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Chapter 1

Linear spaces; normed
spaces; first examples

1.1 Linear spaces

I
N THIS course we study linear spaces � over the field of real

or complex numbers � or � . The simplest examples of linear

spaces studied in a course of Linear Algebra are those of the�–dimensional vector spaces ��, � � or the space of polynomials of

degree, say, less than �.

An important example of linear space is the space ���� 	
 of con-

tinuous real (or complex) valued functions on the interval ��� 	
.
A map

� � �� 
� �� between two linear spaces �� and �� is called

linear if and only if for every ��� � �� and for every scalar �� 	 we

have that ���� � 	�� � ������ 	�����(1.1)

For such maps we usually write
�� instead of

����. Moreover, we

define two important sets associated with a linear map
�

, its kernel���� and its image ��� defined by:

���� � �� ��� � �� � ��
(1.2)

and

��� � ��� � � �����(1.3)

A linear map
� � �� 
� �� between two linear spaces �� and �� is

called isomorphism if
���� � �

and ��� � ��, that is
�

is an one to

9



10CHAPTER 1. LINEAR SPACES; NORMED SPACES; FIRST EXAMPLES

one and onto linear map and consequently it is invertible. We write���
for its inverse.

Examples of linear spaces.

1. �� is the set of finite support sequences; that is, the se-

quences with all but finite zero elements. It is a linear space with

respect to addition of sequences and obviously isomorphic to the

space of all polynomials.

2. The set �� of sequences tending to zero.

3. The set � of all convergent sequences.

4. The set
��

of all bounded sequences.

5. The set � of all sequences.

All of these form linear spaces and they relate in the following

way: �� � �� � � � �� � ��(1.4)

Definition 1.1.1 A linear space �� is called a subspace of the linear

space � if and only if �� � � and the linear structure of � restricted

on �� gives the linear structure of ��. We will write �� ���.

A set of vectors ������ � � � ��� is called linearly dependent set and

the vectors linearly dependent vectors, if there exist numbers
��������

not all of them zero, so that

���� � ���� � � � � � ����
� ��

(1.5)

On the other hand
������ are called linearly independent if they are

not linearly dependent.

We define the linear span of a subset 	 of a linear space � to be

the intersection of all subspaces of � containing 	. That is,


��
	 � �
�
��� � �� ��� �
� 	 �����(1.6)

An important theorem of linear algebra states:

Theorem 1.1.2 Let
������ be a maximal set of linearly independent

vectors in � (meaning that there is no linear independent extension of

this set). Then the number � is invariant and it is called the dimension

of the space �. We write dim� � � and we say that the vectors
������

form a basis of �.
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Next we introduce the notion of quotient spaces. For a subspace

�� of � we define a new linear space called the quotient space of

� with respect to �� in the following way. First we consider the

collection of subsets

���
 � � ��� � � ����
(1.7)

The sets ��
 are called cosets of �. Note that two cosets ��
 and

��
 are either identical or they are disjoint sets. Indeed, if � � ��
 � ��

then � ��� � �� are both elements of ��. Since �� is a linear space it

follows that ��� � ����������� ���. Thus, if � � ��
 we have ��� �

�� and again by the linear structure of ��, ��� � ����������� ���
that is, � � ��
. So, we showed that ��
 � ��
. Similarly one shows

that ��
 � ��
.
Now we introduce a linear structure on ���� by

��
 � ��
 � �� � �

���
 � ���


Note that ��
 is a zero of the new space ����. The dimension dim����
is called the codimension of �� and we write �������� � ������� or

simply ������� if it is obvious to which space � it refers to.

Example: The codimension of �� inside the space � of convergent

sequences is equal to 1. Indeed, for every � � ���
��� � �, � � �� �

���� ��� where � � 	����.
Lemma 1.1.3 If ������� � � then there exist ������ � � � ��� such that

for every � �� there are numbers ������ � � � ��� and � ��� such that

� �
���� ���(1.8)

Proof: Let ���
� ���
� � � � � ���



be a basis of ����. Then the vectors

������ � � � ��� are linearly independent and moreover if ��� ���� � �� The reader should
now try the

exercises 1,2
then �� � �

for all � [Indeed, ��� ���� � �� hence ��� �� ����
� � �
and

now it follows from the linear independence of the ���
’s]. Now 
� �

�, consider � ��� ���� ����
� that is � ������ ���. �

1.2 Normed spaces; first examples

We now proceed to define the notion of “distance” in a linear space.

This is necessary if one wants to do analysis and study convergence.
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Definition 1.2.1 A norm � ��� � ��� for � � � is a function from � to

� satisfying the following properties:

1. � ��� � �
and � ��� � �

if and only if � � �
.

2. � ���� � ���� ���.
3. � �� � �� �� ����� ��� (triangle inequality)

for all ��� �� and for all
� � � (or � if the space is over the field � )

With this definition the distance between two points � and � in

� is the norm of the difference:
�� � ��.

Examples. On the spaces �� ����� we define the norm to be the

supremum of the absolute value of the sequences: for � � ������
we set

��� � 
�� ��� � (exercise: check that this supremum defines a

norm).

For the space ���� �
 we define the norm of a function � to be the

��	��� ���� � � � ��� �
�. An other example is the space
�� � ��

� � �
 ���
which consists of all the sequences � � ����

�
� satisfying

���� � �


���

��� � � ��
(1.9)

Similarly we define the spaces
�
 � ��

� � � 
 �
 � for � � � � �
by

requiring that ���
 � ��


���

��� �
���
 � ��
(1.10)

It is already not trivial that these sets (for � � �) form linear

spaces. In fact, we first prove that the function
� 
 �
 is indeed a

norm and the triangle inequality implies that if � and � are in
�


then � � � is also in
�
. This follows from the following inequality of

Hölder.

1.2.1 Hölder inequality.

Theorem 1.2.2 For every sequence of scalars
���� and

�	�� we have:���
��	� ��� � �
 ��� �
���
 �
 �	� ������ �(1.11)

where
�
 � �� � �.
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Let us first observe a few connections between the numbers �
and �: �� � � � � � � �
� �� � ��� � � �(1.12)

In order to prove the above inequality we set �� � ��� ��� ��� ���	
� and�� � ��� ��� ��� �
 �	

 . Then � �
� � � and ���� � �. Now check that

���� � �
 �
� � ����� . Indeed, this is true because one considers the

function � � �
�� and integrate this with respect to � from zero to

��; and integrate with respect to � its inverse � � ����	 � ���� from

zero to
��. It is easy to see geometrically, that the sum of these two

integrals always exceeds the product ���� and it equals
�
 �
� � ����� .

