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Chapter 1

Real Numbers

1.1 Ordered Fields

Definition 1.1. A field is a set F equipped with:

• an element 0 ∈ F and a binary operation +: F �→ F, making F an abelian
group; we write −a for the additive inverse of a ∈ F;

• an element 1 ∈ F and a binary operation · : F �→ F such

– multiplication distributes over addition, that is: a · 0 = 0 and a · (b + c) =
a · b + a · c

– 1 �= 0, multiplication restricts to F× = F\{0}, and F× is an abelian group
under multiplication; we write a−1 = 1/a for the multiplicative inverse of
a ∈ F×

Examples: Q (rational numbers); R (real numbers); C (complex numbers).

Definition 1.2. A relation < on a set F is a strict total order when we have a �< a,
a < b and b < c ⇒ a < c, a < b or a = b or b > a for all a, b and c in F. We write
a ≤ b for a < b or a = b, and note that in a total order a ≤ b ⇔ b �< a.

Familiar ordered fields are Q and R, but not C.

1.2 Convergence of Sequences

Definition 1.3. In an ordered field we define the absolute value |a| of a as:

|a| =

⎧⎪⎨
⎪⎩

a a > 0
−a a < 0
0 a = 0

and then we have the distance d(a, b) = |a − b| between a and b.

1
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In an ordered field the distance d(a, b) satisfies

d(a, b) ≥ 0 and d(a, b) = 0 iff a = b

d(a, b) = d(b, a)
d(a, c) ≤ d(a, b) + d(b, c).

Proof. Proof of this is easy. Start from

− |x| ≤ x ≤ |x|
− |y| ≤ y ≤ |y| .

Add these to get

−(|x| + |y|) ≤ x + y ≤ |x| + |y|
|x + y| ≤ |x| + |y| .

Put x = a − b, y = b − c for result.

In general the distance takes values in the field in question; but in the case of Q and
R, the distance is real valued, so we have a metric.

Example 1.4. Any ordered field has a copy of Q as an ordered subfield.

Proof. We set

n = 1 + 1 + . . . + 1 + 1︸ ︷︷ ︸
n times

and so get −n, and so get r/s, r ∈ Z, s > 0 in Z, all ordered correctly.

Definition 1.5. A sequence an converges to a limit a, or an tends to a in an ordered
field F, just when for all ε > 0 in F, there exists N ∈ N with |an − a| < ε for all
n ≥ N .

We write limn→∞ an = a or an → a as n → ∞ or just an → a, when an

converges to a limit a. So we have

an → a ⇔ ∀ε > 0 ∃N ∀n ≥ N |an − a| < ε

Example 1.6.

1. an → a iff |an − a| → 0

2. bn ≥ 0, bn → 0, 0 ≤ cn ≤ bn, then cn → 0

3. Suppose we have N, k ∈ N such that bn = an+k for all n ≥ N , then an → a iff
bn → a.

4. The sequence an = n for n = 0, 1, 2, . . . does not converge.
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Proof. Suppose an = n → α, say.

Taking ε = 1/2, we can find N such that |an − α| < 1/2 for all n ≥ N . Then

1 = |an+1 − an| ≤ |an+1 − α| + |an − α| < 1/2 + 1/2 = 1.

This is a contradiction and so an does not converge.1

Lemma 1.7 (Uniqueness of limit). If an → a and an → a′ then a = a′.

Proof. Given ε > 0 there exists N such that n ≥ N implies |an − a| < ε and K such
that n ≥ K implies |an − a′| < ε. Let L be the greater of N and K . Now

|a − a′| = |a − an + an − a′|
≤ |a − an| + |an − a′|
≤ ε + ε = 2ε.

But 2ε > 0 is arbitrary, so |a − a′| = 0 and a = a′.

Observation 1.8. Suppose an → a and an ≤ α for all (sufficiently large) n. Then
a ≤ α.

Proof. Suppose α < a, so that ε = a − α > 0. We can find N such that |an − a| < ε
for all n ≥ N .

Consider

aN − α = (aN − a) + (a − α) = ε + (aN − a) ≥ ε − |an − a| > ε − ε = 0.

So aN > α — a contradiction. We deduce a ≤ α.

Example 1.9. We “know” that 1/n → 0 in R. WHY? There are ordered fields in
which 1/n �→ 0 (e.g. Q(t), field of rational functions, ordered so that t is “infinite”)

(Easy to see that 1/n → 0 in Q).

Proposition 1.10. Suppose that an → a and bn → b. Then

1. an + bn → a + b

2. λan → λa

3. anbn → ab.

Proof of 1 and 2 are both trivial and are left to the reader.

Proof of 3. Given ε > 0 take N such that |an − a| < ε for all n ≥ N and M such that
|bn − b| < min{ε, 1} for all n ≥ M . Let K = max{M, N}. Now

|anbn − ab| ≤ |an − a| |bn| + |a| |bn − b|
≤ ε(1 + |b| + |a|)

for all n ≥ K . Now ε(1 + |b| + |a|) can be made arbitrarily small and the result is
proved.

1This is a rigorous form of the thought—if n → α we can’t have both n, n + 1 within 1/2 of α.
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1.3 Completeness of R: Bounded monotonic sequences

Definition 1.11. A sequence an is (monotonic) increasing just when an ≤ an+1 for all
n; it is (monotonic) decreasing just when an ≥ an+1 for all n. To cover either case we
say the sequence is monotonic.

N.B. an is increasing iff (−an) is decreasing.
A sequence an is bounded above when there is B with an ≤ B for all n; it is

bounded below when there is A with an ≥ A for all n; it is bounded when it is bounded
above and below.

Axiom (Completeness Axiom). The real numbers R form an ordered field and every
bounded monotonic sequence of reals has a limit (ie converges).

Remarks.

• This can be justified on further conditions, but here we take it as an axiom.

• It is enough to say an increasing sequence bounded above converges.

• In fact, this characterizes R as the completion of Q.

From now on, we consider only the complete ordered field R, and occasionally its
(incomplete) ordered subfield Q.

Proposition 1.12 (Archimedean Property).

1. For any real x, there is N ∈ N with N > x.

2. For any ε > 0 there is N ∈ N with 0 < 1
N < ε.

3. The sequence 1
n → 0.

Proof.

1. Recall that an = n is an increasing non-convergent sequence. Hence it is not
bounded above and so for any x ∈ R there is N with x < N .

2. If ε > 0, then consider ε−1(> 0) and take N ∈ N with ε−1 < N . Then
0 < 1/N < ε

3. Given ε > 0 we can find N with 0 < 1
N < ε. Now if n ≥ N ,

0 < 1/n ≤ 1/N < ε

and the result is proved.

Definition 1.13. If an is a sequence and we have n(k) for k ∈ N, with

n(k) < n(k + 1)

then (an(k))k∈N is a subsequence of an.

Observation 1.14. Suppose an → a has a subsequence (an(k))k∈N. Then an(k) → a
as k → ∞.
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Theorem 1.15 (The Bolzano-Weierstrass Theorem). Any bounded sequence of re-
als has a convergent subsequence.

Cheap proof. Let an be a bounded sequence. Say that m ∈ N is a ‘peak number’ iff
am ≥ ak for all k ≥ m.

Either there are infinitely many peak numbers, in which case we enumerate them
p(1) < p(2) < p(3) < . . . in order. Then ap(k) ≥ ap(k+1) and so ap(k) is a bounded
decreasing subsequence of an, so converges.

Or there are finitely many peak numbers. Let M be the greatest. Then for every
n > M , n is not a peak number and so we can find g(n) > n: the least r > n with
ar > an.

Define q(k) inductively by q(1) = M + 1, q(k + 1) = g(q(k)).
By definition q(k) < q(k + 1) for all k, and aq(k) < aq(k+1) for all k, so aq(k) is a

bounded, (strictly) increasing subsequence of an and so converges.

This basis of this proof is that any sequence in a total order has a monotonic subse-
quence.

1.4 Completeness of R: Least Upper Bound Principle

Definition 1.16. Let (∅ �=)S ⊆ R be a (non-empty) set of reals.

• b is an upper bound for S iff s ≤ b for all s ∈ S and if S has such, S is bounded
above.

• a is a lower bound for S iff a ≤ s for all s ∈ S, and if S has such, S is bounded
below.

• S is bounded iff S is bounded above and below, ie if S ⊆ [a, b] for some a, b.

b is the least upper bound of S or the supremum of S iff

• b is an upper bound

• If c < b then c < s for some s ∈ S (ie c is not an upper bound for S)

Similarly, a is the greatest lower bound of S or the infimum of S iff

• a is a lower bound

• If a < c then s < c for some s ∈ S (ie c is not a lower bound).2

Notation: b = lub S = sup S; a = glbS = inf S.

Theorem 1.17 (Least Upper Bound Principle). A non-empty set S of reals which is
bounded above has a least upper bound.

Proof. Suppose S �= ∅ and bounded above. Take b an upper bound and a (in S say) so
that [a, b] ∩ S �= ∅.

Set a0 = a, b0 = b so that a0 ≤ b0 and define an ≤ bn inductively as follows:
Suppose an, bn given, then an+1, bn+1 are defined by stipulating:-

2Aside: If b, b′ are both least upper bounds of S, then can’t have b < b′ and can’t have b′ < b and so
b = b′.
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• If
[

an+bn

2 , bn

] ∩ S �= ∅ then an+1 = an+bn

2 , bn+1 = bn.

• If otherwise, then an+1 = an, bn+1 = an+bn

2 .

We can see inductively that:

1. an ≤ an+1 ≤ bn+1 ≤ bn for all n.

2. (bn+1 − an+1) = 1
2 (bn − an) for all n.

3. [an, bn] ∩ S �= ∅ for all n.3

4. bn is an upper bound of S for every n. 4

By 1. bn is decreasing, bounded below by a so bn → β say; an is increasing,
bounded above by b so an → α

By 2. (bn − an) = 1
2n (b0 − a0) → 0 as n → ∞. But bn − an → β − α and so

β = α.
Claim: α = β is supS.

• Each bn is an upper bound of S and so β = limn→∞ bn is an upper bound —
for if s ∈ S we have s ≤ bn all n and so s ≤ limn→∞ bn

• Take γ < β = α = limn→∞ an. We can take N such that an > γ for all
n ≥ N .5

But then [aN , bN ] ∩ S �= ∅ and so there is s ∈ S such that s ≥ an > γ.

This shows that β is the least upper bound.

Observation 1.18. We can deduce the completeness axiom from the LUB principle.

Proof. If an is increasing and bounded above then S = {an : n ∈ N} is non-empty
and bounded above and so we can set a = sup S

Suppose ε > 0 given. Now a − ε < a and so there is N with aN > a − ε but then
for n ≥ N , a − ε < aN ≤ an ≤ a and so |an − a| < ε.

3True for n = 0, and inductively, certainly true for n + 1 in first alternative, and in the 2nd alternative
since �

an + bn

2
, bn

�
∩ S = ∅

�
an,

an + bn

2

�
∩ S = [an, bn] ∩ S �= ∅

by induction hypothesis
4True for n = 0 and inductively, trivial in first case and in the second, clear as

[bn+1, bn] ∩ S = ∅

5Let ε = β − γ > 0. We can find N such that |an − β| < ε and thus an > γ.
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1.5 Completeness of R: General Principle of Conver-
gence

Definition 1.19. A real sequence an is a Cauchy Sequence if and only if for all ε > 0
there exists N with

|an − am| < ε ∀n, m ≥ N.

That is an is Cauchy iff

∀ε > 0 ∃N ∀n, m ≥ N |an − am| < ε

Observation 1.20. A Cauchy sequence is bounded, For if an is Cauchy, take N such
that |an − am| < 1 for all n, m ≥ N . Then an is bounded by

±max(|a1|, |a2| , . . . , |aN + 1|)
Lemma 1.21. Suppose an is Cauchy and has a convergent subsequence an(k) → a as
k → ∞. Then an → a as n → ∞.

Proof. Given ε > 0, take N such that |an − am| < ε for all m, n ≥ N , and take K
with n(K) ≥ N (easy enough to require K ≥ N ) such that

∣∣an(k) − a
∣∣ < ε for all

k ≥ K .
Then if n ≥ M = n(K)

|an − a| ≤ ∣∣an − an(k)

∣∣+ ∣∣an(k) − a
∣∣ < ε + ε = 2ε.

But 2ε > 0 can be made arbitrarily small, so an → a.

Theorem 1.22 (The General Principle of Convergence). A real sequence converges
if and only if it is Cauchy.

Proof. (⇒) Suppose an → a. Given ε > 0 take N such that |an − a| < ε for all
n ≥ N .

Then if m, n ≥ N ,

|an − am| ≤ |an − a| + |am − a| ≤ ε + ε = 2ε.

As 2ε > 0 can be made arbitrarily small, an is Cauchy.

(⇐) Suppose an is Cauchy.6 Then an is bounded and so we can apply Bolzano-
Weierstrass to obtain a convergent subsequence an(k) → a as k → ∞. By
lemma 1.21, an → a.

Alternative Proof. Suppose an is Cauchy. Then it is bounded, say an ∈ [α, β]
Consider

S = {s : an ≥ s for infinitely many n}.
First, α ∈ S and so S �= ∅. S is bounded above by β + 1 (in fact by β). By the

LUB principle we can take a = supS.

6This second direction contains the completeness information.
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Given ε > 0, a−ε < a and so there is s ∈ S with a−ε < s. Then there are infinitely
many n with an ≥ s > a − ε. a + ε > a, so a + ε /∈ S and so there are only finitely
many n with an ≥ a + ε. Thus there are infinitely many n with an ∈ (a − ε, a + ε).

Take N such that |an − am| < ε for all m, n ≥ N . We can find m ≥ N with
am ∈ (a − ε, a + ε) ie |am − a| < ε. Then if n ≥ N ,

|an − a| ≤ |an − am| + |am − a| < ε + ε = 2ε

As 2ε can be made arbitrarily small this shows an → a.

