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Chapter 1 PROBABILITY REVIEW
Basic Combinatorics
Number of permutations of n distinct objects: n!
Not all distinct, such as, for example aaabbc:

6!

3!2!1!

def.
=

µ
6

3, 2, 1

¶
or

N !

n1!n2!n3!.....nk!

def.
=

µ
N

n1, n2, n3, ...., nk

¶
in general, where N =

kP
i=1

ni which is the total word length (multinomial coef-

ficient).
Selecting r out of n objects (without duplication), counting all possible arrange-

ments:

n× (n− 1)× (n− 2)× ....× (n− r + 1) =
n!

(n− r)!

def.
= P n

r

(number of permutations).
Forget their final arrangement:

P n
r

r!
=

n!

(n− r)!r!

def.
= Cn

r

(number of combinations). This will also be called the binomial coeffi-
cient.
If we can duplicate (any number of times), and count the arrangements:

nr

Binomial expansion

(x+ y)n =
nX
i=0

³n
i

´
xn−iyi

Multinomial expansion

(x+ y + z)n
X
i,j,k≥0

i+j+k=n

µ
n

i, j, k

¶
xiyjzk

(x+ y + z + w)n =
X

i,j,k,c≥0
i+j+k+c=n

µ
n

i, j, k, c

¶
xiyjzkwc

etc.

Random Experiments (Basic Definitions)
Sample space
is a collection of all possible outcomes of an experiment.
The individual (complete) outcomes are called simple events.
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Events
are subsets of the sample space (A, B, C,...).

Set Theory
The old notion of: is (are) now called:
Universal set Ω Sample space
Elements of Ω (its individual ’points’) Simple events (complete outcomes)
Subsets of Ω Events
Empty set ∅ Null event

We continue to use the word intersection (notation: A ∩ B, representing
the collection of simple events common to both A and B ), union (A∪B, simple
events belonging to either A or B or both), and complement (A, simple events
not in A ). One should be able to visualize these using Venn diagrams, but when
dealing with more than 3 events at a time, one can tackle problems only with the
help of

Boolean Algebra
Both ∩ and ∪ (individually) are commutative and associative.
Intersection is distributive over union: A∩(B∪C∪...) = (A∩B)∪(A∩C)∪...
Similarly, union is distributive over intersection: A∪ (B ∩C ∩ ...) = (A∪B)∩

(A ∪ C) ∩ ...
Trivial rules: A ∩ Ω = A, A ∩ ∅ = ∅, A ∩ A = A, A ∪ Ω = Ω, A ∪ ∅ = A,

A ∪A = A, A ∩A = ∅, A ∪A = Ω, Ā = A.
Also, when A ⊂ B (A is a subset of B, meaning that every element of A also

belongs to B), we get: A ∩B = A (the smaller event) and A ∪B = B (the bigger
event).
DeMorgan Laws: A ∩B = A ∪B, and A ∪B = A ∩B, or in general

A ∩B ∩ C ∩ ... = A ∪B ∪ C ∪ ...

and vice versa (i.e. ∩ ↔ ∪).
A and B are called (mutually) exclusive or disjoint when A ∩ B = ∅ (no

overlap).

Probability of Events
Simple events can be assigned a probability (relative frequency of its occurrence
in a long run). It’s obvious that each of these probabilities must be a non-negative
number. To find a probability of any other event A (not necessarily simple), we
then add the probabilities of the simple events A consists of. This immediately
implies that probabilities must follow a few basic rules:

Pr(A) ≥ 0

Pr(∅) = 0

Pr(Ω) = 1

(the relative frequency of all Ω is obviously 1).
We should mention that Pr(A) = 0 does not necessarily imply that A = ∅.
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Probability rules
Pr(A∪B) = Pr(A)+Pr(B) but only when A∩B = ∅ (disjoint). This implies that
Pr(A) = 1− Pr(A) as a special case.
This also implies that Pr(A ∩B) = Pr(A)− Pr(A ∩B).
For any A and B (possibly overlapping) we have

Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B)
Can be extended to: Pr(A∪B∪C) = Pr(A)+Pr(B)+Pr(C)−Pr(A∩B)−Pr(A∩
C)− Pr(B ∩ C) + Pr(A ∩B ∩ C).
In general

Pr(A1 ∪A2 ∪A3 ∪ ... ∪Ak) =
kX
i=1

Pr(Ai)−
kX
i<j

Pr(Ai ∩Aj) +
kX

i<j<c

Pr(Ai ∩Aj ∩Ac)− ...

±Pr(A1 ∩A2 ∩A3 ∩ ... ∩Ak)

The formula computes the probability that at least one of the Ai events happens.
The probability of getting exactly one of the Ai events is similarly computed

by:

kX
i=1

Pr(Ai)− 2
kX
i<j

Pr(Ai ∩Aj) + 3
kX

i<j<c

Pr(Ai ∩Aj ∩Ac)− ...

±kPr(A1 ∩A2 ∩A3 ∩ ... ∩Ak)

Important result
Probability of any (Boolean) expression involving events A, B, C, ... can be always
converted to a linear combination of probabilities of the individual events and their
simple (non-complemented) intersections (A ∩B, A ∩B ∩ C, etc.) only.
Probability tree
is a graphical representation of a two-stage (three-stage) random experiment.(effectively
its sample space - each complete path being a simple event).
The individual branch probabilities (usually simple to figure out), are the so

called conditional probabilities.

Product rule

Pr(A ∩B) = Pr(A) · Pr(B|A)
Pr(A ∩B ∩ C) = Pr(A) · Pr(B|A) · Pr(C|A ∩B)

Pr(A ∩B ∩ C ∩D) = Pr(A) · Pr(B|A) · Pr(C|A ∩B) · Pr(D|A ∩B ∩ C)
...

Conditional probability
The general definition:

Pr(B|A) ≡ Pr(A ∩B)
Pr(A)

All basic formulas of probability remain true. conditionally, e.g.: Pr(B|A) =
1− Pr(B|A), Pr(B ∪ C|A) = Pr(B|A) + Pr(C|A)− Pr(B ∩ C|A), etc.
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Total-probability formula
A partition represents chopping the sample space into several smaller events, say
A1, A2, A3, ...., Ak, so that they

(i) don’t overlap (i.e. are all mutually exclusive): Ai∩Aj = ∅ for any 1 ≤ i, j ≤ k

(ii) cover the whole Ω (i.e. ’no gaps’): A1 ∪A2 ∪A3 ∪ ... ∪Ak = Ω.

For any partition, and an unrelated even B, we have

Pr(B) = Pr(B|A1) · Pr(A1) + Pr(B|A2) · Pr(A2) + ...+Pr(B|Ak) · Pr(Ak)

Independence
of two events is a very natural notion (we should be able to tell from the experi-
ment): when one of these events happens, it does not effect the probability of the
other. Mathematically, this is expressed by either

Pr(B|A) ≡ P (B)

or, equivalently, by
Pr(A ∩B) = Pr(A) · Pr(B)

Similarly, for three events, their mutual independence means

Pr(A ∩B ∩ C) = Pr(A) · Pr(B) · Pr(C)
etc.
Mutual independence of A, B, C, D, ... implies that any event build of A, B,

... must be independent of any event build out of C, D, ... [as long as the two sets
are distinct].
Another important result is: To compute the probability of a Boolean ex-

pression (itself an event) involving only mutually independent events, it is sufficient
to know the events’ individual probabilities.

Discrete Random Variables
A random variable yields a number, for every possible outcome of a random
experiment.
A table (or a formula, called probability function) summarizing the in-

formation about

1. possible outcomes of the RV (numbers, arranged from the smallest to the
largest)

2. the corresponding probabilities

is called the probability distribution.
Similarly, distribution function: Fx(k) = Pr(X ≤ k) computes cumulative

probabilities.
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Bivariate (joint) distribution
of two random variables is similarly specified via the corresponding probability
function

f(i, j) = Pr(X = i ∩ Y = j)

with the range of possible i and j values. One of the two ranges is always ’marginal’
(the limits are constant), the other one is ’conditional’ (i.e. both of its limits may
depend on the value of the other random variable).
Based on this, one can always find the corresponding marginal distribution

of X:
fx(i) = Pr(X = i) =

X
j|i

f(i, j)

and, similarly, the marginal distribution of Y.

Conditional distribution
of X, given an (observed) value of Y , is defined by

fx(i|Y = j) ≡ Pr(X = i |Y = j) = Pr(X = i ∩ Y = j)
Pr(Y = j)

where i varies over its conditional range of values (given Y = j).
Conditional distribution has all the properties of an ordinary distribution.

Independence
of X and Y means that the outcome of X cannot influence the outcome of Y (and
vice versa) - something we can gather from the experiment.
This implies that Pr(X = i∩Y = j) =Pr(X = i)×Pr(Y = j) for every possible

combination of i and j

Multivariate distribution
is a distribution of three of more RVs - conditional distributions can get rather
tricky.

Expected Value of a RV
also called its mean or average, is a number which corresponds (empirically)
to the average value of the random variable when the experiment is repeated,
independently, infinitely many times (i.e. it is the limit of such averages). It is
computed by

µx ≡ E(X) ≡
X
i

i× Pr(X = i)

(weighted average), where the summation is over all possible values of i.
In general, E[g(X)] 6= g (E[X]).
But, for a linear transformation,

E(aX + c) = aE(X) + c
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Expected values related to X and Y
In general we have

E [g(X,Y )] =
X
i

X
j

g(i, j)× Pr(X = i ∩ Y = j)

This would normally not equal to g(µx, µy), except:

E [aX + bY + c] = aE(X) + bE(Y ) + c

The previous formula easily extends to any number of variables:

E [a1X1 + a2X2 + ...+ akXk + c] = a1E(X1) + a2E(X2) + ...+ akE(Xk) + c

(no independence necessary).
When X and Y are independent, we also have

E(X · Y ) = E(X) · E(Y )
and, in general:

E [g1(X) · g2(Y )] = E [g1(X)] · E [g2(Y )]
Moments (univariate)
Simple:

E(Xn)

Central:
E [(X − µx)

n]

Of these, the most important is the variance of X:

E
£
(X − µx)

2
¤
= E(X2)− µx

2

Its square root is the standard deviation of X, notation: σx =
p
Var(X) (this

is the Greek letter ’sigma’).
The interval µ − σ to µ + σ should contain the ’bulk’ of the distribution −

anywhere from 50 to 90%.
When Y ≡ aX + c (a linear transformation of X), we get

Var(Y ) = a2Var(X)

which implies
σy = |a| · σx

Moments (bivariate or ’joint’)
Simple:

E(Xn · Y m)

Central
E
£
(X − µx)

n · (Y − µy)
m
¤

The most important of these is the covariance of X and Y :

Cov(X,Y ) ≡ E
£
(X − µx) · (Y − µy)

¤ ≡ E(X · Y )− µx · µy
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It becomes zero when X and Y are independent, but: zero covariance does not
necessarily imply independence.
A related quantity is the correlation coefficient between X and Y :

ρxy =
Cov(X,Y )

σx · σy
(this is the Greek letter ’rho’). The absolute value of this coefficient cannot be
greater than 1.

Variance of aX + bY + c
is equal to

a2Var(X) + b2Var(Y ) + 2abCov(X,Y )

Independence would make the last term zero.
Extended to a linear combination of any number of random variables:

Var(a1X1 + a2X2 + ...akXk + c) = a21Var(X1) + a22Var(X2) + ....+ a2kVar(Xk)
+2a1a2Cov(X1,X2) + 2a1a3Cov(X1,X3) + ...+ 2ak−1akCov(Xk−1,Xk)

Moment generating function
is defined by

Mx(t) ≡ E
£
etX
¤

where t is an arbitrary (real) parameter.

Main results
1.

E(Xk) =M (k)
x (t = 0)

or, in words, to get the kth simple moment differentiate the corresponding
MGF k times (with respect to t) and set t equal to zero.

2. For two independent RVs we have:

MX+Y (t) =MX(t) ·MY (t)

This result can be extended to any number of mutually independent RVs:

MX+Y+Z(t) =MX(t) ·MY (t) ·MZ(t)

etc.

3. And, finally
MaX+c(t) = ect ·MX(at)

Probability generating function
is defined by

Px(s) = Pr(X = 0) + Pr(X = 1) s+ Pr(X = 2) s2 + Pr(X = 3) s3 + .....

is a somehow easier concept (applicable to integer-valued RVs only). We also have

PX+Y (s) = PX(s) · PY (s)
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Conditional expected value
E(X|Y = j) =

X
i

i× Pr(X = i | Y = j)

(summing over the corresponding conditional range of i values), etc.

Common discrete distributions
First, the univariate type:

Binomial
Total number of successes in a series of n independent trials with two possible
outcomes (success or failure, having probabilities of p and q, respectively).

f(i) =

µ
n

i

¶
piqn−i where 0 ≤ i ≤ n

Expected value (mean):
np

Variance:
npq

Geometric
The number of trials to get the first success, in an independent series of trials.

f(i) = pqi−1 where i ≥ 1
The mean

1

p

and variance:
1

p

µ
1

p
− 1
¶

This time, we also have

F (j) = Pr(X ≤ j) = 1− qj where j ≥ 1
Negative Binomial
The number of trials until (and including) the kth success is obtained. It is a
sum of k independent random variables of the geometric type.

f(i) =

µ
i− 1
k − 1

¶
pkqi−k ≡

µ
i− 1
i− k

¶
pkqi−k where i ≥ k

The mean
k

p

and variance:
k

p

µ
1

p
− 1
¶

F (j) = 1−
k−1X
i=0

µ
j

i

¶
piqj−i where j ≥ k
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Hypergeometric
Suppose there are N objects, K of which have some special property. Of these N
objects, n are randomly selected [sampling without replacement]. X is the
number of ’special’ objects found in the sample.

f(i) =

¡
K
i

¢× ¡N−K
n−i

¢¡
N
n

¢ where max(0, n−N +K) ≤ i ≤ min(n,K)

The mean
n
K

N
and variance:

n · K
N
· N −K

N
· N − n

N − 1
Note the similarity (and difference) to the binomial npq formula.

Poisson
Assume that customers arrive at a store randomly, at a constant rate of ϕ per hour.
X is the number of customers who will arrive during the next T hours. λ = T · ϕ.

f(i) =
λi

i!
e−λ where i ≥ 0

Both the mean and the variance of this distribution are equal to λ.

The remaining two distributions are of the multivariate type.

Multinomial
is an extension of the binomial distribution, in which each trial can result in 3 (or
more) possible outcomes (not just S and F ). The trials are repeated, independently,
n times; this time we need three RVs X, Y and Z, which count the total number
of outcomes of the first, second and third type, respectively.

Pr(X = i ∩ Y = j ∩ Z = k) =
¡

n
i,j,k

¢
pix p

j
y p

k
z

for any non-negative integer values of i, j, k which add up to n. This formula can
be easily extended to the case of 4 or more possible outcomes.
The marginal distribution of X is obviously binomial (with n and p ≡ px

being the two parameters).
We also need

Cov(X,Y ) = −npx py
etc.

Multivariate Hypergeometric
is a simple extension of the univariate hypergeometric distribution, to the case of
having thee (or more) types of objects. We now assume that the total number of
objects of each type is K1, K2 and K3, where K1 +K2 +K3 = N.

Pr(X = i ∩ Y = j ∩ Z = k) =

¡
K1

i

¢¡
K2

j

¢¡
K3

k

¢¡
N
n

¢
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where X, Y and Z count the number of objects of Type 1, 2 and 3, respectively, in
the sample. Naturally, i+j+k = n. Otherwise, i, j and k can be any non-negative
integers for which the above expression is meaningful (i.e. no negative factorials).
Themarginal distribution of X (and Y, and Z) is univariate hypergeometric

(of the old kind) with obvious parameters.

Cov(X,Y ) = −n · K1

N
· K2

N
· N − n

N − 1
Continuous Random Variables
Any real value from a certain interval can happen. Pr(X = x) is always equal to
zero (we have lost the individual probabilities)! Instead, we use

Univariate probability density function (pdf)
formally defined by

f(x) ≡ lim
ε→0

Pr(x ≤ X < x+ ε)

ε

Given f(x), we can compute the probability of any interval of values:

Pr(a < X < b) =

bZ
a

f(x) dx

Note that f(x) is frequently defined in a piecewise manner.

Distribution Function

F (x) ≡ Pr(X ≤ x) =

xZ
−∞

f(u) du

which is quite crucial to us now (without it, we cannot compute probabilities).

Bivariate (multivariate) pdf

f(x, y) = lim
ε→0
δ→0

Pr(x ≤ X < x+ ε ∩ y ≤ Y < y + δ)

ε · δ
which implies that the probability of (X,Y )-values falling inside a 2D region A
is computed by ZZ

A

f(x, y) dxdy

Similarly for three or more variables.

Marginal Distributions
Given a bivariate pdf f(x, y), we can eliminate Y and get the marginal pdf of X
by

f(x) =

Z
All y|x

f(x, y) dy

The integration is over the conditional range of y given x, the result is valid in
the marginal range of x.
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Conditional Distribution
is the distribution of X given that Y has been observed to result in a specific value
y. The corresponding conditional pdf of X is computed by

f(x | Y = y) = f(x,y)

f(y)

valid in the corresponding conditional range of x values.

Mutual Independence
implies that fXY (x, y) = fX(x) · fY (y), with all the other consequences (same as
in the discrete case), most notably f(x | Y = y) = fX(x).

Expected value
of a continuous RV X is computed by

E(X) =
Z
All x

x · f(x) dx

Similarly:

E[g(X)] =
Z
All x

g(x) · f(x) dx

where g(..) is an arbitrary function.

In the bivariate case:

E[g(X,Y )] =

ZZ
R

g(x, y) · f(x, y) dx dy

Simple moments, central moments, variance, covariance, etc. are defined in
exactly same manner as in the discrete case. Also, all previous formulas for dealing
with linear combinations of RVs (expected value, variance, covariance) still hold,
without change.

Also, the Moment Generating Function is defined in the analogous manner as

is defined via:

Mx(t) ≡ E(etX) =
Z
All x

etx · f(x) dx

with all the previous results still being correct.
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Common Continuous Distributions
First, the univariate case:

Name Notation Range f(x)

Uniform U(a, b) a < x < b 1
b−a

Normal N (µ, σ) −∞ < x <∞ 1√
2πσ
exp

h
− (x−µ)2

2σ2

i
Exponential E(β) x > 0 1

β
exp

h
−x

β

i
Gamma gamma(α, β) x > 0 xα−1

Γ(α)βα
exp

h
−x

β

i
Beta beta(k,m) 0 < x < 1 Γ(k+m)

Γ(k)·Γ(m) · xk−1(1− x)m−1

Chi-square χ2m x > 0 xm/2−1
Γ(m/2)2m/2 exp

£−x
2

¤
Student tm −∞ < x <∞ Γ(m+1

2
)

Γ(m
2
)
√
mπ

·
³
1 + x2

m

´−m+1
2

Fisher Fk,m x > 0
Γ(k+m

2
)

Γ(k
2
)Γ(m

2
)
( k
m
)
k
2 · x

k
2−1

(1+ k
m
x)

k+m
2

Cauchy C(a, b) −∞ < x <∞ b
π
· 1
b2+(y−a)2

Name F (x) Mean Variance

Uniform x−a
b−a

a+b
2

(b−a)2
12

Normal Tables µ σ2

Exponential 1− exp
h
−x

β

i
β β2

Gamma Integer α only αβ αβ2

Beta Integer k,m only k
k+m

km
(k+m+1)(k+m)2

Chi-square Tables m 2m
Student Tables 0 m

m−2
Fisher Tables m

m−2
2m2(k+m−2)
(m−2)2 (m−4) k

Cauchy 1
2
+ 1

π
arctan(y−a

b
) × ×

We need only one bivariate example:
Bivariate Normal distribution has, in general, 5 parameters, µx, µy, σx, σy,

and ρ. Its joint pdf can be simplified by introducing Z1 ≡ X−µx
σx

and Z2 ≡ Y−µy
σy

(standardized RVs), for which

f(z1, z2) =
1

2π
√
1−ρ2 · exp

h
−z21−2ρz1z2+z22

2(1−ρ2)
i

Its marginal distributions are both Normal, so it the conditional distribution:

Distr(X|Y = y) ≡ N (µx + σxρ
u− µy
σy

, σx
p
1− ρ2)

Transforming Random Variables
i.e. if Y = g(X), where X has a given distribution, what is the distribution of Y ?
Two techniques to deal with this, one uses F (x), the other one f(x) - this only

for one-to-one transformations.
This can be generalized to: Given the joint distribution of X and Y (usually

independent), find the distribution of g(X,Y ).
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Examples
g: Distribution:

−β · lnU(0, 1) E(β)
N (0, 1)2 χ21

N1(0, 1)
2 +N2(0, 1)

2 + ....+Nm(0, 1)
2 χ2m

C(a, b) C(a, b)
E1(β)

E1(β)+E2(β) U(0, 1)
gamma1(k,β)

gamma1(k,β)+gamma2(m,β)
beta(k,m)

N (0,1)q
χ2m
m

tm

χ2k
χ2m
· m
k

Fk,m
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Chapter 2 TRANSFORMING
RANDOM VARIABLES

of continuous type only (the less interesting discrete case was dealt with earlier).