Adding up we get


 ���� � �� � �
� � ��(1.13)

�
The above inequality is called the Cauchy inequality if � � � ��

. From the inequality of Hölder follows the Minkowski inequality

which is the triangle inequality for the spaces
��
 � ��� � � 
 �
 �.

1.2.2 Minkowski inequality

Theorem 1.2.3 For every sequence of scalars � � ���� and 	 � �	��
and for � �� ��

we have:�� � 	�
 � ���
 � �	�
 �(1.14)

Proof:�� � 	�
 � 
 ��� � 	� �
� 
���� �� �	� ��

� 
���� �� �	� ��
�� ��� ��
���� �� �	� ��
�� �	� �� �
���� �� �	� ��
���� ��
 ��� �
���
 � �
 �	� �
���
�
� �
���� �� �	� ��
���� ����
 � �	�
 �

for � such that
�
 � �� � �. �
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A few topological remarks are due. We say that a sequence
���

�

converges to a point � in the space � if and only if
��� ���� �

. An

open ball of radius � � �
centered at �� is defined to be the set

�� ���� � �� � �� ���� � ��(1.15)

and a set � is said to be open if and only if for every � � � there

exists � � �
such that

�� ��� � �. A set � is said to be closed if for

every sequence �� � � that converges to some � � � it follows that

� � � .

Lemma 1.2.4 If � is an open set then the set � � �� is closed.

Conversely, if � is a closed set then the set � � �� is open.

Proof: Let �� � � and �� � � � �. If � � � then for any � � �
and � large enough, ��
������

� � � which implies that for � large

enough, �� � � and not in � . For the converse now, for every � � ��
there exists � � �

such that
�� ��� � �. If not for every decreasing to

zero sequence of �� � �
there exist �� � � and ��
������

� � �� which

implies that �� � � that is � � � . �
We also note here that the union of open sets is open and the

intersection of closed sets is closed.

We start now discussing some geometric ideas. If two points �
and � are given then the set

��� � �� � ���� for
� � � � � is the line

segment joining these two points. We also call this set an interval

and we write 	 ����
.
Exercise. Check that if � � 	 ����
 then

�� ���� �� ���� �� ���
that is, the triangle inequality becomes equality.

Definition 1.2.5 A subset 	 of a linear space � is called convex if

and only if for every two points ��� � 	 the interval 	 ����
 is con-

tained in 	.

It is easy to see (an exercise) that if
�	��� is a family of convex

sets then the intersection
��	� is also a convex set. We observe

here that for � being a linear normed space the set

���� � �� � ��� � ���(1.16)

called the unit ball of the space �, is a convex (check!) and sym-

metric with respect to the origin (centrally symmetric) set.
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Lemma 1.2.6 If �� �� �, and �� is closed subspace then ���� is a

normed space and for ��
 ����� its norm is given by���
�� �
����� �� � ���(1.17)

Proof: If
���
� � �

then there exists a sequence �� � � such that

�� � � for some � � �� (�� is closed) hence ��
 � �
. Homogeneity

is easy since �� is a linear space and finally we prove the triangle

inequality. Since
���
 � ��
� � �
����� �� � � � ��, for every � � �

we

take ����� ��� so that �� � ��� � ���
�� �(1.18)

and �� � ��� � ���
�� ��(1.19)

So, for every � � �
we have that���
 � ��
� � �� � � � �� � ���� �� � ���� �� � ���� ���
�� ���
�� ���

finishing the proof. �
A weaker notion than that of the norm is the notion of the semi-

norm.� ��� is a seminorm on a linear space � if it satisfies the properties

of the norm except that it may be zero for non-zero vectors. So, a

seminorm � satisfies

1. � ��� � �
2. � ���� � ���� ���
3. � �� � �� �� ����� ���
for all ��� �� and all

� � � (or � ).

It is useful to note here that if � is a seminorm and we set �� to

be its kernel, that is, �� � �� �� � � ��� � ��
, then

1. � is a subspace

and

2. � can define a norm on the quotient ����
Indeed the first is true from the triangle inequality and the second

is true since � �� � �� is independent of � ���: � �� � ��� �� �� � ����� ��� � ��� � � �� � ��� and similarly � �� � ��� �� �� � ����� ��� � ��� �� �� � ��� ������ ����.
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An analogue of the
�
 spaces is provided by the spaces of func-

tions with finite �–norm: We define the space of continuous func-

tions ��
� ��� 	
 so that if � � ��
� ��� 	
 then

�� �
 � �� �
� �� ����
�����
 � ��

We note here that the quantity
�� �
 is a seminorm and hence we

have to pass to a quotient space if we want to get a norm. Thus

we pass to quotient as described above (quotient with respect to

the set of zeroes of
� 
 �
). In this space now we see the following

“problem”. It is easily seen that there exist sequences of continuousThe reader should

now try the
exercises 3 to 19

functions �� and non continuous function � so that the quantity��� � � �
 converges to zero. So �� is inside the space but converges

to a function “outside” the space of continuous functions. These

spaces are called “incomplete”. In the next section we look into the

complete spaces.

1.3 Completeness; completion

To approach the general picture we need the following definition.

Definition 1.3.1 A normed space
�

is called complete if and only

if every Cauchy sequence
���

�
in

�
converges to an element � of the

space
�

.

Examples.

1. It is well known from the standard calculus courses that if

�� is a Cauchy sequence in the space ���� 	
 equipped with

the supremum norm (i.e., for every � � �
there is � ��� � �

such that 
��������� ��� ��� � �� ���� � � for all ��	 bigger than

� ��� and for all
� � ��� 	
 then there exists a continuous function

���� � ���� 	
 such that


��������� ��� ��� ������� �

as � goes to infinity. Thus the space ���� 	
 equipped with the

norm
���� � 
��������� ������ is a complete normed space.
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2. The space
�� is a complete normed space, since if �� � ������

is a Cauchy sequence with the norm
� 
 �� then each sequence

������ is a Cauchy sequence and by the completeness of � or

� there exists �� the limit of
����� as � tends to infinity. Let

� � ����� Then�


�
��� �� � 	����

�
�


�
���� �� � 
�� ��� ��� �	 ��

for some 	 � �
. Thus � � �� Finally

��� � �� �� � � for big��� so passing to the limit as � goes to infinity we get that��� ���� � �, consequently �� � �.

