2 = \/ngl lan\“z + \/nél kbnlz

Since the above is true for every m € N, by the preceding problem it is also true in the limit.

Show that the l-norm on R”, ie. [{a.)| = A2 |an?, satisfies the required axioms
IN:], [N:] and [Ns].
Solution:

This is similar to the proof in Problem 23 that the Euclidean norm satisfies the axioms [N;], [N,]
and [Nj].

Prove Theorem 8.12: Hilbert space (or l»-space) is a metric space.

Solution:
Use Problem 27 and the fact that the l,-metric on R is induced by the ly-norm.

Let a and b be real numbers with the property that ¢ = b+¢ for every > 0. Show
that a = b.

Solution:
Suppose @ >b. Then ¢ = b+§ where 8§ >0. Set ¢e=18. Now a > b+ 15 = b+e where
e > 0. But this contradicts the hypothesis; so a = b.

Let I = [0,1]. Show that the following is a norm on ([0,1]: |[|f|| = sup {|f(z)[}.

Solution:

Recall that a real continuous function on a closed interval is bounded; so ||f]| is well-defined.
Since |f(x)| =0 for every z €1, ||fll =0; also [|f]]=0 iff |f(x)] =0 for every z €I, ie. iff
f =0. Thus [N,] is satisfied.

Let ¢ > 0. Then 3Fxy € I such that
lIf+9ll = sup{lfx) +o@} = I[fl@) + g + ¢
(o) + lglzg)] + e
= sup {|f(@)]} + sup{lg@)} + ¢
= 7l + llgll + e

Hence by Problem 29, ||f+g|| = Ifll + |lg|l and [N,] is satisfied.
Now let k€ R. Then

|l

i

sup {{(k)@)]} = sup{|kf(=)} = sup{|k| [fl@)]}
[kl sup {If=)[} = [k[ 7]l

il

and [N;] is satisfied.

Supplementary Problems

METRICS

31.

32.

Let B(X,Y) be the collection of all bounded functions from an arbitrary set X into a metric space
(Y,d). Show that the function ¢ is a metric on B(X,Y):

e(f,9) = sup{d(fiz),g() : « € X}

Let di,...,d, be metrics on Xy, ...,X,, respectively. Show that the following functions are
metrics on the produet set X =TI X;

d(l’, q) = max {dl(alr bl): ) dm(am’ bm)}: e(p: q) = dl(al) bl) + o dm(am: bm)
Here, p={(t1, ..., 0n) §=1{by, ..., b € X = T[;X
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33.

34.

35.

36.

37.
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Let R* = RU {»,—x} be the extended real line and let f:R* > [—1,1] be defined by f(x) =
x/(1+lxl) if xE€R, f(x)=1 and f(—=) = —1. Show that the following function is a metric on
R*: d(x,y) = If(z) — f(y)l.

Let Rt denote the non-negative real numbers, and let f:R* = R* be a continuous function such
that (i) f(0) =0, (ii) flx +y) = f(x) + f(y), and (iil) x < y implies f(x) < f(y). Show that if d is
a metric on any set X then the composition function fod is also a metric on X.

Let p be a pseudometric on some set X. Let ~ be the relation in X defined by
a~b iff ola, b)=0
(i) Show that ~ is an equivalence relation in X.

(i) Show that the following function is a metric on the quotient set X/~ = {la]:a € X}:
d(la], [b]) = pl(a,b). Here [a] denotes the equivalence class of a € X.

Let R [0, 1] denote the collection of (Riemann) integrable functions on [0,1]. Show that the following
function is a pseudometric on R[0,1]:

a1
o) = i@ - o dr
Y0

Also show by a counterexample that p is not a metric.

Show that a function d is a metric on a set X iff it satisfies the following two conditions:
(i) d(a,b) =0 iff a=1b; (ii) d(a,¢) = d(a,b) + d(c, b).

DISTANCES BETWEEN SETS, DIAMETERS

38.

39.

40.

41,

42.

Give an example of two closed subsets A and B of the real line R such that
d(A,B) =0 but AnNB =20

Let d be a metric on X. Show that for any subsets A,B C X:
(i) d(AUB) = d(A) +d(B)+ d(A,B) and (i) d(A) = d(A).

Let d be a metric on X and let A be any arbitrary subset of X. Show that the function f: X >R
defined by f(x) = d(x, A) 1is continuous.

Consider the function d:R2—> R defined by d{((a,b)) = |la —b| (i.e. the usual metric on R). Show
that d is continuous with respect to the usual topologies on the line R and the plane R2

Let A be any subset of a metric space X. Show that d(4) = d(d). .

METRIC TOPOLOGIES

43.

44,

45.

46.

47.

Let (4, d) be a metric subspace of (X,d). Show that (4,d) is also a topological subspace of (X,d), i.e.
the restriction of d to A induces the relative topology on A. .

Prove: If the topological space (X, T) is homeomorphic to a metric space (Y,d), then (X,T) is
metrizable.

Prove Theorem 8.10: If (X, d) is isometric to (Y, e), then (X, d) is also homeomorphic to (Y, ¢).

Give an example to show that the closure of an open sphere

Sp,8) = {z:dp=x) <38}
need not be the “closed sphere”
S(p,8) = {x:dp,x)=28}

Show that a closed sphere S(p,§) = {w:d(p,x) = 8} is closed.
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48. Prove: The sequence (@, ay, ...) converges to the point p in a metric space X if and only if the
sequence of real numbers (d(a,, p), d{as, p), ...) converges to 0 € R, i.e. lima, = p iff lim d(a,, p) = 0.

49, Prove: If lime, = p and limb, = q in a metric space X, then the sequence of real numbers
(d{ay, by), d(as, by), ...) converges to d(p,q) €R, ie. lim d(e,b,) = d(lima,, limb,).

EQUIVALENT METRICS
50. Let d be a metric on X. Show that the following metric is equivalent to d: e(a,b) = min {1, d(a, b)}.

51. Let d be a metric on X. Show that the following metric is equivalent to d: e(a,b) = %’(—2)—&—.
52. Let d and e be metrics on X. Suppose 3k,k' € R such that, for every «a,b € X,
) d(a,b) = ke(a,b) and e(a,b) = K da,b)
Show that d and e are equivalent metrics.
EUCLIDEAN m-SPACE, HILBERT SPACE
53. Let p; = (a1, @19 - -+, Q1p), P2 = {Ga1, Cgg, - - ., Qop), ... be points in Euclidean m-space. Show that
Pp=>q=(by,by, ...,by if and only if, for k=1,...,m, (@, do, Qg ...) converges to by; ie. the

projection {(r(p,)) converges to = (q) in each coordinate space.

54. Show that if G is an open subset of Hilbert Space H, then 3Ip = (a,) € G such that o, +* 0.

55. Let H* denote the proper subspace of Hilbert Space H which consists of all points in H whose first
coordinate is zero. (i) Show that H* is closed. (ii) Show that H* is nowhere dense in H, i.e.

int (H*) = Q.

56. Let p; = (@yy, @12, - ..}, Ps = (G2, Gog, --.), ... be points in R” and suppose that the sequence of real
numbers (ri(P,)) = (@ Gox, B3k, - ..) converge to b, € R for every k €N.
(1) Show that ¢ = (b, bs, ...} belongs to R”.
»
(ii) Show that the sequence (py, ps, ...) converges to q.

HILBERT CUBE

57. The set I of all real sequences (a, @y, ...) such that 0 = a, ~;1;, for every n € N, is called the
Hilbert cube.

(i)  Show that I is a subset of R,
(ii) Show that I is a closed and bounded subset of R™.

NORMED SPACES

58. Let B(X,R) denote the class of all real bounded functions f:X — R defined on some non-empty
set X. Show that the following is a norm on B(X,R): |[|f|| = sup {{/(®)|: x € X}.

59. Two norms, ||---|/; and ||--+||s, on a linear space X are equivalent iff they induce equivalent metrics
on X, ie. iff they determine the same topology on X. Show that ||---||; is equivalent to |[-- ||, if and
only if 3ay,a,, by, by € R such that, for all »x € X,

ay ||2|ly < llelly < by lfofly and ay||ofly < flell; < by llaliz
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60.

61.

62.

36.

38.

46.

58.

60.

61.

¢

Let ||- - || be the Euclidean norm and let d be the induced Euclidean metric on the plane R2. Consider -
the function ¢ defined by
< lipll + llgll — if {ipll = llall
\ elp,9) = :
hS {d(p, ) if |lpl| = gl

(1) Show that e is a metric on R2.

(ii)” Describe an open sphere in the metric space (R2, e).
— Rl

N 1
Show that the .following is a nérm on C[0,1]: ||f|| = f |f(z)] de. a
T 0

Let X-be a ho’rmed space. Show that the function f :X >R defined by fla) = |j]] is continuous. -

s -

™ Answers to Supplementary Problems ;\
The function f:[0,1] - R defined by ;
1 if z2=0
fw). = {o if 0<ao=1

is (Riemann) integrable, i.e. belongs to R[0,1]. The zero function g:[0,1] > R, ie. g(x) =0 for all
x € {0,1], also belongs to R[0,1]. But p(f,9) =0 and f+*g. Hence p is not a metric as it does
not satisfy [M,].

Let A =1{2,8,45 ...} and B = {24,341, ...} -

Let d be the tri;rial metric on a set X containing more than one point. Then, for any p € X, )
S(p,1) = {x: dp,») <1} {n}
Sp,1) = {x: dp,2) =1} X

i

Il

But d induces the discrete topology on X, and so every subset of X is both open and closed. Thus
S0 = { = {» #* S»1

Hint.  Proof is similar to that of Problem 30, -

-

(ii) If HpH = §, then S(p, s) is an arc of the circle {x:|lz|| = |ip|l}. If ||p|| < &, then S(p,s) consists
of the points interior to the circle {z:|lz|| = 8 —||p||} and the points on an arc of the circle

{a: ffol] = {{pl[}-

——~F
pd - S(p, 8)
/

\
!

A

\ /
\ 7
\\_’__/

llpl] = 8 llpll <8

1 1
[ l@+o@las = | (@] +low@) e
0

0

N+ gll

]

il

[T+ f w@ide = i+ il
0 0



Chapter 9

Countability

FIRST COUNTABLE SPACES

A topological space X is called a first countable space if it satisfies the following axiom,
called the first axiom of countability.

[Ci] For each point p € X there exists a countable class B, of open sets containing p
such that every open set G containing p also contains a member of B,.

In other words, a topological space X is a first countable space iff there exists a
countable local base at every point p € X. Observe that [C;] is a local property of a
topological space X, i.e. it depends only upon the properties of arbitrary neighborhoods
of the point p € X.

Example 1.1:  Let X be a metric space and let p € X. Recall that the countable-class of open
spheres {S(p, 1), S(p, 1), S(p, %), ...} with center p is a local base at p. Hence
every metric space satisfies the first axiom of countability.

Example 1.2: Let X be any discrete space. Now the singleton set {p} is open and is contained
in every open set G containing p € X. Hence every discrete space satisfies [C,].

First countable spaces possess the following property which was proven for the special
case of the real line R.

Theorem 9.1: A function defined on a first countable space X is continuous at p € X if
and only if it is sequentially continuous at p.

In other words, if X satisfies [C:], then f: X > Y is continuous at p € X iff for every
sequence (@) converging to p in X, the sequence (f(a.)) converges to f(p) in Y, i.e.,

a.>p implies  f(a.)~ f(p)

Remark: Let B, be a countable local base at the point p € X. Then we can index the
members of B, by N, i.e. we can write B, = {By, B, ...}. (We permit repeti-
tions in the case that B, is finite.) If, in addition, BiD> B:D> B3> ..., then
we call B, a nested local base at p. We show, as a solved problem, that we
can always construct a nested local base from a countable local base.

SECOND COUNTABLE SPACES

A topological space (X, T) is called a second countable space if it satisfies the following
axiom, called the second axiom of countability.

[C:] There exists a countable base B for the topology T.
Observe that second countability is a global rather than a local property of a topological

space.

Example 2.1: The class B of open intervals (e, b) with rational endpoints, i.e. @,b € Q, is count-
able and is a base for the usual topology on the real line R. Thus R is a second
countable space, i.e. R satisfies [C,].
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Example 2.2: Consider the discrete topology .2 on the real line R. Recall that a class B is a
base for a discrete topology if and only if it contains all singleton sets. But R,
and hence the class of singleton subsets {p} of R, are non-countable. Accordingly,
(R, 20) does not satisfy the second axiom of countability.

Now if B is a countable base for a space X, and if ‘B, consists of the members of B
which contain the point p € X, then B, is a countable local base at p. In other words,
Proposition 9.2: A second countable space is also first countable.

On the other hand, the real line R with the discrete topology does not satisfy [C:] by

Example 2.2 but does satisfy [C,] by Example 1.2. Thus we see that the converse of
Proposition 9.2 is not true.

LINDELOF’S THEOREMS

It is convenient to introduce some terminology. Let A C X and let <4 be a class of

subsets of X such that
A C UE:Eecd)}

Then <4 is called a cover (or, covering) of A, or o4 is said to cover A. If each member
of o4 is an open subset of X, then ¢4 is called an open cover of A. Furthermore, if 4
contains a countable (finite) subclass which also is a cover of A, then 4 is said to be
reducible to a countable (finite) cover, or ¢4 is said to contain a countable (finite) subcover.

The central facts about second countable spaces are contained in the next two theorems,
due to Lindel6f.

Theorem 9.3: ILet A be any subset of a second countable space X. Then every open
cover of A is reducible to a countable cover.

Theorem 9.4: Let X be a second countable space. Then every base B for X is reducible
to a countable base for X.

The preceding theorem motivates the definition of a Lindelof space. A topological
space X is called a Lindeldf space if every open cover of X is reducible to a countable
cover. Hence every second countable space is a Lindelof space.

SEPARABLE SPACES
A topological space X is said to be separable if it satisfies the following axiom.

[S] X contains a countable dense subset.
In other words, X is separable iff there exists a ﬁnite or a denumerable subset A of X
such that the closure of A is the entire space, i.e. 4 = X.

Example 3.1: The real line R with the usual topology is a separable space since the set Q of
rational numbers is denumerable and is dense in R, ie. Q = R.

Example 3.2: Consider the real line R with the discrete topology 2. Recall that every subset
of R is both D-open and -closed; so the only 7)-dense subset of R is R itself.
But R is not a countable set; hence (R, D) is not a separable space.

We will show that every second countable space is also separable. Namely,
Proposition 9.5: If X satisfies the second axiom of countability, then X is separable.
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The real line R with the topology generated by the closed-open intervals (@, b) is a
classical example of a separable space which does not satisfy the second axiom of count-
ability. So the converse of the previous proposition is not true in general. We do, though,
have the following special case.

Theorem 9.6: Every separable metric space is second countable.

Example 3.3: Let C[0, 1] denote the linear space of all continuous functions on the closed interval
[0,1] with the norm defined by
A = sup{if@)|: 0=x=1}

By the Weierstrass Approximation Theorem, for any function f € C|0, 1] and any
e > 0, there exists a polynomial p with rational coefficients such that

If —pll <e ide /(@) = plx) <e forall xe&]0,1]

Hence the collection P of all such polynomials is dense in C|0,1]). But ® is a count-
able set; so C[0, 1] is separable and, by Theorem 9.6, second countable.

In our last example we show that a metric space need not be separable.

Example 3.4: Consider the metric e on the plane R? defined by

[llpll + llall it lpll # |lq]]
dp, q) it |1zl = |qll

where [|---{| is the Euclidean norm on R?
and d is the induced usual metric (see Prob-

lem 60, Chapter 8).
Recall that if p+#(0,0) and & < ||pll, P 4
S(p, 8)

e(p,q) =

then the e-open sphere S(p,8) consists only //
of points on the circle / \
| \
P o= o el = liplh . /
and so p cannot be an accumulation point of \\ /
any A C R? unless A contains points of the N /4\_ P

circle P. But there are an uncountable num-
ber of circles with center (0,0), so A C R2
cannot be dense in R2 unless A is uncount-
able. Thus the metric space (R2 e) is not
separable.

HEREDITARY PROPERTIES i

A property P of a topological space X is said to be hereditary iff every subspace of X
also possesses property P. We will show that every subspace of a second countable space
is second countable and every subspace of a first countable space is first countable. In
other words, the properties [C:] and [C.] are both hereditary. On the other hand, we
will show by a counterexample that a subspace of a separable space need not be separable,
i.e. separability is not hereditary.

We conclude with the following diagram which gives the only relationship between
the three axioms in this chapter:

separable <« second countable —> first countable

Here an arrow denotes implication as stated in Propositions 9.2 and 9.5.
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'Solved Problems

FIRST COUNTABLE SPACES

1.

Show that any subspace (Y, T,) of a first countable space (X, T) is also first countable.

Solution:

Let p€Y. Since Y CX, p€ X. By hypothesis, (X,T) is a first countable space, so 3 a
countable T-local base B, = {B,:n €N} at p. By a previous problem, ‘Bp ={YnB,: n€EN}
is a Ty-local base at p. Since ‘Bp is countable, (Y, T,) satisfies [C,].

Let B, = {G1,Gs, ...} be a countable local base at p € X. Show that:

(i) There exists a nested local base at p.

(if) If X satisfies [Ci] then there exists a nested local base at every p € X.
Solution:

(i)  Set B, =G, By,=GinGy ..., B,=Gn- NG,

Then B;D B, D :-- and each B, is open and contains p. Furthermore, if G is an open set

containing p, then
Iny, € N such that Bn0 C G”o cG

Accordingly, {B;, B, ...} is a nested local base at p.

(ii) If X satisfies [C;] and p €X, then 3 a countable local base at p by [C,] and, by (i), there exists
a nested local base at p.

Let B, = {B1,B:, ...} be a nested local base at p € X and let (ai,as, ...) be a sequence
such that a1 € By, a2 € By, ... . Show that (a.) converges to p.
Solution:

Let G be an open set containing p. Since B, is a local base at p,

An, € N such that B”o cq

But B, is nested; hence n > n, implies @, € B"o C G, and so a, > p.

Let T be the cofinite topology on the real line R, i.e. T containg ) and the complements
of finite sets. Show that (R, T) does not satisfy the first axiom of countability.
Solution: '
Suppose that (R,T) does satisfy [C;]. Then 1 &R possesses a cvountable open local base
B, = {B,:n € N}. Since each B, is T-open, its complement B{ is T-closed and hence finite. Accord-
ingly, A = U{B; :n € N} is the countable union of finite sets and is therefore countable. But R
is not countable; hence there exists a point p € R different from 1 which does not belong to 4, i.e.
pE Ac.

Now, by DeMorgan’s Law we have

pEAc = (U{B:n€Np = MBS :nEN} = N{B,: n €N}

Hence p € B, for every n € N. On the other hand, {p}c is a T-open set since it is the complement of
a finite set, and {p}¢ contains 1 since p is different from 1. Since B, is a local base, there exists a
member B, € B, such that B,,,O C {p}c. Hence p¢& Bn(,~ But this contradicts the statement that
p € B, for every n € N. Consequently, the original assumption that (R, T) satisfies the first axiom
of countability is false.

Prove Theorem 9.1: Let X satisfy the first axiom of countability. Then f: X -7 is
continuous at p € X if and only if it is sequentially continuous at p.
Solution:

It suffices to show that if f is sequentially continuous at p then f is continuous at p, since the
converse has been proven for an arbitrary topological space. We shall in fact prove the contrapositive
statement: if f is not continuous at p then f is not sequentially continuous at p.
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.
Let B, = {By, By, ...} be a nested local base at p and suppose f is not continuous at p. Then
there exists an open subset H of Y such that

fl)y€EH but B, ¢ f~'[H| for every nE€N
Hence, for every n €N,

da, € B, such that a, & f~1[H]| which implies fla,) & H

Now by a previous problem the sequence (a,) converges to p; but the sequence (f(a,)) does not converge
to f(p), since the open set H containing f(p) does not contain any of the terms of the sequence.
Accordingly, f is not sequentially continuous at p.

SECOND COUNTABLE SPACES

6.

Show that the plane R? with the usual topology satisfies the second axiom of countability.

Solution:
Let B be the class of open discs in R2? with rational radii and centers whose coordinates are

rational. Then 4B is a countable set and, furthermore, is a base for the usual topology on R2. Heunce

2 is a second countable space.

Show that every subspace of a second countable space is second countable.

Solution:

Let B = {B,:n € N} be a countable base for the second countable space X, and let ¥ be a
subspace of X. By a previous problem, B, = {Y nB,: n €N} is a base for Y. Since By is
countable, Y satisfies [C,].

Prove Theorem (Lindelof) 9.3: Let A be any subset of a second countable space X, it
G is an open cover of A, then ¢ is reducible to a countable cover.

Solution:
Let ‘8 be a countable base for X. Since 4 C U{G:G E€ g}, for every p€ A, 3G, € G such
that p € G,. Since B is a base for X, for every p € 4,

3B,€ B such that pEB,CG,

Hence A C U{B,:p€A}. But {B;: p € A} C ‘B, so it is countable; hence
{B,: p€EA} = {B,:n€EN}
where N is a countable index set. For each n € N choose one set G, € G such that B, C G,. Then
A Cc U{B,:mEN} Cc U{G,: nEN}

and so {G,: n € N} is a countable subcover of ¢

Prove Theorem (Lindelsf) 9.4: Let G be a base for a second countable space X. Then
G is reducible to a countable base for X.
Solution:
Since X is second countable, X has a countable base B = {B,:n € N}. Since ¢ is also a base
for X, for each n € N, .
B, = U{G:Geg,} with G, C G
So ¢, is an open cover of B, and, by the preceding theorem, is reducible to a countable cover g:':, i.e.,

for each n € N, B, = U{G:GEg!} with gicg and g, countable

But g* = {G:GEg;, nEN}

is a base for X since ‘B is. Furthermore, G* C ¢ and G* is countable.
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SEPARABILITY Ly
10. Let T be the cofinite topology on any set X. Show that (X, T) is separable, i.e. contains

11.

12.

13.

14.

15.

a countable dense subset.
i

>

Solution:
If X is itself countable, then clearly X is a countable dense subset of (X, 7). On the other hand,

suppose X is-not countable. Then X contains a denumerable, i.e. non-finite countable, subset A.

Recall that the only T-closed sets are the finite sets and X; hence the closure of the non-finite set 4 is

the entire space Xjie. A =X. But A is countable; hence (X, T) is separable.
S

Show that a discrete space X is separable if and only if X is countable.
Solution: - ‘

Reecall that every subset of a discrete space X is both open and closed. Hence the only dense
subset of X 1§ X 1tse1f Hence X contains a countable dense subset iff X is countable, i.e. X is separable

iff+X is countable.

Prove Proposition 9.5: If X satisfies the second axiom of countability, then X is
separable. :
Solution: v

Since X satisfies [Cy], X has a ‘countable base B = {Bn n € N}. . For each n €N, choose a
point &, € B,. Then the set A = {a,: n € N} is also countable. We show that A=X or, equivalently,
that each point p € Ac{ the complement of A, is an accumulation point of A.

Let G be an open set containing p. Then G contains: -at least one set B, G B. Hence n, €B, 0 C G.
Now A,y 1s/d/1ﬁ‘erent from p since p € A¢ but @n,, € A. Accordingly, p 1s an accumulatlon pomt of A
since every o/pen_s,et\fG containing p also contains a point of 4 different from p.

Let T be the topology on the plane R? generated by the half-open rectangles.
. la,b) X [¢,d) = {x,y):a=2x2<b,c=y<d}
<
Show that (R%,T) is separable.
Solution:
Now there are always rational numbers oco and y, such that a <y < b and c<yp<d, so the
above open rectangle contains the point p = (xg ¥, Wwith rational coordinates. Hence the set

A = QX Q consisting of all points in R? with rational coordinates is dense in R2. But 4 is a
¢ountable set; thus (R2, T) is separable.

Show by a counterexample that a subspace of a separable space need not be separable,
i.e. separability is not a hereditary property.

Solution:

Consider the separafble topological-space (R2, T) of the pre-
ceding problem. Recall (see Problem 25 of Chapter 6) that the
relative topology T, on the line Y = {(x,y): x+y = 0} is the
discrete topology since each singleton subset {p} of ¥ is
T,-open. But an uncountable discrete space is not separable.
Thus the separablhty of (R2,T) is not inherited. by the sub-
space (Y, T,)..

S(a, 8)
Let S(p, ¢) be an open sphere in a metric space X, and
let d{(p,a) < te. Show that if %e <3 < §¢, then

p € S(a, 8) C S(p,e)

Solution:
Now d(p,a) < 4e<§, so p€S(a,38). Accordingly, we
need only show that S(a, §) C S(p, ¢).
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16.

Let x € S(a,8). Then d(a,x) < 3§ and, by the Triangle Inequality,
d(p,x) = d(p,a) + dla,2) < te+ 8 < Let Ze = ¢
Hence = € S(p,¢), or S(a, 8) C S(p,¢).

Prove Theorem 9.6: Let X be a separable metric space. Then X satisfies [C:], i.e
X contains a countable base.

Solution:
Since X is separable, X contains a countable dense subset A. Let B be the class of all open
spheres with centers in A and with rational radii, i.e.,

B = {S(a,d):ac€A, s€QqQ)

Note that B is a countable set. We claim that B is a base for the topology on X, i.e. for every open
set G C X and every p € G,
3 S(a,8) €B such that p € S(a,8) C G
Since p € G, 3 an open sphere S(p,¢) with center p such that p € S(p,¢) C G. Since A is dense
in X,
1 g,€A such that  d(p, ap) < le

Let 84 be a rational number such that te < 3, < %e. Then, by the preceding problem,
p € S(ay, 8g) C S(p,e) C G

But S(ay, 8y) € B, and so B is a countable base for the topology on X.

Supplementary Problems

FIRST COUNTABLE SPACES

17.

18.

19.

20.

21,

Show that the property of being a first countable space is a topological property.

Let B, = {B,Bs, ...} be a nested local base at p € X. Show that any subsequence {BLI, igr -
of B, is also a nested local base at p.
Let T be the topology on the real line R generated by the closed-open lntervals b). Show that

la,
(R, T) satisfies [C,] by exhibiting a countable local base at any point p € R. r ;ﬂ) Wwe M

Let T be the topology on the plane R2? generated by the half-open rectangles

fa, ) X [e,d) = {@&,p:a=ax<b c=y<d}
Show that (R2, T) satisfies [C;] by exhibiting a countable local base at any point p € R2,
Let T and T* be topologies on X with T coarser than T*, i.e. T C T*.

(i) Show that‘ if (X, T*) can be first countable, but (X, T) not.
(ii) Show that (X, T) can be first countable, but (X, T*) not.

SECOND COUNTABLE SPACES

22,

23.

24.

25.

Show that the property of being a second countable space is a topological property.
Show that if X has a countable subbase then X satisfies [C,].
Exhibit a countable base for Euclidean m-space.

Let ¢4 be any collection of disjoint open subsets of a second countable space X. Show that c4 is a
countable collection.
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26. Let A be an uncountable subset of a second countable space X. Show that A has at least one point
of accumulation.

27. Let T be the topology on the real line R generated by the closed-open intervals [«,b). Show that
(R, T) does not satisfy [C,].

28. Show that l,-space (Hilbert Space) is second countable.

SEPARABLE SPACES
© 29, Show that the property of being a separable space is a topological property.

30. Show that Euclidean m-space is separable.
¥31. Show that l,-space (Hilbert Space) is separable.

32. Let T be the topology on the real line R generated by the closed-open intervals [a,b). Show that
(R, T) is separable.

33. Let T and T* be topologies on X with T coarser than T%*, i.e. T C T*.
(1) Show that if (X, T%*) is separable, then (X, T) is also separable.
(ii) Show by a counterexample that the converse of (i) is not true.

34. Let C[0,1] denote the class of continuous functions on [0,1] with norm

wio= el

Show that C[0,1] is separable and therefore second countable.

LINDELOF SPACES

35. Show that a continuous image of a Lindel6f space is also a Lindeléf space.

.1 36 Let A be a closed subset of a Lindeldf space X. Show that A, with the relative topology, is also a
/ Lindel6f space.

v 37. Show that a discrete space X is Lindelof if and only if X is a countable set.

38. Let T be the topology on the plane R2? generated by the half-open rectangles
[a, ) X [e,d) = {xy:a=x<b ¢=y<d}
Recall (see Problem 14) that T induces the discrete topology on the line Y = {(x,y):ax+y =1}

Show that (R2, T) is not Lindeléf and thus (R2, T) is a separable first countable space which does not
satisfy the second axiom of countability. .



Chapter 10

Separation Axioms

INTRODUCTION

Many properties of a topological space X depend upon the distribution of the open sets
in the space. Roughly speaking, a space is more likely to be separable, or first or second
countable, if there are ‘“few” open sets; on the other hand, an arbitrary function on X to
some topological space is more likely to be continuous, or a sequence to have a unique limit,
if the space has “many” open sets.

The separation axioms of Alexandroff and Hopf, discussed in this chapter, postulate
the existence of “enough” open sets.

T:-SPACES

A topological space X is a Ti-space iff it satisfies the following axiom:

[T:] Given any pair of distinct points «,b € X, each belongs to an open set which does
not contain the other.

In other words, there exist open sets G and H such that
acEG, beG and beH, o€ H
The open sets G and H are not necessarily disjoint.

Our next theorem gives a very simple characterization of T;-spaces.

Theorem 10.1: A topological space X is a Ti-space if and only if every singleton subset
{p} of X is closed.
Since finite unions of closed sets are closed, the above theorem implies:
Corollary 10.2: (X, T) is a Ti-space if and only if T contains the cofinite topology on X.
Example 1.1:  Every metric space X is a T,-space, since we proved that finite subsets of X are

closed.

Example 1.2:  Consider the topology T = {X, @, {a}} on the set X = {a,b}. Observe that X is the
only open set containing b, but it also contains a. Hence (X, T) does not' satisfy
[T], ie. (X,T) is not a T;-space. Note that the singleton set {a} is not closed
since its complement {a}¢ = {b} is not open.

Example 1.3:  The cofinite topology on X is the coarsest topology on X for which (X,T) is a
T,-space (Corollary 10.2). Hence the cofinite topology is also called the T';-topology.

HAUSDORFF SPACES

A topological space X is a Hausdorff space or Ts-space iff it satisfies the following
axiom:

[T:] Each pair of distinct points a,b € X belong respectively to disjoint open sets.

139
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In other words, there exist open sets G and H such that

ec€G, beH and GNH =0

Observe that a Hausdorff space is always a Ti-space.

Example 2.1:

We show that every metric space X is Hausdorff.

Let «,b € X be distinct points; hence by [M,] d{(a,b) = ¢ >> 0. Consider
the open spheres G = S(a, l¢) and H = S(b, ), centered at ¢ and b respec-
tively. We claim that G and H are disjoint. For if p € G N H, then d(a,p) < 1e
and d(p,b) < Le; hence by the Triangle Inequality,

d(a,b) = d(a,p) +d(p,b) < L+ Le = Ze
But this contradicts the fact that d(a,b) = e Hence G and H are disjoint, i.e.

a and b belong respectively to the disjoint open spheres G and H. Accordingly,
X is Hausdorff.

We formally state the result in the preceding example, namely:

Theorem 10.3: Every metric space is a Hausdorff space.

Example 2.2:

Let T be the cofinite topology, i.e. T¢-topology, on the real line R. We show that
(R, T) is not Hausdorff. Let G and H be any non-empty T-open sets. Now
G and H are infinite since they are complements of finite sets. If GNH = @,
then G, an infinite set, would be contained in the finite complement of H; hence
G and H are not disjoint. Accordingly, no pair of distinct points in R belongs,
respectively, to disjoint T-open sets. Thus T,-spaces need not be Hausdorff.

As noted previously, a sequence {(ai,az, ...) of points in a topological space X could,
in general, converge to more than one point in X. This cannot happen if X is Hausdorfl:

Theorem 10.4: If X is a Hausdorff space, then every convergent sequence in X has a
unique limit.

The converse of the above theorem is not true unless we add additional conditions.

Theorem 10.5: Let X be first countable. Then X is Hausdorff if and only if every con-
vergent sequence has a unique limit.

Remark: The notion of a sequence has been generalized to that of a net (Moore-Smith
sequence) and to that of a filter with the following results:

Theorem 10.4A: X is a Hausdorff space if and only if every convergent net in

X has a unique limit.

Theorem 10.4B: X is a Hausdorff space if and only if every convergent filter

in X has a unique limit.

The definitions of net and filter and the proofs of the above theorems lie
beyond the scope of this text.

REGULAR SPACES
A topological space X is regular iff it satisfies the following axiom:

[R] If F is a closed subset of X and p € X does not belong to F, then there exist disjoint
open sets G and H such that F C G and p € H.

A regular space need not be a Ti-space, as seen by the next example.

Example 3.1:

Consider the topology T = {X, @, {a}, {b,c}} on the set X = {a,b,c}. Observe
that the closed subsets of X are also X, ), {¢} and {b,c¢} and that (X,T) does
satisfy [R]. On the other hand, (X, T) is not a T;-space since there are finite sets,
e.g. {b}, which are not closed.
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A regular space X which also satisfies the separation axiom [T:], i.e. a regular
T.-space, is called a Ts-space.