The main issue of this chapter is: Given the distribution of X, find the distri-
bution of Y ≡ 1

1+X
(an expression involving X). Since only one ’old’ RV variable

(namely X) appear in the definition of the ’new’ RV, we call this a univariate
transformation. Eventually, we must also deal with the so called bivariate trans-
formations of two ’old’ RVs (say X and Y ), to find the distribution of a ’new’
RV, say U ≡ X

X+Y
(or any other expression involving X and Y ). Another simple

example of this bivariate type is finding the distribution of V ≡ X + Y (i.e. we
will finally learn how to add two random variables).

Let us first deal with the

Univariate transformation
There are two basic techniques for constructing the new distribution:

Distribution-Function (F ) Technique
which works as follows:

When the new random variable Y is defined as g(X), we find its distribution
function FY (y) by computing Pr(Y < y) = Pr[g(X) < y]. This amounts to solving
the g(X) < y inequality for X [usually resulting in an interval of values], and then
integrating f(x) over this interval [or, equivalently, substituting into F (x)].

EXAMPLES:

1. Consider X ∈ U(−π
2
, π
2
) [this corresponds to a spinning wheel with a two-

directional ’pointer’, say a laser beam, where X is the pointer’s angle from
a fixed direction when the wheel stops spinning]. We want to know the
distribution of Y = b tan(X) + a [this represents the location of a dot our
laser beam would leave on a screen placed b units from the wheel’s center,
with a scale whose origin is a units off the center]. Note that Y can have any
real value.

Solution: We start by writing down FX(x) = [in our case] x+π
2

π
≡ x

π
+ 1

2

when −π
2
< x < π

2
. To get FY (y) we need: Pr[b tan(X) + a < y] = Pr[X <

arctan(y−a
b
)] = FX [arctan(

y−a
b
)] = 1

π
arctan(y−a

b
) + 1

2
where −∞ < y < ∞.

Usually, we can relate better to the corresponding fY (y) [which tells us what
is likely and what is not] = 1

πb
· 1
1+(y−a

b
)2
=

b

π
· 1

b2 + (y − a)2
(f)

[any real y]. Graphically, this function looks very similar to the Normal pdf
(also a ’bell-shaped’ curve), but in terms of its properties, the new distribu-
tion turns out to be totally different from Normal, [as we will see later].



22

The name of this new distribution is Cauchy [notation: C(a, b)]. Since the
∞R
−∞

y · fY (y) dy integral leads to ∞−∞, the Cauchy distribution does not

have a mean (consequently, its variance is infinite). Yet it possesses a clear
center (at y = a) and width (±b). These are now identified with the median
µ̃Y = a [verify by solving FY (µ̃) =

1
2
] and the so called semi-inter-quartile

range (quartile deviation, for short) QU−QL

2
where QU and QL are the

upper and lower quartiles [defined by F (QU) =
3
4
and F (QL) =

1
4
]. One

can easily verify that, in this case, QL = a− b and QU = a+ b [note that the
semi-inter-quartile range contains exactly 50% of all probability], thus the
quartile deviation equals to b. The most typical (’standardized’) case of the
Cauchy distribution is C(0, 1), whose pdf equals

f(y) =
1

π
· 1

1 + y2

Its ’rare’ (<1
2
%) values start at ±70, we need to go beyond ±3000 to reach

’extremely unlikely’ (<10−6), and only ∓300 billion become ’practically im-
possible’ (10−12). Since the mean does not exist, the central limit theorem
breaks down [it is no longer true that Ȳ → N (µ, σ√

n
), there is no µ and σ is

infinite]. Yet, Ȳ must have some well defined distribution. We will discover
what that distribution is in the next section.

2. Let X have its pdf defined by f(x) = 6x(1− x) for 0 < x < 1.Find the pdf
of Y = X3.

Solution: First we realize that 0 < Y < 1. Secondly, we find FX(x) = 6
xR
0

(x−

x2) dx = 6(
x2

2
− x3

3
) = 3x2 − 2x3. And finally: FY (y) ≡ Pr(Y < y) =

Pr(X3 < y) = Pr(X < y
1
3 ) = FX(y

1
3 ) = 3y

2
3 − 2y.This easily converts to

fY (y) = 2y−
1
3 − 2 where 0 < y < 1 [zero otherwise]. (Note that when y → 0

this pdf becomes infinite, which is OK).

3. Let X ∈ U(0, 1). Find and identify the distribution of Y = − lnX (its range
is obviously 0 < y <∞).
Solution: First we need FX(x) = x when 0 < x < 1. Then: FY (y) =
Pr(− lnX < y) = Pr(X > e−y) [note the sign reversal] = 1 − FX(e

−y) =
1 − e−y where y > 0 (⇒ fY (y) = e−y). This can be easily identified as the
exponential distribution with the mean of 1 [note that Y = −β · lnX would
result in the exponential distribution with the mean equal to β].

4. If Z ∈ N (0, 1), what is the distribution of Y = Z2.

Solution: FY (y) = Pr(Z2 < y) = Pr(−√y < Z <
√
y) [right?] = FZ(

√
y)−

FZ(
√
y). Since we don’t have an explicit expression for FZ(z) it would appear

that we are stuck at this point, but we can get the corresponding fY (y) by a
simple differentiation: dFZ(

√
y)

dy
− dFZ(−√y)

dy
= 1

2
y−

1
2fZ(
√
y) + 1

2
y−

1
2fZ(−√y) =
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y−
1
2 e−

y
2√

2π
where y > 0. This can be identified as the gamma distribution with

α = 1
2
and β = 2 [the normalizing constant is equal to Γ(1

2
) · 2 12 = √2π,

check].

Due to its importance, this distribution has yet another name, it is called
the chi-square distribution with one degree of freedom, or χ21 for short. It
has the expected value of (α ·β =) 1, its variance equals (α ·β2 =) 2, and the
MGF is M(t) = 1√

1−2t . ¥
General Chi-square distribution

(This is an extension of the previous example). We want to investigate the RV
defined by U = Z21 + Z22 + Z23 + ....+ Z2n, where Z1, Z2, Z3, ...Zn are independent
RVs from the N (0, 1) distribution. Its MGF must obviously equal to M(t) =

1

(1− 2t)n2 ; we can thus identify its distribution as gamma, with α = n
2
and β = 2

(⇒mean= n, variance= 2n). Due to its importance, it is also called the chi-square
distribution with n (integer) degrees of freedom (χ2n for short).

Probability-Density-Function (f) Technique
is a bit faster and usually somehow easier (technically) to carry out, but it works
for one-to-one transformations only (e.g. it would not work in our last Y = Z2

example). The procedure consists of three simple steps:

(i) Express X (the ’old’ variable) in terms of y the ’new’ variable [getting an
expression which involves only Y ].

(ii) Substitute the result [we will call it x(y), switching to small letters] for the
argument of fX(x), getting fX [x(y)] − a function of y!

(iii) Multiply this by
¯̄̄
dx(y)
dy

¯̄̄
. The result is the pdf of Y. ¥

In summary

fY (y) = fX [x(y)] ·
¯̄̄̄
dx(y)

dy

¯̄̄̄
EXAMPLES (we will redo the first three examples of the previous section):
1. X ∈ U(−π

2
, π
2
) and Y = b tan(X) + a.

Solution: (i) x = arctan(y−a
b
), (ii) 1

π
, (iii) 1

π
· 1
b
· 1
1+( y−a

b
)2
= b

π
· 1
b2+(y−a)2 where

−∞ < y <∞ [check].

2. f(x) = 6x(1− x) for 0 < x < 1 and Y = X3.

Solution: (i) x = y1/3, (ii) 6y1/3(1 − y1/3), (iii) 6y1/3(1 − y1/3) · 1
3
y−2/3 =

2(y−1/3 − 1) when 0 < y < 1 [check].

3. X ∈ U(0, 1) and Y = − lnX.

Solution: (i) x = e−y, (ii) 1, (iii) 1 · e−y = e−y for y > 0 [check].

This does appear to be a fairly fast way of obtaining fY (y). ¥
And now we extend all this to the
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Bivariate transformation
Distribution-Function Technique
follows essentially the same pattern as the univariate case:

The new random variable Y is now defined in terms of two ’old’ RVs, say X1

and X2, by y ≡ g(X1, X2). We find FY (y) = Pr(Y < y) = Pr[g(X1, X2) < y] by
realizing that the g(X1, X2) < y inequality (for X1 and X2, y is considered fixed)
will now result in some 2-D region, and then integrating f(x1, x2) over this region.

Thus, the technique is simple in principle, but often quite involved in terms of
technical details.

EXAMPLES:

1. Suppose that X1 and X2 are independent RVs, both from E(1), and Y = X2

X1
.

Solution: FY (y) = Pr

µ
X2

X1
< y

¶
= Pr(X2 < yX1) =

RR
0<x2<yx1

e−x1−x2 dx1 dx2 =

∞R
0

e−x1
yx1R
0

e−x2 dx2 dx1 =
∞R
0

e−x1(1 − e−yx1) dx1 =
∞R
0

(e−x1 − e−x1(1+y)) dx1 =

1 − 1

1 + y
, where y > 0. This implies that fY (y) =

1

(1 + y)2
when y > 0.

(The median µ̃ of this distribution equals to 1, the lower and upper quartiles

are QL =
1

3
and QU = 3).

2. This time Z1 and Z2 are independent RVs from N (0, 1) and Y = Z21 + Z22
[here, we know the answer: χ22, let us proceed anyhow].

Solution: FY (y) = Pr(Z21+Z
2
2 < y) = 1

2π

RR
z21+z

2
2<y

e−
z21+

2
2

2 dz1 dz2 =
1
2π

2πR
0

√
yR
0

e−
r2

2 ·

r dr dθ =[substitution: w = r2

2
]

y
2R
0

e−w dw = 1−e−y
2 where (obviously) y > 0.

This is the exponential distribution with β = 2 [not χ22 as expected, how
come?]. It does not take long to realize that the two distributions are iden-
tical.

3. (Sum of two independent RVs): Assume thatX1 andX2 are independent
RVs from a distribution having L and H as its lowest and highest possible
value, respectively. Find the distribution of X1+X2 [finally learning how to
add two RVs!].

Solution: FY (y) = Pr(X1 + X2 < y) =
RR

x1+x2<y
L<x1,x2<H

f(x1) · f(x2) dx1 dx2 =
y−LR
L

y−x1R
L

f(x1) · f(x2) dx2dx1 when y < L+H

1−
HR

y−H

HR
y−x1

f(x1) · f(x2) dx2dx1 when y > L+H

. Differentiating this with

respect to y (for the first line, this amounts to: substituting y − L for x1
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and dropping the dx1 integration — contributing zero in this case — plus:
substituting y − x1 for x2 and dropping dx2; same for the first line, ex-
cept that we have to subtract the second contribution) results in fY (y) =

y−LR
L

f(x1) · f(y − x1) dx1 when y < L+H

HR
y−H

f(x1) · f(y − x1) dx1 when y > L+H

or, equivalently,

fY (y) =

min(H,y−L)Z
max(L,y−H)

f(x) · f(y − x) dx

where the y-range is obviously 2L < y < 2H. The right hand side of the
last formula is sometimes referred to as the convolution of two pdfs (in
general, the two fs may be distinct).

Examples:

• In the specific case of the uniform U(0, 1) distribution, the last formula
yields, for the pdf of Y ≡ X1 +X2:

fY (y) =
min(1,y)R

max(0,y−1)
dx =


yR
0

dx = y when 0 < y < 1

1R
y−1

dx = 2− y when 1 < y < 2
[’triangular’

distribution].

• Similarly, for the ’standardized’ Cauchy distribution £f(x) = 1
π
· 1
1+x2

¤
, we

get: fX1+X2(y) =
1
π2

∞R
−∞

1
1+x2

· 1
1+(y−x)2 dx =

2
π
· 1
4+y2

[where −∞ < y <∞].

The last result can be easily converted to the pdf of X̄ = X1+X2

2
[the sample

mean of the two random values], yielding fX̄(x̄) =
2
π
· 1
4+(2x̄)2

· 2 = 1
π
· 1
1+x̄2

.

Thus, the sample mean X̄ has the same Cauchy distribution as do the two
individual observations (the result can be extended to any number of obser-
vations). We knew that the Central Limit Theorem [X̄ e∈ N (µ, σ√

n
)] would

not apply to this case, but the actual distribution of X̄ still comes as a big
surprise. This implies that the sample mean of even millions of values (from a
Cauchy distribution) cannot estimate the center of the distribution any bet-
ter than a single observation [one can verify this by actual simulation]. Yet,
one feels that there must be a way of substantially improving the estimate (of
the location of a laser gun hidden behind a screen) when going from a single
observation to a large sample. Yes, there is, if one does not use the sample
mean but something else; later on we discover that the sample median will
do just fine. ¥

Pdf (Shortcut) Technique
works a bit faster, even though it may appear more complicated, as it requires the
following (several) steps:
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1. The procedure can work only for one-to-one (’invertible’) transformations.
This implies that the new RV Y ≡ g(X1, X2) must be accompanied by yet
another arbitrarily chosen function of X1 and/or X2 [the original Y will be
called Y1, and the auxiliary one Y2, or vice versa]. We usually choose this
second (auxiliary) function in the simplest possible manner, i.e. we make it
equal to X2 (or X1):

2. Invert the transformation, i.e. solve the two equations y1 = g(x1, x2) and
y2 = x2 for x1 and x2 (in terms of y1 and y2). Getting a unique solution
guarantees that the transformation is one-to-one.

3. Substitute this solution x1(y1, y2) and x2(y2) into the joint pdf of the ’old’
X1, X2 pair (yielding a function of y1 and y2).

4. Multiply this function by the transformation’s Jacobian

¯̄̄̄
¯ ∂x1

∂y1
∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

¯̄̄̄
¯ . The

result is the joint pdf of Y1 and Y2. At the same time, establish the region
of possible (Y1, Y2) values in the (y1, y2)-plane [this is often the most difficult
part of the procedure].

5. Eliminate Y2 [the ’phoney’, auxiliary RV introduced to help us with the
inverse] by integrating it out (finding the Y1 marginal). Don’t forget that
you must integrate over the conditional range of y2 given y1.

EXAMPLES:

1. X1, X2 ∈ E(1), independent; Y = X1

X1+X2
[the time of the first ’catch’ relative

to the time needed to catch two fishes].

Solution: Y2 = X2 ⇒ x2 = y2 and x1y1+x2y1 = x1 ⇒ x1 =
y1·y2
1−y1 . Substitute

into e−x1−x2 getting e−y2
³
1+

y1
1−y1

´
= e

− y2
1−y1 ,multiply by

¯̄̄̄
y2
1−y1+y1
(1−y1)2

y1
1−y1

0 1

¯̄̄̄
=

y2
(1−y1)2 getting f(y1, y2) =

y2
(1−y1)2 e

− y2
1−y1 with 0 < y1 < 1 and y2 > 0. Elim-

inate Y2 by
∞R
0

y2
(1−y1)2 e

− y2
1−y1 dy2 =

1
(1−y1)2 · (1 − y1)

2 ≡ 1 when 0 < y1 < 1

[recall the
∞R
0

xk e−
x
a dx = k! · ak+1 formula]. The distribution of Y is thus

U(0, 1). Note that if we started with X1, X2 ∈ E(β) instead of E(1), the
result would have been the same since this new Y = X1

X1+X2
≡

X1
β

X1
β
+
X2
β

where
X1

β
and X2

β
∈ E(1) [this can be verified by a simple MGF argument].

2. Same X1 and X2 as before, Y = X2

X1
.

Solution: This time we reverse the labels: Y1 ≡ X1 and Y2 =
X2

X1
⇒ x1 = y1

and x2 = y1·y2. Substitute into e−x1−x2 to get e−y1(1+y2), times
¯̄̄̄
1 0
y2 y1

¯̄̄̄
= y1

gives the joint pdf for y1 > 0 and y2 > 0. Eliminate y1 by
∞R
0

y1e
−y1(1+y2) dy1 =
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1
(1+y2)2

, where y2 > 0. Thus, fY (y) = 1
(1+y)2

with y > 0 [check, we have
solved this problem before].

3. In this example we introduce the so called Beta distribution

Let X1 and X2 be independent RVs from the gamma distribution with pa-
rameters (k, β) and (m,β) respectively, and let Y1 = X1

X1+X2
.

Solution: Using the argument of Example 1 one can show that β ’cancels out’,
and we can assume that β = 1 without affecting the answer. The definition of
Y1 is also the same as in Example 1⇒ x1 =

y1 y2
1−y1 , x2 = y2, and the Jacobian=

y2
(1−y1)2 . Substituting into f(x1, x2) =

xk−11 xm−12 e−x1−x2
Γ(k)·Γ(m) and multiplying by the

Jacobian yields f(y1, y2) =
yk−11 yk−12 ym−12 e

− y2
1−y1

Γ(k)Γ(m)(1− y1)k−1
· y2
(1− y1)2

for 0 < y1 < 1

and y2 > 0. Integrating over y2 results in:
yk−11

Γ(k)Γ(m)(1− y1)k+1

∞R
0

yk+m−12 e
− y2
1−y1 dy2 =

Γ(k +m)

Γ(k) · Γ(m) · y
k−1
1 (1− y1)

m−1 (f)

where 0 < y1 < 1.

This is the pdf of a new two-parameters (k and m) distribution which is
called beta. Note that, as a by-product, we have effectively proved the follow-

ing formula:
1R
0

yk−1(1 − y)m−1dy = Γ(k)·Γ(m)
Γ(k+m)

for any k,m > 0. This enables

us to find the distribution’s mean: E(Y ) = Γ(k+m)
Γ(k)·Γ(m)

1R
0

yk(1 − y)m−1 dy =

Γ(k+m)
Γ(k)·Γ(m) · Γ(k+1)·Γ(m)Γ(k+m+1)

=

k

k +m
(mean)

and similarly E(Y 2) = Γ(k+m)
Γ(k)·Γ(m)

1R
0

yk+1(1−y)m−1 dy = Γ(k+m)
Γ(k)·Γ(m) · Γ(k+2)·Γ(m)Γ(k+m+2)

=

(k+1) k
(k+m+1) (k+m)

⇒ V ar(Y ) = (k+1) k
(k+m+1) (k+m)

− ( k
k+m

)2 =

km

(k +m+ 1) (k +m)2
(variance)

Note that the distribution of 1 − Y ≡ X2

X1+X2
is also beta (why?) with

parameters m and k [reversed].

We learn how to compute related probabilities in the following set of Ex-
amples:

(a) Pr(X1 <
X2

2
) whereX1 andX2 have the gamma distribution with param-

eters (4, β) and (3, β) respectively [this corresponds to the probability
that Mr.A catches 4 fishes in less than half the time Mr.B takes to catch
3].
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Solution: Pr(2X1 < X2) = Pr(3X1 < X1 + X2) = Pr( X1

X1+X2
< 1

3
) =

Γ(4+3)
Γ(4)·Γ(3)

1
3R
0

y3(1− y)2dy = 60×
h
y4

4
− 2y5

5
+ y6

6

i 1
3

y=0
= 10.01%.