Note, that the same proof (with the obvious modifications) works

for the
�
 spaces as well.

3. The space �� of sequences converging to zero, equipped with

the supremum norm is complete (left as an exercise).

For non complete normed spaces there exists a procedure to “fill

in the gaps” and make them complete.

Theorem 1.3.2 Let � be a normed linear space. There exists a com- The reader should
now try the exercise
20

plete normed space
�� and a linear operator � � � � �� such that (i)���� � ��� (isometry into); (ii) ��� (

� ��) is a dense set in
�� (i.e.

�� � ��).

[Also, in the sense which we don’t explain now, such a
�� is unique.Explain

this]

1.3.1 Construction of completion

Let � be the (linear) space of all Cauchy sequences

� � ��� ���
�
���(1.20)

in �. Introduce a seminorm in the space �: � ��� � 	����
� ��� �,

where
� � ���� is a Cauchy sequence. Note that the limit always

exists. [Indeed,
���� �� ��� �� � ��� ��� � �� �

as � �	 � �
, by the

definition of Cauchy sequences; so
���� �� is a Cauchy sequence of

numbers and therefore converges.]
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Define � � �� � � ��� � ��
, so that � is the subspace of all

sequences which converge to
�
. Then � defines a norm on the

quotient space
�� � ��� (as explained earlier) by the same for-

mula � ��� � 	����
� ��� � (for any representative

�
of an equiva-

lent class � � � � � � ���. The operator � � � � �� is de-

fined by �� � � (
� � � �) where

�
is the constant sequence

� � ����� � � � ��� � � ��). (A constant sequence is, of course, a Cauchy

sequence and � ��� � ���.)
Now, to prove the theorem, we should prove (a) �� is dense in��; and (b)

�� is a complete space.

Proof: (a) Forall � � �
and

� � ���
�
, there exists � � � such that��� � �� � � � for � � 	 � �. Define �� � �, ��

� �������
� � � ����

� � ��
a constant sequence; i.e. ���

� ��. Then the distance the distance

from
�

to �� is � �� � ��
� � �. Thus, every

�
is approximable by

elements of ��.

(b) Let � �� ��� �� ���� �� �
as � � 	 � �

(i.e.
� ��� is a Cauchy

sequence in � and represents a Cauchy sequence in
�� � ���). Take

��
� �

and �� � � such that � �� ��� � ���
� � ��. Then

���
�

is a

Cauchy sequence in �. Indeed,
��� ��� �� � ���� ����� �� ���� �� ������ �� ����� ������ �� �������� �� �

as � �	 � �
. Then

�� �
���

�
is a Cauchy sequence (so it belongs to �) and

� ��� � 	��� ���.
Indeed, � �� ��� ���� �� �� ��� ����

��� ���� ���� � �
. �

(Compare this with the construction of irrational numbers from

rational ones.)

The completion of ��
� ��� 	
 is called �
 ��� 	
. Hence, an element

in �
 ��� 	
 is a class of functions, but we will always choose a rep-

resentative of this class and will treat it as an element of the space

�
 ��� 	
. The most important space for us is �� ��� 	
.

1.4 Exercises

1. Consider the linear space
�� of double sequences � � ���

��
���

�
such that the limits 	� � 	����

� �� and
	�����

� �� exist. Con-

sider moreover the subspace
��� of the sequences � � ���

��
���

�
such that

	�����
� ��

� �
. Find the dimension and a basis of

the space
������.

2. Consider the linear space ���� of all sequences � � ���
��
��� such

that
����������� converges for � � �� ���. Find the dimension



1.4. EXERCISES 19

and a basis for the space �������.
3. Let � be an open set. Prove that the set � � � � is closed.

4. Let � be a closed set. Prove that the set � � �� is open.

5. Let � be a normed linear space and �� �� � be a closed sub-

space. Then ���� is a normed linear space with the norm� ���
� � �
����� � � � � � �
6. Prove that

(a) the union of any family of open sets is open set.

(b) the intersection of any family of closed sets is a closed set.

7. Prove that a ball is a convex set.

8. Show that there exists two vectors � and � in the space
��

such that they are linearly independent,
��� � ��� � � and�� � ��� �

.

9. Prove that if the unit sphere of a normed linear space contains

a line segment, then there exist vectors � and � such that
�� ���� ���� ��� and ��� are linearly independent (a line segment

is a set of the form
��� � ��� ��� � � � � � ��).

10. Prove that if a normed linear space
�

contains linearly inde-

pendent vectors � and � such that
��� � ��� � �, �� � �� ���� � ���, then there exists a line segment contained in the

unit sphere of
�

.

11. Given the two spheres
�� � ������� ����� and

�� � ������������ in a normed linear space, how many points can these

spheres have in common?

12. Find the intersection of the unit ball in ���� �
 with the following

subspaces:

(a) span
���

(b) span
��� ��

(c) span
�� � �� ��.

13. Compute the norm of a vector in the factor space
������ (see

exercise 1).
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14. Prove that if � � � � � then �� � �
 �
15. Prove that if � � � � � then �
 �����
� � �� �����
� for every finite

segment ����
�
16. Prove that for � �� � no space �
 �����

is a subspace of �� ������
17. Let � ���� be numbers such that � ���� � � and

�
 � �� � �� � �� Let� � �
 ��� 	�� � � �� ��� 	�� � � �� ��� 	�� Prove that ��� � ����� 	�
and

� ��� ���� � �
 � � �� � � �� �
18. Let

� � � � � � ��
For which � the function � ��� � �����	

belongs to �
 �����


19. (a) Prove that the intersection of the two balls �� � �� �� �� �
� �� 
�� and �� � �� �� �� � � �� 
�� in a normed lenear

space is empty iff
� �� � �� ��
� �
��

(b) Is the intersection of the two balls �� and �� in the space

�� empty if

� � �� � �� � ��� ���� ��� � ��� � � � ��� 
� � ������� and�� � ��� �� � �� � ���� � � ��?

