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Chapter 1

Real Numbers

1.1 Ordered Fields

Definition 1.1. Afield isa set IF equipped with:

e an element 0 € F and a binary operation +: F +— [F, making I an abelian
group; we write —a for the additiveinverse of a € F;

e anelement 1 € F and a binary operation -: IF — TF such

— multiplication distributes over addition, thatis: a-0 =0anda - (b+¢) =
a-b+a-c

— 1 # 0, multiplicationrestrictsto F* = F\ {0}, and F* isan abelian group
under multiplication; we write a—! = 1/a for the multiplicative inverse of
a € F*
Examples: Q (rational numbers); R (real numbers); C (complex numbers).

Definition 1.2. A relation < on a set IF is a strict total order when we have a £ a,
a<bandb<c=a<c,a<bora=borb>aforallabandcinF. Wewrite
a<bfora <bora=»>,andnotethatinatotal order a < b < b £ a.

Familiar ordered fields are Q and R, but not C.

1.2 Convergence of Sequences

Definition 1.3. In an ordered field we define the absolute value |a| of a as:

a a>0
la]=<¢ —a a<0
0 a=20

and then we have the distance d(a, b) = |a — b| between a and b.

1



2 CHAPTER 1. REAL NUMBERS

In an ordered field the distance d(a, b) satisfies

d(a,b) >0 and d(a,b) =0iffa =10
d(a,b) = d(b,a)
d(a,c) < d(a,b) + d(b,c).

Proof. Proof of this is easy. Start from

—lz| <z< x|

=yl <y< |yl
Add these to get
—(lz| +y) <z +y < |z|+ |yl
[z +yl < [z + [yl
Putz =a— b,y = b — cforresult. O

In general the distance takes values in the field in question; but in the case of Q and
R, the distance is real valued, so we have a metric.

Example 1.4. Any ordered field has a copy of Q as an ordered subfield.

Proof. We set

n=1+1+...+1+1

n times

and so get —n, and so get /s, r € Z, s > 0 in Z, all ordered correctly. |

Definition 1.5. A sequence a,, converges to a limit a, or a,, tendsto « in an ordered
fild F, just when for all ¢ > 0inF, there exists N € N with |a,, — a|] < ¢ for all
n>N.

We write lim,, ,ca, = a Ora, — aasn — oo Or just a, — a, when a,,
converges to a limit a. So we have

anp, —a < Ye>0 3IN VYn>N Ja,—a|<e
Example 1.6.
1 a, —aiffla, —al| =0
2. b,>0,b, — 0,0 <¢, <by,, thenc, — 0

3. Supposewe have N, k € N suchthat b,, = a4 for all n > N, thena,, — aiff
b, — a.

4. Thesequencea,, = nforn =0,1,2,... doesnot converge.
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Proof. Suppose a,, = n — «, say.
Taking ¢ = 1/2, we can find N such that |a,, — a| < 1/2forall n > N. Then

1=lant1 —an| <|apnt1 —a|+|an —a <1/24+1/2 =1.
This is a contradiction and so a,, does not converge.! O

Lemma 1.7 (Uniqueness of limit). If a,, — aanda,, — a' thena = d’.

Proof. Given e > 0 there exists IV such that n > N implies |a,, — a| < ¢ and K such
that n > K implies |a,, — a/| < e. Let L be the greater of N and K. Now

la —d'|=la—an,+a, —d|
<la — an|+|an —d'|
<€+ e=2e.
But 2e > 0 is arbitrary,so |[a — a’| = 0and a = a’. O

Observation 1.8. Suppose a,, — a and a,, < « for all (sufficiently large) n. Then
a < a.

Proof. Suppose a < a, so thate = a — « > 0. We can find N such that |a,, — a|] < €
foralln > N.
Consider

ay —a=(ay—a)+(a—a)=c+(an —a) > e—|ap, —a] >e—e=0.
S0 ay > o — a contradiction. We deduce a < . O

Example 1.9. We “know” that 1/n — 0 in R. WHY? There are ordered fields in
which 1/n # 0 (e.g. Q(t), field of rational functions, ordered so that ¢ is“ infinite”)
(Easytoseethat 1/n — 0in Q).

Proposition 1.10. Supposethat a,, — a and b,, — b. Then
1. a,+b,—a+b
2. Aa, — A\a
3. ayb,, — ab.
Proof of 1 and 2 are both trivial and are left to the reader.

Proof of 3. Given e > 0 take N such that |a,, — a| < e forall n > N and M such that
|by, — b] < min{e, 1} forall n > M. Let K = max{M, N}. Now

|anby, — ab| < la, — a||bn| + |a| |bn — 0]
< e(1+ b+ |a|)

forall n > K. Now €(1 + |b| + |a|) can be made arbitrarily small and the result is
proved. O

1This is a rigorous form of the thought—if n — « we can’t have both n, n + 1 within 1/2 of .
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1.3 Completenessof R: Bounded monotonic sequences

Definition 1.11. A sequencea,, is (monatonic) increasing just whena,, < a,, 41 for all
n; it is (monotonic) decreasing just when a,, > a,,41 for all n. To cover either case we
say the sequence is monotonic.

N.B. a,, isincreasing iff (—a,,) is decreasing.

A sequence a,, is bounded above when there is B with a,, < B for all n; itis
bounded below when thereis A with a,, > A for all n; itisbounded when it is bounded
above and below.

Axiom (Completeness Axiom). The real numbersR form an ordered field and every
bounded monotonic sequence of reals has a limit (ie converges).

Remarks.
e Thiscan bejustified on further conditions, but here we take it asan axiom.
e Itisenoughto say an increasing sequence bounded above converges.
e Infact, this characterizes R as the completion of Q.

From now on, we consider only the complete ordered field R, and occasionally its
(incomplete) ordered subfield Q.

Proposition 1.12 (Archimedean Property).
1. For anyreal z, thereis N € Nwith N > .
2. Foranye > 0 thereis N € N with0 < & <e.
3. Thesequence L — 0.

Proof.

1. Recall that a,, = n is an increasing non-convergent sequence. Hence it is not
bounded above and so for any = € R there is N withx < N.

2. If € > 0, then consider e~*(> 0) and take N € N with ¢! < N. Then
0<1/N<e

3. Given e > 0 we can find N with 0 < & < e. Nowifn > N,
0<1/n<1/N<e

and the result is proved.

Definition 1.13. If a,, isa sequence and we have n(k) for k € N, with
n(k) <n(k+1)
then (a,,(x))xen is asubsequence of a,,.

Observation 1.14. Suppose a,, — a has a subsequence (a,,(x))ren. Then a, ) — a
ask — oo.
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Theorem 1.15 (The Bolzano-Weler strass Theorem). Any bounded sequence of re-
als has a convergent subsequence.

Cheap proof. Let a,, be a bounded sequence. Say that m € N is a ‘peak number’ iff
am > ay forall k > m.

Either there are infinitely many peak numbers, in which case we enumerate them
p(1) <p(2) < p(3) < ... inorder. Then a,) > app+1) and so a, is a bounded
decreasing subsequence of a,,, SO converges.

Or there are finitely many peak numbers. Let M be the greatest. Then for every
n > M, n is not a peak number and so we can find g(n) > n: the least r > n with
Ay > Qp.

Define ¢(k) inductively by (1) = M + 1, ¢(k + 1) = g(q(k)).

By definition ¢(k) < q(k + 1) forall k, and a () < ag@41) forall &, so ay() is a
bounded, (strictly) increasing subsequence of a ,, and so converges. O

This basis of this proof is that any sequence in a total order has a monotonic subse-
quence.

1.4 Completeness of R: Least Upper Bound Principle
Definition 1.16. Let (0 #)S C R be a (non-empty) set of reals.

e bisanupper bound for S iff s < bfor all s € S andif S has such, Sis bounded
above.

e g isalower bound for S iffa < s for all s € S, andif S has such, Sis bounded
below.

e Sisboundediff S is bounded above and below; ieif S C [a, b] for some a, b.

b isthe least upper bound of S or the supremum of S iff

e bisan upper bound

e Ifc<bthenc < sfor somes € S (iecisnot an upper bound for .S)
Smilarly, a isthe greatest lower bound of S or the infimum of S iff

e ¢ isalower bound

e Ifa < cthens < cfor somes € S (iecisnot alower bound).?
Notation: b = lub .S = sup S;a = glb.S = inf S.

Theorem 1.17 (Least Upper Bound Principle). A non-empty set S of reals which is
bounded above has a least upper bound.

Proof. Suppose S # () and bounded above. Take b an upper bound and a (in S say) so
that [a, b] N S # 0.
Set ag = a, by = bso that ag < by and define a,, < b, inductively as follows:

Suppose a,,, b, given, then a,, 11, b, 1 are defined by stipulating:-

2Aside: If b, b are both least upper bounds of S, then can’t have b < ¥ and can’t have ¥ < b and so
b=1"V.
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o If [2otbe b1 NS £ Bthenayyr = 282 b, 1 = b,
o If otherwise, then a,, 1 = ay, byqq = 22fbs,

We can see inductively that:

1 ap <apnt1 < bpgr < by, forall n.

2. (b1 — Gny1) = %(bn —ay,) forall n.

3. [an,by) NS # O forall n.®

4. b, is an upper bound of S for every n.*

By 1. b, is decreasing, bounded below by a so b,, — [ say; a,, iS increasing,
bounded above by bs0 a,, — «
By 2. (b, — an) = 5= (bo — aop) — 0asn — oo. Butb, —a, — B — a and so

0= a.
Claim: o = Bissup S.

e Each b, is an upper bound of S and so 8 = lim,,_, b, iS an upper bound —
forifs € Swe have s < b, all nand so s < lim,,_,s by,

e Take v < B = a = lim, . a,. We can take N such that a,, > ~ for all
n>N.>

But then [ax, bn] N S # 0 and so there is s € S such that s > a,, > 7.

This shows that 3 is the least upper bound.

Observation 1.18. We can deduce the compl eteness axiom from the LUB principle.

Proof. If a,, is increasing and bounded above then S = {a,, : n € N} is non-empty
and bounded above and so we can set a = sup S

Suppose € > 0 given. Now a — € < a and so there is N with a y > a — € but then
forn>N,a—e<any <a, <aandso|a, —al <e. O

3True for n = 0, and inductively, certainly true for n + 1 in first alternative, and in the 2nd alternative
since

{G"er",bn}ms:@

or 28] 05— s 0

by induction hypothesis
4True for n = 0 and inductively, trivial in first case and in the second, clear as

[bn+1,bn] nNsS=0

SLete = 3 —~ > 0. We can find N such that |a, — 8] < e and thus a,, > 7.
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1.5 Completeness of R: General Principle of Conver-
gence

Definition 1.19. Areal sequencea,, isa Cauchy Sequence if and only if for all ¢ > 0
there exists V with

lan, —am| <€ ¥Yn,m > N.
That is a,, is Cauchy iff
Ye>0 3IN Van,m>N |a,—am| <e€

Observation 1.20. A Cauchy sequence is bounded, For if a,, is Cauchy, take N such
that |a,, — am| < 1 for al n,m > N. Then a,, is bounded by

:I:max(|a1|, |a2|7~~~ a|aN + 1|)

Lemma 1.21. Supposea,, is Cauchy and has a convergent subsequence a ) — a as
k — oo. Thena,, — a asn — oo.

Proof. Given e > 0, take N such that |a,, — a,,| < e forall m,n > N, and take K
with n(K) > N (easy enough to require K > N) such that \an(k) — a| < ¢ for all
k> K.

Thenifn > M = n(K)

|an, —a| < |an — an(k)| + ‘an(k) — a| <e+e=2e.
But 2¢ > 0 can be made arbitrarily small, so a,, — a. O

Theorem 1.22 (The General Principle of Convergence). A real sequence converges
if and only if it is Cauchy.

Proof. (=) Suppose a, — a. Given e > 0 take N such that |a,, — a| < € for all
n > N.