(b) Evaluate Pr(Y < 0.4) where Y has the beta distribution with parameters
(3
2
, 2) [half-integer values are not unusual, as we learn shortly].

Solution: Γ( 7
2
)

Γ( 3
2
)·Γ(2)

0.4R
0

y
1
2 (1− y) dy = 5

2
· 3
2
·
·
y
3
2

3
2

− y
5
2

5
2

¸0.4
y=0

= 48.07%.

(c) Evaluate Pr(Y < 0.7) where Y ∈ beta(4, 5
2
).

Solution: This equals [it is more convenient to have the half-integer first]

Pr(1−Y > 0.3) =
Γ( 13

2
)

Γ( 5
2
)·Γ(4)

1R
0.3

u
3
2 (1−u)3 du = 11

2
· 9
2
· 7
2
· 5
2

3!

·
y
5
2

5
2

− 3y
7
2

7
2

+ 3y
9
2

9
2

− y
11
2

11
2

¸1
y=0.3

=

1− 0.3522 = 64.78%.

d Pr(Y < 0.5) when Y ∈ beta(3
2
, 1
2
).

Solution: Γ(2)

Γ( 3
2
)·Γ( 1

2
)

0.5R
0

y
1
2 (1− y)−

1
2dy = 18.17% (Maple).

4. In this example we introduce the so called Student’s or t-distribution

[notation: tn, where n is called ’degrees of freedom’ − the only parameter].
We start with two independent RVsX1 ∈ N (0, 1) andX2 ∈ χ2n, and introduce

a new RV by Y1 =
X1q
X2

n

.

To get its pdf we take Y2 ≡ X2, solve for x2 = y2 and x1 = y1·
p

y2
n
, substitute

into f(x1, x2) =
e−

x21
2√
2π
· x

n
2
−1

2 e−
x2
2

Γ(n
2
) · 2n2 and multiply by

¯̄̄̄ py2
n

1
2
· y1√

ny2

0 1

¯̄̄̄
=
p

y2
n

to get f(y1, y2) =
e−

y21y2
2n√
2π

· y
n
2
−1

2 e−
y2
2

Γ(n
2
) · 2n2 ·

p
y2
n
where −∞ < y1 < ∞ and

y2 > 0. To eliminate y2 we integrate:
1√

2πΓ(n
2
) 2

n
2
√
n

∞R
0

y
n−1
2

2 e−
y2
2
(1+

y21
n
)dy2 =

Γ(n+1
2
) 2

n+1
2

√
2πΓ(n

2
) 2

n
2
√
n
³
1 +

y21
n

´n+1
2

=

Γ(n+1
2
)

Γ(n
2
)
√
nπ
· 1³
1 +

y21
n

´n+1
2

(f)

with −∞ < y1 < ∞. Note that when n = 1 this gives 1
π
· 1
1+ y21

(Cauchy),

when n→∞ the second part of the formula tends to e−
y21
2 which is, up to the

normalizing constant, the pdf of N (0, 1) [implying that Γ(n+1
2
)

Γ(n
2
)
√
nπ
−→
n→∞

1√
2π

,

why?].
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Due to the symmetry of the distribution [f(y) = f(−y)] its mean is zero
(when is exists, i.e. when n ≥ 2).

To compute its variance: V ar(Y ) = E(Y 2) =
Γ(n+1

2
)

Γ(n
2
)
√
nπ

∞R
−∞

(y2 + n− n) dy³
1 + y2

n

´n+1
2

=

Γ(n+1
2
)

Γ(n
2
)
√
nπ

·
n · Γ(

n−2
2
)
√
nπ

Γ(n−1
2
)
− n · Γ(

n
2
)
√
nπ

Γ(n+1
2
)

¸
= n · n−1

2
n−2
2

− n =

n

n− 2 (variance)

for n ≥ 3 (for n = 1 and 2 the variance is infinite).
Note that when n ≥ 30 the t-distribution can be closely approximated by
N (0, 1).

5. And finally, we introduce the Fisher’s F-distribution

(notation: Fn,m where n and m are its two parameters, also referred to as

’degrees of freedom’), defined by Y1 =
X1

n
X2

m

where X1 and X2 are inde-

pendent, both having the chi-square distribution, with degrees of freedom n
and m, respectively.

First we solve for x2 = y2 and x1 = n
m
y1 y2 ⇒ Jacobian equals to n

m
y2. Then

we substitute into
x
n
2
−1

1 e−
x1
2

Γ(n
2
) 2

n
2

·x
m
2
−1

2 e−
x2
2

Γ(m
2
) 2

m
2

and multiply by this Jacobian to get

( n
m
)
n
2

Γ(n
2
)Γ(m

2
) 2

n+m
2

y
n
2
−1

1 ·y
n+m
2
−1

2 e−
y2 (1+

n
my1)

2 with y1 > 0 and y2 > 0. Integrating

over y2 (from 0 to∞) yields the following formula for the corresponding pdf

f(y1) =
Γ(n+m

2
)

Γ(n
2
)Γ(m

2
)
(
n

m
)
n
2 · y

n
2
−1

1

(1 + n
m
y1)

n+m
2

for y1 > 0.

We can also find E(Y ) =
Γ(n+m

2
)

Γ(n
2
)Γ(m

2
)
( n
m
)
n
2

∞R
0

y
n
2 dy

(1+ n
m
y)

n+m
2
=

m

m− 2 (mean)

for m ≥ 3 (the mean is infinite for m = 1 and 2).

Similarly E(Y 2) = (n+2)m2

(m−2) (m−4)n ⇒ V ar(Y ) = (n+2)m2

(m−2) (m−4)n− m2

(m−2)2 =
m2

(m−2)2 ·h
(n+2) (m−2)
(m−4)n − 1

i
=

2m2 (n+m− 2)
(m− 2)2 (m− 4)n (variance)

for m ≥ 5 [infinite for m = 1, 2, 3 and 4].
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Note that the distribution of
1

Y
is obviously Fm,n [degrees of freedom reversed],

also that F1,m ≡ χ21
χ2m
m

≡ Z2

χ2m
m

≡ t2m, and finally when both n and m are large (say

> 30) then Y is approximately normal N
µ
1,
q

2(n+m)
n·m

¶
.

The last assertion can be proven by introducing U =
√
m · (Y − 1), getting its

pdf: (i) y = 1+ u√
m
, (ii) substituting:

Γ(n+m
2
)

Γ(n
2
)Γ(m

2
)
( n
m
)
n
2 ·

(1 + u√
m
)
n
2
−1

(1 + n
m
+ n

m
u√
m
)
n+m
2

·

1√
m
[the Jacobian] =

Γ(n+m
2
)

Γ(n
2
)Γ(m

2
)
√
m
· ( n

m
)
n
2

(1 + n
m
)
n+m
2

·
(1 + u√

m
)
n
2
−1

(1 + n
n+m

u√
m
)
n+m
2

where

−√m < u < ∞. Now, taking the limit of the last factor (since that is
the only part containing u, the rest being only a normalizing constant)
we get [this is actually easier with the corresponding logarithm, namely

(n
2
− 1) ln(1 + u√

m
) − n+m

2
ln(1 + n

n+m
u√
m
) = − u√

m
−
h
(n
2
− 1)− n2

2(n+m)

i
·

u2

2m
− .... = − u√

m
+ u2

2m
− n

n+m
u2

4
− .... −→

n,m→∞
− 1

1 + m
n

u2

4
[assuming that

the m
n
ratio remains finite]. This implies that the limiting pdf is C · e−

u2n
4(n+m)

where C is a normalizing constant (try to establish its value). The limiting

distribution is thus, obviously, N
µ
0,
q

2(n+m)
n

¶
. Since this is the (approxi-

mate) distribution of U, Y = U√
m
+ 1 must be also (approximately) normal

with the mean of 1 and the standard deviation of
q

2(n+m)
n·m . ¤

We will see more examples of the F, t and χ2 distributions in the next chapter,
which discusses the importance of these distributions to Statistics, and the context
in which they usually arise.
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Chapter 3 RANDOM SAMPLING
A random independent sample (RIS) of size n from a (specific) distribution
is a collection of n independent RVs X1, X2, ..., Xn, each of them having the same
(aforementioned) distribution. At this point, it is important to visualize these as
true random variables (i.e. before the actual sample is taken, with all their would-
be values), and not just as a collection of numbers (which they become eventually).
The information of a RIS is usually summarized by a handful of statistics (one

is called a statistic), each of them being an expression (a transformation) involving
the individual Xi’s. The most important of these is the

Sample mean
defined as the usual (arithmetic) average of the Xi’s:

X ≡
Pn

i=1Xi

n

One has to realize that the sample mean, unlike the distribution’s mean, is a
random variable, with its own expected value, variance, and distribution. The
obvious question is: How do these relate to the distribution from which we are
sampling?
For the expected value and variance the answer is quite simple

E
¡
X
¢
=

Pn
i=1 E (Xi)

n
=

Pn
i=1 µ

n
=

nµ

n
= µ

and

Var
¡
X
¢
=
1

n2

nX
i=1

Var (Xi) =
nσ2

n2
=

σ2

n

Note that this implies
σX =

σ√
n

(one of the most important formulas of Statistics).

Central Limit Theorem
The distribution of X is a lot trickier. When n = 1, it is clearly the same as
the distribution form which we are sampling. But as soon as we take n = 2, we
have to work out (which is a rather elaborate process) a convolution of two
such distributions (taking care of the 1

2
factor is quite simple), and end up with a

distribution which usually looks fairly different from the original. This procedure
can then be repeated to get the n = 3, 4, etc. results. By the time we reach
n = 10 (even though most books say 30), we notice something almost mysterious:
The resulting distribution (of X) will very quickly assume a shape which not only
has nothing to do with the shape of the original distribution, it is the same for all
(large) values of n, and (even more importantly) for practically all distributions
(discrete or continuous) from which we may sample. This of course is the well
known (bell-like) shape of the Normal distribution (mind you, there are other bell-
look-alike distributions).
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The proof of this utilizes a few things we have learned about the moment
generating function:

Proof. We already know the mean and standard deviation of the distribution of
X are µ and σ√

n
respectively, now we want to establish its asymptotic (i.e. large-

n) shape. This is, in a sense, trivial: since σ√
n
−→
n→∞

0, we get in the n→∞ limit a

degenerate (single-valued, with zero variance) distribution, with all probability
concentrated at µ.
We can prevent this distribution from shrinking to a zero width by standard-

izing X̄ first, i.e. defining a new RV

Z ≡ X̄ − µ
σ√
n

and investigating its asymptotic distribution instead (the new random variable has
the mean of 0 and the standard deviation of 1, thus its shape cannot ’disappear’
on us).
We do this by constructing the MGF of Z and finding its n→∞ limit. Since

Z =

Pn
i=1(Xi−µ)

n
σ√
n

=
Pn

i=1

³
Xi−µ
σ
√
n

´
(still a sum of independent, identically dis-

tributed RVs) its MGF is the MGF of Xi−µ
σ
√
n
≡ Y, raised to the power of n.

We know that MY (t) = 1 + E(Y ) · t + E(Y 2) · t2
2
+ E(Y 3) · t3

3!
+ ... = 1 +

t2

2n
+ α3t3

6n3/2
+ α4t4

24n2
+ .... where α3, α4,... is the skewness, kurtosis, ... of the original

distribution. Raising MY (t) to the power of n and taking the n→∞ limit results

in e
t2

2 regardless of the values of α3 and α4, .... (since each is divided by higher-
than-one power of n). This is easily recognized to be the MGF of the standardized
(zero mean, unit variance) Normal distribution.

Note that, to be able to do all this, we had to assume that µ and σ are finite.
There are (unusual) cases of distributions with an infinite variance (and sometimes
also indefinite or infinite mean) for which the central limit theorem breaks down.
A prime example is sampling from the Cauchy distribution, X (for any n) has the
same Cauchy distribution as the individual Xi’s - it does not get any narrower!

Sample variance
This is yet another expression involving the Xi’s, intended as (what will later be
called) an estimator of σ2. Its definition is

s2 ≡
Pn

i=1(Xi −X)2

n− 1
where s, the corresponding square root, is the sample standard deviation (the
sample variance does not have its own symbol).
To find its expected value, we first simplify its numerator:

nX
i=1

(Xi−X̄)2 =
nX
i=1

[(Xi−µ)−(X̄−µ)]2 =
nX
i=1

(Xi−µ)2− 2
nX
i=1

(X̄−µ)(Xi−µ)+n·(X̄−µ)2
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This implies that

E

"
nX
i=1

(Xi − X̄)2

#
=

nX
i=1

Var(Xi)−2
nX
i=1

Cov(X̄,Xi)+n·Var(X̄) = nσ2+n·σ
2

n
−2n·σ

2

n
= σ2(n−1)

since

Cov(X̄,X1) =
1

n

nX
i=1

Cov(Xi, X1) =
1

n
Cov(X1,X1) + 0 =

1

n
Var(X1) =

σ2

n

and Cov(X̄,X2), Cov(X̄,X3), ... must all have the same value.
Finally,

E(s2) =
σ2(n− 1)
n− 1 = σ2

Thus, s2 is a so called unbiased estimator of the distribution’s variance σ2

(meaning it has the correct expected value).

Does this imply that s ≡
rPn

i=1(Xi − X̄)2

n− 1 has the expected value of σ? The

answer is ’no’, s is (slightly) biased.

Sampling from N (µ, σ)
To be able to say anything more about s2, we need to know the distribution form
which we are sampling. We will thus assume that the distribution is Normal, with
mean µ and variance σ2. This immediately simplifies the distribution of X, which
must also be Normal (with mean σ and standard deviation of σ√

n
, as we already

know) for any sample size n (not just ’large’).
Regarding s2, one can show that it is independent of X, and that the distribu-

tion of (n−1)s
2

σ2
is χ2n−1. The proof of this is fairly complex.

Proof. We introduce a new set of n RVs Y1 = X̄, Y2 = X2, Y3 = X3, ..., Yn = Xn

and find their joint pdf by

1. solving for


x1 = ny1 − x2 − x3 − ...− xn
x2 = y2
x3 = y3
...
xn = yn

2. substituting into
1

(2π)
n
2 σn

· e−

nP
i=1

(xi − µ)2

2σ2 (the pdf of the Xi’s)

3. and multiplying by the Jacobian, which in this case equals to n.

Furthermore, since
nP
i=1

(xi−µ)2 =
nP
i=1

(xi− X̄+X̄−µ)2 =
nP
i=1

(xi−X̄)2− 2(X̄−

µ)
nP
i=1

(xi − X̄) + n(X̄ − µ)2 = (n − 1)s2 + n(X̄ − µ)2, the resulting pdf can be
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expressed as follows:

n

(2π)
n
2 σn

· e−
(n− 1)s2 + n(y1 − µ)2

2σ2 (dy1dy2....dyn)

where s2 is now to be seen as a function of the yi’s.
The conditional pdf of y2, y3, ..., yn|y1 thus equals - all we have to do is divide

the previous result by the marginal pdf of y1, i.e.
√
n

(2π)
1
2σ
· e−

n(y1 − µ)2

2σ2 :

√
n

(2π)
n−1
2 σn−1

· e−
(n− 1)s2
2σ2 (dy2....dyn)

This implies that

∞ZZZ
−∞

e
−
(n− 1)s2
2Ω2 dy2....dyn =

(2π)
n−1
2 Ωn−1
√
n

for any Ω > 0 (just changing the name of σ). The last formula enables us to

compute the corresponding conditional MGF of
(n− 1)s2

σ2
(given y1) by:

√
n

(2π)
n−1
2 σn−1

∞ZZZ
−∞

e

t(n− 1)s2
σ2 · e−

(n− 1)s2
2σ2 dy2....dyn

=

√
n

(2π)
n−1
2 σn−1

∞ZZZ
−∞

e
−
(1− 2t)(n− 1)s2

2σ2 dy2....dyn

=

√
n

(2π)
n−1
2 σn−1

·
(2π)

n−1
2

³
σ√
1−2t

´n−1
√
n

=
1

(1− 2t)n−12
(substituting Ω = σ√

1−2t). This is the MGF of the χ
2
n−1 distribution, regardless of

the value of y1 (≡ X̄). This clearly makes
(n− 1)s2

σ2
independent of X̄.

The important implication of this is that
(X̄ − µ)

s√
n

has the tn−1 distribution.

(X̄ − µ)
s√
n

≡

(X̄ − µ)
σ√
ns

s2(n−1)
σ2

n− 1

≡ Zq
χ2n−1
n−1
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Sampling without replacement
First, we have to understand the concept of a population. This is a special case of
a distribution withN equally likely values, say x1, x2, ..., xN , whereN is often fairly
large (millions). The xi’s don’t have to be integers, they may not be all distinct
(allowing only two possible values results in the hypergeometric distribution), and
they may be ’dense’ in one region of the real numbers and ’sparse’ in another.
They may thus ’mimic’ just about any distribution, including Normal. That’s why
sometimes we use the words ’distribution’ and ’population’ interchangeably.
The mean and variance of this special distribution are simply

µ =

PN
i=1 xi
N

and

σ2 =

PN
i=1(xi − µ)2

N

To generate a RIS form this distribution, we clearly have to do the so called
sampling with replacement (meaning that each selected xi value must be
’returned’ to the population before the next draw, and potentially selected again
- only this can guarantee independence). In this case, all our previous formulas
concerning X and s2 remain valid.
Sometimes though (and more efficiently), the sampling is done without re-

placement. This means that X1, X2, ..., Xn are no longer independent (they are
still identically distributed). How does this effect the properties of X and s2? Let’s
see.
The expected value of X remains equal to µ, by essentially the same argument

as before (note that the proof does not require independence). Its variance is now
computed by

Var
¡
X
¢
=

1

n2

nX
i=1

Var (Xi) +
1

n2

X
i6=j
Cov(Xi,Xj)

=
nσ2

n2
− n(n− 1)σ2

n2(N − 1) =
σ2

n
· N − n

N − 1

since all the covariance (when i 6= j) have the same value, equal to

Cov(X1, X2) =

P
k 6=c(xk − µ)(xc − µ)

N(N − 1)

=

PN
k=1

PN
c=1(xk − µ)(xc − µ)−PN

k=1(xk − µ)2

N(N − 1)
= − σ2

N − 1
Note that this variance is smaller (which is good) than what it was in the ’inde-
pendent’ case.
We don’t need to pursue this topic any further.
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Bivariate samples
A random independent sample of size n from a bivarite distribution consists of n
pairs of RVs (X1, Y1), (X2, Y2), .... (Xn, Yn), which are independent between (but
not within) - each pair having the same (aforementioned) distribution.
We already know what are the individual properties of X, Y (and of the two

sample variances). Jointly, X and Y have a (complicated) bivariate distribution
which, for n → ∞, tends to be bivariate Normal. Accepting this statement (its
proof would be similar to the univariate case), we need to know the five param-
eters which describe this distribution. Four of them are the marginal means and
variances (already known), the last one is the correlation coefficient between X
and Y . One can prove that this equals to the correlation coefficient of the original
distribution (from which we are sampling).
Proof. First we have

Cov(
nX
i=1

Xi,
nX
i=1

Yi) = Cov(X1, Y1)+Cov(X2, Y2)+.....+Cov(Xn, Yn) = nCov(X,Y )

since Cov(Xi, Yj) = 0 when i 6= j. This implies that the covariance between X

and X equals Cov(X,Y )
n

. Finally, the corresponding correlation coefficient is: ρXY =
Cov(X,Y )

nq
σ2x
n
· σ2y

n

= Cov(X,Y )
σxσy

= ρxy, same as that of a single (Xi, Yi) pair.
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Chapter 4 ORDER STATISTICS
In this section we consider a RIS of size n from any distribution [not just N (µ, σ)],
calling the individual observations X1, X2, ..., Xn (as we usually do). Based on
these we define a new set of RVs X(1), X(2), ....X(n) [your textbook calls them Y1,
Y2, ...Yn] to be the smallest sample value, the second smallest value, ..., the largest
value, respectively. Even though the original Xi’s were independent, X(1), X(2), ...,
X(n) are strongly correlated. They are called the first, the second, ..., and the last
order statistic, respectively. Note that when n is odd, X(n+1

2
) is the sample

median X̃.