Remarks.

• This second proof can be modified to give a proof of Bolzano-Weierstrass from
the LUB principle.

• In the proof by bisection of the LUB principle, we could have used GPC (general
principle of convergence) instead of Completeness Axiom.

• We can prove GPC directly from completeness axiom as follows:

Given an Cauchy, define

bn = inf{am : m ≥ n}

bn is increasing, so bn → b (= lim inf an). Then show an → b.

• The Completeness Axiom, LUB principle, and the GPC are equivalent expres-
sions of the completeness of R.



Chapter 2

Euclidean Space

2.1 The Euclidean Metric

Recall that Rn is a vector space with coordinate-wise addition and scalar multiplication.

Definition 2.1. The Euclidean norm1 ‖·‖ : Rn �→ R is defined by

‖x‖ = ‖(x1, . . . , xn)‖ = +

√√√√ n∑
i=1

x2
i

and the Euclidean distance d(x, y) between x and y is d(x, y) = ‖x − y‖.

Observation 2.2. The norm satisfies

‖x‖ ≥ 0, ‖x‖ = 0 ⇔ x = 0 ∈ Rn

‖λx‖ = |λ| ‖x‖
‖x + y‖ ≤ ‖x‖ + ‖y‖

and the distance satisfies

d(x, y) ≥ 0, d(x, y) = 0 ⇔ x = y

d(x, y) = d(y, x)
d(x, z) ≤ d(x, y) + d(y, z).

2.2 Sequences in Euclidean Space

We can write x(n) or x(n) for a sequence of points in Rp. Then

x
(n)
i = xi(n) 1 ≤ i ≤ p

for the ith coordinate of the nth number of the sequence.

1The norm arises from the standard inner product

< x, y >=
n�

i=1

xiyi

9
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Definition 2.3. A sequence x(n) converges to x in Rp when for any ε > 0 there exists
N such that 2 ∥∥∥x(n) − x

∥∥∥ < ε for all n ≥ N

In symbols:

x(n) → x ⇔ ∀ε > 0 ∃N ∀n ≥ N
∥∥∥x(n) − x

∥∥∥ < ε

Proposition 2.4. x(n) → x in Rp iff x
(n)
i → x in R for 1 ≤ i ≤ p.

Proof. Note that

0 <
∣∣∣x(n)

i − xi

∣∣∣ ≤ ∥∥∥x(n) − x
∥∥∥→ 0

and

0 ≤
∥∥∥x(n) − x

∥∥∥ ≤
p∑

i=1

∣∣∣x(n)
i − xi

∣∣∣→ 0.

Definition 2.5. A sequence x(n) ∈ Rp is bounded if and only if there exists R such that∥∥x(n)
∥∥ ≤ R for all n.

Theorem 2.6 (Bolzano-Weierstrass Theorem for Rp). Any bounded sequence in Rp

has a convergent subsequence.

Proof (Version 1). Suppose x(n) is bounded by R. Then all the coordinates x
(n)
i are

bounded by R. By Bolzano-Weierstrass in R we can take a subsequence such that
the 1st coordinates converge; now by Bolzano-Weierstrass we can take a subsequence
of this sequence such that the 2nd coordinates converge. Continuing in this way (in p
steps) we get a subsequence all of whose coordinates converge. But then this converges
in Rp.

Version 2. By induction on p. The result is known for p = 1 (Bolzano-Weierstrass in
R) and is trivial for p = 0. Suppose result is true for p.

Take xn a bounded subsequence in Rp and write each x(n) as x(n) = (y(n), x
(n)
p+1)

where y(n) ∈ Rp and x
(n)
p+1 ∈ R is the (p + 1)th coordinate.

Now y(n) and x
(n)
p+1 are both bounded, so we can apply Bolzano-Weierstrass in Rp

to get a subsequence y(n(k)) → y. Apply Bolzano-Weierstrass in R to get x
(n(k(j)))
p+1 →

x. Then

x(n(k(j))) → (y, x) as j → ∞.

2xn → x in �p iff
��x(n) − x

�� → 0 in �.
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Definition 2.7. A sequence x(n) ∈ Rp is a Cauchy sequence iff for any ε > 0 there is
N with

∥∥x(n) − x(m)
∥∥ < ε for n, m ≥ N . In symbols this is

∀ε > 0 ∃N ∀n, m ≥ N
∥∥∥x(n) − x(m)

∥∥∥ < ε.

Observation 2.8. x(n) is Cauchy in Rp iff each x
(n)
i = xi(n) is Cauchy in R for

1 ≤ i ≤ p.

Proof. Suppose x(n) is Cauchy. Take 1 ≤ i ≤ p. Given ε > 0, we can find N such
that

∥∥x(n) − x(m)
∥∥ < ε for all n, m ≥ N . But then for n, m ≥ N ,

|xi(n) − xi(m)| ≤
∥∥∥x(n) − x(m)

∥∥∥ < ε

so as ε > 0 is arbitrary, xi(n) is Cauchy.
Conversely, suppose each xi(n) is Cauchy for 1 ≤ i ≤ p. Given ε > 0, we can find

N1, . . . , Np such that

|xi(n) − xi(m)| < ε for n, m ≥ Ni (1 ≤ i ≤ p)

Now if n, m ≥ N = max{N1, . . . , Np} then

∥∥∥x(n) − x(m)
∥∥∥ ≤

p∑
i=1

∣∣∣x(n)
i − x

(m)
i

∣∣∣ < pε

As pε can be made arbitrarily small, x(n) is Cauchy.

Theorem 2.9 (General Principle of Convergence in Rp). A sequence x(n) in Rp is
convergent if and only if x(n) is Cauchy.

Proof. x(n) converges in Rp

iff xi(n) converges in R (1 ≤ i ≤ p)
iff xi(n) is Cauchy in R (1 ≤ i ≤ p)
iff x(n) is Cauchy in Rp.

2.3 The Topology of Euclidean Space

For a ∈ Rp and r ≥ 0 we have the open ball B(a, r) = O(a, r), defined by

B(a, r) = O(a, r) = {x : ‖x − a‖ < r}
Also we have the closed ball C(a, r) defined by

C(a, r) = {x : ‖x − a‖ ≤ r}
Also we shall sometimes need the “punctured” open ball

{x : 0 < ‖x − a‖ < r}
Definition 2.10. A subset U ⊆ Rp is open if and only if for all a ∈ U there exists
ε > 0 such that

‖x − a‖ < ε ⇒ x ∈ U

[That is: U is open iff for all a ∈ U there exists ε > 0 with B(a, ε) ⊆ U ].
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The empty set ∅ is trivially open.

Example 2.11.

• O(a, r) is open, for if b ∈ O(a, r), then ‖b − a‖ < r, setting

ε = r − ‖b − a‖ > 0

we see O(b, ε) ⊆ O(a, r).

• Similarly {x : 0 < ‖x − a‖ < r} is open.

• But C(a, r) is not open for any r ≥ 0.

Definition 2.12. A subset A ⊆ Rp is closed iff whenever an is a sequence in A and
an → a, then a ∈ A. In symbols this is

an → a, an ∈ A ⇒ a ∈ A

Example 2.13.

• C(a, r) is closed, for suppose bn → b and bn ∈ C(a, r) then ‖bn − a‖ ≤ r for
all n. Now

‖b − a‖ ≤ ‖bn − b‖ + ‖bn − a‖ ≤ r + ‖bn − b‖

As bn → b, ‖bn − b‖ → 0, and so r + ‖bn − b‖ → r as n → ∞. Therefore
‖b − a‖ ≤ r.

• A product [a1, b1] × . . . × [ap, bp] ⊆ Rp of closed intervals is closed. For if
c(n) → c and

c(n) ∈ [ ] × . . . × [ ]

then each c
(n)
i → ci with c

(n)
i ∈ [ai, bi] so that ci ∈ [ai, bi]. Therefore

c ∈ [ ] × . . . × [ ].

• But O(a, r) is not closed unless r = 0.

Proposition 2.14. A set U ⊆ Rp is open (in Rp) iff its complement Rp \U is closed in
Rp. A set U ⊆ Rp is closed (in Rp) iff its complement Rp \ U is open in Rp.3

Proof. Exercise.

2.4 Continuity of Functions

We consider functions f : E �→ Rm defined on some E ⊆ Rn. For now imagine that
E is a simple open or closed set as in §2.3.

3Warning: Sets need not be either open or closed: the half open interval (a, b] is neither open nor closed
in �.
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Definition 2.15. Suppose f : E �→ Rm (with E ⊆ Rn) Then f is continuous at a iff
for any ε > 0 there exists 4 δ > 0 such that

‖x − a‖ < δ → ‖f(x) − f(a)‖ < ε for all x ∈ E.

In symbols:

∀ε > 0 ∃δ > 0 ∀x ∈ E ‖x − a‖ < δ ⇒ ‖f(x) − f(a)‖ < ε.

f is continuous iff f is continuous at every point.

This can be reformulated in terms of limit notation as follows:

Definition 2.16. Suppose f : E �→ Rn. Then f(x) → b as x → a in E5 if an only if
for any ε > 0 there exists δ > 0 such that

0 < ‖x − a‖ < δ ⇒ ‖f(x) − b)‖ < ε for all x ∈ E.

Remarks.

• We typically use this when E is open and some punctured ball

{x : 0 < ‖x − a‖ < r}

is contained in E. Then the limit notion is independent of E.

• If f(x) → b as x → a, then defining f(a) = b extends f to a function continuous
at a.

Proposition 2.17. Suppose f : E �→ Rm

• f is continuous (in E) if and only if whenever an → a in E, then f(an) → f(a).
This is known as sequential continuity.

• f is continuous (in E) if and only if for any open subset V ⊆ Rm:

F−1(V ) = {x ∈ E : f(x) ∈ V }

is open in E.

Proof. We will only prove the first part for now. The proof of the second part is given
in theorem 5.16 in a more general form.

Assume f is continuous at a and take a convergent sequence an → a in E. Suppose
ε > 0 given. By continuity of f , there exists δ > 0 such that

‖x − a‖ < δ ⇒ ‖f(x) − f(a)‖ < ε.

As an → a take N such that ‖an − a‖ < δ for all n ≥ N .
Now if n ≥ N , ‖f(an) − f(a)‖ < ε. Since ε > 0 can be made arbitrarily small,

f(an) → f(a).
The converse is clear.

4The continuity of f at a depends only on the behavior of f in an open ball B(a, r), r > 0.
5Then f is continuous at a iff f(x) → f(a) as x → a in E.
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Remark. f(x) → b as x → a iff ‖f(x) − b‖ → 0 as x → a.

Observation 2.18.

• Any linear map α : Rn �→ Rm is continuous.

Proof. If α has matrix A = (aij) with respect to the standard basis then

α(x) = α(x1, . . . , xn) =

⎛
⎝ n∑

j=1

aijxj , . . . ,

n∑
j=1

amjxj

⎞
⎠

and so

‖α(x)‖ ≤
∑
ij

|aij | |xj | ≤
⎛
⎝∑

i,j

|aij |
⎞
⎠

︸ ︷︷ ︸
K

‖x‖ .

Fix a ∈ Rn. Given ε > 0 we note that if ‖x − a‖ < ε then

‖α(x) − α(a)‖ = ‖α(x − a)‖ ≤ K ‖x − a‖ < Kε

As Kε can be made arbitrarily small, f is continuous at a. But a ∈ Rn arbitrary,
so f is continuous.

• If f : Rn �→ Rm is continuous at a, and g : Rm �→ Rp is continuous at f(a),
then g ◦ f : Rn �→ Rp is continuous at a.

Proof. Given ε > 0 take η > 0 such that

‖y − f(a)‖ < η ⇒ ‖g(y) − g(f(a))‖ < ε.

Take δ > 0 such that ‖x − a‖ < δ ⇒ ‖f(x) − f(a)‖ < η.

Then ‖x − a‖ < δ ⇒ ‖g(f(x)) − g(f(a))‖ < ε.

Proposition 2.19. Suppose f, g : Rn �→ Rm are continuous at a. Then

1. f + g is continuous at a.

2. λf is continuous at a, any λ ∈ R.

3. If m = 1, f · g is continuous at a.

Proof. Proof is trivial. Just apply propositions 1.10 and 2.17.

Suppose f : Rn �→ Rm. Then we can write:

f(x) = (f1(x), . . . , fm(x))

where fj : Rn �→ R is f composed with the j th projection or coordinate function.
Then f is continuous if and only if each f1, . . . , fm is continuous.
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Theorem 2.20. Suppose that f : E �→ R is continuous on E, a closed and bounded
subset of Rn. Then f is bounded and (so long as E �= ∅) attains its bounds.

Proof. Suppose f not bounded. Then we can take an ∈ E with |f(an)| > n. By
Bolzano-Weierstrass we can take a convergent subsequence an(k) → a as k → ∞ and
as E is closed, a ∈ E.

By the continuity of f , f(an(k)) → f(a) as k → ∞. But f(an(k)) is unbounded
— a contradiction and so f is bounded.

Now suppose β = sup{f(x) : x ∈ E}. We can take cn ∈ E with

|f(cn) − β| <
1
n

.

By Bolzano-Weierstrass we can take a convergent subsequence cn(k) → c. As E is
closed, c ∈ E. By continuity of f , f(cn(k)) → f(c), but by construction f(cn(k)) → β
as k → ∞. So f(c) = β.

Essentially the same argument shows the more general fact. If f : E �→ Rn is
continuous in E, closed and bounded, then the image f(E) is closed and bounded.
N.B. compactness.

2.5 Uniform Continuity

Definition 2.21. Suppose f : E �→ Rm where E ⊆ Rn. f is uniformly continuous on
E iff for any ε > 0 there exists δ > 0 such that

‖x − y‖ < δ ⇒ ‖f(x) − f(y)‖ < ε for all x, y ∈ E.