20. Let ���� � �� � ���� �� � � �������� in the supremum norm. Prove

that � � ��.
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Hilbert spaces

2.1 Basic notions; first examples

Let � be a linear space over � with a given complex value function of

two variables ����� �� �� � � , which has the following properties:

1. linearity with respect to the first argument:

���� � 	����� � � ������� 	 ������ �(2.1)

2. complex conjugation: ����� � �����; this implies “semi-linearity”

with respect the second argument: ������ � 	��� � � ������ �	 ������.
3. non-negativeness: ����� � �

, and ����� � �
ifand only if � � �

.

Such a function is called “inner product”. Consider also the

function � ��� � ��������. (We will see later that � ��� is a norm and

will write � ��� � ���.)
Examples:

1. In � � let ����� ���� ��	� where � � ������, � � �	����.
2. In

�� let ����� ��
�
� ��	� (by Hölder inequality

����	� � � �� ��� �� 

�� �	� �� ��

). So,
������� � ��� 
 ���.

3. In �� ��� 	
 (re-write this parenthe-
sis using integrals, think about functions you know how to

21
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integrate; say, think about the Riemannian integral) let �� ��� �
� �� � ���� �����. Again,

��� ���� � �� �� 
���� by the “Cauchy-Schwartz”

inequality, that is, Hölder inequality for � � � � �
.

2.1.1 Cauchy-Schwartz inequality

Theorem 2.1.1 (Cauchy-Schwartz inequality) For all vectors ���
in a linear space � with inner product �
� 
�, the following inequality is

true: � ����� � � �������� 
 ��������(2.2)

Proof: Recall our notation � ��� � ��������. Then
� � �� � ���� � ��� �� ���� � ����� ������� ����� ����.

If ����� �� �
take

� � 
����
����� �

� � �� ���� � 
����
������������ which implies

the Cauchy-Schwartz inequality. Moreover
� ����� �� � ��� 
� ��� if and

only if � � ��. �
Exercise: Let ����� satisfy all three conditions of the inner product

except that ����� may be zero for non-zero elements. Prove that the

Cauchy-Schwartz inequality is still true.

Now we will prove that � ��� � ��� is a norm. Indeed: � ���� ����� ��� and the triangle inequality holds:

� �� � ��� � �� � ��� � ��
� � ���� � ��� ������� ���� � �� ����� ���
��

and because of the Cauchy-Schwartz inequality:
��� ����� � � � ����� � �� ���� ���. We see that � ����� �� ����� ��� and we will use

��� instead

of � ���.
So, � is a normed space with a norm

��� defined by the inner

product in �. We call � a Hilbert space if � is a complete normed

space with this norm.

Moreover a general complete normed space
�

is called a Banach

space.

Exercises:

1. Check that the inner product ����� is a continuous function

with respect to both variables: ������� � ����� when �� � �
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and �� � �. [Consider the expression

����� � �������
� ����� � ������� ������ � �������� ���� � ���� �� �������

and use the Cauchy-Schwartz inequality.]

2. Parallelogram Law:
�� � ��� � �� � ��� � ������ � �����

3. Define the notion of orthogonality: ��� if and only if ����� � �
.

4. Pythagorean Theorem: if ��� then
�� ���� � ���� � ���� (Proof:

�� � ��� � �� � ������ ������ ������ ����� � ���� � ����.)
Corollary 2.1.2 If

������ are pairwise orthogonal and normalized in

� (i.e.
��� �� �) then

���� ������ ���� ��� ������; moreover,

	����
� � �


�
���� �� �
 ��� ��

(under the condition �� ��� � ��� ). The completeness of the Hilbert

space gives that if �
�
� ��� ��

then the series �
�
� ���� converges. The reader should

now try the

exercises from 1 to
8

Indeed
���

�
������ ���

�
��� �� �� �

as 	 � � � �
.

2.1.2 Bessel’s inequality

Theorem 2.1.3 (Bessel’s inequality) For any orthonormal system������� ��, and for every � �� we have: ���� � ������ �� � ����.
Proof: Consider ��

� ��� ������ ��. Then
� ������ � � ��� 
 ���� and���� � ���� � ������ ��. Hence ��� � ������ �� � ��� 
 ���� � ������ �� and

the series converges. �
Corollary 2.1.4 For any � � � and any orthonormal system

������ ,

there exists � � �
�
��� ������ ��. [Indeed, the �� in the previous proof

converge to � as � � �
].

Examples of orthonormal systems:

1. In
�� consider the vectors

���
� ��� � � � � �� �� �� � � ������� where the� appears in the �-th position.
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2. In �� �����
 consider the vectors
� ���� �����

�
���

�
;

3. In �� �����
 consider the vectors
���� � ������� � ������� , for � � ���� � � �

We call a system
������� a complete system in � (or any other

normed space
�

) if the linear span
���������� �
 � � � � ����		
��	��
 ���

is a dense set in � (or, correspondingly, in
�

).

Remarks. A few known theorems of Calculus state that some

systems of functions are complete in some spaces. The Weierstrass

approximation theorem, for example, states that the system
�������

is complete in ���� �
 (meaning that polynomials are dense in ���� �
).
Since ���� �
 is dense in �� ��� �
 (by the definition of �� ��� �
) and the

convergence �� � � in ���� �
 implies �� � � in �� ��� �
 (check it!), it

follows that
������� is a complete system in �� ��� �
 too.

Another version of the Weierstrass theorem states that the trigono-

metric polynomials are dense in the space of the continuous
��-

periodic functions on �����
 (in the ������
-norm). As a conse-

quence the system
�����
��� 
�
������� is complete in �� �����
. The

same is true for
�����������.

Lemma 2.1.5 If
���� is a complete system and ����, then � � �

.

Proof: Indeed, ���� implies ��
��
����, implies that � is orthogo-

nal to a dense set in � and finally implies that there exists �� � �
and ����; this means

� � ������ � ����� � ���. So � � ��

2.1.3 Gram-Schmidt orthogonalization procedure

Algorithm 2.1.6 (Gram-Schmidt) Let
����

�
� be a linearly indepen-

dent system. Consider �� � �������, and inductively, ��
� �����

������� for��
������ ������� ��.

Then,

1.
������ is an orthonormal system (just check that for 	 � �,
��� ���

� � �
).

2. 
��
������ � 
��
������ for every � � ���� � � � The proof here is by

induction: if it is true for � � � then �� � �� �� �
by the linear

independence of the
����. Also obviously, �� � 
��
������ for

� � �; and �� � 
��
������.
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Definition 2.1.7 A normed space
�

is called a separable space if

there exists a dense countable set in
�

.