Example 3.2: Let X be a Tj-space. Then X is also a Hausdorff space, i.e. a To-space. For let
a,b € X be distinet points. Since X is a T;-space, {a} is a closed set; and since
a and b are distinct, b & {a}. Accordingly, by [R], there exist disjoint open sets
G and H such that {¢} CG and b€ H. Hence a and b belong respectively to
disjoint open sets G and H.

NORMAL SPACES

A topological space X is normal iff X satisfies the following axiom:

[N] If F\ and F are disjoint closed subsets of X, then there exist disjoint open sets
G and H such that F, C G and F, C H.

A normal space can also be characterized as follows:

Theorem 10.6: A topological space X is normal if and only if for every closed set F
and open_ set H containing F there exists an open set G such that
FcGcGCH.

Example 4.1:  Every metric space is normal by virtue of the Separation Theorem 8.8.

Example 4.2:  Consider the topology T = {X, @, {a}, {b}, {a,b}} on the set X = {a,b,ec).
Observe that the closed sets are X, @, {b, ¢}, {a,c} and {¢}. If F, and F, are dis-
Jjoint closed subsets of (X, T), then one of them, say F;, must be the empty set Q.
Hence ) and X are disjoint open sets and F; C @ and Fy, C X. In other words,
(X, T) is a normal space. On the other hand, (X, T) is not a T;-space since the
singleton set {a} is not closed. Furthermore, (X, T) is not a regular space since
a & {c}, and the only open superset of the closed set {¢} is X which also contains a.

A normal space X which also satisfies the separation axiom [T:], i.e. a normal T:-space,
is called a Ti-space.

Example 4.3: Let X be a Ty-space. Then X is also a regular T;-space, i.e. Ty-space. For sup-
pose F' is a closed subset of X and p € X does not belong to F. By [T,], {p} is
closed; and since F' and {p} are disjoint, by [N], there exist disjoint open sets
G and H such that FC G and p € {p} C H.

Now a metric space is both a normal space and a Ti-space, i.e. a Ty-space. The follow-
ing diagram illustrates the relationship between the spaces discussed in this chapter.

Topological spaces

T,-spaces

Ty-spaces (Hausdorff)

T3-spaces (regular T, -spaces)

T4-spaces (normal T'|-spaces)

Metric spaces
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™~

URYSOHN’S LEMMA AND METRIZATION THEOREM

Next comes the classical result of Urysohn.

Theorem (Urysohn’s Lemma) 10.7: Let F; and F. be disjoint closed subsets of a normal
space X. Then there exists a continuous function
f:X~-10,1] such that

fIFi] = {0} and f[F:] = {1}

One important consequence of Urysohn’s Lemma gives a partial solution to the metri-
zation problem as discussed in Chapter 8. Namely,

Urysohn’s Metrization Theorem 10.8: Every second countable normal T -space is metriz-
able.

In fact, we will prove that every second countable normal Ti-space is homeomorphic
to a subset of the Hilbert cube in R™

FUNCTIONS THAT SEPARATE POINTS

Let o4 = {fi:i €1} Dbe a class of functions from a set X into a set Y. The class c4 of
functions is said to separate points iff for any pair of distinct points a,b € X there exists
a function f in <4 such that f(a) == f(D).

Example 5.1: Consider the class of real-valued functions
A = {fi(x) = sin®, fy(x) = sin 2x, f3(x) = sin 3z, ...}
defined on R. Observe that for every function f, € c4, £,(0) = f,(z) =0. Hence
the class o4 does not separate points.

Example 5.2: Let ((X, R) denote the class of all real-valued continuous functions on a topological
' space X. We show that if ((X, R) separates points, then X is a Hausdorff space.
Let a,b € X be distinet points. By hypothesis, there exists a continuous function
f: X >R such that f(a) # f(b). But R is a Hausdorff space; hence there exist
disjoint open subsets G and H of R containing f(a) and f(b) respectively. Accord-
ingly, the inverses f~![G] and f~1[H] are disjoint, open and contain a and b
respectively. In other words, X is a Hausdorff space.

——

We formally state the result in the preceding example.

Proposition 10.9: If the class C(X,R) of all real-valued continuous functions on a topo-
logical space X separates points, then X is a Hausdorff space.

COMPLETELY REGULAR SPACES
A topological space X is completely regular iff it satisfies the following axiom:
[CR] If F is a closed subset of X and p € X does not belong to F, then there exists a
continuous function f: X —[0,1] such that f(p) =0 and f[F]= {1}.
We show later that

Proposition 10.10: A completely regular space is also regular.

A completely regular space X which also satisfies [T:], i.e. a completely regular
Ti-space, is called a Tychonoff space. By virtue of Urysohn’s L.emma, a T.-space is a
Tychonoff space and, by Proposition 10.10, a Tychonoff space is a Tsspace. Hence a
Tychonoff space, i.e. a completely regular T.-space, is sometimes called a Tsw-space.

One important property of Tychonoff spaces is the following:

Theorem 10.11: The class ((X,R) of all real-valued continuous functions on a completely
regular T:-space X separates points.
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Solved Problems

T-SPACES

1.

Prove Theorem 10.1: A topological space X is a Ti-space if and only if every singleton
subset of X is closed.
Solution:

Suppose X is a T;-space and p € X. We show that {p}c is open. Let x € {p}c. Then x # p,

and so by [T;] -
3 an open set G, such that xE€EG, but p &G,

Hence xz € G, C {p}¢, and hence {p}c = U{G,:x & {p}¢}. Accordingly {p}c, a union of open sets,
is open and {p} is closed.

Conversely, suppose {p} is closed for every p&€ X. Let a,b€X with a+#b. Now
a*#b > b€ {a}c; hence {a}¢ is an open set containing b but not containing a. Similarly {b}c is an
open set containing a but not containing b. Accordingly, X is a T,-space.

Show that the property of being a T'i-space is hereditary, i.e. every subspace of a
Ti-space is also a Ti-space.

Solution:

Let (X,T) be a Ty-space and let (Y, Ty) be a subspace of (X, T). We show that every singleton
subset {p} of Y is a Ty-closed set or, equivalently, that Y \ {p} is Ty-open. Since (X,T) is a
T,-space, X \ {p} is T-open. But

pEYCX > YnEX\A{p) = Y\ {p}

Hence by definition of subspace, Y \ {p} is a Ty-open set. Thus (Y, Ty) is also a T;-space.

Show that a finite subset of a T:-space X has no accumulation points.

Solution:

Suppose A C X has n elements, say A = {a,...,a,}. Since A is finite it is closed and therefore
contains all of its accumulation points. But {as, ...,a,} is also finite and hence closed. Accordingly,
the complement {a,, ...,a,}¢ of {a,, ...,a,} 1is open, contains a;, and contains no points of A

different from a,. Hence a; is-not an accumulation point of A. Similarly, no other point of A is an
accumulation point of A and so A has no accumulation points.

Show that every finite Ti-space X is a discrete space.

Solution:
Every subset of X is finite and therefore closed. Hence every subset of X is also open, ie. X is a

discrete space.

Prove: Let X be a Ti-space. Then the following are equivalent:
(i) p € X is an accumulation point of A.
(ii) Every open set containing p contains an infinite number of points of A.

Solution:
By definition of an accumulation point of a set, (ii) = (i); hence we only need to prove that
(1) => ().
Suppose G is an open set containing p and only containing a finite number of points of A
different from p; say
B = (G \ {p}) n A = {a’l’ aZ’ ceey a’n}

Now B, a finite subset of a T;-space, is closed and so B¢ is open. Set H = G n B¢. Then H is open,
p € H and H contains no points of A different from p. Hence p is not an accumulation point of A

and so (i) = (ii).
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6. LetX be a Ti-space ang let B, be a local base at p € X. Show that if ¢ € X is distinct
from p, then some member of B, does not contain q. ’ . :

Solution:
Since p # q and X satisfies [T;], 3 an open set G C X containing p but not containing ¢q. Now
B, is a local base at p, so G is a superset of some B € B, and B also does not contain q. :

[N i
7. Let X be a Ti-space which satisfies the first axiom of countability. Show that if
p € X' is an accumulation point of A C X, then there-exists a sequence of distinct
_terms in A converging top. R - ‘

‘ Solution: ) «
Let B = {B,} :be a nested local base at p. Set B = By. Since p is a limit pom% of A B

(;ontalns a point a; € A different from p. By the precedmg problem,
3 Bi2 € B such that a1 & Bi2

—

Similarly Bi;’ contaiﬁs a point a, € A different from p and, since a; & Biz, different from a;. Again

“by the preceding problem, -
yHer g P 1B, €B suchthat ~ 0, &B

Furthermore, ay € B;

12: Ay e Bi $ Bi ) Bis
Contmumg in this manner we obtain a subsequence {BH’ ...} of B and -a sequence
(O, € az,i .y "of distinct terms in A with a; € Bl, as € B e But' {Bin} is also a nested local

base at p; hence (a,) converges to p.

HA/USDORFF SPACES
8. Show that the property of being a Hausdorff space is heredltary, i.e. every subspace
of a Hausdorff space is also Hausdorft.

Solution: ) §
Let (X,7T) be a Hausdorff space and let (Y, T{,) be a subspace of (X,T). Furthermore, let
a,b€Y CcX with @+ b. By hypothesis, (X, T) is Hausdorff; hence

-~

v 1GHET such that @¢€G, bEH and GNnH =@

By definition of a subspam NG and Y N H are T, open-sets. Furthermore,
P e€G €Y => a€YNG 7

bEH bEY > bEYNH
GRNH=0 > Fn®nNETnH =Yn(@GnH =Yng =0

(as indicated in the ciiagram below). Accordingly (Y, T,) is also & Hausdorff space.

9, Let T be the topology on the real line R generated by the open-closed intervals (a, b].
Show that (R, T) is Hausdorff. :

Solution:
Let a,b €ER with o+ b, say a<b. Choose G=(a—1,a] and H = (a,b]. Then
GHET, a€G b€H and GNH =@
Hence (X, T) is Hausdorff.
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10.

11.

Prove Theorem 10.4: Let X be a Hausdorff space. Then every convergent sequence
in X has a unique limit.
Solution:

Suppose (a;, a,, ...) converges to a and b, and suppose a+ b. Since X is Hausdorff, 3 open sets

G and H such that
a€EG, bEH and GNH =0

By hypothesis, (a,) converges to a; hence
I EN  such that =n>n; implies a, € G

i.e. G contains all except a finite number of the terms of the sequence. But G and H are disjoint;
hence H can only contain those terms of the sequence which do not belong to G and there are only a
finite number of these. Accordingly, (a,) cannot converge to b. But this violates the hypothesis;
hence a = b. ’

Prove Theorem 10.5: Let X be a first countable space. Then the following are
equivalent: (i) X is Hausdorff. (ii) Every convergent sequence has a unique limit.
Solution: .

By the preceding problem, (i) = (ii); hence we need only show that (ii) = (i). Suppose X is
not Hausdorff. Then 3 a,b €X, a+#b, with the property that every open set containing a has
a non-empty intersection with every open set containing b.

Now let {G,} and {H,} be nested local bases at ¢ and b respectively. Then G, N H, = ¢ for
every n € N, and so

A (ay, as, ...) such that a; €GN H;, a, € Gyn H,,

Accordingly, (a,) converges to both @ and b. In other words, (ii) = (i).

NORMAL SPACES AND URYSOHN'S LEMMA

12.

13.

Prove Theorem 10.6: Let X be a topological space. Then the following conditions are
equivalent: (i) X is normal. (ii) If H is an open superset of a closed set F, then there

exists an open set G such that Fc G c G C H.

Solution:
(i) = (ii). Let F C H, with F closed and H open. Then H¢ is closed, and F n Hc = (. But
X is normal; hence

3 open sets G, G* such that FcG, HoCcG¥ and GNG* = @
But GNG* =9 > GCGre and Hec G => G¥*cH
Furthermore, G*¢ is closed; hence F ¢ G c G C G*c C H.
(if) = (i). Let F, and F, be disjoint closed sets. Then F, C F5, and F‘; is open. By (ii),
3 an open set G such that F,.cGcGcF;
But GCF;, > F,cGe and GcG > GnGe =9

Furthermore, G¢ is open. Thus F; C G and F, ¢ G¢ with G, G¢ disjoint open sets; hence X is normal.

Let B be a base for a normal T,-space X. Show that for each G; € B and any point
P € G, there exists a member G; € ‘B such that p € G; C G..
Solution:

Since X is a T -space, {p} is closed; hence G, is an open superset of the closed set {p}. By
Theorem 10.6,
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14.

15.
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3 an open set G such that {p}cGcGc G,

Since p € G, there is a member G; of the base B such that p€ G;CG; so p€& (_}j c G. But
G C G;; hence p€ G, C G,

Let D be the set of dyadic fractions (fractions whose denominators are powers of 2) in
the unit interval [0, 1], i.e,,

D = {%7%’%’%’%%!%’%’-”’%7"-}
Show that D is dense in [0, 1].
Solution:
To show that D = [0,1], it is sufficient to show that any open interval (a—§, a+§) centered
at any point a € [0,1] contains a point of D. Observe that nlgr:o % = 0; hence there exists a

power q = 2% such that 0 < 1/q < §. Consider the intervals

ea il B2 ) 1]
Yq’ q’ql q)q! AR q b q ’ q ’

Since [0,1] is the union of the above intervals, one of them, say [i—%n, ﬁ;-—l] contains «a, i.e.

m_ _m+1 1

——. But = < §; hence
q q ¢ mn
a—-6<—q—fa<a+8

In other words, the open interval (a— 8, a+8) contains the point m/q which belongs to D. Thus
D is dense in [0,1].

Prove Theorem (Urysohn’s Lemma) 10.7: Let F; and F: be disjoint closed subsets of
a normal space X. Then there exists a continuous function f:X - [0,1] such that
f[Fl] = {0} and f[Fz] = {1}
Solution:

By hypothesis, F; N Fy = (0; hence F; CFj;. In particular, since F, is a closed set, Fg is an
open superset of the closed set F';. By Theorem 10.4, there exists an open set Gy,, such that

Fy C Gy C Gyyp C F5

Observe that Gy, is an open superset of the closed set F';, and F is an open superset of the closed
set G-l/g. Hence, by Theorem 10.4, there exist open sets Gy,4 and Gj,4 such that

Fy C Gy C Gyy C Gyp C Gy C Gyy C Gy C Fy
We continue in this manner and obtain for each t € D, where D is the set of dyadic fractions in
[0,1], an open set G, with the property that if ¢, €D and ¢, <t, then étl - Gtz.
Define the function f on X as follows:
inf{t:x€G} if x&F,
Hzy = .
1 if x€eF,

Observe that, for every € X, 0= f(x) =1, ie. f maps X into [0,1]. Observe also that F, C G,
for all t € D; hence f[F,] ={0}. Moreover, by definition, f[F,] = {1}. Consequently, the only thing
left for us to prove is that f is continuous.

Now f is continuous if the inverses of the sets [0,a) and (b,1] are open subsets of X (see
Problem 7, Chapter 7). We claim that

f=1l0, a)]
F1[(s, 1” = U{é? t> b} (2)

I

U{G,: t<a} (1)

Then each is the union of open sets and is therefore open.
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16.

‘We first prove (I). Let x € f~1[[0,a)]. Then f(x) <€ [0,a), ie. 0= f(x) < a. Since D is dense
in [0,1], there exists t, € D such that f(x) <t, < a. In other words,

fle) = inf{t:2z€G), < t, < a
Accordingly x € G,I where t, < a. Hence z€& U{G,:t<a}. We have just shown that every
element in f~1[[0,a)| also belongs to WU{G, :t <a}, ie,
70,0 € WG : t<a}

On the other hand, suppose v € U{G,:t <a}. Then 3 t,&€D such that t{, <a and y & G, .
; Yy

Therefore .
flyy = inf{t:y€G) = ¢, < a

Hence y also belongs to f~1[[0,a)]. In other words,

U{G;: t<a} < f71][0,a)]
The above two results imply (7).

We now prove (2). Let x € f~1[(b,1]|. Then f(x) € (b,1], ie. b < f(x) =1. Since D is dense
in {0,1}, there exist t;,t, € D such that b <t <t, < f(x). In other words,

flx) = inf{t:x€G) > t,
Hence « & Gtz. Observe that t; < i, implies th - Gtz. Hence x does not belong to th either. Accord-
ingly, x € @f, where ¢; > b; hence x € U{(_}f: t > b}. Consequently,
foUb, 1] ¢ U{Gy: t > b}
On the other hand, let y € U{éf : t>b}. Then there exists t, €D such that ¢, > b and
y e G;’y; hence y does not belong to th' But t < ¢, implies G, C th C Giy; hence y € G, for every t

less than t,. Consequently, ) .
, flyy = inf{t:yeG} =t, > b

Hence y € f~1((h,1]). In other words,
U{G{: t>b} c f1[(b,1]]

The above two results imply (2). Hence f is continuous and Urysohn’s Lemma is proven.

Prove Urysohn’s Metrization Theorem 10.8: Every second countable normal T:-space
X is metrizable. (In fact, X is homeomorphic to a subset of the Hilbert cube I of R™)

Solution:
If X is finite, then X is a discrete space and hence X is homeomorphic to any subset of H with an

equivalent number of points. If X is infinite, then X contains a denumerable base B = {G4, Gy, Gg, ...}
where none of the members of B is X itself.

By a previous problem, for each G; in B there exists some G; in B such that éj C G;. The class
of all such pairs (G, G), where G; C G;, is denumerable; hence we can denote them by P, P,, ...
where P, = (G]-n, G’in)‘ Observe that Gj" C Gin implies that (7]-” and an are disjoint closed subsets
of X. Hence by Urysohn’s Lemma there exists a function f,:X - {0,1] such that fn[G]-nl = {0}
and f,[Gi] = {1}. '

Now define a function f: X —>1 as follows:
- <f1(x) fal@)  falw) >
flw) = o g Tor 0 e

Fulw)
an

Observe that, for all n €N, 0= f,(x) =1 implies

s

= % hence f(x) is a point in the Hilbert

cube I. (Recall that I = {(@,): @, €R, n €N, 0 = a, = 1/n}, see Page 129.)

We now show that f is one-to-one. Let x and y be distinct points in X. Since X is a T;-space,
there exists a member G; of the base B such that z € G, but y € G;. By a previous problem, there
exists a pair P, = (G;G) such that xEG;C G;. By definition, f,,(x) =0 since wEG;, and
Fuly) =1 since y € G, ie. ¥ € G¢. Hence f(x)+ f(y) since they differ in the mth coordinate. Thus

f is one-to-one.
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We now prove that f is continuous. Let ¢ > 0. Observe that f is continuous at p € X if there
exists an open neighborhood G of p such that x € G implies |{f(z) —Ff(p)l| < ¢ or, equivalently,
[If(x) — f(p)|'2 < €. Recall that
[fnl@) — fr(p)]2

@ — il = ¥ 2

Furthermore, since the values of f, lie in [0,1], (|f,(x) —f,(p)}?)/22» = 1/22n, Note that >, 1/22
converges; hence there exists an ny = my(e), which is independent of x and p, such that

Mg _ 9
i@ - fep = 3 @ h@R

n=1 23n

SIS

Now each function f,:X — [0,1] is continuous; hence there exists an open neighborhood G, of p
such that « € G, implies If (x) — f(p)i2 < e/2ny. Let G = Gyn -+ nN G"o‘ Since G is a finite
intersection of open neighborhoods of p, G is also an open neighborhood of p. Furthermore, if x € G

then
© — 2
[l[f@) — fwI? = EM < 120<252> +€ = e

n=1 22n ng

Hence f is continuous.

Now let Y denote the range of f, i.e. ¥ = f[X] CI. We want to prove that f~1:Y - X is also
continuous. Observe that continuity in Y is equivalent to sequential continuity; hence f~1 is con-
tinuous at f(p) € Y if for every sequence (f(y,)) converging to f(p), the sequence (y,) converges to p.

Suppose f~! is not continuous, i.e. suppose (y,) does not converge to p. Then there exists an open
neighborhood G of p such that G does not contain an infinite number of the terms of (y,). Hence we
can choose a subsequence (z,) of (y,) such that all the terms of (x,) lie outside of G. Since p € G,
there exists a member G; in the base B such that p € G; € G. Furthermore, by a previous problem,
there exists a pair P,, = (G;, G such that p€ G C G; C G. Observe that, for all n €N, =, & G;

hence x, € Gi. Accordn)ély, fm(p) =0 and f,(®,) =1. Then |f,(x,)—/fn(p)|2 =1 and

fwn) — @2 = zlfk__)?ki&’_l = L

In other words, for every n €N, | f(x,)— f(p)| > 1/2m. Therefore the sequence (f(x,)) does not
converge to f(p). But this contradicts the fact that every subsequence of (f(y,)) should also converge
to f(p). Hence f~! is continuous. Hence f is a homeomorphism and X is homeomorphic to a subset
of the Hilbert cube. Accordingly, X is metrizable.

REGULAR AND COMPLETELY REGULAR SPACES
17. Prove Proposition 10.10: A completely regular space X is also regular.

Solution:

Let F be a closed subset of X and suppose p € X does not belong to F. By hypothesis, X is
completely regular; hence there exists a continuous function f:X — [0,1] such that f(p) =0 and
fIF} = {1}. But R and its subspace [0,1] are Hausdorff spaces; hence there are disjoint open sets
G and H containing 0 and 1 respectively. Accordingly, their inverses f~![G] and f~![H] are disjoint,
open and contain p and F respectively. In other words, X is also regular.

18. Prove Theorem 10.11: The class C(X,R) of all real-valued continuous functions on a
completely regular Ti-space X separates points.

Solution:

Let @ and b be distinct points in X. Since X is a T;-space, {b} is a closed set. Also, since ¢ and b
are distinct, a &€ {b}. By hypothesis, X is completely regular; hence there exists a real-valued con-
tinuous function f on X such that f{a) =0 and f[{b}] = {1}. Accordingly, f(a) = f(b).

19. Let (Y, T,) be a subspace of (X,T) and let p€Y and A CY CX. Show that if p
does not belong to the T -closure of A, then p & A, the T-closure of A.

Solution:
Now, by a property of subspaces (see Problem 89, Chapter 5),
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Ty-closureof A = Y nd

But p €Y and p &€ Ty-closure of A; hence p & A. (Observe that, in particular, if F is a Ty-closed
subset of ¥ and p € F, then p & F.)

20. Show that the property of being a regular space is hereditary, i.e. every subspace of a
regular space is regular.

Solution:

Let (X, T) be a regular space and let (Y,Ty) be a subspace of (X,T). Furthermore, let pE€ Y
and let F' be a Ty-closed subset of Y such that p € F. Now by Problem 19, p € ', the T-closure
of F. By hypothesis, (X, T) is regular; hence

1 GHeT such that FcG p€EH and GnH =9
But YN G and Y n H are Ty-open subsets of Y, and
FcY, FCcFcG > FcYngG
pEY, peEH > peEYNH
GnH=0 > (Yn@n(YnH) =@

Accordingly, (Y;,TY) is also regular.

e

Supplementary Problems

T,-SPACES
21. Show that the property of being a T,-space is topological.

22. Show, by a counterexample, that the image of a T;-space under a continuous map need not be T,.
23. Let (X,7T) be a Ty -space and let T < T*. Show that (X, T*) is also a T,-space.

24. Prove: X is a T,-space if and only if every p € X is the intersection of all open sets containing it,
ie. {p} = N{G: G open, p € G}. .

25. A topological space X is called a Ty-space if it satisfies the following axiom: —
[T;] For any pair of distinct points in X, there exists an open set containing one of the points
but not the other.

(i) Give an example of a Tj-space which is not a T -space.

(ii) Show that every T;-space is also a Ty-space.

26. Let X be a T,-space containing at least two points. Show that if B is a base for X then B\ {X} is
also a base for X.

HAUSDORFF SPACES
27. Show that the property of being a Hausdorff space is topological.

28. Let (X, T) be a Hausdorff space and let T < T*. Show that (X, T%) is also a Hausdorff space.

729. Show that if a,,...,a, are distinct points in a Hausdorff space X, then there exists a disjoint class

( {Gy, ...,G,} of open subsets of X such that «;€G,, ..., a,,€G,,.

\

¥30. Prove: Let X be an infinite Hausdorff space. Then there exists an infinite disjoint class of open
subsets of X.
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Prove: Let f:X—>Y and g:X—>Y be continuous functions from a topological space X into a
Hausdorff space Y. Then A = {x: f(x) = g(x)} is a closed subset of X.

NORMAL SPACES

32.

-~ 33.

34.

35.

36.

37.

Show that the property of being a normal space is topological.

Let T be the topology on the real line R generated by the closed-open intervals [a,b). Show that
(R,“Z‘) i§ a norr?al ‘s.pl‘aqz@,‘ 5N - éu‘m“ - \u%c( ch L4 tecornr. o - e R e
A ¢ - A [

] ;
@ fey daa

Let T be the topology on the plane R2 generated by the half-open rectangles,
fa,b) X [e,d) = {xy:a=x<b c=y<d}

Furthermore, let A consist of the points on the line Y = {(x,y):2+y =1} C R whose coordinates

are rational and let B = Y \ 4.

(1) Show that A and B are closed subsets of (R2, T).

(if)  Show that there exist no disjoint T-open subsets G and H of R? such that A CG@G and BCH;
and so (R2,T) is not normal.

Let A be a closed subset of a normal T,-space. Show that A with the relative topology is also a
normal T;-space.

Let X be an ordered set and let T be the order topology on X, i.e. T is generated by the subsets of X
of the form {z:x <a} and {x:« > a}. Show that (X,T) is a normal space.

Prove: Let X be a normal space. Then X is regular if and only if X is completely regular.

URYSOHN’S LEMMA

38.

39.

40.

~ 45.

Prove: If for every two disjoint closed subsets F;, and F, of a topological space X, there exists a
continuous function f: X — [0,1] such that f[F] = {0} and f[F,] = {1}, then X is a normal space.
(Note that this is the converse of Urysohn’s Lemma.)

Prove the following generalization of Urysohn’s Lemma: Let F; and Fy be disjoint closed subsets of
a normal space X. Then there exists a continuous function f:X - [a,b] such that f[F;] = {a} and

fIFs] = {b}.

Prove the Tietze Extension Theorem: Let F be a closed subset of a normal space X and let
f:F > [a,b] be a real continuous function. Then f has a continuous extension 4 X > [a, bt

-41. Prove Urysohn’s Lemma using the Tietze Extension Theorem.
A
REGULAR AND COMPLETELY REGULAR SPACES v- &\) i? ‘
42. Show that the property of being a regular space is topological. N \)\ ) S h \
43. Show that the property of being completely regular is topological. - ‘
44. Show that the property of being a completely regular space is hereditary, that is, every subspace of

a completely regular space is also completely regular.

Prove: Let X be a regular Lindelof space. Then X is normal.

Answers to Supplementary Problems

() Let X = {a,b} and T = {X, {a}, 9}.
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COVERS S

Let 4 = {le} be a class of subsets of X such that A C U;G; for some A C X. Recall
that o4 is then called a cover of A, and an open cover if each GL is open. Furthermore, if
a finite subelass of o4.is also a cover of A, i.e. if

/ 3Gy, ..,Gi, €4 such that 4 CGy UG,

then o4 is said “go be reducible to a ﬁmte cover or contams a finite subcover.

E\lmple 1.1: Consider the class 4 = {Dp pEZX Z},
where D, .is the open disc in the plane R2

o with radius 1 and center p={(mny, m and .
_n integers. Then c4 is a cover of R?, ie. ™
every. point in R2, belongs to at least one

’ £ member of ¢4, On the other hand, the class
of open dises B = {D pEZXZ), where,

D, has center p and radlus 4, is not a cover \?}’
\of R2. For exampl&\the point (1,1) ER?
‘does not belong to any -member of B, as S
shown in the figure. . : B is displayed
Example 1.2: Consider the classical ) » .
) Heine-Borel Theorem: Let A = [a,b] be a closed and bounded interval
’ and let {G;} be a class of open sets such that 4 C U;G;. Then one
can select a finite number of the open sets, say G, "”Gim’ so that

AcG U---UG

By virtue of the above terminology, the Heine- Borel Theorem can be restated as
R follows:

Heine-Borel Theorem: Every open cover of a closed and bounded interval
A = [a,b] is reducible to a finite cover. ~

COMPACT SETS

The-concept of compactness is no doubt motivated by the property of a closed and
bounded interval as stated in the classical Heine-Borel Theorem. Namely,

A subset A of a topological space X is compact if every open cover of A is
reducible to a finite cover.

In other words, if A is compact and A C U;Gi, where the G; are open‘sets, then one
can select a finite number of the open sets, say G ,Gi, so-that 4 C G; UG,

ip o v e %)
Example 21: . By the Heine-Borel Theorem, every closed and bounded interval [a, b] on the real
line R is compact.

*

Q/»

Example 2.2: Let A be any finite subset of a topological space X, say A = {ay,...,0a,). Then
A is necessarily compact. For if ¢ = {G;} is an open cover of A, then each point
‘ in A belongs to one of the members of G, say @, € G e Qp € Gim‘ Accord-
b ingly, ACG UG U--'UG ’

151
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Since a set A is compact iff every open cover of A contains a finite subcover, we only
have to exhibit one open cover of A with no finite subcover to prove that A is not compact.

Example 2.3: The open interval A = (0,1) on the real line R with the usual topology is not
compact. Consider, for example, the class of open intervals

g = D, &H, G0 G0, 0
Observe that 4 = UY_, G,, where G, = 1 ,L ; hence ¢ is an open cover
" n+2’'n
of A.
L) O(iSO Gs
[T ]
| G
: ! 1 G, | : Gy
o o: |(I)—(| I) Cl)— | <|)
IR I |
T TTT 7 T T T T
0 ~Thb 14 i 1
¥ 2
But ¢ contains no finite subcover. For let
G* = {(ap b)), (ay, bz)y ceny {am, b))}
be any finite subeclass of ¢. If ¢ & min (a4, ...,ay) then ¢>0 and

((11, bl) U u (ann bm) C (fr 1)

But (0,¢] and (e, 1) are disjoint; hence ¢* is not a cover of 4, and so A is not
compact.

Example 24: We show that a continuous image of a compact set is also compact, i.e. if the func-
tion f:X — Y is continuous and A is a compact subset of X, then its image flA]
is a compact subset of Y. For suppose ¢ = {G;,} is an open cover of flA], ie.
flA] C U;G;.  Then

A C [P/IA]] € F7H UGl = Ui LG
Hence ¢ = {f71[G||} is a cover of A. Now f is continuous and each G, is an

open set, so each f~1[G;] is also open. In other words, 9J{ is an open cover of A.
But A is compact, so _§{ is reducible to a finite cover, say

AC G U uftG )
Accordingly, ‘
fl[A] c f[f‘l[Gil] (WREER Uf_lLGim]] - Gix U UGy
Thus f[A4] is compact.

m

We formally state the result in Example 2.4:
Theorem 11.1: Continuous images of compact sets are compact.

Compactness is an absolute property of a set. Namely,

Theorem 11.2: Let A be a subset of a topological space (X, T). Then A is compact with
respect to T if and only if A is compact with respect to the relative
topology Ta on A.

Accordingly, we can frequently limit our investigation of compactness to those topo-
logical spaces which are themselves compact, i.e. to compact spaces.

SUBSETS OF COMPACT SPACES

A subset of a compact space need not be compact. For example, the closed unit interval
[0, 1] is compact by the Heine-Borel Theorem, but the open interval (0, 1) is a subset of [0, 1]
which, by Example 2.3 above, is not compact. We do, however, have the following

Theorem 11.3: Let F be a closed subset of a compact space X. Then F is also compact.
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Proof: Let ¢ = (G} be an open cover of F, ie. F C U;Gi. Then X = (U:G) U F5,
that is, G* = (G} U {F*} is a cover of X. But F¢ is open since F' is closed, so G* is an
open cover of X. By hypothesis, X is compact; hence G* is reducible to a finite cover
of X, say

X = GiIU"'UGimUFC, Gikeg
But F and F¢ are disjoint; hence
FCG,‘IU"' G, Giké(j

m

U
We have just shown that any open cover G = {G;} of F contains a finite subcover, i.e.
F is compact.

FINITE INTERSECTION PROPERTY
A class {A;} of sets is said to have the finite intersection property if every finite sub-
class {Ai,...,A;,} has a non-empty intersection, i.e. A N --- NA; +* Q.

m

Example 3.1: Consider the following class of open intervals:
A = {(0,1),(0,3), (0,4, (0, %), ...}

Now ¢4 has the finite intersection property, for

(0,a)) N (0,a9) N ++- N (0,0, = (0,b)
where b = min(ay, ..., a,) > 0. Observe that <4 itself has an empty intersection.
Example 3.2:  Consider the following class of closed infinite intervals:
B = {’ (—00,-2], (—oo,—l]’ (—'w’ O]y ('—wy l]y (—00,2], }

Note that B has an empty intersection, i.e. N{B,:n€Z} = ) where B, =(—=,n].
But any finite subclass of B has a non-empty intersection. In other words, B satis-
fies the finite intersection property.

-~

With the above terminology, we can now state the notion of compactness in terms of
the closed subsets of a topological space.