In symbols:

∀ε > 0 ∃δ > 0 ∀x, y ∈ E ‖x − y‖ < δ ⇒ ‖f(x) − f(y)‖ < ε

Compare this with the definition of continuity of f at all points x ∈ E:

∀x ∈ E ∀ε > 0 ∃δ > 0 ∀y ∈ E ‖x − y‖ < δ ⇒ ‖f(x) − f(y)‖ < ε

The difference is that for continuity, the δ > 0 to be found depends on both x and
ε > 0; for uniform continuity the δ > 0 depends only on ε > 0 and is independent of
x.

Example 2.22. x �→ x−1 : (0, 1] �→ [1,∞) is continuous but not uniformly continu-
ous.

Consider ∣∣∣∣ 1x − 1
y

∣∣∣∣ =
∣∣∣∣y − x

xy

∣∣∣∣
Take x = η, y = 2η. Then ∣∣∣∣1x − 1

y

∣∣∣∣ =
∣∣∣∣ 1
2η

∣∣∣∣
while |x − y| = η.
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Theorem 2.23. Suppose f : E �→ Rm is continuous on E, a closed and bounded sub-
set of Rn. Then f is uniformly continuous on E.

Proof. Suppose f continuous but not uniformly continuous on E.
Then there is some ε > 0 such that for no δ > 0 is it the case that

‖x − y‖ < δ ⇒ ‖f(x) − f(y)‖ < ε ∀ x, y ∈ E.

Therefore6 for every δ > 0 there exist x, y ∈ E with ‖x − y‖ < δ and

‖f(x) − f(y)‖ ≥ ε.

Now for every n ≥ 1 we can take xn, yn ∈ E with ‖xn − yn‖ < 1
n and

‖f(xn) − f(yn)‖ ≥ ε.

By Bolzano-Weierstrass, we can take a convergent subsequence xn(k) → x as
k → ∞. x ∈ E since E is closed.

Now ∥∥yn(k) − x
∥∥ ≤ ∥∥yn(k) − xn(k)

∥∥+
∥∥xn(k) − x

∥∥→ 0 as k → 0.

Hence yn(k) → x. So xn(k)−yn(k) → 0 as k → ∞ and so f(xn(k))−f(yn(k)) → 0
(by continuity of f ). So∥∥f(xn(k)) − f(yn(k))

∥∥︸ ︷︷ ︸
≥ε

→ 0 as k → ∞.

This is a contradiction and it follows that f must be uniformly continuous.

6We want the “opposite” of

∀ε > 0 ∃δ > 0 ∀x, y ∈ E ‖x − y‖ < δ ⇒ ‖f(x) − f(y)‖ < ε.

It is:

∃ε > 0 ∀δ > 0 ∃x, y ∈ E ‖x − y‖ < δ and ‖f(x) − f(y)‖ ≥ ε.



Chapter 3

Differentiation

3.1 The Derivative

Definition 3.1. Let f : E �→ Rm be defined on E, an open subset of Rn. Then f is
differentiable at a ∈ E with derivative Dfa ≡ f ′(a) ∈ L(Rn, Rm) when

‖f(a + h) − f(a) − f ′(a)h‖
‖h‖ → 0 as h → 0.

The idea is that the best linear approximation to f at a ∈ E is the affine map
x �→ a + f ′(a)(x − a).

Observation 3.2 (Uniqueness of derivative). If f is differentiable at a then its deriva-
tive is unique.

Proof. Suppose Dfa, D̂fa are both derivatives of f at a. Then

∥∥∥Dfa(h) − D̂fa(h)
∥∥∥

‖h‖ ≤

‖f(a + h) − f(a) − Dfa(h)‖
‖h‖ +

∥∥∥f(a + h) − f(a) − D̂fa(h)
∥∥∥

‖h‖ → 0.

Thus

LHS =
∥∥∥∥(Dfa − D̂fa)

(
h

‖h‖
)∥∥∥∥→ 0 as h → 0.

This shows that Dfa − D̂fa is zero on all unit vectors, and so Dfa ≡ D̂fa.

Proposition 3.3. If f : E �→ Rm is differentiable at a, then f is continuous at a.

Proof. Now

‖f(x) − f(a)‖ ≤ ‖f(x) − f(a) − Dfa(x − a)‖ + ‖Dfa(x − a)‖

17
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But ‖f(x) − f(a) − Dfa(x − a)‖ → 0 as x → a and ‖Dfa(x − a)‖ → 0 as
x → a and so the result is proved.

Proposition 3.4 (Differentiation as a linear operator). Suppose that f, g : E �→ R n

are differentiable at a ∈ E. Then

1. f + g is differentiable at a with (f + g)′(a) = f ′(a) + g′(a);

2. λf is differentiable at a with (λf)′(a) = λf ′(a) for all λ ∈ R.

Proof. Exercise.

Observation 3.5 (Derivative of a linear map). If α : Rn �→ Rm is a linear map, then
α is differentiable at every a ∈ Rn with α′(a) = α(a).

Proof is simple, note that

‖α(a + h) − α(a) − α(h)‖
‖h‖ ≡ 0.

Observation 3.6 (Derivative of a bilinear map). If β : Rn × Rm �→ Rp is bilinear
then β is differentiable at each (a, b) ∈ Rn × Rm = Rn+m with

β′(a, b)(h, k) = β(h, b) + β(a, k)

Proof.

‖β(a + h, b + k) − β(a, b) − β(h, b) − β(a, k)‖
‖(h, k)‖ =

‖β(h, k)‖
‖(h, k)‖

If β is bilinear then there is (bij
k ) such that

β(h, k) =

⎛
⎝ n,m∑

i=1,j=1

bij
1 hikj , . . . ,

n,m∑
i=1,j=1

bij
p hikj

⎞
⎠

‖β(h, k)‖ ≤
∑
i,j,k

|bij
k | |hi| |kj | ≤

∑
i,j,k

|bij
n |

︸ ︷︷ ︸
=K

‖h‖ ‖k‖ ≤ K

2
(‖h‖2 + ‖k‖2)

So ‖β(h,k)‖
‖(h,k)‖ ≤ (K

2

) ‖(h, k)‖ and so → 0 as (h, k) → 0.

Example 3.7. The simplest bilinear map is multiplication m : R × R �→ R and we
have

m′(a, b)(h, k) = hb + ak(= bh + ak).
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3.2 Partial Derivatives

Example 3.8 (Derivative of a function R �→ R). Suppose f : E �→ R with E ⊆ R

open is differentiable at a ∈ E. Then the derivative map f ′(a) ∈ L(R, R) and any

such is multiplication by a scalar, also called the derivative f ′(a) = df
dx

∣∣∣
a
.

Now

|f(a + h) − f(a) − f ′(a)h|
|h| =

∣∣∣∣f(a + h) − f(a)
h

− f ′(a)
∣∣∣∣→ 0 as h → 0

we see that

f ′(a) = lim
h→0

f(a + h) − f(a)
h

.

WARNING: This limit formula only makes sense in this case

Definition 3.9 (Partial derivatives). Suppose f : E �→ R with E ⊆ Rn open. Take
a ∈ E. For each 1 ≤ i ≤ n we can consider the function

xi �→ f(a1, . . . , ai−1, xi, ai+1, . . . , an)

which is a real-valued function defined at least on some open interval containing a i.
If this is differentiable at ai we write

Dif(a) =
∂f

∂xi

∣∣∣∣
a

for its derivative—the ith partial derivative of f at a.

Now suppose f is differentiable at a with derivative f ′(a) ∈ L(Rn, R). From linear
maths, any such linear map is uniquely of the form

(h1, . . . , hn) �→
n∑

i=1

tihi

for t1, . . . , tn ∈ R (the coefficients w.r.t. the standard basis). Therefore

|f(a + h) − f(a) −∑ tihi|
‖h‖ → 0

as h → 0. Specialize to h = (0, . . . , 0, hi, 0, . . . , 0). We get

|f(a1, . . . , ai−1, ai + h, ai+1, . . . , an) − f(a1, . . . , an) − tihi|
|hi| → 0 as hi → 0.

It follows that ti = Dif(a) ≡ ∂f
∂xi

∣∣∣
a

and thus the coefficients of f ′(a) are the

partial derivatives.

Example 3.10. m(x, y) = xy. Then

∂m

∂x
= y,

∂m

∂y
= x

and

m′(x, y)(h, k) =
∂m

∂x
h +

∂m

∂y
k = yh + xk
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Proposition 3.11. Suppose f : E �→ Rm with E ⊆ Rn open. We can write

f = (f1, . . . , fm),

where fj : E �→ R, 1 ≤ j ≤ m. Then f is differentiable at a ∈ E if and only if all the
fi are differentiable at a ∈ E. Then

f ′(a) = (f ′
1(x), . . . , f ′

m(x)) ∈ L(Rn, Rm)

Proof. If f is differentiable with f ′(a) = ((f ′(a))1, . . . , (f ′(a))m) then

|fj(a + h) − fj(a) − (f ′(a))j(h)|
‖h‖ ≤ ‖f(a + h) − f(a) − f ′(a)(h)‖

‖h‖ → 0.

So (f ′(a))j is the derivative f ′
j(a) at a. Conversely, if all the fj’s are differentiable,

then

‖f(a + h) − f(a) − (f ′
1(a)(h), . . . , f ′

m(a)(h))‖
‖h‖

≤
m∑

j=1

∣∣fj(a + h) − fj(a) − f ′
j(a)(h)

∣∣
‖h‖ → 0 as h → 0.

Therefore f is differentiable with the required derivative.

It follows that if f is differentiable at a, then f ′(a) has the matrix⎛
⎜⎝

∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fm

∂x1
· · · ∂fm

∂xn

⎞
⎟⎠

all evaluated at a with respect to the standard basis.

Remark. If the ∂fj

∂xi
are continuous at a then f ′(a) exists.

3.3 The Chain Rule

Theorem 3.12 (The Chain Rule). Suppose f : Rn �→ Rm is differentiable at a ∈ Rn

and g : Rm �→ Rp is differentiable at b = f(a) ∈ Rm, then g ◦ f : Rn → Rp is
differentiable at a ∈ Rn and (g ◦ f)′(a) = g′(f(a)) ◦ f ′(a).

Proof. Let f(a + h) = f(a) + f ′(a)(h) + R(a, h), where

‖R(a, h)‖
‖h‖ → 0 as h → 0.

We also have g(b+k) = g(b)+ g′(b)(k)+S(b, k), where S(b, k) → 0 in the same
manner.

We can now define σ(b, k) = S(b,k)
‖k‖ for k �= 0, and σ(b, k) = 0 otherwise, so that

σ(b, k) is continuous at k = 0.
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Now

g(f(a + h)) = g(f(a) + f ′(a)(h) + R(a, h))
= g(f(a)) + g′(f(a))(f ′(a)(h) + R(a, h))
+ σ(f(a), f ′(a)(h) + R(a, h)) ‖f ′(a)(h) + R(a, h)‖
= g(f(a)) + g′(f(a))(f ′(a)(h)) + g′(f(a))(R(a, h)) + Y

as g′(f(a)) is linear. So it remains to show that

g′(f(a))(R(a, h)) + Y

‖h‖ → 0 as h → 0.

1.

g′(f(a))(R(a, h))
‖h‖ = g′(f(a))

(
R(a, h)
‖h‖

)
but as h → 0, R(a,h)

‖h‖ → 0, and since g′(f(a)) is continuous

g′(f(a))(R(a, h))
‖h‖ → 0 as h → 0.

2.

‖f ′(a)(h)‖
‖h‖ ≤ K

‖h‖
‖h‖ = K

as f ′(a) is linear (and K is the sum of the norms of the entries in the matrix
f ′(a)). Also

‖R(a, h)‖
‖h‖ → 0 as h → 0

so we can find δ > 0 such that 0 < ‖h‖ < δ ⇒ ‖R(a,h)‖
‖h‖ < 1. Therefore, if

0 ≤ ‖h‖ < δ then

‖f ′(a)(h) + R(a, h)‖
‖h‖ < K + 1

Hence f ′(a)(h)+R(a, h) → 0 as h → 0 and so σ(f(a), f ′(a)(h)+R(a, h)) →
0 as h → 0. Thus Y

‖h‖ → 0 as h → 0.

Remark. In the 1-D case it is tempting to write f(a) = b, f(a + h) = b + k and then
consider

lim
h→0

g(f(a + h)) − g(f(a))
h

= lim
h→0

g(b + k) − g(b)
k

f(a + h) − f(a))
h

.

But k could be zero. The introduction of σ is for the analogous problem in many
variables.

Application. Suppose f, g : Rn �→ R are differentiable at a. Then their product
(f · g) : Rn �→ R is differentiable at a, with derivative1

(f · g)′(a)(h) = g(a) · f ′(a)(h) + f(a) · g′(a)(h)
1multiplication in � is commutative!
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3.4 Mean Value Theorems

Suppose f : [a, b] �→ R is continuous on the (closed, bounded) interval [a, b] and dif-
ferentiable on (a, b). Then we have both Rolle’s theorem and the mean value theorem.

Theorem 3.13 (Rolle’s Theorem). If f(a) = f(b) then there exists c ∈ (a, b) with
f ′(c) = 0.

Proof. Either f is constant and the result is then trivial, or else without loss of gener-
ality, f takes values greater than f(a) = f(b). Then there exists c ∈ (a, b) such that
f(c) = sup{f(t) : t ∈ [a, b]}. Thus f ′(c) = 0.2

Theorem 3.14 (Mean Value Theorem). Suppose f : [a, b] �→ R(a < b) is continuous
and differentiable on (a, b). Then there exists c ∈ (a, b) with

f(b) − f(a)
b − a

= f ′(c).

Proof. Set g(x) = f(x) − x−a
b−a (f(b) − f(a)). Then g(a) = f(a) = g(b) so we can

apply Rolle’s theorem to get c ∈ (a, b) with g ′(c) = 0. This c does the trick.

Theorem 3.15. Suppose that f : E �→ Rm (E open in Rn ) is such that the partial
derivatives

Difj(x) =
∂fj

∂xi

evaluated at x (exist and) are continuous in E. Then f is differentiable in E.