Corollary 2.1.8 The Hilbert space � is separable if and only if there

exists a complete orthonormal system
�������.

Proof: if � separable then there exists a countable dense sub-

set
��������. Choose inductively a subset

������� such that the set
��
������� is still dense, and it is linearly independent; now apply

Gram-Schmidt to the system
�������completing the proof of the one

direction. If on the other hand
���� is complete, then consider all

finite sums ����� with rational coefficients (
��). This is a dense

countable set in �. �
Definition 2.1.9 A sequence

����
�
��� is called a basis of a normed

space
�

if for every � � �
there exists a unique series ���� ���� that

converges to �.

Theorem 2.1.10 A complete orthonormal system
�������� in � is a

basis in �.

Proof: For every � � �, by the Bessel inequality �
�
��� � ������ �� ��

. By the corollary 2.1.2 the element � � �
�
��� ������ �� � � exists.

This implies
�� ������ for forall �. By the lemma 2.1.5 we get � � �.

So � � ���� ������ ��. (The uniqueness is obvious: if � � �
�
� ����,

then ������ � ��.)
Corollary 2.1.11 Every separable Hilbert space has an orthonormal

basis. �

2.1.4 Parseval’s equality

Corollary 2.1.12 (Parseval) Let
������� be an orthonormal system.

Then
������� is a basis in � if and only if for all � ��,���� �


���
� ������ ���(2.3)

Proof:

�

�
� �

if � �

��� ��

���� �� � ���� �

���

� ������ �� �(2.4)

�� � � �� � �

� ������ �� �� � ���� � �


�
� ������ �� ����

� � �
(2.5)
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since we assume that
���� �� � ������ ��.

Remark 2.1.13 Note that the direction in 2.5 of the statement is true

also for a single �. Precisely, if for some � � � we have that 2.3

is true, then � � ���� ������ ��. Therefore, if 2.3 is true for a dense

subset of �’s it already implies that
������� is a basis.

Theorem 2.1.14 Any two separable infinite dimensional Hilbert spaces

�� and �� are isometrically equivalent; meaning that there exists a

linear isomorphism � �
�� � �� such that

���� � ��� and, moreover,
����� ���� � ������	 for every � and � in ��.
Proof: We will build such a � for a given � (in place of ��) and

��
(in place of ��). Take an orthonormal basis

������ of �. For every

� � �, � � �
�
� �������� and

���� � �
�
� ���������. Let

������ be the

natural basis of
��. Then

�� �
�


�
�������� � �� �

(2.6)

Check the isometry!

Examples

1.
� ���� �����

�
�� is an orthonormal basis of �� �����
.

2. Similarly,
� ���� � ����

��� � �������
�

is an orthonormal basis of �� �����
.
We will show now one example of use of Parseval’s equality: For

an interval 	 � ��� 	
 we denote by ���	�� the space of the square

integrable functions of two variables with norm:�� ���� ��� ��
�
�
� �� ���� ����� �� �(2.7)

Let
�
��
������ be an orthonormal basis of �� ��� 	
. Then the system

�
��
���
�� �� � � ��� ���� ��������(2.8)

is an orthonormal basis of �� ���� 	
��
Proof: Note that the system

���� � is orthonormal and define ��� �
� ��� � ���� ��� ����� �� ��� ��. By “Parseval equality” theorem, it is enough

to prove that � �
�� �� ���� �� �


��
���� �� 
 � � �� �	�� �(2.9)
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Let �� ��� � �� � ���� ��� �� ���. By the Parseval’s equality is follows

that � ��� ����� � �� �� ���� �����. Also ��� � �� �� ����� ����� and again by

the Parseval’s equality �
�
��� ���� �� � �� ��� �������. Combining these

equalities we get:



��

���� �� � �
�
� ��� ������� � �

�
�
� �� ���� ����� �� �

(2.10)

�

2.2 Projections; decompositions

Let � be a closed subspace of � (we write � �� �). Define a projec-

tion of � � � onto �: consider the distance �
����� � �
���� �� � ��.

If there is � � � such that �
����� � �� � �� (i.e. the infimum is

achieved), then we write � � ���, the projection of � onto �.

2.2.1 Separable case

Let us consider first a particular case of a separable subspace �
(note that if � is separable then any of its subspaces is separable

(check it!)).

Let
������� be an orthonormal basis in �. Take � ����� ������ �� �

�. Clearly ����� and, because of this, for any � � �:
������ � ������������� ���������. So it follows that �
������� � � � �� � �����

and � � ���. Moreover such a � is unique.

2.2.2 Uniqueness of the distance from a point to a con-
vex set: the geometric meaning

The general case is more complicated; we start with a more gen-

eral problem. Let 	 be a convex closed set in �. Denote the dis-

tance of � to the set 	 with �
���	 �

. Then there exists a unique � �	
such that �

���	 � � �� � �� (the distance is achieved at the unique
element � �	): indeed, let �� �	 and

�� ���
�� �

���	 � � �
. Such
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��������������������
���������������������
�����������������������
��������������������������
��������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�����������������������������
������������������������
���������������������
��������������������
��������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�
	 ��

�

�

�������������������������������������������������������������������������������������������������������������������������������������������������������
�

a sequence exists since
� � �
���� �� �	�

.

Now it is easy to see that
���

�
is a Cauchy

sequence. This follows by the parallelogram

law:
���� � ��

�� � �� � ����� � ��� � ��� ������ � ��� � ����. Since
������ �	 (by the

convexity of 	), and
�� � ������ � � �

we get��� � ��� �� �
as ��	 � �

. Hence there

exists � � 	���� � 	 (because 	-closed)

and this � is unique. Indeed, if there ex-

ist two points � and � where the distance is

achieved then we could choose ��� � � and ����� � � and then the

sequence
���

�
would not be Cauchy.

2.2.3 Orthogonal decomposition

Now consider a closed subspace � instead of 	. Note that

�
�
����� � �

����� for some � � ��� � �����(2.11)

Indeed, let � � � be such that � ����; then we proved before that it

gives the distance and it is unique: 
 � � �,
�� ���� � �� ���� � �� �

��� � �� � ���.
In the opposite direction, if � � � is the projection

���, consider

any � � �:
������ � ����������� � ������������� ������ ��������.