Thenifm,n > N,

|an - am,| < |an - Cl| + |am, - Cl| <ete= 2e.

As 2¢ > 0 can be made arbitrarily small, a,, is Cauchy.

(<) Suppose a,, is Cauchy.® Then a, is bounded and so we can apply Bolzano-
Weierstrass to obtain a convergent subsequence a, ) — a as k — oc. By
lemma1l.21, a,, — a.

O

Alternative Proof. Suppose a,, is Cauchy. Then it is bounded, say a,, € [«, 5]
Consider

S ={s: a, > s forinfinitely many n}.

First, « € Sandso S # (). S is bounded above by 3 + 1 (in fact by 3). By the
LUB principle we can take a = sup S.

6This second direction contains the completeness information.
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Givene > 0,a—e < aand sothereis s € S with a—e < s. Then there are infinitely
many n with a,, > s > a—e¢. a+¢€ > a,50a+ e ¢ S and so there are only finitely
many n with a,, > a + €. Thus there are infinitely many n with a,, € (a — €,a + ¢€).

Take N such that |a, — anm| < € forall m,n > N. We can find m > N with
am € (a—€,a+¢)ie|ay, —al <e Thenifn > N,

lan, —a| < |an — am| + |am —al < e+e=2¢
As 2¢ can be made arbitrarily small this shows a,, — a. O

Remarks.

e This second proof can be modified to give a proof of Bolzano-Weierstrass from
the LUB principle.

¢ Inthe proof by bisection of the LUB principle, we could have used GPC (general
principle of convergence) instead of Compl eteness Axiom.

e e can prove GPC directly from completeness axiom as follows:
Given a,, Cauchy, define

by, = inf{a,, : m > n}
by, isincreasing, so b, — b (= liminf a,,). Then show a,, — b.

e The Completeness Axiom, LUB principle, and the GPC are equivalent expres-
sions of the completeness of R.



Chapter 2

Euclidean Space

2.1 TheEuclidean Metric

Recall that R™ is a vector space with coordinate-wise addition and scalar multiplication.
Definition 2.1. The Euclidean norm? ||-|| : R™ — R is defined by

n
lzll = (e, @a)ll =+, | D a?
i=1

and the Euclidean distance d(x, y) between z and y isd(z, y) = ||z — y||.
Observation 2.2. The norm satisfies

l|lz]| >0, |z =0 2z=0€cR"
[Az]| = [A] [|=]]
lz +yll < Izl + [lyll

and the distance satisfies
d(z,y) >0, dz,y)) =0 z=y

d(x,y) = d(y,x)
d(z,z) < d(z,y) + d(y, 2).

2.2 Sequencesin Euclidean Space
We can write (™) or z(n) for a sequence of points in R?. Then

mq(n)zxz(n) 1<i<p

for the i coordinate of the »™ number of the sequence.

1The norm arises from the standard inner product

n
<my>=) wmiy
=1
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Definition 2.3. A sequence z(™ convergesto z in R? when for any e > 0 there exists
N such that 2

Hx(")—xH<e foral n>N
In symbols:

2™ S reVe>0 IN Vn> N Hx(”)—xH<e

Proposition 2.4. (™) — z inR? iff xl(.") —zinRforl1<i<np.

Proof. Note that

0<

)] < [a o]

and

— 0.

p
o5 o] s S
i=1

O

Definition 2.5. Asequencez(™ e R? isboundedif and only if there exists R such that
||| < R for all n.

Theorem 2.6 (Bolzano-Weler strass Theorem for R?). Any bounded sequencein R?
has a convergent subsequence.

Proof (Version 1). Suppose (™) is bounded by R. Then all the coordinates xﬁ.") are
bounded by R. By Bolzano-Weierstrass in R we can take a subsequence such that
the 1st coordinates converge; now by Bolzano-Weierstrass we can take a subsequence
of this sequence such that the 2nd coordinates converge. Continuing in this way (in p
steps) we get a subsequence all of whose coordinates converge. But then this converges
in RP, ([l

\ersion 2. By induction on p. The result is known for p = 1 (Bolzano-Weierstrass in
R) and is trivial for p = 0. Suppose result is true for p.

Take 2" a bounded subsequence in R” and write each z(™) as (") = (3™, %(:531)
where y(™) € RP and xé’fl € Ris the (p 4 1) coordinate.

Now y(") and 2™ are both bounded, so we can apply Bolzano-Weierstrass in R?

p+1
to get a subsequence y(™(*)) — y. Apply Bolzano-Weierstrass in R to get ) —

xz. Then

kD) s (y, 2) as j — oco.

22" — x in RP iff ||:t(") — :t“ — 0inR.
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Definition 2.7. A sequence z("™) e R? is a Cauchy sequence iff for any e > 0 thereis
N with ||z — z(™)|| < e for n,m > N. In symbolsthisis

Ye>0 IN Vn,m>N me) — z(m)

‘ < E.
Observation 2.8. (™ is Cauchy in R? iff each z{™ = z;(n) is Cauchy in R for
1<i<p.

Proof. Suppose (™) is Cauchy. Take 1 < i < p. Given e > 0, we can find N such
that [|z(") — 2(™)|| < e forall n,m > N. But then for n,m > N,

|zi(n) —zi(m)| < Hx(”) - x(m)H <€

so as e > 0 is arbitrary, z;(n) is Cauchy.
Conversely, suppose each z;(n) is Cauchy for 1 < i < p. Given ¢ > 0, we can find
Ni,..., Npsuch that

|zi(n) —z;(m)| <e for m,m>N;  (1<i<p)

Now if n,m > N = max{Ny, ..., N,} then

p
Hx(n) _ pm) ‘ < Z ‘xgn) B xgm)‘ < pe
=1

As pe can be made arbitrarily small, (™ is Cauchy. O

Theorem 2.9 (General Principle of Convergencein R?). A sequence z(™ in R? is
convergent if and only if (™ is Cauchy.

Proof. (™) converges in R?
iff 2;(n) convergesinR (1 < ¢ < p)
iff ;(n) is Cauchy inR (1 < i < p)
iff (™) is Cauchy in R?. O

2.3 TheTopology of Euclidean Space

For a € RP and r > 0 we have the open ball B(a,r) = O(a,r), defined by
B(a,r) =O(a,r) ={x: ||z —a| <r}
Also we have the closed ball C'(a,r) defined by
Cla,r) ={z:[lz —al <7}
Also we shall sometimes need the “ punctured” open ball
{z:0< ||z —al <r}

Definition 2.10. A subset U C RP? isopen if and only if for all a € U there exists
€ > 0 such that

lz—al|<e=ze€U

[Thatis: U isopenifffor all a € U thereexists e > 0 with B(a, ¢) C U].
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The empty set () is trivially open.
Example 2.11.
e O(a,r) isopen, forifb € O(a,r), then||b — a|| < r, setting
e=r—|b—all >0
wesee O(b,¢) C O(a,r).
o Smilarly {z: 0 < ||z — a|| < r} isopen.
e But C(a,r) isnot openfor any r > 0.

Definition 2.12. A subset A C R? isclosed iff whenever a,, is a sequencein A and
a, — a,thena € A. Insymbolsthisis

ap — a,anp E A=>a €A
Example 2.13.

e (C(a,r) isclosed, for suppose b,, — b andb,, € C(a,r) then ||b, — al| < r for
all n. Now

[b—all < [|bn = bll + [|bn — all <7+ [|bn — b

Asb, — b, ||[b, —b|]| — 0,and so r + ||b, — || — r asn — oo. Therefore
b —all <.

e A product [a1,b1] X ... X [ap,b,] € RP of closed intervals is closed. For if
™ — cand

dMel]x...x[]
then each cE”) — ¢; With c§"> € lai, b;] sothat ¢; € [a;, b;]. Therefore

ce[]x...x[]

e But O(a,r) isnot closed unlessr = 0.

Proposition 2.14. Aset U C R? isopen (in RP) iff its complement R? \ U is closed in
RP. Aset U C RP isclosed (in RP) iff its complement R? \ U is openin R?.3

Proof. Exercise. O

2.4 Continuity of Functions

We consider functions f: E — R™ defined on some £ C R"™. For now imagine that
E is asimple open or closed set as in §2.3.

3Warning: Sets need not be either open or closed: the half open interval (a, b] is neither open nor closed
inR.
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Definition 2.15. Suppose f: E — R™ (with £ C R™) Then f is continuous at a iff
for any e > 0 there exists* § > 0 such that

|le —all <6 —|f(z) — fla)]| <e forall ze€kFE.
In symbols:
Ve>0 35>0 Ve eE |z—a||<d=|f(x)- fla)|<e
f iscontinuous iff f is continuous at every point.

This can be reformulated in terms of limit notation as follows:

Definition 2.16. Suppose f: E ~ R™. Then f(x) — basz — ain E® if an only if
for any e > 0 there exists § > 0 such that

O0<||lz—all<d=|f(z)-b)|| <e foral zeck.
Remarks.
o e typically use thiswhen E is open and some punctured ball
{z:0< ||z —al <r}
iscontainedin E£. Then the limit notion isindependent of £.

o If f(x) — basxz — a, thendefining f(a) = b extends f to a function continuous
ata.

Proposition 2.17. Suppose f: E — R™

e fiscontinuous(in E) if and only if whenever a,, — a in E, then f(a,,) — f(a).
Thisis known as sequential continuity.

e fiscontinuous (in E) if and only if for any open subset V' C R™:
F'V)={z€E: fx)eV}
isopenin E.

Proof. We will only prove the first part for now. The proof of the second part is given
in theorem 5.16 in a more general form.

Assume f is continuous at @ and take a convergent sequence a,, — a in E. Suppose
€ > 0 given. By continuity of f, there exists 6 > 0 such that

[z —all <0 =[If(z) - fla)] <e

As a,, — atake N such that ||a, — a|| <  foralln > N.
Now if n > N, || f(an) — f(a)|| < e. Since e > 0 can be made arbitrarily small,

f(an) - f(a).

The converse is clear. O

4The continuity of f at a depends only on the behavior of f in an open ball B(a, ), 7 > 0.
5Then f is continuous at a iff f(x) — f(a)asz — ain E.
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Remark. f(z) — basz — aiff||f(x) —b|| — 0asz — a.

Observation 2.18.

e Anylinear map o:: R™ — R™ is continuous.

Proof. If o has matrix A = (a,;) with respect to the standard basis then

n n
a(r) =alxy,... ,r,) = Zaz‘j%’v--- Eamjwa’
j=1 j=1

and so

la(@)ll < lal e < | Y lai] | el
i ]

%,_/
K

Fix a € R™. Given e > 0 we note that if ||z — a|| < e then
la(z) — a(a)l] = a(z = a)|| < K[z —af| < Ke

As Ke can be made arbitrarily small, f is continuous at a. But a € R™ arbitrary,
so f is continuous. O

o If f: R™ — R™ iscontinuous at a, and g: R™ — RP? is continuous at f(a),
thengo f: R™ — RP iscontinuous at a.

Proof. Given e > 0 take > 0 such that
ly = f@)ll <n=llgy) —g(f(a))ll <e

Take § > O suchthat | — al| < § = ||f(z) — f(a)|| <.
Then [lz —all <& = [lg(f(x)) —g(f(a))ll <e. 0
Proposition 2.19. Suppose f, g: R™ — R™ are continuousat a. Then
1. f+ giscontinuousat a.
2. \fiscontinuousat a, any A € R.
3. Ifm=1, f-giscontinuousat a.
Proof. Proof is trivial. Just apply propositions 1.10 and 2.17. O

Suppose f: R™ — R™. Then we can write:

f@) = (fi@),..., fm(x))

where f;: R™ — R is f composed with the ;™ projection or coordinate function.
Then f is continuous if and only if each f1,... , f,, is continuous.
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Theorem 2.20. Supposethat f: E — R is continuous on £, a closed and bounded
subset of R™. Then f isbounded and (so long as F # () attainsits bounds.