Proof. Note that since f is differentiable iff each fj is differentiable (1 ≤ j ≤ m), it
is sufficient to consider the case f : E �→ R. Take a = (a1, . . . , an) ∈ E.

For h = (h1, . . . , hn) write h(r) = (h1, . . . , hr, 0, . . . , 0). Then by the MVT we
can write

f(a + h(r)) − f(a + h(r − 1)) = hrDrf(ξr)

where ξr lies in the “interval” (a + h(r − 1), a + h(r)). Summing, we get

f(a + h) − f(a) =
n∑

i=1

Dif(ξi)hi.

Hence

|f(a + h) − f(a) −∑n
i=1 Dif(a)hi|

‖h‖ =
|∑n

i=1(Dif(ξi) − Dif(a))hi|
‖h‖

≤
n∑

i=1

|Dif(ξi) − Dif(a)| .

As h → 0, the ξi → a and so by the continuity of the Dif ’s the RHS → 0 and so
the LHS → 0 as required.

2This requires proof, which is left as an exercise.
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Alternatively: Given ε > 0, take δ > 0 such that3 for 0 < |h| < δ,

|Dif(a + h) − Dif(a)| < ε.

Then if 0 < |h| < δ, |ξi − a| < δ and so LHS ≤ RHS < nε, which can be made
arbitrarily small. This shows that the LHS → 0 as h → 0.

3.5 Double Differentiation

Suppose f : E �→ Rm (E open in Rn) is differentiable. We can thus consider the
function

f ′ : E �→ L(Rn, Rm) given by x �→ f ′(x).

Vulgarly, we can identify L(Rn, Rm) with Rmn via matrices, and so can ask
whether f ′ is differentiable. If it is differentiable at a ∈ E, then its derivative f ′′(a) is a
linear map Rn �→ L(Rn, Rm). It is better regarded as a bilinear map Rn × Rn �→ Rm.
Thus (f ′′(a)(h))(k) is regarded as f ′′(a)(h, k). Similarly, if the partial derivatives
Difj exist in E, we can ask whether the functions

x �→ Difj(x), E �→ R

are differentiable or even whether their partial derivatives

DkDifj(a) ≡ ∂2fj

∂xk∂xi

∣∣∣∣
a

exist.

Theorem 3.16. Suppose f : E �→ Rm with E ⊆ Rn open, is such that all the partial
derivatives DkDifj(x) (exist and) are continuous in E. Then f is twice differentiable
in E and the double derivative f ′′(a) is a symmetric bilinear map for all a ∈ E.

Remarks.

• Sufficient to deal with m = 1.

• It follows from previous results that f ′′(a) exists for all a ∈ E.

• It remains to show DiDjf(a) = DjDif(a), inE, where f : E �→ R.

For this we can keep things constant except in the i th and j th components.

It suffices to prove the following:

Proposition 3.17. Suppose f : E �→ R, E ⊆ R2 is such that the partial derivatives
D1D2f(x) and D2D1f(x) are continuous. Then D1D2f(x) = D2D1f(x).

3B(a, δ) ⊆ E is also necessary.
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Proof. Take (a1, a2) ∈ E. For (h1, h2) small enough (for a + h ∈ E) define

T (h1, h2) = f(a1 + h1, a2 + h2) − f(a1, a2 + h2)
−f(a1 + h1, a2) + f(a1, a2)

Apply the MVT to y �→ f(a1 + h, y) − f(a1, y) to get ŷ ∈ (a2, a2 + h2) such that

T (h1, h2) = (D2f(a1 + h, ŷ) − D2f(a1, ŷ))h2

Now apply MVT to x �→ D2f(x, ŷ) to get x̂ ∈ (a1, a1 + h1) with

T (h1, h2) = (D1D2f(x̂, ŷ))h1h2

As h1, h2 → 0 separately, (x̂, ŷ) → (a1, a2), and so, by continuity of D1D2:

lim
h1→0,h2→0

T (h1, h2)
h1h2

= D1D2f(a1, a2)

Similarly

lim
h1→0,h2→0

T (h1, h2)
h1h2

= D2D1f(a1, a2).

The result follows by uniqueness of limits.

3.6 Mean Value Theorems in Many Variables

Suppose first that f : [a, b] �→ Rm is continuous and is differentiable on (a, b). Then
the derivative f ′(t) ∈ L(R, Rm) for a < t < b. We identify L(R, Rm) with Rm via

α ∈ L(R, Rm) �→ α(1) ∈ Rm

Then write ‖f ′(t)‖ = ‖f ′(t)(1)‖.

Theorem 3.18. With f as above, suppose ‖f ′(t)‖ ≤ K for all t ∈ (a, b). Then

‖f(b) − f(a)‖ ≤ K |b − a| .
Proof. Set e = f(b) − f(a) and let φ(t) = 〈f(t), e〉, the inner product with e. By the
one dimensional MVT we have φ(b) − φ(a) = φ′(c)(b − a) for some c ∈ (a, b).

We can calculate φ′(t) by the chain rule as φ′(t) = 〈f ′(t), e〉. (f ′(t) regarded as
begin a vector in Rm). Now

φ(b) − φ(a) = 〈f(b), e〉 − 〈f(a), e〉
= 〈f(b) − f(a), f(b) − f(a)〉
= ‖f(b) − f(a)‖2

.

Therefore

‖f(b) − f(a)‖2 = |〈f ′(c), e〉| |b − a|
≤ ‖f ′(c)‖ ‖f(b) − f(a)‖ |b − a|

and so ‖f(b) − f(a)‖ ≤ K |b − a|.
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Finally, take the case f : E �→ Rm differentiable on E with E open in Rn. For any
d ∈ E, f ′(d) ∈ L(Rn, Rm).

For α ∈ L(Rn, Rm) we can define ‖α‖ by

‖α‖ = sup
x �=0

‖α(x)‖
‖x‖

So ‖α‖ is least such that

‖α(x)‖ ≤ ‖α‖ ‖x‖

for all x.

Theorem 3.19. Suppose f is as above and a, b ∈ E are such that the interval [a, b]
(line segment), [a, b] = {c(t) = tb + (1 − t)a : 0 ≤ t ≤ 1}.

Then if ‖f ′(d)‖ < K for all d ∈ (a, b),

‖f(b) − f(a)‖ ≤ K ‖b − a‖ .

Proof. Let g(t) = f(c(t)), so that g : [0, 1] �→ Rm. By theorem 3.18,

‖f(b) − f(a)‖ = ‖g(1) − g(0)‖ ≤ L · 1 = L

for L ≥ ‖g′(t)‖, 0 < t < 1. But by the chain rule

g′(t) = f ′(t) (b − a)︸ ︷︷ ︸
=c′(t)

,

so that ‖g′(t)‖ ≤ ‖f ′(t)‖ . ‖b − a‖ ≤ K ‖b − a‖. The result follows.
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Chapter 4

Integration

4.1 The Riemann Integral

Definition 4.1. A dissection D of an interval [a, b] (a < b), is a sequence

D = [x0, . . . , xn] where a = x0 < x1 < x2 < . . . < xn = b.

A dissection D1 is finer than (or a refinement of) a dissection D2 if and only if all
the points of D2 appear in D1. Write D1 < D2. 1

Definition 4.2. For f : [a, b] �→ R bounded and D a dissection of [a, b] we define

SD =
n∑

i=1

(xi − xi−1) sup
xi−1≤x≤xi

{f(x)}

sD =
n∑

i=1

(xi − xi−1) inf
xi−1≤x≤xi

{f(x)}.

These are reasonable upper and lower estimates of the area under f . For general f
we take the area below the axis to be negative.

Combinatorial Facts

Lemma 4.3. For any D, sD ≤ SD.

Lemma 4.4. If D1 ≤ D2, then SD1 ≤ SD2 and sD1 ≥ sD2 .

Lemma 4.5. For any dissections D1 and D2, sD1 ≤ SD2 .

Proof. Take a common refinement D3, say, and

sD1 ≤ sD3 ≤ SD3 ≤ SD2

It follows that the sD are bounded by an SD0 , and the SD are bounded by any
sD0 .

1The mesh of � = [x0, . . . , xn] is max1≤i≤n{|xi − xi−1|}. If �1 ≤ �2 then mesh(�1) ≤
mesh(�2).

27
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Definition 4.6. For f : [a, b] �→ R bounded, define the upper Riemann integral

S(f) ≡
∫ b

a

f(x) dx = inf
D
{SD(f)}

and the lower Riemann integral

s(f)
∫ b

a

f(x) dx = sup
D

{sD(f)}.

Note that s(f) ≤ S(f). f is said to be Riemann integrable, with
∫ b

a f(x) dx = σ
iff s(f) = S(f).

Example 4.7.

• f(x) =

{
0 x irrational,

1 x rational.
x ∈ [0, 1]

Then S(f) = 1, s(f) = 0 and so f is not Riemann integrable.

• f(x) =

{
0 x irrational,
1
q x rational = p

q in lowest terms.
x ∈ [0, 1]

is Riemann integrable with ∫ 1

0

f(x) dx = 0

Conventions

We defined
∫ b

a
f(x) dx for a < b only. For a = b,

∫ b

a
f(x) dx = 0 and for b < a,∫ b

a f(x) dx = − ∫ a

b f(x) dx.
These give a general additivity of the integral with respect to intervals, ie:
If f is Riemann integrable on the largest of the intervals,

[a, b], [a, c], [c, b]

then it is integrable on the others, with∫ b

a

f(x) dx =
∫ c

a

f(x) dx +
∫ b

c

f(x) dx.

This makes sense in the obvious case a ≤ c ≤ b, but also in all others, eg b ≤ a ≤ c.

Proof. Left to the reader.

4.2 Riemann’s Condition: A GPC for integrability

Theorem 4.8. Suppose f : [a, b] �→ R is bounded. Then f is Riemann-integrable iff
for all ε > 0 there exists a dissection D with SD − sD < ε.
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Proof.
(⇒) Take ε > 0, Pick D1 such that

SD1 −
∫ b

a

f(x) dx <
ε

2

Pick D2 such that ∫ b

a

f(x) dx − sD2 <
ε

2

Then if D is a common refinement,

SD − sD ≤
(

SD1 −
∫ b

a

f(x) dx

)
+

(∫ b

a

f(x) dx − sD2

)
< ε

(⇐) Generally, SD ≥ S ≥ s ≥ sD Riemann’s condition gives S − s < ε for all
ε > 0. Hence S = s and f is integrable.

Remarks.

• If σ is such that ∀ε > 0 ∃D with SD − sD < ε and SD ≥ σ ≥ sD then σ is∫ b

a
f(x) dx.

• A sum of the form

σD(f) =
n∑

i=1

(xi − xi−1)f(ξi)

where ξi ∈ [xi−1, xi], is an arbitrary Riemann sum. Then f is Riemann inte-
grable with ∫ b

a

f(x) dx = σ

if and only if ∀ε > 0 ∃δ > 0 ∀D with mesh(D) < δ and all arbitrary sums

|σD(f) − σ| < ε

Applications

A function f : [a, b] �→ R is

increasing if and only if

x ≤ y ⇒ f(x) ≤ f(y), x, y ∈ [a, b]

decreasing if and only if

x ≤ y ⇒ f(x) ≥ f(y), x, y ∈ [a, b]

monotonic if and only if it is either increasing or decreasing.
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Proposition 4.9. Any monotonic function is Riemann integrable on [a, b].

Proof. By symmetry, enough to consider the case when f is increasing. Dissect [a, b]
into n equal intervals, ie

D =
[
a, a +

(b − a)
n

, a + 2
(b − a)

n
, . . . , b

]
= [x0, x1, . . . , xn].

Note that if c < d then supx∈[c,d]{f(x)} = f(d) and infx∈[c,d]{f(x)} = f(c).
Thus

SD − sD =
n∑

i=1

(xi − xi−1)(f(xi) − f(xi−1))

=
b − a

n

n∑
i=1

(f(xi) − f(xi−1))

=
b − a

n
(f(b) − f(a))

Now, the RHS→ 0 as n → ∞ and so given ε > 0 we can find n with

b − a

n
(f(b) − f(a)) < ε

and so we have D with SD − sD < ε. Thus f is Riemann integrable by Riemann’s
condition.

Theorem 4.10. If f : [a, b] �→ R is continuous, then f is Riemann integrable.

Note that f is bounded on a closed interval.

Proof. We will use theorem 2.23, which states that if f is continuous on [a, b], f is
uniformly continuous on [a, b]. Therefore, given η > 0 we can find δ > 0 such that for
all x, y ∈ [a, b]:

|x − y| < δ ⇒ |f(x) − f(y)| < η

Take n such that b−a
n < δ and consider the dissection

D =
[
a, a +

(b − a)
n

, a + 2
(b − a)

n
, . . . , b

]
= [x0, x1, . . . , xn].

Now if x, y ∈ [xi−1, xi] then |x − y| < δ and so |f(x) − f(y)| < η. Therefore

sup
x∈[xi−1,xi]

{f(x)} − inf
x∈[xi−1,xi]

{f(x)} ≤ η.

We see that

SD − sD ≤
n∑

i−1

(xi − xi−1) · η = (b − a)η

Now assume ε > 0 given. Take η such that (b − a)η < ε. As above, we can find
D with SD − sD ≤ (b − a)η < ε, so that f is Riemann integrable by Riemann’s
condition.
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4.3 Closure Properties

Notation. Define M(f ; c, d) ≡ supx∈[c,d]{f(x)} and m(f ; c, d) ≡ infx∈[c,d]{f(x)}.

Proposition 4.11. If f, g : [a, b] �→ R are Riemann integrable, so are

1. f + g : [a, b] �→ R, with
∫ b

a
(f + g) dx =

∫ b

a
f dx +

∫ b

a
g dx.

2. λf : [a, b] �→ R (λ ∈ R) with
∫ b

a λf dx = λ
∫ b

a f dx.