Therefore,
������ �� � �� � ��������. Take

� � � �� �� � ��, � � �. Then�� ��� �� � ���� � �� ��� �� � ��������, 
 � � �; letting
� � �

we see that
�� �� � �� � �

and hence every � � � is orthogonal to � � �.
We summarize what we know in the following statement:

Proposition 2.2.1 For all � � �, there exists a unique � � � such

that � � ��� and � � ��� (it gives the distance from � to �). Then

(obviously) � � � � � � � and
���� � �� � ��� � ����.

Definition 2.2.2 For � �� � we set �
� � �� � � � ����. This is

obviously a closed subspace of �.

Theorem 2.2.3 For all � �� � closed subspace of �, � � �
� � �.

This decomposition of � is unique.

Proof: For all � �� and � �� � there exists a � so that � � � � � � �
with � � � � �

�
and � � � (that is, � � ���). The uniqueness of the

decomposition of � is obvious.
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Corollary 2.2.4 If � is a closed subspace, then
��
��� � � (think

why!)

Exercise. Let �� �� �� �� � (closed subspaces). Let �� � ����. Then
��	� � �� � ��	�� (the so-called “Theorem of the three perpendicu-

lars”). [Indeed, define first �� � ��	��, then � ��� � � ��� � �� ���
where � ������ and �� ������. Hence � ������.]
Lemma 2.2.5 If � �� �, closed subspace and ������ � �, then the

subspace �� is 1-dimensional.

Proof: ���� � �. If there are two vectors ����� are linearly indepen- The reader should
now try the
exercises from 9 to

18

dent in ��, then there exist two orthogonal vectors, say ����� � ��.

Now if
��� � ��� � � � � �

� � � � �
(because ��� ��� � �

); thus

�� � �� �� are linearly independent in ��� for � � ���, a contradic-

tion.

2.3 Linear functionals

2.3.1 Linear functionals in a general linear space

Definition 2.3.1 Let � be a linear space. Linear functionals are

functions

� � � � � or � such that � ��� � ��� � �� ���� �� ��� �(2.12)

Note that
���� �� ��


 � �� �� � � ��� � ��
is a linear subspace.

Examples:

1. In the linear space �� consider the functional � defined by� ��� � �
�
� ��	�. where

�	�� satisfy � �	� � � �
, that is,

�	�� � ��.
It is common to identify the the functional � with the element
�	�� of

��.
2. In the linera space

�
 consider the functional � defined by� ��� ����	� where
�	�� is in

��. Notice that
�� ���� �� ��� � 
 �	� � ������ 
 �� ��
 � �

. The functional � is thus identified with the

element
�	�� of

��.
3. In the linear space ���� �
 consider the functionals
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(a) � ��� � � �� ����� ����� where � is integrable; note that
�� ���� �

��	� ������� �� �� ������.
(b)

�� ��� � ����; ��� ���� � ����.

4. Re-write this item�
� ����� � �� ���. [So,

in �� ��� 	
: ����� � � �� ����������].
For a space � denote with ��

the space of all linear functionals

on �.

Theorem 2.3.2 Consider � �� �
.

1. �������
� �;

2. If
���� � ���� (� is another linear functional) then there exists� �� �

such that
�� � �.

3. Let � �� � and ������ � �. Then there exists � � ��
such that���� � �.

Proof:

1. Take ��, � ���� �� �
; let �� � ���� ���� and note that � ���� � �.

then for every � � �, � � � � � ����� � ����, and consequently

� � � ����� � �, (� � ����) and this decomposition is unique.

Hence ����
� ����� ���

� � � � � � which implies �������
� �.

2. Take � � � ����� �� and apply �:
� ��� � � ���� ���� � � � � ���� 
 � �(2.13)

3. ������ � �� ��� � ����� where
�� � ���� and 
 � �� there

is a unique representation � � ��� � �, � � �. Define � ��� � �
.

Then � ��� � �
and � is a linear functional.

�
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2.3.2 Bounded linear functionals in normed spaces. The
norm of a functional

Let now
� � ��� � 
 ��; we call � � ��

a bounded functional if there

exists � such that
�� ���� � ���� (i.e. � is bounded on bounded sets).

Let
��

be a set of all bounded functionals. This is a linear space

[
�� � � is a bounded linear functional if � and � � ��

]. Define a

norm: for � � ��
, let

�� �� � 
��� ��� �� �������� [Check that it is a

norm.] So �� ���� � �� �� 
 ����(2.14)

(We usually write
�� � instead of

�� ��.)
Fact: � is a bounded functional if and only if � is a continuous

functional. [
�

�
��� ���� � � ����� � �� ��� ����� � �� � 
 ��� ���� �� �

as �� � ��.
� � �

Let � ���� � �
for �� � �

. If � is not bounded, then for

every � � � there exists ���
��� �� � and

�� ����� � �. But in this case�� ���� �� � �, where
��
� � �

a contradiction].

Remark: If a linear functional � is continuous at � � �
then it is

continuous at any �.

Note that if � is continuous then
���� is a closed subspace. [It

is non-trivial and we don’t prove that the inverse is true: if � � ��

and
���� is closed subspace then � is continuous.]

Let us return to the definition of the norm of a linear functional.

Because of the homegenuity of its definition we may use different

normalizations resulting to different expressions for the norm:

�� � � 
��
� ���

�� �������� 
����� ���� � ��� � ��
� 
��

� �����
����

� �
�
�� ����� ����

Let us interpret the last expression. Note that the quantity�
�� ����� ��� ��
�� is the distance of the hyperplane

�� � � ��� � ��
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���������������������
����������������������������������

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�����������������������������
��������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
�������������������

�

�� � � ��� � ��

�� � � ��� � ��

to
�
. So the norm

�� � is ����. This

means that the functional � on the

picture has norm less than � but the

functional � has norm more than �.
It also means that a functional has

norm equal to � if and only if the hy-

perplane
�� � � ��� � �� “supports”

the unit ball ����
. Note here (an ex-

ercise) that this does not mean that

the supporting hyperplane and the

unit ball ����
must have a common point (the picture here is mis-

leading because it is drawn in a finite (2-)dimensional space).

2.3.3 Bounded linear functionals in a Hilbert space

We now return to study linear functionals in a Hilbert space. The

following theorem describes the space of all bounded linear func-

tionals on a Hilbert space.