Proof. Suppose f not bounded. Then we can take a,, € E with |f(ay)| > n. By
Bolzano-Weierstrass we can take a convergent subsequence a ,,(x) — a as k — oo and
as Fisclosed, a € F.

By the continuity of f, f(a,m)) — f(a)as k — oo. But f(a, ) is unbounded
— a contradiction and so f is bounded.

Now suppose 3 = sup{f(z): z € E}. We can take ¢,, € E with

1
|f(cn) _6| < n

By Bolzano-Weierstrass we can take a convergent subsequence c,, () — c. As E'is
closed, c € E. By continuity of f, f(c,)) — f(c), butby construction f(c,xy) — 8
ask — o0. S0 f(c) = . O

Essentially the same argument shows the more general fact. If f: £ — R"™ is
continuous in E, closed and bounded, then the image f(E) is closed and bounded.
N.B. compactness.

2.5 Uniform Continuity

Definition 2.21. Suppose f: E — R™ where E C R™. f isuniformly continuous on
E iff for any e > 0 thereexists § > 0 such that

lz =yl <d=[lf(x) - fy)l <e foral z,yeck.

In symbols:

Ve>0 36>0 Va,yeFE |z—vyll<d=|f(z)—= fly)| <e
Compare this with the definition of continuity of f at all points x € E:
VeeE Ve>0 30>0 VyeFE |z—yl|<d=|f(z)—fly)l <e

The difference is that for continuity, the 6 > 0 to be found depends on both « and
e > 0; for uniform continuity the 6 > 0 depends only on e > 0 and is independent of
xX.

Example2.22. z +— x~! : (0,1] — [1,00) is continuous but not uniformly continu-
ous.

Consider
1 1 jy—=z
oyl | ay
Takexz = n, y = 2n. Then
1 1 |1
r oyl |21

while |z — y| = 7.
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Theorem 2.23. Suppose f: E — R™ is continuouson F, a closed and bounded sub-
set of R™. Then f is uniformly continuouson E.

Proof. Suppose f continuous but not uniformly continuous on E.
Then there is some ¢ > 0 such that for no § > 0 is it the case that

[z —yll <d=|f(z) - fy)ll<e Va,yeE.
Therefore® for every § > 0 there exist z,y € E with ||z — y|| < ¢ and
[f(z) = fW) = e
Now for every n > 1 we can take z,,, y,, € E with ||z,, — y,| < % and

By Bolzano-Weierstrass, we can take a convergent subsequence x,,) — z as
k — oco. x € E since F is closed.
Now

[Yny = || < [[ynky = Tngiy | + |20y — 2| — 085 & — 0.

Hence y,,(x) — . SO 2y, () —Yn(k) — 088k — coandso f(xyk))—f (Yn(k)) — 0
(by continuity of f). So

| f (@ney) = f(Ynry)|| — 088 k — oo.

>e

This is a contradiction and it follows that f must be uniformly continuous. O

6We want the “opposite” of
Ye>0 35>0 Vz,ye€E |z—vyl|<d=|f(z)— fly) <e
Itis:
Je>0 V6>0 Jz,yeE |z—y|l<d and | f(z)— fy)l > e



Chapter 3

Differentiation

3.1 TheDerivative

Definition 3.1. Let f: F — R™ be defined on F, an open subset of R™. Then f is
differentiable at @ € E with derivative Df, = f'(a) € L(R™,R™) when

[f(a+h) = f(a) = f'(a)h]
172l
The idea is that the best linear approximation to f at a € F is the affine map
z—a+ f'(a)(z — a).

Observation 3.2 (Uniqueness of derivative). If f isdifferentiableat a thenitsderiva-
tive is unique.

—Q0ash — 0.

Proof. Suppose D f,, D}a are both derivatives of f at a. Then

| Dsa(h) - Dt ()|

<
Tl -
et m) @) - D@l |fath - f@-Drm]
[l [l
Thus
LHS = H(Dfa — Df,) (H%)H —0ash — 0.

This shows that D f, — D f, is zero on all unit vectors, and so Df, = Df,. O
Proposition 3.3. If f: E +— R™ isdifferentiable at a, then f is continuousat a.

Proof. Now

[ (x) = fla)ll < |f(z) = f(a) = Dfa(z = a)[| + | Dfalz — )

17
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But || f(z) — f(a) = Dfo(z —a)|| — 0asx — aand ||[Df,(z—a)|]| — 0as
x — a and so the result is proved. |

Proposition 3.4 (Differentiation asa linear operator). Supposethat f,g: £ — R"
aredifferentiableat « € E. Then

1. f + g isdifferentiableat a with (f + g)'(a) = f'(a) + ¢'(a);

2. \f isdifferentiableat a with (\f)’(a) = \f'(a) for al X € R.
Proof. Exercise. O
Observation 3.5 (Derivative of alinear map). If a: R™ — R™ isalinear map, then

« isdifferentiable at every a € R™ with o/(a) = a(a).
Proof is simple, note that

la(a + h) — afa) — a(h)
2]

I =0.

Observation 3.6 (Derivative of abilinear map). If 5: R™ x R™ +— RP is hilinear
then 3 is differentiable at each (a,b) € R™ x R™ = R"*™ with

B'(a,b)(h, k) = B(h,b) + B(a, k)
Proof.

Hﬁ(a'i_hvb"' k) _ﬁ(avb) _ﬁ(hvb) _ﬁ(avk)H Hﬁ(hvk)H

(A, B [[(h, B

If 3 is bilinear then there is (b)) such that

ﬁ(h,k)—( > bhik o > b;’jhikj)

i=1,j=1 i=1,j=1

18R, B < Y10 1Al Ty < 105 LIAI KD < < (1RI + 1K)

.3,k .5,k

=K

So Uil < (K ||(h, k)[| and s0 — 0 as (h, k) — 0. O

Example 3.7. The simplest bilinear map is multiplication m: R x R — R and we
have

m/(a,b)(h, k) = hb + ak(= bh + ak).
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3.2 Partial Derivatives

Example 3.8 (Derivative of afunction R — R). Suppose f: £ — Rwith £ C R
open is differentiable at « € E. Then the derivative map f’(a) € L(R,R) and any

such is multiplication by a scalar, also called the derivative f/(a) = g
Now ¢

[fla+h) = fla) = f'(@)h] _|fla+h)—f(a)
7] H

—0 as h—0

— f'(a)

we see that
_ fla+h)— f(a)
4 p—
fila) = lim h '
WARNING: This limit formula only makes sensein this case
Definition 3.9 (Partial derivatives). Suppose f: £ — R with E C R™ open. Take
a € E.Foreach1 < ¢ < n we can consider the function
xi— flar, ... ,Qi—1,Ti Qig1, ... ,0n)

which is a real-valued function defined at least on some open interval containing a ;.
If thisis differentiable at a; we write

0
D;f(a) = ai

a

for its derivative—the i partial derivative of f at a.

Now suppose f is differentiable at a with derivative f'(a) € L(R™,R). From linear
maths, any such linear map is uniquely of the form

(hl, e ,hn) [d Ztihi
=1

fortq,... ,t, € R (the coefficients w.r.t. the standard basis). Therefore

fla+h) ~ f@) =Yt
IR

as h — 0. Specializeto h = (0,...,0,h;,0,...,0). We get

|f(a1,... ,ai_l,ai—f—h,ai_,_l,... ,an) —f(al,... ,an) —tihi|
|hil

—0ash; — 0.

It follows that ¢; = D, f(a) = ,8{02 and thus the coefficients of f'(a) are the
partial derivatives.

Example 3.10. m(z,y) = xy. Then

gm _, om _,
or D oy
and
o () (k) = 20+ 2~y ak

ox oy
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Proposition 3.11. Suppose f: E — R™ with £ C R™ open. e can write

f =:(f17---,JﬁnL

where f;: £ — R, 1 < j <m. Then f isdifferentiableat « € E if and only if all the
fi aredifferentiableat « € E. Then

f'(a) = (fi(x),..., f.(x)) € L(R",R™)
Proof. If f is differentiable with f/(a) = ((f'(a))1,. .., (f'(a))m) then

[fila+h) = fi(a) = (f(a);(W)] _ |[flath)=fla) = [(a)(W)]
2] - 2]

So (f'(a)); is the derivative f}(a) at a. Conversely, if all the f;’s are differentiable,
then

[f(a+h) = fla) = (fi(a)(R), -, fn(@)(R))]]
2]
|[fila+h) = fi(a) = fi(a)(n)|
Z IIhH

—0ash — 0.

Therefore f is differentiable with the required derivative. O

It follows that if f is differentiable at a, then f’(a) has the matrix

9h ... 9h
oz Oxy
Ofm ... Ofm
Ox1 Oy,

all evaluated at a with respect to the standard basis.

Remark. If the % are continuous at a then f'(a) exists.

3.3 TheChain Rule

Theorem 3.12 (The Chain Rule). Suppose f: R™ — R™ isdifferentiableat a« € R™
and g: R™ — RP? is differentiableat b = f(a) € R™, thengo f: R — RP is
differentiableat « € R™ and (g o f)'(a) = ¢'(f(a)) o f'(a).

Proof. Let f(a+ h) = f(a) + f'(a)(h) + R(a, h), where

[ R(a, b

—0ash — 0.
IRl

We also have g(b+ k) = g(b) +g'(b)(k) + S(b, k), where S(b, k) — 0 in the same
manner.
We can now define (b, k) =

o (b, k) is continuous at k = 0.

S(b,k)

for k #£ 0, and (b, k) = 0 otherwise, so that
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f(a) + f'(a)(h) + R(a, h))

f(a)) +¢'(f(a))(f'(a)(h) + R(a, h))

f(a), f'(a)(h) + R(a,h)) || f'(a)(h) + R(a, )]
f(@) +g'(f(a)(f'(a)(h) + ¢'(f(a))(R(a, h) +Y
S

remains to show that

o
=3

g9'(f(a))(R(a, h)) +Y

—0ash — 0.
Al

U@ R@R) o Rlah)
0] g“(”<|h|>

R(a,h)

butas h — 0, Hh,’ll

— 0, and since ¢’(f(a)) is continuous

9'(f(a))(R(a, h))

—0ash — 0.
Al

1" (a)()]] [
<Kl -K
([l 172l
as f'(a) is linear (and K is the sum of the norms of the entries in the matrix
f'(a)). Also
[R(a,h)||

—0ash—0
Al

so we can find § > 0'such that 0 < [l < & = LE%0l < 1. Therefore, if

0 <||h|| < 6 then

[/"(@)(h) + R(a, h|
2]

Hence f'(a)(h)+ R(a,h) — 0ash — 0andso o(f(a), f'(a)(h)+ R(a,h)) —

0ash—>O.ThusH—‘,j”—>0ash—>O.

<K+1

O

Remark. Inthe1-D caseit istempting to write f(a) = b, f(a + h) = b + k and then
consider

f 9@+ ) —g(f(@) _ | glb+R) —g(b) flath) = (@)

h—0 h h—0 k h

But £ could be zero. The introduction of o is for the analogous problem in many
variables.

Application. Suppose f,g: R™ — R are differentiable at a. Then their product
(f - g): R™ — Risdifferentiable at a, with derivative

(f-9)'(a)(h) = g(a) - f'(a)(h) + f(a) - g'(a)(R)

Imultiplication in R is commutative!
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3.4 Mean Value Theorems

Suppose f: [a,b] — R is continuous on the (closed, bounded) interval [a, b] and dif-
ferentiable on (a, b). Then we have both Rolle’s theorem and the mean value theorem.

Theorem 3.13 (Rolle’'sTheorem). If f(a) = f(b) then there exists ¢ € (a,b) with
f'(e) =0.