Proof of 1. Given ε > 0. Take a dissection D1 with SD1(f) − sD1(f) < ε
2 and a

dissection D2 with SD2(g) − sD2(g) < ε
2 . Let D be a common refinement. Note that

M(f + g; c, d) ≤ M(f ; c, d) + M(g; c, d)
m(f + g; c, d) ≥ m(f ; c, d) + m(g; c, d)

Hence

sD(f) + sD(g) ≤ sD(f + g) ≤ SD(f + g) ≤ SD(f) + SD(g)

and so SD(f + g)− sD(f + g) < ε. Thus f + g is Riemann integrable (by Riemann’s
condition). Further, given ε > 0 we have a dissection D with

SD(f) − sD(f) <
ε

2
SD(g) − sD(g) <

ε

2
.

Then

sD(f) + sD(g) ≤ sD(f + g)

≤
∫ b

a

(f + g) dx

≤ SD(f + g)
≤ SD(f) + SD(g)

and so(∫ b

a

f dx − ε

2

)
+

(∫ b

a

g dx − ε

2

)
<

∫ b

a

(f + g) dx

<

(∫ b

a

f dx +
ε

2

)
+

(∫ b

a

g dx +
ε

2

)

Since ε > 0 arbitrarily small, we have:∫ b

a

(f + g) dx =
∫ b

a

f dx +
∫ b

a

g dx

Proof of 2 is left as an exercise.
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Proposition 4.12. Suppose f, g : [a, b] �→ R are bounded and Riemann integrable.
Then |f |, f 2 and fg are all Riemann integrable.

Proof. Note that

M(|f | ; c, d) − m(|f | ; c, d) ≤ M(f ; c, d) − m(f ; c, d),

and so, given ε > 0, we can find a dissection D with SD(f) − sD(f) < ε and then

SD(|f |) − sD(|f |) ≤ SD(f) − sD(f) < ε.

Therefore |f | is Riemann-integrable.
As for f 2, note that

M(f2; c, d) − m(f2; c, d)
= [M(|f | ; c, d) + m(|f | ; c, d)] × [M(|f | ; c, d) − m(|f | ; c, d)]

≤ 2K (M(|f | ; c, d) − m(|f | ; c, d))

where K is some bound for |f |.
Given ε > 0, take a dissection D with SD(|f |) − sD(|f |) < ε

2K . Then

SD(f2) − sD(f2) ≤ 2K(SD(|f |) − sD(|f |)) < ε.

Therefore f 2 is Riemann-integrable.
The integrability of fg follows at once, since

fg =
1
2
(
(f + g)2 − f2 − g2

)
.

Estimates on Integrals

1. Suppose F : [a, b] �→ R is Riemann-integrable, a < b. If we take D = [a, b] then
we see that

(b − a)m(f ; a, b) ≤
∫ b

a

f(x) dx ≤ (b − a)M(f ; a, b).

It follows that if |f | ≤ K then∣∣∣∣∣
∫ b

a

f(x) dx

∣∣∣∣∣ ≤ K |b − a| .

This is true even if a ≥ b.

2. Suppose f : [a, b] �→ R is Riemann-integrable, a < b. Then SD |f | ≥ SD(f)
and so ∫ b

a

|f | ≥
∫ b

a

f dx.
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Also SD |f | ≥ SD(−f). and so∫ b

a

|f | ≥ −
∫ b

a

f dx

Thus2

∣∣∣∣∣
∫ b

a

f dx

∣∣∣∣∣ ≤
∫ b

a

|f | dx.

4.4 The Fundamental Theorem of Calculus

If f : [a, b] �→ R is Riemann-integrable, then for any [c, d] ⊆ [a, b], f is Riemann
integrable on [c, d].3 Hence for c ∈ [a, b] we can define a function

F (x) =
∫ x

c

f(t) dt

on [a, b].

Observation 4.13.

F (x) =
∫ x

c

f(t) dt

is continuous on [a, b] if f is bounded.

Proof. Note that

|F (x + h) − F (x)| =
∫ x+h

x

f(t) dt ≤ |h|K

where K is an upper bound for |f |. Now |h|K → 0 as h → 0, so F is continuous.

Theorem 4.14 (The Fundamental Theorem of Calculus). Suppose f : [a, b] �→ R is
Riemann integrable. Take c, d ∈ [a, b] and define

F (x) =
∫ x

c

f(t) dt.

If f is continuous at d, then F is differentiable at d with F ′(d) = f(d).4

2For general a, b;
����
� b

a
f dx

���� ≤
����
� b

a
|f | dx

����
3For if � is a dissection of [a, b] such that S�(f) − s�(f) < ε then � restricts to �′, a dissection of

[c, d] with S�′ (f) − s�′(f) < ε.
4In the case d is a or b (a < b), we have right and left derivatives. We ignore these cases (result just as

easy) and concentrate on d ∈ (a, b).
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Proof. Suppose ε > 0 is given. By the continuity of f at d we can take δ > 0 such that
(d − δ, d + δ) ⊂ (a, b) and

|k| < δ ⇒ |f(k + d) − f(d)| < ε.

If 0 < |h| < δ then∣∣∣∣F (d + h) − F (d)
h

− f(d)
∣∣∣∣ =

∣∣∣∣∣ 1h
∫ d+h

d

(f(t) − f(d)) dt

∣∣∣∣∣
≤ 1

|h|ε |h|
< 2ε.

Corollary 4.15 (Integration is anti-differentiation). If f = g ′ is continuous on [a, b]
then ∫ b

a

f(t) dt = g(b) − g(a).

Proof. Set F (x) =
∫ x

a f(t) dt. Then

d
dx

(F (x) − g(x)) = F ′(x) − g′(x) = f(x) − f(x) = 0

and so F (x) − g(x) = k is constant. Therefore∫ b

a

f(t) dt = F (b) − F (a) = g(b) − g(a).

Corollary 4.16 (Integration by parts). Suppose f, g are differentiable on (a, b) and
f ′, g′ continuous on [a, b]. Then∫ b

a

f(t)g′(t) dt = [f(t)g(t)]ba −
∫ b

a

f ′(t)g(t) dt.

Proof. Note that

d
dx

(f(x)g(x)) = f(x)g′(x) + f ′(x)g(x),

and so

[f(t)g(t)]ba = f(b)g(b) − f(a)g(a)

=
∫ b

a

(fg)′(t) dt

=
∫ b

a

f ′(t)g(t) dt +
∫ b

a

f(t)g′(t) dt.
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Corollary 4.17 (Integration by Substitution). Take g : [a, b] �→ [c, d] with g ′ is con-
tinuous in [a, b] and f : [c, d] �→ R continuous. Then

∫ g(b)

g(a)

f(t) dt =
∫ b

a

f(g(s))g′(s) ds.

Proof. Set F (x) =
∫ x

c
f(t) dt. Now

∫ g(b)

g(a)

f(t) dt = F (g(b)) − F (g(a))

=
∫ b

a

(F ◦ g)′(s) ds

=
∫ b

a

F ′(g(s))g′(s) ds by Chain Rule

=
∫ b

a

f(g(s))g′(s) ds.

4.5 Differentiating Through the Integral

Suppose g : R × [a, b] �→ R is continuous. Then we can define

G(x) =
∫ b

a

g(x, t) dt.

Proposition 4.18. G is continuous as a function of x.

Proof. Fix x ∈ R and suppose ε > 0 is given. Now g is continuous and so is uniformly
continuous on the closed bounded set E = [x − 1, x + 1] × [a, b]. Hence we can take
δ ∈ (0, 1) such that for u, v ∈ E,

‖u − v‖ < δ ⇒ |g(ux, ut) − g(vx, vt)| < ε.

So if |h| < δ then ‖(x + h, t) − (x, t)‖ = |h| < δ and so

|g(x + h, t) − g(x, t)| < ε.

Therefore |G(x + h) − G(x)| ≤ |b − a| ε < 2 |b − a| ε, and as 2 |b − a| ε can be
made arbitrarily small G(x + h) → G(x) as h → 0.

Now suppose also that D1g(x, t) = ∂g
∂x exists and is continuous throughout R ×

[a, b].

Theorem 4.19. Then G is differentiable with

G′(x) =
∫ b

a

D1g(x, t) dt
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Proof. Fix x ∈ R and suppose ε > 0 is given.
Now D1g is continuous and so uniformly continuous on the closed and bounded set

E = [x − 1, x + 1] × [a, b]. We can therefore take δ >∈ (0, 1) such that for u, v ∈ E,

‖u − v‖ < δ ⇒ |D1g(a) − D1g(x, t)| < ε.

Now∣∣∣∣∣G(x + h) − G(x)
h

−
∫ b

a

D1g(x, t) dt

∣∣∣∣∣
=

1
|h|

∣∣∣∣∣
∫ b

a

g(x + h, t) − g(x, t) − hD1g(x, t) dt

∣∣∣∣∣ .
But

g(x + h, t) − g(x, t) − hD1g(x, t) = h(D1g(ξ, t) − D1g(x, t))

for some ξ ∈ (x, x + h) by the MVT.
Now if 0 < |h| < δ we have ‖(ξ, t) − (x, t)‖ < δ and so

|g(x + h, t) − g(x, t) − hD1g(x, t)| < |h| ε.
Hence

∣∣∣∣∣G(x + h) − G(x)
h

−
∫ b

a

D1g(x, t) dt

∣∣∣∣∣ ≤ 1
|h| |b − a| |h| ε

< 2 |b − a| ε.
But 2 |b − a| ε can be made arbitrarily small, so that

G′(x) =
∫ b

a

D1g(x, t) dt.

4.6 Miscellaneous Topics

Improper Integrals

1. Case f : [a, b] �→ R but is unbounded (and possibly undefined at a finite number
of places). Set

fN,M(x) =

⎧⎪⎨
⎪⎩

N f(x) > N

f(x) −M ≤ f(x) ≤ N

−M f(x) < −M.

If ∫ b

a

fN,M (x) dx → limit
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as N, M → ∞ (separately), then the limit is the improper integral∫ b

a

f(x) dx.

2. Case f : (−∞,∞) �→ R say.

Then if ∫ +y

−x

f(t) dt → limit

as x, y → ∞ then the limit is the improper integral∫ ∞

−∞
f(t) dt.

Integration of Functions f : [a, b] �→ Rn

It is enough to integrate the coordinate functions separately so that

∫ b

a

f(t) dt =

(∫ b1

a1

f1(t) dt, . . . ,

∫ bn

an

fn(t) dt

)
,

but there is a more intrinsic way of defining this.
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Chapter 5

Metric Spaces

5.1 Definition and Examples

Definition 5.1. A metric space (X, d) consists of a set X (the set of points of the space)
and a function d : X × X �→ R (the metric or distance) such that

• d(a, b) ≥ 0 and d(a, b) = 0 iff a = b,

• d(a, b) = d(b, a),

• d(a, c) ≤ d(a, b) + d(b, c) ∀a, b, c ∈ X .

Examples

1. Rn with the Euclidean metric

d(x, y) = +

√√√√ n∑
i=1

(xi − yi)2

2. Rn with the sup metric

d(x, y) = sup
1≤i≤n

{|xi − yi|}

3. Rn with the “grid” metric

d(x, y) =
n∑

i=1

|xi − yi|

4. C[a, b] with the sup metric12

d(f, g) = sup
t∈[a,b]

{|f(t) − g(t)|}

1Define

C[a, b] = {f : [a, b] 
→ � : f is continuous}

2This is the standard metric on C[a, b]. It’s the one meant unless we say otherwise.

39
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5. C[a, b] with the L1-metric

d(f, g) =
∫ b

a

|f(t) − g(t)| dt

6. C[a, b] with the L2-metric

d(f, g) =

(∫ b

a

|f(t) − g(t)|2 dt

) 1
2

analogous to the Euclidean metric.

7. Spherical Geometry: Consider S 2 = {x ∈ R3 : ‖x‖ = 1}. We can consider
continuously differentiable paths γ : [0, 1] �→ S 2 and define the length of such a
path as

L(γ) =
∫ 1

0

‖γ′(t)‖ dt.

The spherical distance is

S(x, y) = inf
γ a path from x to y in S2

{L(γ)}.

This distance is realized along great circles.

8. Hyperbolic geometry: Similarly for D: the unit disc in C. Take γ : [0, 1] �→ D
and

L(γ) =
∫ 1

0

2 |γ′(t)|
1 + |γ(t)|2 dt.

Then

h(z, w) = inf
γ a path from z to w in S2

{L(γ)}

is realized on circles through z, w meeting ∂D = S ′ (boundary of D) at right
angles.

9. The discrete metric: Take any set X and define

d(x, y) =

{
1 x �= y

0 x = y

10. The “British Rail Metric”: On R2 set

d(x, y) =

{
|x| + |y| x �= y

0 x = y

Definition 5.2. Suppose (X, d) is a metric space and Y ⊆ X . Then d restricts to a
map d|Y ×Y �→ R which is a metric in Y . (Y, d) is a (metric) subspace of (X, d), d on
Y is the induced metric.

Example 5.3. Any E ⊆ Rn is a metric subspace of Rn with the metric induced from
the Euclidean metric.3

3For instance, the Euclidean metric on S2 is

(x, y) 
→ 2 sin

�
1

2
S(x, y)

�
.
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5.2 Continuity and Uniform Continuity

Definition 5.4. Let (X, d) and (Y, c) be metric spaces. A map f : X �→ Y is continu-
ous at x ∈ X if and only if

∀ε > 0 ∃δ > 0 ∀x′ ∈ X d(x, x′) < δ ⇒ c(f(x), f(x′)) < ε.

Then f : (X, d) �→ (Y, c) is continuous iff f is continuous at all x ∈ X .
Finally f : (X, d) �→ (Y, c) is uniformly continuous iff

∀ε > 0 ∃δ > 0 ∀x, x′ ∈ X d(x, x′) < δ ⇒ c(f(x), f(x′)) < ε.

A bijective continuous map f : (X, d) �→ (Y, c) with continuous inverse is a home-
omorphism.