Univariate pdf
To find the (marginal) pdf of a single order statistic X(i), we proceed as follows:

f(i)(x) ≡ lim
4→0

Pr(x ≤ X(i) < x+4)
4 = lim

4→0
¡

n
i−1,1,n−i

¢
F (x)i−1 F (x+4)−F (x)

4 [1− F (x+4)]n−i

[i− 1 of the original observations must be smaller than x, one must be between x
and x+4, the rest must be bigger than x+4] =

n!

(i− 1)!(n− i)!
F (x)i−1 [1− F (x)]n−i f(x) (f)

It has the same range as the original distribution.

Using this formula, we can compute themean and variance of any such order
statistic; to answer a related probability question, instead of integrating f(i)(x)
[which would be legitimate but tedious] we use a different, simplified approach.

EXAMPLES:

1. Consider a RIS of size 7 from E(β = 23min .) [seven fishermen independently
catching one fish each].

(a) Find Pr(X(3) < 15 min.) [the third catch of the group will not take
longer than 15 min.].

Solution: First find the probability that any one of the original 7 indepen-
dent observations is < 15 min. [using F (x) of the corresponding exponential
distribution]: Pr(Xi < 15 min.) = 1 − e−

15
23 = 0.479088 ≡ p. Now interpret

the same sampling as a binomial experiment, where a value smaller than 15
min. defines a success, and a value bigger than 15 min. represents a ’fail-
ure’. The question is: what is the probability of getting at least 3 successes
(right)? Using binomial probabilities (and the complement shortcut) we get
1− £q7 + 7pq6 + ¡7

2

¢
p2q5

¤
= 73.77%.

(b) Now, find the mean and standard deviation of X(3).

Solution: First we have to construct the corresponding pdf. By the above
formula, this equals: 7!

2!4!
(1 − e−

x
β )3−1(e−

x
β )7−3 · 1

β
e−

x
β = 105

β
(1 − e−

x
β )2e−

5x
β
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[x > 0] where β = 23 min. This yields the following mean: 105
∞R
0

x · (1 −

e−
x
β )2e−

5x
β dx

β
= 105β

∞R
0

u · (1 − e−u)2e−5udu = 105β
∞R
0

u · (e−5u − 2e−6u +

e−7u)du = 105β × [ 1
52
− 2 1

62
+ 1

72
] = 11.72 min. [recall the

∞R
0

uke−
u
a du =

k! ak+1 formula]. The second sample moment E(X2
(3)) is similarly 105β

2
∞R
0

u2 ·
(e−5u − 2e−6u + e−7u)du = 105β2 × 2 [ 1

53
− 2 1

63
+ 1

73
] = 184.0 ⇒ σX(3)

=√
184− 11.722 = 6.830 min.

Note that if each of the fisherman continued fishing (when getting his first,
second, ... catch), the distribution of the time of the third catch would be
gamma(3, 23

7
), with the mean of 9.86 min. and σ =

√
3 × 23

7
= 5.69 min.

[similar, but shorter than the original answer].

(c) Repeat both (a) and (b) with X(7).

Solution: The probability question is trivial: Pr(X(7) < 15 min.) = p7 =

0.579%. The new pdf is: 7(1 − e−
x
β )6 · 1

β
e−

x
β [x > 0]. E(X(7)) = 7β

∞R
0

u ·
(1− e−u)6e−udu = 7β × [1− 6 1

22
+ 15 1

32
− 20 1

42
+15 1

52
− 6 1

62
+ 1

72
] = 59.64

min. and E(X2
(7)) = 7β

2 × 2 [1 − 6 1
23
+ 15 1

33
− 20 1

43
+ 15 1

53
− 6 1

63
+ 1

73
] =

4356.159⇒ σ =
√
4356.2− 59.642 = 28.28 min.

Note: By a different approach, one can derive the following general formulas
(applicable only for sampling from an exponential distribution):

E(X(i)) = β
i−1X
j=0

1

n− j

V ar(X(i)) = β2
i−1X
j=0

1

(n− j)2

Verify that they give the same answers as our lengthy integration above.

2. Consider a RIS of size 5 form U(0, 1). Find the mean and standard deviation
of X(2).

Solution: The corresponding pdf is equal to 5!
1!3!

x(1−x)3 [0 < x < 1] which can
be readily identified as beta(2, 4) [for this uniform sampling, X(i) ∈ beta(i, n+
1−i) in general]. By our former formulas E(X(2)) =

2
2+4

= 1
3
and V ar(X(2)) =

2×4
(2+4)2(2+4+1)

= 2
63
= 0.031746⇒ σX(2)

= 0.1782 (no integration necessary).

Note: These results can be easily extended to sampling from any uniform
distribution U(a, b), by utilizing the Y ≡ (b− a)X + a transformation.

Sample median
is obviously the most important sample statistic; let us have a closer look at it.
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For small samples, we treat the sample median as one of the order statistics.
This enables us to get its mean and standard deviation, and to answer a related
probability question (see the previous set of examples).

When n is large (to simplify the issue, we assume that n is odd, i.e. n ≡ 2k+1)
we can show that the sample median is approximately Normal, with the mean of
µ̃ (the distribution’s median) and the standard deviation of

1

2f(µ̃)
√
n

This is true even for distributions whose mean does not exist (e.g. Cauchy).

Proof: The sample median X̃ ≡ X(k+1) has the following pdf:
(2k+1)!
k!·k! F (x)k[1 −

F (x)]kf(x). To explore what happens when k →∞ (and to avoid getting a
degenerate distribution) we introduce a new RV Y ≡ (X̃− µ̃)

√
n [we assume

that the standard deviation of X̃ decreases, like that of X̄, with 1√
n
; this

guess will prove correct!]. We build the pdf of Y in the usual three steps:

1. x = y√
n
+ µ̃

2. (2k+1)!
k!·k! F ( y√

2k+1
+ µ̃)k [1− F ( y√

2k+1
+ µ̃)]k f( y√

2k+1
+ µ̃)

3. multiply the last line by 1√
2k+1

.

To take the limit of the resulting pdf we first expand F ( y√
2k+1

+ µ̃) as F (µ̃) +

F 0(µ̃) y√
2k+1

+ F 00(µ̃)
2

y2

2k+1
+ .... =

1

2
+ f(µ̃)

y√
2k + 1

+
f 0(µ̃)
2

y2

2k + 1
+ .... (F )

⇒ 1 − F ( y√
2k+1

+ µ̃) ≈ 1
2
− f(µ̃) y√

2k+1
− f 0(µ̃)

2
y2

2k+1
+ ... . Multiplying the

two results in F ( y√
2k+1

+ µ̃) [1 − F ( y√
2k+1

+ µ̃)] ≈ 1
4
− f(µ̃)2 y2

2k+1
+ .... [the

dots imply terms proportional to 1
(2k+1)3/2

, 1
(2k+1)2

, ...; these cannot effect the
subsequent limit].

Substituting into the above pdf yields:

(2k + 1)!

22k · k! · k! ·√2k + 1 × [1− 4f(µ̃)2 y2

2k + 1
+ ....]k f(

y√
2k + 1

+ µ̃)

[we extracted 1
4
from inside the brackets]. Taking the k → ∞ limit of

the expression to the right of × [which carries the y-dependence] is trivial:
e−2f(µ̃)

2y2f(µ̃). This is [up to the normalizing constant] the pdf of N (0, 1
2f(µ̃)

)

[as a by-product, we derived the so called Wallis formula: (2k+1)!

22k·k!·k!·√2k+1 −→k→∞q
2
π
, to maintain proper normalization]. And, since X̃ = µ̃+ Y√

n
, the distri-

bution of the sample median must be, approximately, N (µ̃, 1
2f(µ̃)

√
n
). ¤
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EXAMPLES:
1. Consider a RIS of size 1001 from the Cauchy distribution with f(x) = 1

π
· 1
1+x2

.

Find Pr(−0.1 < X̃ < 0.1).

Solution: We know that X̃ ≈ N (0, 1
2· 1
π
·√1001 = 0.049648). Thus Pr(

−0.1
0.049648

<

X̃
0.049648

< 0.1
0.049648

) = Pr(−2.0142 < Z < 2.0142) = 95.60%.

Note that Pr(−0.1 < X̄ < 0.1) = 1
π
arctan(x)

¯̄0.1
x=−0.1 = 6.35% only (and it

does not improve with n). So, in this case, the sample median enables us to
estimate the center of the Cauchy distribution much more accurately then
the sample mean would (but don’t generalize this to other distributions).

2. Sampling from N (µ, σ), is it better to estimate µ by the sample mean or by
the sample median (trying to find the best estimator of a parameter will
be the issue of the subsequent chapter)?

Solution: Since X̄ ∈ N (µ, σ√
n
) and X̃ ≈ N (µ, 1

2· 1√
2πσ

·√n =
p

π
2
· σ√

n
), it is

obvious that X̃’s standard error is
p

π
2
= 1.253 times bigger than that of

X̄. Thus, this time, we are better off using X̄. [To estimate µ to the same
accuracy as X does, X̃ would have to use π

2
= 1.57 times bigger sample; the

sample mean is, in this case, 57% more efficient than the sample median].

3. Consider a RIS of size 349 from a distribution with f(x) = 2x (0 < x < 1).
Find Pr(X̃ < 0.75).

Solution: From F (x) = x2 we first establish the distribution’s median as
the solution to x2 = 1

2
⇒ µ̃ = 1√

2
[the corresponding f(µ̃) is equal to

√
2].

Our probability thus equals Pr(
X̃− 1√

2
1

2·√2·√349
<

0.75− 1√
2

1
2·√2·√349

) ≈ Pr(Z < 2.26645) =

98.83% [The exact probability, which can be evaluated by computer, is 99.05%].

Subsidiary: Find Pr(X̄ < 0.75).

Solution: First we need E(X) =
1R
0

2x ·x dx = 2
3
and V ar(X) =

1R
0

2x ·x 2dx−

(2
3
)2 = 1

18
. We know that X̄ ≈ N (2

3
, 1√

18·√349 = 0.0126168)⇒ Pr(
X̄− 2

3

0.0126168
<

0.75− 2
3

0.0126168
) = Pr(Z < 6.6049) = 100%. ¥

Bivariate pdf
We now construct the joint distribution of two order statistics X(i) and X(j)

[i < j]. By our former definition, f(x, y) = lim
∆→0
ε→0

Pr(x≤X(i)<x+∆∩ y≤X(j)<y+ε)

∆·ε . To

make the event in parentheses happen, exactly i − 1 observations must have a
value less than x, 1 observation must fall in the [x, x + ∆) interval, j − i − 1
observations must be between x+∆ and y, 1 observation must fall in [y, y+ε) and
n − j observations must be bigger than y + ε. By our multinomial formula, this
equals

¡
n

i−1,1,j−i−1,1,n−j
¢
F (x)i−1 [F (x +∆) − F (x)] [F (y) − F (x +∆)]j−i−1 [F (y +

ε)− F (y)] [1− F (y + ε)]n−j. Dividing by ∆ · ε and taking the two limits yields
n!

(i− 1)!(j − i− 1)!(n− j)!
F (x)i−1 f(x) [F (y)− F (x)]j−i−1 f(y) [1− F (y)]n−j
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with L < x < y < H, where L and H is the lower and upper limit (respectively)
of the original distribution.

Let us discuss two important

Special Cases
of this formula:

1. Consecutive order statistics, i and i+ 1:

f(x, y) =
n!

(i− 1)!(n− i− 1)! F (x)
i−1 [1− F (y)]n−i−1 f(x) f(y)

where L < x < y < H [x corresponds to X(i), y to X(i+1)].

• This reduces to n!
(i−1)!(n−i−1)! x

i−1(1− y)n−i−1 with 0 < x < y < 1 when
the distribution is uniform U(0, 1). Based on this, we can

• find the distribution of U = X(i+1) −X(i):

Solution: We introduce V ≡ X(i). Then

(i) y = u+ v and x = v,

(ii) the joint pdf of u and v is f(u, v) = n!
(i−1)!(n−i−1)! v

i−1 (1− u− v)n−i−1 · 1
[Jacobian] where 0 < v < 1 and 0 < u < 1 − v ⇔ 0 < v < 1 − u and
0 < u < 1,

(iii) the marginal pdf of u is n!
(i−1)!(n−i−1)!

1−uR
0

vi−1 (1−u− v)n−i−1 dv = n(1−

u)n−1 for 0 < u < n [with the help of
aR
0

vi−1(a−v)j−1 dv = ai+j−1
aR
0

(v
a
)i−1(1−

v
a
)j−1 dv

a
= ai+j−1

1R
0

yi−1(1− y)j−1 dy = ai+j−1 Γ(i)Γ(j)
Γ(i+j)

].

The corresponding distribution function is F (u) = 1− (1−u)n for 0 < u < 1
(the same, regardless of the i value).

To see what happens to this distribution in the n → ∞ limit, we must
first introduce W ≡ U · n (why?). Then, clearly, FW (w) = Pr(U < w

n
) =

1− (1− w
n
)n for 0 < w < n. In the n→∞ limit, this FW (w) tends to 1−e−w

for w > 0 [the exponential distribution with β = 1]. This is what we have
always used for the time interval between two consecutive arrivals (and now
we understand why). We note in passing that a similar results holds even
when the original distribution is not uniform (the inter-arrival times are still
exponential, but the corresponding β values now depend on whether we are
in the slack or busy period).

EXAMPLE:
100 students choose, independently and uniformly, to visit the library be-
tween 12 a.m. and 1 p.m. Find Pr(X(47) −X(46) > 3 min.) [probability that
the time interval between the 46th and 47th arrival is at least 3 minutes].

Solution: Based on the distribution function just derived, this equals Pr[X(47)−
X(46) >

3
60
hr.] = 1− F ( 1

20
) = (1− 1

20
)100 = 0.592%. ¥
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2. First and last order statistics, i = 1 and j = n:

f(x, y) = n(n− 1) [F (y)− F (x)]n−2 f(x) f(y)

where L < x < y < H.

• Based on this result, you will be asked (in the assignment) to investigate
the distribution of the sample range X(n) −X(1).

• When the sampling distribution is U(0, 1), the pdf simplifies to: f(x, y) =
n(n− 1) [y − x]n−2, where 0 < x < y < 1. For this special case we want
to

• find the distribution of U ≡ X(1 )+X(n )

2
[the mid-range value]:

Solution: V ≡ X(1) ⇒
(i) x = v and y = 2u− v,

(ii) f(u, v) = 2n(n − 1) (2u− 2v)n−2, where 0 < v < 1 and v < u < v+1
2

[visualize the region!]

(iii) f(u) = 2n−1 n(n−1)
uR

max(0,2u−1)
(u−v)n−2 dv = 2n−1 n×

½
un−1 0 < u < 1

2

(1− u)n−1 1
2
< u < 1

⇒
F (u)

1− F (u)

¾
= 2n−1 ×

½
un 0 < u < 1

2

(1− u)n 1
2
< u < 1

.

Pursuing this further: E(U) = 1
2
[based on the f(1

2
+ u) ≡ f(1

2
− u) symme-

try] and V ar(U) =
1R
0

(u− 1
2
)2 f(u) du =

n

1
2R
0

¡
u− 1

2

¢2
(2u)n−1 du+n

1R
1
2

¡
(1− u)− 1

2

¢2
(2(1− u))n−1 du = 2nn

1
2R
0

¡
1
2
− u

¢2
un−1 du =

2nnΓ(3)Γ(n)
Γ(n+3)

¡
1
2

¢n+2
= 1

2(n+2)(n+1)
⇒ σU =

1√
2(n+2)(n+1)

.

These results can be now easily extended to cover the case of a general
uniform distribution U(a, b) [note that all it takes is the XG ≡ (b− a)X + a
transformation, applied to each of the X(i) variables, and consequently to U ].
The results are now

E(UG) =
a+ b

2

σUG =
b− ap

2(n+ 2)(n+ 1)

This means, as an estimator of a+b
2
, the mid-range value is a lot better (judged

by its standard error) than either X̄ ≈ N (a+b
2
, b−a√

12n
) or X̃ ≈ N (a+b

2
, b−a
2
√
n
).

EXAMPLE:

Consider a RIS of size 1001 from U(0, 1). Compare
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• Pr(0.499 <
X(1)+X(1001 )

2
< 0.501) = 1 − 1

2
(2 × 0.499)1001 − 1

2
(2 × 0.499)1001

[using F (u) of the previous example] = 86.52%

• Pr(0.499 < X̄ < 0.501) ' Pr

µ
0.499−0.5

1√
12×1001

<
X̄− 1

2
1√

12×1001
< 0.501−0.5

1√
12×1001

¶
=

Pr (−.1095993 < Z < .1095993) = 8.73%

• Pr(0.499 < X̃ < 0.501) ' Pr

µ
0.499−0.5

1
2
√
1001

<
X̃− 1

2
1

2
√
1001

< 0.501−0.5
1

2
√
1001

¶
=

Pr (−0.063277 < Z < 0.063277) = 5.05%.

This demonstrates that, for a uniform distribution, the mid-range value is a
lot more likely to ’find’ the true center than either the sample mean or the sample
median. ¥
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Chapter 5 ESTIMATING
DISTRIBUTION PARAMETERS

Until now we have studied Probability, proceeding as follows: we assumed pa-
rameters of all distributions to be known and, based on this, computed probabilities
of various outcomes (in a random experiment). In this chapter we make the es-
sential transition to Statistics, which is concerned with the exact opposite: the
random experiment is performed (usually many times) and the individual outcomes
recorded; based on these, we want to estimate values of the distribution parameters
(one or more). Until the last two sections, we restrict our attention to the (easier
and most common) case of estimating only one parameter of a distribution.

EXAMPLE: How should we estimate the mean µ of a Normal distribution
N (µ, σ), based on a RIS of size n? We would probably take X̄ (the sample
mean) to be a ’reasonable’ estimator of µ [note that this name applies to
the random variable X̄, with all its potential (would-be) values; as soon as
the experiment is completed and a particular value of X̄ recorded, this value
(i.e. a specific number) is called an estimate of µ]. ¥

There is a few related issues we have to sort out:

• How do we know that X̄ is a ’good’ estimator of µ, i.e. is there some sen-
sible set of criteria which would enable us to judge the quality of individual
estimators?

• Using these criteria, can we then find the best estimator of a parameter, at
least in some restricted sense?

• Would not it be better to use, instead of a single number [the so called
point estimate, which can never precisely agree with the exact value of
the unknown parameter, and is thus in this sense always wrong], an interval
of values which may have a good chance of containing the correct answer?

The rest of this chapter tackles the first two issues. We start with

A few definitions
First we allow an estimator of a parameter θ to be any ’reasonable’ combination
(transformation) of X1, X2, ..., Xn [our RIS], say Θ̂(X1, X2, ....,Xn) [the sample
mean X1+X2+...+Xn

n
being a good example]. Note that n (being known) can be used

in the expression for Θ̂; similarly, we can use values of other parameter if these are
known [e.g.: in the case of hypergeometric distribution, N is usually known and
only K needs to be estimated; in the case of negative binomial distribution k is
given and p estimated, etc.]. Also note that some parameters may have only integer
values, while others are real; typically, we concentrate on estimating parameters of
the latter type.
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To narrow down our choices (we are after ’sensible’, ’good’ estimators) we first
insist that our estimators be unbiased

E(Θ̂) = θ

(having the exact long-run average), or at least asymptotically unbiased , i.e.

E(Θ̂) −→
n→∞

θ

(being unbiased in the large-sample limit).
The E(Θ̂) − θ difference is called a bias of an estimator [≡ 0 for unbiased

estimators, usually proportional to 1
n
for asymptotically unbiased estimators], and

can be normally removed with a bit of effort (i.e. constructing unbiased estimators
is not a major challenge).

EXAMPLE:
Propose an estimator for the variance σ2 (≡ our θ) of a Normal N (µ, σ)
distribution, assuming that the value of µ is also unknown.

