NIFTY GLOBAL SYSTEMS C++

INTRODUCTION

T0

C++

A PRACTICAL

APPROACH

NIFTY GLOBAL SYSTEMS C++

1. Introducing C++

Programming is a core activity in the process ofgening tasks or solving problems with the
aid of a computer. An idealised picture is:

[problem or task specification] COMPUTER - [solution or completed task]

Unfortunately things are not (yet) that simplephrticular, the "specification” cannot be given
to the computer using natural language. Moreovegnnot (yet) just be a description of the
problem or task, but has to contain informationualbmw the problem is to be solved or the task
is to be executed. Hence we need programming l@egua

There are many different programming languages naaualy ways to classify them. For example,
"high-level” programming languages are languagesselsyntax is relatively close to natural
language, whereas the syntax of "low-level" langsagcludes many technical references to the
zeroes and ones (0's and 1's, etc.) of the compiteclarative" languages (as opposed to
"imperative" or "procedural” languages) enableghmgrammer to minimize his or her account
of how the computer is to solve a problem or produceracodar output. "Object-oriented
languages" reflect a particular way of thinking abproblems and tasks in terms of identifying
and describing the behavior of the relevant "olsje@malltalk is an example of a pure object-
oriented language. C++ includes facilities for abjeriented programming, as well as for more
conventional procedural programming.

The Origins of C++

C++ was developed by Bjarne Stroustrup of AT&T Belboratories in the early 1980's, and is
based on the C language. The name is a pun - $ta'Syntactic construct used in C (to
increment a variable), and C++ is intended as aremental improvement of C. Most of C is a
subset of C++, so that most C programs can be dedhfie. converted into a series of low-level
instructions that the computer can execute dirgagyng a C++ compiler.

C is in many ways hard to categories. Comparedderably language it is high-level, but it
nevertheless includes many low-level facilitieslt@ctly manipulate the computer's memory. It
is therefore an excellent language for writingeéint "systems" programs. But for other types of
programs, C code can be hard to understand, amdgtaons can therefore be particularly prone
to certain types of error. The extra object-oridritilities in C++ are partly included to
overcome these shortcomings.

www. niftyglobalsystem.com Page 2

NIFTY GLOBAL SYSTEMS C++

ANSI/ISO C++

The American National Standards Institution (AN&hd the International Standards
Organization (ISO) provide "official" and generadlgcepted standard definitions of many
programming languages, including C and C++. Sughdstrds are important. A program written
only in ANSI/ISO C++ is guaranteed to run on angnpater whose supporting software
conforms to the standard. In other words, the stehduarantees that standard-compliant C++
programs are portable. In practice most versiorG+ef include ANSI/ISO C++ as a core
language, but also include extra machine-deperfdatires to allow smooth interaction with
different computers' operating systems. These madtependent features should be used
sparingly. Moreover, when parts of a C++ program msn-compliant components of the
language, these should be clearly marked, and aspassible separated from the rest of the
program, so as to make modification of the progfandifferent machines and operating
systems as easy as possible. The three most santifievisions of the C++ standard are C++98
(1998), C++03 (2003) and C++11 (2011). Of coursean be a challenging task for software
engineers, compiler writers and lecturers (!) tegk&rack of all the revisions that appear in each
major version of the standard.

The C++ Programming Environment

The best way to learn a programming language tis/tariting programs and test them on a
computer! To do this, we need several pieces aiveoé:

« An editor with which to write and modify the C++ggram components or source code,

« A compiler with which to convert the source cod®imachine instructions which can be
executed by the computer directly,

« Alinking program with which to link the compiledggram components with each other
and with a selection of routines from existing ditbes of computer code, in order to form
the complete machine-executable object program,

« A debugger to help diagnose problems, either ingslamg programs in the first place, or
if the object program runs but gives unintendediltss

An Example C++ Program

Here is an example of a complete C++ program:

/I The C++ compiler ignores comments which stathw
/I double slashes like this, up to the end oflithe

/* Comments can also be written starting withashl
followed by a star, and ending with a star fokalby
a slash. As you can see, comments written invthig
can span more than one line. */

www. niftyglobalsystem.com Page 3

NIFTY GLOBAL SYSTEMS C++

/* Programs should ALWAYS include plenty of comn&rt/

/* Author: Nifty Global and Univtech Ghana
Program last changed: September 2013 */

/* This program prompts the user for the curredry the user's
current age, and another year. It then calcuthsage

that the user was or will be in the second yegered. */
#include <iostream>

using namespace std;

int main()

{

int year_now, age_now, another_year, another_age;

cout << "Enter the current year then press thyeBqer.\n";
cin >> year_now;

cout << "Enter your current age in years.\n";
cin >> age_now;

cout << "Enter the year for which you wish to lsngour age.\n";
cin >> another_year;

another_age = another_year - (year_now - age_;now)
if (another_age >= 0) {

cout << "Your age in " << another_year << ": ";
cout << another_age << "\n";

}else {
cout << "You weren't even bornin ";
cout << another_year << "I\n";

}

return O;

Program 1

This program illustrates several general featufedl € ++ programs. It begins (after the
comment lines) with the statement

#include <iostream>

This statement is called an include directiveellistthe compiler and the linker that the program
will need to be linked to a library of routines ti@andle input from the keyboard and output to
the screen (specifically thn andcout statements that appear later). The header figréaam"
contains basic information about this library. Yeill learn much more about libraries of code
later in this course.

www. niftyglobalsystem.com Page 4

NIFTY GLOBAL SYSTEMS C++

After the include directive is the line:

using namespace std;

This statement is calledusing directive. The latest versions of the C++ standivitle names
(e.g.cin andcout) into subcollections of names calleaimespaces. This particulausing directive
says the program will be using names that haveamnimg defined for them in thed namespace
(in this case th@streamheader defines meanings tout andcin in thestd namespace).

Some C++ compilers do not yet support namespacéBisl case you can use the older form of
the include directive (that does not requingsiag directive, and places all names in a single
global namespace):

#include <iostream.h>

Much of the code you encounter in industry will lpably be written using this older style for
headers.

Because the program is short, it is easily packagedto a single list of program statements and
commands. After the include and using directivies,lasic structure of the program is:

int main()

{

First statement;

Last statement;

return O;

}

All C++ programs have this basic "top-level" stiret Notice that each statement in the body of
the program ends with a semicolon. In a well-desiglarge program, many of these statements
will include references or calls to sub-prograristet after the main program or in a separate
file. These sub-programs have roughly the saméneustructure as the program here, but there
is always exactly one such structure catteth. Again, you will learn more about sub-programs
later in the course.

When at the end of the main program, the line
return O;

means "return the value 0 to the computer's opgyatystem to signal that the program has
completed successfully”. More generaligturn statements signal that the particular sub-
program has finished, and return a value, alonf thi¢ flow of control, to the program level
above.

www. niftyglobalsystem.com Page 5

NIFTY GLOBAL SYSTEMS C++

Our example program uses foariables:
year_now age_now another_yea@nNdanother_age

Program variables are not like variables in math@asalhey are more like symbolic names for
"pockets of computer memory" which can be useddredifferent values at different times
during the program execution. These variablesieseifitroduced in our program in the variable
declaration

int year_now, age_now, another_year, another_age;

which signals to the compiler that it should sel@enough memory to store four variables of
type 'int" (integer) during the rest of the program exeautidence variables should always be
declared before being used in a program. Indeésicinsidered good style and practice to
declare all the variables to be used in a progragub-program at the beginning. Variables can
be one of several different types in C++, and wiediscuss variables and types at some length
later.

Simple Input, Output and Assignment

After we have compiled the program above, wercarit. The result will be something like

Enter current year then press RETURN.

1996

Enter your current age in years.

36

Enter the year for which you wish to know your age
2001

Your age in 2001: 41

The first, third, fifth and seventh lines above preduced on the screen by the program. In
general, the program statement

cout <<Expressionl<<Expression2<< ... <<gxpressionN;
will produce the screen output
Expression1Expression2...ExpressionN
The series of statements

cout <<Expressioni;
cout <<Expression2;

cout <<ExpressionN;

www. niftyglobalsystem.com Page 6

NIFTY GLOBAL SYSTEMS C++

will produce an identical output. If spaces or rimgs are needed between the output
expressions, these have to be included explicitltyy a" " or a"\n" respectively. The expression
endlcan also be used to output a new line, and in masgs is preferable to using since it

has the side-effect of flushing the output buffartput is often stored internally and printed in
chunks when sufficient output has been accumulatgdgendi forces all output to appear on the
screen immediately).

The numbers inold in the example screen output above have been tydedthe user. In this
particular program run, the program statement

cin >> year_now;

has resulted in the variablear_nowbeingassigned the value 2001 at the point when the user
pressed ENTER key from the key board after typm¢{0D01". Programs can also include
assignment statements, a simple example of whittteistatement

another_age = another_year - (year_now - age_now);

Hence the symbal means "is assigned the value of". ("Equals” iseggnted in C++ as-.)

Flow of Control

The last few lines of our example program (othantheturn ¢') are:

if (another_age >=0) {
cout << "Your age in " << another_year << " ";
cout << another_age <<"\n";

}

else {
cout << "You weren't even born in ";
cout << another_year << "\n";

}

The "if ... else ..." branching mechanism is a feanconstruct in many procedural programming
languages. In C++, it is simply called idustatement, and the general syntax is

if (condition) {
Statementl;

SatementN;
}else {
SatementN+1;

SatementN+ M;
}

www. niftyglobalsystem.com Page 7

NIFTY GLOBAL SYSTEMS C++

The "else" part of an "if statement” may be omittad furthermore, if there is just ogatement
after the "if (condition)", it may be simply writteas

if (condition)
Statement;

It is quite common to find "if statements” strugyéther in programs, as follows:

if (total_test_score < 50)

cout << "You are a failure. You must study muehder.\n";
else if (total_test score < 65)

cout << "You have just scraped through the t@st.\
else if (total_test_score < 80)

cout << "You have done quite well.\n";
else if (total_test_score < 95)

cout << "Your score is excellent. Well done.\n";
else {

cout << "You cheated\n";

total_test _score = 0;

This program fragment has quite a complicated Egtructure, but we can confirm that it is
legal in C++ by referring to the syntax diagram'fibistatements”. In such diagrams, the terms
enclosed in ovals or circles refer to program congpds that literally appear in programs. Terms
enclosed in boxes refer to program componentsdogaiire further definition, perhaps with
another syntax diagram. A collection of such diaggaan serve as a formal definition of a

programming language's syntax (although they ddalm distinguish between good and bad
programming style!).

Below is the syntax diagram for an "if statemetftis best understood in conjunction with the

syntax diagram for a "statement". In particulattic®that the diagram doesn't explicitly include
the *" or "} " delimiters, since these are built into the déifom (syntax diagram) of "statement".

Brgolesiy rat R
EITFEEST Gl SIS L EHEE

I/"
l_ siatement

Syntax diagram for an If Statement

The C++ compiler accepts the program fragment imeeample by counting all of thmlid text
in

www. niftyglobalsystem.com Page 8

NIFTY GLOBAL SYSTEMS C++

if (total_test_score < 50)

cout << "You are a failure. You must study muehder.\n";
elseif (total_test_score < 65)

cout << "You have just scraped through the test’;
else if (total_test_score < 80)

cout << "You have done quite well.\n";
else if (total_test score < 95)

cout << "Your score is excellent. Well done.\n";
else {

cout << "You cheated\n";

total_test_score = 0;

as the single statement which must follow the fise.

Remarks about Program Style

As far as the C++ compiler is concerned, the foltaprogram is exactly the same as the
program in above:

#include <iostream> using namespace std; int main()
{int year_now, age_now, another_year, anothge; cout <<
"Enter the current year then press RETURN&m';>> year_now; cout
<< "Enter your current age in years.\n"; cin >> ag@v; cout <<
"Enter the year for which you wish to know yage.\n"; cin >>
another_year; another_age = another_year f (yew - age_now); if
(another_age >= 0) { cout << "Your age in " aother_year <<": ";
cout << another_age << "\n"; } else { cout <<
"You weren't even born in "; cout << anothemryg< "\n"; } return
0;}

However, the lack gbrogram comments, spaces, new lines andindentation makes this program
unacceptable. There is much more to developingod googramming style than learning to lay
out programs properly, but it is a good start! Basistent with your program layout, and make
sure the indentation and spacing reflects the &gitucture of your program. It is also a good
idea to pick meaningful names for variablega now, "age_now, "another_yeaf and
"another__agé are better names thap ", "a_n', "a_y' and 'a_a', and much better tham", "x",

"y" and 'Z'. Remember that your programs might need modiGoaby other programmers at a

later date.

www. niftyglobalsystem.com Page 9

NIFTY GLOBAL SYSTEMS C++

Variables, Types and Expressions

ldentifiers

As we have seen, C++ programs can be written usargy English words. It is useful to think of
words found in a program as being one of threestype

1. Reserved Words. These are words sudh as andelsg which have a predefined meaning that
cannot be changed.

2. Library Identifiers. These words are supplied difeneanings by the programming environment,
and should only have their meanings changed ipthgrammer has strong reasons for doing so.
Examples arein, coutandsqrt(square root).