Theorem 2.3.3 (Riesz Representation) For every � ���, there ex-

ists � � � such that �
��� � �����. (Any continuous linear function on

a Hilbert space is represented by some element � of the same space

satisfying �
��� � �����.) Moreover

�
�
�� � ���.

Proof: Let
���� � �, ������ � � and since � � �

� � �, �
�

is

1-dimensional. So �
� � ����� for some

�� � �,
�� �� �

;
�� defines a

linear functional by
����� � ��� ���. Then

��� �� � ����� � ��
��� � �. So��� �� � ����. By the theorem 2.3.2 part 2 we get �

� ��� (and � � ���
represents �).

Now,
���� � 
��� ��� ���������� � ��� and the equality holds for � � �.

Hence
���� ����. �

2.3.4 An Example of a non-separable Hilbert space:

Let � � 
��
��������� with
�� ��� � 	���

�
� ��� � ��� � ���� ��� ��. Note

that if
�� �� �� then ���	�������. So � has uncountable set of pairwise

orthonormal elements. This implies the non-separability of �.

Note that any continuous function with finite support “repre-

sents” a zero element of � (because �� �� � � �
for such a function).

So, one should be carefull when describing this space as a space of

functions.
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2.4 Exercises

1. If � is a linear space, ���� � � (
� �

) and
������ is a basis of �

then, for � � �, there exists exactly one � � ��� ���� � � such

that � � ���. So the system of equations in � (for
� � �� � � � � ��)

� � �� � ���� � � ����� � � �

�

�� ��� ��� �(2.15)

has a solution, thus � ���� � � � ���
� � ��� ���� ��� �� �� �

(there is a

geometric sense to this: the absolute value of the determinant

of say 2 vectors is the area of the parallelogram they define)

and it is called the “Gram determinant”. Then we have,

��
������ � �� ���� � � � ���	��� ���� � � � ���
� ���� �

(2.16)

2. Let � be an inner product space.

(a) Describe all pairs of vectors ��� for which
� � � � ��� � �

� � � � �
(b) Describe all pairs of vectors ��� for which

� � � � ���� � ��
� � � �� �

3. Prove that in an inner product space holds

����� � �� �� � � � �� � � � � � �� �� � � � �� �� �� � � ��� ����
4. Let ���� �
 be the vector space of all continuous complex-valued

functions on ��� �
� Introduce a norm
� 
 �

on ���� �
 by
� � ��

��	������� �� ����� Show that it is impossible to define an inner

product on ���� �
 such that the norm it induces is the same as

the given norm.

5. Let � � ������� 
 
 
�, where �� � ��
Define ����� to be the set of all

sequences
� � ������� � � �� of complex numbers with �

�
����� ��� �� ���

Define an inner product on �� ��� by �� ��� � �
�
��������� �

Show that ����� is a Hilbert space.

6. (a) Find a vector � such that
��� ��� � ��� � � � �� � �� ����
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(b) Find a vector � such that the set of all
� � ������� � � �� with��

�
� � �� is in ������

7. Check that the following sets are closed subspaces of
��:

(a)
� � ����������� ���� ��� ��� ���� � � �� ������ ��� �� ���

(b)
� � ��������� � ���� � �� � � �� � ����� ������ �� ���

(c) � � ������ ����� � ���� � � � �� ������ ���� �� ���
8. Prove that if � is a closed subspace of a Hilbert space 	, then

��
��� � ��

9. Let � be a closed subspace of 	 and codim � � �� Prove that

dim �� � ��
10. (a) Prove that for any two subspaces of a Hilbert space 	:

��� ����� � �
�� ���� �

(b) Prove that for any two closed subspaces of a Hilbert space

	:
��� ����� � �

�� ��
�� .

11. Let �� � �
� � �� �����
����� � ������������ �� � �

� � �� �����
����� �
�
����������
(a) Show that both sets are closed infinite demensional sub-

spaces of �� �����
�
(b) Show that �� and �� are orthogonal

(c) Show that �� is the orthogonal complement of �� �
(d) For � � �� �����
, find its projections into �� and �� �
(e) Find the distances from � ��� � �� � �

to �� and to �� � Find

the distances from any � � �������
 to �� and �� �
12. Find the Fourier coefficients of the following functions:

(a) � ��� � �
?

(b) � ��� � ��
?

(c) ��
 ��, � � � � � (� is the set of intergers)?

(d) � ��� � �1� � � �
-1� � � � �
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(e) � ��� � �� �
.

(f) Use the Parseval equality to prove that �
�
���

�
��

� ��� .

(g) Find �
�
���

�
�� .

13. Let � ��� be a differentiable
��-periodic function in �����
 with

derivative � � ��� � �� �����
. Let �� for � � � be the Fourier coef-

ficients of � ��� in the system ����������. Prove that ����
��� � ��

.

14. Prove that the system 
�
�� for � � ���� � � � is complete in

�� ����
.
15. Prove that the system 
�
���� � ���� for � � ���� � � � is complete

in �� ������
.
16. (a) Prove that the system

��� �� � �� � � � �� is complete in the space

�� ��� �
.
(b) Prove that the system

��� �� � �� � �� � � � �� is complete in the

space �� ��� �
. Is it complete in the space �� ���� �
?
17. Let ��

� ����� � � � � �� ���� �� � � ��where the numbers �and
�

appear

in the � and the � � � position, and ��
� ��� �� � � � � �� ���� � � ��

where the first zero appears at the � � � position. Considering

these vectors in
��, prove that for all

� � �, �� �� sp
������� � � ���

18. Let �� � ��� ���� � � ��, �� � ��� 	��� � � ��, �� � ����� 	��� � � ��� � � �, where���	� � �.
(a) Check that sp

������� � � �� � ��.
(b) Show that any finite system of these vectors is linearly

independent.

(c) Find ������ � � � � � such that �
���� ���� converges to zero.

19. Let �� � ��� ���� � � ��, �� � ��� 	��� � � ��, �� � ����� 	��� � � ��� � � �, where���	� � �.
(a) Check that sp

������� � � �� � ��.
(b) Show that any finite system of these vectors is linearly

independent.