We can start with Θ̂ =

nP
i=1

(X − X̄)2

n
and show [as we did in a previous

chapter] that E(Θ̂) = n−1
n
σ2. Our estimator is thus asymptotically unbiased

only. This bias can be easily removed by defining a new estimator s2 ≡ n
n−1Θ̂

[the sample variance] which is fully unbiased. Since n−1
σ2

s2 ∈ χ2n−1, we can
establish not only that E(s2) = σ2

n−1 · n − 1 = σ2 (unbiased), but also that

V ar(s2) = ( σ2

n−1)
2 · 2(n− 1) = 2σ4

n−1 , which we need later.

• Supplementary: Does this imply that s is an unbiased estimator of σ? The an-
swer is ’No’, as we can see fromE

¡p
χ2n−1

¢
=

1

Γ(n−1
2
) 2

n−1
2

∞R
0

√
x·xn−3

2 e−
x
2 dx =

√
2Γ(n

2
)

Γ(n−1
2
)
⇒ E(s) =

σ√
n− 1 ·

√
2Γ(n

2
)

Γ(n−1
2
)
≈ σ(1− 1

4n
− 7

32n2
+ ...).We know how

to fix this: use Θ̂ ≡
q

n−1
2

Γ(n−1
2
)

Γ(n
2
)
s instead, it is a fully unbiased estimator of

σ. ¥

Yet, making an estimator unbiased (or at least asymptotically so) is not enough
to make it even acceptable (let alone ’good’). Consider estimating µ of a distribu-
tion by taking Θ̂ = X1 (the first observation only), throwing away X2, X3, ....Xn

[most of our sample!]. We get a fully unbiased estimator which is evidently unac-
ceptable, since we are wasting nearly all the information contained in our sample.
It is thus obvious that being unbiased is only one essential ingredient of a good
estimator, the other one is its variance (a square of its standard error). A good
estimator should not only be unbiased, but it should also have a variance which is
as small as possible. This leads to two new definitions:

Consistent estimator is such that



47

1. E(Θ̂) −→
n→∞

θ [asymptotically unbiased], and

2. V ar(Θ̂) −→
n→∞

0.

This implies that we can reach the exact value of θ by indefinitely increasing the
sample size. That sounds fairly good, yet it represents what I would call ’minimal
standards’ (or less), i.e. every ’decent’ estimator is consistent; that by itself does
not make it particularly good.

Example: Θ̂ =
X2 +X4 +X6 + ...Xn

n
2

[n even] is a consistent estimator of µ,

since its asymptotic (large n) distribution is N (µ, σ√
n
2

). Yet, we are wasting

one half of our sample, which is unacceptable.

Minimum variance unbiased estimator (MVUE or ’best’ estimator from
now on) is an unbiased estimator whose variance is better or equal to the variance of
any other unbiased estimator [uniformly, i.e. for all values of θ]. (The restriction to
unbiased estimators is essential: an arbitrary constant may be totally nonsensical
as an estimator (in all but ’lucky-guess’ situations), yet no other estimator can
compete with its variance which is identically equal to zero).

Having such an estimator would of course be ideal, but we run into two diffi-
culties:

1. The variance of an estimator is, in general, a function of the unknown param-
eter [to see that, go back to the s2 example], so we are comparing functions,
not values. It may easily happen that two unbiased estimators have variances
such that one estimator is better in some range of θ values and worse in an-
other. Neither estimator is then (uniformly) better than its counterpart, and
the ’best’ estimator may therefore not exit at all.

2. Even when the ’best’ estimator exists, how do we know that it does and,
more importantly, how do we find it (out of the multitude of all unbiased
estimators)?

To partially answer the last issues: luckily, there is a theoretical lower bound
on the variance of all unbiased estimators; when an estimator achieves this bound,
it is automatically MVUE. The relevant details are summarized in the following
Theorem:

Cramér-Rao inequality
When estimating a parameter θ which does not appear in the limits of the distri-
bution (the so called regular case), by an unbiased estimator Θ̂, then

V ar(Θ̂) ≥ 1

nE
·³

∂ ln f(x|θ)
∂θ

´2¸ ≡ 1

−nE
h
∂2 ln f(x|θ)

∂θ2

i (C-R)

where f(x|θ) stands for the old f(x) − we are now emphasizing its functional
dependence on the parameter θ. As θ is fixed (albeit unknown) and not ’random’
in any sense, this is not to be confused with our conditional-pdf notation.
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Proof: The joint pdf of X1, X2, ..., Xn is
nQ
i=1

f(xi|θ) where L < x1, x2, ...xn < H.

Define a new RV U ≡
nP
i=1

Ui ≡
nP
i=1

∂ ln f(Xi|θ)
∂θ

=
∂

∂θ

nP
i=1

ln f(Xi|θ) =

∂

∂θ
ln

nQ
i=1

f(Xi|θ) =
∂

∂θ

nQ
i=1

f(Xi|θ)
nQ
i=1

f(Xi|θ)
⇒ E(U) =

nP
i=1

E(Ui) = n
HR
L

∂ ln f(x|θ)
∂θ

·

f(x|θ) dx = n
HR
L

∂f(x|θ)
∂θ

dx = n ∂
∂θ

HR
L

f(x|θ) dx = n ∂
∂θ
(1) = 0 and V ar(U) =

nP
i=1

V ar(Ui) = nE

"µ
∂ ln f(X|θ)

∂θ

¶2#
. We also know that E(Θ̂) =

HR
L

...
HR
L

Θ̂ ·
nQ
i=1

f(xi|θ) dx1dx2....dxn = θ [unbiased]. Differentiating this equation with

respect to θ yields: E(Θ̂·U) = 1 ⇒ Cov(Θ̂, U) = 1. But we know that

Cov(Θ̂, U)2 ≤ V ar(Θ̂) · V ar(U) ⇒ V ar(Θ̂) ≥ 1

nE

"µ
∂ ln f(X|θ)

∂θ

¶2# ,
which is the C-R bound. Differentiating

HR
L

f(x|θ) dx = 1 yields
HR
L

∂f(x|θ)
∂θ

dx ≡
HR
L

∂
∂θ
ln f(x|θ) · f(x|θ) dx = 0, and once more:

HR
L

h
∂2

∂θ2
ln f(x|θ) · f(x|θ) + ∂

∂θ
ln f(x|θ) · ∂

∂θ
f(x|θ)

i
dx = 0⇒ E

"µ
∂ ln f(X|θ)

∂θ

¶2#
≡

−E
·
∂2 ln f(X|θ)

∂θ2

¸
. Equivalently, we can then say that V ar(Θ̂) ≥ 1

−nE
·
∂2 ln f(X|θ)

∂θ2

¸
[we will use CRV as a shorthand for the last expression]. Note that this proof
holds in the case of a discrete distribution as well (each integration needs to
be replaced by the corresponding summation). ¤

Based on this C-R bound we define the so called efficiency of an unbiased
estimator Θ̂ as the ratio of the theoretical variance bound CRV to the actual
variance of Θ̂, thus:

CRV

V ar(Θ̂)

usually expressed in percent [we know that its value cannot be bigger that 1, i.e.
100%]. An estimator whose variance is as small as RCV is called efficient [note
that, from what we know already, this makes it automatically the MVUE or ’best’
estimator of θ]. An estimator which reaches 100% efficiency only in the n → ∞
limit is called asymptotically efficient.
One can also define relative efficiency of two estimators with respect to

one another as
V ar(Θ̂2)

V ar(Θ̂1)
[this is the relative efficiency of Θ̂1 compared to Θ̂2 — note

that the variance ratio is reversed!].
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EXAMPLES:

1. How good is X̄ as an estimator of µ of the Normal distribution N (µ, σ).
Solution: We know that its variance is σ2

n
. To compute the C-R bound we

do ∂2

∂µ2

h
− ln(√2πσ)− (x−µ)2

2σ2

i
= − 1

σ2
. Thus CRV equals

1
n
σ2
= σ2

n
implying

that X̄ is the best (unbiased) estimator of µ.

2. Consider a RIS of size 3 form N (µ, σ). What is the relative efficiency of
X1+2X2+X3

4
[obviously unbiased] with respect to X̄ (when estimating µ)?

Solution: V ar(X1+2X2+X3

4
) = (σ

2

16
+ 4σ2

16
+ σ2

16
) = 3

8
σ2.

Answer:
σ2

3
3
8
σ2
= 8

9
= 88.89%.

3. Suppose we want to estimate p of a Bernoulli distribution by the experimental

proportion of successes, i.e. Θ̂ =

nP
i=1

Xi

n
. The mean of our estimator is np

n
=

p [unbiased], its variance equals npq
n2

= pq
n
[since

nP
i=1

Xi has the binomial

distribution]. Is this the best we can do?

Solution: Let us compute the corresponding CRV by starting from f(x) =
px(1 − p)1−x [x = 0, 1] and computing ∂2

∂p2
[x ln p+ (1− x) ln p] = − x

p2
−

1−x
(1−p)2 ⇒ E

h
X
p2
+ 1−X

(1−p)2
i
= 1

p
+ 1

1−p =
1
pq
⇒ CRV = pq

n
. So again, our

estimator is the best one can find.

4. Let us find the efficiency of X̄ to estimate the mean β of the exponential
distribution, with f(x) = 1

β
e−

x
β [x > 0].

Solution: ∂2

∂β2

h
− lnβ − x

β

i
= 1

β2
− 2x

β3
⇒ E

h
2X
β3
− 1

β2

i
= 1

β2
⇒ CRV = β2

n
.

We know that E(X̄) = nβ
n
= β and V ar(X̄) = nβ2

n2
= β2

n
.

Conclusion: X̄ is the best estimator of β.

5. Similarly, how good is X̄ in estimating λ of the Poisson distribution?

Solution: ∂2

∂λ2
[x lnλ− ln(x!)− λ] = − x

λ2
⇒ E

£
X
λ2

¤
= 1

λ
⇒ CRV = λ

n
. Since

E(X̄) = nλ
n
= λ and V ar(X̄) = nλ

n2
= λ

n
, we again have the best estimator.

6. Let us try estimating θ of the uniform distribution U(0, θ). This is not a
regular case, so we don’t have CRV and the concept of (absolute) efficiency.
We propose, and compare the quality of, two estimators, namely 2X̄ and
X(n) [the largest sample value].

To investigate the former one we need E(Xi) =
θ
2
and V ar(Xi) =

θ2

12
⇒

E(2X̄) = 2nθ
2n
= θ [unbiased] and V ar(2X̄) = 4nθ2

12n2
= θ2

3n
[consistent].

As toX(n), we realize that
X(n)

θ
∈ beta(n, 1)⇒ E(X(n)

θ
) = n

n+1
and V ar(

X(n)

θ
) =

n
(n+1)2 (n+2)

[X(n) is consistent, but unbiased only asymptotically]⇒ n+1
n
X(n) is
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an unbiased estimator of θ, having the variance of θ2

(n+2)n
. Its relative efficiency

with respect to 2X̄ is therefore n+2
3
i.e., in the large-sample limit, n+1

n
X(n) is

’infinitely’ more efficient than 2X̄. But how can we establish whether n+1
n
X(n)

is the ’best’ unbiased estimator, lacking the C-R bound? Obviously, some-
thing else is needed for cases (like this) which are not regular. This is the
concept of

Sufficiency
which, in addition to providing a new criterion for being the ’best’ estimator (of a
regular case or not), will also help us find it (the C-R bound does not do that!).

Definition: Φ̂(X1, X2, ...Xn) is called a sufficient statistic (not an estimator

yet) for estimating θ iff the joint pdf of the sample
nQ
i=1

f(xi|θ) can be factorized
into a product of a function of θ and Φ̂ only, times a function of all the xis (but
no θ), thus:

nY
i=1

f(xi|θ) ≡ g(θ, Φ̂) · h(x1, x2, ...xn)

where g(θ, Φ̂) must fully take care of the joint pdf’s θ dependence, including the
range’s limits (L and H). Such Φ̂ (when it exists) ’extracts’, from the RIS, all the
information relevant for estimating θ. All we have to do to convert Φ̂ into the best
possible estimator of θ is to make it unbiased (by some transformation, which is
usually easy to design).
One can show that, if this transformation is unique, the resulting estimator is

MVUE (best), even if it does not reach the C-R limit (but: it must be efficient at

least asymptotically). To prove uniqueness, one has to show that E
n
u(Φ̂)

o
≡ 0

(for each value of θ) implies u(Φ̂) ≡ 0, where u(Φ̂) is a function of Φ̂.

EXAMPLES:

1. Bernoulli distribution:
nQ
i=1

f(xi|p) = px1+x2+....+xn (1 − p)n−x1−x2−...−xn is a

function of p and of a single combination of the xis, namely
nP
i=1

xi. A sufficient

statistic for estimating p is thus
nP
i=1

Xi [we know how to make it into an

unbiased estimator].

2. Normal distribution:
nQ
i=1

f(xi|µ) =
³

1√
2πσ

´n
exp

Ã
−

nP
i=1

x2i

2σ2

!
×exp

−nµ2−2µ
nP
i=1

xi

2σ2


where the first factor (to the left of ×) contains no µ and the second factor
is a function of only a single combination of the xis, namely their sum. This
leads to the same conclusion as in the previous example.

3. Exponential:
nQ
i=1

f(xi|β) = 1
βn
exp

µ
− 1

β

nP
i=1

xi

¶
⇒ ditto.
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4. Referring to the same exponential distribution: what if the parameter to

estimate is θ ≡ 1
β
(the rate of arrivals) rather than β itself. Then

nQ
i=1

f(xi|θ) =

θn exp

µ
−θ

nP
i=1

xi

¶
⇒

nP
i=1

Xi ∈ gamma(n, 1θ ) is also a sufficient statistic for
estimating θ, but now it is a lot more difficult to make it unbiased. By direct

integration, we get: E

 1
nP
i=1

Xi

 = θn

(n−1)!
∞R
0

1
u
· un−1e−θ u du = (n−2)!θn

(n−1)!θn−1 =

θ
n−1 ⇒ n−1

nP
i=1

Xi

is an unbiased estimator of θ. Its variance can be shown (by

a similar integration) to be equal to θ2

n−2 , whereas the C-R bound yields
θ2

n

[verify!]. Thus the ’efficiency’ of n−1
nP
i=1

Xi

is n−2
n
, making it only asymptotically

efficient [it is still the MVUE and therefore the best unbiased estimator in
existence, i.e. 100% efficiency is, in this case, an impossible goal].

5. Gamma(k, β):
nQ
i=1

f(xi|β) =

µ
nQ
i=1

xi

¶k−1

(k − 1)!n ×
exp

µ
− 1

β

nP
i=1

xi

¶
βkn

, which makes
nP
i=1

Xi a sufficient statistics for estimating β [similarly,
nQ
i=1

Xi would be a

sufficient statistics for estimating k]. Since E(
nP
i=1

Xi) = nkβ,
Pn

i=1Xi

nk
is the

corresponding unbiased estimator. Its variance equals to nkβ2

(nk)2
= β2

nk
, which

agrees with the C-R bound (verify!).

6. We can show that X(n) is a sufficient statistic for estimating θ of the uniform
U(0, θ) distribution.

Proof: IntroduceGa,b(x) ≡
 0 x < a
1 a ≤ x ≤ b
0 x > b

.The joint pdf ofX1, X2, ..., Xn

can be written as
1

θn
nQ
i=1

G0,θ(xi) =
1

θn
G−∞,θ(x(n))×G0,∞(x(1)) where the first

factor is a function of θ and x(n) only. ¤
Knowing that E(X(n)) =

n
n+1

θ [as done earlier], we can easily see that n+1
n
X(n)

is an unbiased estimator of θ. Now we also know that it is the best estimator
we can find for this purpose. ¥

The only difficulty with the approach of this section arises when a sufficient
statistic does not exist (try finding it for the Cauchy distribution). In that case,
one can resort to using one of the following two techniques for finding an estimator
of a parameter (or joint estimators of two or more parameters):

Method of moments
is the simpler of the two; it provides adequate (often ’best’) estimators in most
cases, but it can also, on occasion, result in estimators which are pathetically in-
efficient. It works like this: set each of the following expressions: E(X), V ar(X),
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E [(X − µ)3] , etc. [use as many of these as the number of parameters to be esti-
mated — usually one or two] equal to its empirical equivalent, i.e.

E(X) =

nP
i=1

Xi

n
(≡ X̄)

V ar(X) =

nP
i=1

(Xi − X̄)2

n
(≡ S2)

E
£
(X − µ)3

¤
=

nP
i=1

(Xi − X̄)3

n

etc., then solve for the unknown parameters. The result yields the corresponding
estimators (each a function of X̄, S2, etc. depending on the number of parameters).
These will be asymptotically (but not necessarily fully) unbiased, consistent (but
not necessarily efficient nor MVUE). The method fails when E(X) does not exist
(Cauchy).

EXAMPLES:

One Parameter
1. Exponential E(β) distribution; estimating β.
Solution: E(X) = β = X̄ ⇒ β̂ = X̄.

2. Uniform U(0, θ) distribution; estimating θ.
Solution: E(X) = θ

2
= X̄ ⇒ θ̂ = 2X̄ [a very inefficient estimator].

3. Geometric distribution; estimate p.

Solution: E(X) = 1
p
= X̄ ⇒ p̂ = 1

X̄
. One can show that E( 1

X̄
) = p + pq

n
−

pq(p−q)
n2

+ .... [biased].

The following adjustment would make it into an unbiased estimator: p̂ =
1− 1

n

X̄ − 1
n

≡ n− 1
nP
i=1

Xi − 1
. Its variance is p2q

n
+ 2p2q2

n2
+ ... whereas the C-R bound

equals to p2q
n
, so p̂ is only asymptotically efficient.

4. Distribution given by f(x) = 2x
a
e−

x2

a for x > 0; estimate a.

Solution: E(X) =
∞R
0

2x2

a
e−

x2

a dx =
∞R
0

√
aue−u du [using the u = x2

a
substitu-

tion] =
√
aΓ(3

2
) = 1

2

√
aπ. Making this equal to X̄ and solving for a yields:

â = 4X̄2

π
. Since E[X̄2] = n

n2
E[X2

1 ] +
n(n−1)
n2

E[X1 · X2] =
a
n
+ n−1

n
· aπ
4
⇒

E[â] = a+ a
n
( 4
π
− 1), the estimator is unbiased only asymptotically [dividing

it by 1+ 1
n
( 4
π
− 1) would fully remove the bias]. Establishing the asymptotic

efficiency of the last (unbiased) estimator would get a bit messy (the more
adventurous students may like to try it).
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5. gamma(α, β): estimate β assuming α known.

Solution: E(X) = αβ = X̄ ⇒ bβ = X̄
α
.

6. gamma(α, β): estimate α assuming β known.

Solution: E(X) = αβ = X̄ ⇒ bα = X̄
β
.

Two Parameters
1. For N (µ, σ), estimate both µ and σ.

Solution: E(X) = µ = X̄ and V ar(X) = σ2 = S2 ⇒ µ̂ = X̄ and σ̂ =
√
S2

[the latter being unbiased only asymptotically].

2. For U(a, b) estimate both a and b.

Solution: E(X) = a+b
2
= X̄ and V ar(X) = (b−a)

12

2
= S2 ⇒ â = X̄ +

√
3S2

and b̂ = X̄−√3S2 [this would prove to be a very inefficient way of estimating
a and b].

3. Binomial, where both n and p need to be estimated.

Solution: E(X) = np = X̄ and V ar(X) = npq = S2 ⇒ p̂ = 1 − S2

X̄
and

n̂ =
X̄

1− S2

X̄

(rounded to the nearest integer). Both estimators appear biased

when explored by computer simulation [generating many RISs using the
binomial distribution with specific values of n and p, then computing n̂ and
p̂ to see how they perform; in this case p̂ is consistently overestimated and n̂
underestimated].

4. beta(n,m), estimate both n and m.

Solution: E(X) = n
n+m

= X̄ [⇒ m
n+m

= 1−X̄] and V ar(X) = nm
(n+m)2(n+m+1)

=

S2 ⇒ n̂ = X̄ ·
h
X̄(1−X̄)

S2
− 1
i
and m̂ = (1− X̄) ·

h
X̄(1−X̄)

S2
− 1
i
.

5. gamma(α, β): estimate both parameters.