Theorem 11.4: A topological space X is compact if and only if every class {F} of closed
subsets of X which satisfies the finite intersection property has, itself, a
non-empty intersection.

COMPACTNESS AND HAUSDORFF SPACES

Here we relate the concept of compactness to the separation property of Hausdorff
spaces.

Theorem 11.5: Every compact subset of a Hausdorff space is closed.

The above theorem is not true in general, for example, finite sets are always compact
and yet there exist topological spaces whose finite subsets are not all closed.

Theorem 11.6: Let A and B be disjoint compact subsets of a Hausdorff space X. Then
there exist disjoint open sets G and H such that A C G and B C H.

In particular, suppose X is both Hausdorff and compact and F; and F. are disjoint
closed subsets of X. By Theorem 11.3, F; and F. are compact and, by Theorem 11.6,
F, and F, are subsets, respectively, of disjoint open sets. In other words,

Corollary 11.7: Every compact Hausdorff space is normal.
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Thus metric spaces and compact Hausdorff spaces are both contained in the class of
T's-spaces, i.e. normal Tl-spaces.

compact metric
Hausdorft

spaces
spaces

T4-spaces (normal T'j-spaces)

The following theorem plays a very important role in geometry.

Theorem 11.8: Let f be a one-one continuous function from a compact space X into a
Hausdorff space Y. Then X and f[X] are homeomorphic.

The next example shows that the above theorem is not true in general.

Example 41: Let f be the function from the half-open interval X = [0,1) into the plane R2
defined by f(t) = {cos 27t, sin 27t). Observe that f maps X onto the unit circle and

that f is one-one and continuous.
1

f

T~

O
—1 1
1

c@

But the half-open interval [0,1) is not homeomorphic to the circle. For
example, if we delete the point ¢ =} from X, X will not be connected; but if we
delete any point from a circle, the circle is still connected. The reason that
Theorem 11.8 does not apply in this case is that X is not compact.

Example 42: Let f be a one-one continuous function from the closed unit interval I = [0,1] into
Euclidean™n-space R*. Observe that I is compact by the Heine-Borel Theorem and
that R* is a metric space and therefore Hausdorff. By virtue of Theorem 11.8,
I and f[I] are homeomorphic.

SEQUENTIALLY COMPACT SETS

A subset A of a topological space X is sequentially compact iff every sequence in A4
contains a subsequence which converges to a point in A.

Example 5.1: Let A be a finite subset of a topological space X. Then A is necegsarily sequen-
tially compact. For if (8,85, ...) is a sequence in A, then at least one of the
elements in A, say @, must appear an infinite number of times in the sequence.
Hence (ay, @g, ag, ...) is a subsequence of (s,), it converges, and furthermore it
converges to the point a4 belonging to A.

Example 5.2:  The open interval A = (0,1) on the real line R with the usual topology is not
sequentially compact. Consider, for example, the sequence (s,) = ST 1% TRIY!
in A. Observe that (s,) converges to 0 and therefore every subsequence also con-
verges to 0. But 0 does not belong to A. In other words, the sequence (s,) in A
does not contain a subsequence which converges to a point in A, ie. A is not
sequentially compact.

In general, there exist compact sets which are not sequentially compact and vice versa,
although in metric spaces, as we show later, they are equivalent.

Remark: Historically, the term bicompact was used to denote a compact set, and the
term compact was used to denote a sequentially compact set.
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COUNTABLY COMPACT SETS

A subset A of a topological space X is countably compact iff every infinite subset B
of A has an accumulation point in A. This definition is no doubt motivated by the
clagsical )

Bolzano-Weierstrass Theorem: Every bounded infinite set of real numbers has an ac-
cumulation point.

Example 6.1: Every bounded closed interval A = la, b} is countably compact. For if B is an

| infinite subset of A, then B is also bounded and, by the Bolzano-Weierstrass

' Theorem, B has an accumulation point p. Furthermore, since 4 is closed, the
accumulation point p of B belongs to A4, i.e. A is countably compact.

Example 6.2: The open interval A = (0,1) is not countably compact. For consider the. infinite
subset B ={L,4,1,...} of A =(0,1). Observe that B has exactly one
limit point which is 0 and that 0 does not belong to A. Hence A is not countably
compact.

The general relationship between compact, sequentially compact and countably compact
sets is given in the following diagram and theorem.

compact —> countably compact <«— sequentially compact

Theorem 11.9: Let A be a subset of a topological space X. If A is compact or sequentially
- compact, then 4 is also countably compact.

The next example shows that neither arrow in the above diagram can be reversed.

Example 6.3: Let T be the topology on N, the set of positive integers, generated by the following
sets:
{1, 2}, {3, 4}, {5, 6},

Let A be a non-empty subset of N, say ny € A. If n; is 0dd, then #n,+1 is a
limit point of A; and if ny is even, then ny— 1 is a limit point of A. In either
case, 4 has an accumulation point. Accordingly, (N,T) is countably compact.

On the other hand, (N, T) is not compact since

A = {{1,2}, 3,4}, {5,6}, ...}

is an open cover of N with no finite subcover. Furthermore, (N, T) is not sequen-
tially compact, since the sequence (1,2,3,...) contains no convergent subsequence.

LOCALLY COMPACT SPACES

A topological space X is locally compact iff every point in X has a compact neighborhood.

Example 7.1: Consider the real line R with the usual topology. Observe that each point p € R
is interior to a closed interval, e.g. [p—§, p+ 8], and that the closed interval is
compact by the Heine-Borel Theorem. Hence R is a locally compact space. On the
other hand, R is not a compact space; for example, the class

A = {..., (=81, (=20, (-1,1), (0,2), (1,3), ...}

is an open cover of R but contains no finite subcover.

Thus we see, by the above example, that a locally compact space need not be compact.
On the other hand, since a topological space is always a neighborhood of each of its points,
the converse is true. That is,

Proposition 11.10: Every compact space is locally compact.
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COMPACTIFICATION

A topological space X is said to be embedded in a topological spac® Y if X is homeo-
morphic t6 a subspace of Y. Furthermore, if Y is a compact space, then Y is called a
compactzﬁcatzon of X. Frequently, the compactification of a space X is accomplished by
adjoining one or more points to X and then defining an appropriate topology on the
enlarged set so.that the enlarged space is compact and contains X as a subspace. ;

Example 8.1 . Consider the real line R with the usual topology U. We adjoin two new points,
- denoted by « and —w, to B and call the enlarged set R* = R U {—x, =} fhe

. extended real line. The order relation in R can be extended to R* by deﬁmng

> I e g < for’any o €R. The class of subsets of R* of t}re form ’

T ! }afb) ={r:a<w<b), (6% ={zr:a<a} and [_”%“) = {w:w<a

is a base for a topology U* on R*. Furthermore, (R*, U*) is a éompact space and
. contains (R, U) as a subspace, and so it is a compactification of (R, U). .

Recall that the real line R with the usual topology is homeomorphic to any open
_interval (a,b) of real numbers. The above space (R*, U*) can, in fact, be shownr to be
homeomorphlc to any closed 1nterva1 [@,b] which is compact by the classical Heme-Borel’
- Theorem. . 5
Example 8.2: Let:,'C denote the (z,y)-plane in Eu-
“clidian 3-space R3, and let S denote
“the sphere with center (0,0,1) on
the z-axis and radius 1. The line
= . passing through the “north pole”
o ©=1(0,0,2)€S and any point p€C
o intersects the sphere S in~exactly
<~ .one point p’ -distinct from o=, as
shown in the figure.
Let f: C->S be defined by
B _fp)y=9p’. Then f is, in fact, a
homeomorphism from the plane C,
which is not compact, onto the sub-
[ ~set S\ {»} of the sphere S, and S
- is compact., Hence S is a compacti-
fication of C. :

» Now let (X, T) be any topological space. We shall define the Alexandrov or one-poivgt
compactification of (X, T) which we denote by (X, T.). Here:

(1) X, = XU {x}, where o, called the pomt at infinity, is distinet from every
other point in X. : >

(2) T consists of the following sets:
(i) each member of the topology T on X,

(ii) the complement in X, of any closed and compact subset of X. y
We formally state: : R
Proposition 11.11: The above class T w 1S a topology on X, and (X, T.) is a compactifica-

tion of (X, T).

In general, the space (Xw, T.,) may not possess properties similar to those of the original
space. There does exist one important relationship between the two spaces; namely,
Theorem 11.12: If (X, 7T) is a locally compact Hausdorff space, then (X, 7.) is a compact

Hausdorff space.

Using Urysohn 8 lemma we obtam an important result used in measure and integration
theory: : >

Corollary 11.13: Let E be a compact subset of a locally compact Hausdorff space X, and
let E be a subset of an open set G+ X. Then there exists a continuous
“function f: X - [0,1] such that f[E] = {0} and f]{G°| = {1}.

o
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¢

COMPACTNESS IN METRIC SPACES

Corr}pactness in metric spaces can be summarized by the following
Theorem 11.14: Let A be a subset of a metric space X. Then the following statements
are equivalent: (i) A is compact, (ii) A is countably compact, and
(ili) A is sequentially compact.

Historically, metric spaces were investigated before topological spaces; hence the above
theorem giyes the main reason that the terms compact and sequentially compact are some-
times used synonymously. ; ’

The i/p\r/oof of the above theorem requires the introduction of two auxiliary metric

concépts\ which are interesting in their own right: that of a tofally bounded set and that
of a Lebesgue number for a cover.

.
e

TOTALLY BOUNDED SETS

Let X be a subset of a metric space X and let ¢> 0. A finite set of points N =
{e1,€2.. .., em} 18 called an enet for A if for every point p € A there exists an e¢; EN

Example 91: Let A = {(x,y): 22+ y% <4}, ie. A is the open disc centered at the origin and
- of radius 2. If ¢ = 3/2, then the set

j\f\/\/ N = {(1y -1)) <1y O>r <11 1); <0y _1>) (0’ 0>’<O) 1>} <_1; _1>’ <—1, 0)} <_1’ 1)}

is an enet for A. {On the other hand, if ek 4, then N is not an enet for A.

For example, p = (4, 1) : belongs to A but the distance between p and any point
) . B in N is greater than L.
’ A is shaded
) N is displayed
D - A

Recall that the diameter of A, d(A4), is deﬁngd by d(A) = sup {d(a,a’):a,a’ € A} and
that A is bounded if d(4) < e=.

A subset A of a metric space X is totally bounded. if A possesses an enet for
every ¢« > 0,

A totally bounded set can also be described ag follows: >

Propos'xtion' 11.15: A set A is totally bounded if and ohly if for every « > 0 there exists a
- decomposition of A into a finite number of sets, each with diameter
less than .

Wg first show that a bounded set need not be totally bounded.

Example 9.2: Let A be the subset of Hilbert Space, i.e. of Iy-space, consisting of the following
points: v ‘
ey — <1’ O’ 0) ce? \/

0,1,0, ...
es = (0,0,1,...)

Il

63
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Observe that d(e;,e;)) = VZ if i j. Hence A is bounded; in fact,
d(A) = sup{dle,e): e e, €A} = V2

On the other hand, A is not totally bounded. For if =4, the only non-empty
subsets of A with diameter less than ¢ are the singleton sets, i.e. sets with one
point. Accordingly, the infinite set A cannot be decomposed into a finite number
of disjoint subsets each with diameter less than 1.

The converse of the previous statement is true. Namely,

Proposition 11.16: Totally bounded sets are bounded.

One relationship between compactness and total boundedness is as follows:

Lemma 11.17: Sequentially compact sets are totally bounded.

LEBESGUE NUMBERS FOR COVERS

Let <4 = {G:} be a cover for a subset A of a metric space X. A real number § >0

is called a Lebesgue number for the cover if for each subset of A with diameter less than §
there is a member of the cover which contains A.

One relationship between compactness and Lebesgue number for a cover is as follows:

Lemma (Lebesgue) 11.18: Every open cover of a sequentially compact subset of a metric

space has a (positive) Lebesgue number.

Solved Problems

COMPACT SPACES

1.

Let T be the cofinite topology on any set X. Show that (X, T) is a compact space.

Solution:
Let g = {G;} be an open cover of X. Choose Gy € ¢. Since T is the cofinite topology, G is a
finite set, say Gj = {a;,...,a,}. Since G is a cover of X,

foreach @, €G; 3 Gy €G suchthat ¢ € G,

Hence Gy C G, U+ UG; and X = GyU Gy = Gy u G U~ UG, . Thus X is compact.

Show that any infinite subset A of a discrete topological space X is not compact.

Solution:

Recall that A is not compact if we can exhibit an open cover of A with no finite subcover.
Consider the class 4 = {{a}: a € A} of singleton subsets of A. Observe that: (i) o4 is a cover of 4;
in fact 4 = U{{a}:a € A}. (ii) 4 is an open cover of A since all subsets of a discrete space are
open. (iii) No proper subclass of o4 is a cover of A. (iv) 4 is infinite since A is infinite. Accordingly,
the open cover o4 of A contains no finite subcover, so A is not compact.

Since finite sets are always compact, we have also proven that a subset of a discrete space is
compact if and only if it is finite.
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3.

Prove Theorem 11.2: Let A be a subset of a topological space (X,T). Then the
following are equivalent:

(i) A is compact with respect to 7.
(ii) A is compact with respect to the relative topology T, on A.

Solution:
(i) © (ii): Let {G;} be a T -open cover of A. By definition of the relative topology,

1 HeT such that G, = AnH;CH,
Hence A C UGy C YU H,;

and therefore {H;} is a T-open cover of A. By (i), 4 is T-compact, so {H;} contains a finite sub-
cover, say

AcHilu-'-uH , Hike{Hi}
But then
A C Am(Hilu---uHim) = (AnHil)u U(AﬂHim) = Gilu uGim
Thus {G;} contains a finite subcover {GH’ R G"m} and (4, T,) is compact.

(ii) = (i): Let {H;} be a T-open cover of A. Set G; = A N H;; then
Acu,H, > A cCc An(UH) = U (AnH) = U;G
But G;E€ T,, so {G;} is a T s-open cover of A. By hypothesis, A is T 4-compact; thus {G;} contains
a finite subcover {Gil’ ...,G,-m}. Accordingly,
A C Gilu cee U Gim = (AnHil) U - u(AnHim) = An (H,-lu--- UHim) C Hilu uH,-m

Thus {H;} is reducible to a finite cover {Hil, ...,H,-m} and therefore A is compact with respect to T.

Let (Y, T*) be a subspace of (X,T) and let A CYCX. Show that A is T-compact
if and only if A is T*-compact.

Solution:
Let T, and ‘T be the relative topologies on A. Then, by the preceding problem, A4 is T- or
T*-compact if and only if A is T,- or Tj-compact; but T, = T%.

Prove that the following statements are equivalent:

(i) X is compact.

(ii) For every eclass {F:} of closed subsets of X, NiFi=@ implies {Fi} contains a
finite subclass {Fi,...,Fi,} with Fi.n .- 0F = .

Solution:
(1) > (ii): Suppose N;F; = @. Then, by DeMorgan’s Law,

= @ = (N Fye = U;F;
so {F{)} is an open cover of X, since each F; is closed. But by hypothesis, X is compact; hence
| F,-cl, ...,Ffm € {F{} suchthat X = Ffl u---u Ffm
Thus by DeMorgan’s Law,
P = Xc = (Fi“lu uFfm)C = F{fn nF,?; = Fyn-nF;

m

and we have shown that (i) > (ii).

(i) = (i): Let {G;} be an open cover of X, i.e. X = U;G;,. By DeMorgan’s Law,
P = Xe = (U;G) = NGy
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Since each G; is open, {G{} is a class of closed sets and, by above, has an empty intersection. Hence
by hypothesis,
3 Gicl, .. .,Gfm € {G{} such that Gicl NN Gfm =0

Thus by DeMorgan’s Law,
X = ¢ = (Gf}n ﬂGfm)c = GiclcU UGI_C;L = G

LU UG

tm

Accordingly, X is compact and so (ii) 5> (i).

Prove Theorem 11.4: A topological space X is compact if and only if every class {F'}
of closed subsets of X which satisfies the finite intersection property has, itself, a
non-empty intersection.

Solution:
Utilizing the preceding problem, it suffices to show that the following statements are equivalent,
where {F,} is any class of closed subsets of X:

(i) Fon-nF #9 Vi, ., > 0F#*0
(ii) NF =0 > 3iy...in, st Fy0-nF =9

But these statements are contrapositives.

COMPACTNESS AND HAUSDORFF SPACES

7.

Prove: Let A be a compact subset of a Hausdorff space X and suppose p € X\ 4.
Then 3 open sets G, H suchthat p€G, ACH, GNH=0Q

Solution:
Let a €A. Since p€ A, p # a. By hypothesis, X is Hausdorff; hence

3 open sets G4, H,  such that pEG, a€H, G,nH, =9
Hence A c U{H,:a€ A}, ie. {H,:a € A} is an open cover of A. But A is compact, so
1H,,.,H, €{H) such that A4 c H, U--- UH,

Now let H = Ha1 U--u Ham and G = Ga1 n-- N Gam. H and G are open since they are
respectively the union and finite intersection of open sets. Furthermore, A CH and p € G since
p belongs to each Gai individually.

Lastly we claim that G N H = (). Note first that G“i N H“i = ¢ implies that G N H"i = .
Thus, by the distributive law,

GnH = Gn(H, U---VH, ) = (GNH,)U - U(GNH, ) = QU - UD =D

Thus the proof is complete.

Let A be a compact subset of a Hausdorff space X. Show that if p € A, then there
is an open set G such that p € G C A-.

Solution:
By Problem 7 there exist open sets G and H such that p€ G, ACH and GNH = Q.

Hence GNA = @, and p € G C A-.

Prove Theorem 11.5: Let A be a compact subset of a Hausdorff space X. Then A is
closed.

Solution:
We prove, equivalently, that A¢ is open. Let p € A¢, i.e. p € A. Then by Problem 8 there exists
an open set G, such that p € G, C Ac. Hence A¢ = U{G,:p € Ac}.

Thus A¢ is open as it is the union of open sets, or, A is closed.
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10. Prove Theorem 11.6: Let A and B be disjoint compact subsets of a Hausdorff space X.
Then there exist disjoint open sets G and H such that A € G and B C H.

Solution:
Let a € A. Then a € B, for A and B are disjoint. By hypothesis, B is compact; hence by
Problem 1 there exist open sets G, and H, such that

ea€G,, BCcH, and G,NnH, = @

Since a € G, {G,:a € A} is an open cover of A. Since A is compact, we can select a finite number
of the open sets, say Gal, Cee Gam, so that A C Ga1 U J Gam. Furthermore, B C Ha1 n-«-n Ham

since B is a subset of each individually.

Now let G = Ga1 U--uG, and H = Ha1 Ne- N Ham. Observe, by the above, that A C G
and B C H. In addition, G and H are open as they are the union and finite intersection respectively
of open sets. The theorem is proven if we show that G and H are disjoint. First observe that, for
each 1, Gai N H‘li = (0 implies G“i N H = (. Hence, by the distributive law,

GNnH = (Galu-uuGam)nH = (GalmH)u---u(GamnH) = Qu---uUpP = @

Thus the theorem is proven.

11. Prove Theorem 11.8: Let f be a one-one continuous function from a compact space X
into a Hausdorff space Y. Then X and f[X] are homeomorphic. "&f f-.‘; b Ao

Solution:

Now f:X - f[X] is onto and, by hypothesis, one-one and continuous, so f—!: f[X] » X exists.
We must show that f~1 is continuous. Recall that f—1 is continuous if, for every closed subset F
of X, (f~)~L[F] = f[F] is a closed subset of f[X]. By Theorem 11.3, the closed subset F' of the
compact space X is also compact. Since f is continuous, f[F] is a compact subset of f[X]. But the
subspace f[X] of the Hausdorff space Y is also Hausdorff; hence by Theorem 11.5, f[F] is closed.
Accordingly, f~! is continuous, so f: X - f[X] is a homeomorphism, and X and f[X] are homeomorphic.

12. Let (X, T) be compact and let (X, T*) be Hausdorff. Show that if T* C T, then T* = T.

Solution:

Consider the function f:(X,T)—> (X,T*) defined by f(x) =x, ie. the identity function on X.
Now f is one-one and onto. Furthermore, f is continuous since T* Cc T. Thus by the preceding
problem, f is a homeomorphism and therefore T%* = T.

SEQUENTIALLY AND COUNTABLY COMPACT SETS

13. Show that a continuous image of a sequentially compact set is sequentially compact.

Solution:

Let f: X - Y Dbe a continuous function and let A be a sequentially compact subset of X. We
want to show that f[A] is a sequentially compact subset of Y. Let (b, by, ...} be a sequence in
f[A]. Then

3 a0, ... EA such that flay)) =b,, YVREN

But A is sequentially compact, so the sequence (a, a,, ...) contains a subsequence (ah‘ Qi -+ ) which
converges to a point ¢y, € A. Now f is continuous and hence sequentially continuous, so

(Flai), flayy), ...y = (bi, by, ...) converges to f(ag) € f[A]

Thus f[A] is sequentially compact.
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14.

15

16.

17.

.

Let 7 be the topology on X which consists of ¢) and the complements of countable sub-
sets of X. Show that every infinite subset of X is not sequentially compact.

Solution:
Recall (Example 7.3, Page 71) that a sequence in (X, T) converges iff it is of the form

<(11, Ay vy an07 P, D, P . )

that is, is constant from some term on. Hence if A is an infinite subset of X, there exists a sequence
(h,) in A with distinct terms. Thus (b,) does not contain any convergent subsequence, and A is not
sequentially compact.

Show that: (i) a continuous image of a countably compact set need not be count-
ably compact; (ii) a closed subset of a countably compact space is countably
compact.

Solution:

(i) Let X = (N,T) where T is the topology on the positive integers N generated by the sets
{1,2}, {3,4}, {5,6},.... By Example 6.3, X is countably compact. Let Y = (N, .)) where 2
is the discrete topology on N. Now Y is not countably compact. On the other hand, the function

~f + X > Y which maps 2n and 2n —1 onto n for n € N is continuous and maps the countably com-
pact set X onto the non-countably compact set Y.

(if) Suppose X is countably compact and suppose F is a closed subset of X. Let A be an infinite subset
of F. Since F C X, A is also an infinite subset of X. By hypothesis, X is countably compact; then
A has an accumulation point pE€ X. Since A CF, p is also an accumulation point of F. But F is
closed and so contains its accumulation points; hence p € F. We have shown that any infinite
subset A of F' has an accumulation point p € F, that is, that F is countably compact.

Prove: Let X be compact. Then X is also countably compact.

Solution:

Let A be a subset of X with no accumulation points in X. Then each point p € X belongs to an
open set G, which contains at most one point of A. Observe that the class {G,:p€E X} is an open
cover of the compact set X and, hence, contains a finite subcover, say {GPl’ .. "Gl’m}'

Hence ACXCG,,IU-”UG

Pm

But each GT’i contains at most one point of 4; hence A, a subset of Gpl Uo-eeu Gl)m, can contain at
most m points, i.e. A is finite. Accordingly, every infinite subset of X contains an accumulation point
in X, i.e. X is countably compact.

Prove: Let X be sequentially compact. Then X is also countably compact.
Solution:

Let A be any infinite subset of X. Then there exists a sequence (¢, ay, ...) in A with distinct
terms. Since X is sequentially compact, the sequence (a,) contains a subsequence <ai1’aiz’ ...y (also
with distinet terms) which converges to a point » € X. Hence every open neighborhood of p contains
an infinite number of the terms of the convergent subsequence <a1-n>. But the terms are distinct; hence
every open neighborhood of p contains an infinite number of points in A. Accordingly, p € X is an
accumulation point of A. In other words, X is countably compact.

Remark: Note that Problems 16 and 17 imply Theorem 11.9.
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18.

¥

Prove: Let A C X be sequentially compact. Then every countable open cover of A is
reducible to a finite cover.
Selution:

We may assume A is infinite, for otherwise the proof is trivial. We prove the contrapositive, i.e.
assume 3 a countable open cover {G;:1€ N} with no finite subcover. We define the sequence
(ayyaq, ...) as follows. o

"Let 1y be the smallest positive integer such that A n Gn1 # (. Choose a; €A N Gnr Let ny
be the least positive integer larger than n; such that A N an # (. Choose

as € (ANG,) \(ANG,)

‘Such a point always exists, for otherwise Gn1 covers A. Continuing in this manner, we obtain the

sequence (@, 8y, ) with the property that, for every i€ N,
©E€EANG,, @& U 1ANG, ) and  m> o,

* We claim that (¢;) has no convergent subsequence in A. Let p € A. Then
% - 3 Gio € {G;} such that p€ Gio

Now AN Gio #* ), since pE AN Gio; hence

o . 3 jEN such that G"jo = Gio

Buﬁ_\by the choice of the sequence (a4, ay,...)
[, - 7> jO é a; e GiO
Accordingly, since Gio is an open set containing p, no subsequence of (a;) converges to p. But p was
arbitrary, so A is not sequentially compact.
Mz

i

. L oo
)

COMPACTNESS IN METRIC SPACES

19.

Prove Lemma 11.17: Let A be a sequentially compact subset of a metric space X.
Then A is totally bounded.

: Solutlon

we prove the contrapositive of the above statement, i.e. if A is not totally bounded, then A {s not
sequentlally compact. If A is not totally bounded then there exists an e > 0 such that A possesses
no (finite) enet. Let a; € A. - Then there exists a point ay, € A with d(ay, as) =¢, for otherwise
{ay} would be an enet for. A. Similarly, there exists a point a3 €A with d(ay,a3) = and

d(ay, a3) = ¢, for otherwise. {al, as} would be-an enet for A. Continuing in this manner, we arrive at

" a sequence (a,ay, :..) with the property that d(g; ,a;) = e for i+ j. Thus the sequence (a,) cannot

20.

contain any subsequence which converges. In other words, A is not sequentially compact.

Prové Lemma (Lebesgue) 11.18: Let o4 = (Gi} be an open cover of a sequentially
compact set A. Then <4 has a (positive) Lebesgue number.

Solution:

Suppose ¢4 does not have a Lebesgue number. Then for each positive integer n € N there exists
a subset B, of A with the property that

0<d(B,) <1/n- and B,¢ G; for every G; in o4
For each n € N, choose a point b, € B,. Since A is sequen-

tially compact, the sequence (by, by, .. .) contains a subsequence
(b; , iy .. .)/\ithich converges to a point p € A,

Since p € A, p belongs to an open set G, in the cover 4.
Hence “there exists an open sphere S(p,e), with center p and
radius ¢, such that p € S(p,¢) C G,. Since <bfn> converges to p,

there exists a positive integer i"o such that
d(p, biy ) < Le, bin e Bin and d(Bin ) < Le
Using the Tr1angle Inequality we get Bm c S(p,¢) C Gp. But

‘this contradicts the fact that Bm ¢ G; for every G; in the

By, 0 is shaded

cover ¢4, Accordingly ¢4 does possess a Lebesgue number.



164 COMPACTNESS [CHAP. 11

21. Prove: Let A be a countably compact subset of a metric space X. Then A is also
sequentially compact.
Solution:
Let (ay,a,, ...) be a sequence in A. If the set B = {a,d,, ...} is finite, then one of the points,
say a;, satisfies a; = a; for infinitely many j € N. Hence (aio, Qg ...y is a subsequence of (a,)

0
which converges to the point @, in A.

On the other hand, suppose B = {a;, a,, ...} is infinite. By hypothesis, A is countably compact.
Hence the infinite subset B of A contains an accumulation point p in A. But X is a metric space;
hence we can choose a subsequence (@, @y o) of the sequence (a,) which converges to the point p
in A. In other words, 4 is sequentially compact.

22. Prove Theorem 11.14: Let A be a subset of a metric space X. Then the following are
equivalent: (i) A is compact, (ii) 4 is countably compact, and (iii) A is sequentially
compact.

Solution:

Recall (see Theorem 11.8) that (i) implies (ii) in every topological space; hence it is true for a
metric space. In the preceding problem we prowed that (ii) implies (iii). Accordingly, the theorem is
proven if we show that (iii) implies (i).

Let A be sequentially compact, and let o4 = {G;} be an open cover of A. We want to show
that A is compact, i.e. that- o4 possesses a finite subcover. By hypothesis, A is sequentially compact;
hence, by Lemma 11,18, the cover ¢4 possesses a Lebesgue number § > 0. In addition, by Lemma 11.17,
A is totally bounded. Hence there is a decomposition of A into a finite number of subsets, say
B, ...,B,, with d(B)<§5. But § is a Lebesgue number for cf; hence there are open sets

Gi1’ cey Gfm € c4 such that

] BlCGi1’ e BmcGim
Accordingly, A c ByjuB,uU ---UB, C GiIUGi2U---UGim
Thus 4 possesses a finite subcover {Gfl’ ces Gim}’ i.e. A is compact.

23. Let A be a compact subset of a metric space (X,d). Show that for any B C X there
is a point p €A such that d(p, B) = d(4, B).
Solution:
Let d(4,B) = e. Since d(A,B) = inf{d{a,b): a € A, b € B}, for every positive integer n €N,
30,€4, b,EB such that e = da,, b,) < et+1l/n
Now A4 is compact and hence sequentially compact; so the sequence (a;,ay,...) has a subsequence
which converges to a point p € A. We claim that d(p,B) = d(4,B) = e

Suppose d(p,B) > ¢, say d(p,B) = ¢+ where § > 0. Since a subsequence of (a,) converges

to p,
I npEN such that d(p, a"o) < %8 and d(ano, b"o) < e+ 1/ny < e+ %8

Then d(p, ay) + Ay by) < 38+t 48 = e+ s = dp,B) = d(p,by)

But this contradicts the Triangle Inequality; hence d(p, B) = d(4,B).

24. Let A be a compact subset of a metric space (X,d) and let B be a closed subset of X
such that A N B = @. Show that d(4,B) > 0.

Solution:
Suppose d(4,B) = 0. Then, by the preceding problem,

3 pcAd such that d(p,B) = d(A,B) = 0

But B is closed and therefore contains all points whose distance from B is zero. Thus p € B and
so p € A N B. But this contradicts the hypothesis; hence d(A,B) > 0.
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25. Prove: Let f be a continuous function from a compact metric space (X, d) into a metric

space (Y,d*). Then [ is uniformly continuous, i.e. for every « > 0 there exists a § > 0
such that
d(z,y) <8 > d*(f(®),f(y)) < e

(Remark: Uniform continuity is a stronger condition than continuity, in that the §
above depends only upon the ¢ and not also on any particular point.)

Solution:
Let ¢ > 0. Since f is continuous, for each point p € X there exists an open sphere S(p,s,) such

that
x € S(p,8y) > flx) € S(f(p), o)

Observe that the class <4 = {S(p,8,): p € X} is an open cover of X. By hypothesis, X is compact
and hence also sequentially compact. Therefore the cover c4 possesses a Lebesgue number § > 0.

Now let «,7 € X with d(x,y) < §. But d(x,y) = d{z,y} < 8 implies {x,y} is contained in a
member S(py, Spo) of the cover A. Now

x,Y € S(P(), 81)0) é f(x)’ f(y) € S(f(pO): %E)

But the sphere S(f(py), 4¢) has diameter e. Accordingly,
diz,y) <8 > d(f@),fly) <e

In other words, f is uniformly continuous.

Supplementary Problems

COMPACT SPACES

26.

27,

28.

29.

30.

Prove: If E is compact and F is closed, then ENF is compact.

Let A,,...,A, be compact subsets of a topological space X. Show that A, U --- UA, is also
compact.

Prove that compactness is a topological property.

»
Prove Proposition 11.11: The class 7, is a topology on X_ and (X, T,) is a compactification of
(X,T). (Here (X_,T_) is the Alexandrov one-point compactification of (X, T).)

Prove Theorem 11.12: If (X,T) is a locally compact Hausdorff space, then (X_,T ) is a compact
Hausdorff space.

SEQUENTIALLY AND COUNTABLY COMPACT SPACES

31.

32.

33.

34.

35.

Show that sequential compactness is a topological property.

Prove: A closed subset of a sequentially compact space is sequentially compact.

Show that countable compactness is a topological property.

Suppose (X, T) is countably compact and T*=T. Show that (X, T*) is also countably compact.

Prove: Let X be a topological space such that every countable open cover of X is reducible to a finite
cover. Then X is countably compact.
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36. Prove: Let X be a T,-space. Then X is countably compact if and only if every countable open cover
of X is reducible to a finite cover.

37. Prove: Let X be a second countable T;-space. Then X is compact if and only if X is countably
compact.

TOTALLY BOUNDED SETS

38. Prove Proposition 11.15: A set A is totally bounded if and only if for every ¢ > 0 there exists a
decomposition of A into a finite number of sets each with diameter less than e.

39. Prove Proposition 11.16: Totally bounded sets are bounded.
40. Show that every subset of a totally bounded set is totally bounded.
41. Show that if A is totally bounded then A is also totally bounded.

42. Prove: Every totally bounded metric space is separable.

COMPACTNESS AND METRIC SPACES

43. Prove: A compact subset of a metric space X is closed and bounded.

44. Prove: Let f: X —>Y be a continuous function from a compact space X into a metric space Y.
Then f[X] is a bounded subset of Y.