Proof. Either f is constant and the result is then trivial, or else without loss of gener-
ality, f takes values greater than f(a) = f(b). Then there exists ¢ € (a, b) such that

f(c) =sup{f(t):t € [a,b]}. Thus f'(c) = 0.2 O

Theorem 3.14 (Mean Value Theorem). Suppose f: [a,b] — R(a < b) iscontinuous
and differentiable on (a, b). Then thereexists ¢ € (a, b) with

fo)—fla) .
L= o).
Proof. Set g(z) = f(z) — $=2(f(b) — f(a)). Then g(a) = f(a) = g(b) so we can
apply Rolle’s theorem to get ¢ € (a, b) with g’(c) = 0. This ¢ does the trick. O

Theorem 3.15. Suppose that f: £ — R™ (E openin R"™ ) is such that the partial
derivatives

8%—

D, fi(x)

evaluated at « (exist and) are continuousin E. Then f isdifferentiablein E.

Proof. Note that since f is differentiable iff each f; is differentiable (1 < j < m), it
is sufficient to consider the case f: F +— R. Take a = (a1,... ,a,) € E.

For h = (hi,...,hy) write h(r) = (h1,... ,hr,0,...,0). Then by the MVT we
can write

fla+h(r)) = fla+h(r—1)) = heDy f (&)

where &, lies in the “interval” (a 4+ h(r — 1), a + h(r)). Summing, we get
fla+h) = fla) = Dif(&)hs.
=1

Hence

[fla+h) = fla) = 350, Dif(@hil 307 (Dif (&) — Dif(a))hil
17l 2]

< 3" IDi(€) - Dif (@)

As h — 0, the & — a and so by the continuity of the D; f’s the RHS — 0 and so
the LHS — 0 as required. |

2This requires proof, which is left as an exercise.
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Alternatively: Given e > 0, take § > 0 such that® for 0 < |h| < 4,

[Dif(a+h) = Dif(a)] <e

Thenif 0 < |h| < 4, |§; —a| < ¢ and so LHS < RHS < ne, which can be made
arbitrarily small. This shows that the LHS — 0 as A — 0.

3.5 Double Differentiation

Suppose f: E — R™ (E open in R™) is differentiable. We can thus consider the
function

'+ Ew— L(R™,R™) givenby z — f'(z).

Vulgarly, we can identify L(R™ R™) with R™" via matrices, and so can ask
whether f” is differentiable. If it is differentiable at « € E, then its derivative f”(a) isa
linear map R™ — L(R™,R™). Itis better regarded as a bilinear map R™ x R™ — R™.
Thus (f”(a)(h))(k) is regarded as f”(a)(h, k). Similarly, if the partial derivatives
D; f; exist in E/, we can ask whether the functions

J)'—>Difj($), EF—R

are differentiable or even whether their partial derivatives

0% f;
DiDifj(a) = 55—

exist.

Theorem 3.16. Suppose f: E — R™ with £ C R™ open, is such that all the partial
derivatives Dy, D; f;(x) (exist and) are continuousin E. Then f is twice differentiable
in £ and the double derivative f”(a) isa symmetric bilinear map for all a € E.

Remarks.
o Sufficient to deal withm = 1.
o It follows from previousresultsthat " (a) existsfor all a € E.
e Itremainstoshow D;D; f(a) = D;D; f(a), inE, where f: E — R.
For this we can keep things constant except in the ;™" and 5™ components.
It suffices to prove the following:

Proposition 3.17. Suppose f: E — R, E C R? is such that the partial derivatives
D1Ds f(x) and Do D1 f(x) are continuous. Then D1 Ds f(x) = DaD4 f ().

3B(a, 6) C E is also necessary.
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Proof. Take (a1,a2) € E. For (hy, he) small enough (for a + h € E) define

T(hi,he) = f(a1+ hi,a2 + he) — f(a1, a2 + ha)
—f(a1 + h1,a2) + f(a1,a2)

Apply the MVT to y — f(a1 + h,y) — f(a1,y) to get § € (as, as + hs) such that
T(h1,h2) = (D2f(ar + h, §) — D2f(a1,9))h2
Now apply MVT to z — Dy f(x,§) to get & € (a1, ar + hy) with
T'(h1,h2) = (D1D2 f(Z,9))h1ho
As hy, ha — 0 separately, (Z,9) — (a1, a2), and so, by continuity of D; D5:

T(h1,h
lim (17 2)

=D1D
h1—0,h2—0  hiho 1 2f(a17a2)

Similarly
T(h1, ha)
1 ———=~ =DyD .
hl_}g}}géo hiha 2D1f(a1,az)
The result follows by unigueness of limits. O

3.6 Mean Value Theoremsin Many Variables

Suppose first that f: [a,b] — R™ is continuous and is differentiable on (a,b). Then
the derivative f/(t) € L(R,R™) for a < t < b. We identify L(R, R™) with R via

a€ LR,R™) — a(l) e R™

Thenwrite || f'()| = [f'(£) (D]

Theorem 3.18. Wth f asabove, suppose || f/(t)|| < K for al ¢ € (a,b). Then
1(0) = f(@)] < K[b—al.

Proof. Sete = f(b) — f(a) and let ¢(t) = (f(t), e), the inner product with e. By the
one dimensional MVT we have ¢(b) — ¢(a) = ¢’(c)(b — a) for some ¢ € (a, b).

We can calculate ¢’(¢) by the chain rule as ¢'(t) = (f'(¢),e). (f'(¢) regarded as
begin a vector in R™). Now

Therefore

170 = F@I? = [ (), e)] b —al
< £ 1£®) = @] 15—l
andso || £(b) - f(a)]| < K |b— al. O
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Finally, take the case f: E — R™ differentiable on £ with E openinRR™. For any
d € FE, f'(d) € LR™,R™).
For a € L(R™,R™) we can define ||| by

ol — oup L@
z#£0 HJ?H

So ||«| is least such that
la(@)]| < llaf ||z
for all z.
Theorem 3.19. Suppose f isas aboveand a,b € E are such that the interval [a, b]

(linesegment), [a,b] = {c(t) =tb+ (1 —t)a: 0 < ¢t < 1}.
Thenif || f/(d)|| < K for all d € (a,b),

1F(b) = fla)ll < K [Ib—all.
Proof. Let g(t) = f(c(t)), sothat g: [0, 1] — R™. By theorem 3.18,

1F) = f(@)l = llg(1) —9(O)[ < L-1=L

for L > ||l¢/(t)||, 0 < t < 1. But by the chain rule

g'(t)= 1) (b—a),
=c’/(t)

sothat ||g’(®)|| < IS ()] - |b — al| < K ||b — a|. The result follows. O
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Chapter 4

| ntegration

4.1 TheRiemann Integral
Definition 4.1. Adissection © of aninterval [a, b] (a < b), iSa sequence
D =[zg,...,Tn] Where a=xzp<z; <z2<...<xp=">.

A dissection ©; isfiner than (or a refinement of) a dissection © 5, if and only if all
the points of ©, appear in® ;. Write ®; < D,. !

Definition 4.2. For f: [a,b] — R bounded and ®© a dissection of [a, b] we define

n

5o =Y (@wi—zi1) s {f@)

i— zi—1<z<z;

n

Sp = Z(mz —x;i—1) inf  {f(x)}.

‘ zi—1<z<z;
i=1

These are reasonable upper and lower estimates of the area under f. For general f
we take the area below the axis to be negative.

Combinatorial Facts
Lemma4.3. Forany ®, sp < Sp.
Lemmadd4. IfD; < D, then Sp, < Sp, and sp, > so,.
Lemma4.5. For any dissections®; and ®s, sp, < So,.
Proof. Take a common refinement © 3, say, and

59, < sp, < Sp, < Sp,

It follows that the sp are bounded by an Ss,, and the Sp are bounded by any
85D+ [l

1The mesh of ® = [zo,...,zn] is maxi<i<n{|Ti —zi—1|}. If D1 < Do then mesh(Dy) <
mesh(D3).

27
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Definition 4.6. For f: [a,b] — R bounded, define the upper Riemann integral

b
S() = [ fa)do = int(Sa()

and the lower Riemann integral

b
s(f) / o) de = sup{sa (1)}

Note that s(f) < S(f). f issaid to be Riemann integrable, with f:f(a:) der =0
iffs(f) = S(f).

Example4.7.

0 zirrational,
* f() {1 x rational. v 0,1]

Then S(f) =1,s(f) = 0and so f is not Riemann integrable.

f(x) 0 xirrational, € [0,1]
o f(x)= . ) T ,
é x rational = % in lowest terms.

is Riemann integrable with
1
/ f(z)de =0
0

Conventions

We defined f; f(z)dz fora < bonly. Fora = b, f(f f(z)dz = 0 and for b < aq,
f: flz)dz = — fba f(z)dz.
These give a general additivity of the integral with respect to intervals, ie:
If fis Riemann integrable on the largest of the intervals,
[a” b]’ [a” C], [C’ b]

then it is integrable on the others, with

/abf(x)dx—[f@)dw/jf@)m

This makes sense in the obvious case a < ¢ < b, butalso inall others,egb < a < c.

Proof. Left to the reader. O

4.2 Riemann’s Condition: A GPC for integrability

Theorem 4.8. Suppose f: [a,b] — R isbounded. Then f is Riemann-integrable iff
for all e > 0 there exists a dissection © with Sp — sp < e.
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Proof.
(=) Take e > 0, Pick © such that

b
So, —/ flz)dz <

Pick D5 such that

b
/ f(x)dz — sp, <

DO

Then if © is a common refinement,

b b
Sp —sp < <S@1 —/ f(x)da:) + (/ f(x)da:—sz)2> <€

(<) Generally, So > S > s > sp Riemann’s condition gives S — s < ¢ for all
e > 0. Hence S = s and f is integrable. O

Remarks.

e If oissuchthat Ve > 0 3D with Sy — sp < eand Sp > o > sp theno is

f: f(x)dx.
e A sumof theform

n

oo (f) = Z(xz —zi-1)f(&)

i=1

where §; € [z;—1,x;], is an arbitrary Riemann sum. Then f is Riemann inte-

grable with
b
/ fl@)de =0

if and only if Ve > 0 36 > 0 VO with mesh(®) < ¢ and all arbitrary sums

oo (f) —of <e

Applications
A function f: [a,b] — Ris
increasing if and only if
z<y=f(z)<fQy), =2y¢€lab]
decreasing if and only if
z<y=f(z)=f@), =2y¢€lab]

monotonic if and only if it is either increasing or decreasing.
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Proposition 4.9. Any monotonic function is Riemann integrable on [a, b].

Proof. By symmetry, enough to consider the case when f is increasing. Dissect [a, b]
into n equal intervals, ie
(b—a)

D—[a,a—i—(b_a),a—i—Q N
n n

= [zo, 21, .. s Zn].

Note that if ¢ < d then sup,c. 4{f(2)} = f(d) and inf, ¢ q{f(2)} = f(c).
Thus

n

So —s9 =Y (i —@i-1)(f(x:) = f(wi-1))

) MR
=20 () la)

Now, the RHS— 0 as n — oo and so given ¢ > 0 we can find n with

P p) — fa) <

and so we have © with So — sp < e. Thus f is Riemann integrable by Riemann’s
condition. O

Theorem 4.10. If f: [a,b] — R iscontinuous, then f is Riemann integrable.
Note that f is bounded on a closed interval.
Proof. We will use theorem 2.23, which states that if f is continuous on [a, b], f is
uniformly continuous on [a, b]. Therefore, given n > 0 we can find 6 > 0 such that for
all z,y € [a,b]:
|z —yl <d=[f(z) = fy)l<n
Take n such that =2 < § and consider the dissection

n

D= a,a—l—(b_a),a—l—Z yee. b
n n

= [J)Q,J?l,... ,In].

Now if z,y € [zi—1,x;] then |z — y| < dand so |f(z) — f(y)| < n. Therefore

sup {f(2)} = inf  {f(z)} <n.

z€[zi_1,xi] z€[zTi—1,2:]

We see that
So —sp < z:(xz —xzi_1)-n=(b—a)n
i—1
Now assume ¢ > 0 given. Take 7 such that (b — a)n < e. As above, we can find

D with Sp — sp < (b — a)n < ¢ s0 that f is Riemann integrable by Riemann’s
condition. O
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4.3 Closure Properties
Notation. Define M(f;c,d) = sup e qif(z)} andm(f;e,d) = infoepeal f(2)}
Proposition 4.11. If f, g: [a,b] — R are Riemann integrable, so are

L f+g:[a,b] — Rwith [*(f + g)da = [* fde+ [ gda.