Solution: E(X) = αβ = X and V ar(X) = αβ2 = S2 ⇒ bβ = S2

X
and bα = X

2

S2
.

Maximum-likelihood technique
always performs very well; it guarantees to find the ’best’ estimators under the
circumstances (even though they may be only asymptotically unbiased) — the major
difficulty is that the estimators may turn out to be rather complicated functions
of the Xis (to the extent that we may be able to find them only numerically, via
computer optimization).

The technique for finding them is rather simple (in principle, not in technical

detail): In the joint pdf of X1, X2, ..., Xn, i.e. in
nQ
i=1

f(xi|θ1, θ2, ...), replace xi by
the actually observed value of Xi and maximize the resulting expression (called the
likelihood function) with respect to θ1, θ2, ... The corresponding (optimal)
θ-values are the actual parameter estimates. Note that it is frequently easier (yet
equivalent) to maximize the natural logarithm of the likelihood function instead.

EXAMPLES:



54

One Parameter
1. Exponential distribution, estimating β.

Solution: We have to maximize −n lnβ −
Pn

i=1Xi

β
with respect to β. Making

the corresponding first derivative equal to zero yields: −n
β
+

Pn
i=1Xi

β2
= 0 ⇒

β̂ =
Pn

i=1Xi

n
[same as the method of moments].

2. Uniform distribution U(0, θ), estimate θ.

Solution: We have to maximize
1

θn
G−∞,θ(X(n)) ·G0,∞(X(1)) with respect to θ;

this can be done by choosing the smallest possible value for θ while keeping
G−∞,θ(X(n)) = 1. This is achieved by θ̂ = X(n) [any smaller value of θ and
G0,θ(X(n)) drops down to 0]. We already know that this estimator has a small
∝ 1

n
bias and also how to fix it.

3. Geometric distribution, estimating p.

Solution: Maximize n ln p + (
nP
i=1

Xi − n) ln(1 − p) ⇒ n
p
−

Pn
i=1Xi−n

1−p = 0 ⇒
p̂ = nPn

i=1Xi
[same as the method of moments].

4. The distribution is given by f(x) = 2x
a
e−

x2

a for x > 0, estimate a.

Solution: Maximize n ln 2− n ln a+ ln
nQ
i=1

Xi −
Pn

i=1X
2
i

a
⇒ −n

a
+

Pn
i=1X

2
i

a2
= 0

⇒ â =
Pn

i=1X
2
i

a
≡ X2. Since E(X2

i ) = a [done earlier], â is an unbiased
estimator. Based on ∂2

∂a2
[ln(2X) − ln a − X2

a
] = 1

a2
− 2X

2

a3
(whose expected

value equals to − 1
a2
) the C-R bound is a2

n
. Since V ar(X2) = V ar(X2)

n
=

E(X4)−a2

n
= 2a2−a2

n
= a2

n
, our estimator is 100% efficient.

5. Normal distribution N (µ, σ), assuming that µ is known, and σ2 is to be
estimated [a rather unusual situation].

Solution: Maximize n
2
ln(2π)−n lnσ−

Pn
i=1(Xi−µ)2
2σ2

with respect to σ ⇒ −n
σ
+Pn

i=1(Xi−µ)2
σ3

= 0 ⇒ σ̂2 =
Pn

i=1(Xi−µ)2
n

[clearly an unbiased estimator]. To as-

sess its efficiency: C-R bound can be computed based on ∂2

(∂σ2)2

h
−1
2
ln(2π)− 1

2
lnσ2 − (x−µ)2

2σ2

i
=

1
2σ2
− (x−µ)2

σ6
,whose expected value is− 1

2σ4
⇒ 2σ4

n
. Since V ar(σ̂2) = E

h³Pn
i=1[(Xi−µ)2−σ2]2

n

´i
=

E[(X−µ)4]−2E[(X−µ)2]σ2+σ4
n

= 3σ4−2σ4+σ4
n

= 2σ4

n
, our estimator is 100% efficient.

6. gamma(α, β): estimate β.

Solution: Maximize (α − 1) ln
nQ
i=1

Xi −
Pn

i=1Xi

β
− n lnΓ(α) − nα lnβ. The β

derivative yields:
Pn

i=1Xi

β2
− nα

β
= 0 ⇒ bβ = X

α
(same as the method of

moments).

7. gamma(α, β): estimate α.
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Solution: Maximize (α − 1) ln
nQ
i=1

Xi −
Pn

i=1Xi

β
− n lnΓ(α) − nα lnβ. The α

derivative yields: ln
nQ
i=1

Xi − nψ(α)− n lnβ = 0 [where ψ(α) is the so called

Euler’s psi function] ⇒ ψ(α) = n

r
nQ
i=1

Xi

β
(this is the geometric mean of the

Xi

β
values)⇒ bα = ψ−1

µ
n

r
nQ
i=1

Xi

β

¶
.

8. Cauchy distribution with f(x) = 1
π
· 1
1+(x−a)2 , estimate a [the location of

the ’laser gun’, knowing its (unit) distance behind a screen]. Note that the
method of moments would not work in this case.

Solution: Maximize −n lnπ −
nP
i=1

ln[1 + (Xi − a)2] ⇒
nP
i=1

Xi − a

1 + (Xi − a)2
= 0.

This equation would have to be solved, for a, numerically [i.e. one would
need a computer].

Would this give us something substantially better than our (sensible but ad
hoc) sample median X̃ ?Well, we know that the new estimator is asymptoti-

cally efficient, i.e. its variance approaches the C-R bound of
1

nE
h¡

∂ ln f
∂a

¢2i =
1

n
π

R∞
−∞

4(x−a)2 dx
[1+(x−a)2]3

= 2
n
. The variance of X̃ was 1

4nf(a)2
= π2

4n
, so its relative ef-

ficiency is 8
π2
= 81.06%. The loss of 19% efficiency seems an acceptable trade

off, since X̃ is so much easier to evaluate and (which is another substantial
advantage over the ’best’ estimator), it does not require the knowledge of the
distance of the laser gun from the screen.

Two-parameters
1. The distribution is N (µ, σ), estimate both µ and σ.

Solution: Maximize n
2
ln(2π)−n lnσ−

Pn
i=1(Xi−µ)2
2σ2

by setting both derivatives

equal to zero, i.e.
Pn

i=1(Xi−µ)
2σ2

= 0 and −n
σ
+

Pn
i=1(Xi−µ)2

σ3
= 0, and solving for

µ̂ = X̄ and σ̂ =
√
S2 (same as when using the method of moments).

2. Uniform U(a, b), estimate both limits a and b.

Solution: Maximize 1
(b−a)n

nQ
i=1

Ga,b(Xi) by choosing a and b as close to each

other as the G-functions allow (before dropping to zero). Obviously, a cannot
be any bigger that X(1) and b cannot be any smaller than X(n), so these are
the corresponding estimators [both slightly biased, but we know how to fix
that]. These estimators are much better then what we got from the method
of moments.

3. gamma(α, β), estimate both parameters.



56

Solution: Maximize (α− 1) ln
nQ
i=1

Xi −
Pn

i=1Xi

β
− n lnΓ(α)− nα lnβ. The two

derivatives are: ln
nQ
i=1

Xi−nψ(α)−n lnβ = 0 and
Pn

i=1Xi

β2
− nα

β
= 0. Solving

them jointly can be done only numerically.

4. Binomial distribution, with both n and p to be estimated.

Solution: Maximize N ln(n!)− ln
NQ
i=1

Xi!− ln
NQ
i=1

(n−Xi)!+ ln p
NP
i=1

Xi− ln(1−

p) (Nn −
NP
i=1

Xi), where N is the sample size. Differentiating, we get [ ∂
∂n
:]

Nψ(n+1)−
NP
i=1

ψ(n−Xi+1)−N ln(1−p) = 0 and [ ∂
∂p
:]

PN
i=1Xi

p
−Nn−PN

i=1Xi

1−p =

0. One can solve the second equation for p =
PN

i=1Xi

Nn
, then substitute into

the first equation and solve, numerically, for n. This would require a help of
a computer, which is frequently the price to pay for high-quality estimators.
¥
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Chapter 6 CONFIDENCE
INTERVALS

The last chapter considered the issue of so called point estimates (good, better
and best), but one can easily see that, even for the best of these, a statement which
claims a parameter, say µ, to be close to 8.3, is not very informative, unless we
can specify what ’close’ means. This is the purpose of a confidence interval,
which requires quoting the estimate together with specific limits, e.g. 8.3± 0.1 (or
8.2 ↔ 8.4, using an interval form). The limits are established to meet a certain
(usually 95%) level of confidence (not a probability, since the statement does
not involve any randomness - we are either 100% right, or 100% wrong!).
The level of confidence (1−α in general) corresponds to the original, a-priori

probability (i.e. before the sample is even taken) of the procedure to get it right
(the probability is, as always, in the random sampling). To be able to calculate
this probability exactly, we must know what distribution we are sampling from.
So, until further notice, we will assume that the distribution is Normal.

CI for mean µ
We first assume that, even though µ is to be estimated (being unknown), we still
know the exact (population) value of σ (based on past experience).
We know that

X − µ

σ/
√
n

(6.1)

is standardized normal (usually denoted Z). This mean that

Pr

µ¯̄̄̄
X − µ

σ/
√
n

¯̄̄̄
< zα/2

¶
= Pr

¡¯̄
X − µ

¯̄
< zα/2 · σ/

√
n
¢
= 1− α

where zα/2 (the so called critical value) is easily found from tables (such as the
last row of Table IV). Note that in general

Pr(Z > za) = a

Usually, we need α/2 = 0.025, which corresponds to 95% probability (eventually
called confidence).
The random variable of the last statement is clearly X (before a sample is

taken, and the value is computed). Assume now that the (random independent)
sample has been taken, and X has been computed to have a specific value (8.3
say). The inequality in parentheses is then either true or false - the only trouble is
that it contains µ whose value we don’t know! We can thus solve it for µ, i.e.

X − zα/2 · σ/
√
n < µ < X + zα/2 · σ/

√
n

and interpret this as a 100·(1−α)% confidence interval for the exact (still unknown)
value of µ.
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σ unknown
In this case, we have to replace σ by the next best thing, which is of course sample
standard deviation s. We know than, that the distribution of

X − µ

s/
√
n

(6.2)

changes from N (0, 1) to tn−1. This means that we also have to change zα/2 to
tα/2,n−1, the rest remains the same. A 100 · (1 − α)% confidence interval for µ is
then constructed by

X − tα/2,n−1 · s/
√
n < µ < X + tα/2,n−1 · s/

√
n

Large-sample case
When n is ’large’ (n ≥ 30), there is little difference between zα/2 and tα/2,n−1, so
we would use zα/2 in either case.
Furthermore, both (6.1) and (6.2) are approximately Normal, even when the

population is not (and, regardless what the distribution is). This means we can
still construct an approximate confidence interval for µ (using σ if it’s known, s
when it isn’t - zα/2 in either case).

Difference of two means
When two populations are Normal, with the same σ but potentially different µ, we
already know (assuming the two samples be independent) that¡

X1 −X2

¢− (µ1 − µ2)

σ

r
1

n1
+
1

n2

(6.3)

is standardized normal (Z).

Proof. X1 ∈ N (µ1, σ√
n1
) andX2 ∈ N (µ2, σ√

n2
) impliesX1−X2 ∈ N

³
µ1 − µ2,

q
σ2

n1
+ σ2

n2

´
The confidence interval for µ1 − µ2 is thus

X1 −X2 − zα/2 · σ
r
1

n1
+
1

n2
< µ1 − µ2 < X1 −X2 + zα/2 · σ

r
1

n1
+
1

n2

When σ is not known, (6.3) changes to¡
X1 −X2

¢− (µ1 − µ2)

sp

r
1

n1
+
1

n2

(6.4)

where

sp ≡
s
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
is called the pooled sample standard deviation.
(6.4) now has the tn1+n2−2 distribution.
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Proof. We need to proof that (n1+n2−2)·s2p
σ2

=
(n1−1)s21+(n2−1)s22

σ2
∈ χ2n1+n2−2 (auto-

matically independent of X1−X2). This follows from the fact that
(n1−1)s21

σ2
∈ χ2n1−1

and (n2−1)s22
σ2

∈ χ2n2−1, and they are independent of each other.
The corresponding confidence interval is now

X1 −X2 − tα/2,n1+n2−2 · sp
r
1

n1
+
1

n2
< µ1 − µ2 < X1 −X2 + tα/2,n1+n2−2 · sp

r
1

n1
+
1

n2

When the two σ’s are not identical (but both known), we have¡
X1 −X2

¢− (µ1 − µ2)r
σ21
n1
+

σ22
n2

∈ N (0, 1)

and the corresponding confidence interval:

X1 −X2 − zα/2 ·
r

σ21
n1
+

σ22
n2

< µ1 − µ2 < X1 −X2 + zα/2 ·
r

σ21
n1
+

σ22
n2

When the σ’s are unknown (and have to be replaced by s1 and s2), we end
up with a situation which has no simple distribution, unless both n1 and n2 are
’large’. In that case, we (also) don’t have to worry about the normality of the
population, and construct an approximate CI by:

X1 −X2 − zα/2 ·
r

s21
n1
+

s22
n2

< µ1 − µ2 < X1 −X2 + zα/2 ·
r

s21
n1
+

s22
n2

Proportion(s)
Here, we construct a CI for the p parameter of a binomial distribution. This usually
corresponds to sampling, from an ’infinite’ population with a certain percentage
(or proportion) of ’special’ cases. We will deal only with the large n situation.
The X1, X2, ... Xn or our RIS now have values of either 1 (special case) or

0. This means that X equals to the sample proportion of special cases, also
denoted by bp.We know that bp is, for large n, approximately Normal, with mean p
and standard deviation of p(1−p)

n
. One can actually take it one small step further,

and show that bp− pqbp(1−bp)
n

˜∈ N (0, 1)

One can thus construct an approximate CI for p by

bp− zα/2

qbp(1−bp)
n

< p < bp+ zα/2

qbp(1−bp)
n

Similarly, for a difference between two p values (having two independent sam-
ples), we get the following approximate CI

bp1 − bp2 − zα/2

qbp1(1−bp1)
n1

+ bp2(1−bp2)
n2

< p1 − p2 < bp1 − bp2 + zα/2

qbp(1−bp)
n

+ bp2(1−bp2)
n2
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Variance(s)
We have to go back to assuming sampling fromN (µ, σ). To construct a 100·(1−α)%
confidence interval for the population variance σ2, we just have to recall that

(n− 1)s2
σ2

∈ χ2n−1

This implies that

Pr

µ
χ21−α/2,n−1 <

(n− 1)s2
σ2

< χ2α/2,n−1

¶
= 1− α

where χ21−α/2,n−1 and χ
2
α/2,n−1 are two critical values of the χ

2
n−1 distribution (Table

V). This time, they are both positive, with no symmetry to help.
The corresponding confidence interval for σ2 is then

(n− 1)s2
χ2α/2,n−1

< σ2 <
(n− 1)s2
χ21−α/2,n−1

(the bigger critical value first).
To construct a CI for σ, we would just take the square root of these.

σ ratio
A CI for a ratio of two σ’s (not a very common thing to do) is based on

s21
σ21

s21
σ21

∈ Fn1−1,n2−1

(assuming independent samples). This readily implies

Pr

µ
F1−α

2
,n1−1,n2−1 <

s21 · σ22
s22 · σ21

< Fα
2
,n1−1,n2−1

¶
which yields the final result:

1

Fα
2
,n1−1,n2−1

· s
2
1

s22
<

σ21
σ22

<
s21
s22
· 1

F1−α
2
,n1−1,n2−1

=
s21
s22
· Fα

2
,n2−1,n2−1

Note that

α

2
= Pr

¡
Fn2−1,n1−1 > Fα

2
,n2−1,n2−1

¢
= Pr

µ
1

Fn1−1,n2−1
> Fα

2
,n2−1,n2−1

¶
= Pr

Ã
Fn1−1,n2−1 <

1

Fα
2
,n2−1,n2−1

!
implies that

Pr

Ã
Fn1−1,n2−1 >

1

Fα
2
,n2−1,n2−1

≡ F1−α
2
,n1−1,n2−1

!
= 1− α

2

The critical values are in Table VI (but only for 90% and 98% confidence levels)!
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Chapter 7 TESTING HYPOTHESES
Suppose now that, instead of trying to estimate µ, we would like it to be equal
to (or at least reasonably close to) some desired, specific value called µ0. To test
whether it is (the so called null hypothesis, say H0: µ = 500) or is not (the
alternate hypothesis HA: µ 6= 500) can be done, in this case, in one of two
ways:

1. Construct the corresponding CI for µ, and see whether it contains 500 (if it
does, accept H0, otherwise, reject it). The corresponding α (usually 5%)
is called the level of significance.

2. Compute the value of the so called test statistic

X − µ0
σ/
√
n

(it has the Z distribution only when H0 is true) and see whether it falls in
the corresponding acceptance region [−zα/2, zα/2] or rejection region
(outside this interval).

Clearly, the latter way of performing the test is equivalent to the former. Even
though it appears more elaborate (actually, it is a touch easier computationally),
it is the ’standard’ way to go.

Test statistics are usually constructed with the help of the corresponding like-
lihood function, something we learned about in the previous chapter.

There are two types of error we can make:

• Rejecting H0 when it’s true - this is called Type I error.

• Accepting it when it’s false - Type II error.

The probability of making Type I error is obviously equal to α (under our
control).
The probability of Type II error (β) depends on the actual value of µ (and

σ) - we can compute it and plot it as a function of µ (OC curve) - when µ ap-
proaches (but is not equal to) µ0, this error clearly reaches 1 − α. Equivalently,
they sometimes plot 1− β (the power function) instead - we like it big (close
to 1).

Two notes concerning alternate hypotheses:

When HA consists of (infinitely) many possibilities (such as our µ 6= 500 exam-
ple), it is called composite. This is the usual case.
When HA considers only one specific possibility (e.g. µ = 400), it is called

simple. In practice, this would be very unusual - we will not be too concerned
with it here.
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To us, a more important distinction is this:

Sometimes (as in our example), the alternate hypothesis has the 6= sign, indi-
cating that we don’t like a deviation from µ0 either way (e.g. 500 mg is the amount
of aspirin we want in one pill - it should not be smaller, it should not be bigger) -
this is called a two-sided hypothesis.
Frequently (this is actually even more common), we need to make sure that µ

meets the specifications one way (amount of coke in one bottle is posted as 350
mL, we want to avoid the possibility that µ < 350 - the one-sided alternate
hypothesis). In this case, the null hypothesis is sometimes still stated in the old
manner of H0: µ = 350, sometimes they put is as H0: µ ≥ 350. In any case, the
null hypothesis must always have the = sign!
When the alternate hypothesis is one-sided, so is the corresponding rejection

region (also called one-tailed), which would now consist of the (−∞, zα) interval
- note that now a single tail get the full α. Note that now the correspondence
between this test and a CI for µ becomes more complicated (we would normally
not use CI in this case).

In either case (one or two sided), these is yet another alternate (but equivalent)
way of performing the test (bypassing the critical region). It works like this:

• For a two-sided test, we compute the value of the test statistic (let us call it
t), which it then converted into the so called P-value, thus:

P = 2Pr(Z > |t|)
When this P value is less than α, we reject H0 (accept otherwise).

• For a one-sided test, whenever t is on the H0 side, we accept H0 without
having to compute anything. When t is on the HA side, we compute

P = Pr(Z > |t|)
and reject H0 when P is smaller than α, accept otherwise.

Tests concerning mean(s)
We need to specify the assumptions, null hypothesis, test statistic, and its distri-
bution (under H0) - the rest is routine.