45. Prove: A subset A of the real line R is compact if and only if A is closed and bounded.
46. Prove: Let A be a compact subset of a metric space X. Then the derived set A’ of A is compact.
47. Prove: The Hilbert cube I = {(a,): 0 = a, = 1/n} is a compact subset of R”.

48. Prove: Let A and B be compact subsets of a metric space X. Then there exist a € 4 and be B
such that d(a,b) = d(A, B).

LOCALLY COMPACT SPACES

49. Show that local compactness is a topological property.

50. Show that every discrete space is locally compact.

51. Show that every indiscrete space is locally compact.

52. Show that the plane R2 with the usual topology is locally compact.

53. Prove: Let 4 be a closed subset of a locally compact space (X, T). Then A with the relative topology
is locally compact.
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Chapter 12

Product Spaces

PRODUCT TOPOLOGY

Let {(Xi:i€l }- be any class of sets and let X denote the Cartesian product of these\
sets, i.e. X = [],X,, Note that X consists of all points p = (a;:%i €I) where a: € X..
Recall that, for each jo € I we defined the projection ;, from the product set X to the
coordinate space X, i.e. = : X > X;, by 8
p - 77']0(<6L1 . ?/ S I)) = a/]o
These p\f}ectlons are used to define the product topology.

Let {(Xi, T:)} be a collection of topological spaces and let X be the product,
of the sets X;,i.e. X =[], X,, The coarsest topology T on X with respect to
- which all the projections =,: X - X, are continuous is called the (Tychonoﬁ')
product topology. The product set X with the product topology 7, i.e. (X, T),
\ is called the product topological space or, simply, product space. \

In cfther words, the product topology T on the product set X = Hl X, is the topology

generated by the projections (see Chapter 7).
¢ Example 1.1: Consxder the Cartesian plane R?2 = R X R. Recali that the inverses 7, “Ya, b)

and 7, Ha, b) are infinite open strips which form a subbase for the usual topolog'y
on RZ,

y —1(a, ) 1(“’: b) ™~

Thus the usual topology on R? is the topology generated b%r the pro;ectlons from
R2 into R.

In view of the above definition, we can state the result in Example 1.1 as follows:
Theorem 12.1: The usual topology on R? = R X R is the product topology.

Example 1.2: Let {X;: 7€ I} be a collection of Hausdorff spaces and let X be the product spage,

"~ ie. X =TI;X;. We show that X is also a Hausdorff space. Let p = (a;: i€ )

N and ¢ = (b;: 1 € I} be distinct points in X. Then p and ¢ must differ in at least
one coordinate space, say on, ie. 3, +* bfo‘ "By hypothesis, Xj0 is Hausdorff;

hence there exist disjoint open subsets G and H of on such that a;, € G and

bfo € H. By definition of the product space, the projection Tiy* X - on is con-

167
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o tinuous. Accordingly 771';1 [G] and iy 1 [H] are open disjoint subsets of X contain-
ing p and ¢ respectively. Hence X is also a Hausdorff space.

BASE FOR A FINITE PRODUCT TOPOLOGY’

The Cartesian product A X B of two open finite intervals A and B is an open rectangle
in R? as iuustrated below.

I

P Bl
_________ Qr — — —

|
s &

|

[

I
—
o
[

!

[

|
A
!

As noted previously, the open rectangles form a base for the usual topology on R? - .

which is also the product topology on R?. A similar statement is true for every finite
product topology. Namely,
Proposition 122 Let Xy, -+, Xn be a finite number of topological spaces, and let X be
the product space, i.e. X = X1 X -+ X Xu. Then the following sub-
sets of the product space X, '

Gi X Gg X +-+ X Gn

where G; is an open subset of X;, form a base for the product topology
on X. ¢

As we shall see in the next section, the above proposition is not true in the caséy of an
infinite product space. ‘

pl

DEFINING SUBBASE AND DEFINING BASE FOR THE PRODUCT TOPOLOGY
Let {Xi:i €I} be a collection of topological spaces and let X denote the product space,

e X = [L.X, If Gi is an open subset of the coordinate space Xj, then = *[Gj] consists

of all points p = (@;:4 €Iy in X such that =;(p) € Gj.. In other words
W:;—(;I[Gjo]\ = H{Xl’b?éjo} X Gjo

In particular, if we have a denumerable collection of topological spaces, say (X, Xs, ...}
then the product space

X :HX" = X1><X2><X3X"'
consists of all sequences =t
P = {ai, Q2 A3y ...) where a. € X»

and, furthermore,
77].;1’ [Gjo] = Xy X -++ X X]'O—l X Gjo X Xj0+1 Koo

o

[
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By definition, the product topology on X is the “smallest”, i.e. coarsest, topology on X
with respect to which all the projections are continuous, i.e. the topology generated by
the projections. Accordingly, the inverse projections of open sets in the coordinate spaces
form a subbase for the product topology (Theorem 7.8). Namely,

Theorem 12.3: The class of subsets of a product space X = [], X, of the form
77!;1 [Gjo] = H (Xi: i+ jo} X Gjo
where G, is an open subset of the coordinate space Xj, is a subbase and
is called the defining subbase for the product topology.
Furthermore, since finite intersections of the subbase elements form a base for the

topology, we also have

Theorem 12.4: The class of subsets of a product space X = [], X, of the form
wjzl[Gjl]ﬂ--.ﬂw]:’,l[Gjm] = H{Xiii#]'l,...,].m}XGle "'XGjm
where G, is an open subset of the coordinate space Xj,, is a base and is
called the defining base for the product topology.

Using the above properties, we can prove the following central facts about product
spaces.

Theorem 12.5: A function f from a topological space Y into y f X
a product space X = [], X, is continuous if
and only if, for every projection =, the com- P i
position mapping =,of:Y > X, is also con- 4
tinuous. X

Theorem 12.6: Every projection =,: X > X, on a product space X = [, X, is both open
and continuous, i.e. bicontinuous.

Theorem 12.7: A sequence py, ps, . . . of points in a product space X = [, X, converges to
the point ¢ in X if and only if, for every projection =,: X > X, the se-
quence = (p,), =(p,), ... converges to =(q) in the coordinate space X,

In other words, if pi = (ay), p2 = (az), ... and ¢ = (b;) are points in a product space
X = [[, X, then
p-=>q in X iff  as, - b in every coordinate space X;

EXAMPLE OF A PRODUCT SPACE

Let R; denote a copy of R, the set of real numbers
with the usual topology, indexed by the closed unit 3
interval I = [0,1]. Consider the product space L
X = []{(Ri:t €I}. We can represent X graphically 2|
as in the adjoining figure. Here the horizontal axis
denotes the index set I = [0,1], and each vertical line lﬂ_/
through a point, say j, in I denotes the coordinate

space Rj,. Consider an element p = (a;: ¢ €I) in the 0 7 1
product space X. Observe that p assigns to each num-
ber 7€ the real number a; i.e. p is a real-valued -1
function defined on the index set I = [0,1]. In other
words, the product space X is the class of all real- -2+
valued functions defined on I, i.e.,
X = {p: p:I>R} ] R

Some of the elements of X are also displayed in the
figure. Members of X
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We now describe one of the members of the defin-

ing subbase <f for the product topology on X. Recall 3 G
that <f consists of all the subsets of X of the form 2 %
szl[GJ'o] = H{Rl 1:75]'0} X Gjo i

where G, is an open subset of the coordinate space R;,.
Suppose Gj, is the open interval (1,2). Then =; Gy,
consists of all points »p = (@;:i €I) in X such that -1
a;, € Gj, = (1,2), i.e. all functions p:I-> R such that
1 <p(j,) <2. Graphically, L '[Gj,) consists of all those

\o
/]

functions passing through the open interval G; = (1, 2) 31 E;,
on the vertical line representing the coordinate space
R;,, as illustrated in the adjacent diagram. Members of = 1[G ]

Lastly we describe one of the open sets, say B, of
the defining base B for the product topology on X.
Recall that B is the intersection of a finite number of G
the members of the defining subbase </ for the product
topology, say, —

B = ”j_ll[Gh] N '”J';I[sz] n '”"j;l[Gfa] /2%

= IR :i+4,0,7,) X Giy X G, X G

G;

Graphically, then, B consists of all functions passing
through the open sets G;,, G;, and G;, which lie on the
vertical lines denoting the coordinate spaces E;, Rj, R; R R;
and R;,. Some of the members of B are displayed in ! 2 3
the diagram on the right. Members of B

Consider the following proposition.

Proposition 12.8: Let {(X;, T:)} be a collection of topological spaces and let X denote the
product of the sets X, i.e. X = Hi X.. Then the subsets of X of the form

H (Gi:tel}
where G; is an open subset of the coordinate space X;, form a base for
a topology on the product set X.

Remark: The topology on the product set X = Hi X, appearing in Proposition 12.8 is
not always identical to the product topology on X as defined in this chapter.
On the other hand, Proposition 12.2 shows that the two topologies coincide in
the case of a finite product space. Historically, the topology in Proposition 12.8
appeared and was investigated first. Tychonoff is credited with defining the
(Tychonoff) product topology and proving for it one of the most important
and useful theorems in topology, the Tychonoff Product Theorem. It is because
of this theorem that the product topology is considered the “right” topology
on the product set.

TYCHONOFF’S PRODUCT THEOREM

A property P of a topological space is said to be product invariant if a product space
X = J[,X, possesses P whenever each coordinate space X, possesses P. For example, the
property P of being a Hausdorff space is product invariant since, in view of Example 1.2,
the product of Hausdorff spaces is also Hausdorfl. The celebrated Tychonoff Product
Theorem states that compactness is also a product invariant property:
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Theorem (Tychonoff) 12.9: The product of compact spaces is compact.

The proof of Theorem 12.9 which is given in the solved problem section relies on the
set-theoretic lemma which follows; the proof of the lemma requires Zorn’s Lemma. This
is not too surprising since it has been shown that the Tychonoff Product Theorem is, in
fact, equivalent to Zorn’s Lemma.

Lemma 12.10: Let c4 be a class of subsets of a set X with the finite intersection property.
Consider the collection P of all superclasses of <4 which have the finite
intersection property. Then P, ordered by class inclusion, contains a
maximal element 7.

Recall (see Chapter 11) that a class o4 = {A4;:71 €1} possesses the finite intersection
property iff every finite subclass of 4, say {A4:,...,A4;, L, has a non-empty intersection,
ie. AynN---NA, +* Q.

METRIC PRODUCT SPACES

Let {(X; di)} be a collection of metric spaces and let X denote the product of the sets
X, ile. X = Hi X,. Since the metric spaces (X, di) are also topological spaces, we can speak
of the product topology on X. On the other hand, it is natural to ask whether or not it is
possible to define a metric d on the product set X so that the topology on X induced by
the metric d is identical to this product topology. The next two propositions give a positive
answer to this question in the case of a finite or a denumerable collection of metric spaces.
The metrics given are in no way unique.
Proposition 12.11: Let (X, d1), ..., (X, du) be metric spaces and let p = (a4, ...,a») and

m

g = (b, ...,bm) be arbitrary points in the product set X = J] X.
i—=1

Then each of the following funections is a metric on the product set X:

d(px q) = V d'l(aly bl)z + - 4 dxm(am, bm>2
d(p) q) = max {dl(a/h bl), “ .y dm(am, bm)}
dip,q) = di(a, by) + -+ + dn(am, bw)

Moreover, the topology on X induced by each of the above metrics is
the product topology.

Proposition 12.12: Let {(X1,d1), (X2, ds), ...} be a denumerable collection of metric spaces
and let p = (01,as, ...} and q = (b1, by, ...) be arbitrary points in the

product set X = [] X.. Then the function d defined by
n=1
& 1 da(an, bn)
d(p, — 1 Gl On)
P9 = 2 5 75 e b)

is a metric on the product set X and the topology induced by d is the
product topology.

CANTOR SET
We now construct a set T of real numbers, called the Cantor or ternary set, which has
some remarkable properties. Trisect the closed unit interval I = [0,1] at the points

1 and % and then delete the open interval (}, %), called the “middle third”. Let T: denote
the remainder of the points in I, i.e,,

Ty = [0,4] U [31]
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We now trisect each of the two segments in 7 at { and 2 and ¥ and &, and then delete the
“middle third” from each segment, i.e. (4,2) and (%, %). Let T» denote the remainder of the
points in T, i.e., A
T. = [0,4] U [4] U 33 U [51]
If we continue in this manner we obtain a descending sequence of sets
T, 2T, 2T D

where T, consists of the points in Tn-; excluding the “middle thirds”, as shown.

I o .
0 1
Tl g &
0 1 2 1
Ty o= - ~— -— °
0 1 2 1
Toso—o—0—o—— o o oo o o oo oo o—e
0 1 2 1

sl
el

Observe that T, consists of 2™ disjoint closed intervals and, if we number them con-
secutively from left to right, we can speak of the odd or even intervals in T.,.

The Cantor set T is the intersection of these sets, i.e. T = N {Ti:7 € N}.

PROPERTIES OF THE CANTOR SET
We define a function f on the Cantor set T as follows:
fly = (ay, as ...)
where

JO if « belongs to an odd interval in Tw
an =
12 if x belongs to an even interval in T»

The above sequence corresponds precisely to the “decimal expansion” of x written to the
base 3, i.e. where

= (D) v ) () o a()
x = a <§> A g as ﬁ Am gm

Consider now a discrete space of two elements, say A = {0,2}, and let A, denote a
copy of A indexed by ¢ € N, the positive integers.

Proposition 12.13: The Cantor set T is homeomorphic to the product space
X = H {A;: T EN}
In particular, the function f:T — X defined above is a homeomorphism.

Remark: The Cantor set T possesses the following interesting properties:

(1) T is non-denumerable. For T is equivalent to the set of sequences
(a1, as, ...), where a;=0 or 2, which has cardinality 2% =e.

(2) T has “measure” zero. For the measure of the complement of 7' relative

to I = [0,1], i.e. the union of the middle thirds, equals
1 2 4 8
3t9tar tEr

But the measure of I = [0,1] is also 1. Hence the measure of T is zero.

+ oo o= 1
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Solved Problems

PRODUCT SPACES
1. Consider the topology T = {X, 0, {a}, {b,c}} on X = {a,b,c¢} and the topology
={Y, 9, {u}} on Y = {u,v).
(i) Determine the defining subbase o/ of the product topology on X x Y.
(ii) Determine the defining base B for the product topology on X X Y.

Solution:
Note first that X XY = {au, (), bu), (bv), (c,u, (¢, v)}

is the product set on which the product topology is defined.

()  The defining subbase of is the class of inverse sets = ![G| and = ![H] where G is an open
subset of X and H is an open subset of ¥. Computing, we have
7 1 [X] = 7 1[Y] = XXY
x Yy
2 IS 17 B
7. e}l = {aw, (@)}
7 1 [{b, e}l = {(b,w), (b,v), (¢, w), (¢, v)}
71 [{u}] = {<a5 u), (by u, (c, M)}

Hence the defining subbase of consists of the subsets of X X Y above.

(ii)  The defining base B consists of finite intersections of members of the defining subbase of. Tlat is,
B = {XXY, 0, {aw}, {bw,l,w} {auw, v}
{(b,u), (b, v), (e, w), (¢, )}, {(a,u), (b, w), (¢, w)}}

2. Prove Theorem 12.5: A function f: Y- X from a topo- y f e
logical space Y into a product space X = HiXi is con- 1#;’
tinuous if and only if, for every projection . X>X, Tio g
the composition = of:Y —» X, is continuous. X
Solution:

By definition of the product space, all projections are continuous. So if f is continuous, then
7;°f, the composition of two continuous functions, is also continuous.

On the other hand, suppose every composition function =;0f:Y - X, is continuous. Let G be
an open subset of X;. Then, by continuity of #;0f,

(moN) MG = f [+ [6]]
is an open set in Y. But the class of sets of the form
7. 1[G] where G is an open subset of X;

is the defining subbase for the product topology on X. Since their inverses under f are open subsets
of Y, f is a continuous function by Theorem 7.2.

3. Let B be a member of the defining base for a product space X = Hi X,. Show that
the projection of B into any coordinate space is open.

Solution:
Since B belongs to the defining base for X,

B = TJI{X,:i#dy..0dp X Gj1 X eee X Gy

]m
where G]-k is an open subset of X_,-k. So, for any projection =,: X > X,
[Xy if a4y, ... 0m

B
”a( ) IG(X lf o e {jl; v -;jm}

In either case, 7,(B) is an open set.



174 PRODUCT SPACES [CHAP. 12

4. Prove Theorem 12.6: Every projection =,: X > X, on a product space X = Hi X, is
both open and continuous, i.e. bicontinuous.

Solution:

By definition of the product space, all projections are continuous. So we need only show that
they are open.

Let G be an open subset of the product space X = [];X;,. For every point p € G there is a
member B of the defining base of the product topology such that p € B ¢ G. Thus, for any projection
i X - Xl-,

=(p) € =(B] C =[G]

By the preceding problem, =;[B] is an open set. In other words, every point =(p) in =;[G] belongs to
an open set #;[B] which is contained in #;[G]. Thus #;[G] is an open set.

5. Prove Theorem 12.7: A sequence pi, P2, ... of points in a product space X = Hi X,
converges to the point ¢ € X if and only if, for every projection = :X~—>X, the
sequence = (p,), =(p,), ... converges to =(q) in the coordinate space X,

Solution:

Suppose p, > ¢. Then, since all projections are continuous, =;(p,) —~ 7(q).

Conversely, suppose =i(p,) > 7;(q) for every projection ;. In order to prove that p, > ¢, it is
sufficient to show that if B is a member of the defining base of the product space X = [[;X; that
contains the point ¢ € X, then

A n, €N suchthat n>ny, > p,€EB

By definition of the defining base for the product space X =[], X,,

- B = szl[Gji] n -+ N WJ:nl [Gjm]
where G]-k is an open subset of the coordinate space ka' Recall that ¢ € B; hence 771'1(‘1) S ’le[B] =

ij’ e rrjm(q) [ n'jm[B] = Gim' By hypothesis, le(pn) - rrjl(q). Hence, for each i = 1,...,m,

A7, EN suchthat n>n > n-ji(pn) S G,-i > p, € 7rjf1 [G]-i]
1
Let ny = max (ny, ...,n,). Then
n>ny S pa€riG) N Ne G | = B
Consequently, p, — q. !

~

TYCHONOFF THEOREM

6. Prove Lemma 12.10: Let ¢4 be a class of subsets of a set X with the finite intersection
property. Consider the collection P of all superclasses of ¢4 each with the finite inter-
section property. Then P, ordered by class inclusion, contains a maximal element 7.
Solution: _

Let T ={B;} be a totally ordered subcollection of P, and let B = U;B;, We show that B
belongs to P, i.e. that B is a superclass of ¢4 with the finite intersection property. It will then follow
that B is an upper bound for T and so, by Zorn’s Lemma, P contains a maximal element 77,

Clearly B = U;B; is a superclass of o4 since each B; is a superclass of c4. To show that B
has the finite intersection property, let {A4,,...,A4,} be any finite subclass of B. But B = U,;B;

hence
3 CBH’ B €T such that A, € CBil' ., Ap € B;,,

Recall that T is totally ordered; hence one of the classes, say ‘Bijo, contains all the sets A; and, further-
more, since it has the finite intersection property,
A Nndyn---nNA4A, # 0

We have just shown that each finite subclass {4, ...,4,) of B has a non-empty intersection, i.e.
B has the finite intersection property. Consequently, B belongs to P.
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7.

Prove: The maximal element &7 in Lemma 12.10 possesses the following properties:
(i) Every superset of a member of A/ also belongs to 7.

(i) The intersection of a finite number of members of 97 also belongs to 97. aﬁj je }'ek’i

(iii) If AnM # ¢, for every M € &M, then A belongs to .
Solution:
We only prove (ii) here. The proofs of (i) and (iii) will be left as supplementary problems.

(ii) We prove that the intersection of any two sets A,B € <% also belongs to <#. The theorem
will then follow by induction. Let C = A N B. If we show that <% U {C} has the finite
intersection property, then o7 U {C} will belong to P and, since <% is maximal in P,
o = 7 U {C}. Thus C will belong to <77, as was to be proven.

Let {A, A, ...,A,) be a finite subclass of ¥ U {C}. There are two cases:

Case I. C does not belong to {A,...,A,} C 1 U{C). Then {A,,...,A,} is a finite subclass
of <17 alone. But <37 has the finite intersection property; hence A, N --- N 4,, # Q.

Case II. C does belong to {A;,...,A,,}, say C = A,. Then

An---nA, = CnAy,n---nNnA, = AnNBnd,n---nA4, # O
since A,B,A,, ... A, € 1.
In either case, {A;,...,4,}) has a non-empty intersection. So 77 U {C} € P and, for reasons

stated above, C € W.

Prove Theorem (Tychonoff) 12.9: Let {A.:7 €I} be a collection of compact topological
spaces. Then the product space X = H {A;:1 €I} is also compact.

Solution:
Let o4 = {F;} be a class of closed ‘subsets of X with the finite intersection property. The

theorem is proven if we show that ¢4 has a non-empty intersection, i.e.,

3 pEX suchthat p€F; forevery F;€cA

Let o = {M,:k € K} be a maximal superclass of o4 with the finite intersection property
(see Lemma 12.10). Define 37 = {M,:k € K}. Observe that

Feed > Fj=F; and F;€m > F;€

So’if we prove that <77 has a non-empty intersection, then <4 will also have a non-empty intersection.
In other words, the proof is complete if
3 pEX suchthat p€E M, for every k€ K
or, equivalently,
IpeX such that pEB = BnM,+* @ forevery k€K (1)

where B is a member of the defining base for the product topolog;y on X =TJJ;A, since p is then an
accumulation point of each of the sets M, and so is contained in M.

Recall that 7 = {M,:k € K} has the finite intersection property; so, for each projection
70 X > A;, the class
{Wi[Mk] k€ K}
of subsets of the coordinate space A, also has the finite intersection property. Hence the class of
closures R

{m|M]: k€ K}

is a class of closed subsets of A; with the finite intersection property. By hypothesis, 4; is compact;
so {m[M,]: k€ K} has a non-empty intersection, ie,

3 g, €A; suchthat a;€x[M,;] forevery kEK
or, equivalently,

A g, € A such that ¢, €G; = Ginz[My] #* @ forevery k€K 2)

where G, is any open subset of the coordinate space 4;.
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Define p = (q;: i€ ). We want to show that p satisfies the condition (Z). Let p € B, where
B is a member of the defining base for the product topology on X = I[;4,, ie,

B = 7 G n 07 G ]
11 ?

m m
where Gi, is an open subset of Ai,.

Observe that p € B implies wil(p) = a; belongs to ril[B] = Gi1' So, by (2) above,
G, n i, My] = @ forevery k€K

which implies that

771,’1'1 G ) nM, = (H {A; 11} X Gil) NnM, * @ for every M, € i
By the property (iii}) of -3/, stated in the preceding problem, WiII[Gil] belongs to <¥. Similarly,
7{'1 (Gl o oymt [G,-n} also belongs to «%7. But %7 satisfies the finite intersection property; so
2 e i t
BnM, = =71 [Gﬁ] NN 71‘_1[Gim] NnM,+= @ for every k € K
11 3

m

Thus (1) is satisfied and the theorem is proven.

CANTOR SET
9. Show that the Cantor set T is a closed subset of R.
Solution:

Recall that T,, is the union of 2™ closed intervals. So T,,, the union of a finite number of closed
sets, is also closed. But T = n {T,: i€N}; hence T is closed, as it is the intersection of closed sets.

10. Show that T is compact.

Solution:
Since T is a closed and bounded set of real numbers, it is compact.

11. Let X = JJ{Ai:i €N} where A;= {0,2} with the discrete topology. Show that
X is compact.
Solution:
Observe that A; is compact since it is finite. So, by the Tychonoff Product Theorem, X = I1. A,
is also compact.

12. Let X = [J{Ai:i€ N} where A;= (0,2} with the discrete topology.
(i) Prove that the function f: X —>T defined by .
flanas, ...) = afd) + ad) + as(d) + -0 = 2 a(d)
is continuous.

(ii) Prove that X is homeomorphic to T.

Solution:
(i) Let p = (a,as,...) € X and let ¢ > 0. We need to show that there is an open subset B of X

containing p such that
x € B implies |f(z) — f(p)| < e

o0
Note that 3 (2)i converges. Hence
i=1

o0
3 ny € N such that S (3)i<e
i=ng+1
Consider the subset
B = {a) X {ag} X -+ X {ano} X A”o“ X A"o+2 X e

of . Observe that p € B and B is a member of the defining base of the product topology on
X =T1I;A; and so is open. Furthermore,
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x. . = <a1, ey ano, bn0+1, bﬂ0+2: Lo € B
0 o0
implies [fle) — f@)] = S Gi-ae)@i| = 3 @ < .
i= n0+ 1 i= n0+ 1

Thus f is continuous.

(ii) The function ;, f:X->T is a one-one continuous function from the compact space X onto the
metric space 7. By Theorem 11.8, f is a homeomorphism.

d

-

oo Supplementary Problems

PRODUCT SPACES

13.

4.

17.

18.

19.

Show that the property of being a Tl-spa;é‘é is product invariant, i.e. the product of T;-spaces is a
T,-space.

«
Show that the property of being a regular space is product invariant. ’ -
P P p .

Show that the property of being a completely regular space is product invariant.

'Prove:\j ()Let' p= (@ i €Iy be any point in a product space X = [J{X;: i€ I}. Then, for any j, €1, 5

on X TI{e;ii+ jo} is homeomorphic to on )

(In the special case of Euclidean 3-space R3, this theorem states that the line, say

/ : Y = {a} X {ag} X Ry = {agpapx):c€ER} L
through p = ey, as, a3), is homeomorphic to R.) See Fig. (a).

"
Fig. (@) Fig. (b)

R,

Prove: Let p = (a;: { € I) be any point in a product space X = [[{X;:4 € I}. Then, for any jo‘E 1,
; y {a'jo} X JT{X;: %+ jo} is homeomorphic to /H {X;: 15 4o}

(In the special\case of Euclidean’3-space R3, this theorem states that the plane, say
Y = Ry X Ry X {ag} = {w,y,05: 2,y ER}
through p = (a4, @y, a3), is homeomorphic to R2 = R X R.) See Fig. (b).

Prove the converse of the Tychonoff Product Theorem, ie. if a product space X = [1I;X; is compact,
then each coordinate space X; is also compact.

Let A be a subset of a product space X = [[{X;:¢{€ I} and let =; "N A — X, denote the restriction
of .the projection =;: X » X; to A. Show that the relative topology on A is the coarsest topology
with respect to which the functions =; , are continuous.
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20. (i) Prove that a countable product of first countable spaces is first countable.
(i) Show that an arbitrary product of first countable spaces need not be first countable.

21. Show that an uncountable product space X = [[; X; is not metrizable (unless all except a countable
number of coordinate spaces are singleton sets).

22. (i) Prove that a countable product of second countable spaces is second countable,
(ii) Show that an arbitrary product of second countable spaces need not be second countable.

23. Let A; be an arbitrary subset of a topological space X;; thus []; 4; is a subset of the product space
X = II;X;. Prove that () [I;4; =[L4; @) [L;A7 > (1;4)°. Give an example to show that
equality does not hold for (ii) in general.

24. Let A; be an arbitrary subspace of X;. Show that the product topology on [];A4; is equal to the
relative topology on []; A; as a subset of the product space []; X;.

ARBITRARY TOPOLOGIES ON PRODUCT SETS

25. Prove Proposition 12.8: Let {(X;, T):71€ I} be a collection of topological spaces and let X be the
product of the sets X, i.e. X = [[;X;. Then the subsets of X of the form J]{G;:i€ I} where
G; is an open subset of the coordinate space X;, form a base for a topology T on the product set X.

26. Show that the product topology on a product set X = J], X, is coarser than the topology T on X
defined in the preceding problem (Proposition 12.8).

27. Give an example of a topology T on a product set X = []; X, which is coarser than the product
topology on X.

28. Let T be the topology on a product set X = [];X; defined in Problem 25 (Proposition 12.8). Show
that (X, T) is discrete if each coordinate space X; is discrete.

FINITE PRODUCTS

29. Prove Proposition 12.2: The subsets of a product space X = X; X -+ X X, of the form Gy X * - X G,
where G, is an open subset of X;, form a base for the product topology on X.

30. Prove: If B is a base for X and B* is a base for Y, then {G X H : G&€ B, H € B*} is a base for
the product space X X Y.

31. Prove: If B, is a local base at « € X and B, is a local base at b€ Y, then {GXH:G € By, HE B}
is a local base at p = (a,b) € X X Y.

32. Prove that the product of two first countable spaces is first countable.
33. Prove that the product of two second countable spaces is second countable.
34. Prove that the product of two separable spaces is separable.

35. Prove that the product of two compact spaces is compact (without using Zorn’s Lemma or its
equivalents).

36. Let B* be the topology on the plane R2 generated by the half-open rectangles
la,8) X [e,d) = {x,pp:a=x<b ¢=y<d}

Furthermore, let T be the topology on the real line R generated by the closed-open intervals [a, b).
Show that (R2, T*) is the product of (R, T) with itself. )



CHAP. 12] PRODUCT SPACES 179

37.

38.

39.

40.

41,

Show, by a counter-example, that the product of two normal spaces need not be normal.

Let ACX and BCY and hence A X B C X XY. Prove that
i) AXB = AXB (ii) A° X B® = (A X B)°

(Recall [see Problem 23] that equality does not hold in general.)

Let f:X—>Y andlet F: X~>X XY be defined by F(x) = (x,f(x)). Prove that f is continuous if
and only if F' is a homeomorphism of X with F[X]. (Recall that F[X] is called the graph of f.)

Let X be a normed vector space over R. Show that the function f:X X X—> X defined by
flp,q)) = p+ q is continuous.

Let X be a normed vector space over R. Show that the funcfion f:R X X=X defined by
f(k, p)) = kp is continuous.

METRIC PRODUCT SPACES

42.

43.

44.

Prove: Every closed and bounded subset of Euclidean m-space EB™ is compact.

Prove Proposition 12.11: Let (X,,dy), ..., (X,,d,) be metric spaces and let p = (ay,...,a,,) and
q = (by,...,b,) be arbitrary points in the product set X = ﬁ X,. Then each of the following
functions is a metric on X: =1

M dpg) = Vdilayb)® + o+ dulan, by)?

(i)  d(p,q) = max{dy(ay,by), ..., dplam, by}

(i) dp,q) = dylanby) + o0+ dplan, ba)

Moreover, the topology on X induced by each of the above metrics is the product topology.

Prove Proposition 12.12: Let {(X;,d;), (X5, ds), ...} be a denumerable collection of metric spaces

o0
and let p = (ay,ay, ...) and ¢q = (b, by, ...) be arbitrary points in the product set X = HIXn.
ne

Then the function d defined by
_ 1 d‘n(a‘n’ b‘n)

dp,9 = 2 9 TT a5

n

is a metric on X and the topology induced by d is the product topology.
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Connectedness

SEPARATED SETS

Two subsets A and B of a topological space X are said to be separated if (i) A and B
are disjoint, and (ii) neither contains an accumulation point of the other. In other words,
A and B are separated iff _ _

ANB=¢ and ANB =0
Example 1.1:  Consider the following intervals on the real line R:
A =(0,1), B=(,2 and C = [2,3)
Now A and B are separated since A = {0,1] and B = [1,2], and so A n B and

A N B are empty. On the other hand, B and C are not separated since 2€ C
is a limit point of B, thus:

Bnc = [1,2]n[2,3 = {2} = O

Example 1.2: Consider the following subsets of the plane R
A = {0yp:1=y=1}
B {,y): y =sin (U/x), 0 < & = 1)

1

A B

1

—1 ]

Now each point in A is an accumulation point of B; hence A and B are not sepa-
rated sets.

CONNECTED SETS

A subset A of a topological space X is disconnected if there exist open sub-
sets G and H of X such that A N G and A N H are disjoint non-empty sets

whose union is A. In this case, G U H is called a disconnection of A. A setis
connected if it is not disconnected.

Observe that A=@ANGU@ANH) if ACGUH
and ® = (ANG)N(ANH) if GNHCA®

Therefore G U H is a disconnection of A if and only if
ANG #@, AnH + @, ACGUH, and GNHCA*

Note that the empty set @ and singleton sets {p} are always connected.

180



CHAP. 131" CONNECTEDNESS 181

NN,

Example 2.1: " The following subset of the plane R? is disconnected: ,
A = {&y: 22—y =4}

For the two open half-planes
/ G = {,:e<—1}y and H = {x,y):2>1}

form a disconnection of A as indicated in the diagram above.

Example 2.2:  Consider the following topology on X = {a,b,¢,d, e}:
- T - {X7 @’ {(’/, b’ c}} {C, d’ g}’ {c}}
Now A = {a,d, €} is disconnected. For let G = {a,b,¢} and H = {c,d, e}; then
\ A QG = {a} and A N H = {d, e} are non-empty disjoint sets whose union is 4.
(Observe that G and H are not disjoint.)