A bijective uniformly continuous map f : (X, d) �→ (Y, c) with uniformly continu-
ous inverse is a uniform homeomorphism.

1. There are continuous bijections whose inverse is not continuous. For instance

(a) Let d1 be the discrete metric on R and d2 the Euclidean metric. Then the
identity map id : (R, d1) �→ (R, d2) is a continuous bijection; its inverse is
not.

(b) (Geometric Example) Consider the map

[0, 1) �→ S1 = {z ∈ C : |z| = 1},
θ �→ e2πiθ

with the usual metrics. This map is continuous and bijective but its inverse
is not continuous at z = 1.

2. Recall that a continuous map f : E �→ Rm where E is closed and bounded in
Rn is uniformly continuous. Usually there are lots of continuous not uniformly
continuous maps: For example

tan :
(
−π

2
,
π

2

)
�→ R

is continuous but not uniformly continuous, essentially because

tan′(x) → ∞ as x → π

2
.

Definition 5.5. Let d1, d2 be two metrics on X . d1 and d2 are equivalent if and only if
id : (X, d1) �→ (X, d2) is a homeomorphism. In symbols, this becomes

∀x ∈ X ∀ε > 0 ∃δ > 0 ∀y ∈ X d1(y, x) < δ ⇒ d2(y, x) < ε and

∀x ∈ X ∀ε > 0 ∃δ > 0 ∀y ∈ X d2(y, x) < δ ⇒ d1(y, x) < ε.

Notation. Define O(x, r) ≡ N(x, r) ≡ Nr(x) ≡ {y : d(x, y) < r}.
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Then d1 and d2 are equivalent if and only if

1. ∀x ∀ε > 0 ∃δ > 0 N 1
δ (x) ⊆ N2

ε (x).

2. ∀x ∀ε > 0 ∃δ > 0 N 2
δ (x) ⊆ N1

ε (x).

Definition 5.6. d1 and d2 are uniformly equivalent if and only if

id : (X, d1) �→ (X, d2)

is a uniform homeomorphism. In symbols this is

∀ε > 0 ∃δ > 0 ∀x ∈ X N1
δ (x) ⊆ N2

ε (x) and

∀ε > 0 ∃δ > 0 ∀x ∈ X N2
δ (x) ⊆ N1

ε (x)

The point of the definitions emerges from the following observation.

Observation 5.7.

1. id : (X, d) �→ (X, d) is (uniformly) continuous.

2. If f : (X, d) �→ (Y, c) and g : (Y, c) �→ (Z, e) are (uniformly) continuous then so
is their composite.

Hence

(a) for topological considerations an equivalent metric works just as well;

(b) for uniform considerations a uniformly equivalent metric works as well.

Example 5.8. On Rn, the Euclidean, sup, and grid metrics are uniformly equivalent.

Proof. Euclidean and sup

NEuc
ε (x) ⊆ N sup

ε (x) and N sup
ε√
n
⊆ NEuc

ε (x)

(A circle contained in a square; and a square contained in a circle).

Euclidean and Grid

N grid
ε (x) ⊆ NEuc

ε (x) and NEuc
ε√
n
⊆ N grid

ε (x).

Compare this with work in chapters 2 and 3.

5.3 Limits of sequences

Definition 5.9. Let xn be a sequence in a metric space (X, d). Then xn converges to
x as n → ∞ if and only if ∀ε > 0 ∃N ∀n ≥ Nd(xn, x) < ε. Clearly xn → x iff
d(xn, x) → 0 as n → ∞.

Note that the limit of a sequence is unique. Proof is as in lemma 1.7.
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Theorem 5.10. Suppose (X, dX) and (Y, dY ) are metric spaces. A map

f : (X, dX) �→ (Y, dY )

is continuous if and only if whenever xn → x in X then f(xn) → f(x) in Y .

Proof.

⇒ Assume f continuous and take xn → x in X . Suppose ε > 0 given. By the
continuity of f , we can take δ > 0 such that

d(x, x′) < δ ⇒ d(f(x), f(x′)) < ε

As xn → x we can take N such that, for all n ≥ N , d(xn, x) < δ. Now if
n ≥ N , d(f(xn), f(x)) < ε. But since ε > 0 was arbitrary f(xn) → f(x).

⇐ Suppose f is not continuous at x ∈ X . Then there exists ε > 0 such that for any
δ > 0 there is x ∈ Nδ(x′) with d(f(x), f(x′)) ≥ ε.

Fix such an ε > 0. For each n ≥ 1 pick xn with d(xn, x) < n−1 and
d(f(xn), f(x)) ≥ ε. Then xn → x but f(xn) �→ f(x).

Definition 5.11. A sequence xn in a metric space (X, d) is Cauchy if and only if

∀ε > 0 ∃N ∀n, m ≥ N d(xn, xm) < ε.

Observation 5.12. If f : (X, dX) �→ (Y, dY ) is uniformly continuous, then xn Cauchy
in X ⇒ f(xn) Cauchy in Y .

Proof. Take xn Cauchy in X and suppose ε > 0 is given. By uniform continuity we
can pick δ > 0 such that

∀x, x′ ∈ X dX(x, x′) < δ ⇒ dY (f(x), f(x′)) < ε.

Now pick N such that ∀n, m ≥ NdX(xn, xm) < ε. Then dY (f(xn), f(xm)) < δ
for all m, n ≥ N . Since ε > 0 arbitrary, f(xn) is Cauchy in Y .

Definition 5.13. A metric space (X, d) is complete if and only if every Cauchy se-
quence in X converges in X .

A metric space (X, d) is compact if and only if every sequence in X has a conver-
gent subsequence.

Remarks.

1. [0, 1] or any closed bounded set E ⊆ Rn is both complete and compact.

(0, 1] is neither complete nor compact.

Indeed if E ⊆ Rn is compact it must be closed and bounded and if E is complete
and bounded, it is compact.

2. Compactness ⇒ completeness:

Proof. Take a Cauchy sequence xn in a compact metric space. Then there is a
convergent subsequence xn(k) → x as k → ∞. Therefore xn → x as n →
∞.
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However C[a, b] with the sup metric is complete but not compact.

What is more, given f ∈ C[a, b] and r > 0, the set {g : d(g, f) ≤ r} is closed
and bounded — but not compact.

3. Compactness is a “topological property”. If (X, dX) and (Y, dY ) are homeo-
morphic, then X compact implies Y compact.

However, this isn’t true for completeness: (0, 1] is homeomorphic to [1,∞) via
x �→ 1/x but (0, 1] is not complete while [1,∞) is.

However if (X, dY ) and (Y, dY ) are uniformly homeomorphic, then X complete
implies Y complete.

5.4 Open and Closed Sets in Metric Spaces

Definition 5.14. Let (X, d) be a metric space. A subset U ⊆ X is open iff whenever
x ∈ U there is ε > 0 with d(x′, x) < ε ⇒ x′ ∈ U or4 Nε ⊆ U .

Observation 5.15. Nε(x) is itself open in (X, d).

Proof. If x′ ∈ Nε(x) then d(x′, x) < ε so that δ = ε − d(x, x′) > 0. Therefore
Nδ(x′) ⊆ Nε(x).

Theorem 5.16. Let (X, dX) and (Y, dY ) be metric spaces. Then

f : (X, dX) �→ (Y, dY )

is continuous if and only if f−1(V )5 is open in X whenever V is open in Y .

Proof.

⇒ Assume f is continuous. Take V open in Y and x ∈ f −1(V ). As V is open
we can take ε > 0 such that Nε(f(x)) ⊆ V . By continuity of f at x we can
take δ > 0 such that d(x, x′) < δ ⇒ d(f(x′), f(x)) < ε, or alternatively
x′ ∈ Nδ(x) ⇒ f(x′) ∈ Nε(f(x)) so that x′ ∈ Nδ(x) ⇒ f(x′) ∈ V . Therefore
x′ ∈ f−1(V ) and so Nδ(x) ⊆ f−1(V ) and f−1(V ) is open.

⇐ Conversely, assume f−1(V ) is open in X whenever V is open in Y . Take x ∈ X
and suppose ε > 0 is given. Then Nε(f(x)) is open in Y and so by assump-
tion f−1(Nε(f(x))) is open in X . But x ∈ f−1(Nε(f(x))) and so we can
take δ > 0 such that Nδ(x) ⊆ f−1(Nε(f(x))). Therefore d(x′, x) < δ ⇒
d(f(x′), f(x)) < ε and as ε > 0 is arbitrary, f is continuous at x. As x is
arbitrary, f is continuous.

Corollary 5.17. Two metrics d1, d2 on X are equivalent if and only if they induce the
same notion of open set. This is because d1 and d2 are equivalent iff

• For all V d2-open, id−1(V ) = V is d1-open.

• For all U d1-open, id−1(U) = U is d2-open.

4Recall that in a metric space (X, d): Nε(x) = {x′ : d(x, x′) < ε}.
5Where f−1(V ) = {x ∈ X : f(x) ∈ V }.
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Definition 5.18. Suppose (X, d) is a metric space and A ⊆ X . A is closed if and only
if xn → x and xn ∈ A for all n implies x ∈ A.

Proposition 5.19. Let (X, d) be a metric space.

1. U is open in X if and only if X \ U is closed in X .

2. A is closed in X if and only if X \ A is open in X .

Proof. We only need to show 1.

⇒ Suppose U is open in X . Take xn → x with x ∈ U . As U is open we can take
ε > 0 with Nε(x) ⊆ U . As xn → x, we can take N such that

∀n ≥ N xn ∈ Nε(x).

So xn ∈ X for all n ≥ N . Then if xn → x and xn ∈ X \ U then x �∈ U , which
is the same as x ∈ X \ U . Therefore X \ U is closed.

⇐ Suppose X \U is closed in X . Take x ∈ U . Suppose that for no ε > 0 do we have
Nε(x) ⊆ U . Then for n ≥ 1 we can pick xn ∈ N 1

n
(x) \ U . Then xn → x and

so as X \ U is closed, x ∈ X \ U . But x ∈ U , giving a contradiction. Thus
the supposition is false, and there exists ε > 0 with Nε(x) ⊆ U . As x ∈ U is
arbitrary, this shows U is open.

Corollary 5.20. A map f : (X, dX) �→ (Y, dY ) is continuous iff f−1(B) is closed in
X for all B closed in Y .6

5.5 Compactness

If (X, d) is a metric space and a ∈ X is fixed then the function x �→ d(x, a) is (uni-
formly) continuous. This is because |d(x, a) − d(y, a)| ≤ d(x, y), so that if d(x, y) <
ε then |d(x, a) − d(y, a)| < ε.

Recall. A metric space (X, d) is compact if and only if every sequence in (X, d) has a
convergent subsequence.

If A ⊆ X with (X, d) a metric space we say that A is compact iff the induced
subspace (A, dA) is compact.7

Observation 5.21. A subset/subspace E ⊆ Rn is compact if and only if it is closed
and bounded.

Proof.

⇒ This is essentially Bolzano-Weierstrass. Let xn be a sequence in E. As E is
bounded, xn is bounded, so by Bolzano-Weierstrass xn has a convergent sub-
sequence. But as E is closed the limit of this subsequence is in E.

6Because f−1(Y \ B) = X \ f−1(B).
7xn ∈ A implies xn has a convergent subsequence.
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⇐ Suppose E is compact. If E is not bounded then we can pick a sequence x n ∈ E
with ‖xn‖ > n for all n ≥ 1. Then xn has no convergent subsequence. For if
xn(k) → x as k → ∞, then∥∥xn(k)

∥∥→ ‖x‖ as k → ∞,

but clearly ∥∥xn(k)

∥∥→ ∞ as k → ∞.

This shows that E is bounded.

If E is not closed, then there is xn ∈ E with xn → x �∈ E. But any subsequence
xn(k) → x �∈ E and so xn(k) �→ y ∈ E as limits of sequences are unique—a
contradiction.

This shows that E is closed.

Thus, quite generally, if E is compact in a metric space (X, d), then E is closed
and E is bounded in the sense that there exists a ∈ E, r ∈ R such that

E ⊆ {x : d(x, a) < r}
This is not enough for compactness. For instance, take

l∞ = {(xn) : xn is a bounded sequence in R}
with d((xn), (yn)) = supn |xn − yn|. Then consider the points

e(n) = (0, . . . , 0,

nth position︷︸︸︷
1 , 0, . . . ), or

(
e(n)

)
r

= δnr

Then d(e(n), e(m)) = 1 for all n �= m. So E = {e(n)} is closed and bounded:
E ⊆ {(xn) : d(xn, 0) ≤ 1} But

(
e(n)

)
has no convergent subsequence.

Theorem 5.22. Suppose f : (X, dX) �→ (Y, dY ) is continuous and surjective. Then
(X, dX) compact implies (Y, dY ) compact.

Proof. Take yn a sequence in Y . Since f is surjective, for each n pick xn with f(xn) =
yn. Then xn is a sequence in X and so has a convergent subsequence xn(k) → x as
k → ∞. As f is continuous, f(xn(k)) → f(x) as k → ∞, or yn(k) → y = f(x) as
k → ∞.

Therefore yn has a convergent subsequence and so Y is compact.

Application. Suppose f : E �→ Rn, E ⊆ Rn closed and bounded. Then the image
f(E) ∈ Rn is closed and bounded. In particular when f : E �→ R we have f(E) ⊆ R

closed and bounded. But if F ⊆ R is closed and bounded then inf F, sup F ⊆ F .
Therefore f is bounded and attains its bounds.

Theorem 5.23. If f : (X, dX) �→ (Y, dY ) is continuous with (X, dX) compact then f
is uniformly continuous.

Proof. As in theorem 2.23.
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Lemma 5.24. Let (X, d) be a compact metric space. If A ⊆ X is closed then A is
compact.

Proof. Take a sequence xn in A. As (X, d) is compact, xn has a convergent subse-
quence xn(k) → x as k → ∞. As A is closed, x ∈ A and so xn(k) → x ∈ A. This
shows A is compact.