Assume: H0 T Distribution of T

Normal population, σ known µ = µ0
X − µ0
σ/
√
n

Z

Normal population, σ unknown µ = µ0
X − µ0
s/
√
n

tn−1

Any population, large n, σ unknown µ = µ0
X − µ0
s/
√
n

Z

Two Normal populations, same unknown σ µ1 = µ2

¡
X1 −X2

¢
sp

r
1

n1
+
1

n2

tn1+n2−2
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Concerning variance(s)
Assume: H0 T Distribution of T

Normal population σ = σ0
(n− 1)s2

σ2
χ2n−1

Two Normal populations σ1 = σ2
s21
s22

Fn1−1,n2−1

Concerning proportion(s)
Assume: H0 T Distribution of T

One population, large n p = p0
bp− p0r
p0(1− p0)

n

Z (approximate)

k populations, large samples p1 = p2 = ... = pk

Pk
i=1 ni(bpi − bbp)2bbp(1− bbp) χ2k−1 (approximate)

Contingency tables
Here, we have two (nominal scale) attributes (e.g. cities and detergent brands
- see your textbook), and we want to know whether they are independent (i.e.
customers in different cities having the same detergent preferences - H0, or not -
HA).

Example 1
Brand A Brand B Brand C

Montreal 87 62 12
Toronto 120 96 23
Vancouver 57 49 9

The numbers are called observed frequencies, denoted oij (i is the row, j
the column label).
First, we have to compute the corresponding expected frequencies (as-

suming independence) by

eij =
(
Pc

j=1 oij) · (
Pr

i=1 oij)Pc
j=1

Pr
j=1 oij

To be able to proceed, these must be all bigger than 5.
The test statistic equals P

ij

(oij − eij)
2

eij

and has (under H0), approximately, the χ2(r−1)(c−1), where r (c) is the number of
rows (columns) respectively.

Goodness of fit
This time, we are testing whether a random variable has a specific distribution,
say Poisson (we will stick to discrete cases).
First, based on the data, we estimate the value of each unknown parameter

(this distribution has only one), based on what we learned in the previous chapter.
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Then, we compute the expected frequency of each possible outcome (all integers,
in this case), by

ei = n× f(i | bλ) = n×
bλi
i!
e−

bλ i = 0, 1, 2, ...

where n is the total frequency and bλ = P
i i · oiP
i oi

is the usual λ estimator. We have

to make sure that none of the expected frequencies is less than 5 (otherwise, we
pool outcomes to achieve this).
The test statistic is

T =
X
i

(oi − ei)
2

oi

Under H0 (which now states: the distribution is Poisson, with unspecified λ), T
has the χ2 distribution withm−1−p degrees of freedom, wherem is the number of
possible outcomes (after pooling), and p is the number of (unspecified) parameters,
to be estimated based on the original data (in this case, p = 1).
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Chapter 8 LINEAR REGRESSION
AND CORRELATION

We will first consider the case of having one ’independent’ (regressor) variable,
called x, and a ’dependent’ (response) variable y. This is called

Simple regression
The model is

yi = β0 + β1xi + εi (8.1)

where i = 1, 2, ..., n, making the following assumptions:

1. The values of x are measured ’exactly’, with no random error. This is usually
so when we can choose them at will.

2. The εi are normally distributed, independent of each other (uncorrelated),
having the expected value of 0 and variance equal to σ2 (the same for each of
them, regardless of the value of xi). Note that the actual value of σ is usually
not known.

The two regression coefficients are called the slope and intercept. Their
actual values are also unknown, and need to be estimated using the empirical data
at hand.
To find such estimators, we use the

Maximum likelihood method
which is almost always the best tool for this kind of task. It guarantees to yield
estimators which are asymptotically unbiased, having the smallest possible
variance. It works as follows:

1. We write down the joint probability density function of the yi’s (note that
these are random variables).

2. Considering it a function of the parameters (β0, β1 and σ in this case) only
(i.e. ’freezing’ the yi’s at their observed values), we maximize it, using the
usual techniques. The values of β0, β1 and σ to yield the maximum value of
this so called Likelihood function (usually denoted by bβ0, bβ1 and bσ) are
the actual estimators (note that they will be functions of xi and yi).

Note that instead of maximizing the likelihood function itself, we may choose
to maximize its logarithm (which must yield the same bβ0, bβ1 and bσ).
Least-squares technique
In our case, the Likelihood function is:

L =
1

(
√
2πσ)n

nY
i=1

exp

·
−(yi − β0 − β1xi)

2

2σ2

¸
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and its logarithm:

lnL = −n
2
log(2π)− n lnσ − 1

2σ2

nX
i=1

(yi − β0 − β1xi)
2

To maximize this expression, we first differentiate it with respect to σ, and make
the result equal to zero. This yields:

bσm =
vuut nP

i=1

(yi − bβ0 − bβ1xi)2
n

where bβ0 and bβ1 are the values of β0 and β1 which minimize

SSe ≡
nX
i=1

(yi − β0 − β1xi)
2

namely the sum of squares of the vertical deviations (or residuals) of the yi
values from the fitted straight line (this gives the technique its name).
To find bβ0 and bβ1, we have to differentiate SSe, separately, with respect to β0

and β1, and set each of the two answers to zero. This yields:

nX
i=1

(yi − β0 − β1xi) =
nX
i=1

yi − nβ0 − β1

nX
i=1

xi = 0

and
nX
i=1

xi(yi − β0 − β1xi) =
nX
i=1

xi yi − β0

nX
i=1

xi − β1

nX
i=1

x2i = 0

or equivalently, the following so called

Normal equations

nβ0 + β1

nX
i=1

xi =
nX
i=1

yi

β0

nX
i=1

xi + β1

nX
i=1

x2i =
nX
i=1

xi yi

They can be solved easily for β0 and β1 (at this point we can start calling thembβ0 and bβ1):
bβ1 = n

nP
i=1

xi yi −
nP
i=1

xi ·
nP
i=1

yi

n
nP
i=1

x2i −
µ

nP
i=1

xi

¶2 =

nP
i=1

(xi − x)(yi − y)

nP
i=1

(xi − x)2
≡ Sxy

Sxx

and bβ0 = y − bβ1x (8.2)
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meaning that the regression line passes through the (x, y) point, where

x ≡

nP
i=1

xi

n

and

y ≡

nP
i=1

yi

n

Each bβ0 and bβ1 is clearly a linear combination of normally distributed random
variables, their joint distribution is thus of the bivariate normal type.

Statistical properties of the estimators
First, we should realize that it is the yi (not xi) which are random, due to the εi
term in (8.1) - both β0 and β1 are also fixed, albeit unknown parameters. Clearly
then

E (yi − y) = β0 + β1xi − (β0 + β1x) = β1 (xi − x)

which implies

E
³bβ1´ =

nP
i=1

(xi − x) · E(yi − y)

nP
i=1

(xi − x)2
= β1

Similarly, since E(y) = β0 + β1x, we get

E
³bβ0´ = β0 + β1x− β1x = β0

Both bβ0 and bβ1 are thus unbiased estimators of β0 and β1, respectively.
To find their respective variance, we first note that

bβ1 =
nP
i=1

(xi − x)(yi − y)

nP
i=1

(xi − x)2
≡

nP
i=1

(xi − x) yi

nP
i=1

(xi − x)2

(right?), based on which

Var
³bβ1´ =

nP
i=1

(xi − x)2 ·Var(yi)µ
nP
i=1

(xi − x)2
¶2 =

σ2Sxx
S2xx

=
σ2

Sxx

>From (8.2) we get

Var
³bβ0´ = Var(y)− 2xCov(y, bβ1) + x2Var

³bβ1´
We already have a formula for Var

³bβ1´ , so now we need
Var(y) = Var(ε) =

σ2

n
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and

Cov(y, bβ1) = Cov


nP
i=1

εi

n
,

nP
i=1

(xi − x) εi

Sxx

 =

σ2
nP
i=1

(xi − x)

Sxx
= 0

(uncorrelated). Putting these together yields:

Var
³bβ0´ = σ2

µ
1

n
+

x2

Sxx

¶
The covariance between bβ0 and bβ1 is thus equals to −xVar(bβ1), and their correla-
tion coefficient is −1r

1 +
1

n
· Sxx
x2

Both variance formulas contain σ2, which, in most situations, must be replaced
by its ML estimator

bσ2m =
nP
i=1

(yi − bβ0 − bβ1xi)2
n

≡ SSe
n

where the numerator defines the so called residual (error) sum of squares.
It can be rewritten in the following form (replacing bβ0 by y − bβ1x ):

SSe =
nX
i=1

(yi − y + bβ1x− bβ1xi)2 = nX
i=1

h
yi − y + bβ1(x− xi)

i2
= Syy − 2bβ1Sxy + bβ21Sxx = Syy − 2Sxy

Sxx
Sxy +

µ
Sxy
Sxx

¶2
Sxx

= Syy − Sxy
Sxx

Sxy = Syy − bβ1Sxy ≡ Syy − bβ21Sxx
Based on (8.1) and y = β0 + β1x+ ε (from now on, we have to be very careful to
differentiate between β0 and bβ0, etc.), we get

E(Syy) = E

(
nX
i=1

[β1(xi − x) + (εi − ε)]2
)
= β21 Sxx + σ2(n− 1)

(the last term was derived in MATH 2F81). Furthermore,

E
³bβ21´ = Var(bβ1)− E(bβ1)2 = σ2

Sxx
− β21

Combining the two, we get

E(SSe) = σ2(n− 2)

Later on, we will be able to prove that
SSe
σ2

has the χ2 distribution with n − 2
degrees of freedom. It is also independent of each bβ0 and bβ1.
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This means that there is a slight bias in the bσ2m estimator of σ2 (even though the
bias disappears in the n→∞ limit - such estimators are called asymptotically
unbiased). We can easily fix this by defining a new, fully unbiased

bσ2 = SSe
n− 2 ≡MSe

(the so called mean square) to be used instead of bσ2m from now on.
All of this implies that both bβ0 − β0s

MSe

µ
1

n
+

x2

Sxx

¶
and bβ1 − β1r

MSe
Sxx

(8.3)

have the Student t distribution with n − 2 degrees of freedom. This can be used
either to construct the so called confidence interval for either β0 or β1, or to
test any hypothesis concerning β0 or β1.

Confidence intervals
Knowing that (8.3) has the tn−2 distribution, we must then find two values (called
critical) such that the probability of (8.3) falling inside the corresponding in-
terval (between the two values) is 1− α. At the same time, we would like to have
the interval as short as possible. This means that we will be choosing the critical
values symmetrically around 0; the positive one will equal to tα

2
,n−2, the negative

one to −tα
2
,n−2 (the first index now refers to the area of the remaining tail of the

distribution) - these critical values are widely tabulated.
The statement that (8.3) falls in the interval between the two critical values

of tn−2 is equivalent (solve the corresponding equation for β1) to saying that the
value of β1 is in the following range

bβ1 ± tα2 ,n−2
r

MSe
Sxx

which is our (1− α) · 100% confidence interval.
Similarly, we can construct a 1− α level-of-confidence interval for bβ0, thus:

bβ0 ± tα2 ,n−2
s
MSe

µ
1

n
+

x2

Sxx

¶
Note that, since bβ0 and bβ1 are not independent, making a joint statement about the
two (with a specific level of confidence) is more complicated (one has to construct
a confidence ellipse, to make it correct).
Constructing a 1 − α confidence interval for σ2 is a touch more complicated.

Since
SSe
σ2

has the χ2n−2 distribution, we must first find the corresponding two
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critical values. Unfortunately, the χ2 distribution is not symmetric, so for these
two we have to take χ2α

2
,n−2 and χ

2
1−α

2
,n−2. Clearly, the probability of a χ

2
n−2 random

variable falling between the two values equals 1−α. The resulting interval may not
be the shortest of all these, but we are obviously quite close to the right solution;
furthermore, the choice of how to divide α between the two tails remains simple
and logical.
Solving for σ2 yields Ã

SSe
χ21−α

2
,n−2

,
SSe

χ2α
2
,n−2

!
as the corresponding (1− α) · 100% confidence interval.

Correlation
Suppose now that both x and y are random, normally distributed with (bivariate)
parameters µx, µy, σx, σy and ρ. We know that the conditional distribution of
y given x is also (univariate) normal, with the following conditional mean and
variance:

µy + ρ σy
x− µx
σx

≡ β0 + β1 x (8.4)

σ2y (1− ρ2)

The usual bβ0 and bβ1 estimators are still the ’best’ (maximizing the likelihood
function), but their statistical properties are now substantially more complicated.

Historical comment: Note that by reversing the rôle of x and y (which is now
quite legitimate - the two variables are treated as ’equals’ by this model), we
get the following regression line:

µx | y = µx + ρ σx
y − µy
σy

One can easily see that this line is inconsistent with (8.4) - it is a lot steeper
when plotted on the same graph. Ordinary regression thus tends, in this case,
to distort the true relationship between x and y, making it either more flat
or more steep, depending on which variable is taken to be the ’independent’
one.

Thus, for example, if x is the height of fathers and y that of sons, the regres-
sion line will have a slope less than 45 degrees, implying a false averaging
trend (regression towards the mean, as it was originally called - and the name,
even though ultimately incorrect, stuck). The fallacy of this argument was
discovered as soon as someone got the bright idea to fit y against x, which
would then, still falsely, imply a tendency towards increasing diversity.

One can show that the ML technique would use the usual x and y to estimate

µx and µy,
q

Sxx
n−1 and

q
Syy
n−1 (after unbiasing) to estimate σx and σy, and

r ≡ Sxyp
Sxx · Syy

(8.5)
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as an estimator of ρ (for some strange reason, they like calling the estimator r
rather than the usual bρ). This relates to the fact that

Sxy
n− 1

is an unbiased estimator of Cov(X,Y ).
Proof.

E

(
nX
i=1

[xi − µx − (x− µx)]
£
yi − µy − (y − µy)

¤)
=

nX
i=1

·
Cov(X,Y )− Cov(X,Y )

n
− Cov(X,Y )

n
+
Cov(X,Y )

n

¸
=

nCov(X,Y ) (1− 1
n
) = Cov(X,Y ) (n− 1)

Investigating statistical properties of r, bβ0 and bβ1 exactly is now short of im-
possible (mainly because of dividing by

√
Sxx, which is random) - now, we have

to resort to large-sample approach, to derive asymptotic formulas only (i.e.
expanded in powers of 1

n
), something we will take up shortly.

This is also how one can show that

arctanh r

approaches, for ’large’ n, the Normal distribution (with the mean of arctanh ρ +
ρ
2n
+... and variance of 1

n−3+...) a lot faster than r itself. Utilizing this, we construct
an approximate CI for arctanh ρ:

arctanh r − r

2n
± zα/2√

n− 3
and consequently for ρ (take tanh of each limit).

Squaring the r estimator yields the so called coefficient of determination

r2 =
Syy − Syy +

S2xy
Sxx

Syy
= 1− SSE

Syy

which tells us how much of the original y variance has been removed by fitting the
best straight line.

Multiple regression
This time, we have k independent (regressor) variables x1, x2,..., xk; still only one
dependent (response) variable y. The model is

yi = β0 + β1x1,i + β2x2,i + ...+ βkxk,i + εi
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with i = 1, 2, ..., n, where the first index labels the variable, and the second the
observation. It is more convenient now to switch to using the following matrix
notation

y = Xβ + ε

where y and ε are (column) vectors of length n, β is a (column) vector of length
k+1, and X is a n by k+1 matrix of observations (with its first column having all
elements equal to 1, the second column being filled by the observed values of x1,
etc.). Note that the exact values of β and ε are, and will always remain, unknown
to us (thus, they must not appear in any of our computational formulas).
To minimize the sum of squares of the residuals (a scalar quantity), namely

(y−Xβ)T (y−Xβ) =
yTy− yTXβ − βTXTy + βTXTXβ

(note that the second and third terms are identical - why?), we differentiate it with
respect to each element of β. This yields the following vector:

−2XTy+ 2XTXβ

Making these equal to zero provides the following maximum likelihood (least
square) estimators of the regression parameters:

bβ = (XTX)−1XTy ≡ β + (XTX)−1XTε

The last form makes it clear that bβ are unbiased estimators of β, normally dis-
tributed with the variance-covariance matrix of

σ2(XTX)−1XTX(XTX)−1 = σ2(XTX)−1

The ’fitted’ values of y (let us call them by), are computed by
by = X bβ = X β +X(XTX)−1XTε ≡ X β +H ε

where H is clearly symmetric and idempotent (i.e. H2 = H). Note that HX = X.
This means that the residuals ei are computed by

e = y− by = (I−H )ε
(I − H is also idempotent). Furthermore, the covariance (matrix) between the
elements of bβ − β and those of e is:

E
h
(bβ − β)eTi = E £(XTX)−1XTεεT (I−H )¤ =

(XTX)−1XTE
£
εεT

¤
(I−H ) = O

which means that the variables are uncorrelated and therefore independent (i.e.
each of the regression-coefficient estimators is independent of each of the residuals
— slightly counter-intuitive but correct nevertheless).
The sum of squares of the residuals, namely eTe, is equal to

εT (I−H )T (I−H )ε = εT (I−H )ε
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Divided by σ2:
εT (I−H )ε

σ2
≡ ZT (I−H )Z

where Z are standardized, independent and normal.
We know (frommatrix theory) that any symmetric matrix (including our I−H )

can be written as RTDR, where D is diagonal and R is orthogonal (implying
RT ≡ R−1). We can then rewrite the previous expression as

ZTRTDRZ = eZTD eZ
where eZ ≡ RZ is still a set of standardized, independent Normal random variables
(since its variance-covariance matrix equals I). Its distribution is thus χ2 if and
only if the diagonal elements of D are all equal either to 0 or 1 (the number of
degrees being equal to the trace of D).
How can we tell whether this is true for our I−H matrix (when expressed in

the RTDR form) without actually performing the diagonalization (a fairly tricky
process). Well, such a test is not difficult to design, once we notice that (I−H)2 =
RTDRRTDR = RTD2R. Clearly, D has the proper form (only 0 or 1 on the main
diagonal) if and only if D2 = D, which is the same as saying that (I−H)2 = I−H
(which we already know is true). This then implies that the sum of squares of the
residuals has χ2 distribution. Now, how about its degrees of freedom? Well, since
the trace of D is the same as the trace of RTDR (a well known property of trace),
we just have to find the trace of I−H, by

Tr [I−H] = Tr (In×n )−Tr (H) = n− Tr ¡X(XTX)−1XT
¢
=

n−Tr ¡(XTX)−1XTX
¢
= n−Tr ¡I(k+1)×(k+1)¢ = n− (k + 1)

i.e. the number of observations minus the number of regression coefficients.
The sum of squares of the residuals is usually denoted SSe (for ’error’ sum

of squares, even though it is usually called residual sum of squares) and
computed by

(y−Xbβ)T (y−Xbβ) = yTy− yTX bβ − bβT
XTy+bβT

XTX bβ =
= yTy− yTXbβ − bβT

XTy+bβT
XTy = yTy− yTX bβ ≡

yTy− bβT
XTy

We have just proved that SSe
σ2

has the χ2 distribution with n − (k + 1) degrees
of freedom, and is independent of bβ. A related definition is that of a residual
(error) mean square

MSe ≡ SSe
n− (k + 1)

This would clearly be our unbiased estimator of σ2.

Various standard errors
We would thus construct a confidence interval for any one of the β coefficients, say
βj, by bβj ± tα2 , n−k−1 ·pCjj ·MSE
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where C ≡ (XTX)−1.
Similarly, to test a hypothesis concerning a single βj, we would use

bβj − βi0p
Cjj ·MSE

as the test statistic.
Since the variance-covariance matrix of bβ is σ2(XTX)−1, we know that

(bβ − β)TXTX(bβ − β)
σ2

has the χ2k+1 distribution. Furthermore, since the β’s are independent of the resid-
uals,

(bβ − β)TXTX(bβ − β)
k + 1
SSE

n− k − 1
must have the Fk+1,n−k−1 distribution. This enables us to construct a confidence
ellipse (ellipsoid) simultaneously for all parameters or, correspondingly, perform
a single test of H0: bβ = β0.
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Chapter 9 ANALYSIS OF
VARIANCE

One-way ANOVA
Suppose we have k Normal populations, having the same σ, but potentially different
means µ1, µ2, .. µk.We want to test whether all these means are identical (the null
hypothesis) or not (alternate).
We do this by first selecting a random independent sample of size n, indepen-

dently from each of the k populations (note that, to simplify matters, we use the
same sample size for all), and estimating each of the µi’s by

X̄(i) ≡
Pn

j=1Xij

n

(these of course will always be different from each other).
Secondly (to decide whether ’what we see is what we get’), we need a test

statistic which meets the following two conditions:

1. It is sensitive to any deviation from the null hypothesis (it should return a
small value when H0 holds, a large value otherwise)

2. It has a known distribution under H0 (to decide what is ’small’ and what is
’large’).

The RV which meets these objectives is

T =

n
kP
i=1

(X̄(i) −X)2

k − 1
kP
i=1

s2(i)

k

(9.1)

where X is the grand mean (mean of means) of all the nk observations put
together, and X̄(i) and s2(i) are the individual sample means and variances, where
i = 1, 2, ... k. Let us recall that X̄(i) ∈ N (µi, σ√

n
) and n−1

σ2
s2(i) ∈ χ2n−1, for each i.