/
J

/\
The basic relationship between connectedness and separatlon follows:,
Theorem 13.1: A set is connected if and only if it is not the union of two non-empty
. separated sets. -

q

The following proposition 15 very useful
Proposition 13.2: If} A and B are connected sets which are not separated, then A U B is
connected. \ <

E{ample 23: Let A and B be the subsets of the plane R? defined and illustrated in Example 1.2.
We show later that A and B are each connected. But A and B are not separated;
hence, by the previous proposition, A U B is a connected set. e

& (

CONNECTED SPACES.

Connec‘tedness, like compactness, is an absolute property of a set; namely,

Theorem 13.3: Let A be a subset of a topological space (X, 7). Then A is connected with
respect to T if and only if A is connected with respect to the relative

topology T, on A.

Accordingly, we can frequently limit our investigation of connectedness to those topo-
logical spaces which are themselves connected, i.e. to connected spaces.
Example 3.1: Let X be a topological space which is disconnected, and let G U H be a dlsconnec-

tion of X then 5
= XNG)UXNH and (XNGNEXnH = @

But XNnG =G and XN H = H; thus X is disconnected if and only if there
exist non-empty open sets G and H such that
X=GUH and GNnH=9

In view of the discussion in the above example, we can give a snrnple charactemzatlon
of connected spaces. :

Theorem 13.4: A topological space X is connected if and only if (i) X is not the union
of two non-empty disjoint open sets; or, equivalently, (ii) X and Q) are
the only subsets of X which are both open and closed.

°©



182 CONNECTEDNESS [CHAP. 13

Example 3.2: Consider the following topology on X = {a,b,¢,d, e}:
T = {X, @, {a}, {c,d}, {a,c,d}, {b,c,d, e}}

Now X is disconnected; for {a} and {b, ¢, d, ¢} are complements and hence both open
and closed. In other words,
X = {a} U {b,c,d,e}

is a disconnection of X. Observe that the relative topology on the subset
A = {b,d,e} is {4, D, {d}}. Accordingly, A is connected since A and @ are the
only subsets of A both open and closed in the relative topology.

Example 3.3: The real line R with the usual topology is a connected space since R and ) are the
only subsets of R which are both open and closed.

Example 34: Let f be a continuous function from a connected space X into a topological space Y.
Thus f:X - f[X] is continuous (where f[X]| has the relative topology).

We show that f[X] is connected. Suppose f[X] is disconnected; say G and H
form a disconnection of f[X]|. Then

f[X] = GUH and GnH = ¢
and so X = f1[GIUf-1[H] and [ L[GINnf 1[H = @
Since f is continuous, f~![G] and f~![H] are open subsets of X and hence form

a disconnection of X, which is impossible. Thus if X is connected, so is f[X].

We state the result of the preceding example as a theorem.

Theorem 13.5: Continuous images of connected sets are connected.

Example 3.5: Let X be a disconnected space; say, G U H is a disconnection of X. Then the

. 0 if €@ . . .
function f(x) = . is a continuous function from X onto the dis-
1 if x€H

crete space Y = {0,1}.

On the other hand, by Theorem 18.5, a continuous image of a connected space X cannot
be the disconnected discrete space Y = {0,1}. In other words,

Lemma 13.6: A topological space X is connected if and only if the only continuous func-
tions from X into Y = {0,1)} are the constant functions, f(z) = 0 or

flz) = 1.

CONNECTEDNESS ON THE REAL LINE
The connected sets of real numbers can be simiply described as follows:

Theorem 13.7: A subset E of the real line R containing at least two points is connected
if and only if E is an interval.

Recall that the intervals on the real line R are of the following form:
(a, b), (a,bl, [a,b), [a,b], finite intervals
(—,a), (—=,a], (a,*), [a,®), (—=, =), infinite intervals
An interval E can be characterized by the following property:
a, bEE, a<zx<b > x€FE

Since the continuous image of a connected set is connected, we have the following generali-
zation of the Weierstrass Intermediate Value Theorem (see Page 53, Theorem 4.9):

Theorem 13.8: Let f: X > R be a real continuous function defined on a connected set X.
Then f assumes as a value each number between any two of its values.
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Example 4.1:  An interesting application of the theory of connectedness is the following “fixed-
point theorem”: Let I = [0,1] and let f:I —> 1 be continuous; then Ap € I such
that f(p) = p.

This theorem can be interpreted geometrically, Note first that the graph of
f:1I-1I lies in the unit square

2 = {{zy:0=c=1,0=y=1}

The theorem then states that the graph of f, which connects a point on the left
edge of the square to a point on the right edge of the square, must intersect the
diagonal line A at, say, (p, p) as indicated in the diagram.

Y

1

(p, P

COMPONENTS

A component E of a topological space X is a maximal connected subset of X: that is.
E is connected and E is not a proper subset of any connected subset of X. Clearly E is
non-empty. The central facts about the components of a space are contained in the
following theorem.

Theorem 13.9: The components of a tdpological space X form a partition of X, i.e. they
are disjoint and their union is X. Every connected subset of X is con-
tained in some component.

Thus each point p € X belongs to a unique component of X, called the component of p.
Example 5.1: If X is connected, then X has only one component: X -itself.

Example 5.2: Consider the following topology on X = {a,b,¢,d, ¢}:

‘T = {X’ @} {a}’ {c) d}, {al c} d}’ {b’ c’ d) e}}
The components of X are {a} and {b,c,d,e}. Any other connected subset of X,
such as {b,d, e} (see Example 3.2), is a subset of one of the components.

The statement in Example 5.1 is used to prove that connectedness is product invariant;
that is,

Theorem 13.10: The product of connected spaces is conynected.

Corollary 13.11: Euclidean m-space R™ is connected.

LOCALLY CONNECTED SPACES

A topological space X is locally connected at p € X iff every open set containing p
contains a connected open set containing p, i.e. if the open connected sets containing p
form a local base at p. X is said to be locally connected if it is locally connected at each
of its points or, equivalently, if the open connected subsets of X form a base for X.

Example 6.1:  Every discrete space X is locally connected. For if p € X, then {p} is an open
connected set containing p which is contained in every open set containing p.
Note that X is not connected if X contains more than one point.
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Example 6.2: Let A and B be the subsets of the plane R2 of Example 1.2, Now A U B ‘s a con-
nected set. But 4 U B is not locally connected at p = (0,1). For example, the
open disc with center p and radius 1 does not contain any connected neighbor-
hood of p. )

PATHS
J

Let I = {0,1], the closed unit interval. A path from a point o to a point b in a
topological space X is a continuous function f:I>X with f(0) = a and f(1) = b. Here
a is called the initial point and b is called the terminal point of the path. o ;

Example 7.1: For any p € X, the constant function e,:I—> X defined by e,(s) = p is continu-
’ ous and hence a path. It is called the constant path at p.
“Exaumple 7.2: &et f:I—- X be a path from a to b. Then the function ?: I - X defined by
(s) = f(1—s) is a path from b to a.
Example 73: Let f: I/—>X be a path from a to b ‘and let g:I1—>X be a path from b to e.

Ve Then the juxtaposition of the two paths f and g, denoted by f* g, is the function
f*g:I—>X defined by R
f(2s) if 0=s=4%

\ ‘ “ (Fxo)e = {g(2s—1) 1f2— s§=1

which is a path from @ to ¢ obtamed by followmg the path f from a to b and then
L following g from b.to c. s

ARCWISE CONNECTED SETS

A subset E of a topologlcal space X is said to be arcwise connected if for any two
points a,b € F there is a path f:I-> X from a to b which is contained in E, i.e.- f[I|] C E.
The maximal arcwise connected subsets of X, called arcwise connected components, form
a partition of X. The relationship between connectedness . and arcwise connectedness
follows: ;
" Theorem 13.12: Arcwise connected sets are connected

The converse of thls theorem is not true, as seen 1n the next example.
Example 8.1: (‘on51der the following subsets of the plane R2:
/ A= {@y:0=x=1, y=2u/n, n €N}
B = {(&0):=2=1}
Here A consists of the points on®the line seg- 14
ments joining the origin (0,0) to the points 3
(1,1/n), n € N; and B consists of the points on
the xz-axis between { and 1. Now A and B are 1 A
both arcwise connected, hence also connected.
‘Furthermore, A and B are not separated since 1
each p € B is a limit point of 4; and so A U B
is connected. But A U B is not arcwise con- B
 nected; in fact, there exists no path from any ‘
point in A to any point in B.

~

i

+ Foee

Example 8.2: Let A and B be the subsets of the plane R? defined in Example 1.2. Now A and B
‘ are continuous images of intervals and are therefore connected. Moreover, A and
B are not separated sets and so A U B is connected. But A U B is not arcwise

connected; in fact, there exists no path from a point in A to a point in B.
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The topology of the plane R? is an essential part of the theory of functions of a complex
variable. In this case, a‘region is defined as an open connected subset of the plane. The
following them:em plays an important role in this theory.

Theoremr 13.13: An open connected subset of the plane R? is arcwise connected.

HOMOTOPIC PATHS

Let f:1->X and ¢g:I—- X be two paths with the same initial point p € X and the
. same terminal point ¢ € X. Then [ is said to be homotopic to g, written f = g, if there
exists a -continuous function

: 4 H:2->X
such that -

H(s, 0) = f(s) H(0,t) = p
H(s,1) = 9(s) H(1,t) = q

as indicated in the adjacent diagram. We
then sax that f can be continuously deformed
‘into g.  The function H is called a homotopy
from f to g. ‘

Example 91: Let X ‘be the set of points between two concentric|circles (called an‘ annulus).

. Then the paths f and g,in the diagram on the left below are homotopic, whereas
\ the paths /" and g’ in the diagram on the right below are not homotopic.
— A 7 :

o
7
Example 9.2: - Let f:I—>X be any path. Then f =~ f, i.e. f is homotopic to itself. For the
function H:712-> X defined by ,
_ H(s,H) = f(s)
is a homotopyfrom f to f.
Exal\nb]e 9.3: Let f~g and, say, H:I2->X is a homotopy from f to g. Then the function
~ H I2 > X defined by
¢ . ‘H(S,) :H(S,l—t)
> is a homotopy from g to f, and so g =~ f.
Example 94: Let f~g¢g and g =~ h; say, F:I?2~> X is a homotopy from f to g and G: 2~ X
is®a homotopy from g to 2. The function H:I2 > X defined by
' F(s, 2t 0 =t=1
i Hs, 1 (.20 i 3
: Gs, 2¢—1) if L=¢t=1
J is a homotopy from f to k, and so f~h. The homotopy H can be interpreted
; geometrically as compressing the domains of F' and G into one square.
3

domain of G —= | ‘ ' %

l- =———— - =« domain of H

| [ NN
domain of F' w=s w 7
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The previous three relations imply the following proposition:

Proposition 13.14: The homotopy relation is an equivalence relation in the collection of
all paths from a to b.

SIMPLY CONNECTED SPACES

A path f:I- X with the same initial and terminal point, say f(0) = f(1) = p, is called
a closed path at p € X. In particular, the constant path e,: 1~ X defined by en(s) = p

is a closed path at p. A closed path f:7I-> X is said to be contractable to a point if it is
homotopic to the constant path.

Y

N

N ‘ ~ N
A topolo/gical space is simply connected iff every closed path in X is contractable to a
point. — T ¥

Example 10.1: = An open disc in the ﬁlane R? is simply connécted, whereéas an annulus is not simply

connected since there are closed curves, as indicated in the diagram, that are not
contractable to a point.

e

< .
simply connected . not simply connected
N N “

Solved Problems

SEPARATED SETS

1. Show that if A and B are non-empty separated sets, then 4 U B isdisconnected..

Solution:

Since A and B are separated, A N B = (D and AnB=¢@. Let G=Bc and H = Ac. Then
G and H d ’
and & are open an (AUB)NG = A and (AUB)nH = B

are non-empty disjoint sets whose union is A U B. Thus G and H form a disconnection of A U B,
and so A U B is disconnected.
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2.

Let G U H be a disconnection of A. Show that A N G and A N H are separated sets.

Solution:

Now A N G and A n H are disjoint; hence we need only show that each set contains no accumu-
lation point of the other, Let p be an accumulation point of 4 N G, and suppose p € A N H. Then
H is an open set containing p and so H contains a point of 4 N G distinct from p, i.e. (ANG) N H %= Q.
But

ANG)NANH) = @ = (AnG nH
Accordingly, p€ A N H.

Similarly, if p is an accumulation point of A N H, then p@A NG. Thus ANG and AnH
are separated sets.

S

Prove Theorem 13.1: A set A is connected if and only if A is not the union of two
non-empty separated sets.

Solution:

We show, equivalently, that A is disconnected if and only if A is the union of two non-empty
separated sets. Suppose A is disconnected, and let G U H be a ¥isconnection of A. Then A is the
union of non-empty sets A N G and A N H which are, by the preceding problem, separated. On the
other hand, if A is the union of two non-empty separated sets, then A is disconnected by Problem 1.

»

CONNECTED SETS

4.

Let G U H be a disconnection of A and let B be a connected subset of A. Show that
either BNH = (® or BNG = (), and so either BC G or B C H.

Solution:
Now B C A, and so

ACGUH > BCGUH and GNHCAc > GnHCBe

Thus if both B N G and B n H are non-empty, then G U H forms a disconnection of B. .But B is
connected; hence the conclusion follows.

Prove Proposition 13.2: If A and B are connected sets which are not separated, then
A U B is connected.
Solution:

Suppose A U B is disconnected and suppose G U H is a disconnection of 4 U B. Since A4 is a

connected subset of A U B, either A CG or A C H by the preceding problem. Similarly, either
Bc@Gor BCH.

Now if ACG and BCH (or BC G and A C H), then, by Problem 2,
(AUBY)NG@ = A and (AUB)NH = B

are separated sets. But this contradicts the hypothesis; hence either A UBCG or AUBCH,
and so G U H is not a disconnection of A U B. In other words, 4 U B is connected.

Prove: Let ¢4 = [A;} be a class of connected subsets of X such that no two members
of ¢4 are separated. Then B = U;A; is connected.

Solution:

Suppose B is not connected and G U H is a disconnection of B. Now each A; € o4 is connected
and so (Problem 4) is contained in either G or H and disjoint from the other. Furthermore, any two
members A11»A1‘2 € ¢4 are not separated and so, by Proposition 13.2, Ail U Ai2 is connected; then
Ail U Ai2 is contained in G or H and disjoint from the other. Accordingly, all the members of cA,
and hence B = U;A;, must be contained in either G or H and disjoint from the other. But this
contradicts the fact that G U H is a disconnection of B; hence B is connected,
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7. Prove: Let <4 = {A;} be a class of connected subsets of X with a non-empty inter-
section. Then B = U;A4; is connected.

Solution:
Since N;A4; #* @, any two members of o4 are not disjoint and so are not separated; hence, by
the preceding problem, B = U;A; is connected.

8. Let A be a connected subset of X and let A C BC A. Show that B is connected and
hence, in particular, A is connected.
“Solution:
Suppose B is disconnected and suppose G U H is a disconnection of B. Now A is a connected
subset of B and so, by Problem 4, either ANH = @ or ANG = @; say, AN H = (. Then
He is a closed superset of A and therefore A ¢ B C A c He. Consequently, Bn H = (. But this
contradicts the fact that G U H is a disconnection of B; hence B is connected.

CONNECTED SPACE/S, . .
9. Let X be a topological space. Show that the follogving conditions are equivalent:

(i) X is disconnected.
(ii) There exists a non-empty proper subset of X which is both open and closed

Solution: .
(i) = (ii): Suppose X = G U H where G and H are non-empty and open. Then G is a non-empty .
proper subset of X and, since G = H¢, G is both open and closed.

(ii) > (i): Suppose A is a non-empty proper subset of X which is both open and closed. Then Ac
is also non-empty and open, and X = A U A¢. Accerdingly, X is disconnected.

10. Prove Theorem 13.3: Let A be a subset of a topological space (X, T) and let T, be the
relative topology on A. Then A is T-connected if and only if A is T ,-connected.

Solution:

Suppose A is disconnected with G U H forming a T-disconnection of A. Now G,HET and so
ANG AnH € T,. Accordingly, AnG and AN H form a T ,-disconnection of A; hence A is
T 4-disconnected.

On the other hand, suppose A is T s-disconnected, say G* and H* form a T ,-disconnection of A.
Then G*,H*€ T, and so Y 4

G HeT such that G*=ANG and H* = AnH

But AnNG*=ANANG=AnG and AnNnH*=AnAnH=AnH

Hence G U H is a T-disconnection of A and so A is T-disconnected.

11. Let p,q € X. The subsets Ai,...,An of X are said to form a simple (finite) chain
joining p to ¢ if A: (and only A:) contains p, A. (and only A,) contains ¢, and
ANA =0 iff "L—]l > 1.

Prove: Let X be connected and let ¢4 be an open cover of X. Then any pair of
points in X can be joined by a simple chain consisting of members of cA.
Solution:

Let p be any arbitrary point in X and let H consist of those points in X which can be joined

to p by some simple chain consisting of members of c4. Now H # (), since p € H. We claim that
H is both open and closed and so H = X since X is connected.
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12.

13.

Let h€H. Then 3G, ...,G,E€cd which form a simple chain from h to p. But if
%€ Gy\ Gy, then Gy, ...,G, form a simple chain from « to p;and if y € Gy N Gy, then Gy, ...,G,,
form a simple chain from y to p, as indicated in the diagram below.

Thus G, is a subset of H, i.e. h C G, C H. Hence H is a neighborhood of each of its points, and
so H is open.

Now let g & Hc. Since ef is a cover of X, 3G € c4 such that g€ G, and G is open. If
GNnH > @, 3h€GnNnHCH and so 3Gy,...,G, €4 forming a simple chain from k to p.
But then either G,Gy,...,G,, Wwhere we consider the maximum % for which G intersects G, or
Gys .., Gy form a simple chain from g to p, and so g € H, a contradiction. Hence GnN H = ), and
S0 ¢ € G C He. Thus H¢ is an open set, and so He¢¢ = H is closed.

Prove Theorem 13.7: Let E be a subset of the real line R containing at least\ two
points. Then FE is connected if and only if E is an interval.
Solution: ‘ ¢

Suppose E is not an interval; then ,

3o, bEE, pEE such that a<p<b

Set G = (—»,p) and H = (p,»). Then' a €G and b€ H, and hence EN G and En H are
non-empty disjoint sets whose union is E. Thus E is disconnected.

Now suppose E is an interval and, furthermore, assume E is disconnected; say, G and H form a
disconnection of £. Set A = ENG and B =EnNH;, then E = AUB. Now A and B are non-
empty; say, ¢ €A, bE€B, a<b and p = sup{A n [a,b]}. Since [a,b] is a closed set, p € [a, b]
and hence p € E.

Suppose pEA = ENG. Then p<b and p €G. Since G is an open set

F35>0 such that pt+s€G and p+86<5b

Hence p+8 € FE andso p+5E A, But this contradicts the definition of p, i.e. p = sup{A N [a,b]}.
Therefore p € A.
On the other hand, suppose p € B = E N H. Then, in particuypar, p € H. Since H is an open set,

35*>0 such that [p—8%p]CH and a <p—és*

Hence [p— 6% p]CE and so [p—&* p]CB. Accordingly, [p—8*,pJnA = @. But then
p—38% is an upper bound for A N [e,b], which is impossible since p = sup{4 n [a,b]}. Hence
p &€ B. But this contradicts the fact that p € E, and so E is connected.

Prove (see Example 4.1): Let I = [0,1] and let f:I—>1 be continuous. Then Ap €1

such that f(p) = p.
Solution:

If f(0) =0 or f(1) =1, the theorem follows; hence we y
can assume that f(0) > 0 and f(1) <1. Since f is continu- G //
ous, the graph of the function oA

F:1->R definedby F(z) = (x,f(x)) -1 ~

is also continuous. //

Set G = {&,:xe<y}, H = {9y :y <x}; then /
(0,7(0)) € G, (1,f(1)) € H. Hence if F[I| does not contain a 7’ H
point of the diagonal //

A = {xy:x=y} = RR\(GUH) // F[I]

then G U H is a disconnection of F[I]. But this contradicts an T x
the fact that F[I], the continuous image of a connected set, is s
connected; hence F'[I] contains a point (p,p) €A, and so 4

f(p) = p.
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COMPONENTS
14. Show that every component E' is closed.

15.

16

.

17.

18

Solution:
Now E is connected and so, by Problem 6, E is connected, E C E. But E, a component, is a
maximal connected set; hence E = E, and so E is closed.

Prove: Let p€ X and let o4, = {4} be the class of connected subsets of X con-
taining p. Furthermore, let C, = U;A:.. Then: (i) C, is connected. (ii) If B is a
connected subset of X containing p, then B C C,. (iii) Cp is a maximal connected
subset of X, i.e. a component.

Solution:

(i) Since each A; € 4, contains p, p € N;4; and so, by Preblem 7, C, = U;A4; is connected.
(ii) If B is a connected subset of X containing p, then BE€ 4, and so BC C, = U{A;: 4, € cA,}.

(ili) Let C, C D, where D is connected. Then p € D and hence, by (ii), D C Cp; that is, C, = D.
Therefore C), is a component.

Prove Theorem 18.9: The components of X form a partition of X. Every connected
subset of X is contained in some component.
Solution: ¢

Consider the class ¢ = {C,: p € X} where C,,' is defined as in the preceding problem. We claim
that ( consists of the components of X. By the preceding problem, each C, € ( is a component. On
the other hand, if D is a component, then D contains some point p, € X and so D C Cl’o' But D is a
component; hence D = Cl’o'

We now show that ( is a partition of X. Clearly, X = U {C,: p € X}; hence we need only show
that distinct components are disjoint or, equivalently, if C, N C; 5 @, then C, = C;. Let a € C, N C,.
Then C, c C, and C, C C,, since C, and C, are connected sets containing a. But C, and C, are
components; hence C, = C, = C,,.

Lastly, if E is a non-empty connected subset of X, then E contains a point p, € X and so B C Cl70
by the preceding problem. If E = (), then E is contained in every component.

Show that if X and Y are connected spaces, then X XY is connected. Hence a finite
product of connected spaces is connected. @
Solution: .

Let p = (%,y;) and ¢ = (x,,¥,) be any pair of points in X X Y. Now {;} XY is homeo-
rorphic to Y and is therefore connected. Similarly, X X {y,} is connected.

But {2} XY nXX{y,} = {(x,¥p}); hence {x;} XY U X X {y,} is connected. Accordingly,
p and ¢ belong to the same component. But p and q were arbitrary; hence X X Y has one component
and is therefore connected.

Prove Theorem 13.10: The product of connected spaces is connected, i.e. connectedness
is a product invariant property.
Solution:

Let {X;:i{€1I} be a collection of connected spaces and let X = [[;X; be the product space.
Furthermore, let p = (a;: 1€ I) € X and let E C X be the component of p. We claim that every
point = = (x;:iE€I) € X belongs to the closure of E and hence belongs to E since E is closed.

Now let
G = JI{X;:i# 4, ..., 0) X Gi1 X eee X Gim

be any basic open set containing x € X. Now
H = [[{{ad:i*d, ... i) X X X -0 X xX;
is homeomorphic to Xil X e X Xim and hence connected. Furthermore, p € H and so H is a subset

of E, the component of p. But G N H is non-empty; hence G contains a point of E. Accordingly,
2 € E = E. Thus X has one component and is therefore connected.
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ARCWISE CONNECTED SETS

19.

20.

21.

22.

23.

24.

Let f:I-> X be any path in X. Show that f[I], the range of f, is connected.

Solution:
I =10,1] is connected and f is continuous; hence, by Theorem 135, f{I} is connected.

Prove; Continuous images of arcwise connected sets are arcwise connected.

Solution:

Let E C X be arcwise connected and let f: X = Y be continuous. We claim that f[E] is arewise
connected. For let p,g € f[E],- Then 3Ap* ¢* €E such that f(p*) =p and fl¢*) =q. But E is
arcwise connected and so

3 apath g: I - X such that g(0) = p*, g(1) = ¢* and g[I|CE

.
Now the composition of continuous functions is continuous and so fog:I—>Y is continuous.

Furthermore, )
fog(0) = f(p*) =p, fog(l)=fl¢g*)=q and fogll] = flg(l]] C fIE]

Thus f[E] is arcwise connected.

Prove Theorem 13.12: Every arcwise connected set A is connected.

Solution:
If A is empty, then A is connected.® Suppose A is not empty; say, pE€ A. Now A is arcwise
connected and so, for each a € A, there is a path f,: I>A from p to a. Furthermore,

a € fylc A andso A = U{f;ll:a€ 4}

But p € f,[I], for every o € A; hence N{f,[I]:a€ A} is non-empty. Moreover, each fo[I] is
connected and so, by Problem 7, A is connected.

Prove: Let c4 be a class of arcwise connected subsets of X with a non-empty inter-
section. Then B = U{A:A €4} is arcwise connected.
Solution:
Let a,b € B. Then
3 AL A, E A such that a€ A, bEA,

Now ¢4 has a non-empty intersection; say, p€ N{4: A€ c4}. Then p&€ A, and, since 4, is
arcwise connected, there is a path f:I->A,CB from a to p. Similarly, there is a path
g:I1-A,cB frof p to b. The juxtaposition of the two paths (see Example 7.3) is a path from
@ to b contained in B. Hence B is arcwise connected.

Show th\at an open disc D in the plane R? is arcwise connected.

Solution:
Let p = (ay, by), g = (a9, by) € D. The function f:I - R? defined by

fley = (ay+tas—ay), b+ t{by— b))

is a path from p to ¢ which is contained in D. (Geometrically, f[I] is the line segment connecting
p and ¢q.) Hence D is arcwise connected.

Prove Theorem 13.13: Let E be a non-empty open connected subset of the plane R?
Then E is arcwise connected.

Solution:
Method 1.

Let p € E and let G consist of those points in E which can be joined to p by a path in E. We
claim that G is open. For let ¢ € G CE. Now E is open and so 3 an open disc D with center ¢
such that ¢ € D c E. But D is arcwise connected; hence each point € D can be joined to g which
can be joined to p. Hence each point # € D can be joined to p, and so ¢q€ D c G. Accordingly,
G is open.



192 CONNECTEDNESS [CHAP. 13

Now set H = E \ G, i.e. H consists of those points in E' which cannot be joined to £ by a path
in E. We claim that H is open. For let ¢* € HCE. Since E is open, 3 an open disc D* with
center ¢* such that ¢* € D* C E. Since D* is arcwise connected, each x € D* cannot be joined
to p with a path in E, and so ¢* € D* C I_I Hence H is open.

But E is connected and therefore E cannot be the union of two non-empty disjoint open sets.
Then H = (), and so & = G is arcwise connected.

Method 2.
Since E is open, E is the union of open discs. But E is connected; hence, by Problem 11, 3 open
dises Sy,...,S, € E which form a simple chain joining any p € E to any ¢ € E. Let a; be the

center of S; and let b; € S; N S;;;. Then the polygonal arc joining p to a; to b to a,, ete., is contained
in the union of the discs and hence is contained in E. Thus E is arcwise connected.

TOTALLY DISCONNECTED SPACES

25.

26.

27.

A topological space X is said to be totally disconnected if for each pair of points
p,q € X there exists a disconnection G U H of X with p € G and ¢ € H. Show that
the real line R with the topology T generated by the open closed intervals (a,b] is
totally disconnected. -
Solution:

Let p,q€R; say, p<gq. Then G = (—=,p] and H = (p, ©) are open disjoint sets whese

union is R, i.e. G U H is a disconnection of R. But p € G and ¢ € H; hence (R,T) is totally dis-
connected.

Show that the set Q of rational numbers with the relative usual topology is totally
disconnected.
Solution:

Let p,q€& d,‘ say, p < q. Now there exists an irrational number a such that p <a <gq.

Set G = {x€Q: x<a} and H = {x €Q: = >a}. Then GUH is a disconnection of Q,
and p € G and ¢ € H. Thus Q is totally disconnected.

Prove: The components of a totally disconnected space X are the singleton subsets of X.

Solution:

Let E be a component of X and suppose p,¢q € E with p +* q. Since X is totally disconnected,
there exists a disconnection G U H of X such that p € G and q &€ H. Consequently, £ NG and
E N H are non-empty and so G U H is a disconnection of E. But this contradicts the fact that E is
a component and so is connected. Hence E consists of exactly one point.

LOCALLY CONNECTED SPACES

28.

Prove: Let E be a component in a locally connected space X. Then E is open.

Solution:
Let p € E. Since X is locally connected, p belongs to at least one open connected set G, But
E is the component of p; hence

PrEG,CE and so E = U{G,:pEE}

Therefore E is open, as it is the union of open sets.
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29.

30.

Prove: Let X and Y be locally connected. Then X X Y is locally connected.

Solution:
Now X is locally connected iff X possesses a base ‘B consisting of connected sets. Similarly,
Y possesses a base B* consisting of connected sets. But X X Y is a finite product; hence

{GX H: GeB, Hec B*}

is a base for the product space X X Y. Now each G X H is connected since G and H are connected.
In other words, X X Y possesses a base consisting of connected sets and so X X Y is locally connected.

Prove: Let {X:} be a collection of connected locally connected spaces. Then the
product space X = [], X, is locally connected.

Solution:
Let G-be an open subset of X containing p = (a;: {€I) € X. Then there exists a member of
the defining base B
B = Gi1 X oo X Gy X (X i 4, .. 0,00

such that p € BC G, and so a;, € Gik‘ Now each coordinate space is locally connected, and so there
exists connected open subsets Hik C Xik such that

. aileHil CGil, ey aimEHimC Gim

Set H = H,-1><---xHimxH{Xi:iséil,...,im}

Since each X; is connected and each H,-k is connected, H is also connected. Furthermore, H is open
and p€ Hc Bc G. Accordingly, X is locally connected.

Supplementary Problems

CONNECTED SPACES

31. Show that if (X, T) is connected and T* < T, then (X, T*) is connected.
\ 32, Show th:ﬁ if (X, T) is disconnected and T < T*, then (X, T*) is disconnected.

33. Show that every indiscrete space is connected.

34. Show, by a counterexample, that connectedness is not a hereditary property.

35. Prove: If A, A, ... is a sequence of connected sets such that A, and A, are not separated, A, and
A, are not separated, etc., then A; U A, U -+ is connected. '

36. Prove: Let E be a connected subset of a T,-space containing more than one element. Then E is infinite.

37. Prove: A topological space X is connected if and only if every non-empty proper subset of X has a
non-empty boundary.

COMPONENTS

38. Determine the components of a discrete space.

39. Determine the components of a cofinite space.

40. Show that any pair of components are separated.
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41. Prove: If X has a finite number of components, then each component is both open and closed.
42. Prove: If E is a non-empty connected subset of X which is both open an8 closed, then E is a component.

43. Prove: Let E be a component of Y and let f: X —>Y be continuous. Then f~![E] is a union of
components of X.

44. Prove: Let X be a compact space. If the components of X are open, then there are only a finite
number of them.

ARCWISE CONNECTED SETS

45. Show that an indiscrete space is arcwise connected.
46. Prove: The arcwise connected components of X form a partition of X.

47. Prove: Every component of X is partitioned by arcwise connected components.

MISCELLANEOUS PROBLEMS

48. Show that an indiscrete space is simply connected.
49. Show that a totally disconnected space is Hausdorff.

50. Prove: Let G be an open subset of a locally connected space X. Then G is locally connected.

51. Let A = {a,b} be discrete and let I = [0,1]. Show that the product space X=J]{4;:A, =A,iel}
is not locally connected. Hence locally connectedness is not product invariant.

52. Show that “simply connected” is a topological property.

53. Prove: Let X Dbe locally connected. Then'X is connected if and only if there exists a simple chain of
connectedQets joining any pair of points in X.



Chapter 14

Complete Metric Spaces

CAUCHY SEQUENCES

Let X be a metric space. A sequence (ai,as ...) in X is a Cauchy sequence iff for

every ¢> 0,
An €N suchthat n,m>ne > d@,an) <e

Hence, in the case that X is a normed space, (a.) is a Cauchy sequence iff for every > 0,

In €N suchthat n,m>n0 2 |jan—anl| <e

Example 1.1:  Let (a,) be a convergent sequence; say d, > p. Then (a,) is necessarily a Cauchy
sequence since, for every e > 0,
37 EN  suchthat =n>mny > da,p) < Le
Hence, by the Triangle Inequality,
nm>ny > da@nay) = da,p)tdlan,p) < et de=e

In other words, (a,) is a Cauchy sequence.

We state the result of Example 1.1 as a proposition.
Proposition 14.1: Every convergent sequence in a metric space is a Cauchy sequence.

The converse of Proposition 14.1 is not true, as seen in the next example.

Example 1.2: Let X = (0,1) with the usual metric. Then 4,4, 1, ...) is a sequence in X which
is Cauchy but which does not converge in X. .

Example 1.3:  Let d be the trivial metric on any set X and let (a,) be a Cauchy sequence in (X, d).
Recall that d is defined by

sy = [0 iFa=v
B = N1 it a=b

Let ¢ = 4. Then, since (a,) is Cauchy, 3 ny € N such that
nmM>ng D> a0y <y P a4, = ay
In other words, {(a,) is of the form (a;,a,, ..., s Dy Py Py - s i.e. constant from

some term on.