2. Af:[a,b] — R (A € R)with ["Afda = A [’ fda.

Proof of 1. Given ¢ > 0. Take a dissection ©; with S, (f) — so,(f) < 5 and a
dissection D, with So,(g) — s,(g9) < 5. Let D be a common refinement. Note that

M(f +g;c,d)
m(f + g;¢,d)

M(f;e,d) + M(g;c,d)

<
>m(f;c,d) +m(g;c, d)

Hence

so(f) +so(9) <so(f+g) <So(f+9g) < So(f)+ 50(g)

and so So (f +g) — so(f +g) < e. Thus f + ¢ is Riemann integrable (by Riemann’s
condition). Further, given ¢ > 0 we have a dissection © with

So(f) —so(f) <

So(g) —so(g) <

NS INeN NCNNe

Then
so(f) +s2(9) < so(f+9)

</ab(f+g)dx

<Ss(f+y9)
< So(f) + 50(9)

Since € > 0 arbitrarily small, we have:
b b b
/ (f—f—g)da::/ fdx+/ gdx

Proof of 2 is left as an exercise.
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Proposition 4.12. Suppose f,g: [a,b] — R are bounded and Riemann integrable.
Then |f|, f? and fg are all Riemann integrable.

Proof. Note that

M(|f|acvd)_m(|f|acvd) < M(f;cvd)_m(f;cad)a
and so, given ¢ > 0, we can find a dissection © with S5 (f) — so(f) < e and then

So(|fl) —so(|f]) < So(f) —sa(f) <e.

Therefore | f| is Riemann-integrable.
As for f2, note that

M(fQ;C,d)—m(fQ;C,d)
= [M(If]5¢,d) +m(|f[;e,d)] x [M(|f];¢,d) —m([f]; ¢, d)]
< 2K (M(|fl;¢,d) —m(|f];¢,d))

where K is some bound for | f].
Given e > 0, take a dissection ® with So (| f]) — so (| f]) < 5%. Then

So(f?) — so(f?) <2K(So(|f]) —so(|f]) <e

Therefore £2 is Riemann-integrable.
The integrability of fg follows at once, since

fo=5((f+97 — 1 ~¢).

Estimateson Integrals

1. Suppose F': [a,b] — R is Riemann-integrable, a < b. If we take ® = [a, b] then
we see that

b
<mwmu%ws/fMM4w—wMme

It follows that if | f| < K then

b
[ s
2. Suppose f: [a,b] — R is Riemann-integrable, a < b. Then Sg |f| > So(f)

and so
b b
[z [ fae

<KIb—al.

This is true even if a > b.
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Also S |f| > So(—f). and so

Lﬂﬂzj[fw

Thus?

/abfdx </ab|f| dz.

4.4 The Fundamental Theorem of Calculus

If f: [a,b] — R is Riemann-integrable, then for any [c,d] C [a,b], f is Riemann
integrable on [c, d].® Hence for ¢ € [a, b] we can define a function

F(z) = /xf(t) dt

on [a, b].

Observation 4.13.
F(a) =//f(t)dt

is continuouson [a, b] if f isbounded.

Proof. Note that
x+h
ww+m—nm=/ F()dt < |h| K

where K is an upper bound for | f|. Now |h| K — 0as h — 0, so F'is continuous. [

Theorem 4.14 (The Fundamental Theorem of Calculus). Suppose f: [a,b] — Ris
Riemann integrable. Take ¢, d € [a, b] and define

Fla) = / " r)dt.

If f iscontinuousat d, then F is differentiable at d with F’(d) = f(d).*

/abfdx /abmdx

3For if © is a dissection of [a, b] such that So (f) — so (f) < € then D restricts to D, a dissection of
[e,d] with S/ (f) — so/(f) < e

4In the case d is a or b (@ < b), we have right and left derivatives. We ignore these cases (result just as
easy) and concentrate on d € (a, b).

2For general a, b;

<
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Proof. Suppose e > 0 is given. By the continuity of f at d we can take 6 > 0 such that
(d—9,d+9) C (a,b)and

k| <d=|f(k+d)— f(d)| <e.

If0 < |h| < 0 then

_ d+h
w_m‘: %/d (F(6) — £(d)) at
< el
< 2e.

Corallary 4.15 (Integration is anti-differentiation). If f = g’ iscontinuouson [a, b]

then
b
/ F(t)dt = g(b) — g(a).

Proof. Set F'(z) = [ f(t)dt. Then

and so F'(z) — g(x) = k is constant. Therefore

b
/ f(t)dt = F(b) — F(a) = g(b) — g(a).
O

Corollary 4.16 (Integration by parts). Suppose f, g are differentiable on (a,b) and
f', ¢’ continuouson [a, b]. Then

b b
/f(t)g'(t)dt:[f(t)g(t)]z—/ f'(t)g(t) dt

Proof. Note that

and so
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Corallary 4.17 (Integration by Substitution). Take g: [a,b] — [c,d] with ¢’ is con-
tinuousin [a,b] and f: [¢,d] — R continuous. Then

g(b) b
/ fwmszmmﬂ@w
g(a) a

Proof. Set Fi(z) = [ f(t) dt. Now

g(b)
/})ﬂﬂ&=F@®D—FWWD

= [ F'(9(s))g'(s)ds by Chain Rule

45 Differentiating Through the Integral

Suppose g: R x [a, b] — R is continuous. Then we can define

b
G(x):/ g(x,t)dt.

Proposition 4.18. G is continuous as a function of x.

Proof. Fix z € R and suppose € > 0 is given. Now g is continuous and so is uniformly
continuous on the closed bounded set E = [« — 1,z + 1] X [a, b]. Hence we can take
d € (0,1) such that for u,v € E,

lu—v]| <6 = |g(us, ur) — g(va, ve)| < e
So if |h| < d then ||(z + h,t) — (x,t)|| = |h| < dand so
lg(z + h,t) = g(z, )] <e.

Therefore |G(z 4+ h) — G(z)| < [b—ale < 2|b—ale and as 2|b — a| e can be
made arbitrarily small G(z + h) — G(x) as h — 0. O

Now suppose also that Dqg(z,t) = g—g exists and is continuous throughout R x
[a, b].

Theorem 4.19. Then G isdifferentiable with

b
& () = / Digla, 1) dt
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Proof. Fix z € R and suppose € > 0 is given.
Now D g is continuous and so uniformly continuous on the closed and bounded set
E =[xz —1,z+ 1] X [a, b]. We can therefore take 6 >€ (0, 1) such that for u,v € F,

lu— vl <& = [Dig(a) — Dig(=,1)| <e.

Now

‘G(m—kh]z G( )_/a Duglo ) dt

b
=E1/g@+mﬂ—g@ﬂ—th@wdm

But
g(x +h,t) — g(z,t) — hD1g(z,t) = h(D1g(&,t) — Dig(z,t))

for some ¢ € (x, z + h) by the MVT.
Now if 0 < |h| < § we have ||(§,t) — (z,t)|| < 6 and so

|g(x—|—h,t) _g(x7t) - thg(a?,t)| < |h’|€

Hence

G@+m—qw_fbw@ﬂ&

1
A < —|b—al|hle

~ Al

<2|b—ale.

But 2 |b — a| e can be made arbitrarily small, so that

b
G'(x):/ Dyg(x,t)dt.

4.6 Miscellaneous Topics

Improper Integrals

1. Case f: [a,b] — R but is unbounded (and possibly undefined at a finite number
of places). Set

N f@)>N
fym(@)=q fl@) —M<fz) <N
-M  f(z) < —M.

b
/ fN,]W(x) dz — limit
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as N, M — oo (separately), then the limit is the improper integral

/a " fa)de.

2. Case f: (—o0,00) — R say.
Then if

+y
f(t)dt — limit

—x

as z,y — oo then the limit is the improper integral

/O:O F(1) dt.

Integration of Functions f: [a, b] — R”
It is enough to integrate the coordinate functions separately so that
b b1 bn,
| syar= ( fwd... [ 5 dt) 7

but there is a more intrinsic way of defining this.
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Chapter 5

Metric Spaces

5.1 Definition and Examples

Definition 5.1. Ametric space (X, d) consistsof aset X (the set of points of the space)
and afunctiond: X x X — R (themetric or distance) such that

e d(a,b) > 0andd(a,b) =0iffa =0,
e d(a,b) =d(b,a),
e d(a,c) <d(a,b) +d(b,c) Ya,b,c e X.

Examples
1. R™ with the Euclidean metric
n
d(x,y) =+, D (@ — )
=1

2. R™ with the sup metric

d(z,y) = S {loi — vil}

3. R™ with the “grid” metric
d(z,y) =Y o —yil
i=1

4. Cla, b] with the sup metric!?

d(f,9) = Sup]{lf(t) — g}

t€la,b

1 Define
Cla,b) = {f: [a,b] — R : fis continuous}

2This is the standard metric on C[a, b]. It’s the one meant unless we say otherwise.

39
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5. Cla, b] with the L-metric
w0 = [ 10 -] a
6. Cla, b] with the L2-metric

b
a(f,9) = </ |F(t) — g(®)]? dt)

analogous to the Euclidean metric.

2

7. Spherical Geometry: Consider S? = {z € R? : ||z|| = 1}. We can consider
continuously differentiable paths : [0, 1] — S2 and define the length of such a
path as

L@%=A|wwmdt

The spherical distance is
S(x,y) = inf {L(7)}-

~ a path from z to y in S2
This distance is realized along great circles.

8. Hyperbolic geometry: Similarly for D: the unit disc in C. Take ~: [0,1] — D

and
2
1= [ TP

Then
h(z,w) = inf {L()}

~ a path from z to w in S2

is realized on circles through z, w meeting 9D = S’ (boundary of D) at right
angles.

9. The discrete metric: Take any set X and define

ﬂ%w={éifz

10. The “British Rail Metric”: On R? set

| +lyl z#y
d@,y)_{gl et

Definition 5.2. Suppose (X, d) isametric spaceand Y C X. Then d restricts to a
map d|y xy — R whichisametricinY". (Y,d) isa (metric) subspace of (X, d), d on
Y istheinduced metric.
Example5.3. Any £ C R™ isa metric subspace of R™ with the metric induced from
the Euclidean metric.®

3For instance, the Euclidean metric on S is

(@,y) s 2sin (%S(w)) .




5.2. CONTINUITY AND UNIFORM CONTINUITY 41

5.2 Continuity and Uniform Continuity

Definition 5.4. Let (X, d) and (Y, ¢) be metric spaces. Amap f: X — Y iscontinu-
ousat x € X if and only if

Ve>0 36>0 Vi'eX d(z,2')<d=c(f(x),f(2)) <e

Then f: (X, d) — (Y, ¢) iscontinuousiff f iscontinuousat all z € X.
Finally f: (X, d) — (Y, ¢) isuniformly continuousiff

Ve>0 35>0 Vo2’ € X d(z,2') <d=c(f(x),f(z)) <e.

A bijective continuous map f: (X, d) — (Y, ¢) with continuous inverse is a home-
omor phism.

A bijective uniformly continuous map f: (X, d) — (Y, ¢) with uniformly continu-
ous inverse is a uniform homeomor phism.

1. There are continuous bijections whose inverse is not continuous. For instance

(a) Let dq be the discrete metric on R and d» the Euclidean metric. Then the
identity map id: (R,d;1) — (R, ds) is a continuous bijection; its inverse is
not.

(b) (Geometric Example) Consider the map

[0,1) = S'={z€C:|z| =1},
9’_>627ri9

with the usual metrics. This map is continuous and bijective but its inverse
is not continuous at z = 1.