Note that the numerator of the formula will be small when the population means
are identical (the sample means will be close to each other, and to their grand
mean), becoming large when they are not. On the other hand the denominator of
the formula (the average of the individual sample variances) merely estimates the
common σ2, and is totally insensitive to potential differences between population
means.
To figure out the distribution of this test statistic when H0 is true, we notice

that X̄(1), X̄(2), ..., X̄(k) effectively constitute a RIS of size k from N (µ, σ√
n
),

and

kP
i=1

(X̄(i) −X)2

k − 1 is thus the corresponding sample variance. This means that
kP
i=1

(X̄(i) −X)2

σ2/n
has the χ2k−1 distribution.
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Similarly
(n− 1)

kP
i=1

s2(i)

σ2
is just a sum of k independent χ2n−1 RVs, whose distri-

bution is χ2k(n−1) (the degrees of freedom simply add up). The ratio of
n

σ2

kP
i=1

(X̄(i) −X)2

k − 1
by

1

kσ2

kP
i=1

s2(i) (note that σ
2 cancels out, leading to T ) has therefore the distribution

of

χ2k−1
k − 1
χ2k(n−1)
k(n− 1)

≡ Fk−1,k(n−1).

The only thing left to do is to figure out some efficient way to compute T (this
used to be important in the pre-computer days, but even current textbooks cannot
leave it alone - like those silly tables of Poisson distribution in the Appendix). It
is not difficult to figure out that

kX
i=1

nX
j=1

(Xij −X)2 = n
kX
i=1

(X̄(i) −X)2 + (n− 1)
kX
i=1

s2(i)

or SST = SSB + SSW , where the subscripts stand for total, between (or
treatment) and within (or error) sum of squares, respectively.

Furthermore, one can show that

SST =
kX
i=1

nX
j=1

X2
ij −

³Pk
i=1

Pn
j=1Xij

´2
kn

(9.2)

and

SSB =

Pk
i=1

³Pn
j=1Xij

´2
n

−
³Pk

i=1

Pn
j=1Xij

´2
kn

which is how these two quantities are efficiently computed (with SSW = SST −
SSB).

The whole computation (of T ) is the summarized in the following table:

Source df SS MS T

Between k − 1 SSB MSB =
SSB
k−1

MSB
MSW

Within k(n− 1) SSW MSW = SSW
k(n−1)

Total kn− 1 SST

Two-way ANOVA
In the previous section, the population index (i = 1, 2, ... k) can be seen as a
(nominal scale) variable, which is, in this context called a factor (e.g. labelling
the city from which the observation is taken). In some situations, we may need
more than one factor (e.g. white, black, Hispanic) - we will only discuss how to
deal with two. (For a sake of example, we will take the response variable X to
represent a person’s salary).
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No interaction
Our design will first:

1. assume that there is no interaction between the factors (meaning that
racial biases - if they exist - do not vary from city to city).

2. randomly select only one representative for each cell (one employee of each
race form every city).

The former implies that Xij ∈ N (µ + αi + βj, σ), where
Pk

i=1 αi = 0 andPm
j=1 βj = 0 (k and m is the number of levels of the first and second factor).
To estimate the individual parameters, we would clearly use

bµ = X ≡
Pm

j=1

Pk
i=1Xij

mk

bαi = X̄(i•) −X ≡
Pm

j=1Xij

m
−X

bβj = X̄(•j) −X ≡
Pk

i=1Xij

k
−X

This time, we can test several null hypotheses at once: One stating that all the
α’s equal to zero (no difference between cities), the other claiming that same for
the β’s (no difference between racial groups), and the last one setting them all (α’s
and β’s) to zero.

The total sum of squares is computed as before (see 9.2), except that n changes
to m. Similarly, one can show that now

SST = SSA + SSB + SSE (9.3)

where SSA (SSB) is the sum of squares due to the first (second) factor and com-
puted by

SSA = m
kX
i=1

bα2i =
Pk

i=1

³Pm
j=1Xij

´2
m

−
³Pk

i=1

Pm
j=1Xij

´2
km

SSB = k
mX
j=1

bβ2j =
Pm

j=1

³Pk
i=1Xij

´2
k

−
³Pk

i=1

Pm
j=1Xij

´2
km

and SSE is the error (residual) sum of squares (computed form 9.3).

The summary will now look as follows:

Source df SS MS T

Factor A k − 1 SSA MSA =
SSA
k−1

MSA
MSE

Factor B m− 1 SSB MSB =
SSB
m−1

MSB
MSE

Error (k − 1)(m− 1) SSE MSE =
SSE

(k−1)(m−1)
Total km− 1 SST
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With interaction
Now, we assume a possible interaction between the two factors (the pattern of
racial bias may differ between cities), which necessitates selecting more than one
(say n) random employees from each cell. The (theoretical) mean of the Xijc

distribution will now equal to µ+αi+βj +(αβ)ij, where
Pk

i=1(αβ)ij = 0 for each
j and

Pm
j=1(αβ)ij = 0 for each i.

The corresponding estimators are now

bµ = X ≡
Pn

c=1

Pm
j=1

Pk
i=1Xijc

nmk

bαi = X̄(i••) −X ≡
Pn

c=1

Pm
j=1Xijc

nm
−X

bβj = X̄(•j•) −X ≡
Pn

c=1

Pk
i=1Xijc

nk
−X

(cαβ)ij = X̄(ij•) −X − bαi − bβj ≡ Pn
c=1Xijc

n
−X − bαi − bβj

For the total sum of squares, we now get

SST = SSA + SSB + SSAB + SSE

where

SST =
nX
c=1

mX
j=1

kX
i=1

(Xijc −X)2

SSA = nm
kX
i=1

bα2i
SSB = nk

mX
j=1

bβ2i
SSAB = n

mX
j=1

kX
i=1

(cαβ)2ij
In summary:

Source df SS MS T

Factor A k − 1 SSA MSA =
SSA
k−1

MSA
MSE

Factor B m− 1 SSB MSB =
SSB
m−1

MSB
MSE

Interaction (k − 1)(m− 1) SSAB MSAB =
SSAB

(k−1)(m−1)
MSAB
MSE

Error km(n− 1) SSE MSE =
SSE

km(n−1)
Total kmn− 1 SST
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Chapter 10 NONPARAMETRIC
TESTS

These don’t make any assumption about the shape of the distribution from which
we sample (they are equally valid for distributions of any shape). As a result, they
may not be as powerful (’sharp’) as test designed for a specific (usually Normal)
distribution.

Sign test
The null hypothesis states that the population median equals a specific number,
H0: µ̃ = µ̃0 If we throw in an assumption that the distribution is symmetric, the
median is the same as the mean, so we can restate it in those terms.
We also assume that the distribution is continuous (or essentially so), so that

the probability of any observation being exactly equal to µ̃0 is practically zero (if
we do get such a value, we would have to discard it).
The test statistic (say B) is simply the number of observations (out of n) which

are bigger than µ̃0 (sometimes, these are represented by + signs, thus the name
of the test). Its distribution is, under H0, obviously Binomial, where n is the
number of trials, and p = 1

2
. The trouble is that, due to B’s discreteness, we

cannot arbitrarily set the value of α, and have to settle for anything reasonable
close to, say 5%. That’s why, in this case, we are better off simply stating the
corresponding P value.
When n is ’large’, it is permissible to approximate the Binomial distribution

by Normal, which leads to a modified test statistic

T =
B − n

2p
n
4

=
2B − n√

n

with critical values of ±zα/2 (two-sided test), or either zα or −zα/2 (one sided test).

The previous test is often used in the context of so called paired samples
(such as taking a blood pressure of individuals before and after taking some med-
ication). In this case, we are concerned with the distribution of the difference in
blood pressure, testing whether its population median stayed the same (the null
hypothesis), or decreased (alternate). This time, we assign + to increase, and −
to decrease, the rest is the same.

Signed-rank test
A better (more powerful) test is, under the same circumstances, the so called
Wilcoxon signed-rank test.
First, we compute the differences between individual observations and µ̃0 (in

the case of a one-sample test), or between the paired observations (paired-sample
test). Then, we rank (i.e. assign 1, 2, ... n) the (absolute value) differences
(discarding zero differences, and assigning the corresponding rank average to any
ties). The test statistic equals the sum of these ranks of all positive differences
(denoted T+).
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The distribution of T+ underH0 (which states that the median difference equals
zero) is not one of our ’common’ cases, that’s why its critical values are tabulated
in Table X. We of course are in a good position to compute the corresponding P
value ourselves (with the help of Maple). All we need to do is to assign a random
sign (with equal probability for + and −) to the first n integers.
It’s quite easy to show that the mean and variance of the T+ distribution are

n(n+1)
4

and n(n+1)(2n+1)
24

respectively.

Proof. We can write T+ = 1 ·X1+2 ·X2+3 ·X3+ ...+n ·Xn, where the Xi’s are
independent, having the Bernoulli distribution with p = 1

2
. This implies the mean

of 1+2+3+...n
2

= n(n+1)
4
. Similarly, Var(T+) = 12+22+32+...+n2

4
= n(n+1)(2n+1)

24
.

To derive formulas for s1 ≡
Pn

i=1 i and s2 ≡
Pn

i=1 i
2, we proceed as follows:Pn

i=0(1+i)
2 = s2+(n+1)

2, but is also equals (by expanding) to n+1+2s1+s2.
Make these two equal, and solve for s1.
Similarly

Pn
i=0(1+ i)3 = s3+(n+1)

3 = n+1+3s1+3s2+ s3. Since s3 cancels
out, and we already know what s1 is, we can solve for s2.

For n ≥ 15, it is quite legitimate to treat the distribution of T+ as approximately
Normal.

Rank-sum tests
Mann-Whitney
Suppose we have two distributions (of the same - up to a ’shift’ - shape) and the
corresponding independent (no longer paired) samples. We want to test whether
the two sample means are identical (the null hypothesis) against one the three
possible (>, < or 6=) alternate hypotheses.
We do this by ranking the n1 + n2 observations pooled together (as if a single

sample), then we compute the sum of the ranks ’belonging’ to the first sample,
usually denoted W1. The corresponding test statistic is

U1 =W1 − n1(n1 + 1)

2

Under H0, the distribution of U1 is symmetric (even though ’uncommon’), with
the smallest possible value of 0 and the largest equal to (n1+n2)(n1+n2+1)

2
− n2(n2+1)

2
−

n1(n1+1)
2

= n1n2. Its critical values are listed in Table XI. To compute them, one
has to realize that the distribution of W1 is that of the sum of randomly selected
n1 integers out of the first n1 + n2 (again, we may try doing this with our own
Maple program).
It is reasonable to use the Normal approximation when both n1 and n2 are

bigger than 8. The expected value of U1 is n1n2
2

(the center of symmetry), its
variance is equal to n1n2(n1+n2+1)

12
.

Proof. Suppose the numbers are selected randomly, one by one (without replace-
ment). W1 is then equal to X1+X2+ ...+Xn1, where Xi is the number selected in
the ith draw. Clearly, E(Xi) =

n1+n2+1
2

for each i. This implies that the expected
value of W1 is n1 n1+n2+12

, and that of U1 equals n1 n1+n2+12
− n1(n1+1)

2
= n1n2

2
.
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Similarly, Var(Xi) = E(X2
i ) − E(Xi)

2 = (N+1)(2N+1)
6

− (N+1)2

4
= N2−1

12
, where

N ≡ n1 + n2, and Cov(Xi, Xj) =
N(N+1)2

4(N−1) − (N+1)(2N+1)
6(N−1) − (N+1)2

4
= −N+1

12
for any

i 6= j. This means that the variance of W1 (and also of U1) is n1Var(Xi) + n1(n1−
1)Cov(Xi, Xj) =

n1n2(n1+n2+1)
12

.

Kruskal-Wallis
This is a generalization of the previous test to the case of more than two (say k)
same-shape populations, testing whether all the means are identical (H0) or not
(HA). It is a non-parametric analog to ANOVA.
Again, we rank all the N ≡ n1+n2+ ...+nk observations pooled together, then

compute the sum of the resulting ranks (say Ri) individually for each sample. The
test statistic is

T =
12

N(N + 1)
·

kX
i=1

R2i
ni
− 3(N + 1)

and has, approximately (for large ni), the χ2k−1 distribution.

Proof. First we show that T can be written as

12

N(N + 1)
·

kX
i=1

ni

µ
Ri

ni
− N + 1

2

¶2
This follows from:Pk

i=1 ni
³
Ri

ni
− N+1

2

´2
=
Pk

i=1

h
R2i
ni
− (N + 1)Ri + ni

(N+1)2

4

i
=
Pk

i=1
R2i
ni
−N(N+1)2

2
+

N(N+1)2

4
=
Pk

i=1
R2i
ni
− N(N+1)2

4

It was already shown in the previous section that, for large ni and N, Si ≡
Ri

ni
−N+1

2
is approximately Normal with zero mean and variance equal to (N−ni)(N+1)

12ni
.

Similarly, Cov(Si, Sj) = −N+1
12

. This means that the variance-covariance matrix of

the
q

12ni
N(N+1)

Si’s is

I−


p

n1
Np
n2
N
...p
nk
N

⊗ £ pn1
N

p
n2
N

· · · p
nk
N

¤

This matrix is clearly idempotent, which makes the sum of squares of the
q

12ni
N(N+1)

Si’s

into a χ2 type RV. The degrees of freedom are given by the Trace of the previous
matrix, which is k − 1.

Run test
This is to test whether a sequence of observations constitutes a random independent
sample or not. We assume that the observations are of the success (S) and failure
(F ) type - any other sequence can be converted into that form, one way or another.
A series of consecutive successes (or failures) is called a run. Clearly, in a

truly random sequence, runs should never be ’too long’ (but not consistently ’too
short’, either). This also means that, in a random sequence with n successes and
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m failures, we should not have too many or too few runs in total (the total number
of runs will be our test statistic T ).
This time it is possible to derive a formula for the corresponding distribution:

• The sample space consists of ¡n+m
n

¢
equally likely possibilities (there are that

many ’words’ with n letters S and m letters F ).

• To partition n letters S into k groups of at least one letter, we must first
’reserve’ one letter for each group. This leaves us with n − k to further
distribute among the k groups (the ’circle and bar’ game), which can be
done in

¡
n−1
k−1
¢
ways. Similarly, to partition m letters F into k groups can be

done in
¡
m−1
k−1
¢
ways. Finally, we have to decide whether to start with an S

of F run (2 choices). The probability that T equals 2k is thus computed by

f(2k) =
2
¡
n−1
k−1
¢¡

m−1
k−1
¢¡

n+m
n

¢
for k = 1, 2, ..., min(n,m).

• The other possibility (in addition to having the same number of S and F
runs) is that these differ by one (i.e. k S runs and k+1 F runs, or the other
way around). The probability of T equal to 2k + 1 is thus

f(2k + 1) =

¡
n−1
k

¢¡
m−1
k−1
¢
+
¡
n−1
k−1
¢¡

m−1
k

¢¡
n+m
n

¢
where k = 1, 2, ..., max(min(n,m− 1),min(n− 1,m)).

Based on these formulas, we can easily compute (with the help of Maple) ta-
bles of the corresponding distribution, and figure out the critical values for any
particular n, m and α.
We can also find the mean and variance of the corresponding distribution, with

the help of

µ =
X
All k

4k

¡
n−1
k−1
¢¡

m−1
k−1
¢¡

n+m
n

¢ +
X
All k

(2k + 1)

¡
n−1
k

¢¡
m−1
k−1
¢
+
¡
n−1
k−1
¢¡

m−1
k

¢¡
n+m
n

¢ =
2nm

n+m
+ 1

and X
All k

8k2
¡
n−1
k−1
¢¡

m−1
k−1
¢¡

n+m
n

¢ +
X
All k

(2k + 1)2
¡
n−1
k

¢¡
m−1
k−1
¢
+
¡
n−1
k−1
¢¡

m−1
k

¢¡
n+m
n

¢
=

4nm(n+ 1)(m+ 1) + (n+m)2 − 10nm− n−m

(n+m)(n+m− 1)
which results in

σ2 =
4nm(n+ 1)(m+ 1) + (n+m)2 − 10nm− n−m

(n+m)(n+m− 1) −
µ
2nm

n+m
+ 1

¶2
=

2nm(2nm− n−m)

(n+m)2(m+m− 1)
For both n andm bigger than 9, the distribution of T is approximately Normal.

This is when the formulas for µ and σ2 would come handy.
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(Sperman’s) rank correlation coefficient
All we have to do is to rank, individually, the X and Y observations (from 1 to n),
and compute the regular correlation coefficient between the ranks. This simplifies
to

rS = 1− 6 ·
Pn

i=1 d
2
i

n(n2 − 1)
where di is the difference between the ranks of the X and Y observation of the ith

pair.

Proof. Let X̂i and Ŷi denote the ranks. We know that, individually, their sum
is n(n+1)

2
, and their sum of squares equals to n(n+1)(2n+1)

6
. Furthermore

nX
i=1

d2i =
nX
i=1

(X̂i − Ŷi)
2 =

n(n+ 1)(2n+ 1)

3
− 2

nX
i=1

X̂iŶi

This implies

rS =

Pn
i=1 X̂iŶi − (

Pn
i=1 X̂i)(

Pn
i=1 Ŷi)

ns·Pn
i=1 X̂

2
i − (

Pn
i=1 X̂i)

2

n

¸
·
·Pn

i=1 Ŷ
2
i − (

Pn
i=1 Ŷi)

2

n

¸

=
n(n+1)(2n+1)

6
−

Pn
i=1 d

2
i

2
− n(n+1)2

4
n(n+1)(2n+1)

6
− n(n+1)2

4

= 1−
Pn

i=1 d
2
i

2
n(n2−1)
12

For relatively small n, we can easily construct the distribution of rS, assuming
that X and Y are independent (and design the corresponding test for testing that
as the null hypothesis).
When n is ’large’ (bigger than 10), the distribution of rS is approximately

Normal. To be able to utilize this, we need to know the corresponding mean and
variance under H0. These turn out to be 0 and 1

n−1 , respectively.

Proof. What we need is

E(d2i ) =

Pn
k=1

Pn
c=1(k − c)2

n2
=

n2 − 1
6

E(d4i ) =

Pn
k=1

Pn
c=1(k − c)4

n2
=
(n2 − 1)(2n2 − 3)

30

and

E(d2id2j) =
Pn

k=1

Pn
c=1(k − j)2

P
K 6=k

P
L6=c(K − L)2

n2(n− 1)2

=

Pn
k=1

Pn
c=1(k − j)2

Pn
K=1

Pn
L=1(K − L)2

n2(n− 1)2

−2
Pn

k=1

Pn
c=1(k − j)2

Pn
L=1(k − L)2

n2(n− 1)2 +

Pn
k=1

Pn
c=1(k − j)4

n2(n− 1)2

=
(5n3 − 7n2 + 18)(n+ 1)

180
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implying: Var(d2i ) =
7n2−13
180

(n2 − 1) and Cov(d2i , d
2
j) = −2n

2−5n−13
180

(n+ 1).

Based on this,

E

Ã
nX
i=1

d2i

!
=

n(n2 − 1)
6

and

Var

Ã
nX
i=1

d2i

!
= n

7n2 − 13
180

(n2− 1)−n(n− 1)2n
2 − 5n− 13
180

(n+1) =
n2(n2 − 1)2
36(n− 1)