3. Programmer-supplied Identifiers. These words aredted" by the programmer, and are typically
variable names, such gsar_nowandanother_age

An identifier cannot be any sequence of symbolsakd identifier must start with a letter of the
alphabet or an underscore'(f'and must consist only of letters, digits, andlenscores.

Data Types

Integers

C++ requires that all variables used in a prograngiben a data type. We have already seen the
data typent. Variables of this type is used to represent itegwhole numbers). Declaring a
variable to be of typat, signals to the compiler that it must associataughanemory with the
variable's identifier to store an integer valuenveger values as the program executes. But there
is a (system dependent) limit on the largest anallsst integers that can be stored. Hence C++
also supports the data type®rt intandiong int which represent, respectively, a smaller and a
larger range of integer values thamn Adding the prefixunsignedto any of these types means that
you wish to represent non-negative integers ordy.example, the declaration

unsigned short int year_now, age_now, another, geather_age;
reserves memory for representing four relativelplbmon-negative integers.
Some rules have to be observed when writing integleles in programs:

1. Decimal points cannot be used; although 26 and 286 the same value6.0' is not of type
"int".

2. Commas cannot be used in integers, so that (fonpbed 23,897 have to be written as
"23897.Integers cannot be written with leading zerose Thmpiler will, for example, interpret
"011" as an octal (base 8) number, with value 9.

www. niftyglobalsystem.com Page 10

NIFTY GLOBAL SYSTEMS C++

Real numbers

Variables of typefloat" are used to store real numbers. Plus and miigus $or data of type
"float" are treated exactly as with integers, and trgifieros to the right of the decimal point are
ignored. Hence+523.5', "523.5' and '523.500 all represent the same value. The computer also
accepts real numbersfimating-point form (or "scientific notation"). Hence 523.5 could
written as 5.235e+02 (i.e. 5.235 x 10 x 10), and -0.0034 ax4e-03. In addition to fioat", C++
supports the typesiSublé’ and 'long doublé, which give increasingly precise representatibn o
real numbers, but at the cost of more computer rmgmo

Type Casting

Sometimes it is important to guarantee that a valstéored as a real number, even if it is in fact
a whole number. A common example is where an aatltnexpression involves division. When
applied to two values of typet, the division operator™ signifies integer division, so that (for
example)r/2 evaluates to 3. In this case, if we want an an®#8t5, we can simply add a
decimal point and zero to one or both numbemso/Z', "7/2.d" and "7.0/2.¢' all give the desired
result. However, if both the numerator and thestiviare variables, this trick is not possible.
Instead, we have to use a type cast. For exampleaw convert7" to a value of type@ouble

using the expressiontatic_cast<double>(7) Hence in the expression

answer = static_cast<double>(numerator) / dendimina

the " will always be interpreted as real-number diwsieven when bothtimeratof and
"denominatof have integer values. Other type names can alssée for type casting. For
example, Static_cast<int>(14.35)has an integer value of 14.

Characters

Variables of type¢har' are used to store character data. In standard @ata of type c¢har' can
only be a single character (which could be a bigpdce). These characters come from an
available character set which can differ from cotepto computer. However, it always includes
upper and lower case letters of the alphabet, itfiesd, ... ,9, and some special symbols such as
£, 1, +, -, etc. Perhaps the most common collection of charads the ASCII character set

Character constants of typen&' must be enclosed in single quotation marks wissdun a
program, otherwise they will be misinterpreted amaly cause a compilation error or unexpected
program behavior. For examplea™ is a character constant, but"will be interpreted as a
program variable. Similarly,9" is a character, bub™ is an integer.

There is, however, an important (and perhaps som@egdnfusing) technical point concerning
data of type ¢hat'. Characters are represented as integers insideotmputer. Hence the data

type ‘chart' is simply a subset of the data typet": We can even do arithmetic with characters.

www. niftyglobalsystem.com Page 11

NIFTY GLOBAL SYSTEMS C++

For example, the following expression is evaluaedrue on any computer using the ASCII
character set:

'9'-'0' == 57 - 48 ==

The ASCII code for the character '9' is decima(®&xadecimal 39) and the ASCII code for the
character '0' is decimal 48 (hexadecimal 30) soe¢fuation is stating that

57(dec) - 48(dec) == 39(hex) - 30(hex) ==
It is often regarded as better to use the ASClkeedd their hexadecimal form.

However, declaring a variable to be of typeat' rather than typeifit" makes an important
difference as regards the type of input the progeapects, and the format of the output it
produces. For example, the program

#include <iostream>
using namespace std;

int main()

{

int number;
char character;

cout << "Type in a character:\n";
cin >> character;

number = character;
cout << "The character " << character;
cout << " is represented as the number ";

cout << number << " in the computer.\n";

return O;

Program 2

produces output such as

Type in a character:
9
The character '9' is represented as the numbierthé computer.

We could modify the above program to print outwiele ASCII table of characters using a "for
loop". The "for loop" is an example ofrgpetition statement - we will discuss these in more
detail later. The general syntax is:

for (initialisation; repetition_condition ; update) {
Statement1;

www. niftyglobalsystem.com Page 12

NIFTY GLOBAL SYSTEMS C++

SatementN;

}

C++ executes such statements as follows: (1) ites thenitialisation Statement. (2) it checks

to see ifrepetition_condition is true. If it isn't, it finishes with the "for &p" completely. But if it is,

it executes each of the statememdgment1 ... SatementN in turn, and then executes the expression
update. After this, it goes back to the beginning of stgpagain.

We can also 'manipulate’ the output to producénéxadecimal code. Hence to print out the
ASCII table, the program above can be modified to:

#include <iostream>
using namespace std;

int main()

{
int number;
char character;

for (number = 32 ; number <= 126 ; number = numbg) {
character = number;
cout << "The character " << character;
cout << " is represented as the number ";
cout << dec << number << " decimal or "
<<hex<<number<< " hex.\n";

}

return O;

Program 3
which produces the output:

The character ' ' is represented as the numbede&thal or 20 hex.
The character "' is represented as the numbede@Bnal or 21 hex.

The character }' is represented as the numbed&2snal or 7D hex.
The character '~ is represented as the numbeddd@#fal or 7E hex.

www. niftyglobalsystem.com Page 13

NIFTY GLOBAL SYSTEMS C++

Strings

Our example programs have made extensive use tffkeéstring' in their output. As we have
seen, in C++ a string constant must be enclosdduble quotation marks. Hence we have seen
output statements such as

cout << " is represented as the number ";

in programs. In fact,string' is not a fundamental data type suchias,™float" or "char'. Instead,
strings are represented as arrays of charactevge sall return to subject of strings later, when
we discuss arrays in general.

User Defined Data Types

Later in the course we will study the topic of dggaes in much more detail. We will see how
the programmer may define his or her own data typleis facility provides a powerful
programming tool when complex structures of datdre be represented and manipulated by a
C++ program.

Tips on Formatting Real Number Output

When program output contains values of tyfiet®, "doublé' or "long doublé, we may wish to
restrict the precision with which these valuesdisplayed on the screen, or specify whether the
value should be displayed in fixed or floating gdorm. The following example program uses
the library identifier 8qgrt' to refer to the square root function, a standhafinition of which is
given in the header filemath(or in the old header styteath.}).

#include <iostream>
#include <cmath>
using namespace std;

int main()

{

float number;

cout << "Type in a real number.\n";

cin >> number;

cout.setf(ios::fixed); // LINE 10

cout.precision(2);

cout << "The square root of " << number << "jpeXimately ";
cout << sgrt(number) <<".\n";

return O;

www. niftyglobalsystem.com Page 14

NIFTY GLOBAL SYSTEMS C++

This produces the output

Type in a real number.
200
The square root of 200.00 is approximately 14.14.

Whereas replacing line 10 without.setf(ios::scientifi¢) produces the output:

Type in a real number.
200
The square root of 2.00e+02 is approximately +01e

We can also include tabbing in the output usintatement such asdut.width(20§. This

specifies that the next item output will have atwidf at least 20 characters (with blank space
appropriately added if necessary). This is usefgjanerating tables. However the C++ compiler
has a default setting for this member function Wwhitakes it right justified. In order to produce
output left-justified in a field we need to use sfancy input and output manipulation. The
functions and operators which do the manipulatienta be found in the library filemanip (old
header styléomanip.i) and to do left justification we need to set gfla a different value (i.e.

left) using thesetiosflagsoperator:

#include <iostream>
#include <cmath>
#include <iomanip>
using namespace std;

int main()

{

int number;

cout << setiosflags (ios :: left);
cout.width(20);
cout << "Number" << "Square Root\n\n";

cout.setf(ios::fixed);

cout.precision(2);

for (number = 1 ; number <= 10 ; number = numbéj {
cout.width(20);
cout << number << sqrt((double) number) <<;\n"

}

return O;

www. niftyglobalsystem.com Page 15

NIFTY GLOBAL SYSTEMS C++

This program produces the output

Number Square Root

1.00
1.41
1.73
2.00
2.24
2.45
2.65
2.83
3.00
0 3.16

POoO~NOORWDNPE

(In fact, the above programs work becausat” is an identifier for an object belonging to the
class ‘streant, and 'setf(...)", "precision(...y and "width(...)* are member functions oétfeani.

Declarations, Constants and Enumerations

As we have already seen, variables have to bergéldieefore they can be used in a program,
using program statements such as

float number;

Between this statement and the first statementwédssignsriumbet’ an explicit value, the value
contained in the variableximbet is arbitrary. But in C++ it is possible (and desie) to

initialize variables with a particular value at tseeme time as declaring them. Hence we can
write

double Pl = 3.1415926535;

Furthermore, we can specify that a variable's vahmot be altered during the execution of a
program with the reserved worcbhst':

Enumerations

Constants of typeinit” may also be declared with an enumeration staterren example, the
declaration

enum { MON, TUES, WED, THURS, FRI, SAT, SUN };

is shorthand for

const int MON = 0;
constint TUES = 1;
const int WED = 2;
constint THURS = 3;

www. niftyglobalsystem.com Page 16

NIFTY GLOBAL SYSTEMS C++

const int FRI = 4;
constint SAT =5;
const int SUN = 6;

By default, members of arnuni' list are given the values 0, 1, 2, etc., but whenn' members
are explicitly initialised, uninitialised memberkthe list have values that are one more than the
previous value on the list:

enum { MON = 1, TUES, WED, THURS, FRI, SAT = -1UR };
In this case, the value ofRI" is 5, and the value oBUN" is O.

Where to put Constant and Variable Declarations

Generally speaking, it is considered good pradtigeut constant declarations before theaifi'
program heading, and variable declarations aftefsyan the body ofmiain’. For example, the
following is part of a program to draw a circleao@jiven radius on the screen and then print out
its circumference:

#include <iostream>

using namespace std;

const float Pl = 3.1415926535;
const float SCREEN_WIDTH = 317.24;

int drawCircle(float diameter); /* this is a "futhen prototype" */

int main()

{

float radius = 0;

cout << "Type in the radius of the circle.\n";
cin >> radius;

drawCircle(radius * 2);

cout.setf(ios::fixed);

cout.precision(2);

cout << "The circumference of a circle of radlus< radius;
cout << " is approximately " << 2 * Pl * radius£.\n";

return O;
}
int drawCircle(float diameter)
{

float radius = 0;

if (diameter > SCREEN_WIDTH)
radius = SCREEN_WIDTH / 2.0;
else

www. niftyglobalsystem.com Page 17

NIFTY GLOBAL SYSTEMS C++

radius = diameter / 2.0;

}

After the definition of fain()", this program includes a definition of the fulcti'drawCircle(...,
the details of which need not concern us here @mesimply think of drawCircle(...J as a
function like "sqrt(...)"). But notice that although botimain()' and 'drawCircle(...y use the identifier
"radiug', this refers to different variable in tain()' than in ‘drawCircle(...Y. Had a variableradius'
been declared before thedin" program heading, it would have been a publiglobal variable.
In this case, and assuming there was no otherblariteclaration inside the function
"drawCircle(...}, if "drawCircle(...y had assigned it the valuBCREEN_WIDTH / 2.8, "main()" would
have subsequently printed out the wrong valueHercircumference of the circle. We say that
the (first) variable radius' is local to the main part of the program, or has the functionmainas its
scope. In contrast, it usually makes sense to make eotssuch asPf" and 'SCREEN_WIDTH
global, i.e. available to every function.

In any case, notice that the program above incatperthe safety measureeshoing the input.

In other words, the given value ahdius' is printed on the screen again, just before the
circumference of the circle is output.

Assignments and Expressions

Shorthand Arithmetic Assignment Statements

We have already seen how programs can includeblar@ssignments such as

number = number + 1;

Since it is often the case that variables are asdig new value in function of their old value,
C++ provides a shorthand notation. Any of the ofpesa+" (addition), “" (subtraction), *"
(multiplication), " (division) and %" (modulus) can be prefixed to the assignment dpe(a),
as in the following examples

Example: Equivalent to:

number += 1; number = number + 1;
total -= discount; total = total - discount;
bonus *= 2; bonus = bonus * 2;

time /= rush_factor; time = time / rush_factor;
change %= 100; change = change % 100;

www. niftyglobalsystem.com Page 18

NIFTY GLOBAL SYSTEMS C++

amount *= countl + count2; amount = amount * (countl + count2);

The first of the above examples may be writtermv@neshorter form. Using the increment
operator ++", we may simply write

number++;

The operator++" may also be used as a prefix operator:

++number;

but care must be taken, since in some contextgréfex and postfix modes of use have different
effects. For example, the program fragment

results in both variables having value 5. Thisasduse ++x" increments the value ok™ before

its value is used, whereas-+" increments the value afterwards. There is alsoparator --",
which decrements variables by 1, and which canla¢sesed in prefix or postfix form.