Example 1.4: Let (p;, vy, ...) be a Cauchy sequence in Euclidean m-space R™; say,
p1 = (a{”, ..., a{™), Py = (afV, ..., a{™),
The projections of (p,) into each of the m coordinate spaces, i.e.,
(aiVafVafd, o0, o, (@™, g™ e, L) (1)
are Cauchy sequences in R, for, let ¢ > 0. Since (p,) is Cauchy, 3 ng € N such that
78>my > dp,p)? = laP —aPRA+ o+ e —a(™R < &2
Hence, in particular,
rs>ny > [P —aPR<ee L, [al™ —qg™P2 <2

r

In other words, each of the m sequences in (1) is a Cauchy sequence.

195
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COMPLETE METRIC SPACES

A metric space (X, d) is complete if every Cauchy sequence (a,) in X converges

to a point p € X.

Example 2.1: By the fundamental Cauchy Convergence Theorem (see Page 52), the real line R
with the usual metric is complete.

Example 2.2: Let d be the trivial metric on any set X. Now (see Example 1.3) a sequence (a,)
in X is Cauchy iff it is of the form (a,, a,, ce U DD Py ), which clearly con-

verges to p € X. Thus every trivial metric space is complete.

Example 2.3: The open unit interval X = (0,1) with the usual metric is not complete since
(see Example 1.2) the sequence (1,1,1,...) in X is Cauchy but does not converge
to a point in X.

Re\ﬁlark: Examples 2.1 and 2.3 show that completeness is not a topological property;
for R is homeomorphic to (0,1) even though R is complete and (0,1) is not.

Example 24: Euclidean m-space R™ is complete. For, let (p;, Py, ...) be a Cauchy sequence in

R™ where
[¢)
10

— — (1)
P = (a L] a{m)>, P2 = (az IR az(m)>!

Then (see Example 1.4) the projections of (p,) into the m coordinate spaces are
Cauchy; and since R is complete, they converge:
(a{V, L T (ai’"), al™, ...y > by

Thus (p,) converges to the point ¢q = (by, ..., b,) € R™, since each of the m pro-
jections converges to the projection of ¢ (see Page 169, Theorem 12.7).

PRINCIPLE OF NESTED CLOSED SETS

Recall that the diameter of a subset A of a metric space X, denoted by d(4), is defined
by d(A) = sup {d(a,a’): a,a’ € A} and that a sequence of sets, Ai, As, ..., Iis said to be
nested if 41D A4.D -

The next theorem gives a characterization of complete metric spaces analogous to the
Nested Interval Theorem for the real numbers.

Theorem 14.2: A metric space X is complete if and only if every nested sequence of
non-empty closed sets whose diameters tend to zero has a non-empty
intersection.

In wther words, if A1 D A:D --- are non-empty closed subsets of a complete metric
space X such that lim d(4.) = 0, then N7, A» # ; and vice versa.

n—+ o0

The next examples show that the conditions lim d(4.) = 0 and that the A; are
closed, are both necessary in Theorem 14.2. e

Example 3.1: Let X be the real line R and let A, = [r, ). Now X is complete, the 4, are closed,
and 4; D4, D +--. But ng, 4, is empty. Observe that lim d(4,) = 0.

T =r 0

Example 3.2: Let X be the real line R and let A, = (0,1/n]. Now X is complete, A; D 4, D -+,
and lim d(4,) =0. But nj_, A, isempty. Observe that the A, are not closed.

n—+ o

COMPLETENESS AND CONTRACTING MAPPINGS

Let X be a metric space. A function f:X->X is called a contracting mapping if
there exists a real number o, 0 =a <1, such that, for every p,q € X,

d(f(p), f(@)) = ad(p,q) < d(p,q)

Thus, in a contracting mapping, the distance between the images of any two points is
less than the distance between the points.
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Example 41: Let f be the function on Euclidean 2-space R?, ie. f: R? > R?, defined by f(p) = {p.
Then f is contracting, for

d(f), fle) = lIfe) —fDl = llip — 14|l
= $lp—dl = 4dp, 9
?
f(p)
flq) q

If X is a complete metric space, then we have the following “fixed point” theorem which
has many applications in analysis.

Theorem 14.3: If f is a contracting mapping on a complete metric space X, then there
exists a unique point p € X such that f(p) =0p.

COMPLETIONS

A metric space X* is called a completion of a metric space X if X* is complete and
\X is isometric to a dense subset of X*.

Example 5.1: The get R of real numbers is a completion of the set Q of rational numbers, gince R
! is complete and Q is a dense subset of R.

We now outline one particular construction of a completion of an arbitrary metric
space X. Let C[X] denote the collection of all Cauchy sequences in X and let ~ be the
relation in C[X] defined by

(@n) ~ (byy iff  lim d(as, bs) = 0

t2]

Thus, under “~
“limit”,

Lemma 14.4: The relation ~ is an equivalence relation in C[X].

we identify those Cauchy sequences which “should” have the same

Now let X* denote the quotient set C[X]/~, i.e. X* consists of equivalence classes [(a»)]
of Cal,‘chy sequences (a.) € C[X]|. Let e be the function defined by

e(l(an)], [(bx)]) = lim d(ax, ba)
where [(an)], [(bn)] € X*. ne

Lemma 14.5: The function e is well-defined, ie. (a.)~ (a*) and (ba) ~ (by) implies
lim d(as, b.) = lim d(a}, b¥).

N=rco

In other words, e does not depend upon the particular Cauchy sequence chosen to
represent any equivalence class. Furthermore,

Lemma 14.6: The function e is a metric on X*.
Now for each p € X, the sequence (p,p,p,...) € C[X], ie. i8 Cauchy. Set
P =1pp ..01 and X = (B:peX)
Then X is a subset of X*.

Lemma 14.7: X is isometric to X , and X is dense in X*.

Lemma 14.8: Every Cauchy sequence in X* converges, and so X* is a completion of X.
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Lastly, we show that
Lemma 14.9: If Y* is any completion of X, then Y* is isometric to X*.

The previous lemmas imply the following fundamental result.

Theorem 14.10: Every metric space X has a completion and all completions of X are
~isometric.

In other words, up to isometry, there exists a unique completion of any metric space.

BAIRE’S CATEGORY THEOREM

Recall that a subset A of a topological space X is nowhere dense in X iff the interior
of the closure of A is empty:

int(d) = @

Example 6.1: The set Z of integers is a nowhere dense subset of the real line R. For Z is closed,

i.e. Z =Z, and its interior is empty; hence
int(Z) = int(Z) = @
Similarly every finite subset of R is nowhere dense in R.
On the other hand, the set Q of rational numbers is not nowhere dense in R
since the closure of Q is R and so
int@ = intR) =R = @
|
A topological space X is said to be of first category (or meager or thin) if X is the
countable union of nowhere dense subsets of X. Otherwise X is said to be of second
category (or non-meager or thick).

Example 6.2: The set Q of rational numbers is of first category since the singleton subsets {p}
of Q are nowhere dense in Q, and Q is the countable union of singleton sets.

In view of Baire’s Category Theorem, which follows, the real line R is of second
category.

Theorem (Baire) 14.11: Every complete metric space X is of second category.

CQMPLETENESS AND COMPACTNESS

Let A be a subset of'a metric space X. Now A is compact iff A is sequentially compact
iff every sequence (a.) in A has a convergent subsequence (a; ). But, by Example 1.1, (a:)
is a Cauchy sequence. Hence it is reasonable to expect that the notion of completeness is
related to the notion of compactness and its related concept: total boundedness.

We state two such relationships:

Theorem 14.12: A metric space X is compact if and only if it is complete and totally
bounded.

Theorem 14.13: Let X be a complete metric space. Then A C X is compact if and only if
A is closed and totally bounded.

CONSTRUCTION OF THE REAL NUMBERS

The real numbers can be constructed from the rational numbers by the method
described in this chapter. Specifically, let Q be the set of rational numbers and let R be
the collection of equivalence classes of Cauchy sequences in Q:
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R = {[{an]: (a.) is a Cauchy sequence in Q)
Now R with the appropriate metric is a complete metric space.

Remark: Let X be a normed vector space. The construction in this chapter gives us

a complete metric space X*. We can then define the following operations of

. vector addition, scalar multiplication and norm in X* so that X* is, in fact, a
complete normed vector space, called a Banach space:

1) Kan)] + [(D)] = Kan+b)] (i) kan] = Kkaw] (i) ||[(@x]]] = 32’2”(11:”

Solved Problems

CAUCHY SEQUENCES

1. Show that every Cauchy sequence (a.) in a metric space X is totally bounded (hence

also bounded).
Solution:

Let ¢ > 0. We want to show that there is a decomposition of {a,} into a finite number of sets,
each with diameter less than e. Since (a,) is Cauchy, 3 n, €N such that

nm>n > dla,a,) <e

Accordingly, B = {“no+1: Qpg+20 ...} has diameter at most e. Thus {a}, ..., {ano}, B is a finite
decomposition of {a,} into sets with diameter less than ¢, and so (a,) is totally bounded.

2. Let (ai,as, ...) be a sequence in a metric space X, and let
Ay = {ay,as ...}, A2 = {azas ...}, As= {as,a4,...},

Show that (a.) is a Cauchy sequence if and only if the diamelers of the A, tend to zero,
ie. lim d(4.) = 0.

e N—+r 0
Solution:
Suppose (a,) is a Cauchy sequence. Let ¢ > 0. Then

37 €EN  suchthat 2,m>ny > dla,, ay) <e

Accordingly, n>mny, > d4,)<e andso lim (4,) =0

n~—rco

On the other hand, suppose lim d(4,) = 0. Let ¢>0. Then
n=— oo

A nEN such that d(Anoﬂ) <e

Hence nm>ny > ayty € A 41 > dag,a,) <e

and so (a,) is a Cauchy sequence.

3. Let (ajas ...) be a Cauchy sequence in X and let (a:,as, ...) be a subsequence of
(@x). Show that lim d(a.,a:;) = 0.

-2

Solution:
Let ¢ > 0. Since (a,) is a Cauchy sequence,

AnEN such that nm>n,—1 2 dlaga,) <e

Now 1, 0 = Mo > Mg~ 1 and therefore d(ano, aino) <e In other words, 1}1_130 d(a,, u,in) = 0.
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4. Let (ai,as ...) be a Cauchy sequence in X and let (@i, ., ...) be a subsequence of
(a.) converging to p € X. Show that (a.) also converges to p.
Solution:
By the Triangle Inequality, d(a,, p) = d(a,, a,-n) + d(ain, p) and therefore

lim d(a,,p) = lim d(a,e;) + lm d(a; ,p)
ne— n o0 n

n— 0

Since a, =P lim d(a,-n, p) = 0 and, by the preceding problem, lim d(a,, ain) = 0. Then
n =~ n = o0

lim d{a,,p) = 0 andso a,—p

N0

5. Let (b, bz ...) be a Cauchy sequence in a metric space X, and let (a as, ...) be a
sequence in X such that d(a., b.) < 1/n for every n € N.
(i) Show that (a.) is also a Cauchy sequence in X.
(i1} Show that (a.) converges to, say, p € X if and only if (b,) converges to p.

Solution:
(i) By the Triangle Inequality,

(s a‘n) = d(am, bm) + d(bp, bn) + d(bn’ a,)

Let ¢ > 0. Then 3 m; €N such that 1/n; < 3. Hence
n,m > ny $ d(am) a’n) < E/3 + d(bm7 bn) + 5/3

By hypothesis, (by, by, ...) is a Cauchy sequence; hence
A n, €N such that n,m>ny > dby, by < €/3

Set ng = max {n;, ny}. Then
nm>ny P dag,a,) < /83+¢/3+ /3 = ¢

Thus (a,) is a Cauchy sequence.

(ii) By the Triangle Inequality, d(b,,p) = d(b,, a,) + d{a,, p); hence
lim d(b,,p) = lim d(b,,a,) + lim (@, p)
N=~r 0 n=+m

n=-+ 0

But lim d(b, a,) = lim (1/n) = 0. Hence, if a, > p, lim d(b,,p) = lim (a,p) = 0 and so
n=+ o0 n=— 0 n=+ G

n=—+ o0
(b,) also converges to p.
I

Similarly, if b, - p then a, - p.

COMPLETE SPACES
6. Prove Theorem 14.2: The following are equivalent: (i) X is a complete metric space.
(ii) Every nested sequence of non-empty closed sets whose diameters tend to zero has
a non-empty intersection. '
Solution:
) > (i):
Let A, DA,D -+ be non-empty closed subsets of .X such that lim d(4,) = 0. We want to

prove that N, A, = (. Since each A; is non-empty, we can choose a sequence
(@y, Qg, ...) such that a; €Ay, ay € A,,

We claim that (a,) is a Cauchy sequence. Let ¢ > 0. Since lim d(4,) = 0,

n=—x
I ngEN such that d(Ano) <e
But the A; are nested; hence
nm>n, » A,A,C A"o > ag,a,€ A"o > dla,, ay) < e

Thus (a,) is Cauchy.
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Now X is complete and so (a,) converges to, say, p € X. We claim that pE€ N,A, Suppose

not, i.e. suppose
1 kEN such that p&A,

Since A, is a closed set, the distance between p and A is non-zero; say, d(p,A;) = § > 0. Then
A, and the open sphere S = S(p, 18) are disjoint. Hence

n>k ? a’neAk $ aneS(p,—%S)
This is impossible since a, = p. In other words, p€ N, 4, and so Ny, 4, is non-empty.
(i) > (i)
Let {(@a,,a, ...) be a Cauchy sequence in X. We want to show that {a,) converges. Set

Ay = {ay,ay ...}, A, = {as,a;3 ...},

ie. Ay = {a,:n=k}, Then A;DAy,D -+ and, by Problem 2, lim d(4,) = 0. Furthermore,
since d(d) = d(A), where A is the closure of A, A;DA,D - is g_éaéquence of non-empty closed

sets whose diameters tend to zero. Therefore, by hypothesis, N, 4, * @; say, p€ ﬂnfin. We claim

that the Cauchy sequence (a,) converges to p.
Let « > 0. Since lim d(4) = 0,
n=roc

I nEN such that d(/ino) <e

and so n>n, > a,p€ A"o > dia,p) <e

In other words, (a,) converges to p.

Let X be a metric space and let f: X > X be a contracting mapping on X, i.e. there
exists « €R, 0= <1, such that, for every p,q € X, d(f(p),f(q)) = ad(p,q). Show
that f is continuous.

Solution:
We show that f is continuous at each point x, € X. Let ¢ > 0. Then

dlw,xg) <e > d(f(x), flxg) = ad(@,2g) = ae < ¢
and so f is continuous.

Prove Theorem 14.3: Let f be a contracting mapping on a complete metric space X, say
d(f(a), (b)) = ad(a,d), 0=a<1
Then there exists one and only one point p € X such that f(p) = p.

Solution:
Let ¢y be any point in X. Set
ay = flag), ay = flay) = fAag), ..., @y = flan—y) = fr(ay),
We claim that (@, @y, ...) is a Cauchy sequence. First notice that
d(fstt(ag), fiag)) = ad(fstt~1(ag), ft=1(ag)) = -+ = atd(fs(ay), ag)

= at[d(ag, flap) + d(f(a), 2(ap) + -+ + d(fs=1(ao), /*(ao)]
But d(fit1(ay), fi(ag)) = &t d(f(ay), ay) and so

d(fs+t(a), fH(ag) = atd(f(ag),ag) (1 + a+ a2+ =+ + as=1)
ot d(f(ag), ag) [1/(1 - o)]
since 1+a+a2+ - +a571) = 1/(1 - o).

|

I\
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Now let ¢ > 0 and set
e(1—a) if d(f(ag),a0) =0
e(1 — a)/d(f(ag), @) if d(f(ag), ag) # 0
Since « <1, 3 ng €N such that o < 3§
Hence if r = s > n,,
dlag, ) = of [1/(1 — o)) d{f(ag), @) < S8[1/(1—a)] d(flay),ay) = e
and so {(a,) is a Cauchy sequence.

Now X is complete and so (a,) converges to, say, p € X. We claim that f(p) = p; for f is con-
tinuous and hence sequentially continuous, and so

n=—>x

fp) = f< lim a,,> — lim flay) = lim ay., = p

Lastly, we show that p is unique. Suppose f(p) =p and f(q) = q; then

d(p,q) = d{f(p),flg)) = a«d(p,q)
But a < 1; hence d(p,q) = 0, ie. p = q.

COMPLETIONS

9. Show that (a.) ~ (b,) if and only if they are both subsequences of some Cauchy
sequence (Cn).

Solution:
Suppose (a,) ~ (b,), ie. lim d(a, b,) = 0. Define {(c,) by
n=—
. = Cryn if n is even
* b%(n+1) if n is odd
Thus (¢, = (by,a, by, a9, ...). We claim (¢,) is a Cauchy sequence. For, let ¢> 0; now

3 %, EN suchthat m,n>n; > dloy e, < le
2 n, €EN  suchthat m,n > ny, > d(by, b, < de
3 n3 € N such that n>ng > dla,b,) < le

Set ny = max (ny,ny,ng). We claim that
m,m > 2ny > dieg, ) <e

Note that m>2ny > dm > mg Hm+1) > nymg

Thus MM even D Oy = Gypm Cp = Gy > dlep,cy) < Le <e
myn odd P €n = byymany Cn = by > dlem 6) < fe <

meven, n odd > €y = G € = by >
d(cm: cn) = d(a%mrb%m) + d(bl/zmybl/z(n+l)) < %5 + %5 = €
and so {(¢,) is a Cauchy sequence.

Conversely, if there exists a Cauchy sequence (¢,) for which (a,) = (c,-n) and (b,) = (ckn), then

lim d(a,,b,) = lim d(cjn’ Ckn) =0
1=+ 00

n-+ 0

since (¢,) is Cauchy and n — = implies j,, k, > «=.

10. Prove Lemma 14.5: The function e is well-defined, i.e. (a.) ~ (@) and (b.) ~ (b
implies lim d(a., b,) = lim d(a*, b)).

n=—+«x

Solution:
Set r = lim d(a,, b,) and r* = lim d(a}, b)), and let ¢> 0. Note that
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11.

12.

13.

14.

d(ap, by) = d(ay, a3) + d(ay, b3) + d(b}, b,)

Now 37, EN such that =n>mn; = d(a, a¥) < /3
In€EN such that n>ny, = d(b,, b)) < ¢3
3 n3€EN  suchthat n>n; > ld(a*, b)) —r*| < /3

Accordingly, if n > max (ny, ny, n3), then

da,, b,) < r* + ¢ and so lim d(a,,b,) = r = r* + ¢

ne=—r
But this inequality holds for every ¢ > 0; hence » = #*. In the same manner we may show that
r* = p; thus r = r*,

Let (a.) be 2 Cauchy sequence in X. Show that « = [{a.)] € X* is the limit of the
sequence (@:,@:,...) in X. (Here X = (p=1[»,pp, ..)1:pEX)}. )

Solution:
Since (a,) is a Cauchy sequence in X,

lim e(@,,a) = lim <1im d(am,an)> = lim d(agm,a,) = 0
me=—+ o M= n=r o0 me=— o
T —r oo

Accordingly, (&;) >«

Prove Lemma 14.7: X is isometric to )2', and X is dense in X*.

Solution:
For every p,q € X, .~
e(p,q) = lim d(p,q) = d(p,q)

n- oo
and so X is isometric to X We show that X is dense in X* by showing that every point in X* is the
limit of a sequence in X Let o = [{(a;,@5, ...)] be an arbitrary point in X*. Then (an> is a Cauchy
sequence in X and so, by the preceding problem, « is the limit of the sequence (al, a2, ...y in X.
Thus X is dense in X*,

Prove Lemma 14.8: Every Cauchy sequence in (X*, e) converges, and so (X*,e) is a
completion of X.

Solution: ~
Let (aj,ay, ...) be a Cauchy sequence in X*. Since X is dense in X*, for every n € N,
A
33,€X suchthat (@, a,) < 1/n
Then (Problem 5) (31, 62, ...y is also a Cauchy sequence and, by Problem 12, (81,32, ...) converges

to B8 = [{gy,ay, ...)] € X*. Hence (Problem 5) (a,) also converges to B and therefore (X*,e) is
complete.

Prove Lemma 14.9: If Y* is a completion of X, then Y* is isometric to X*.

Solution:

We can assume X is a subspace of Y*. Hence, for every p € Y*, there exists a sequence
(@, @y, ...) in X converging to p; and in particular, (a,) is a Cauchy sequence. Let f:Y* > X* be
defined by

f(p) = Kagag, ...)]
Now if (a ...Y € X also converges to p, then
lim d(ap,ef) = 0 and so [a)] = [ei)]

nN=—r 0
In other words, f is well-defined.

Furthermore, f is onto. For if [(by, by, ...)] € X*, then (b, b, ...) is a Cauchy sequence in
X CY* and, since Y* is complete, (b,) converges to, say, ¢ € Y*. Accordingly, f(¢) = [(by].
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Now let p,q € Y* with, say, sequences (a,) and (b,) in X converging, respectively, to p and gq.
Then

G, f@) = M@, () = lim dlay, ) = d( lim oy lim b)) = do,0

n— 0

Consequently, f is an isometry between Y* and X*.

BAIRE’S CATEGORY THEOREM
15. Let N be a nowhere dense subset of X. Show that N¢ is dense in X.

Solution: _
Suppose N¢ is not dense in X, i.e. 3 p € X and an open set G such that
pEG and GnNe = ¢

Then p€EGCN and so p € int(N). But this is impossible since N is nowhere dense in X, i.e.
int (N) = ). Therefore N¢ is dense in X.

16. Let G be an open subset of the metric space X and let N be nowhere dense in X. Show
that there exist p € X and § > 0 such that S(p,8) CG and S(p,8) "N = Q.
Solution: .

Set H=GnNN¢. Then HCG and HN N = (. Furthermore, H is non-empty since G is

open and Ne¢ is dense in X; say, p € H. But H is open since G and N¢ are open; hence 3§ > 0 such
that S(p,8) c H. Consequently, S(p,8) C G and S(p,8) " N = Q.

17. Prove Theorem 14.11: Every complete metric space X is of second category.

Solution:
Let M C X and let M be of first category. We want to show that M # X, ie. 3 p€ X such
that p € M. Since M is of first category, M = N, U N, U -+ where each N, is nowhere dense in X.

Since N; is nowhere dense in X, 3a; € X and §;, >0 such that S(a,8;) N N; = @. Set
e, = 8;/2. Then
Sla,e) "Ny = @
Now S(ay,¢) is open and N, is nowhere dense in X, and so, by Problem 16,
3a,€X and §,> 0 such that S(as, §3) € S(ay,e1) C S(ay,e1) and S(as, 85) NNy, = O
Set e, = §,/2 = €,/2 = §;/4. Then
S(ag, e5) C Slay, ¢) and S(ag,e5) N Ny = @

Continuing in this manner, we obtain a nested sequence of closed sets

S(al,sl) 2 S(az, 62) ] S(a3, 63) D oeee
such that, for every n € N, S(ap,e,) "N, = @ and €, = §,;/2n

Thus lim ¢, = lim §;/2® = 0 and so, by Theorem 14.2,

n=+x n= 0

IpeX such that p € Ni=y S(a,, e,)

Furthermore, for every n € N, p € N, and so p& M.

COMPLETENESS AND COMPACTNESS
18. Show that every compact metric space X is complete.

Solution:

Let (a;,ay, ...) be a Cauchy sequence in X. Now X is compact and so sequentially compact;
hence (a,) contains a subsequence (@i, @iy, - - 2) which converges to, say, p € X. But (Problem 4)
(a,) also converges to p. Hence X is complete.
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19.

20.

21.

Let E be a totally bounded subset of a metric space X. Show that every sequence
{an) in E' contains a Cauchy subsequence.
Solution:

Since E is totally bounded, we can decompose E into a finite number of subsets of diameter less

than ¢ = 1. One of these sets, call it A,, must contain an infinite number of the terms of the

sequence; hence
34 EN such that a; €A,

Now A, is totally bounded and can be decomposed into a finite number of subsets of diameter

less than e = 4. Similarly, one of these sets, call it A,, must contain an infinite number of the

terms of the sequence; hence

34,EN such that 4, > 7; and a;, € A,
Furthermore, A, C A;.

We continue in this manner and obtain a nested sequence of sets
EDA DA, D+ with d(4,) <1/n

and a subsequence <ai1’ai2’ ...y of (a,) with aine A,. We claim that (ain> is a Cauchy sequence.

For, let ¢ > 0; then
A nEN such that 1/ny < e and so d(A"o) <e

Therefore gy > i"o > a e € A,,0 > d(aim, din) < e

Prove Theorem 14.12: A metric space X is compact if and only if X is complete and
totally bounded.

Solution:

Suppose X is compact. Then, by Problem 15, X is complete and, by Lemma 11.17, Page 158,
X is totally bounded.

On the other hand, suppose X is complete and totally bounded. Let (a, @, ...) be a sequence
in X. Then, by the preceding problem, (a,) contains a Cauchy subsequence C which converges
since X is complete. Thus X is sequentially compact and therefore compact.

Prove Theorem 14.13: ILet A be a subset of a complete metric space X. Then the
following are equivalent: (i) A is compact. (ii) A is closed and totally bounded.
Solution:

If A is compact, then by Theorem 11.5 and Lemma 11.17 it is closed and totally bounded.

Conversely, suppose 4 is closed and totally bounded. Now a closed subset of a complete space is
complete, and so A is complete and totally bounded. Hence, by the preceding problem, A is compact.
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Supplementary Problems

COMPLETE METRIC SPACES

22. Let (X, d) be a metric space and let ¢ be the metric on X defined by e(a,b) = min {1, d(a, b)}. Show )
that (a,) is a Cauchy sequence in (X, d) if and only if (a,) is a Cauchy sequence in (X, e).

23. Show that every finite metric space is complete.
24. Prove: Every closed subspace of a complete metric space is complete.
25. Prove that Hilbert Space (l,-space) is complete.

26. Prove: Let B(X,R) be the collection of bounded real-valued functions defined on X with norm

Il = sup{|f(@) : x € X}
Then B(X, R) is complete.

27. Prove: A metric space X is complete if and only if every infinite totally bounded subset of X has an
accumulation point. ‘

28. Show that a countable union of first category sets is of first category.

29. Show that a metric space X is totally bounded if and only if every sequence in X contains a Cauchy
subsequence.

30. Show that if X is isometric to Y and X is complete, then Y is complete.

MISCELLANEOUS PROBLEM

31. Prove: Every normed vector space X can be densely embedded in a Banach space, i.e. a complete
normed vector space. (Hint: See Remark on Page 199).



Chapter 15

Function Spaces

FUNCTION SPACES

Let X and Y be arbitrary sets, and let F(X,Y) denote the collection of all functions

from X into Y. Any subcollection of F(X,Y) with some topology T is called a function
space.

We can identify ¥(X,Y) with a product set as follows: Let Y, denote a copy of Y
indexed by x € X, and let F denote the product of the sets Y., i.e.,

F = J[{Y.: z€X}
Recall that F consists of all points p = (a,: x € X) which assign to each x € X the element
a: € Y. =Y, ie. F consists of all functions from X into Y, and so F = F(X,Y).

Now for each element x € X, the mapping e. from the function set ¥(X,Y) into Y
defined by
e(f) = f(x)

is called the evaluation mapping at x. (Here f is any function in F(X,Y), ie. f:X->Y)
Under our identification of ¥(X,Y) with F, the evaluation mapping e. is precisely the
projection mapping =, from F into the coordinate space Y.=Y.

Example 1.1:  Let F(I,R) be the collection of all real-valued 4

functions defined on I = [0,1], and let
f,9,h € F(I,R) be the functions

fl@) = x2, g(x) = 2¢x+ 1, h(z) = sinza g
Consider the evaluation function e;: F(I,R)>R 2
at, say, 7 = 4. Then /

' e(f) = fU) = . i

)= = ;
elg) = g() = 9(%) = 2
ei(h) = R(j) = Q) =1 0 /j 1
Graphically, e;(f), ¢;(g) and ¢;(h) are the points
where the graphs of f, g and & intersect the _14 R].
vertical line E; through « = j.

POINT OPEN TOPOLOGY

Let X be an arbitrary set and let ¥ be a topological space. We first investigate
the product topology T on #(X,Y) where we identify F(X,Y) with the product set
F = H {Y,:x € X} as above. Recall that the defining subbase of of the product topology
on F consists of all subsets of F of the form

w6l = {f: neylf) € G

%o
where zo € X and G is an open subset of the coordinate space Y., =Y. But meo(f) =
ex,(f) = f(x0), where e, is the evaluation mapping at xo € X. Hence the defining subbase
o of the product topology T on ¥(X,Y) consists of all subsets of F(X,Y) of the form

207
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{f: f(xo) € G}, i.e.:all functions which map an arbitrary point xz, € X into an arbitrary
open set G of Y. We call this product topology on ¥(X,Y), appropriately, the point open
topology. ' ,

Alternatively, we can define the point open topology on F(X,Y) to be the coarsest
topology on F(X,Y) with respect to which the evaluation functions e.: F(X,Y)>Y are
continuous. This definition corresponds directly to the definition of the product topology.

Example 2.1: Let 7 be the point open topology on
F(I,R) where I = [0,1]. As above, mem-
bers of the defining subbase of T are of

he f
the form = fy) € 6

where 7, € I and G is an open subset of R.
Graphically, the above subbase element
consists of all functions passing through 0
the open set G on the vertical real line R~
through the point j; on the horizontal axis.
Recall that this is identical to the subbase
element of the product space

X =T1J{R;:<€I}
illustrated in Chapter 12, Page 170.

DAV
P

Example 2.2: If A is a subset of a product space
[1{X;:i€ I}, then A is a subset of the
product of its projections, i.e.

A cJl{nA]:ieD 11 ¢mifa) rien

(as indicated in the diagram). | I

walA]

. | |

Thus A C [I{=JA] i€ I} = where ‘ |
m;|A] is the closure of =;[A]. Accordingly, mil4]
if e4 = ed(X,Y) is a subcollection of
F(X,Y), then

A C Iz A2 €X)y = Jl{efAd]:2z€X}

—~ and e,[ed] = {f(x): f € eA}. By the Tychonoff Product Theorem, if {f(x): z € X}
is compact for every x € X, then []{m,[c4]: 2 & X} is a compact subset of the
product space [[{Y,:» € X}.

Recall that a closed subset of a compact set is compact. Hence the result of Example 2.2
implies ‘ : ) ,
Theorem 15.1: Let <4 be a subcollection of F(X,Y). Then 4 is compact with respect
' to the point open topology on F(X,Y) if (i) c4 is a closed subset of
F(X,Y) and (ii) for every z € X, {f(x):f € 4} is compact in Y.

In the case that Y is Hausdorff we have the following stronger result:

' Theorem 15.2: Let Y be a Hausdorff space and let <4 C F(X,Y). Then <4 is compact
with respect to the point open topology if and only if <4 is closed and,
for every x € X, {f(x): f{e ed} is compact.

POINTWISE) CONVERGENCE

Let (fi,fs,...) be a sequence of functions from an arbitrary set X into a topological
space Y. The sequence (f») is said to converge pointwise to a function ¢g: X->Y if, for
every %o © X,

(f1(zo), f2(o), . ..) converges to g(xo), i.e. lim fa(2o) = g(xo)

n=— 0
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In particular, if Y is a metric space then (f,) converges pointwise to g iff for every «> 0
and every x, € X,

3 no = no(xo,e) EN  suchthat n>mne > d(fa(20), 9(x0)) < e
Note that the no depends upon the ¢ and also upon the point zo.

Example 3.1: Let (fi,fs, ...) be the sequence of functions
from I = [0,1] into R defined by 14

fi@) = &, frle) = 2%, fy(x) = a3, ...

Then (f,) converges pointwise to the function

g:1—->R defined by f1
L]
@ 0 fo0=ax<1 s .
g 1 it x=1 fs
Observe that the limit function g is not con- 0 7 Y

tinuons even though each of the functions f;
is continuous.

The notion of pointwise convergence is related to the point open topology as follows: -
Theorem 15.3: A sequence of functions (fi,fs,...) in F(X,Y) converges to g € F(X,Y)
with respect to the point open topology on F(X,Y) if and only if (f.)

converges pointwise to g.

In view of the above theorem, the point open topology on F(X,Y) is also called the
topology of pointwise convergence.

Remark: Recall that metrizability is not invariant under uncountable products; there-
fore, the topology of pointwise convergence of real-valued functions defined
on [0,1] is not a metric topology. The theory of topological spaces, as a
generalization of metric spaces, was first motivated by the study of pointwise
convergence of functions.

UNIFORM CONVERGENCE

Let (f1,fs ...) be a sequence of functions from an arbitrary set X into a metric space
(Y,d). Then (f.) is said to converge uniformly to a function ¢g: X - Y if, for every «> 0,

Ino=7n() EN suchthat n>ny > dfa(@),g(@) <, YV2zE€X

In particular, (f.) converges pointwise to g; that is, uniform convergence implies pointwise
convergence. Observe that the n, depends only on the ¢, whereas, in pointwise convergence,
the no depends on both the « and the point x.

In the case where X is a topological space, we have the following classical result:

Proposition 15.4: Let (f1,fs, ...) be a sequence of continuous functions from a topological
space X into a metric space Y. If (f,) converges uniformly to g: X > Y,
then g is continuous.