2. Recall that a continuous map f: F — R™ where E is closed and bounded in
R™ is uniformly continuous. Usually there are lots of continuous not uniformly
continuous maps: For example

Z) R

tan (-2
an: -
272

is continuous but not uniformly continuous, essentially because

tan’(z) - 00 as x — g

Definition 5.5. Let d;, d2 betwo metricson X. d; and d; are equivalent if and only if
id: (X,dy) — (X, dz) isahomeomorphism. In symbols, this becomes

VeeX Ve>0 F0>0 VyeX di(y,x) <d=do(y,z)<e and
VeeX Ve>0 3F0>0 VyeX da(y,x) <d=di(y,z) <e.

Notation. DefineO(x,r) = N(x,r) = Ny(z) = {y: d(z,y) <r}.
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Then d; and d5 are equivalent if and only if
1.Vz Ye>0 35>0 Nj(z) C N2(z).
2.Vz Ve>0 36>0 NZ(z)C N(x).
Definition 5.6. d; and d- are uniformly equivalent if and only if
id: (X,d1) v (X, da)

is a uniform homeomorphism. In symbolsthisis

Ve>0 36>0 VoeX NMz)C N2(z) and
Ye>0 36>0 VzeX NZ(z)C NNx)
The point of the definitions emerges from the following observation.
Observation 5.7.
1 id: (X,d) — (X,d) is (uniformly) continuous.

2. 1ff: (X,d) — (Y,c)andg: (Y,c) — (Z, ) are (uniformly) continuous then so
istheir composite.

Hence

(a) for topological considerations an equivalent metric works just as well;
(b) for uniform considerations a uniformly equivalent metric works as well.

Example5.8. OnR™, the Euclidean, sup, and grid metrics are uniformly equivalent.
Proof. Euclidean and sup

NE'(2) € N*"P(z) and N;” C NE*(2)

(A circle contained in a square; and a square contained in a circle).
Euclidean and Grid
N9d(z) C NEC(z) and NEYC C NI(g).

n

Compare this with work in chapters 2 and 3.

5.3 Limitsof sequences

Definition 5.9. Let x,, be a sequencein a metric space (X, d). Then z,, converges to
x asn — oo ifand only if Ve > 0 3N Vn > Nd(z,,z) < e. Clearly z,, — xz iff
d(zyn,z) — 0asn — oco.

Note that the limit of a sequence is unique. Proof is as in lemma 1.7.
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Theorem 5.10. Suppose (X, dx ) and (Y, dy ) are metric spaces. A map
fr(X,dx) — (Y, dy)

is continuousif and only if whenever z,, — z in X then f(z,) — f(z)inY.

Proof.

= Assume f continuous and take x,, — x in X. Suppose ¢ > 0 given. By the
continuity of f, we can take § > 0 such that

d(z,2") <& =d(f(z), f(z")) <e
As z, — x we can take IV such that, for all n > N, d(z,,z) < . Now if
n > N, d(f(zn), f(z)) < e. Butsince e > 0 was arbitrary f(z,) — f(z).

< Suppose f is not continuous at = € X. Then there exists e > 0 such that for any
d > Othereis z € Ns(2') with d(f(x), f(z')) > e.

Fix such an ¢ > 0. For each n > 1 pick z,, with d(z,,z) < n~! and

d(f(zyn), f(x)) > €. Thenz,, — z but f(z,) 4 f(z).
(|

Definition 5.11. A sequence x,, in a metric space (X, d) is Cauchy if and only if
YVe>0 3N VYn,m>N d(zn,Tm) <Ee.

Observation 5.12. If f: (X,dx) — (Y, dy) isuniformly continuous, then ,, Cauchy
inX = f(x,) CauchyinY.

Proof. Take x,, Cauchy in X and suppose ¢ > 0 is given. By uniform continuity we
can pick 6 > 0 such that
Vo, o' € X dx(z,2') < d = dy(f(x), f(2')) <e.

Now pick N such that Vn,m > Ndx(z,, zm) < €. Thendy (f(zy), f(xm)) <9
forall m,n > N. Since € > 0 arbitrary, f(x,,) is Cauchy in Y. O

Definition 5.13. A metric space (X, d) is complete if and only if every Cauchy se-
guencein X convergesin X.

A metric space (X, d) iscompact if and only if every sequencein X has a conver-
gent subseguence.

Remarks.
1. [0,1] or any closed bounded set E C R™ is both complete and compact.

(0, 1] is neither complete nor compact.

Indeedif £ C R™ iscompact it must be closed and bounded and if £ is complete
and bounded, it is compact.

2. Compactness = completeness:
Proof. Take a Cauchy sequence x,, in a compact metric space. Then there is a

convergent subsequence x,,,) — x as k — oo. Therefore x,, — zasn —
0. O
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However C|a, b] with the sup metric is complete but not compact.
What is more, given f € Cla,b] andr > 0, theset {g : d(g, f) < r} isclosed
and bounded — but not compact.

3. Compactnessis a “ topological property”. If (X,dx) and (Y, dy) are homeo-
mor phic, then X compact implies Y compact.

However, thisisn't true for completeness: (0, 1] is homeomorphicto [1, c0) via
x +— 1/x but (0, 1] is not complete while [1, co) is.

However if (X, dy ) and (Y, dy') are uniformly homeomorphic, then X complete
impliesY complete.

54 Open and Closed Setsin Metric Spaces

Definition 5.14. Let (X, d) be a metric space. A subset U C X is open iff whenever
x € Uthereise > 0withd(2',2) <e=2' € Uor* N. C U.

Observation 5.15. N () isitself openin (X, d).

Proof. If 2’ € N.(x) then d(z',x) < e sothat 6 = € — d(z,z’) > 0. Therefore
Ns(2') C Ne(z). O

Theorem 5.16. Let (X,dx) and (Y, dy ) be metric spaces. Then
(X, dx) — (Y,dy)
is continuousif and only if £ ~1(V/)° isopenin X whenever V isopeninY.

Proof.

= Assume f is continuous. Take V openinY and x € f~*(V). As V is open
we can take e > 0 such that N.(f(z)) C V. By continuity of f at z we can
take § > 0 such that d(z,2’) < § = d(f(2'), f(z)) < e, or alternatively
x' € N5(z) = f(2') € N(f(x)) sothat 2’ € Ns(z) = f(a’) € V. Therefore
2 € f~1(V)andso Ns(z) C f~1(V)and f~1(V) is open.

< Conversely, assume f~1(V) is open in X whenever V is openin Y. Take z € X
and suppose € > 0 is given. Then N.(f(x)) is open in Y and so by assump-
tion f=1(N(f(z))) is openin X. But x € f~'(N.(f(x))) and so we can
take § > 0 such that Ns(z) € f~Y(N(f(x))). Therefore d(z’',z) < § =
d(f(z"), f(z)) < eandas e > 0 is arbitrary, f is continuous at . As x is
arbitrary, f is continuous.

O

Corollary 5.17. Two metricsdy, d, on X are equivalent if and only if they induce the
same notion of open set. Thisis because d, and d, are equivalent iff

e For all V dy-open,id=1 (V) = V isd;-open.
e For all U dy-open, id=1(U) = U is d2-open.

4Recall that in a metric space (X, d): Ne(z) = {2’ : d(z,2’) < €}.
SWhere f~1(V) = {z € X : f(z) € V}.
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Definition 5.18. Suppose (X, d) isametric spaceand A C X. A isclosed if and only
ifz,, — rxandzx, € Aforalnimpliesx € A.
Proposition 5.19. Let (X, d) be a metric space.

1. Uisopenin X ifandonlyif X \ U isclosedin X.

2. Aisclosedin X ifand onlyif X \ Aisopenin X.

Proof. We only need to show 1.

= Suppose U is open in X. Take z,, — x with z € U. As U is open we can take
e > 0 with N.(z) C U. As z,, — x, we can take N such that

VYn>N x, € Ne(x).

Soz, € X foralln > N. Thenifz,, — xand z,, € X \ U thenz ¢ U, which
isthe same as x € X \ U. Therefore X \ U is closed.

< Suppose X \ U is closed in X. Take x € U. Suppose that for no e > 0 do we have
Ne(x) € U. Then for n > 1 we can pick 2, € N1 (z) \ U. Then z,, — x and
soas X \ Uisclosed, z € X \ U. Butz € U, giving a contradiction. Thus
the supposition is false, and there exists e > 0 with N.(z) C U. Asz € U is
arbitrary, this shows U is open.

O

Corollary 5.20. Amap f: (X,dx) — (Y,dy) is continuousiff f~1(B) is closed in
X for all BclosedinY.®

5.5 Compactness

If (X,d) is a metric space and a € X is fixed then the function z +— d(z,a) is (uni-
formly) continuous. This is because |d(z, a) — d(y, a)| < d(x,y), so that if d(x,y) <
e then |d(x,a) — d(y,a)| < e.

Recall. A metric space (X, d) iscompact if and only if every sequencein (X, d) hasa
convergent subsequence.

If A C X with (X,d) a metric space we say that A is compact iff the induced
subspace (A, d ) is compact.”

Observation 5.21. A subset/subspace £ C R™ is compact if and only if it is closed
and bounded.

Proof.

= This is essentially Bolzano-Weierstrass. Let z,, be a sequence in E. As E is
bounded, z,, is bounded, so by Bolzano-Weierstrass x,, has a convergent sub-
sequence. But as F is closed the limit of this subsequence is in E.

6Because f~1(Y \ B) = X \ f~1(B).
"z, € Aimplies x,, has a convergent subsequence.



46 CHAPTER 5. METRIC SPACES

< Suppose E is compact. If E is not bounded then we can pick a sequence z,, € E
with ||z, || > n forall n > 1. Then z,, has no convergent subsequence. For if
Tp(k) — T aS k — oo, then

[Zny|| = [l as k — oo,
but clearly

Hxn(k,) || — 00 as k — oo.

This shows that E is bounded.

If £ is not closed, then there is z,, € E with x,, — = ¢ E. But any subsequence
Tpy — v ¢ Eand so x,u) /4 y € E as limits of sequences are unique—a
contradiction.

This shows that E is closed.
O

Thus, quite generally, if E is compact in a metric space (X, d), then E is closed
and F is bounded in the sense that there exists « € E,r € R such that

E C{z:d(z,a) <r}
This is not enough for compactness. For instance, take
1% ={(zy) : =, is a bounded sequence in R}
with d((xy,), (yn)) = sup,, |x» — yn|. Then consider the points

n!" position
=
e™ =(0,...,0, "1 ,0,...), or (e<">) — b

Then d(e™,e™) = 1 forall n # m. So E = {e(™} is closed and bounded:
E C {(z) : d(z,,0) < 1} But (e™) has no convergent subsequence.

Theorem 5.22. Suppose f: (X,dx) — (Y, dy) is continuous and surjective. Then
(X, dx) compact implies (Y, dy ) compact.

Proof. Take y,, asequenceinY". Since f is surjective, for each n pick z,, with f(z,,) =
yn. Then z,, is a sequence in X and so has a convergent subsequence x,,yy — x as
k — oo. As f is continuous, f(znx)) — f(x)ask — oo, Of ypy — y = f(x) as
k — oo.

Therefore y,, has a convergent subsequence and so Y is compact. O

Application. Suppose f: E — R™ E C R" closed and bounded. Then the image
f(E) € R™ is closed and bounded. In particular when f: E +— R wehave f(F) C R
closed and bounded. But if ' C R is closed and bounded then inf F,sup ' C F.
Therefore f is bounded and attainsits bounds.

Theorem 5.23. If f: (X,dx) — (Y, dy) iscontinuouswith (X, dx) compact then f
is uniformly continuous.

Proof. As in theorem 2.23. O
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Lemmab5.24. Let (X, d) be a compact metric space. If A C X isclosed then A is
compact.

Proof. Take a sequence z,, in A. As (X,d) is compact, x,, has a convergent subse-
quence z, ;) — x as k — oo. As A is closed, z € A and so x,,(,) — x € A. This
shows A is compact. O

Note that if A C X is a compact subspace of a metric space (X, d) then A is closed.