In general, assignment statements have a valué i@ value of the left hand side after the
assignment. Hence the following is a legal expogssihich can be included in a program and
which might be either evaluated as true or as false

(y = ++X) ==

It can be read as the assertion: "after x is inerged and its new value assigned to y, y's value is
equal to 5".

Boolean Expressions and Operators

Intuitively, we think of expressions such ax"7', "1.2 1=3.7 and '6 >= ¢' as evaluating totrue"
or "falsé' ("!=" means "not equal to"). Such expressions can bowd using the logical
operators &&" ("and"), "|I' ("or") and 1" ("not"), as in the following examples:

www. niftyglobalsystem.com Page 19

NIFTY GLOBAL SYSTEMS C++

Expression: True or False:
(6 <=6) && (5<3) false
(6<=6)](5<3) true
(5!=6) true
(5<3)&& (6 <=6) || (5!=6) true

(5<3)&& ((6<=6)||(5!=6)) false

(5 < 3) && ((6 <=6) || (5 !=6))) true

The fourth of these expressions is true becausepérator && " has a higher precedence than
the operator|f". Compound Boolean expressions are typically @sethe condition in "if
statements" and "for loops". For example:

if (total_test_score >= 50 && total_test _score5) 6
cout << "You have just scraped through the t&st.\

Once again, there is an important technical panterning Boolean expressions. In C+itye'

is represented simply as any non-zero integer,'@nd' is represented as the value 0. This can
lead to errors. For example, it is quite easy pet}" instead of 2=". Unfortunately, the
program fragment

i.fl(number_of_people =1)
cout << "There is only one person.\n";

will always result in the messagenére is only one perséibeing output to the screen, even if the
previous value of the variabledmber_of peoplewas not 1.

www. niftyglobalsystem.com Page 20

NIFTY GLOBAL SYSTEMS C++

Functions and Procedural Abstraction
The Need for Sub-programs

A natural way to solve large problems is to brdedat down into a series of sub-problems,
which can be solved more-or-less independentlytlh@d combined to arrive at a complete
solution. In programming, this methodology refleitself in the use o$ub-programs, and in
C++ all sub-programs are calléghctions (corresponding to both "functions” and "procedures
in Pascal and some other programming languages).

We have already been using sub-programs. For exampihe program which generated a table
of square roots, we used the following "for loop™:

#include<cmath>

for (number = 1 ; number <= 10 ; number = numbéj {
cout.width(20);
cout << number << sgrt(number) << "\n";

The function 5qrt(...J' is defined in a sub-program accessed via thabfile cmath(old header
stylemath.fj. The sub-program takesumbet', uses a particular algorithm to compute its squar
root, and then returns the computed value badka@togram. We don't care what the algorithm
is as long as it gives the correct result. It wdagdridiculous to have to explicitly (and perhaps
repeatedly) include this algorithm in thedin' program.

In this chapter we will discuss how the programger define his or her own functions. At first,
we will put these functions in the same file asifi". Later we will see how to place different
functions in different files.

User-defined Functions

Here's a trivial example of a program which inckideuser defined function, in this case called
"area(...}. The program computes the area of a rectangigveh length and width.

#include<iostream>
using namespace std;

int area(int length, int width); /* function dechtion */

/* MAIN PROGRAM: */
int main()

{

www. niftyglobalsystem.com Page 21

NIFTY GLOBAL SYSTEMS C++

int this_length, this_width;

cout << "Enter the length: "; [* <line 9 */
cin >> this_length;

cout << "Enter the width: ";

cin >> this_width;

cout << "\n"; [* <ine 13 */

cout << "The area of a " << this_length << "x" th¥s_width;
cout << " rectangle is " << area(this_lengthsthvidth);

return O;
}
/* END OF MAIN PROGRAM */

/* FUNCTION TO CALCULATE AREA: */
int area(int length, int width) [* start of futh@n definition */

{

int number;
number = length * width;
return number;

} /* end of funoti definition */
/* END OF FUNCTION */

Although this program is not written in the mostaunct form possible, it serves to illustrate a
number of features concerning functions:

« The structure of a function definition is like theucture of thain()', with its own list of variable
declarations and program statements.

« A function can have a list of zero or more paramsditgside its brackets, each of which has a
separate type.

- A function has to be declared in a function dedlaraat the top of the program, just after any
global constant declarations, and before it caodtled by fain()' or in other function
definitions.

« Function declarations are a bit like variable detlans - they specify which type the function
will return.

A function may have more than one "return” statamarwhich case the function definition will
end execution as soon as the first "return” ishhedcFor example:

double absolute_value(double number)

{
if (number >= 0)
return number;
else
return O - number;
}

www. niftyglobalsystem.com Page 22

NIFTY GLOBAL SYSTEMS C++

Value and Reference Parameters

The parameters in the functions above areadlle parameters. When the function is called
within the main program, it is passed the valugsetuly contained in certain variables. For
example, &rea(...J is passed the current values of the varialies lengtti and 'this_width'. The
function "area(...j then stores these values in its own private Wt and uses its own private
copies in its subsequent computation.

Functions which use Value Parameters are Safe

The idea of value parameters makes the use ofifunsctsafe”, and leads to good programming
style. It helps guarantee that a function will hatve hidderside effects. Here is a simple
example to show why this is important. Suppose a&atva program which produces the
following dialogue:

Enter a positive integer:
4
The factorial of 4 is 24, and the square root 2.

It would make sense to use the predefined funétai...J in our program, and write another
function 'factorial(...J' to compute the factorial n! = (1 x 2 x ... x ff)amy given positive integer n.
Here's the complete program:

#include<iostream>
#include<cmath>
using namespace std;

int factorial(int number);

/* MAIN PROGRAM: */
int main()

{

int whole_number;

cout << "Enter a positive integer:\n";

cin >> whole_number;

cout << "The factorial of " << whole_number <",

cout << factorial(whole_number);

cout << ", and the square root of " << whole_nemb< " is ",
cout << sqrt(whole_number) << ".\n";

return O;
}
/* END OF MAIN PROGRAM */

/* FUNCTION TO CALCULATE FACTORIAL: */
int factorial(int number)

{
int product = 1;

for (; number > 0 ; number--)

www. niftyglobalsystem.com Page 23

NIFTY GLOBAL SYSTEMS C++

product *= number;
return product;

}
/* END OF FUNCTION */

By the use of a value parameter, we have avoidedctirrect but unwanted) output

Enter a positive integer:
4
The factorial of 4 is 24, and the square root &f 0.

which would have resulted if the functiofactorial(...)' had permanently changed the value of the
variable Whole_numbet.

Reference Parameters

Under some circumstances, it is legitimate to negaifunction to modify the value of an actual
parameter that it is passed. For example, goinf teathe program which inputs the dimensions
of a rectangle and calculates the area, it woulkeng@od design sense to package up lines 9 to
13 of the main program into a "get-dimensions" putgram (i.e. a C++ function). In this case,
we require the function to alter the valuestois” lengtti and 'this_widti' (passed as parameters),
according to the values input from the keyboard.dAte achieve this as follows using reference
parameters, whose types are post-fixed withgdn "

#include<iostream>
using namespace std;

int area(int length, int width);
void get_dimensions(int& length, int& width);

/* MAIN PROGRAM: */
int main()

{
int this_length, this_width;

get_dimensions(this_length, this_width);
cout << "The area of a " << this_length << "x" this_width;
cout << " rectangle is " << area(this_lengthsthvidth);

return O;

}
/* END OF MAIN PROGRAM */

/* FUNCTION TO INPUT RECTANGLE DIMENSIONS: */
void get_dimensions(int& length, int& width)
{

cout << "Enter the length: ";

cin >> length;

cout << "Enter the width: ";

www. niftyglobalsystem.com Page 24

NIFTY GLOBAL SYSTEMS C++

cin >> width;
cout << "\n";

}
/* END OF FUNCTION */

/* FUNCTION TO CALCULATE AREA: */
int area(int length, int width)

{

}
/* END OF FUNCTION */

return length * width;

Notice that although the functioget_dimensiorispermanently alters the values of the parameters
"this_lengtti and 'this_widtH' it does not return any other value (i.e. is ntfuaction” in the
mathematical sense). This is signified in bothfthrection declaration and the function heading
by the reserved wordsid".

Polymorphism and Overloading

C++ allowspolymorphism, i.e. it allows more than one function to have sheme name, provided
all functions are either distinguishable by theimgpor the number of their parameters. Using a
function name more than once is sometimes reféar@doverloading the function name. Here's
an example:

#include<iostream>
using namespace std;

int average(int first_number, int second_numbrrthird_number);
int average(int first_number, int second_number);

/* MAIN PROGRAM: */
int main()

{

int number_A =5, number_B = 3, number_C = 10;

cout << "The integer average of " << number_A"'and ";
cout << number_ B <<"is";
cout << average(number_A, number_B) << ".\n\n";

cout << "The integer average of " << number_A"<%
cout << number_B << " and " << number_C << ";is "
cout << average(number_A, number_B, number_C).\¥¥;

return O;
}
/* END OF MAIN PROGRAM */

/* FUNCTION TO COMPUTE INTEGER AVERAGE OF 3 INTEGES: */
int average(int first_number, int second_numbrrthird_number)

{

return ((first_number + second_number + third_ham/ 3);

www. niftyglobalsystem.com Page 25

NIFTY GLOBAL SYSTEMS C++

}
/* END OF FUNCTION */

/* FUNCTION TO COMPUTE INTEGER AVERAGE OF 2 INTEGES: */
int average(int first_number, int second_number)

{

}
/* END OF FUNCTION */

return ((first_number + second_number) / 2);

This program produces the output:

The integer average of 5 and 3 is 4.

The integer average of 5, 3 and 10 is 6.

Procedural Abstraction and Good Programming Style

One of the main purposes of using functions isdarathetop down design of programs. During
the design stage, as a problem is subdivided astkst(and then into sub-tasks, sub-sub-tasks,
etc.), the problem solver (programmer) should hHawveonsider only what a function is to do and
not be concerned about the details of the funclibie. function name and comments at the
beginning of the function should be sufficientiéorm the user as to what the function does.
(Indeed, during the early stages of program devety, experienced programmers often use
simple "dummy" functions astubs, which simply return an arbitrary value of thereat type, to
test out the control flow of the main or higherdeprogram component.)

Developing functions in this manner is referreds$éunctional or procedural abstraction. This
process is aided by the use of value parametertaabvariables declared within the body of a
function. Functions written in this manner can bégarded as "black boxes". As users of the
function, we neither know nor care why they work.

Splitting Programs into Different Files

As we have seen, C++ makes heavy use of predediaaedard libraries of functions, such as
"sart(...J'. In fact, the C++ code forgrt(...J', as for most functions, is typically split intea files:

« Theheader file "cmatH' contains the function declarations fanftt(...)’ (and for many other
mathematical functions). This is why in the exammiegrams which callsyrt(...) we are able to
write "#include<cmath®, instead of having to declare the function expiic

« Theimplementation file "math.cpf contains the actual function definitions faxtt(...) and other
mathematical functions. (In practice, many C++eyst have one or a few big file(s) containing
all the standard function definitions, perhapsexhlANSI.cpg' or similar.)

It is easy to extend this library structure to un# files for user-defined functions, such as
"area(...}, "factorial(...) and 'average(..!). As an example, Program 3.6.1 below is the sasne a

www. niftyglobalsystem.com Page 26

NIFTY GLOBAL SYSTEMS C++

Program 3.4.1, but split into a main program fddyeader file for the two average functions, and
a corresponding implementation file.

The code in the main program file is as follows:

#include<iostream>
#include"averages.h"

using namespace std;

int main()

{

int number_A =5, number_B = 3, number_C = 10;

cout << "The integer average of " << number_A"'and ";
cout << number_ B <<"is";
cout << average(number_A, number_B) << "\n\n";

cout << "The integer average of " << number_A"<%
cout << number_B << " and " << number_C << ";is "
cout << average(number_A, number_B, number_C).\¥¥;

return O;

Program 3.6.1

Notice that whereasntlude' statements for standard libraries suchiasréani delimit the file
name with angle €>") brackets, the usual convention is to delimitrecbefined library file
names with double quotation marks - hence the"lieclude"averages.h* in the listing above.

The code in the header filavérages.his listed below. Notice the use of the file idéet
"AVERAGES_H', and the reserved wordsgndef’ ("if not defined"), ‘define’, and ‘endif".
"AVERAGES_H' is a (global) symbolic name for the file. Thesfitwo lines and last line of code
ensure that the compiler (in fact, §hreprocessor) only works through the code in between
once, even if the line#include"averages.h'is included in more than one other file.

Constant and type definitions are also often inetlish header files. You will learn more about
this in the object-oriented part of the course.

