# Solution of linear Systems by iteration methods

Mr. Edem. K. Bankas



#### **Iteration Methods**



- In certain cases, such as when a system of equations is large, iterative methods of solving equations are more advantageous.
- Elimination methods, such as Gaussian elimination, are prone to large round-off errors for a large set of equations.

#### **Iteration Methods**



 For Iteration methods, we start with an approximation to the true solution and implement it on a set of computational cycle, if successful, the computational cycle is repeated again and again to provide better and better approximation to the true value.

#### **Gauss–Seidel Method**

• Solve the linear system below by Gauss-Seidel method using three iterations.

$$8x_1 + 2x_2 + 3x_3 = 30$$
  

$$x_1 - 9x_2 + 2x_3 = 1$$
  

$$2x_1 + 3x_2 + 6x_3 = 31$$



# Solution

#### First Iteration

#### Putting $x_2 = 0$ and $x_3 = 0$ into equ (1):

$$8x_{1} = 30$$

$$x_{1} = \frac{30}{8}$$

$$30 \text{ and } x = 0$$

Putting 
$$x_1 = \frac{30}{8}$$
 and  $x_3 = 0$  into equ (2):  
 $\frac{30}{8} - 9x_2 = 1$   
 $x_2 = \frac{11}{36}$ 

## Putting $x_1 = \frac{30}{8}$ and $x_2 = \frac{11}{36}$ into equ (3) $x_3 = \frac{271}{72} = 3.76$

## **Solution**



• Second Iteration

Please continue .... up to the 4<sup>th</sup> iteration

| n          | 0      | 1      | 2      | 3      | 4 |
|------------|--------|--------|--------|--------|---|
| <b>X</b> 1 | 0.0000 | 3.7500 | 2.2600 | 2.0400 |   |
| <b>X</b> 2 | 0.0000 | 0.3056 | 0.9800 | 0.9900 |   |
| <b>X</b> 3 | 0.0000 | 3.7600 | 3.9200 | 3.9900 |   |

## Example 2



 Solve the linear system using Gauss seidel method with three iterations

$$4x + 3y - z = 2$$
$$9x + 13y - 2z = 20$$
$$11x + y - 3z = 41$$

#### Jacobi Method

This method uses two assumptions:

1. The system

 $a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1}$   $a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = b_{2}$   $\vdots$   $a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n} = b_{n}$ 

Has a unique solution



#### Jacobi Method



 The coefficient Matrix A has no zero on its main diagonal. If any diagonal entries are zero, then row or column must be interchanged to obtain a coefficient matrix that has no zero on the main diagonal

#### Jacobi Method



 To begin the Jacobi method, solve the first equation for x<sub>1</sub>, the second equation for x<sub>2</sub> and so on.

$$x_{1}^{1} = \frac{1}{a_{11}} (b_{1} - a_{12} x_{2}^{0} - \dots - a_{1n} x_{n}^{0})$$

$$x_{2}^{1} = \frac{1}{a_{22}} (b_{2} - a_{21} x_{1}^{0} - a_{23} x_{3}^{0} - \dots - a_{2n} x_{n}^{0})$$

$$x_{n}^{1} = \frac{1}{a_{nn}} (b_{n} - a_{n1} x_{1}^{0} - a_{n2} x_{2}^{0} - \dots - a_{nn-1} x_{n-1}^{0})$$

#### Example



• Use the Jacobi method to approximate the solution of the linear system

$$5x_1 - 2x_2 + 3x_3 = -1$$
  
- 3x\_1 + 9x\_2 + x\_3 = 2  
$$2x_1 - x_2 - 7x_3 = 3$$

Continue with the iteration until two successive approximations are identical when rounded to 3 sig. fig.

% A program to compute the loan payment from a Bank

% The LOAN AMOUNT to take

LA = input('Enter the Loan Amount ');

% The number of years the loan is payerble

NY = input('Length of year ');

% Interest rate

APR = input('Interest rate ');

% Compute the interest rate per month

IPM = APR/(12\*100)

% Compute the number of months

 $NM = NY^*12$ 

%Compute and display the Amount payerble per month PMT =  $(LA*IPM)/(1-(1+IPM)^{-NM})$ 

fprintf('The Amount Payerble every month is %f', PMT)

