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S t f Li E tiSystems of Linear Equations

A system of m simultaneous linear equationsA system of m simultaneous linear equations 
in m unknowns                      is of the form mxxxx ,...,,, 321
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Where the coefficients      and       are 
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S t f Li E tiSystems of Linear Equations

Matrix form of the above set of simultaneousMatrix form of the above set of simultaneous 
equations can be written as                   
where is the coefficient matrix

BAX =
A,where           is the coefficient matrix,  

i l t i f k

mmA ×

X is a column matrix of unknowns 
and       B is a column matrix of constants   

1×mX



S t f Li E tiSystems of Linear Equations

Solution of simultaneous equation is meant toSolution of simultaneous equation is meant to 
compute the numeric values of                        

hi h ti fi ll th ti f th t
( )mixi ,...,3,2,1=

which satisfies all the equations of the set.

If all the values of      are zero, then the 
system of simultaneous equations is said to 
b h th i

jb

be homogeneous, otherwise non-
homogeneous.   
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E g of a homogeneous equation:E.g., of a homogeneous equation: 
0534 321 =−+ xxx
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S t f Li E tiSystems of Linear Equations

As stated earlier a set of simultaneousAs stated earlier, a set of simultaneous 
equation can be expressed as                   in 
matrix form

BAX =
matrix form.
The solution matrix X can be obtained by the 
equationequation   

B t thi th d i i ti l f l

BAX 1−=

But this method is impractical for large 
systems even with efficient ways of 
computing the determinantscomputing the determinants



B k S b tit tiBack Substitution

The back substitution is an algorithm whichThe back substitution is an algorithm, which 
is useful for solving a linear system of 
equations that has an upper-triangularequations that has an upper-triangular 
coefficient matrix
Definition Upper Triangular MatrixDefinition- Upper-Triangular Matrix
An nxn matrix is called upper triangular 
provided that the elements satisfy 0aprovided that the elements satisfy      
whenever i > j. i.e., all entries below main 
triangular are zero

0=ija

triangular are zero.



B k S b tit tiBack Substitution

If A is an upper triangular matrix thenIf A is an upper-triangular matrix, then
AX = B is said to be an upper-triangular 

t f li tisystem of linear equations
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B k S b tit tiBack Substitution

Theorem (Back Substitution)Theorem (Back Substitution). 
Suppose that AX=B is an upper-triangular 

t ith th f i b i (1)system with the form given above in (1). 
If          for               then there exists a unique 

l ti
0≠iia ni ,...,2,1=

solution.



E l 1Example 1

Use the back substitution method to solve theUse the back-substitution method to solve the 
upper-triangular linear system 
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E l 2Example 2

Use the back substitution method to solve theUse the back-substitution method to solve the 
upper-triangular linear system
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G Eli i ti M th dGauss Elimination Method
By using ERO matrix A is transformed into anBy using ERO, matrix A is transformed into an 
upper triangular matrix (all elements below 
diagonal is 0)g )
Back substitution is used to solve the upper-
triangular system
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G Eli i ti M th dGauss Elimination Method

At the end of ERO we must arrive at :At the end of ERO, we must arrive at : 
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E l 1Example 1

Solve the following system of simultaneousSolve the following system of simultaneous 
equations 
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Using the Gaussian elimination method



S l tiSolution