#ifndef AVERAGES_H
#define AVERAGES_H

/* (constant and type definitions could go herk) *

/* FUNCTION TO COMPUTE INTEGER AVERAGE OF 3 INTEGES: */
int average(int first_number, int second_numbrthird_number);

/* FUNCTION TO COMPUTE INTEGER AVERAGE OF 2 INTEGES: */
int average(int first_number, int second_number);

#endif

www. niftyglobalsystem.com Page 27

NIFTY GLOBAL SYSTEMS C++

averages.h

Finally, the code in the implementation file "avgea.cpp” is as follows:

#include<iostream>
#include"averages.h"

using namespace std;

/* FUNCTION TO COMPUTE INTEGER AVERAGE OF 3 INTEGES: */
int average(int first_number, int second_numbrdrthird_number)

{

}
/* END OF FUNCTION */

return ((first_number + second_number + third_ham/ 3);

/* FUNCTION TO COMPUTE INTEGER AVERAGE OF 2 INTEGES: */
int average(int first_number, int second_number)

{

}
/* END OF FUNCTION */

return ((first_number + second_number) / 2);

averages.cpp

Note the modularity of this approach. We could gjethe details of the code in "averages.cpp”
without making any changes to the code in "averaes in the main program file.

www. niftyglobalsystem.com Page 28

NIFTY GLOBAL SYSTEMS C++

Files and Streams
Why Use Files?

All the programs we have looked at so far use igmly from the keyboard, and output only to
the screen. If we were restricted to use only #ybkard and screen as input and output devices,
it would be difficult to handle large amounts oput data, and output data would always be lost
as soon as we turned the computer off. To avoisktipegoblems, we can store data in some
secondary storage device, usually magnetic tapdscs. Data can be created by one program,
stored on these devices, and then accessed oriatblljf other programs when necessary. To
achieve this, the data is packaged up on the statagces as data structures caflés.

The easiest way to think about a file is as a liseguence of characters. In a simplified picture
(which ignores special characters for text formngftithese lecture notes might be stored in a file
called "LectureNotes_4" as:

Figure 4.1.1

Streams

Before we can work with files in C++, we need tedme acquainted with the notion of a

stream. We can think of a stream as a channel or comvthich data is passed from senders to
receivers. As far as the programs we will use areerned, streams allow travel in only one
direction. Data can be sent out from the programrmoutput stream, or received into the

program on amput stream. For example, at the start of a program, the stahohput stream

"cin" is connected to the keyboard and the standaglibstream ¢out' is connected to the

screen.

In fact, input and output streams sucha@s''and "cout' are examples of (strearobjects. So
learning about streams is a good way to introdooeesof the syntax and ideas behind the
object-oriented part of C++. The header file wHisks the operations on streams both to and
from files is called "fstream”. We will thereforesume that the program fragments discussed
below are embedded in programs containing theUdel statement

#include<fstream>

As we shall see, the essential characteristicreist processing is that data elements must be
sent to or received from a stream one at a tiraeinserial fashion.

www. niftyglobalsystem.com Page 29

NIFTY GLOBAL SYSTEMS C++

Creating Streams

Before we can use an input or output stream irogram, we must "create" it. Statements to
create streams look like variable declarations,aedusually placed at the top of programs or
function implementations along with the variableldeations. So for example the statements

ifstream in_stream;
ofstream out_stream;

respectively create a stream called streani belonging to thelass (like type) 'ifstreant’ (input-
file-stream), and a stream calledlit’ streary belonging to the clas®fstrean (output-file-stream).
However, the analogy between streams and ordiregihes (of typeifit”, "chat', etc.) can't be
taken too far. We cannot, for example, use simgdggament statements with streams (e.g. we
can't just write ih_stream1 = in_strearh

Connecting and Disconnecting Streams to Files

Having created a stream, we can connect it teeaiBing themember function "open(...J. (We
have already come across some member functiomsfput streams, such gsécision(...J and
"width(...)") The function bpen(...y has a different effect for ifstreams than fortodams (i.e. the
function is polymorphic).

To connect the ifstreanin” strearti to the file "LectureNotes_4", we use the follogistatement:

in_stream.open("LectureNotes_4");

This connectsifi_streant to the beginning of "LectureNotes_4". Diagramalli, we end up in

the following situation:
<ﬁ>{pmgmm}

in stream

1T =]~

Figure 4.2.1

To connect the ofstreamadt_strear to the file "LectureNotes_4", we use an analogous
statement:

out_stream.open("LectureNotes_4");

Although this connectsolit_strearti to "LectureNotes 4", it also deletes the previoastents of
the file, ready for new input. Diagramatically, eed up as follows:

www. niftyglobalsystem.com Page 30

NIFTY GLOBAL SYSTEMS C++

{prog)

out_stream

Figure 4.2.2

To disconnect connect the ifstreaim $treami to whatever file it is connected to, we write:

in_stream.close();

Diagramatically, the situation changes from thaFigure 4.2.1 to:

Figure 4.2.3
The statement:
out_stream.close();
has a similar effect, but in addition the systert Wglean up” by adding an "end-of-file" marker

at the end of the file. Thus, if no data has bagput to "LectureNotes_4" sinceut_strearty was
connected to it, we change from the situation guFe 4.2.2 to:

Figure 4.2.4

In this case, the file "LectureNotes_4" still egjdbut isempty.

www. niftyglobalsystem.com Page 31

NIFTY GLOBAL SYSTEMS C++

Checking for Failure with File Commands

File operations, such as opening and closing fdesa notorious source of errors. Robust
commercial programs should always include somelkcteemake sure that file operations have
completed successfully, and error handling routinesase they haven't. A simple checking
mechanism is provided by the member functiai(j". The function call

in_stream.fail();

returns True if the previous stream operationiarstreani was not successful (perhaps we tried
to open a file which didn't exist). If a failurehaccurred,ii_streani may be in a corrupted state,
and it is best not to attempt any more operatioitis ¥v The following example program
fragment plays very safe by quitting the prograrirely, using the &xit(1)' command from the
library "cstdlib™:

#include <iostream>
#include <fstream>
#include <cstdlib>

using namespace std;

int main()
{
ifstream in_stream;
in_stream.open("Lecture_4");
if (in_stream.fail())
{
cout << "Sorry, the file couldn't be opened\n";
exit(1);

Character Input and Output
Input using " get(...)'

Having opened an input file, we can extract or reiadle characters from it using the member
function "get(...)'. This function takes a single argument of typeaf. If the program is in the
state represented in Figure 4.2.1, the statement

in_stream.get(ch);

has two effects: (i) the variablen” is assigned the valu&”, and (i) the ifstreamifi_streani is
re- positioned so as to be ready to input the oleatacter in the file. Diagramatically, the new
situation is:

www. niftyglobalsystem.com Page 32

NIFTY GLOBAL SYSTEMS C++

{prog)

ch(4]

in stream

lil‘ ‘l L] IFI lil lll

Figure 4.4.1

Output using " put(...)"
We can input owrite single characters to a file opened via an ofstresimg the member

function "put(...J'. Again, this function takes a single argumentypfe ‘char’. If the program is in
the state represented in Figure 4.2.2, the statemen

out_stream.put('4");
changes the state to:

{progreim)

out_stream

Figure 4.4.2

The "putback(...)" Function

C++ also includes atitback(...J function for ifstreams. This doesn't really "ghé character
back” (it doesn't alter the actual input file), behaves as if it had. Diagramatically, if we sdrt
from the state in Figure 4.4.1, and executed thiestent

in_stream.putback(ch);

we would end up in the state:

www. niftyglobalsystem.com Page 33

NIFTY GLOBAL SYSTEMS C++

{ ProZ A

Figure 4.4.3

Indeed, we can "putback™ any character we warnthe.alternative statement
in_stream.putback('7");
would result in:

{ ProZ A

Figure 4.4.4

www. niftyglobalsystem.com

Page 34

NIFTY GLOBAL SYSTEMS C++

Branch and Loop Statements

Boolean Values, Expressions and Functions

In this topic we will look more closely at branahdeloop statements such as "for" and "while"
loops and "if ... else" statements. All these cartss involve the evaluation of one or more
logical (or "Boolean") expressions, and so we bégitooking at different ways to write such
expressions.

As we have seen, in reality C++ represents "Treeha integer 1, and "False" as 0. However,
expressions such as

conditionl ==
or
condition2 ==
aren't particularly clear :-it would be better ®dble to follow our intuition and write

conditionl == True

and

condition2 == False

Furthermore, it is desirable to have a separate fiypvariables such aschdition’, rather than
having to declare them as of typst". We can achieve all of this withreamed enumer ation:

enum Logical {False, True}

which is equivalent to

enum Logical {False =0, True =1}

This line acts a kind diype definition for a new data type_dgical’, so that lower down the
program we can add variable declarations such as:

Logical conditionl, condition2;

Indeed, we can now use the identifiesdical’ in exactly the same way as we use the identifiers
"int", "chat', etc. In particular, we can write functions whigturn a value of type.dgical’. The
following example program takes a candidate's age@st score, and reports whether the

www. niftyglobalsystem.com Page 35

NIFTY GLOBAL SYSTEMS C++

candidate has passed the test. It uses the folipaviteria: candidates between 0 and 14 years
old have a pass mark of 50%, 15 and 16 year olds Agpass mark of 55%, over 16's have a
pass mark of 60%:

#include <iostream>
using namespace std;

enum Logical {False, True};
Logical acceptable(int age, int score);

/* START OF MAIN PROGRAM */
int main()

{

int candidate_age, candidate_score;

cout << "Enter the candidate's age: ";
cin >> candidate_age;

cout << "Enter the candidate's score: ",
cin >> candidate_score;

if (acceptable(candidate_age, candidate_score))

cout << "This candidate passed the test.\n";
else

cout << "This candidate failed the test.\n";

return O;

}
/* END OF MAIN PROGRAM */

/* FUNCTION TO EVALUATE IF TEST SCORE IS ACCEPTAHBL*/
Logical acceptable(int age, int score)
{
if (age <= 14 && score >=50)
return True;
else if (age <= 16 && score >= 55)
return True;
else if (score >= 60)
return True;
else
return False;

}
/*END OF FUNCTION */

Note that sinceTrue' and 'Falsé are constants, it makes sense to declare thesideuthe scope
of the main program, so that the typedical' can be used by every function in the file. An
alternative way to write the above functicreceptable(..ywould be:

/* FUNCTION TO EVALUATE IF TEST SCORE IS ACCEPTABE*/
Logical acceptable(int age, int score)

{

Logical passed_test = False;

www. niftyglobalsystem.com Page 36

NIFTY GLOBAL SYSTEMS C++

if (age <= 14 && score >=50)
passed_test = True;
else if (age <= 16 && score >= 55)
passed_test = True;
else if (score >= 60)
passed_test = True;

return passed_test;

}
I*END OF FUNCTION */

Defining our own data types (even if for the momtiety're just sub-types oht") brings us
another step closer to object-oriented programmimgihich complex types of data structure (or
classes of objects) can be defined, each with their associated liksasf operations.

Note: The Identifiers "true" and " false' in C++

Note that C++ implicitly includes the named enurtiera
enum bool {false, true},

So you can't (re)define the all-lower-case congtenttifiers 'true’ and ‘false' for yourself. In
addition, you can use the typeol in the same way as we udegical in our example.

"For", "While" and "Do ... While" Loops

We have already been introduced to "for" loops "avtdle" loops in the previous discussions.
Notice that any "for" loop can be re-written asadnlle” loop. For example,

#include <iostream>
using namespace std;

int main()

{

int number;
char character;

for (number = 32 ; number <= 126 ; number = numbg) {

character = number;

cout << "The character ™ << character;
cout << " is represented as the number ";
cout << number << " in the computer.\n";

}

return O;

}

can be written equivalently as

www. niftyglobalsystem.com Page 37

NIFTY GLOBAL SYSTEMS C++

#include <iostream>
using namespace std;

int main()

{
int number;
char character;

number = 32;

while (number <= 126)

{
character = number;
cout << "The character

<< character;

cout << " is represented as the number ";
cout << number << " in the computer.\n";
number++;

return O;

Moreover, any "while" loop can be trivially re-wen as a "for" loop: - we could for example
replace the line

while (number <= 126)
with the line

for (; number <=126 ;)
in the program above.