Example 4.1: Let fy,fs ... be the following continuous functions from I = [0, 1] into R:
fl(w) =, fZ(x) = WZ, f3(x) = w?:’ oo

Now, by Example 3.1, (f,) converges pointwise to g: I —> R defined by

@ 0 if0=a<1
x Py
g 1 ifz=1

Since g is not continuous, (f,) does not converge uniformly to g.
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Example 4.2: Let (fq, f5, .. .) be the following sequence of functions in #(R, R):

1 -
B jl — =lxl if |x] <n
T = lo " it wl=n

Now (f,) converges pointwise to the con-  ——— S —————
stant function g(x) = 1. But (f,) does not /\
converge uniformly to g. For, let ¢ = 1. r

Note that, for every = € N, there exist

-n n

points xy € R with [, (%) =0 and so
‘fn (990) _g(xo)’ =1>e

Let B(X,Y) denote the collection of all bounded functions from an arbitrary set X
into a metric space (Y, d), and let e be the metric on B(X, Y) defined by

e(f,9) = sup {d(f(z),9(x)) : x € X}

This metric has the following property:

Theorem 15.5: Let (fi,f2 ...) be a sequence of functions in B(X,Y). Then (f.) converges
to g € B(X,Y) with respect to the metric e if and only if (f.) converges
uniformly to g.

In view of the above theorem, the topology on B(X,Y) induced by the above metric is
called the topology of uniform convergence.

Remark: The concept of uniform convergence defined in the case of a metric space Y
cannot be defined for a general topological space. However, the notion of
uniform convergence can be generalized to a collection of spaces, called uniform
spaces, which lie between topological spaces and metric spaces.

THE FUNCTION SPACE (]0,1]

The vector space ([0,1] of all continuous functions from I = [0,1] into R with norm

defined b
. Ifil = sup (f(x)|: z €I}

is one of the most important function spaces in analysis. Note that the above norm
induces the topology of uniform convergence.
Since I = [0,1] is compact, each f € ([0,1] is uniformly continuous; that is,
Proposition 15.6: Let f:[0,1] > R be continuous. Then for every >0,
35=258( >0 suchthat lxo—a:] <8 > |[f(xo)—Ff(x1)] <e

Uniform continuity (like uniform convergence) is stronger than continuity in that the
8 depends only on ¢ and not on any particular point. '

One consequence of Proposition 15.4 follows:

Theorem 15.7: (°[0,1] is a complete normed vector space.

We shall use the Baire Category Theorem for complete metric spaces to prove the
following interesting result:

Proposition 15.8: There exists a continuous function f:[0,1]-> R which is nowhere
differentiable.

Remark:  All the results proven here for ([0, 1] are also true for the space ([a, b] of all
continuous functions on the closed interval [a, b].
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UNIFORM BOUNDEDNESS

In establishing necessary and sufficient conditions for subsets of function spaces to be
compact, we are led to the concepts of uniform boundedness and equicontinuity which are
interesting in their own right.

A collection of real valued functions e4 = {f;: X > R} defined on an arbitrary set X

is said to be uniformly bounded if
I3MeR suchthat [f(x))=M,Vf€cd, Vo EX

That is, each function f € c4 is bounded and there is one bound which holds for all of
the functions.

In particular if <4 C ([0,1], then uniform boundedness is equivalent to

AMeER suchthat [f||=M, Vf€cA

or, o4 is a bounded subset of ([0, 1].

Example 5.1:  Let ¢4 be the following subset of (R, R):
A = {fi(x) = sina, fy(x) = sin 2z, ...}

Then cA is uniformly bounded. For, let M = 1; then, for every f € c4 and every -
xz €ER, |f(x)) = M. See Fig. (a) below.

fs ¢,
1_4 fs rfs f1 N s
2 fa
= o
1 f1
4-1 -
Fig. (a) Fig. (b)

Example 5.2: Let o4 C C[0,1] be defined as follows (see Fig. (b) above):
A = {fi(x) =, folx) = 20, f3l®) = 32, ...}

Although each function in (C[0,1], and in particular in cA4, is bounded, ¢4 is not
uniformly bounded. For if M is any real number, however large, 3 ny, € N with
nyg > M and hence f,,o(l) =ny > M.

EQUICONTINUITY. ASCOLI'S THEOREM
A collection of real-valued functions <4 = {fi: X > R} defined on an arbitrary metric
space X is said to be equicontinuous if for every «> 0,
35=258()>0 suchthat d(xo,2:) <8 = |[f(xe)—flx1)| <e VfEA
Note that § depends only on ¢ and not on any particular point or function. It is clear that
each f € o4 is uniformly continuous.

Theorem (Ascoli) 15.9: Let c4 be a closed subset of the function space ([0,1]. Then 4
is compact if and only if ¢4 is uniformly bounded and equi-
continuous.

COMPACT OPEN TOPOLOGY

Let X and Y be arbitrary sets and let A C X and BCY. We shall write F'(4, B) for
the class of functions from X into Y which carry A into B:

F(A,B) = {f€F(X,Y): f[A] C B)
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Example 6.1: Let of be the defining subbase for the point open topology on F(X,Y). Recall that
the members of of are of the form

{feFX,Y): fix) € G}, where « € X, G an open subset of ¥
Following the above notation, we denote this set by F(x, G) and we can then define

+f b
o by o = {Fx G :x2€X, GCY open}

Now let X and Y be topological spaces and let <4 be the class of compact subsets of
X and G be the class of open subsets of Y. The topology T on F(X,Y) generated by

o = {FA4,G): A€cd, GEG}
is called the compact open topology on F(X,Y), and o is a defining subbase for T.

Since singleton subsets of X are compact, of contains the members of the defining
subbase for the point open topology on F(X,Y). Thus:

Theorem 15.10: The point open topology on F(X,Y) is coarser than the compact open
topology on T'(X,Y). )
Recall that the point open topology is the coarsest topology with respect to which the
evaluation mappings are continuous. Hence,

Corollary 15.11: The evaluation functions e.: F(X,Y)—>Y are continuous relative to
the compact open topology on F(X,Y).

TOPOLOGY OF COMPACT CONVERGENCE

Let (fi,fz ...) be a sequence of functions from a topological space X into a metric
space (Y,d). The sequence (f,) is said to converge uniformly on compacta to g: X->Y if
for every compact subset E C X and every > 0,

Ino=nE,) EN suchthat n>ne > d(fa(2),9(x)) <e¢ VX EE

In other words, (f:) converges uniformly on compacta to g iff, for every compact subset
E C X, the restriction of (f,) to E converges uniformly to the restriction of g to E, i.e,

(f1|E, f:|E, ...) converges uniformly to g|E

Now uniform convergence implies uniform convergence on compacta and, since singleton
sets are compact, uniform convergence on compacta implies pointwise convergence.

Example 7.1:  Let (fy, f5, ...) be the sequence in F(R, R) defined by
1
1—=|»| if |[z]<mn
= n
fn(®) {0 if j2|=n

Now (f,) converges pointwise to the constant function g(x) =1 but (f,) does not
converge uniformly to g (see Example 4.2). However, since every compact subset
E of R is bounded, (f,) does converge uniformly on compacta to g.
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Theorem 15.12: Let (X, Y) be the collection of continuous functions from a topological
space X into a metric space (Y,d). Then a sequence of functions (f») in
C(X,Y) converges to g € ((X,Y) with respect to the compact open
topology if and only if (f:) converges uniformly on compacta to ¢.

In view of the preceding theorem, the compact open topology is also called the topology
of compact convergence.

FUNCTIONALS ON NORMED SPACES

Let X be a normed vector space (over R). A real-valued function f with domain X, i.e.
f: X >R, is called a functional.

A functional f on X is linear if
(i) fla+y)=F@)+f(y), Yo,y €X, and (ii) f(kx)=Kk[f(z)], Vx € X, kER
A linear functional f on X is bounded if
IM>0 suchthat |f(x)=M|x|, Ve X
Here M is called a bound for f.

Example 8.1: Let X be the space of all continuous real-valued functions on [a,b] with norm
[IfIl = sup{lf(x): « € [a,b]}, i.e. X = (Cla,b]. Let I: X >R be defined by

) " 1 e

X(f+9) f (F(8) + (&) dt f o) dt + j godt = 1() + Xg)

1

(/)

Then I is a linear functional; for

I(kf) = f (kH)(t) dt = j k[f@t)] dt = kf f@® dt = kXY
Furthermore, M = b—a is a bound for I since

b
) = [ iwa = Ml = M|

Proposition 15.13: Let f and ¢ be bounded linear functionals on X and let X € R. Then
f+g9 and k-f are also bounded linear functionals on X.

Thus (by Proposition 8.14, Page 119) the collection X* of all bounded linear functionals
on X is a linear vector space.

Proposition 15.14: The following function on X* is a norm:
Ifll = sup {|f(x)|/|||| : =+ 0}

Observe that if M is a bound for f, ie. |[f(x)|=M||x||, Vx € X, then in particular,
for 0, |f(x)//||z]| =M and so ||f||=M. In fact, |[f|| could have been defined equiva-

lently b
o Ifll = inf {M : M is a bound for f)

Remark: The normed space of all bounded linear functionals on X is called the dual
space of X.
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Solved Problems

POINTWISE CONVERGENCE, POINT OPEN TOPOLOGY

1.

Let (f1,f2 ...) be the sequence of functions in F(I,R), 2n ——
where I = [0,1], defined by }
dAniz if 0=0=1/2n |
fo(y = {—-4n’z+4n if 120 <z <1/n :
0 if I/n=x=1 :
Show that (f.) converges pointwise to the constant funec- I
tion g(z) = 0. 11 1
2n n
Solution:

Now f,(0) =0 for every =€ N, and so lim f,(0) = ¢(0) = 0. On the other hand, if x, >0,
then 3n3 €N such that 1/ny < xy; hence "~~

n>mny > falwg) =0 > 1}1_1:150 folwg) = glxg) = 0

Thus (f,) converges pointwise to the zero function.

a1 1
Observe that J folx) dx = 1, for every n € N, and f glx)ydx = 0
0 0
Thus, in this case, the limit of the integrals does not equal the integral of the limit, i.e.,

1 1
lim fo@)de = f lim f,(x) de
0 n=+ o0

-
n 0

Let C(I, R) denote the class of continuous real valued functions on I = [0,1] with norm

i =, rela

Give an example of a sequence (fi,fs,...) in (C(I,R) such that f.—>g in the above
norm but (f,) does not converge to g pointwise.

Solution:
Let (f,) be defined by f,(x) = z*. Then

n=xn

1
lim |\, = limf ends = lim Um+1) = 0
T~ O n— %0 0

Hence (f,) converges to the zero function g(x) =0 in the above norm. On the other hand, (f,)
converges pointwise (see Example 38.1) to the function f defined by f(x)=0 if 0=2x<1 and
f(x) =1 if z=1. Note f+#g.

Show that if Y is T, Ts, regular, or connected, then ¥(X,Y) with the point open
topology also has that property.
Solution:

Since the point open topology on F(X,Y) is the product topology, ¥(X,Y) inherits any product
invariant property of Y. By previous results, the above properties are product invariant.



CHAP. 15] FUNCTION SPACES 215

4. Prove Theorem 15.2: Let Y be Hausdorff and let ¢4 be a subset of F7(X,Y) with the
point open topology. Then the following are equivalent: (i) ¢4 is compact. (ii) 4 is
closed and {f(z):f €4} is compact in Y, for every x € X.

Solution:

By Theorem 15.1, (ii) > (i) and so we need only show that (i) = (ii). Since Y is Hausdorff
and T, is product invariant, F(X,Y) is also Hausdorff. Now by Theorem 11.5 a compact subset of a
Hausdorff space is closed; hence ¢4 is closed. Furthermore, each evaluation map e,: F(X,Y)—>Y is
continuous with respect to the point open topology; hence, for each = € X,

exledl = {f(x): €A}

is compact in Y and, since Y is Hausdorff, closed. In other words, {f(x):f€ c4} = {f(x):[f E A}
is compact.

5. Prove Theorem 15.3: Let T be the point open topology on F(X,Y) and let (fi,fs ...)
be a sequence in F(X,Y). Then the following are equivalent: (i) (f:) converges to
g € F(X,Y) with respect to T. (ii) (f.) converges pointwise to g.
Solution:
Method 1.

We identify F(X,Y) with the product set F = [[{Y,: 2 € X} and T with the product topology.
Then by Theorem 12.7 the sequence (f,) in F converges to g € F if and only if, for every projection =,

(mo{Fn)) = (ex(fn)) = (fn(®)) converges to w,(g) = €,(9) = g(x)
In other words, fn— ¢ with respect to T iff lim f,(x) = g(x), V2 €X

i.e, iff (f,) converges pointwise to g.

Method 2.
(i) = (ii): Let x, be an arbitrary point in X and let G be an open subset of Y containing g{xg),

ie. g(xy) € G. Then
gEF(wy,G) = {fEFX,Y): flzg) € G}

and so F(xo, G) is a T-open subset of F(X,Y) containing g. By (i), (f,) converges to g with respect

to T; hence
3 npEN such that n>ny > f,€F(x,G)

Accordingly, n>ny > fol®) €EG > lim frlxg) = g(x)
n=—

But x, was arbitrary; hence (f,) converges pointwise to g.

(i) > (i): Let F(xg, G) = {f: f(%) € G} be any member of the defining subbase for T which
contains ¢. Then g(xy) € G. By (ii), (f,) converges pointwise to g; hence

I nEN such that n>ny > fulrg) €EG

and so n>mny > fo€F(x,G) = ({fu) T-converges to g

UNIFORM CONVERGENCE

6. Prove Proposition 15.4: Let (fi,fs ...) be a sequence of continuous functions from
a topological space X into a metric space Y, and let (f») converge uniformly to g: X-Y.
Then g is continuous.

Solution:

Let 2,€ X and let ¢>0. Then g is continuous at x, if 3 an open set G C X containing x,

such that
x€G > dlglw),g(w)) <e
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Now (f,) converges uniformly to g, and so
ImeEN such that d(fm(x), gl@)) < de, Y2 E€X
Hence, by the Triangle Inequality,
d(g(x), 9(x0)) = d(9(®),fm(®)) + d(f(®), frn(®)) + (@0} 9(wg)) < d(fin(®), frn (o)) + Fe
Since f,, is continuous, 3 an open set G C X containing x, such that
2E€G > d(f,(x), fm(xg)) < Le and so 2E€EG > digx),g(xy) <e

Thus g is continuous.

7. Let (f1,fs ...) be a sequence of real, continuous functions defined on [a,b] and con-
verging uniformly to ¢:[a,b] > R. Show that
b

lim fo(@)de = fbg(x) dx

Observe (Problem 1) that this statement is not true in the case of pointwise convergence.
Solution:
Let ¢ > 0. We need to show that

A nEN such that n>ng > < e

fb folx) de — fb g(x) de

Now (f,) converges uniformly to g, and so 37y, € N such that

n>ny > |fal@) —g@)| <e/(b—a), VzElab]

fb ful) dz — fb o(@) de

il

Hence, if n > ny,

b
f (@) — 9(®)) dot

I\

b
i) - o(2)] do

fb db—a)de = e

A

8. Prove Theorem 15.5: Let (fi,fs ...) be a sequence in B(X,Y) with metric
e(f,g) = sup {d(f(x),9(x)): x € X}
Then the following are equivalent: (i) (f.) converges to g € F(X,Y) with respect to e.
(ii) (f») converges uniformly to g.

Solution:
(i) > (ii): Let ¢ > 0. Since {f,) converges to g with respect to ¢,

I n €N such that n>ny > elfn9) <e
Therefore,

n>ny > df,(x),g(x) = sup {d(f(x),9(x)): * € X} = elfn,0) <e VZEX

that is, (f,) converges uniformly to g.

(ii) > (i): Let ¢ > 0. Since (f,) converges uniformly to g,
I nEN such that n>ny > df,(x),9x) <2 VzeX

Therefore, n>ny > sup {d(f (@), g&x):x€X} = /2 < e

that is, n > n, implies e(f,, g) <e¢ and so (f,) converges to g with respect to e.
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THE FUNCTION SPACE (J[0,1]
9. Prove Proposition 15.6: Let f: I > R be continuouson I = [0,1]. Then for every « > 0,

10.

11.

12.

35=238() >0 suchthat |r—y/ <8 > [f(x)—f(y)<e

i.e. f is uniformly continuous.

Solution:
Let ¢ > 0. Since f is continuous, for every p€l,

35,>0 suchthat {z—p| <3,

FUNCTION SPACES

>

(@) — f(p)] < fe

217

)

For each p € I, set S, =1In (P—48, p +%6p). Then {S,:p €I} is an open cover of I and, since

I is compact, a finite number of the S, also cover I; say, I = Spl Uy Sl’m' Set

8 = ymin(8,,...,5, )

m

Suppose | —y| < §. Then = €S, for some k, and so e —p ] <18, <8, and
Py 25D Py

ly—pel = ly—a| +jz—p < 3+%8Dk = $8p, T 48y

k

Hence by (1), lf(@) = flp)| < fe  and  [f(y) ~ Fpg)| < Le

Thus by the Triangle Inequality,

(@) ~f)l = |f@) = fp)| + 1Fpe) — f@)| < e+ de = ¢

Let {(fi,f2 ...) be a Cauchy sequence in clo,1].
(f1(20), f2(x0), ...) is a Cauchy sequence in R.
Solution: :

Let »y €I and let ¢ > 0. Since (f,) is Cauchy, Any €N such that

mn>mng > |fy—full = sup {{fn®)—Ff.@)|:x €} < ¢

> fulwe) = fml@o)] < e

Hence (f, (%y)) is a Cauchy sequence.

Prove Theorem 15.7: C[0,1] is a complete normed vector space.

Solution:

Show that, for each z €1 =10,1],

Let (fy,f5 ...) be a Cauchy sequence in C[0,1]. Then, for every x4 € I, (f,(xy)) is a Cauchy
sequence in R and, since R is complete, converges. Define g:I >R by g(x) = lim fn(x). Then
n=—r o0

(see Problem 32) (f,) converges uniformly to g. But, by Proposition 15.4, g is continuous, i.e.

g € (C[0,1]; hence ([0,1] is complete.

Let f € C[0,1] and let ¢« > 0. Show that 3no €N

and points
Po = (0, ek0/5), ey

Di = (i/no, kidB), ...,
Dny = (1, ekny/5)

where ko, ...,k are integers such that, if g
is the polygonal arc connecting the p;, then
IIf —g|l <e (see adjacent diagram). In other
words, the piecewise linear (or polygonal) func-
tions are dense in ([0, 1].

Solution:
Now f is uniformly continuous on [0, 1] and so

A nEN such that la —b] = 1/n,

EN

[f(@) ~ f(b)} < ¢/5

)
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13.

14.
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Consider the following subset of I X R:
A = {(,y): x=1/ng, y = ke/5 where 1 =0,...,ny k€ Z}
Choose p; = (&, ¥;) € A such that ¥ = flay) < y;+ €fb
Then lF(x) — g(@)] = [f(x) — ] < €/ and by (1), |f(@) — flwir )] < /b

as indicated in the diagram above.
Observe that
lg(e) — gl )] = lg(e) — f)] + [fla) —Fles )l HIf@i) — 9@ )] < ¢/5+ ¢/b+ /5 = 3e/b
Since ¢ is linear between x; and x;4 4,
v =z=2, > |g@)—g@} = lg@) —g@)| < 8¢/5
Now for any point z%‘l, 4 x;, satisfying ), =2 = 2,4, Hence '
f2) —9(z)] = [f(e) — fla)] + [fwr) — gla)| + [9(xp) —9(2)] < /5 + /5 + 8e/B =

But z was an arbitrary point in I; hence ||f —g|| < e

Let m be an arbitrary positive integer and let A. C ([0,1] consist of those functions f
with the property that
32 € [0, 1 —l} such that fl@oth) = f(zo)
m h
Show that A, is a closed subset of ([0,1]. (Notice that every function f in ([0, 1] Whlch
ig differentiable at a point belongs to some A, for m sufficiently large.)

Solution:
Let g€ A,. We want to show that g€ A4, ie. A, =A,. Since g€ A, there exists a

=m, VhE <0,l>

sequence (fy,fs,...) in A, converging to g.” Now for each f; there exists a point x; such that
s+ R — Fi(;
xiE[O,l—lJ ana |[EAP L)) Vhe<o,i> @)
m h m

But (x,)Js a sequence in a compact set |:0, 1— l:l and so has a subsequence (xin) which converges
1 b

to, say, €0, 1~=1|.

0, 82y, %, [ m:l

Now f,—>g implies fin - g, and so {Problem 30) passing' to the limit in (1), gives

st h) = 00|~ whe(o,

Hence g € A,,, and 4,, is closed.

Let Awn C ([0,1] be defined as in Problem 13. Show that A. is nowhere dense in
Cl0,1].
Solution:
A, is nowhere dense in ([0,1] iff int (4,) = int(4,) = Q.
Let S = S(f,8) be any open sphere in ([0,1]. We claim that
S contains a point not belonging to 4,,, and so int(4d,,) = @.
By Problem 12, there exists a polygonal arc p € ([0,1]
such that |[|f—pl] < 15. Let g be a saw-tooth function with
magnitude less than 18 and slope sufficiently large (Problem 33).
Then the function ‘A = p+ ¢ belongs to ([0,1] but does not
belong to 4,,. Furthermore,

=Rl = llf~pll + gl < $5+35 =3

s0 2 €S and the proof is complete,
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15.

16.

17.

Let A. C([0,1] be defined as in Problem 13. Show that ([0,1] » Uj—, Apn.

Solution:

Since A,, is nowhere dense in C[0,1], B = U,‘:’:l A,, is of the first category. But, by Baire's

Category Theorem, ([0,1], a complete space, is of the second category. Hence ([0,1] #* B.

Prove Proposition 15.8: There exists a continuous function f:[0,1] > R which is
nowhere differentiable.
Solution:

Let f€ ([0,1] have a derivative at, say, x, and suppose [f'(xg)) = t. Then

+h) —
3¢>0 such that M = t+1, VhE (e

Now choose my €N sothat t+1 = my and 1/my<e Then f€E Amo. Thus uU__, A, contains
all functions which are differentiable at some point of I.

But by the preceding problem, ([0,1] = U_, A, and so there exists a function in C[0,1] which
is nowhere differentiable.

Prove Theorem (Ascoli) 15.9: Let <4 be a closed subset of C[0,1]. Then the following
are equivalent: (i) o4 is compact. (ii) 4 is uniformly bounded and equicontinuous.

Solution:

(i) > (ii): Since of is compact it is a bounded subset of ( [0,1] and is thus uniformly bounded as
a set of functions. Now we need only show that o4 is equicontinuous.

Let ¢ > 0. Since oA is compact, it has a finite ¢/3-net, say, B = {f,, ..., f,}. Hence, for any f € o4,
3f,€3 suchthat |If—fyll = sup {{f(w)—f, @)|:2€} = ¢3
Therefore, for any =,y €1 = [0,1],
[f(=) — f(y)l |f(x) — fiy @) + fi (@) — i () + fiy) — f)|

I\

If(@) = fiy @) + Ifi,@) = fi, @] + Ifi, ) — F@)|

N

o3 + |fiy@ = Fi @) + /3 = Ify @)~ @) + 2¢/3
Now each f; € B is uniformly continuous and so
35,>0 suchthat J|e—y| <8 D> [filx)—fw) <3

Set § = min{8;,...,8,). Then, for any f € 4,

le—yl <8 > @) —f) = |fi)@ + i, @) +26/8 < /3 +2:/3 = ¢
Thus 4 is equicontinuous.

(ii) > (i): Since A is a closed subset of the complete space ([0,1], we need only show that o4

is totally bounded. Let ¢ > 0. Since oA is equicontinuous,

A nEN such that la—b <1/my > |fla)—f(b)] <e/b, VfE A

Now for each f € oA, we can construct, by Problem 12, a polygonal arc ps such that ||f—p,]| < e and
p; connects points belonging to

A = {&y:xz=0,1/n0,2/mg, ..., 1, y = ne/5, n € Z}
We claim that B = {ps: f € e4} is finite and hence a finite e-net for oA.

Now oA is uniformly bounded, and so B is uniformly bounded. Therefore only a finite number of
the points in A will appear in the polygonal arcs in B. Hence there can only be a finite number of
arcs in B. Thus B is a finite enet for ¢4, and so o4 is totally bounded.
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COMPACT CONVERGENCE

18.

19.

20.

Let (f1, f2, ...y in F(R,R) be defined by v
1 .
fa(z) = 1 - ’ﬁlx[ l'f x| <n fn
0 if |x|=n
Show that (f.) converges uniformly on compacta " "

to the constant function g(x) = 1.

Solution:

Let E be a compact subset of R and let 0 <e< 1. Since E is compact, it is bounded; say,
Ec(—M,M) for M > 0. Now

I n€EN such that ng > M/e, or, M/nyg < e

Therefore, n>mny, = |[fux)—g@| = —:Z\x[ <M/ny<e, Vx€EE

Hence (f,) converges uniformly to ¢ on E.

Show: If Y is Hausdorff, then the compact open topology on (X, Y) is also Hausdorff.
Solution:

Method 1. Let f,g € F(X,Y) with f+*¢g. Then 3p &€ X such that f(p)# g(p). Now Y is
Hausdorff, hence 3 open subsets G and H of Y such that f(p) € G, g(p) € H and Gn H = (. Hence

fEF(p, @), gE€F(p,H) and F{p,G NnFp H =0

But the singleton set {p} is compact, and so F(p,G) and F(p, H) belong to the compact open topology
on F(X,Y). Accordingly, #(X,Y) is Hausdorff.

Method 2. The compact open topology is finer than the point open topology, which is Hausdorff
since T, is a product invariant property. Hence the compact open topology is also Hausdorff.

Prove Theorem 15.12: Let (fi,fs, ...) be a sequence in ((X,Y), the collection of all
continuous functions from a topological space X into a metric space (Y,d). Then the
following are equivalent:
(i) (fn) converges uniformly on compacta to g € C(X,Y).
(ii) (fa) converges to ¢ with respect to the compact open topology T on ((X,Y).
Solution:
(i) > (i

Let F(E, G) be an open subbase element of T containing g; hence g¢[E] C G where E is compact
and G is open. Since g is continuous, g{E| is compact. Furthermore, ¢g[E] N G = and so (see

Page 164) the distance between the compact set g[E] and the closed set G¢ is greater than zero; say,
d(g|E],G¢) = ¢ > 0. Since (f,) converges uniformly on compacta to g, )

I nEN such that n>ny > df,(®),g9(x) <e VaEE

Therefore, d(f,(x),g[E]) = d(f,(x),9(x)) < ¢ VrEE
and so, for every x € E, f,(x) € G°. In other words,
n>ny > fMHHEICG > f,€FEG
Accordingly, (f,) converges to g with respect to the compact open topology 7.
G > @
Let E be a compact subset of X and let ¢ > 0. We want to show that (f,) converges uniformly

on E to g, ie.,
A nEN such that n>ny, > df,(x),9x) <e VZzEE
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Since E is compact and ¢ is continuous, g[E] is compact. Let B = {p;,...,p,} be a finite ¢/3-net
for g[E]. Consider the open spheres

S; = S(py,¢/8), ..., S; = S(p;,e/8) and Gy = S(py,2¢/3), ..., Gy = S(py, 2¢/3)
Hence S;CGy, ...,8,CG, Furthermore, since B is an ¢/3-net for 9[E],

g[E)cS;u---uUS, andso Ecgl[Sjju---ugt[§)

Now set E,=Eng '[5] and so E=E u:--UE, and g[E]|CcS§ cg

We claim that the E; are compact. For g is continuous and so g~![S;], the inverse of a closed set, is
closed; hence E; = E n g~ 1[S;], the intersection of a compact and a closed set, is compact.

Now ¢|E] CG; and so the F(E;,G) are T-open subsets of F(X,Y) containing g; hence
0511 F(E;, G;) is also a T-open set containing ¢g. But (f,) converges to g with respect to T; hence

3 n €N such that n>ng > fo€ N F(E,G) > [.ECGy, ... [.[E]cCG,
Now let x € E. Then x € Eio and so, for n > my,

Ful@) € FulBy] € Gy S d(fa(@), piy) < 2¢/3

and gx) €Eg[E,] C 8, > dg(x),py) = /3

iy
Therefore, by the Triangle Inequality,

n>ny > dif,@),9@) = dfp(@),p) + dPip9(x) < 2/3+ /3 = ¢ VrEE

FUNCTIONALS ON NORMED SPACES
21, Show that if f is a linear functional on X, then f£(0)= 0.

Solution:
Since f is linear and 0 = 0 + 0,

f(0) = fO-+0) = f(0) + f(0)

Adding — f(0) to both sides gives f(0) = 0.

22. Show that a bounded linear functional f on X is uniformly continuous.

Solution:
Let M be a bound for f and let ¢ > 0. Set § = ¢M. Then

Nle—vyll <8 > [f@—Ffp)l = fle—w = Mile—yll < e

23. Prove Proposition 15.13: Let f and g be bounded linear functionals on X and let ¢ € R.
Then f+g¢ and c¢+f are also bounded linear functionals on X.

Solution:
Let M and M* be bounds for f and g respectively. Then

Froz+y) = fleatyy +oxty) = fl@)+ fly) o)+ 9(y) = F+o)+ F+9)W)
(f + g)ka) = flka) + glkz) = kf(x) + kg) = k[f(x)+g(x)] = k(f+g)x)
(F+ )@ = |fe)+9@)| = [fm)] + |g@)] = Mllxl| + M*|[2|| = (M + M*)|[x]|

Thus f+ ¢ is a bounded linear functional.
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Furthermore,
(ceNe+y = cflx+y) = clfm+fy] = cf@) +cfly) = (¢ N&) + (e* NHw)
(e filkx) = cflka) = ckflx) = kef(x) = k(c-f)(x)
e H@)| = lef@) = [ [f=) = le[(M[[=]}) = (le[ M) |{x]]

and so ¢+ f is a bounded linear functional.

Prove Proposition 15.14: The following function on X* is a norm:
Il = sup {|f(x)|/||z]| : =+ 0}
Solution:
If f=0,then fx)=0, V€ X, and so ||f|| = sup{0} = 0. If f+ 0, then 3wy 0 such

that f(x,) # 0, and so
il = sup {[f@)\/l|x][} = [fwo)l/lwll > 0
Thus the axiom [N{] (see Page 118) is satisfied.

Now Wkefll = sup {{(k-N@/l=ll} = sup {k[f@)I/|]]}
= sup {|k| [f@)/ll2ll} = |k sup {{F@I/il=ll} = 1k lI7]}
Hence axiom [N,] is satisfied.
Furthermore,
F+gll = sup {{f(@)+g@)/l[z]l} = sup {(f(@)|+ lg@)}/ilel]}
= sup {|f@)|/|l=]]} + sup {{g@/Illl} = [|Ifl] +llgl]

and so axiom [Nj] is satisfied.

Supplementary Problems

CONVERGENCE OF SEQUENCES OF FUNCTIONS

25.

26.

27.

Let (fy,fs ...) be the sequence of real-valued functions with domain I = [0,1] defined by
fa(@) = 2n/n.

(i) Show that (f,) converges pointwise to the constant function g(x) =0, ie. for every z €I,
lim f,(x) = 0.
n=— o

(i) Show that lim L f@) # L lim f, ()
n— % dr dx nero
Let (fi,fs, ...) be a sequence of real-valued differentiable functions with domain [a,d] which con-

verge uniformly to g. Prove: d
a—x 7}1—?10 fn(x) = 1}}_1}100 EE fn(x)

(Observe, by the preceding problem, that this result does not hold in the case of pointwise convergence.)

Let f,: R~ R be defined by

l\/7L2—ac2 if o< 00— oem——— e ——— — =
falw) = n P
0 if |x| =n n
(i) Show that (f,) does not converge uniformly to the

n n

constant function g(z) = 1.

(i) Prove that (f,) converges uniformly on compacta
to the constant function g(x) = 1. =1
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28.

29.

30.

Let (fy,fs, ...) be the sequence of functions with domain f1
I =[0,1] defined by f,(z) = nx(l — ). fs

(i) Show that (f,) converges pointwise to the constant funec-
tion g(x) = 0. f1

(i)  Show that (f,) does not converge uniformly to g(x) = 0.

(iii) Show that, in this case,
.1 1
lim fal@) dx = f [lim fn(x):l da ol T T
n=+ 0 0 n=-+c0 | % k _% 1

n+1
x
n

Let (f(,f5 ...) be the sequence in F(R,R) defined by folx) =

(1) Show that (f,) converges uniformly on compacta to the function 9(x) = .

(i)  Show that (f,) does not converge uniformly to g(x) = x.

Let (fy,fs, ...) be a sequence of (Riemann) integrable functions on I = [0,1]. The sequence (f,) is
said to converge in the mean to the function ¢ if
"1
lim folw) —g@)2de = 0
n=—+ 0 0

(i) Show that if (f,) converges uniformly to g, then (fn) converges in the mean to g.

(i)  Show, by a counterexample, that convergence in the mean does not necessarily imply pointwise
convergence.