Note that if A ⊆ X is a compact subspace of a metric space (X, d) then A is closed.

Theorem 5.25. Suppose f : (X, dX) �→ (Y, dY ) is a continuous bijection. Then if
(X, dX) is compact, then (so is (Y, dY ) and) f is a homeomorphism.

Proof. Write g : (Y, dY ) �→ (X, dX) for the inverse of f . We want this to be contin-
uous. Take A closed in X . By lemma 5.24, A is compact, and so as f is continuous,
f(A) is compact in Y . Therefore f(A) is closed in Y .

But as f is a bijection, f(A) = g−1(A). Thus A closed in X implies g−1(A)
closed in Y and so g is continuous.

5.6 Completeness

Recall that a metric space (X, d) is complete if and only if every Cauchy sequence in
X converges. If A ⊆ X then A is complete if and only if the induced metric space
(A, dA) is complete. That is: A is complete iff every Cauchy sequence in A converges
to a point of A.

Observation 5.26. E ⊆ Rn is complete if and only if E is closed.

Proof.

⇐ This is essentially the GPC. If xn is Cauchy in E, then xn → x in Rn by the GPC.
But E is closed so that x ∈ E and so xn → x ∈ E.

⇒ If E is not closed then there is a sequence xn ∈ E with xn → x �∈ E. But xn is
Cauchy and by the uniqueness of limits xn �→ y ∈ E for any y ∈ E. So E is not
complete.

Examples.

1. [1,∞) is complete but (0, 1] is not complete.

2. Any set X with the discrete metric is complete.

3. {1, 2, .., n} with

d(n, m) =
∣∣∣∣ 1n − 1

m

∣∣∣∣
is not complete.

Consider the space B(X, R) of bounded real-valued functions f : X �→ R on a set
X �= ∅; with

d(f, g) = sup
x∈X

|f(x) − g(x)| ,

the sup metric.
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Proposition 5.27. The space B(X, R) with the sup metric is complete.

Proof. Take fn a Cauchy sequence in B(X, R). Fix x ∈ X . Given ε > 0 we can take
N such that

∀n, m ≥ N d(fn, fm) < ε

Then

∀n, m ≥ N d(fn(x), fm(x)) < ε.

This shows that fn(x) is a Cauchy sequence in R and so has a limit, say f(x). As
x ∈ X arbitrary, this defines a function x �→ f(x) from X to R.

Claim: fn → f . Suppose ε > 0 given. Take N such that

∀n, m ≥ N d(fm, fn) < ε.

Then for any x ∈ X

∀n, m ≥ N |fn(x) − fm(x)| < ε.

Letting m → ∞ we deduce that |fn(x) − f(x)| ≤ ε for any x ∈ X .
Thus d(fn, f) ≤ ε < 2ε for all n ≥ N . But 2ε > 0 is arbitrary, so this shows

fn → f .



Chapter 6

Uniform Convergence

6.1 Motivation and Definition

Consider the binomial expansion

(1 + x)α =
∞∑

n=0

(
α

n

)
xn

for |x| < 1. This is quite easy to show via some form of Taylor’s Theorem. Thus

lim
N→∞

N∑
n=0

(
α

n

)
xn = (1 + x)α

As it stands this is for each individual x such that |x| < 1. It is pointwise conver-
gence.

For functions fn, f : X �→ R, we say that fn → f pointwise iff

∀x ∈ X fn(x) → f(x).

This notion is “useless”. It does not preserve any important properties of f n.

Examples.

• A pointwise limit of continuous functions need not be continuous.

fn(x) =

⎧⎪⎨
⎪⎩

0 x ≤ 0
1 x ≥ 1

n

nx 0 < x < 1
n

is a sequence of continuous functions which converge pointwise to

f(x) =

{
0 x ≤ 0
1 x > 0

which is discontinuous.

49
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• The integral of a pointwise limit need not be the limit of the integrals.

fn(x) =

⎧⎪⎨
⎪⎩

0 x ≤ 0 or x ≥ 2
n

xn2 0 ≤ n ≤ 1
n

n − n2(x − 1
n ) 1

n ≤ x ≤ 2
n

has ∫ 2

0

fn(x) dx = 1

for all n ≥ 1, but fn converges pointwise to f(x) = 0 which has∫ 2

0

f(x) dx = 0.

We focus on real valued functions but everything goes through for complex valued
or vector valued functions.

We will often tacitly assume that sets X (metric spaces (X, d)) are non-empty.

Definition 6.1. Let fn, f be real valued functions on a set X . Then fn → f uniformly
if and only if given ε > 0 there is N such that for all x ∈ X

|fn(x) − f(x)| < ε

all n ≥ N . In symbols:

∀ε > 0 ∃N ∀x ∈ X ∀n ≥ N |fn(x) − f(x)| < ε.

This is equivalent to

Definition 6.2. Let fn, f ∈ B(X, R). Then fn → f uniformly iff fn → f in the sup
metric.

The connection is as follows:

• If fn, f ∈ B(X, R), then these definitions are equivalent. (There’s a bit of < ε
vs ≤ ε at issue).

• Suppose fn → f in the sense of the first definition. There will be N such that

∀x ∈ X |fn(x) − f(x)| < 1

for all n ≥ N . Then (fn − f)n≥N → 0 uniformly in the sense of the second
definition.

Theorem 6.3 (The General Principle of Convergence). Suppose fn : X �→ R such
that

Either

∀ε > 0 ∃N ∀x ∈ X ∀n, m ≥ N |fn(x) − fm(x)| < ε

or Suppose fn ∈ B(X, R) is a Cauchy sequence. Then there is f : X �→ R with
fn → f uniformly.

Proof. B(X, R) is complete.
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6.2 The space C(X)

Definition 6.4. Let (X, d) be a metric space. C(X) ≡ C(X, R) is the space of
bounded continuous functions from X to R with the sup metric.

This notation is usually used when X is compact, when all continuous functions
are bounded.

Proposition 6.5. Suppose (X, d) is a metric space, that fn is a sequence of continuous
real-valued functions and that fn → f uniformly on X . Then f is continuous.

Proof. Fix x ∈ X and suppose ε > 0 given. Take N such that for all y ∈ X

∀n ≥ N |fn(y) − f(y)| < ε.

As fN is continuous at x we can take δ > 0 such that

d(y, x) < δ ⇒ |fN (y) − fN(x)| < ε.

Then if d(y, x) < δ,

|f(y) − f(x)| ≤ |fN (y) − f(y)| + |fN (x) − f(x)| + |fN (y) − fn(x)|
< 3ε.

But 3ε can be made arbitrarily small and so f is continuous at x. But x ∈ X is arbitrary,
so f is continuous.

Theorem 6.6. The space C(X) (with the sup metric) is complete.

Proof. We know that B(X, R) is complete, and the proposition says that C(X) is
closed in B(X, R).

Sketch of Direct Proof. Take fn Cauchy in C(X).

• For each x ∈ X , fn(x) is Cauchy, and so converges to a limit f(x).

• fn converges to f uniformly.

• f is continuous by the above argument.

Theorem 6.7 (Weierstrass Approximation Theorem). If f ∈ C[a, b], then f is the
uniform limit of a sequence of polynomials.

Proof. Omitted.
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6.3 The Integral as a Continuous Function

Restrict attention to C[a, b], the space of continuous functions on the closed interval
[a, b].

Proposition 6.8. Suppose fn → f in C[a, b]. Then

∫ b

a

fn(x) dx →
∫ b

a

f(x) dx in R.

Proof. Suppose ε > 0. Take N such that ∀n ≥ Nd(fn, f) < ε. Then if c < d in [a, b]

m(fn; c, d) − ε ≤ m(f ; c, d) ≤ M(f ; c, d) ≤ M(fn; c, d) + ε

for all n ≥ N . So for any dissection D,

sD(fn) − ε(b − a) ≤ sD(f) ≤ SD(f) ≤ SD(fn) + ε(b − a)

for all n ≥ N .
Taking sups and infs, it follows that∫ b

a

fn(x) dx − ε(b − a) ≤
∫ b

a

f(x) dx ≤
∫ b

a

fn(x) dx + ε(b − a)

for all n ≥ N .
Then as ε(b − a) > 0 can be made arbitrarily small,∫ b

a

fn(x) dx →
∫ b

a

f(x) dx.

We can make the superficial generalization: If f ∈ C[a, b] then so is

x �→
∫ x

a

f(t) dt.

So ∫ x

a

: C[a, b] �→ C[a, b].

Theorem 6.9. The map ∫ x

a

: C[a, b] �→ C[a, b]

is continuous with respect to the sup metric.
That is, if fn → f (uniformly), then∫ x

a

fn(t) dt →
∫ x

a

f(t) dt

(uniformly in x).
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Proof. We see from the previous proof that if N is such that for all y ∈ [a, b],

∀n ≥ N |fn(y) − f(y)| < ε

then ∣∣∣∣
∫ x

a

fn(t) dt −
∫ x

a

f(t) dt

∣∣∣∣ ≤ ε(x − a) ≤ ε(b − a) < 2ε(b − a).

As 2ε(b − a) is arbitrarily small (and independent of x), this shows∫ x

a

fn(t) dt →
∫ x

a

f(t) dt

uniformly in x.

Uniform convergence controls integration, but not differentiation, for example the
functions

fn(x) =
1
n

sin nx

converge uniformly to zero as n → ∞, but the derivatives cosnx converge only at
exceptional values.

Warning. There are sequences of infinitely differentiable functions (polynomials even)
which converge uniformly to functions which are necessarily continuous but nowhere
differentiable. However, if we have uniform convergence of derivatives, all is well.

Theorem 6.10. Suppose fn : [a, b] �→ R is a sequence of functions such that

1. the derivatives f ′
n exist and are continuous on [a, b]

2. f ′
n → g(x) uniformly on [a, b]

3. for some c ∈ [a, b], fn(c) converges to a limit, d, say.

Then fn(x) converges uniformly to a function f(x), with f ′(x) (continuous and)
equal to g(x).1

Proof. By the FTC,

fn(x) = fn(c) +
∫ x

c

f ′
n(t) dt.

Using the lemma that if fn → f uniformly and gn → g uniformly then fn + gn →
f + g uniformly2, we see that

fn(x) → d +
∫ x

c

g(t) dt

uniformly in X (by theorem 6.9). Thus

fn(x) → f(x) = d +
∫ x

c

g(t) dt

, and f(x) has continuous derivative f ′(x) = g(x) by FTC.

1In these cases we do have
d

dx

�
lim

n→∞ fn(x)
	

= lim
n→∞

�
d

dx
fn(x)

�

2This lemma is not actually part of the original lecture notes
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6.4 Application to Power Series

For M ≥ N , and |z| ≤ r,∣∣∣∣∣
M∑

N+1

anzn

∣∣∣∣∣ ≤
M∑

N+1

|anzn|

=
M∑

N+1

|anzn
0 |
∣∣∣∣ z

z0

∣∣∣∣n

≤
M∑

N+1

k

(
r

|z0|
)n

< k

(
r

|z0|
)N+1 1

1 − r
|z0|

which tends to zero as N → ∞. This shows that the power series is absolutely con-
vergent, uniformly in z for |z| ≤ r. Whence, not only do power series

∑
anzn have a

radius of convergence R ∈ [0,∞] but also if r < R, then they converge uniformly in
{z : |z| ≤ r}.

Also, if
∑

anzn
0 converges, so that |anzn

0 | < k say, we have the following for
r < |z0|. Choose s with r < s < |z0|. Then for |z| ≤ r and M ≥ N we have∣∣∣∣∣

M∑
N+1

nanzn−1

∣∣∣∣∣ ≤
M∑

N+1

∣∣nanzn−1
∣∣

≤
M∑

N+1

∣∣anzn−1
0

∣∣n( |z|
s

)n−1(
s

|z0|
)n−1

≤
M∑

N+1

k′n
(r

s

)n−1
(

s

|z0|
)n−1

where
∣∣anzn−1

0

∣∣ ≤ k′.

For n ≥ N0, n
(

r
s

)n−1 ≤ 1 and so for N ≥ N0,∣∣∣∣∣
M∑

N+1

nanzn−1

∣∣∣∣∣ ≤
M∑

N+1

k′
(

s

|z0|
)n−1

≤ k

(
s

|z0|
)N 1

1 − s
|z0|

→ 0 as N → ∞.

This shows that the series
∑

n≥1 nanzn−1 converges uniformly inside the radius
of convergence. So what we’ve done, in the real case 3 is to deduce that∑

n≥1

nanzn−1

is the derivative of ∑
n≥1

anzn

within the radius of convergence.
3And with more work, in the complex case.
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6.5 Application to Fourier Series

Proposition 6.11 (Simplest Version). Suppose an is a sequence such that∑
n≥1

n |an|

converges. Then ∑
n≥1

an cosnt

converges uniformly and has a derivative∑
n≥1

−nan sin nt

which is uniformly convergent to a continuous function.

Proof. Let SN (t) be the partial sum

SN (t) =
N∑

n=1

an cosnt. Then S ′
N (t) =

N∑
n=1

−nan sin nt

is a sequence of continuous functions. Now for M ≥ N

|SM (t) − SN (t)| =

∣∣∣∣∣
M∑

N+1

an cosnt

∣∣∣∣∣
≤

M∑
N+1

|an cosnt|

≤
M∑

N+1

|an|

≤
M∑

N+1

n |an| → 0 as N → ∞.

Also, |S′
M (t) − S′

N (t)| =

∣∣∣∣∣
M∑

N+1

−nan sin nt

∣∣∣∣∣
≤

M∑
N+1

|−nan sinnt|

≤
M∑

N+1

n |an| → 0 as N → ∞.