There is a third kind of "loop" statement in C+H@ad a"do ... while€" loop. This differs from
"for" and "while" loops in that the statement(s3iae the]} braces are always executed once,
before the repetition condition is even checked "Dwhile" loops are useful, for example, to
ensure that the program user's keyboard inputtisso€orrect format:

cout << "Enter the candidate's score: ";
cin >> candidate_score;
if (candidate_score > 100 || candidate_score < 0)
cout << "Score must be between 0 and 100.\n";

while (candidate_score > 100 || candidate_scdp <

Program Fragment

www. niftyglobalsystem.com Page 38

NIFTY GLOBAL SYSTEMS C++

This avoids the need to repeat the input promptstaiement, which would be necessary in the
equivalent "while" loop:

cout << "Enter the candidate's score: ";
cin >> candidate_score;
while (candidate_score > 100 || candidate_scd@e <

{

cout << "Score must be between 0 and 100.\n";
cout << "Enter the candidate's score: ";
cin >> candidate_score;

Program Fragment

Multiple Selection and Switch Statements

We have already seen in the beginning how "if'estegnts can be strung together to form a
"multiway branch”. Here's a simplified version bétprevious example:

if (total_test_score >=0 && total_test_score < 50)
cout << "You are a failure - you must study mteinder.\n";
else if (total_test score < 60)
cout << "You have just scraped through the t@5st.\
else if (total_test score < 80)
cout << "You have done quite well.\n";
else if (total_test_score <= 100)
cout << "Your score is excellent - well done.\n";
else
cout << "Incorrect score - must be between 0X0@\n";

Because multiple selections can sometimes be dliffic follow, C++ provides an alternative
method of handling this concept, called sh&tch statement. "Switch" statements can be used
when several options depend on the value of aeswayliable or expression. In the example
above, the message printed depends on the valu&abftest scofe This can be any number
between 0 and 100, but we can make things eashamdle by introducing an extra integer
variable 'score_out_of_téhh and adding the assignment:

score_out_of ten =total_test _score / 10;
The programming task is now as follows: (i) stére_out_of_tehhas value 0, 1, 2, 3 or 4, print

"You are a failure - you must study much hardei)'jf(" score_out_of_tehhas value 5, print “You
have just scraped through the test", (iii)sédre_out_of ténhas value 6 or 7, print "You have

www. niftyglobalsystem.com Page 39

NIFTY GLOBAL SYSTEMS C++

done quite well", and finally (iv) ifscore_out_of_téhhas value 8, 9 or 10, print "Your score is
excellent - well done". Here's how this is achiewath a "switch" statement:

score_out_of ten =total_test _score / 10;

switch (score_out_of ten)

{

case O:

case 1:

case 2:

case 3:

case 4: cout<<"You are a failure - you ";
cout << "must study much harder.\n";
break;

case 5. cout <<"You have just scraped thndbg test.\n";
break;

case 6:

case 7: cout <<"You have done quite welj.\n"
break;

case 8:

case 9:

case 10: cout << "Your score is excellent H dene.\n";
break;

default: cout << "Incorrect score - must beneen ";
cout << "0 and 100.\n";

In general, the syntax of a "switch" statemenajgpfoximately):

switch (selector)

caséabell: <statements 1>
break;

caséabelN: <statements N>
break;

default: < statements>

}

There are several things to note about such "sW#tizitements:

www. niftyglobalsystem.com Page 40

NIFTY GLOBAL SYSTEMS C++

« The statements which are executed are exactly theteeen the first label which matches the
value of selector and the firdiréak after this matching label.

« The 'break statements are optional, but they help in progedfiniency and clarity and should
ideally always be used to end each case. Whereak'is encountered within a case's statement,
control is transferred immediately to the first gmam statement following the entire "switch"
statement. Otherwise, execution continues.

« The selector can have a value of any ordinal tgpg (that" or "int" but not 'float").

« The 'default' is optional, but is a good safety measure.

Blocks and Scoping

We have already seen h@ampound statements in C++ are delimited by{}'" braces. These
braces have a special effect on variable declarstid compound statement that contains one or
more variable declarations is calletlack, and the variables declared within the block htvee
block as theiscope. In other words, the variables are "created" esch the program enters the
block, and "destroyed" upon exit. If the same identhas been used both for a variable inside
and a variable outside the block, the variablesiarelated. While in the block, the program will
assume by default that the identifier refers toitimer variable - it only looks outside the block
for the variable if it can't find a variable de@ton inside. Hence the program

#include <iostream>
using namespace std;

int integerl = 1;
int integer2 = 2;
int integer3 = 3;

int main()

{
int integerl = -1,
int integer2 = -2;

{
int integerl = 10;
cout << "integerl ==" << integerl << "\n";
cout << "integer2 ==" << integer2 << "\n";
cout << "integer3 ==" << integer3 << "\n";

}

cout << "integerl ==" << integerl << "\n";

cout << "integer2 ==" << integer2 << "\n";

cout << "integer3 ==" << integer3 << "\n";

return O;

}
produces the output

integerl == 10
integer2 == -2

www. niftyglobalsystem.com Page 41

NIFTY GLOBAL SYSTEMS C++

integer3 ==

integerl == -1
integer2 == -2
integer3 == 3

The use of variables local to a block can sometibgegistified because it saves on memory, or becihus
releases an identifier for re-use in another pathe program. The following program prints a senid
"times tables" for integers from 1 to 10:

#include <iostream>
using namespace std;

int main()
{

int number;

for (number = 1 ; number <= 10 ; number++)

{

int multiplier;

for (multiplier = 1 ; multiplier <= 10 ; multipr++)

{
cout << number << " x " << multiplier <<" =";
cout << number * multiplier << "\n";

}

cout << "\n";

However, we can achieve the same effect, and endthpa clearer program, by using a
function:

#include <iostream>
using namespace std;

void print_times_table(int value, int lower, inpper);
int main()
{

int number;

for (number = 1 ; number <= 10 ; number++)

{
print_times_table(number,1,10);
cout << "\n";
}
}
void print_times_table(int value, int lower, irpper)
{
int multiplier;

for (multiplier = lower ; multiplier <= upper ; uitiplier++)

www. niftyglobalsystem.com Page 42

NIFTY GLOBAL SYSTEMS C++

cout << value << " x " << multiplier << " =";
cout << value * multiplier << "\n";

}
or eliminate all variable declarations fromain()* using two functions:

#include <iostream>
void print_tables(int smallest, int largest);

void print_times_table(int value, int lower, irpper);

int main()
{
print_tables(1,10);
}
void print_tables(int smallest, int largest)
{
int number;
for (number = smallest ; number <= largest ; namib)
{
print_times_table(number,1,10);
cout << "\n";
}
}
void print_times_table(int value, int lower, irpper)
{
int multiplier;
for (multiplier = lower ; multiplier <= upper ; uitiplier++)
{
cout << value << " x " << multiplier << " =";
cout << value * multiplier << "\n";
}
}

Nested Loop Statements

The above "times table" programs illustrate howeefop statements can be made more
readable by the use of functional abstraction. Bkimg the body of the loop into a function call,
its design can be separated from the design aktteof the program, and problems with scoping
of variables and overloading of variable nameshmavoided.

www. niftyglobalsystem.com Page 43

NIFTY GLOBAL SYSTEMS C++

Arrays and Strings

The Basic Idea and Notation

Although we have already seen how to store largauats of data in files, we have as yet no
convenient way to manipulate such data from wighrimgrams. For example, we might want to
write a program that inputs and then ranks or solteg list of numbers. C++ provides a
structured data type called ararray to facilitate this kind of task. The use of arrggsmits us to

set aside a group of memory locations (i.e. a gafu@riables) that we can then manipulate as a
single entity, but that at the same time givesitectaccess to any individual component. Arrays
are simple examples of structured data types - dneffectively just lists of variables all of the
same data typei(t", "cha’ or whatever). Later in the course you will ledwow to construct

more complicated compound data structures.

Declaring an array

The general syntax for an array declaration is:
<component type><variable identifier>[<integeruet];

For example, suppose we are writing a program toipodate data concerning the number of
hours a group of 6 employees have worked in aquéati week. We might start the program with
the array declaration:

int hours|[6];
or better,

const int NO_OF_EMPLOYEES = 6;
int hours[INO_OF _EMPLOYEES];

Indeed, if we are going to use a number of sudyarn our program, we can even usgpe
definition:

constint NO_OF_EMPLOYEES = 6;

typedef int Hours_array[NO_OF_EMPLOYEES];
Hours_array hours;

Hours_array hours_week_two;

In each case, we end up with 6 variables of tyé With identifiers

hours[0] hours[1] hours[2] hours[3] houis[hours[5]

Each of these is referred to aseament or component of the array. The numbegs...,5 are the
indexes or subscripts of the components. An important feature of thesar@bles is that they
are allocated consecutive memory locations in dmputer. We can picture this as:

www.niftyglobalsystem.com Page44

NIFTY GLOBAL SYSTEMS C++

hours

hours[0]
hours[1]
hours[2]
hours[3]
hours[4]
hours[5]

Figure 6.1.1

Assignment Statements and Expressions with Array Elments

Having declared our array, we can treat the indiaictlements just like ordinary variables (of
type 'int" in the particular example above). In particulae, can write assignment statements
such as

hours[4] = 34;
hours[5] = hours[4]/2;

and use them in logical expressions, e.g.

if (number < 4 && hours[number] >=40) { ...

A common way to assign values to an array is uaitfgr" or "while" loop. The following
program prompts the user for the number of howasdhch employee has worked. It is more
natural to number employees from 1 to 6 than froim B, but it is important to remember that
array indexes always start from 0. Hence the pragrabtracts 1 from each employee number to
obtain the corresponding array index.

#include <iostream>
using namespace std;

constint NO_OF_EMPLOYEES = 6;
typedef int Hours_array[]NO_OF _EMPLOYEES];

int main()
{
Hours_array hours;
int count;
for (count =1 ; count <= NO_OF_EMPLOYEES ; coutit
{
cout << "Enter hours for employee number " <grtdo<< ": ";
cin >> hours[count - 1];
}
return O;
}

A typical run might produce the following input/quit:

www. niftyglobalsystem.com Page 45

NIFTY GLOBAL SYSTEMS C++

Enter hours for employee number 1: 38
Enter hours for employee number 2: 42
Enter hours for employee number 3: 29
Enter hours for employee number 4: 35
Enter hours for employee number 5: 38
Enter hours for employee number 6: 37

in which case our block of variables would thenrbthe state:

hours
38 hours[0]
42 hours[1]

29 hours[2]
35 hours[3]
38 hours[4]
37 hours[5]

Figure 6.1.2

It is instructive to consider what would have hapmehad we forgotten to subtract 1 from the
variable ‘tount' in the "cin .." statement (within the "for" loop) in Program @.1Unlike some
languages, C++ does not do range bound error ainggckd we would have simply ended up in
the state:

9 hours[0]
38 hours[1]
42 hours[2]
29 hours[3]
35 hours[4]
35 hours[6]

Figure 6.1.3 - A Range Bound Error

In other words, C++ would have simply put the vaig8@" into the next integer-sized chunk of

memory located after the memory block set asidéhfemarray fiours'. This is a very undesirable
situation - the compiler might have already resémes chunk of memory for another variable
(perhaps, for example, for the variabtednt').

Array elements can be of data types other thah Here's a program that prints itself out

backwards on the screen, using an array of tyje"

#include <iostream>
#include <fstream>

using namespace std;

const int MAX = 1000;
typedef char File_array[MAX];

www. niftyglobalsystem.com Page 46

NIFTY GLOBAL SYSTEMS C++

int main()

{

char character;
File_array file;

int count;

ifstream in_stream;

in_stream.open("6-1-2.cpp");
in_stream.get(character);
for (count =0 ; ! in_stream.eof() && count < MAXcount++)

file[count] = character;
in_stream.get(character);

in_stream.close();

while (count > 0)
cout << file[--count];

return O;

Note the use of the condition.'&& count < MAX ; .." in the head of the "for" loop, to avoid the
possibility of a range bound error.

Arrays as Parameters in Functions

Functions can be used with array parameters totaiaia structured design. Here is a definition
of an example function which returns the averagea$iworked, given an array of type
"Hours_array from Program 6.1.1

float average(Hours_array hrs)

{
float total = 0;
int count;
for (count =0 ; count < NO_OF _EMPLOYEES ; couri+
total += float(hrs[count]);
return (total / NO_OF_EMPLOYEES);
}

Fragment of Program 6.2.1

We could make this function more general by inalgoh second parameter for the length of the
array:

float average(int list[], int length)

{
float total = O;

int count;

www. niftyglobalsystem.com Page 47

NIFTY GLOBAL SYSTEMS C++

for (count = 0 ; count < length ; count++)
total += float(list[count]);
return (total / length);

}

It is quite common to pass the array length toretion along with an array parameter, since the
syntax for an array parameter (suchiasit]]" above) doesn't include the array's length.

Although array parameters are not declared wittgdrcharacter in function declarations and
definitions, they are effectively reference parare{rather than value parameters). In other
words, when they execute, functions do not makeafeicopies of the arrays they are passed
(this would potentially be very expensive in terofisnemory). Hence, like the reference
parameters we have seen earlier, arrays can bepentty changed when passed as arguments
to functions. For example, after a call to thedwling function, each element in the third array
argument is equal to the sum of the corresponduogeiements in the first and second
arguments:

void add_lists(int first[], int second][], int tdfR int length)
{

int count;
for (count = 0 ; count < length ; count++)
total[count] = first[count] + second[count];

Fragment of Program 6.2.2

As a safety measure, we can add the modiéi@rst in the function head:

void add_lists(const int fst[], const int sndfjf tot[], int len)

{

int count;
for (count = 0 ; count < len; count++)
tot[count] = fst[count] + snd[count];

}

The compiler will then not accept any statementhiwithe function's definition which
potentially modify the elements of the arrags"or "snd'. Indeed, the restriction imposed by the
"const' modifier when used in this context is strongexrtheally needed in some situations. For
example, the following two function definitions Wilot be accepted by the compiler:

void no_effect(const int list[])

{
do_nothing(list);
}
void do_nothing(int list[])
{
}

Fragment of Program 6.2.3

www. niftyglobalsystem.com Page 48

NIFTY GLOBAL SYSTEMS C++

This is because, although we can see tainothing(...J does nothing, its head doesn't include
the modifier ‘tonst, and the compiler only looks at the headdaf hothing(...J when checking to
see if the call to this function from withimg'_effect(...} is legal.