Theorem 5.25. Suppose f: (X,dx) — (Y,dy) is a continuous bijection. Then if
(X,dx) iscompact, then (sois (Y, dy ) and) f isahomeomorphism.

Proof. Write g: (Y,dy) — (X, dx) for the inverse of f. We want this to be contin-
uous. Take A closed in X. By lemma 5.24, A is compact, and so as f is continuous,
f(A) is compactin Y. Therefore f(A) is closed in Y.

But as f is a bijection, f(A) = g~'(A). Thus A closed in X implies g~ (A)
closed in Y and so g is continuous. O

5.6 Completeness

Recall that a metric space (X, d) is complete if and only if every Cauchy sequence in
X converges. If A C X then A is complete if and only if the induced metric space
(A, dy) is complete. That is: A is complete iff every Cauchy sequence in A converges
to a point of A.

Observation 5.26. £ C R™ iscompleteif and only if £ is closed.

Proof.

< This is essentially the GPC. If x,, is Cauchy in E, then z,, — x in R™ by the GPC.
But E is closed so thatz € Fandso x,, — = € E.

= If Eis not closed then there is a sequence x,, € E with z,, — x € E. But x,, is
Cauchy and by the uniqueness of limits z,, 4 y € FE forany y € E. So E is not
complete.

|
Examples.
1. [1,00) iscomplete but (0, 1] is not complete.
2. Any set X with the discrete metric is complete.
3. {1,2,..,,n} with

is not complete.

Consider the space B(X, R) of bounded real-valued functions f: X +— R on a set
X # 0; with

(f,g) = sup |f(z) = g()],

the sup metric.
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Proposition 5.27. The space B(X,R) with the sup metric is complete.

Proof. Take f,, a Cauchy sequence in B(X,R). Fix z € X. Given e > 0 we can take
N such that

Vn,m >N d(fn; fm) <e
Then
Yn,m > N d(fn(z), fm(x)) <e.

This shows that f,,(z) is a Cauchy sequence in R and so has a limit, say f(z). As
x € X arbitrary, this defines a function z — f(z) from X to R.
Claim: f,, — f. Suppose € > 0 given. Take N such that

Vn,m >N d(fm, fn) <e.
Thenforany x € X
anmzN |fn(x)_fm($)| <€

Letting m — oo we deduce that | f,,(z) — f(x)| < eforanyz € X.
Thus d(fn, f) < e < 2¢forall n > N. But 2¢ > 0 is arbitrary, so this shows



Chapter 6

Uniform Convergence

6.1 Motivation and Definition

Consider the binomial expansion

o =3 (%)
n=0
for |z| < 1. This is quite easy to show via some form of Taylor’s Theorem. Thus
N «
lim Z <n> 2" =14 x)”

N —o0
n=0

As it stands this is for each individual = such that |z| < 1. It is pointwise conver-
gence.
For functions f,, f: X — R, we say that f,, — f pointwise iff

Vee X fulz) — f(z).
This notion is “useless”. It does not preserve any important properties of f,,.
Examples.

e Apointwise limit of continuous functions need not be continuous.

0 <0
falz) =41 z>1
nT O<a:<%L

is a sequence of continuous functions which converge pointwise to

f(x)—{“ .

1 >0

which is discontinuous.

49
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e Theintegral of a pointwise limit need not be the limit of theintegrals.

0 a:SOOI’xZ%
fu(z) = < 2n? OSHS%
n-n*z—1) p<a<?

has

/ngn(x)dx =1

for all n > 1, but f,, convergespointwiseto f(z) = 0 which has

/OQf(x)dx =0.

We focus on real valued functions but everything goes through for complex valued
or vector valued functions.
We will often tacitly assume that sets X (metric spaces (X, d)) are non-empty.

Definition 6.1. Let f,,, f bereal valued functionson aset X. Then f,, — f uniformly
if and only if given e > 0 thereis N such that for all z € X

[fn(x) = f(2)] <€
all n > N. Insymbols:
YVe>0 IN VeeX Vn>N |fu(z)— fl2)] <e
This is equivalent to

Definition 6.2. Let f,,, f € B(X,R). Then f, — f uniformlyiff f,, — f inthesup
metric.

The connection is as follows:

o If f,,, f € B(X,R), then these definitions are equivalent. (There’s a bit of < ¢
vs < € at issue).

e Suppose f,, — f inthe sense of the first definition. There will be N such that
Vee X |[fulz) - flz)] <1

foralln > N. Then (f,, — f)n>n — 0 uniformly in the sense of the second
definition.

Theorem 6.3 (The General Principle of Convergence). Suppose f,,: X — R such
that

Either
Ve>0 dN VzeX Vnm>N |fu(z)— fm(z)] <e

or Suppose f, € B(X,R) is a Cauchy sequence. Then thereis f: X — R with
fn — [ uniformly.

Proof. B(X,R) is complete. O
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6.2 ThespaceC(X)

Definition 6.4. Let (X,d) be a metric space. C(X) = C(X,R) is the space of
bounded continuous functions from X to R with the sup metric.

This notation is usually used when X is compact, when all continuous functions
are bounded.

Proposition 6.5. Suppose (X, d) isametric space, that f,, isa sequence of continuous
real-valued functionsand that f,, — f uniformly on X. Then f is continuous.

Proof. Fix z € X and suppose € > 0 given. Take N such that forall y € X

V>N |fuly) — f(y)| <e
As fy is continuous at = we can take 6 > 0 such that

d(y,) <6 = |fn(y) — fn(z)| <e

Then if d(y, x) < 0,

[f(y) = F@)] <[fn() = FWI+ [In(@) = f@)] + | fn(y) = fal@)]

< 3e.

But 3¢ can be made arbitrarily small and so f is continuous at z. But x € X is arbitrary,
so f is continuous. O

Theorem 6.6. The space C'(X) (with the sup metric) is complete.

Proof. We know that B(X,R) is complete, and the proposition says that C(X) is
closed in B(X, R). O

Sketch of Direct Proof. Take f,, Cauchy in C'(X).
e Foreachz € X, f,(z) is Cauchy, and so converges to a limit f(z).
e f, convergesto f uniformly.
e f is continuous by the above argument.

O

Theorem 6.7 (Weier strass Approximation Theorem). If f € Cla,b], then f isthe
uniform limit of a sequence of polynomials.

Proof. Omitted. O



52 CHAPTER 6. UNIFORM CONVERGENCE

6.3 Thelntegral asa Continuous Function

Restrict attention to C'a, b], the space of continuous functions on the closed interval
[a, b].

Proposition 6.8. Suppose f,, — f inC|[a,b]. Then

/ab @) dz — /abf(x) dz inR.

Proof. Suppose € > 0. Take N such that Vn > Nd(f,, f) < e. Thenifc < din [a,b]

m(fn;c,d) —e<m(f;c,d) < M(f;c,d) < M(fn;c,d) +e
forall n > N. So for any dissection D,

s (fn) —€(b—a) < so(f) < So(f) < So(fn) +€(b—a)

foralln > N.
Taking sups and infs, it follows that

/abfn(x)da:—e(b—a)S/abf(a:)dxg/abfn(x)der€(b_a)

foralln > N.
Then as ¢(b — a) > 0 can be made arbitrarily small,

/ab fule) dz — /abf(a:) da.

We can make the superficial generalization: If f € C[a, b] then so is

x

T — f(t)dte.

So

a

Theorem 6.9. The map

/am: Cla,b] — Cla,b]

is continuous with respect to the sup metric.
That is, if f,, — f (uniformly), then

/: Falt)dt — /:f(t)dt

(uniformlyin z).
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Proof. We see from the previous proof that if V is such that for all y € [a, b],
Vn> N |fuly) — fy)l <e

/az fn(t)dt—/az ft)dt

As 2¢(b — a) is arbitrarily small (and independent of x), this shows

/: Falt)dt — /:f(t)dt

uniformly in z. O

then

<e(x—a) <elb—a) < 2b—a).

Uniform convergence controls integration, but not differentiation, for example the
functions

1.
fn(x) = —sinnz
n
converge uniformly to zero as n — oo, but the derivatives cosnxz converge only at
exceptional values.

Warning. There are sequences of infinitely differentiabl e functions (polynomials even)
which converge uniformly to functions which are necessarily continuous but nowhere
differentiable. However, if we have uniform convergence of derivatives, all iswell.

Theorem 6.10. Suppose f,,: [a, b] — R isa sequence of functions such that
1. thederivatives f exist and are continuouson [a, b]
2. f], — g(x) uniformly on [a, b]
3. for somec € [a,b], fn(c) convergesto alimit, d, say.

Then f,,(z) converges uniformly to a function f(z), with f/(z) (continuous and)
equal to g(r).

Proof. By the FTC,

Fal@) = fule) + / "t

Using the lemma that if f,, — f uniformly and g,, — ¢ uniformly then f,, + ¢, —
f + g uniformly?, we see that

Fal@) = d+ /xg(t) dt

uniformly in X (by theorem 6.9). Thus

Fol@) — flz) = d+ /xg(t) dt

,and f(x) has continuous derivative f’(z) = g(x) by FTC. O
Ln these cases we do have
. . d
I (nli)moo fn (LE)) = nleoo (Efn (ac))

2This lemma is not actually part of the original lecture notes
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6.4 Application to Power Series

For M > N,and |z| <,

M
E apz"

N+1

M
< Z lanz"|

N+1

M n
=3 Jansl|=
N+1 0
M r n
< E{—
)
N+1
1
<k (_) i
|20 L=
which tends to zero as N — oo. This shows that the power series is absolutely con-

vergent, uniformly in z for |z| < r. Whence, not only do power series > a,,2™ have a

radius of convergence R € [0, oo] but also if » < R, then they converge uniformly in
{z:]z] <r}.

Also, if Y a,z{ converges, so that |a,z{/| < k say, we have the following for
r < |z9|. Choose s with r < s < |zg|. Then for |z| < rand M > N we have

M M
n—1 n—1
E Nap2 < E ‘nanz ‘

N+1 N+1

M |Z| n—1 s n—1
n—1 Liad} 2
=2 (2) (%)
ad / "l S nt n—1 /
< an(;) where |anzf | < K.

N+1 2ol

Forn > Ny, n (g)’k1 < 1andsofor N > Ny,

M M s \ "1
na,z" "t < k' (—)
> nan PILE ™

N+1 N+1

S N 1
gk(—) 10 sNow
lzol /1

" Tzl

This shows that the series Y- -, na, 2"~ converges uniformly inside the radius
of convergence. So what we’ve done, in the real case? is to deduce that

Z nanzn—l
n>1
is the derivative of
n>1
within the radius of convergence.

3 And with more work, in the complex case.
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6.5 Application to Fourier Series

Proposition 6.11 (Simplest Version). Suppose a., is a sequence such that
Z nlan|
n>1

converges. Then

E a, cosnt

n>1
converges uniformly and has a derivative
Z —na., sinnt
n>1
which is uniformly convergent to a continuous function.

Proof. Let Sy (t) be the partial sum

N N
Sy (t) = Z ancosnt. Then S\ (t) = Z —nay, sinnt
n=1

n=1

is a sequence of continuous functions. Now for M > N

M
E a, cosnt

N+1

M
< Z |an, cosnt|
N+1

M
< §:|aﬂ

N+1
M
< Zn|an| —0 asN — oo.
N+1
M

E —nay, sinnt

N+1

M
< Z |—nay, sin nt|
N+1
M
< Zn|an| —0 asN — oo.
N+1

1Su(t) = Sn ()] =

Also, |S7,(t) — Sk (t)| =

So both Sy (t) and S} (¢) are uniformly convergent and we deduce that

d
X Z ay, cosnt = Z —nay, sinnt.

n>1 n>1
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The right context for Fourier series is the L2 norm arising from the inner product
1 27
(frgr=— [ [flt)g(t)dt

0

on functions on [0, 27]. We take Fourier coefficients of a function f(z)

1 27

ap = — f(t)cosntdt n>0
T Jo
1 27

bp = — f@)sinntdt n>1
T Jo

and hope that

1
flz)= 5% + Z an cosnx + by, sinnx.
n>1

This works for smooth functions; and much more generally in the L 2-sense; so that
for example, for continuous functions we have Parseval’s Identity:

27 5 a2
| r@P do =24 3 (6 82).
0

n>1
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The Contraction Mapping
Theorem

7.1 Statement and Proof

Definition 7.1. Amap T: (X,d) — (X, d) onametric space (X, d) isa contraction
if and only if for somek,0 < k < 1

Ve,y € X d(Txz,Ty) < kd(z,y)

Theorem 7.2 (Contraction Mapping Theorem). Supposethat 7: (X,d) — (X,d)
isa contraction on a (non-empty) complete metric space (X, d). Then T' has a unique
fixed point.