THE FUNCTION SPACE ([0,1]

31.

32.

33.

34.

Show that ([a, b] is isometric and hence homeomorphic to C[0,11.
Prove: Let (f,) converge to g in ([0,1] and let «, > 2, Then lim Fuley) = glxg).
Nn=-—+

Let p be a polygonal arc in ([0,1] and let § > 0. Show that
there exists a sawtooth function g with magnitude less than
18, ie. |lg]] < 18, such that p—+g does not belong to A4, p
(see Problem 14).

Let (f,) be a Cauchy sequence in C[0,1] and let (f,) converge
pointwise to g. Then (f,) converges uniformly to g.

UNIFORM CONTINUITY

35.

36.

37.

Show that f(x) = 1/x is not uniformly continuous on the open interval (0,1).
Define uniform continuity for a function f: X =Y where X and Y are arbitrary metric spaces.

Prove: Let f be a continuous function from a compact metric space X into a metric space Y. Then
f is uniformly continuous.

FUNCTIONALS ON NORMED SPACES

38.

39.

40.

Let f be a bounded linear functional on a normed space X. Show that

sup {|f(@)|/||x|| : 0} = inf {M : M is a bound for f}
Show that if f is a continuous linear functional on X then f is bounded.

Prove: The dual space X* of any normed space X is complete.






APPENDIX

Properties of the Real Numbers

FIELD AXIOMS

The set of real numbers, denoted by R, plays a dominant role in mathematics and, in
particular, in analysis. In fact, many concepts in topology are abstractions of properties
of sets of real numbers. The set R can be characterized by the statement that R is a
complete, Archimedion ordered field. In this appendix we investigate the order relation
in R which is used in defining the usual topology on R (see Chapter 4). We now state the
field axioms of R which, with their consequences, are assumed throughout the text.

Definition:| A set F of two or more elements, together with two operations called addi-
tion (+) and multiplication (-), is a field if it satisfies the following axioms:

[Ai] Closure: a,b€F > a+b€F

[A:] Associative Law: a,b,c €F > (a+b)+c=a+(b+c)

[As] (Additive) Identity: 30 € F such that 0+a —a+0 =a, YaEF

[A:] (Additive) Inverse: a €F = 3-a€F suchthat a+(—a) = (—a)+a =0
[As5] Commutative Law: a,b€F => a+b=b+a

[M.] Closure: a,b€F = abeEF

[M:] Associative Law: a,b,c € F > (a*b)-c = a-(b+¢)

[M:;] (Multiplicative) Identity: 31 € F, 1+ 0 suchthat 1‘a = a1 =a, VaEF
[Ms] (Multiplicative) Inverse: ¢ € F,a+0 > 3a '€F suchthat ara'=ata=1
[M;] Commutative Law: o, b € F > a*b=b-a

[D:] Left Distributive Law: «a,b,c €F = a*(b+¢) = a*b +a-c

[D2] Right Distributive Law: a,b,c € F > (b+¢)ra = bra + ¢ a

Here 3 reads “there exists”, V¥ reads “for every”, and = reads “implies”.

The following algebraic properties of the real numbers fo‘llow directly from the field
axioms.

Proposition A.1: Let F' be a field. Then:

(i)  The identity elements 0 and 1 are unique.

(ii) The following cancellation laws hold:
(1) a+b=a+c > b=¢, 2) a*b=a-c,a*0 > b=c¢

(iii) The inverse elements —a and a¢~! are unique.
(iv) For every a,b €F,
1) a-0=0, (2) a*(=b)=(—a):b=—(a-b), 3) (—a):(-b)=2a-b
Subtraction and division (by a non-zero element) are defined in a field as follows:

b—a = b+ (—a) and = bra?!

a

226
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Remark: A non-empty set together with two operations which satisfy all the axioms of
a field except possibly [Ms], [Mi] and [M;] is called a ring. The set Z of
integers under addition and multiplication, for example, is a ring but not
a field.

REAL LINE

We assume the reader is familiar with the geometric representation of R by means of
points on a straight line as in the figure below. Notice that a point, called the origin, is
chosen to represent 0 and another point, usually to the right of 0, is chosen to represent 1.
Then there is a natural way to pair off the points on the line and the real numbers, i.e.
each point will represent a unigue real number and each real number will be represented
by a unique point. For this reason we refer to R as the real line and use the words point
and number interchangeably.

-V3 V2

I 1 I

.8 + T !

-2 -1 0 1 2

The real line R

SUBSETS OF R
The symbols Z and N are used to denote the following subsets of R:
zZ = {...,-3-2,-1,0,1,2,8, ...}, N = {1,2,3,4,...}
The elements in Z are called rational integers or, simply, integers; and the elements in N
are called positive integers or natural numbers.

The symbol Q is used to denote the set of rational numbers. The rational numbers
are those real numbers which can be expressed as the ratio of two integers provided the
second is non-zero:

Q = {x€R:x=p/g; p,g €Z, q+ 0}
Now each integer is also a rational number since, e.g., —5 =5/—1; hence Z is a subset
of Q. In fact we have the following hierarchy of sets:

NCZCQCR

The irrational numbers are those real numbers which are not rational; thus Q¢, the
complement (relative to R) of the set Q of rational numbers, denotes the set of irrational
numbers. ’

POSITIVE NUMBERS

Those numbers to the right of 0 on the real line R, i.e. on the same side as 1, are the
positive numbers; those numbers to the left of 0 are the negative numbers. The following
axioms completely characterize the set of positive numbers:

[Pi] If a €R, then exactly one of the following is true: a is positive; a=0; —a is
positive.

[P:] If a,b €R are positive, then their sum a+b and their product a+b are also
positive.

It follows that a is positive if and only if —a is negative.
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Example 1.1:

Example 1.2:

Example 1.3:

ORDER
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We show, using only [P,] and [P,], that the real number 1 is positive. By [P,],
either 1 or —1 is positive. Assume that —1 is positive and so, by [P,], the product
(—1)(—1) = 1 is also positive. But this contradicts [P,] which states that 1 and —1
cannot both be positive. Hence the assumption that —1 is positive is false, and
1 is positive.

The real number —2 is negative. For, by Example 1.1, 1 is positive and so, by
[P,], the sum 1+ 1 = 2 is positive. Therefore, by [P;], —2 is not positive, i.e.
—2 is negative.

We show that the product a+b of a positive number a and a negative number b
is negative. For if b is negative then, by [P;], —b is positive and so, by [P,], the
product @ (—b) is also positive. But a+(—b) = —(a*b). Thus —(a*b) is positive
and so, by [P}, ¢+ b is negative.

We define an order relation in R, using the concept of positiveness.

Definition:| The real number a is less than the real number b, written a < b, if the
difference b—a is positive.

Geometrically speaking, if a < b then the point a on the real line lies to the left of

the point b.

The following notation is also used:

b>a,
a=bn,

= a,
Example 2.1:
Example 2.2:

Example 23:

read b is greater than q, means a < b
read a is less than or equal to b, means a <b or a=2"5b
read b is greater than or equal to ¢, means o =10

2<5b; —6=-3;, 4=4;, 5> -8

A real number x is positive iff x > 0, and x is negative iff x <0.

The notation 2 < 2 <7 means 2 <% and also x < T; hence x will lie between

2 and 7 on the real line.

The axioms [P:] and |P:] which define the positive real numbers are used to prove
the following theorem.

Theorem A.2: Let a, b and ¢ be real numbers. Then:

either a < b, a=b or b<a;

if a <b and b <e, then a <e;

if a <b, then a+c¢ <b+g

if @ <b and ¢ is positive, then ac < be; and
if o <D and ¢ is negative, then ac > be.

Corollary A.3: The set R of real numbers is totally ordered by the relation a = b.

ABSOLUTE VALUE

The absolute value of a real number x, denoted by |z, is defined by

Jx if =0

= <o

Observe that the absolute value of any number is always non-negative, i.e. |x/=0 for

every x € R.
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Geometrically speaking, the absolute value of x is the distance between the point «

on the real line and
two points a,b € R

Example 3.1:

Example 3.2:

Example 3.3:

the origin, i.e. the point 0. Furthermore, the distance between any
is 'a—bl = 'b—al.

|3—8 = |-5/=5 and 8—3| =[5/ = 5

The statement 'x| <5 can be interpreted to mean that the distance between x
and the origin is less than 5; hence & must lie between —5 and 5 on the real line.
In other words,

|x] <5 and -5 <x<h

have identical meaning and, similarly,
x| =5 and —5=x=5
have identical meaning.

The graph of the function f(x) =[x}, i.e. the absolute value function, lies entirely in

the upper half plane

since f(x) =0 for every x €R (see diagram below).

3t

Graph of f(x) = |x|

The central facts about the absolute value function are the following:

Proposition A.4: Let a,b and ¢ be real numbers. Then:

(
(
(
(
(

i) |a/=0, and |a/ =0 iff a =0;
i) |ab] = |af[bl;

iii) la+0b| = |al + |b};

[la] — |b] |; and

la—bl + b —el.

4

iv) |a—Db

IN

v) la—c¢l

LEAST UPPER BOUND AXIOM
Chapter 14 discusses the concept of completeness for general metric spaces. For the

real line R, we may
axiom:

use the definition: R is complete means that R satisfies the following

[LUB] (Least Upper Bound Axiom): If A is a set of real numbers bounded from above,

Example 4.1:

then A has a least upper bound, i.e. sup (4) exists.

The set Q of rational numbers does not satisfy the Least Upper Bound Axiom.
For let

A = {gE€Q:q¢>0, ¢<2}
i.e., A consists of those rational numbers which are greater than 0 and less than
V2. Now 4 is bounded from above, e.g. 5 is an upper bound for A. But A does
not have a least upper bound, i.e. there exists no rational number m such that
m = sup (4). Observe that m cannot be \/2_ since V2 does not belong to Q.
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We use the Least Upper Bound Axiom to prove that R is Archimedean ordered:

Theorem (Archimedean Order Axiom) A.5: Theset N = {1,2,38, ...} of positive integers
is not bounded from above.

In other words, there exists no real number which is greater than every positive
integer. One consequence of this theorem is:

Corollary A.6: There is a rational number between any two distinct real numbers.

NESTED INTERVAL PROPERTY

The nested interval property of R, contained in the next theorem, is an important
consequence of the Least Upper Bound Axiom, i.e. the completeness of R.

Theorem (Nested Interval Property) A.7: Let I = [ay,bi], I, = laz, 2], ... be a se-
quence of nested closed (bounded) intervals,
ie. 1 DI, D ... . Then there exists at least
one point common to every interval, i.e. »

Nz # 9

It is necessary that the intervals in the theorem be closed and bounded, or else the
theorem is not true as seen by the following two examples.

Example 51: Let A, 4, ... be the following sequence of open-closed intervals:
A, =(0,1], A, =(0,1/2], ..., A, = (0, VEk], ...

Now the sequence of intervals is nested, i.e. each interval contains the succeeding
interval: A; D Ay D +--. But the intersection of the intervals is empty, i.e.,

AiNnAyn N4, n- =@

Thus there exists no point common to every interval.

Example 5.2: Let A, A, ... be the following sequence of closed infinite intervals:
Ay =1[1,=), Ay =1[2,%), ..., 4, =k, ), ...
Now A; DA, D -+, ie. the sequence of intervals is nested. But there exists no
point common to every interval, i.e.,
AnA,n--nd,n- =@

Solved Problems

FIELD AXIOMS
1. Prove Proposition A.l(iv): For every a,b €F,
(1) a0 =0, (2) a(=b)=(—a)b = —ab, (3) (—a)(—b)=ab

Solution:

(1) a0 = a(0+0) = a0 +a0. Adding —a0 to both sides gives 0 = a0.

(2) 0= a0 = a(b+ (=b)) = ab + a(—b). Hence a(—b) is the negative of ab, that is, a(—b) = — ab.
Similarly, (—a)b = —ab.

(8) 0= (—a)0 = (—a)(b+ (D) = (—a)b + (—a)(=b) = —ab + (—a)(—b). Adding ab to both sides

gives ab = (—a)(—b).
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2. Show that multiplication distributes over subtraction in a field F, i.e. a(b—c¢) = ab—ac.
Solution: alb—¢) = a(b+(—c)) = ab+ a(—¢) = ab + (~ac) = ab — ac

3. Show that a field F has no zero divisors, i.e. ab=0 > a =0 or b =0.

Solution:
Suppose ab =0 and @+ 0. Then a~!existsandso b =1b = (a"la)b =a 1(ad) = a"10 =0.

INEQUALITIES AND POSITIVE NUMBERS
4. Rewrite so that x is alone between the inequality signs:
(i) 3 <2x—-5 <7, (i) —7<—-2x+3 <5.

Solution:
We use Theorem A.2:

(i) By (iii), we can add 5 to each side of 8 < 206 —5 < 7 to get 8 < 2x < 12. By (iv), we can
multiply each side by 1 to obtain 4 <z < 6.

(i) Add —38 to each side to get —10 < —22 < 2. By (v), we can multiply each side by — 1 and
reverse the inequalities to obtain —1 < x <5,

5. Prove that { is a positive number.

Solution:
By [P,], either — 1 is positive or { is positive. Suppose — & is positive and so, by [P:],
(—3) + {(=3) = —1 is also positive. But by Example 1.1, 1 is positive and not —1. Thus we have a

contradiction, and so 1 is positive.

6. Prove Theorem A.2(ii); If a<b and b<c, then a<e.

Solution:
By definition, ¢ < b means b — a is positive; and b < c¢ means ¢—b is positive. Now, by
[P.], the sum (b—a) + (¢—b) = ¢— a is positive and so, by definition, a < e¢.

7. Prove Theorem A.2(v): If a <b and ¢ is negative, then ac > bec.

Solution:

By definition, « < b means b—a is positive. By [P,], if ¢ is negative then —c is positive, and
so, by [P,], the product (b—a)(—e¢) = ac—bec is also positive. Hence, by definition, be < ac or,
equivalently, ac > be.

8. Determine all real numbers « such that (x—1)(x+2) < 0.

Solution:
We must find all values of x such that y = (x — 1)(x + 2) 12

is negative. Since the product of two numbers is negative

iff one is positive and the other is negative, y is negative if

(i) r—1 < 0 and =+2 > 0, or (i) *—1 > 0 and

x+2<0. If x—1>0 and 2+2 <0, then > 1 and

z < —2, which is impossible. Thus y is negative iff P

x—1 <0 and £+2 >0, or * <1 and x> —2, that is,

if —2<2<1.

Observe that the graph of y = (x— 1){(x +2) crosses
the z-axis at * =1 and «* = —2 (as shown on the right).
Furthermore, the graph lies below the z-axis iff y is nega-
tive, that is, iff —2 <2 <1.

[CH N
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ABSOLUTE VALUES

9.

10.

11.

12.

13.

Evaluate: (i) [1—38| + [-7|, (ii) |-1—4] — 8 — [3—5|, (iii) ||-2| — |-6]].
Solution:

(i) N=38{+ -7 = |-2/+|-7 = 2+7 =9

(i) |-1-4—-8—-13-5] = |-5|—8—]-2 =5—-83-2 = ¢

(i) ||=2f —|-6]] = [2—6] = |-4] = 4

Rewrite without the absolute value sign: (i) |z —2| < 5, (ii) |2 +3| < 1.

Solution:
(i) B <x—2<b5 or -83< <7

(i) —-T<2r+3<7 o0or —10<2x<4 or 5<x<2

Rewrite using the absolute value sign: (i) -2 <z < 6, (ii) 4 < z < 10.

Solution:
First rewrite each inequality so that a number and its negative appear at the ends of the
inequality:

(1) Add —2 to each side of —2 < x < 6 to obtain —4 < z—2 < 4 which is equivalent to

lx —2| < 4.
(ii) Add —7 to each side of 4 < « < 10 to obtain —8 < z—7 < 38 which is equivalent to
e — 7 < 3.

Prove Proposition A.4(iii): |a +b| = |a| + |b].

Solution:
Method 1.
Since |a| = *a, —la] = a = |a|; also —|b] = b = |b|. Then, adding,
~(lal+[b) = a+b = la| + |b|
Therefore, la+b = |la| + 18]| = |a| + |B]

since |a| + |b] = 0.

Method 2.
Now ab = |ab| = |a] [b] implies 2ab = 2|a]|b|, and so

(@a+8)?2 = a2+ 2ab+ b2 = o+ 2lal|b] + 02 = a2+ 2]a|[b] + |62 = (Ja| + |b])2
But V(a+b5)> = |a+b| and so, by the square root of the above, |a+b| = |a| + |b].

Prove Proposition A4(v): |a—¢| = |a—b|+ |b—c|

Solution: la—e = [(@a—b) +(b—¢c)| = |a—b| + |b—¢

LEAST UPPER BOUND AXIOM

14.

Prove Theorem (Archimedean Order Axiom) A.5: The subset N = {1,2,3, .. .} of R
is not bounded from above.

Solution:
Suppose N is bounded from above. By the Least Upper Bound Axiom, sup (N) exists, say
b = sup(N). Then b — 1 is not an upper bound for N and so

A nEN such that b—1<mny or b<m+1

But 7, € N implies 75+ 1 € N, and so b is not an upper bound for N, a contradiction. Hence N is
not bounded from above.
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15. Prove: Let a and b be positive real numbers. Then there exists a positive integer
10 € N such that b < nea. In other words, some multiple of a is greater than b.
Solution:

Suppose n, does not exist, that is, na < b for every = € N. Then, since a is positive, n < b/a
for every n € N, and so b/a is an upper bound for N. This contradicts Theorem A.5 (Problem 14),
and so n, does exist.

16. Prove: If a is a positive real number, i.e. 0 <a, then there exists a positive integer
no € N such that 0 <1/ne <a.
Solution:
Suppose n, does not exist, i.e. a = 1/n for every n € N. Then, multiplying both sides by the
positive number n/a, we have n = 1/a for every n € N. Hence N is bounded by 1/a, an impossibility.
Consequently, n, does exist.

17. Prove Corollary A.6: There is a rational number ¢ between any two distinct real
numbers a and b.
Solution:

One of the real numbers, say a, is less than the other, ie. a <b. If a is negative and b is
positive, then the rational number 0 lies between them, ie. ¢ <0 < b. We now prove the corollary
for the case where a and b are both positive; the case where a and b are negative is proven similarly,
and the case where a or b is zero follows from Problem 16.

Now a < b means b—a is positive and so, by the preceding problem,

I n,EN such that 0<1/mg<b—a or a+(1/ny) <b

We claim that there is an integral multiple of n, which lies between a and b. Notice that 1/ny < b
since 1/ny < a+ (1/ng) < b. By Problem 15, some multiple of 1/n, is greater than b. Let mg be the
least positive integer such that mg/ny, = b; hence (my— 1)/ng < b. We claim that

my — 1
a < < b
o
my— 1 my— 1 1 n 1
Otherwise 0 = a and so 4+ —=—=9@a+=<5»
i Ny Ny g ny

which contradicts the definition of m,. Thus (my— 1)/ny is a rational number between a and b.

NESTED INTERVAL PROPERTY

18. Prove Theorem A.7 (Nested Interval Property): Let I. = [ay,bi], I» = [az, 03], ... be
a sequence of nested closed (bounded) intervals, ie. [1DI:D ---. Then there exists
at least one point common to every interval.

Solution:
Now I, DI, D --- implies that @) =ay=--- and --+ = by = b;. We claim that

a, <b, forevery mm€EN
for, m >n implies a, <b, =b, and m =n implies a, =a, < b,. Thus each b, is an upper
bound for the set A = {a;, @, ...} of left end points. By the Least Upper Bound Axiom of R,
sup (A) exists; say, p = sup(4). Now p =1b,, for every n€EN, since each b, is an upper bound
for A and p is the least upper bound. Furthermore, a, = p for every n € N, since p is an upper
bound for A = {a;,a,, ...}. But
e, =p=b, > pEl, = [ay,by]

Hence p is common to every interval.

19. Suppose, in the preceding problem, that the lengths of the intervals tend to zero,
ie. lim (b,—a,) = 0. Show that there would then exist exactly one point common

n—»

to every interval. Recall that lim (bn—a.) = 0 means that, for every >0,

n=~—x

InoEN suchthat n>n > (ba—an) <e
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Solution:

Suppose p; and p, belong to every interval. If Py 7 Py, then |py—py| = § > 0. Since
lim (b, —a,) = 0, there exists an interval I"o = [a,,o, b"o] such that the length of I"o is less than
n=-+ o

the distance |p; —p,| = § between Py and py. Accordingly, p; and p, cannot both belong to 1"0, a

contradiction. Thus p; = p,, i.e. only one point can belong to every interval.

Supplementary Problems

FIELD AXIOMS

20. Show that the Right Distributive Law [D,] is a consequence of the Left Distributive Law [D;] and
the Commutative Law [M;]. -

21. Show that the set Q of rational numbers under addition and multiplication is a field.

22. Show that the following set A of real numbers under addition and multiplication is a field:

A = {a+bV2: a, b rational}

23. Show that the set A = {..., —4, —2,0,2,4,...} of even integers under addition and multiplication
satisfies all the axioms of a field except [My], [M,] and [M;], that is, is a ring.

INEQUALITIES AND POSITIVE NUMBERS
24. Rewrite so that x is alone between the inequality signs:
(i) 4 <20 <10, (i) -1<2x—3<5, (ii) -3<5—2x < 7.

25. Prove: The product of any two negative numbers is positive.

26. Prove Theorem A.2(iii): If a < b, then a+¢ < b+e.

27. Prove Theorem A.2(iv): If a < b and ¢ is positive, then ac < be.

28. Prove Corollary A.3: The set R of real numbers is totally ordered by the relation a = b,

Q
c

29. Prove: If a <b and c is positive, then: (i) — <—, (il) ¢+ <

oo

|

oo

30. Prove: Vab = (a+b)/2. More generally, prove Vn aayay = (@t ay+ -+ +a,)/n.
31. Prove: Let a and b be real numbers such that a < b+ for every e¢> 0. Then a =b.

32. Determine all real values of x such that: (1) 23+22—6x > 0, (i) (¢ — 1)(x + 8)2

I\
e

ABSOLUTE VALUES
33. Evaluate: (i) [-2|+ |1—4|, (i) [3—-8|—[1—9]|, (iii) | [—4| — 12 —-1]|.

34. Rewrite, using the absolute value sign: (i) —3 < z < 9, (il) 2= =8, (iii) —"T<x < -1,

35. Prove: (i) |—a| =|a|, (i) a2 =1al?, (ii) |o| = Va2, (iv) |z <a iff —a<z<a.
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36. Prove Proposition A.4(ii): |abl = lal|b|.

37. Prove Proposition A.4(iv): |[al — [b]} = |a—bl.

LEAST UPPER BOUND AXIOM

38. Prove: Let A be a set of real numbers bounded from below. Then A has a greatest lower bound,
i.e. inf (A) exists.

39. Prove: (i) Let x € R such that 2 < 2; then 3n €N such that (x+1/n)2 < 2.
(ii} Let x € R such that 22 > 2; then 3n €N such that (x—1/n)2 > 2,

40. Prove: There exists a real number a € R such that a2 = 2.
41. Prove: Between any two positive real numbers lies a number of the form 72, where r is rational.

42. Prove: Between any two real numbers there is an irrational number.

Answers to Supplementary Problems
4. () B5<x<-—2 ) 1<x<4 (iii) —1<x<4
32 (i) —3<a<0 or x>2, ie. € (—3,0U2,%) (i) «=1
33. (i) 5 (i) -3 (i) 1

3. (1) |x—38/ <6 (i) [e—5=3 (i) le+4/ <3
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Absolute property, 152 Collection, 2
Absolute value, 227 Compact,
Accumulation point, 48, 53, 68 countably, 155
Adherent point, 69 locally, 155
Aleph-null, 32 sequentially, 154
Alexandrov compactification, 156 sets, 151
Algebra, spaces, 152

of real-valued functions, 21 Compact open topology, 211

of sets, 4 Compactification, 156
Algebraic numbers, 38 Compactness, 151
Almost all, 50 Complement, 3
Anti-symmetric relation, 35 Completely regular space, 142
Arbitrary closeness, 98 Completeness, 51, 196, 228
Archimedean order axiom, 229, 231 Completion, 197
Arcwise connected, 184 Components, 183
Ascoli’s theorem, 211, 219 Composition,
Axiom of choice, 37 of functions, 18

of relations, 7

Baire’s category theorem, 198, 204 Connected,
Ball, 113 arcwise, 184
Banach space, 199 locally, 183
Base, sets, 101, 180

for a topology, 87 simply, 186

loeal, 89 spaces, 181
Bicompact, 154 Constant function, 17
Bicontinuous funection, 100 Continuous,
Binary relation, 5 at a point, 52, 99, 118
Bolzano-Weierstrass theorem, 48, 56, 155 funection, 52, 54, 97
Boundary, 70 uniformly, 165
Bounded, Continuum, 33

function, 22 Contracting mapping, 196

set, 36, 112 Convergence,

totally, 157 compact, 214

uniformly, 211 pointwise, 208

uniform, 209

Cantor, Convergent sequence, 50, 54, 71, 118

set, 171 Coordinate set, 19

theorem, 34, 42 Countability, 131
Cardinal number, 34, 45 Countable set, 32
Cardinality, 33 Countably compact, 155
Cartesian, Cover, 49, 151

plane, 4

product, 19
Category, 198 Defining,
Cauchy sequence, 51, 195 base, 168
Cauchy-Schwarz inequality, 125 subbase, 101, 168
Characteristic function, 30 De Morgan’s laws, 4, 20
Class, 2 Dense, 69
Closed, Denumerable, 32

funetion, 99 Derived,

interval, 1 point, 67

path, 186 set, 67

sets, 48, 53, 67 Diameter, 112
Closure, 68 Difference of sets, 3
Cluster point, 67 Disconnected, 101, 180, 192
Coarser topology, 71 Disconnection, 180
Co-domain, 17 Discrete (topological) space, 66
Cofinite topology, 66 Disjoint sets, 3

235
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Distance, 111, 112 Identity,
Domain, funetion, 18

of a function, 17 relation, 6

of a relation, 5 Image, 17, 20
Dominates, 35 Inclusion function, 29
Dual space, 213 Indexed sets, 19

Indiscrete (topological) space, 66

Element, 1 Induced,
Embedded, 156 metric, 118
Empty set, 2 topology, 114
Equality, Infimum (inf), 36

of functions, 17 Infinite sets, 1, 32

of sets, 1 Initial point, 184
Equicontinuity, 211 Integers, 226
Equivalence, Interior,

class, 6 function, 99

relation, 6 of a set, 70
Equivalent, point, 47, 53, 69

metrics, 115 Intersection, 3, 19

sets, 32 Intervals, 1, 182

topologically, 100 Inverse,
Euclidean, function, 18

metrie, 117 image, 20

norm, 118 relation, 5

space, 22, 117 Irrational numbers, 226
Evaluation mapping (function), 207 Isometric, 116
Extended real line, 156
Extension of a function, 18 Kuratowski’s closure axioms, 72

Exterior, 70
ly-metrie, 117
ly-norm, 119

Family, 2 .
Field axioms, 225 ﬁ-space, 117
Filter, 140 aliger,
Finer topology, 71 element, 35
Finite, topology, 71
intersection property, 153 Lattice, 83
sets, 1, 32 Least upper bound, 36
First,’ axiom, 228
axiom of countability, 131 Lebe.asg'ue nu.mber, 158
category, 198 Lexicographically ordered, 35
countable space, 131 Limit,
element, 36 of a sequence, 50, 71
Follows 3,5 point, 48, 53, 67
Function, 17 Lindelsf,
projection, 19 space, 132, 138
set, 20 theorems, 132, 185
spa:ce 207 Linear (vector) space, 22

Linearly ordered, 35
Local base, 89
Locally,
compact, 155
connected, 183

Functionals, 213

Graph, 17
Greatest lower bound, 36

Lower,

Hausdorff space, 131 bound, 36
Heine-Borel theorem, 49, 58, 151 limit topology, 88
Hereditary property, 133
Hilbert, Mapping, 17

cube, 129 Maximal element, 36

space, 117 Meager, 198
Homeomorphic spaces, 100 Member, 1
Homeomorphism, 100 Metric, 111
Homotopic, 185 product space, 171

Homotopy, 185 space, 114
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subspace, 114

topology, 114
Metrizable, 115
Metrization problem, 116
Minimal element, 36
Minkowski’s inequality, 126

N, positive integers, 2, 226
Natural,
numbers, 226
order, 35
Negative numbers, 226
Neighborhood, 70
Nested,
interval property, 229, 232
local base, 131
Net, 140, 157
Non-denumerable, 33
Norm, 118
Normal space, 141
Normed space, 118
Nowhere dense, 70
Null set, 2

One-one function, 18
One-point compactification, 156
One-to-one,
correspondence, 32
function, 18
Onto function, 18
Open,
cover, 151
dise, 53
function, 99
interval, 1
neighborhood, 67
set, 47, 53, 66
sphere, 113
Order,
inverse, 35
natural, 35
on the real line, 227
partial, 34
topology, 89
Ordered,
linearly, 85
pair, 5
subsets, 35
totally, 35

Partial order, 34
Partition, 7
Path, 184
Plane, 4
Point open topology, 207
Pointwise convergence, 208
Positive,
integers, 226
numbers, 226
Power,
of the continuum, 33
set, 3

INDEX 237

Product,
Cartesian, 19
invariant, 170
metric space, 171
of functions, 18
set, 4
space, 167
topology, 167
Projection function, 19
Proper subset, 2
Pseudometrie, 112

Q, rational numbers, 2, 226
Quotient set, 6

R, real numbers, 2, 225
R™, Euclidean m-space, 117
R, ly-space, 117
Range,

of a function, 17

of a relation, 5
Rational numbers, 226
Real,

line, 47, 226

numbers, 198
Real-valued functions, 17, 21
Reflexive relation, 6
Region, 185
Regular space, 140
Relation, 5
Relative topology, 72
Restriction of a function, 18
Ring, 226

Schroeder-Bernstein theorem, 33
Second,
axiom of countability, 131
category, 198
countable space, 131
Separable, 132
Separated sets, 180
Separation axioms, 115, 139
Sequence, 32, 49
Cauchy, 51, 195
convergent, 50, 54, 71
of sets, 19
Sequentially,
compact, 154
continuous, 99
Set, 1, 4
Set functions, 20
Simply connected, 186

Smaller,
element, 35
topology, 71

Space,

completely regular, 142
Hausdorff, 131
Lindelsf, 132, 138
linear, 22

metric, 114

normal, 141

normed, 118
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Space (cont.)
regular, 140
topological, 66
Tychonoft, 142
vector, 22

Sphere, 113

Subbase, 88

Subsequence, 51

Subset, 2

Subspace (topological), 72

Supremum (sup), 36

Symmetric relation, 6

Ty-space, 149
T,-space, 139
T,-space, 139
Ts-space, 141
T'31,-space, 142
T-space, 141
Terminal point, 184
Ternary set, 171
Thick, 198
Thin, 198
Topological,
function, 100
property, 100
space, 66
subspace, 72
Topologically equivalent, 100
Topology, 66
of compact convergence, 213
of pointwise convergence, 209
of uniform convergence, 210
Totally,
bounded, 157
disconnected, 192
ordered sets, 35

INDEX

Transcendental numbers, 45
Transitive relation, 6
Triangle inequality, 111
Trivial metrie, 111
Tychonoff,
product theorem, 170, 175
product topology, 167
space, 142

Unbounded set, 112
Uniform,
boundedness, 211
continuity, 165
convergence, 209
convergence on compacta, 210
Union, 3, 19
Universal set, 2
Upper,
bound, 36
limit topology, 88
Urysohn,
lemma, 142, 146
metrization theorem, 142, 147
Usual,
metric for real numbers, 111
topology for real numbers, 66

Vector space, 22
Venn diagram, 3

Weaker topology, 71

Weierstrass intermediate value theorem, 53, 64

Z, the integers, 2, 226
Zorn’s lemma, 37
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d(4)

d(a, b)

Index of Symbols

topological space, 66 ext (A)
metric space, 114 €
norm, 118 FX,Y)

coarser, 71

F(A, B)
implies, 7
there exists, 7 it
for all, 7 inf (4)

int (A
(eg. AN B), difference, 3 int (4)

N
derived set of A4, 67
closure of 4, 68 N,
interior of A, 70 P(A)
complement of 4, 3 Q
Cartesian product, 19

R

Rm
ith projection function, 19

ROO
ordered pair, 5

S(p, 8)
empty set, 2

s.t.
boundary of A, 70

sup (4)
continuous functions on
[0,1], 111, 210 T
diameter of A, 112 Ta
distance from a to b, 111 U
discrete topology, 66 A
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exterior of A, 70 .

evaluation mapping, 207

class of functions from X-
into Y, 207

class of functions from A
into B, 211

if and only if
infimum of A, 36
interior of A4, 70

the set of positive integers, 2,
226

neighborhood system of p, 70
power set of A, 3

the set of rational numbers,
2, 226

the set of real numbers, 2,
225

Euclidean m-space, 117
l,-space, 117

open sphere, 113

such that, 7

supremum of A, 36
topology, 66

relative topology on A, 72
usual topology, 66

the set of integers, 2, 226
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