Sorting Arrays

Arrays often need to be sorted in either ascendirdgscending order. There are many well
known methods for doing this; tlyeick sort algorithm is among the most efficient. This sattio
briefly describes one of the easiest sorting metluadled thesel ection sort.

The basic idea of selection sort is:

For each index position | in turn:

1. Find the smallest data value in the array fromtpm | to (Length - 1), where "Length" is the
number of data values stored.
2. Exchange the smallest value with the value at joosit

To see how selection works, consider an arrayvefifiteger values, declared as
int a[5];

and initially in the state:

Figure 6.3.1

Selection sort takes the array through the follgnsaquence of states:

a a a
1 |a[0] [1]aL0] [1]a0] [1 Jar0]
(4 |a[1iwe (4 |a[1] (4 |a[1] (4 [al1]
ENE3 5 |afzl» [|a[2] 6 [arz]

El

ER

[10]af 3] [10]al 3] al 3w al 3]
6 |al4] 6 Jar4® a4 a[4]

Figure 6.3.2

www. niftyglobalsystem.com Page 49

NIFTY GLOBAL SYSTEMS C++

Each state is generated from the previous one hppivg the two elements of the array marked
with a "bullet”.

We can code this procedure in C++ with three fumdi The top level functiorsélection_sort(..")
(which takes and array and an integer arguments gerfirst (array) argument by first calling
the function minimum_from(array,position,lengthy) which returns the index of the smallest element
in "array’ which is positioned at or after the indeositiori'. It then swaps values according to the
specification above, using thewap(...y function:

void selection_sort(int a[], int length)

{
for (int count = 0 ; count < length - 1 ; coun)++
swap(a[count],a[minimum_from(a,count,length)]);
}
int minimum_from(int af], int position, int length
{
int min_index = position;
for (int count = position + 1 ; count < lengtbqunt ++)
if (a[count] < a[min_index])
min_index = count;
return min_index;
}
void swap(int& first, int& second)
{
int temp = first;
first = second;
second = temp;
}

Two-dimensional Arrays

Arrays can have more than one dimension. In thi@sewe briefly examine the use of two-
dimensional arrays to represent two-dimensionattires such as screen bitmaps or nxm
matrices of integers.

A bitmap consists of a grid of Boolean values repnting the state of the dots or pixels on a
screen. "True" means "on" or that the pixel is eflFalse” means "off" or the pixel is black.
Let's suppose the screen is 639 pixels wide angp#d4ds high. We can declare the
corresponding array as follows:

enum Logical {False, True};

const int SCREEN_HEIGHT = 449;

const int SCREEN_WIDTH = 639;

Logical screenf]SCREEN_HEIGHT][SCREEN_WIDTH];

www. niftyglobalsystem.com Page 50

NIFTY GLOBAL SYSTEMS C++

References to individual data elements within thaya'screefi simply use two index values. For
example, the following statement assigns the vatue' to the cell (pixel) in row 4, column 2
of the array.

screen[3][1] = True;

All of the discussion in Section 6.2 about one-disienal arrays as parameters in functions also
applies to two-dimensional arrays, but with oneitalthal peculiarity. In function declarations
and in the heads of function definitions, the sizéhe first dimension of a multidimensional
array parameter is not given (inside thié Brackets), but the sizes of all the other dimensi

are given. Hence, for example, the following iaect form for a function which sets all the
screen pixels to black:

void clear_bitmap(Logical bitmap[][SCREEN_WIDTHixt screen_height)
{

for (int row = 0 ; row < screen_height ; row++)
for (int column = 0 ; column < SCREEN_WIDTH; aohn++)
bitmap[row][column] = False;

Strings

We have already been using string values, sucleatr'age: ", in programs involving output to
the screen. In C++ you can store and manipulate ailcies irstring variables, which are really
just arrays of characters, but used in a partiouéy.

The Sentinel String Character "\0'

The key point is that, to use the special functiassociated with strings, string values can only
be stored in string variables whose lengtatikeast 1 greater than the length (in characters) of
the value. This is because extra space must batléfe end to store tigentinel string character
"\0" which marks the end of the string value. For eplemthe following two arrays both contain
all the characters in the string valugrnter age: *, but only the array on the left contains a proper
string representation.

www. niftyglobalsystem.com Page 51

NIFTY GLOBAL SYSTEMS C++

phrasze list
'E' phrasze[0] 'E' list[0]
'n' prhrase[1] 'n' list[1]
"t phrasze[2] "t list[2]
‘e phrase[3] 'g' 1list[3]
't rhrase[4] 'r' list[4]
' prhrase[k] o list[5]
'a' phrase[6] 'a' list[a]
'g' phrase[7] ‘g list[7]
‘g phrasze[] 'g' list[5]
v prhrase[9] vt list[9]
rhrase[10] v list[10]
‘50" |[phrase[11]
? phrase[12]
7 prhrase[13]

Figure 6.5.1

In other words, although botlphrasé and 'list" are arrays of characters, onphiasé is big

enough to contain the string valuenter age: *. We don't care what characters are stored in the
variables phrase[12] and 'phrase[13], because all the string functions introduced Wwelgnore
characters after thad".

String Variable Declarations and Assignments

String variables can be declared just like otheaye:

char phrase[14];
String arrays can be initialized or partially inlized at the same time as being declared, using a
list of values enclosed in "{}" braces (the samé&ig of arrays of other data types). For
example, the statement

char phrase[14] = {'E','n",'t",'e",'r"," ",'a;,&;""," ,\O'};
both declares the array "phrase"” and initializés the state in Figure 6.5.1. The statement

char phrase[14] = "Enter age: ";

is equivalent. If the "14" is omitted, an arrayMaé created just large enough to contain both the
value ""Enter age: " and the sentinel charactéf")"'so that the two statements

char phrase[] = {E','n','t",'e",r", ",'a’. @\""," ,\O'};
char phrase[] = "Enter age: ";

are equivalent both to each other and to the statem

char phrase[12] = "Enter age: ";

www. niftyglobalsystem.com Page 52

NIFTY GLOBAL SYSTEMS C++

However, it is important to remember that stringalales are arrays, so we cannot just make
assignments and comparisons using the operatorsnit:"==". We cannot, for example, simply
write

phrase = "You typed: ";
Instead, we can use a special set of functionstforg assignment and comparison.

Some Predefined String Functions

The librarycstring (old style headestring.h) contains a number of useful functions for string
operations. We will assume that the program fragsdiscussed below are embedded in
programs containing the "include" statement

#include<cstring>

Given the string variablea”string, we can copy a specific string value or the cotg®f another
string to it using the two argument functiairépy(...). Hence the statement

strcpy(a_string, "You typed: ");

assigns the first 11 elements af strind to the respective characters ifvéu typed: *, and
assigns the sentinel charact&g™to the 12th element. The call

strcpy(a_string, another_string);

copies the string value stored uméther_stringto "a_string. But care has to be taken with this
function. If "a_string is less than (1 + L), where L is the length of 8tring value currently stored
in "another_string, the call to the function will cause a range badenror which will not be
detected by the compiler.

We can, however, check the length of the valuesgtor "another_string using the function
"strlen(...). The call ‘strlen(another_string)returns the length of the current string stored i
"another_string (the character\v* is not counted).

The comparison functiorsticmp(...J returns "False" (i.e. 0) if its two string argumte are the

same, and the two argument functiencht(...) concatenates its second argument onto the end of
its first argument. Program 6.5.1 illustrates tke af these functions. Again, care must be taken
with "strcat(...y. C++ does not check that the first variable argnms big enough to contain the
two concatenated strings, so that once again teerelanger of undetected range bound errors.

String Input using " getline(...)’
Although the operator=%" can be used to input strings (e.g. from the keyd) its use is

limited because of the way it deals with spaceattars. Supposing a program which includes
the statements

www. niftyglobalsystem.com Page 53

NIFTY GLOBAL SYSTEMS C++

cout << "Enter name: ";
cin >> a_string;

results in the input/output session

Enter nameRob Miller

The string variable will then contain the strinduga™Rob™, because the operators™ assumes
that the space character signals the end of ifigattherefore often better to use the two
argument functiongetline(...). For example, the statement

cin.getline(a_string,80);

allows the user to type in a string of up to 79rabters long, including spaces. (The extra
element is for the sentinel character.) The follayywrogram illustrates the use ggtline(...J,
"stremp(...}, "strcpy(...) and 'strcat...):

#include <iostream>
#include <cstring>

using namespace std;
const int MAXIMUM_LENGTH = 80;

int main()

{
char first_string[MAXIMUM_LENGTH];
char second_stringlMAXIMUM_LENGTH];

cout << "Enter first string: *;
cin.getline(first_string, MAXIMUM_LENGTH);
cout << "Enter second string: ";
cin.getline(second_string, MAXIMUM_LENGTH);

cout << "Before copying the strings were ";
if (stremp(first_string,second_string))

cout << "not ";
cout << "the same.\n";

strepy(first_string,second_string);

cout << "After copying the strings were ";

if (stremp(first_string,second_string))
cout << "not ";

cout << "the same.\n";

www. niftyglobalsystem.com Page 54

NIFTY GLOBAL SYSTEMS C++

strcat(first_string,second_string);

cout << "After concatenating, the first string'is
cout << first_string;

return O;

Program 6.5.1

An example input/output session is:

Enter first stringHello class.

Enter second stringdello Rob.

Before copying the strings were not the same.

After copying the strings were the same.

After concatenating, the first string is: HelloliRBlello Rob.

www. niftyglobalsystem.com Page 55

NIFTY GLOBAL SYSTEMS C++

Pointers

Introducing Pointers

In the previous lectures, we have not given manghaas to control the amount of memory used
in a program. In particular, in all of the programs have looked at so far, a certain amount of
memory is reserved for each declared variable mpdation time, and this memory is retained
for the variable as long as the program or blockliich the variable is defined is active. In this
lecture we introduce the notion opainter, which gives the programmer a greater level of
control over the way the program allocates andlldeates memory during its execution.

Declaring Pointers

A pointer is just the memory address of a variabdethat gointer variable is just a variable in
which we can store different memory addresses.t@ouariables are declared using-g ‘and
have data types like the other variables we hage.deor example, the declaration

int *number_ptr;

states thatriumber_ptf is a pointer variable that can store addresseaudbles of data typent".
A useful alternative way to declare pointers isi\gs 'typedef construct. For example, if we
include the statement:

typedef int *IntPtrType;

we can then go on to declare several pointer vi@sah one line, without the need to prefix each
with a "™":

IntPtrType number_ptrl, number_ptr2, number_ptr3;

Assignments with Pointers Using the Operators*" and " &"

Given a particular data type, such as',’we can write assignment statements involvindnbot
ordinary variables and pointer variables of thisadgpe using thdereference operator "*" and
the (complementarygddress-of operator "&". Roughly speaking,*” means "the variable
located at the address”, ar&d''means "the address of the variable". We cantititis the uses of
these operators with a simple example program:

#include <iostream>
using namespace std;

typedef int *IntPtrType;

int main()

www. niftyglobalsystem.com Page 56

NIFTY GLOBAL SYSTEMS C++

{ IntPtrType ptr_a, ptr_b;
intnum_c=4, num_d=7;
ptr_a = &num_gc; /* LINE 10 */
ptr_b =ptr_a; /* LINE 11 */
cout << *ptr_a <<"" << *ptr_b << "\n";
ptr_b = &num_d; /* LINE 15 */
cout << *ptr_a <<"" << *ptr_p << "\n";
*ptr_a = *ptr_b; /* LINE 19 */
cout << *ptr_a <<"" << *ptr_p << "\n";
cout << num_c << "" << *&*&*&num_c << "\n";
} return O;

Program 7.1.1

The output of this program is:

44
47
77
77

Diagramatically, the state of the program afterabsignments at lines 10 and 11 is:
ptr o[F——] 4 Jumec
ptr_b num_.j

after the assignment at line 15 this changes to:
ptr o[F——] 4 Jumec
Ptr_blzl—.-num_d

and after the assignment at line 19 it becomes:
ptr o F——] 7 Jumec
Ptr_blzl—.-num_d

www. niftyglobalsystem.com Page 57

NIFTY GLOBAL SYSTEMS C++

Note that *" and '&" are in a certain sense complementary operatio&sg*&num_c " is simply

"num_¢.

The "new' and " deleté' operators, and the constant 'NULL ".

In Program 7.1.1, the assignment statement
ptr_a = &num_c;

(in line 10) effectively gives an alternative natoghe variablerium_¢', which can now also be

referred to as*ptr_a". As we shall see, it is often convenient (in teroh memory management)
to use dynamic variables in programs. These vasbdve no independent identifiers, and so
can only be referred to by dereferenced pointeabbes such asptr_a" and *ptr_b".