That is, there is a unique @ € X with Ta = a.!

Proof. Pick a point ¢y € X and define inductively x 1 = Tz, so that x,, = T"x.
For any n,p > 0 we have

d(Tn, Tntp) = d(T"xo, T"z,)
< E"d(zo, zp
< k"[d(xo, 1) + d(z1,22) + ... + d(Tp—1,Tp)]
< E"d(zo,x1)[1 +k+E* 4 ... + kP71

n

<
—1-k

d((Eo,(L’l).

Now

kn
1-k

d(zg,z1) — 0 asn — oo,

and so x,, is a Cauchy sequence. As (X, d) is complete, z,, — a € X. We now claim
that a is a fixed point of T'.
We can either use continuity of distance:

1As a preliminary remark, we see that as T is a contraction, it is certainly uniformly continuous

57
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d(Ta,a) =d (Ta, lim xn)

n—oo

= lim d(Ta,x,)

n— oo

= lim d(Ta,Txn_1)

n—oo

IA

lim d(a,zn,—1)

=d (a, lim xn,l)

=d(a,a)

and so d(T'a,a) = 0. Or we can use the (uniform) continuity of 7.

Ta= T(lim xn)

n—00

= lim Tx,

= lim Tn+1
n—oo
= a.
As for unigueness, suppose a, b are fixed points of T". Then
d(a,b) = d(Ta,Tb) < kd(a,b)
andsince 0 < k < 1, d(a,b) =0andso a = b. O

Corollary 7.3. Supposethat T': (X, d) — (X, d) isamap on a complete metric space
(X, d) such that for somem > 1, T™ isa contraction, ie

d(T™ e, T™y) < KT(2,y).
Then T has a unique fixed point.
Proof. By the contraction mapping theorem, 7™ has a unique fixed point a. Consider

d(Ta,a) = d(T™ " a, T"a)
=d(T"(Ta), T™a)
< kd(Ta,a).

So d(Ta,a) = 0 and thus a is a fixed point of T'. If a, b are fixed points of T, they
are fixed points of 7™ and so a = . O

Example 7.4. Supposewewishtosolvez?+2x—1 = 0. (Thesolutionsare —1++/2.)
We write this as

x = %(1 —2?)
and seek a fixed point of the map

1
T:m»—>§(1—m2)
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So we seek an interval [a, b] with T': [a, b] — [a,b] and T a contraction on [a, b].
Now

1 1
Tx—Ty| = |=z?— =y
e 1= |1t~
1
=g le+ylle—yl.

Soif[a], |y| < § then
1 3
(Ta =Tyl < 5l +lyl) Iz =yl < T 1o ]
and so T isa contractionon [—3/4, 3/4]. Actually

JENNY

and so certainly

isa contraction.
So there is a unique fixed point of T in [—3/4,3/4]. The contraction mapping
principle even gives a way of approximating it as closely as we want.

7.2 Application to Differential Equations
Consider a differential equation

Y = Py (7.1)
subject to y = yo when z = xo. We assume

F:la,b) xR—R
is continuous, = € [a,b] and yp € R.

Observation 7.5. g: [a,b] — R is a solution of (7.1) ie g is continuous, ¢g'(z) =
F(z,g(z)) for z € (a,b) and g(x0) = yo, iff g satisfies the Volterra integral equation

o) =0+ [ " F(tg() di

on [a, b].

Proof. Essentially the FTC.? O

2t ¢ satisfies the differential equation, as F'(x, g(x)) will be continuous we can integrate to get the
integral equation and vice-versa.
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Theorem 7.6. Supposez € [a, b] closed interval, yo € R,
F:la,b) xR—R
is continuousand satisfiesa Lipschitz condition; iethereis K suchthat for all z € [a, b]
|F(z,91) = F(z,y2)| < K |y1 — v

Then the differential equation (7.1) subject to theinitial condition y(z¢) = yo has
aunique solutionin Cla, b].

Proof. We consider the map T': C[a, b] — Ca, b] defined by

x

Tf(z) = yo + / F(t, f(1)) dt.

o
We claim that for all n,

< K™ |z — o]

[T" fi(z) = T" fo(x)] < d(f1, f2)

n!

The proof is by induction on n. The case n = 0 is trivial (and n = 1 is already
done). The induction step is as follows:

|Tn+1f1(x) — T"Jrlfg(fl,')‘ = /z F@t, T"f1(t)) — F(t,T" f2(t)) dt‘

IA

K|T" f1(t) — T" f2(1)] dt'

Zo

T KK™ |t — ao|"
/ || o d(f1,f2)dt‘
2 n!

Kt |z — o)™t

- (n+1)! d(h. f2)

IA

But

Ktz — $0|n+1
(n+1)!

K"t p — "™
(n+1)!

d(f1, f2) < d(fi,f2) — 0

as n — oo. So for n sufficiently large,

Lt |b _ a|n+1
- @ 1
CES
and so 7™ is a contraction on C|a, b].

Thus T has a unique fixed point in C[a, b], which gives a unique solution to the
differential equation. O

Example7.7. Solvey’ = ¢’ withy =1 atz = 0. Here F(z,y) = y and the Lipschitz
condition is trivial. So we have a unique solution on any closed interval [a, b] with
0 € [a, b]. Thuswe have a unique solution on (—oo, 0o).
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In fact® we can do better than this and construct a solution by iterating 7" starting
from fo = 0.

f()(.]?):o,
fl(x)zl—i—//Odt,
0
fg(l’):].-f—/xdt:l-f—fll,
0

2

f3(x):1+x+%

and so on. So (of course we knew this), the series for exp(z) converges uniformly on
bounded closed intervals.

We can make a trivial generalization to higher dimensions.

Suppose [a, b] is closed interval with 2 € [a, ], yo € R™ and F': [a,b] x R™ — R
continuous and satisfying a Lipschitz condition: 3K such that

1F(z,y1) = F(z,y2)|| < K lyr — w2l| -
Then the differential equation

dy _

F
I (z,y)

with y(zo) = yo has a unique solution in C([a, b], R™). The proof is the same, but with
[|||s instead of |-|s.
This kind of generalization is good for higher order differential equations. For

example if we have
d?y dy
—J _F -
da? (a:, v dx)

with y = yo, dy/dx = vo at x = xo we can set v = % and rewrite the equation as

d% (3) B (F(x,yy,m)
(0
at xr = xg.

With a suitable Lipschitz condition we are home.

with

3This is not a general phenomenon!
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7.3 Differential Equations. pathologies
The problem is that the Lipschitz condition seldom holds outright.

Trivial way Failure happens as x — something. The typical case is x — oo but we
can always consider bounded intervals and then expand them.

OK way Failure happens as y — oc.

Example 7.8.

Y 2
= 1
dx Ty
with y(0) = 0. Here F(z,y) = 1 + y*> and so
|[F'(2,91) = F(2,y2)| = [y1 + v2l ly1 — 92,

whichislargefor y large.
So Fasamap [a,b] x R — R doesnot satisfy a Lipschitz condition.

Theorem 7.9. Supposez € (a,b),yo € (¢, d), and
F:la,b] x [c,d] — R
is continuous and satisfies a Lipschitz condition: there is & with
|F (2, 1) — F(2,y2)| < klyr — 2
in[a,b] x [c,d] thenthereisd > 0 such that

dy
~ _F
T (z,y)

with y(0) = zo, hasa unique solutionin [zg — J, zo + J].

Proof. Suppose that L is a bound for F on [a, b] x [c, d].*
Take n > 0 such that

[Yo — 1,90 + 1] C [c,d]

Observe that if |z — x| < ¢ then

ITf—yol =

/:F(t,f(t))dt‘ <L

solongas f € C. Soset§ = L~ 1.

4We aim to find a closed and so complete subspace
C C Clzo — 8,20 + 9]
of the form
C={f:Clzo—dz0+d]:[f(x) —yo| < n}
for n > 0 with 7" mapping C to C.
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Then C as above is complete, the map

T: f»—>yo+/xF(t,f(t))dt

zo

maps C'to C, and by the argument of §7.2, T'" is a contraction for n sufficiently

large.
Hence T has a unique fixed point and so the differential equation has a unique
solution on [zg — &, xo + ¢]. O

Now we have a value f(zo + d) at o + J, SO we can solve g—z = F(z,y) with
y = f(xo+0) atx =z + d, and so we extend the solution uniquely. This goes
on until the solution goes off to +co. In this example we get y = tan z.

Really bad case “Lipschitz fails at finite values of y.” For example, consider S_Z =
2y2 with y(0) = 0.
Now F(z,y) = 2yZ in (—oo, +00) x [0, 00) and

Y1 — Y2
|F(2, 1) — F(x,y2)| = ﬁ
Y1 T Y

which has problems as 1, y2 — 0. We lose uniqueness of solutions.

7.4 Boundary Value Problems. Green’sfunctions

Consider the second order linear ODE

d*y dy
=2 +P($)£ + q(x)y = r(x)
subject to y(a) = y(b) = 0. (Here p, g, € C|a, b)).

The problem is that solutions are not always unigue.

Ly

Example 7.10.

d%y

Gz~ Y

with y(0) = y(r) = 0 has solutions A sin z for all A.
Write C2[a, b] for the twice continuously differentiable functions on [a, b], so that
L: C?[a,b] — Cla,b].
Write
Cila,b) = {f € C*[a,b] : f(a) = f(b) = 0}
and

Lo: CZla,b] — Cla,b]
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for the restricted map. Either ker £, = {0} then a solution (if it exists) is unique, or
ker Ly # {0}, when we lose uniqueness. Note that because p, ¢, have no y or %
dependence the Lipschitz condition for

£y={0

,

d (y\ _ v

de \v) \-pv—qy+r

is easy and so initial value problems always have unique solutions.

Assume ker £, = {0}. Now take g,(x), a solution to Ly = 0 with y(a) = 1,
y'(a) = 0. ga(z) £ 0as g (a) = 1. If go(b) = 0, g € CZla,b], contradicting
ker Lo = {0} and so g, (b) # 0.

We can similarly take g, (), a solution to Ly = 0 with y(b) = 0,y’(b) = 1 and we
have gs(a) # 0. Now if h is a solution of Ly = r, then

in the 2-dimensional form

_ Nh(a)
gi(a)

h(b)
Ga (b)

is a solution to the boundary value problem. In fact this solution has an integral form:

f(z) = h(z) go(x) — 9a()

b
f(x):/ G(z,t)r(t) dt.

We take the Wronskian

and note that
W' (z) + p(z)W(z) =0
and so
W(z) = Cexp [— /r p(t) dt}
W(a) and W(b) # 0so C # 0,50 W(z) # 0. Then we define

x = %gb(x)ga(t) t <z
G(x,t) {w%t)gb(t)ga(x) =

and check directly that

/b G(z,t)r(t)dt

solves the initial value problem.



7.5. THE INVERSE FUNCTION THEOREM 65

7.5 **Thelnverse Function Theorem**

This is a theorem you should be aware of. Proof is omitted.

Theorem 7.11. Suppose f: £ — R™, E C R™ isopenand continuoudly differentiable
andthat f'(a) isinvertibleat somepointa € E. ThenthereareopenU, V witha € U,
b = f(a) € V with f: U — V bijective and the inverse of f, g say, continuously
differentiable.
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