So both SN (t) and S ′
N(t) are uniformly convergent and we deduce that

d
dt

∑
n≥1

an cosnt =
∑
n≥1

−nan sin nt.
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The right context for Fourier series is the L2 norm arising from the inner product

〈f, g〉 =
1
π

∫ 2π

0

f(t)g(t) dt

on functions on [0, 2π]. We take Fourier coefficients of a function f(x)

an =
1
π

∫ 2π

0

f(t) cosnt dt n ≥ 0

bn =
1
π

∫ 2π

0

f(t) sinnt dt n ≥ 1

and hope that

f(x) =
1
2
a0 +

∑
n≥1

an cosnx + bn sinnx.

This works for smooth functions; and much more generally in the L 2-sense; so that
for example, for continuous functions we have Parseval’s Identity:∫ 2π

0

|f(x)|2 dx =
a2
0

2
+
∑
n≥1

(
a2

n + b2
n

)
.



Chapter 7

The Contraction Mapping
Theorem

7.1 Statement and Proof

Definition 7.1. A map T : (X, d) �→ (X, d) on a metric space (X, d) is a contraction
if and only if for some k, 0 ≤ k < 1

∀x, y ∈ X d(Tx, T y) ≤ kd(x, y)

Theorem 7.2 (Contraction Mapping Theorem). Suppose that T : (X, d) �→ (X, d)
is a contraction on a (non-empty) complete metric space (X, d). Then T has a unique
fixed point.

That is, there is a unique a ∈ X with Ta = a.1

Proof. Pick a point x0 ∈ X and define inductively xn+1 = Txn so that xn = T nx0.
For any n, p ≥ 0 we have

d(xn, xn+p) = d(T nx0, T
nxp)

≤ knd(x0, xp

≤ kn[d(x0, x1) + d(x1, x2) + . . . + d(xp−1, xp)]

≤ knd(x0, x1)[1 + k + k2 + . . . + kp−1]

≤ kn

1 − k
d(x0, x1).

Now

kn

1 − k
d(x0, x1) → 0 as n → ∞,

and so xn is a Cauchy sequence. As (X, d) is complete, xn → a ∈ X . We now claim
that a is a fixed point of T .

We can either use continuity of distance:

1As a preliminary remark, we see that as T is a contraction, it is certainly uniformly continuous

57
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d(Ta, a) = d
(
Ta, lim

n→∞xn

)
= lim

n→∞ d(Ta, xn)

= lim
n→∞ d(Ta, Txn−1)

≤ lim
n→∞ d(a, xn−1)

= d
(
a, lim

n→∞xn−1

)
= d(a, a)
= 0,

and so d(Ta, a) = 0. Or we can use the (uniform) continuity of T .

Ta = T
(

lim
n→∞ xn

)
= lim

n→∞Txn

= lim
n→∞xn+1

= a.

As for uniqueness, suppose a, b are fixed points of T . Then

d(a, b) = d(Ta, T b) ≤ kd(a, b)

and since 0 ≤ k < 1, d(a, b) = 0 and so a = b.

Corollary 7.3. Suppose that T : (X, d) �→ (X, d) is a map on a complete metric space
(X, d) such that for some m ≥ 1, T m is a contraction, ie

d(T mx, T my) ≤ kT (x, y).

Then T has a unique fixed point.

Proof. By the contraction mapping theorem, T m has a unique fixed point a. Consider

d(Ta, a) = d(T m+1a, T ma)
= d(T m(Ta), T ma)
≤ kd(Ta, a).

So d(Ta, a) = 0 and thus a is a fixed point of T . If a, b are fixed points of T , they
are fixed points of T m and so a = b.

Example 7.4. Suppose we wish to solve x2+2x−1 = 0. (The solutions are −1±√
2.)

We write this as

x =
1
2
(1 − x2)

and seek a fixed point of the map

T : x �→ 1
2
(1 − x2)



7.2. APPLICATION TO DIFFERENTIAL EQUATIONS 59

So we seek an interval [a, b] with T : [a, b] �→ [a, b] and T a contraction on [a, b].
Now

|Tx − Ty| =
∣∣∣∣12x2 − 1

2
y2

∣∣∣∣
=

1
2
|x + y| |x − y| .

So if |x| , |y| ≤ 3
4 then

|Tx − Ty| ≤ 1
2
(|x| + |y|) |x − y| ≤ 3

4
|x − y|

and so T is a contraction on [−3/4, 3/4]. Actually

T :
[
−3

4
,
3
4

]
�→
[
0,

1
2

]

and so certainly

T :
[
−3

4
,
3
4

]
�→
[
−3

4
,
3
4

]

is a contraction.
So there is a unique fixed point of T in [−3/4, 3/4]. The contraction mapping

principle even gives a way of approximating it as closely as we want.

7.2 Application to Differential Equations

Consider a differential equation

dy

dx
= F (x, y) (7.1)

subject to y = y0 when x = x0. We assume

F : [a, b] × R �→ R

is continuous, x0 ∈ [a, b] and y0 ∈ R.

Observation 7.5. g : [a, b] �→ R is a solution of (7.1) ie g is continuous, g ′(x) =
F (x, g(x)) for x ∈ (a, b) and g(x0) = y0, iff g satisfies the Volterra integral equation

g(x) = y0 +
∫ x

x0

F (t, g(t)) dt

on [a, b].

Proof. Essentially the FTC.2

2If g satisfies the differential equation, as F (x, g(x)) will be continuous we can integrate to get the
integral equation and vice-versa.
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Theorem 7.6. Suppose x0 ∈ [a, b] closed interval, y0 ∈ R,

F : [a, b] × R �→ R

is continuous and satisfies a Lipschitz condition; ie there is K such that for all x ∈ [a, b]

|F (x, y1) − F (x, y2)| ≤ K |y1 − y2| .

Then the differential equation (7.1) subject to the initial condition y(x 0) = y0 has
a unique solution in C[a, b].

Proof. We consider the map T : C[a, b] �→ C[a, b] defined by

Tf(x) = y0 +
∫ x

x0

F (t, f(t)) dt.

We claim that for all n,

|T nf1(x) − T nf2(x)| ≤ Kn |x − x0|
n!

d(f1, f2)

The proof is by induction on n. The case n = 0 is trivial (and n = 1 is already
done). The induction step is as follows:

∣∣T n+1f1(x) − T n+1f2(x)
∣∣ =

∣∣∣∣
∫ x

x0

F (t, T nf1(t)) − F (t, T nf2(t)) dt

∣∣∣∣
≤
∣∣∣∣
∫ x

x0

K |T nf1(t) − T nf2(t)| dt

∣∣∣∣
≤
∣∣∣∣
∫ x

x0

K.Kn |t − x0|n
n!

d(f1, f2) dt

∣∣∣∣
=

Kn+1 |x − x0|n+1

(n + 1)!
d(f1, f2)

But

Kn+1 |x − x0|n+1

(n + 1)!
d(f1, f2) ≤ Kn+1 |b − a|n+1

(n + 1)!
d(f1, f2) → 0

as n → ∞. So for n sufficiently large,(
kn+1 |b − a|n+1

(n + 1)!
< 1

)

and so T n is a contraction on C[a, b].
Thus T has a unique fixed point in C[a, b], which gives a unique solution to the

differential equation.

Example 7.7. Solve y ′ = y′ with y = 1 at x = 0. Here F (x, y) = y and the Lipschitz
condition is trivial. So we have a unique solution on any closed interval [a, b] with
0 ∈ [a, b]. Thus we have a unique solution on (−∞,∞).
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In fact3 we can do better than this and construct a solution by iterating T starting
from f0 = 0.

f0(x) = 0,

f1(x) = 1 +
∫ x

0

0 dt,

f2(x) = 1 +
∫ x

0

dt = 1 + x,

f3(x) = 1 + x +
x2

2!
...

and so on. So (of course we knew this), the series for exp(x) converges uniformly on
bounded closed intervals.

We can make a trivial generalization to higher dimensions.
Suppose [a, b] is closed interval with x0 ∈ [a, b], y0 ∈ Rn and F : [a, b]×Rn �→ Rn

continuous and satisfying a Lipschitz condition: ∃K such that

‖F (x, y1) − F (x, y2)‖ ≤ K ‖y1 − y2‖ .

Then the differential equation

dy

dx
= F (x, y)

with y(x0) = y0 has a unique solution in C([a, b], Rn). The proof is the same, but with
‖·‖s instead of |·|s.

This kind of generalization is good for higher order differential equations. For
example if we have

d2y

dx2
= F

(
x, y,

dy

dx

)

with y = y0, dy/dx = v0 at x = x0 we can set v = dy
dx and rewrite the equation as

d
dx

(
y
v

)
=
(

v
F (x, y, v)

)

with (
y
v

)
=
(

y0

v0

)

at x = x0.
With a suitable Lipschitz condition we are home.

3This is not a general phenomenon!
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7.3 Differential Equations: pathologies

The problem is that the Lipschitz condition seldom holds outright.

Trivial way Failure happens as x → something. The typical case is x → ∞ but we
can always consider bounded intervals and then expand them.

OK way Failure happens as y → ∞.

Example 7.8.

dy

dx
= 1 + y2

with y(0) = 0. Here F (x, y) = 1 + y2 and so

|F (x, y1) − F (x, y2)| = |y1 + y2| |y1 − y2| ,
which is large for y large.

So F as a map [a, b] × R �→ R does not satisfy a Lipschitz condition.

Theorem 7.9. Suppose x0 ∈ (a, b), y0 ∈ (c, d), and

F : [a, b] × [c, d] �→ R

is continuous and satisfies a Lipschitz condition: there is k with

|F (x, y1) − F (x, y2)| ≤ k |y1 − y2|
in [a, b] × [c, d] then there is δ > 0 such that

dy

dx
= F (x, y)

with y(0) = x0, has a unique solution in [x0 − δ, x0 + δ].

Proof. Suppose that L is a bound for F on [a, b] × [c, d]. 4

Take η > 0 such that

[y0 − η, y0 + η] ⊆ [c, d]

Observe that if |x − x0| < δ then

|Tf − y0| =
∣∣∣∣
∫ x

x0

F (t, f(t)) dt

∣∣∣∣ ≤ δL

so long as f ∈ C. So set δ = L−1.

4We aim to find a closed and so complete subspace

C ⊆ C[x0 − δ, x0 + δ]

of the form

C = {f : C[x0 − δ, x0 + δ] : |f(x) − y0| ≤ η}
for η > 0 with T mapping C to C.
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Then C as above is complete, the map

T : f �→ y0 +
∫ x

x0

F (t, f(t)) dt

maps C to C, and by the argument of §7.2, T n is a contraction for n sufficiently
large.

Hence T has a unique fixed point and so the differential equation has a unique
solution on [x0 − δ, x0 + δ].

Now we have a value f(x0 + δ) at x0 + δ, so we can solve dy
dx = F (x, y) with

y = f(x0 + δ) at x = x0 + δ, and so we extend the solution uniquely. This goes
on until the solution goes off to ±∞. In this example we get y = tan x.

Really bad case “Lipschitz fails at finite values of y.” For example, consider dy
dx =

2y
1
2 with y(0) = 0.

Now F (x, y) = 2y
1
2 in (−∞, +∞) × [0,∞) and

|F (x, y1) − F (x, y2)| =
|y1 − y2|

y
1/2
1 + y

1/2
2

,

which has problems as y1, y2 → 0. We lose uniqueness of solutions.

7.4 Boundary Value Problems: Green’s functions

Consider the second order linear ODE

Ly =
d2y

dx2
+ p(x)

dy

dx
+ q(x)y = r(x)

subject to y(a) = y(b) = 0. (Here p, q, r ∈ C[a, b]).
The problem is that solutions are not always unique.

Example 7.10.

d2y

dx2
= −y

with y(0) = y(π) = 0 has solutions A sin x for all A.

Write C2[a, b] for the twice continuously differentiable functions on [a, b], so that

L : C2[a, b] �→ C[a, b].

Write

C2
0 [a, b] = {f ∈ C2[a, b] : f(a) = f(b) = 0}

and

L0 : C2
0 [a, b] �→ C[a, b]
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for the restricted map. Either kerL0 = {0} then a solution (if it exists) is unique, or
kerL0 �= {0}, when we lose uniqueness. Note that because p, q, r have no y or dy

dx
dependence the Lipschitz condition for

Ly =

{
0
r

in the 2-dimensional form

d
dx

(
y
v

)
=
(

v
−pv − qy + r

)
is easy and so initial value problems always have unique solutions.

Assume kerL0 = {0}. Now take ga(x), a solution to Ly = 0 with y(a) = 1,
y′(a) = 0. ga(x) �≡ 0 as g′a(a) = 1. If ga(b) = 0, ga ∈ C2

0 [a, b], contradicting
kerL0 = {0} and so ga(b) �= 0.

We can similarly take gb(x), a solution to Ly = 0 with y(b) = 0, y ′(b) = 1 and we
have gb(a) �= 0. Now if h is a solution of Ly = r, then

f(x) = h(x) − h(a)
gb(a)

gb(x) − h(b)
ga(b)

ga(x)

is a solution to the boundary value problem. In fact this solution has an integral form:

f(x) =
∫ b

a

G(x, t)r(t) dt.

We take the Wronskian

W(x) =
∣∣∣∣ga(x) gb(x)
g′a(x) g′b(x)

∣∣∣∣
and note that

W ′(x) + p(x)W(x) = 0

and so

W(x) = C exp
[
−
∫ x

a

p(t) dt

]

W(a) and W(b) �= 0 so C �= 0, so W(x) �= 0. Then we define

G(x, t) =

{
1

W(t)gb(x)ga(t) t ≤ x
1

W(t)gb(t)ga(x) x ≤ t

and check directly that ∫ b

a

G(x, t)r(t) dt

solves the initial value problem.
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7.5 **The Inverse Function Theorem**

This is a theorem you should be aware of. Proof is omitted.

Theorem 7.11. Suppose f : E �→ Rn, E ⊆ Rn is open and continuously differentiable
and that f ′(a) is invertible at some point a ∈ E. Then there are open U, V with a ∈ U ,
b = f(a) ∈ V with f : U �→ V bijective and the inverse of f , g say, continuously
differentiable.
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