Dynamic variables are "created" using the resewed "new', and "destroyed" (thus freeing-up
memory for other uses) using the reserved woeit€. Below is a program analogous to
Program 7.1.1, which illustrates the use of thesations:

#include <iostream>
using namespace std;

typedef int *IntPtrType;

int main()

{
IntPtrType ptr_a, ptr_b; /*LINE 7 */
ptr_a = new int; /* LINE 9 */
*ptr_a =4;
ptr_b = ptr_a; /* LINE 11 %/

cout << *ptr_a <<"" << *ptr_p << "\n";

ptr_b = new int; /* LINE 15 */
otr_b=7; / LINE 16 */

cout << *ptr_a <<"" << *ptr_p << "\n";

delete ptr_a;
ptr_a = ptr_b; /* LINE 21 */

cout << *ptr_a <<"" << *ptr_p << "\n";
delete ptr_a; /* LINE 25 */

return O;

Program 7.1.2

www. niftyglobalsystem.com Page 58

NIFTY GLOBAL SYSTEMS C++

The output of this program is:

44
47
77

The state of the program after the declarations@? is:
ptr_a
ptr_]:u

after the assignments in lines 9, 10 and 11 thasigés to:

ptr—h E/’

after the assignments at lines 15 and 16 the istate
ptr b f——0 7 |

and after the assignment at line 21 it becomes:

Finally, after the "delete" statement in lines @& program state returns to:
ptr_a
ptr_]:u

In the first and last diagrams above, the poirtgirsa’ and 'ptr_b' are said to be dangling. Note
that 'ptr_b" is dangling at the end of the program even thatighs not been explicitly included
in a "deleté' statement.

If "ptr" is a dangling pointer, use of the correspondiageterenced expressiofpti” produces
unpredictable (and sometimes disastrous) resuttfrtlinately, C++ does not provide any
inbuilt mechanisms to check for dangling pointétswever, safeguards can be added to a
program using the special symbolic memory addressL™. Any pointer of any data type can

www. niftyglobalsystem.com Page 59

NIFTY GLOBAL SYSTEMS C++

be set toNuULL". For example, if we planned to extend ProgramZ7ahd wanted to safeguard

against inappropriate use of the dereferenced @oidéntifiers *ptr_a" and "ptr_b", we could
add code as follows:

#include <iostream>

delete ptr_a;
ptr_a = NULL,;
ptr_b = NULL;

i.f”(ptr_a 1= NULL)

*ptr_a = ...

Fragment of Program 7.1.3

In the case that there is not sufficient memorgreate a dynamic variable of the appropriate
data type after a call tméw', C++ automatically sets the corresponding poitaeNuULL".

Hence the following code typifies the kind of sgfeteasure that might be included in a program
using dynamic variables:

#include <iostream>
#include <cstdlib> /* ("exit()" is defined in stdlib>) */

ptr_a = new int;
if (ptr_a == NULL)
{

cout << "Sorry, ran out of memory";
exit(1);
Fragment of Program 7.1.4

Pointers can be used in the standard way as funpttameters, so it would be even better to
package up this code in a function:

void assign_new_int(IntPtrType &ptr)

{
ptr = new int;
if (ptr == NULL)
cout << "Sorry, ran out of memory";
exit(1);
}
}

www. niftyglobalsystem.com Page 60

NIFTY GLOBAL SYSTEMS C++

Array Variables and Pointer Arithmetic

In the last topic we saw how to declare groupsasiables called arrays. By adding the statement
int hours|[6];
we could then use the identifiers

hours[0] hours[1] hours[2] hours[3] houis[hours[5]

as though each referred to a separate variabfacinC++ implements arrays simply by
regarding array identifiers such astrs' as pointers. Thus if we add the integer pointer
declaration

int *ptr;
to the same program, it is now perfectly legalditofv this by the assignment
ptr = hours;

After the execution of this statement, both "pmdahours” point to the integer variable referred
to as "hours[0]". Thus "hours[0]", "*hours", andgtt" are now all different names for the same
variable. The variables "hours[1]", "hours[2]", ebow also have alternative names. We can
refer to them either as

*(hours + 1) *(hours +2) ...
or as
*(ptr+1) *(ptr+2) ...

In this case, the+'2" is shorthand for "plus enough memory to storet@ger values”. We refer

to the addition and subtraction of numerical valizeand from pointer variables in this manner
as pointer arithmetic. Multiplication and divisicannot be used in pointer arithmetic, but the
increment and decrement operators''and "--" can be used, and one pointer can be subtracted
from another of the same type.

Pointer arithmetic gives an alternative and somegimore succinct method of manipulating
arrays. The following is a function to convert argj to upper case letters:

void ChangeToUpperCase(char phrase[])
{
intindex = 0;
while (phrase[index] !="0")
{
if (LowerCase(phrase[index]))
ChangeToUpperCase(phrase[index]);
index++;

www. niftyglobalsystem.com Page 61

NIFTY GLOBAL SYSTEMS C++

}
}
int LowerCase(char character)
{
return (character >='a' && character <= 'z");
}
void ChangeToUpperCase(char &character)
{
character +="A' - 'a’;
}

Fragment of Program 7.2.1

Note the use of polymorphism with the functi@ningeToUpperCase('.) the compiler can
distinguish the two versions because one takesgameent of type c¢hat', whereas the other
takes an array argument. Sinparasé is really a pointer variable, the array argumesrsion
can be re-written using pointer arithmetic:

void ChangeToUpperCase(char *phrase)

{
while (*phrase !="0")
{
if (LowerCase(*phrase))
ChangeToUpperCase(*phrase);
phrase++;
}

Fragment of Program 7.2.2

This re-writing is transparent as far as the régh® program is concerned - either version can be
called in the normal manner using a string argument

char a_string[] = "Hello World";

.C.:.hangeToUpperCase(a_string);

Dynamic Arrays

The mechanisms described above to create and gelytnamic variables of typent", "char',
"float", etc. can also be applied to create and destyogrdic arrays. This can be especially
useful since arrays sometimes require large amaimeemory. A dynamic array of 10 integers
can be declared as follows:

int *number_ptr;
number_ptr = new int[10];

www. niftyglobalsystem.com Page 62

NIFTY GLOBAL SYSTEMS C++

As we have seen, array variables are really pousgables, so we can now refer to the 10
integer variables in the array either as

number_ptr[0] number_ptr[1] ... number_ptr[9]
or as
*number_ptr *(number_ptr + 1) ... *(number_ptd)

To destroy the dynamic array, we write

delete [] number_ptr;

The '1]" brackets are important. They signal the programestroy all 10 variables, not just the
first. To illustrate the use of dynamic arrays,ensra program fragment that prompts the user for
a list of integers, and then prints the averagtherscreen:

int no_of_integers, *number_ptr;

cout << "Enter number of integers in the list: ";
cin >> no_of_integers;

number_ptr = new int[no_of _integers];

if (number_ptr == NULL)

{
cout << "Sorry, ran out of memory.\n";
exit(1);

}

cout << "type in " << no_of_integers;
cout << " integers separated by spaces:\n";
for (int count = 0 ; count < no_of_integers ; cbti)
cin >> number_ptr[count];
cout << "Average: " << average(number_ptr,no_degers);

delete [] number_ptr;

Dynamic arrays can be passed as function paramegtiike ordinary arrays, so we can simply
use the definition of the function "average()" frdime previous lecture with this program.

www. niftyglobalsystem.com Page 63

NIFTY GLOBAL SYSTEMS C++

Automatic and Dynamic Variables

Although dynamic variables can sometimes be a udeftice, the need to use them can often be
minimized by designing a well structured progrand ay the use of functional abstraction.

Most of the variables we have been using in theipos lectures have beantomatic variables.
That is to say, they are automatically createdhénliiock or function in which they are declared,
and automatically destroyed at the end of the hlockvhen the call to the function terminates.
So, for a well structured program, much of the timeedon't even have to think about adding
code to create and destroy variables.

(N.B. It is also possible to declare variables @is@static, i.e. remaining in existence

throughout the subsequent execution of the progbatin a well designed, non-object based
program it should not be necessary to use any statiables other than the constants declared at
the beginning.)

Linked Lists

In this section a brief description is given ofadustract data type (ADT) called alinked list,
which is of interest here because it is implemenigdg pointers. You will learn much more
about abstract data types in general later in these.

In the implementation given below, a linked lishests of a series obdes, each containing
some data. Each node also contains a pointer pgitdgithe next node in the list. There is an
additional separate pointer which points to thst itode, and the pointer in the last node simply
points to NULL". The advantage of linked lists over (for examg@epys is that individual nodes
can be added or deleted dynamically, at the beginmit the end, or in the middle of the list.

pointer pointer pointer pointer

In our example, we will describe how to implemeihih&ed list in which the data at each node is
a single word (i.e. string of characters). Thet fiesk is to define a node. To do this, we can
associate a string with a pointer usingracture definition:

struct Node

{
char word[MAX_WORD_LENGTH];

Node *ptr_to_next_node;

h
or alternatively

struct Node;
typedef Node *Node_ptr;

www. niftyglobalsystem.com Page 64

NIFTY GLOBAL SYSTEMS C++

struct Node

{
char word[MAX_WORD_LENGTH];

Node_ptr ptr_to_next_node;
h
(Note the semicolon after thg") The word %truct' is a reserved word in C++ (analogous to the
notion of arecord in Pascal). In the first line of the alternatige¢ond) definition of a node
above, Nodé' is given an empty definition. This is a bit likefunction declaration - it signals an

intention to defineNode' in detail later, and in the mean time allows idientifier "Node' to be
used in the secondypedef statement.

The "." and " ->" Operators

Having defined the structure "Node", we can declargables of this new type in the usual way:

Node my_node, my_next_node;

The values of the (two) individual componentsaf "nodé can be accessed and assigned using
the dot ™" operator:

cin >> my_node.word;
my_node.ptr_to_next_node = &my_next_node;

In the case that pointers to nodes have been dddard assigned to nodes as follows:

Node_ptr my_node_ptr, another_node_ptr;
my_node_ptr = new Node;
another_node_ptr = new Node;

we can either use dot notation for these typesabément:

cin >> (*my_node_ptr).word;
(*my_node_ptr).ptr_to_next_node = another_node_ptr

or write equivalent statements using the "->" opmara

cin >> my_node_ptr->word,;
my_node_ptr->ptr_to_next_node = &my_next_node;

In other words, ty_node_ptr->word simply means (*my_node_ptr).word.

www. niftyglobalsystem.com Page 65

NIFTY GLOBAL SYSTEMS C++

Creating a Linked List

Below is a function which allows a linked list te byped in at the keyboard one string at a time,
and which sets the node pointerlist' to point to the head (i.e. first node) of the nest
Typing a full-stop signals that the previous stnmas the end of the list.

void assign_list(Node_ptr &a_list)

{
Node_ptr current_node, last_node;
assign_new_node(a_list);
cout << "Enter first word (or "." to end list): "
cin >> a_list->word;
if ('strcemp(".",a_list->word))
{
delete a_list;
a_list = NULL;
}
current_node = a_list; /* LINE 13 */
while (current_node !'= NULL)
{
assign_new_node(last_node);
cout << "Enter next word (or ".' to end list): "
cin >> last_node->word;
if (!strcemp(".",last_node->word))
{
delete last_node;
last_node = NULL;
}
current_node->ptr_to_next_node = last_node;
current_node = last_node;
}
}

Fragment of Program 7.5.1

We will assume that the function "assign_new_nogé(sed in the above definition is exactly
analogous to the function "assign_new_int(...)Pmgram 7.1.5.

Here's how the functiora$sign_list(...) works in words and diagrams. After the line
assign_new_node(a_list);

The state of the program is:

word

a_list ptr_to
_next
_node

www. niftyglobalsystem.com Page 66

NIFTY GLOBAL SYSTEMS C++

Assuming the user now types imy" at the keyboard, after line 13 the program state

word
.
a_list ptr_to
_next
_hode
current
_node

After the first line inside the "while" loop, theqgram state is:

word word
E !'FEH!I [izzzzij
a_list ptr_to ptr_tao
_hext _hext
_node _hode
t last
CUrren “node
_node

Assuming the user now types ist" at the keyboard, after the "while" loop has fired
executing for the first time the situation is:

wurd wnrd
a_ llSt ptr to ptr tD
_hext _hext
_node _hode
1ast
_node
current
_node

After the first line in the second time around thile” loop, we have:

word word word

a_list ptr_to ptr_tao ptr_to
_hext _hext _next
_node _hode _hode

last
_node

current
_node

Assuming the user now types ifi at the keyboard, after the "while" loop has fired executing
for the second time the situation is:

www. niftyglobalsystem.com Page 67

NIFTY GLOBAL SYSTEMS C++

word word
a_list ptr_to ptr_tao
_hext _next
_node _hode
current 1a 3;
_hode _fode

Since the condition for entering the "while" loop longer holds, the function exits, the
temporary pointer variablesuirent_nodé and 'last_nodé (which were declared inside the
function body) are automatically deleted, and weelaft with:

word word

e g LD
a_list ptr_to ptr_tao

_next _hext

_node _hode

Printing a Linked List

Printing our linked lists is straightforward. Th&lbwing function displays the strings in the list
one after another, separated by blank spaces:

void print_list(Node_ptr a_list)

{
while (a_list = NULL)
{
cout << a_list->word << " ";
a_list = a_list->ptr_to_next_node;
}
}

www. niftyglobalsystem.com Page 68

NIFTY GLOBAL SYSTEMS C++

Recursion

The Basic Idea

We have already seen how, in a well designed Cegram, many function definitions include
calls to other functions (for example, in the lasture the definition ofassign_list(...) included a
call to "assign_new_node(")) A function isrecursive (or has aecursive definition) if the
definition includes a call to itself.

Recursion is a familiar idea in mathematics andclogor example, the natural numbers
themselves are usually defined recursively. Venghty speaking, the definition is:

« 0is anatural number.
« if nis a natural number then s(n) (i.e. n+1) iagural number, where s is the "successor
function”.

In this context, the notion of recursion is cleadiated to the notion afiathematical induction.
Notice also that the above definition includes a-necursive part dbase case (the statement
that O is a natural number).

Another familiar mathematical example of a recuedivnction is the factorial function "!". Its
definition is:

- 0=1
« foralln>0,n!=nx(n-1)!

Thus, by repeatedly using the definition, we camknaut that
6! = 6x5! = 6x5x4! = 6x5x4x3! = 6x5x4x3x2! = 6X5x8x2x1! = 6X5x4x3x2x1x1 = 720

Again, notice that the definition of "I" includesth a base case (the definition of 0!) and a
recursive part.

Example

The following program includes a call to the recwsly defined function print_backwards(),
which inputs a series of characters from the kegthaarminated with a full-stop character, and
then prints them backwards on the screen.

#include<iostream>
using namespace std;

void print_backwards();

www. niftyglobalsystem.com Page 69

NIFTY GLOBAL SYSTEMS C++

int main()
{
print_backwards();
cout << "\n";
return O;
}
void print_backwards()
{
char character;
cout << "Enter a character ('." to end progrdin):
cin >> character;
if (character !="")
{
print_backwards();
cout << character;
}
}

Program 8.2.1

A typical input/output session is:

Enter a character ('.' to end prograht):
Enter a character ('.' to end program):
Enter a character ('.' to end progrant):

We will examine how this function works in more @étn the next section. But notice that the
recursive call toprint_backwards() (within its own definition) is embedded in an™gtatement. In
general, recursive definitions must always use ssoneof branch statement with at least one
non-recursive branch, which acts as the base ¢dabe definition. Otherwise they will "loop
forever". In Program 8.2.1 the base case is inntipdicit "else" part of the "if" statement. We
could have written the function as follows:

void print_backwards()

{

char character;

cout << "Enter a character ('." to end progrdin):
cin >> character;
if (character !1=".")

{ print_backwards();
cout << character;

}

else

{

}

www. niftyglobalsystem.com Page 70

NIFTY GLOBAL SYSTEMS C++

The Mechanics of a Recursive Call

It is easy to see why Program 8.2.1 works withdideof a few diagrams. When the main
program executes, it begins with a call to "prirstchkwards()". At this point space is set aside in
the computer's memory to execute this call (anothier cases in which to make copies of the
value parameters). This space is represented @s ia Figure 8.3.1a:

STARTHAN PROGEAN

IatCALL T print backiverds

Figure 8.3.1a

The internal execution of this call begins withhe@acter input, and then a second call to

"print_backwards() (at this point, nothing has been output to theea). Again, space is set aside
for this second call:

www. niftyglobalsystem.com Page 71

NIFTY GLOBAL SYSTEMS C++

STERT HAIN FROCEAN

IatCALL T print Backwerds

Enter a character: H

AL T print backierds

Figure 8.3.1b

The process repeats, but inside the third calpitiot"backwards() a full-stop character is input,

thus allowing the third call to terminate with nother function calls:

www. niftyglobalsystem.com

Page 72

NIFTY GLOBAL SYSTEMS C++

START HAIN EROCGRAN

IHCALL T print Backwerds

Enter a character:

AL T print backwerds

Enfer 3 character: 1

WL print backwerds

E1:1ter 3 character: .

M CALL FINISAED

Figure 8.3.1c

This allows the second call terint_backwards() to terminate by outputting anm'character,

which in turn allows the first call to terminate bytputting an "H" character:

www. niftyglobalsystem.com

Page 73

NIFTY GLOBAL SYSTEMS C++

STARTHAN FRoukalf

JatGALL T pring Beckwards

Bnter & character

WAL T print backwerds

Enfer g character: 1

A GALL T prant backies

Eﬁter g character: .

M GALL FINNHED

BT

A CALL FNISRED

BT R

LT
BRTAEW LI

AN PROCRA FTRED

Figure 8.3.1d

www. niftyglobalsystem.com Page 74

NIFTY GLOBAL SYSTEMS C++

Technically speaking, C++ arranges the memory spaeeded for each function call istack.
The memory area for each new call is placed onapef the stack, and then taken off again

when the execution of the call is completed. Ingkample above, the stack goes through the
following sequence:

i 12t call
1atcall stcall
2nd call
(empty 3rd call
stack) ' ' »
12t call 12t call
2nd call
> —- > (empry
stack)
Figure 8.3.2

C++ uses this stacking principle for all nestedction calls - not just for recursively defined
functions. A stack is an example of a "last intfoat" structure (as opposed to, for example,
gueue, which is a "first in/first out” structure).

QO

Three More Examples

Below are three more examples of recursive funstidve have already seen a function to
calculate the factorial of a positive integer. Heemn alternative, recursive definition:

int factorial(int number)

{
if (number < 0)
{
cout << "\nError - negative argument to factbng
exit(1);
else if (number == 0)
return 1,
else
return (number * factorial(number - 1));
}

www. niftyglobalsystem.com Page 75

NIFTY GLOBAL SYSTEMS C++

Fragment of Program 8.4.1

As a second example, here's a function which ratisdisst argument (of typefidat”) to the
power of its second (non-negative integer) argument

float raised_to_power(float number, int power)

{
if (power < 0)
cout << "\nError - can't raise to a negative pow";
exit(1);
else if (power == 0)
return (1.0);
else
return (number * raised_to_power(number, powey):-
}

Fragment of Program 8.4.2

In both cases, care has been taken that a calttmnction will not cause an "infinite loop”, -
i.e. that the arguments to the functions will eitb@use the program to exit with an error
message or are such that the series of recurdigencth eventually terminate with a base case.

The third example recursive function sums the firetements of an integer array™.

int sum_of(int a[], int n)
if (<1 n>MAXIMUM_NO_OF ELEMENTS)
{

cout << "\nError - can only sum 1to";
cout << MAXIMUM_NO_OF_ELEMENTS << " elements\n“;
exit(1);
}
elseif (n==1)
return a[0];
else
return (a[n-1] + sum_of(a,n-1));

Fragment of Program 8.4.3

www. niftyglobalsystem.com Page 76

NIFTY GLOBAL SYSTEMS C++

Recursion and lteration

From a purely mechanical point of view, recursismot absolutely necessary, since any
function that can be defined recursively can alsalé&fined iteratively, i.e. defined using "for",
"while" and "do...while" loops. So whether a fuctiis defined recursively or iteratively is to
some extent a matter of taste. Here are two ofgbersive functions above, re-defined
iteratively:

void print_backwards()

{
char chars]MAX_ARRAY_LENGTH];

int no_of_chars_input = 0;

do {
cout << "Enter a character ('.' to end progrdm):
cin >> chars[no_of _chars_input];
no_of_chars_input++;

while (chars[no_of chars_input - 1] ="'
&& no_of _chars_input < MAX_ARRAY_LENGTH);

for (int count = no_of_chars_input - 2 ; count >=tunt--)
cout << chars[count];

}
Fragment of Program 8.2.1b

int factorial(int number)

{
int product = 1;

if (number < 0)

{
cout << "\nError - negative argument to factlin'a
exit(1);

else if (number == 0)
return 1,

else

{
for (; number > 0 ; number--)
product *= number;
return product;

}

Fragment of Program 8.4.1b

It's a matter of debate whether, for a particulaction, a recursive definition is clearer than an
iterative one. Usually, an iterative definition Wiiclude more local variable declarations - for
example, the arrayhars]MAX_ARRAY_LENGTH]" in the first example above, and the integer

www. niftyglobalsystem.com Page 77

NIFTY GLOBAL SYSTEMS C++

variable ‘product in the second example. In other words, temponagynory allocation is made
explicit in the iterative versions of the functidog declaring variables, whereas it is implicit in
the recursive definitions (C++ is implicitly askemimanipulate the stack by use of recursive
calls).

Because of extra stack manipulation, recursiveimessof functions often run slower and use
more memory than their iterative counterparts. tBig is not always the case, and recursion can
sometimes make code easier to understand.

Recursive Data Structures

Recursive function definitions are often particlylarseful when the program is manipulating
recursive data structures. We have already seen one definition of a recardata structure - the
definition of a node in a linked list is given erins of itself:

struct Node

{
char word[MAX_WORD_LENGTH];

Node *ptr_to_next_node;

3

Later in the course you will study other recurgi\aa structures in more detail, and see how
associated recursive function definitions behavih@se contexts.

Quick Sort - A Recursive Procedure for Sorting

We will end this lecture by briefly looking at aastlard recursive procedure for sortiQuick
sort is a recursively defined procedure for rearrandgimegvalues stored in an array in ascending
or descending order.

Suppose we start with the following array of 1kegers:

[ta]3 [z Juu]s]afo]z]9]4]zm]
a[0] a[10]

Figure 8.7.1

The idea is to use a process which separatesstheth two parts, using a distinguished value in
the list called givot. At the end of the process, one part will contaty values less than or
equal to the pivot, and the other will contain oméyues greater than or equal to the pivot. So, if
we pick 8 as the pivot, at the end of the processwil end up with something like:

[4 [s3]z]z [s]o] [t1] 9 [14 [20 |

a[0] a[10]

Figure 8.7.2

www. niftyglobalsystem.com Page 78

NIFTY GLOBAL SYSTEMS C++

We can then reapply exactly the same process teftieand and right-hand parts separately.
This re- application of the same procedure leadsrecursive definition.

The detail of the rearranging procedure is as WadloThe index of the pivot value is chosen
simply by evaluating

(first + last) / 2

where first” and 'last' are the indices of the initial and final elemeintshe array representing the

list. We then identify aléft_arrow' and a fight_arrow' on the far left and the far right respectively.
This can be envisioned as:

pivot

[14]3 [z [uu]s [@[o]z]9]a]an]
|

left_arrow right_arrow

Figure 8.7.3
so that left_arrow' and 'right_arrow' initially represent the lowest and highest ingicé the array
components. Starting on the right, thight_arrow' is moved left until a value less than or equal to
the pivot is encountered. This produces:

pivot

[1a]z]z]uu|s[@[o]z]9]4a]z]

left_arrow right_arrow

Figure 8.7.4
In a similar manner léft_arrow' is moved right until a value greater than or éqoahe pivot is
encountered. This is already the situation in caangple. Now the contents of the two array
components are swapped to produce:

pivot

[4]3]zfuu]s[@|o]z]2|1a]zn]
|

left_arrow right_arrow

Figure 8.7.5

We continue by movingright_arrow' left to produce:

www. niftyglobalsystem.com Page 79

NIFTY GLOBAL SYSTEMS C++

pivot

[4]a]ez[uu]s[@[o]z]9]1a]z0]

left_arrow right_arrow
Figure 8.7.6

and then féft_arrow' right to produce:

pivot

[a]3]z uu]s[@]o]z]2]1a]zn]

left_arrow right_arrow

Figure 8.7.7

These values are exchanged to produce:

piwvot

[4]a[z]z [s[@[o]11]9[14]z0]

left_arrow right_arrow

Figure 8.7.8

This part of the process only stops when the cawditeft_arrow > right_arrow becomesrue.
Since in Figure 8.7.8 this condition is skiisg we move fight_arrow' left again to produce:

pivot

[a]3]z]z [s[@]o11]2]1a]zn]

|
left_arrow
right_arrow

Figure 8.7.9

and 'left_arrow' right again to produce:

pivot

[a]3]z]z [s[@][o[11]2]1a]zn]

left_arrow |
right_arrow

Figure 8.7.10

www. niftyglobalsystem.com Page 80

NIFTY GLOBAL SYSTEMS C++

Because we are looking for a value greater thaagoal to pivot’ when moving right, l&ft_arrow'
stops moving and an exchange is made (this timavmg the pivot) to produce:

pivot

[a]3]z]z [s[o|@[11]2]1a]zn]

left_arrow |
right_arrow

Figure 8.7.11

It is acceptable to exchange the pivot becapset"is the value itself, not the index. As before,
"right_arrow' is moved left andIéft_arrow' is moved right to produce:

pivot

[a]3]z]z [s[o|@][11] 2]1a]zn]
[

left_arrow
right_arrow

Figure 8.7.12

The procedure's terminating conditiaeft" arrow > right_arrow is nowTrue, and the first sub-
division of the list (i.e. array) is now complete.

Here is the procedure Quick Sort coded up as afGretion:

void quick_sort(int list[], int left, int right)
{

int pivot, left_arrow, right_arrow;

left_arrow = left;
right_arrow = right;
pivot = list[(left + right)/2];

do
{
while (list[right_arrow] > pivot)
right_arrow--;
while (list[left_arrow] < pivot)
left_arrow++;
if (left_arrow <= right_arrow)
{
swap(list[left_arrow], list[right_arrow]);
left_arrow++;
right_arrow--;
}

while (right_arrow >= left_arrow);

if (left < right_arrow)

www. niftyglobalsystem.com Page 81

NIFTY GLOBAL SYSTEMS C++

quick_sort(list, left, right_arrow);
if (left_arrow < right)
quick_sort(list, left_arrow, right);

www. niftyglobalsystem.com Page 82