(c) Show that one can not find ������ � � � � � not all zeros, such

that �
���� ���� converges to zero.
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20. Determine which of the following systems are orthogonal bases

in
�� and which are not:

(a)
����� ���� � � ��� ����� ���� ��� � � ��� ��������� ���� �� � � ��� � � �

(b)
������ ���� � � ��� ��� �� ���� � � ��� ����� ����� ���� � � ���
����� �� �� ���� � � ��� � � �

21. Let � be the Hilbert space which is the complement of

	 � �� � ���� �
 � �� ���� � �� �� � � �
�
�� � ����� �� � � �

�
�� ���� ���

and let ��� � � � ��� for all � ��.

(a) Prove that � ���.
(b) Find � �	 such that �� ��� � ��� � for any � ��.

22. Let � be the Hilbert space which is the complement of

	 � �� � ����� �
 ��� ���� � �� �� � � �
��
�� � ��������� �

��
�� ������� ���

and ��� � � � ����� for all � ��.

(a) Prove that � ���.
(b) Find a � �	 so that �� ��� � ��� � for any � ��.

Hint: Find � in the form

� ��� � � ������ �� � � � ����� ���� ��� � � � �
23. (a) Is the subspace

	 � �� � ������� � � �� � �� �
�


���

�
���

� ��

closed in
��?

(b) Is the subspace

	 � �� � ������� � � �� � �� �
�


���

�����
� ��

closed in
��?
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(c) Is the subspace 	 � ����� � �� ��� �
 � � �� ����� �� � ��
closed

in �� ��� �
?
(d) Is the subspace 	 � ����� � �� ����� � �

�
� ����� �� � ��

closed in �� �����
?
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Chapter 3

The dual space ��

3.1 Hahn-Banach theorem and its first conse-

quences

We start with the study of the space
��

of all bounded linear func-

tionals on a normed space
�

which we already introduced in section

2.3. Recall that the space
��

is equipped with the norm�� �� 
��
� ���

�� �������(3.1)

and we call this norm the dual norm (i.e., dual to the original norm

of
�

) and the space
��

the dual space (i.e., dual to the space
�

).

Statement: For any normed space
�

the dual space
��

is al-

ways complete, i.e. a Banach space.

Try this as an exercise now; but it will be proved later in a more

general setting.

Theorem 3.1.1 (Hahn-Banach) Let � �� �
be a subspace and �� �

��. Then there exists an extension � � ��
such that � �� � �� (i.e.� ��� � ����� for � ��) and

�� ��� � ������ that is,


��� ������
�� ��������� 
��

���	
�� ������������
We will learn in this part of t he course to use this theorem without

proving it. The theorem will be proved in chapter 10 in a more

general setting.

39
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��

Corollary 3.1.2 1. For all �� � ���� � �� � � � ��� � �� (the unit

sphere of
�

), there exists �� � ��
such that

������ � �, and������ � �. [Consider the 1-dimensional subspace �� � �����
and the functional �

����� � �
. Then

�
�
���� � �. By the Hahn-

Banach Theorem there exists an extension �� with the desired

properties.]

2. For all �� � �
, there exists �� �� � � ��

such that ������ ����� 
 ����. [use (1)]

3. For all �� � �
, for all �� � �

such that �� �� ��, there exists� ���
satisfying � ���� �� � ���� �use (2) for �� � �� ���
.

4.
��

is a total set, meaning that if � ��� � �
for every � thus � � �

.

5. Let � �� �
be a subspace of a Banach space

�
, and � � �

,��
������ � � � �
. Then ther exists � � ��

such that
�� � � �,� ��� � �

and � ��� � �
.

Proof: First consider �� � 
��
�����, that is

�� � ��� � � � � � ��� � ���(3.2)

Define ������ �� � ��� � � 
 �
. Check the linearity (because � ��� � � can be written in a unique way); ����� � �

and ����� � �
. Now��� � ��� 
 �� � �

�
� � ��� 
 � � ������� � ������	 � �. Also there exists�� � � so that

�� � ��
�� �

. Hence
� � ����� � ��

�� � ���� 
 �� � ��
��� 
 ����� ���� � �.

Now consider the extension � of �� with
�� ��� � ������	 (whose

existence is guaranteed by the Hahn-Banach Theorem). �
Consider for any � ���

, �
� � �� ��� � � ��� � �� ����

.

Corollary 3.1.3 Let � be a closed subspace. Then consider �
� ����

and
��
��� � �� �� � � ��� � � 
 � � �

��
. Then

��
��� � �.

Proof: Clearly � �� ��
���

(just check the definitions).

Now, for every � �� � and � closed we have that
������ � � � �

.

By the fifth item above there exists � such that � ��� � �
(i.e. � � �

�
)

and � ��� �� �
. Hence � �� ��

���
. �

Proposition 3.1.4 (Biorthogonal system) Let
���� � � � ���

� ��
be a

linearly independent subset of
�

. Then, there exists ��� � � � ��� � ��

such that �� ��� � � ��� .
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Proof: Fix ��; let 
��
����� ���� � ���; note that ��� is a closed sub-

space (non-trivial) . ��� �� ���; by the fifth item above there exists��� ���
such that ��� ���� � � �

, ��� ���� � � �. �

3.2 Dual Spaces

In section 2.3 we show a few examples that we now revisit using the

terminology of the dual space.

Examples:

1. On the space �� of null sequences with the norm
���� ��	 ��� �

we define the linear functional � � �	�� � ��. by setting � ��� �
���	�. Then

�� ���� �� ���	� � ���	����� ��� �
� �	� �� ����� 
�� ��	.
So,

�� �� � �� ��	.
Now, let � � ���; define � ���� � ��

���
� ��� � � � � �� �� �� � � �� � ��

where the �occures in the �-th position). Take ��
���� �
��
 �����,������ � �:�� ���� � � ���� � �


�
��� � (
� � �) �

�� ���� � �� ��	 �
(3.3)

Thus
�� � �����.

2.
��� � ��

(an exercise).

3. For � �� ��
,
�
 � �� � � we have

��
 �� � ��:
Again, first check that if � � �	�� � �� then � defines a linear

functional on
�
 by the following formula: if � � ����

� ��� � �


�

��	�(3.4)

and �� ���� � �
��	� � � �
 ��� �
 ���
 
 �
 �	� ������ �
(3.5)

So
�� ���� � �� ��
.

Now, let � � ��
. Consider � ���� � ��. Take ��
� ��� �
��
 ��� 
��� ������. ������ � � �


�
��� ������
���
 � � �


�
��� �����
 �

(3.6)
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��

�� ���� 
 ������ � �� ������ �

�
��� ��

� � �

�
��� �����
 
 � �


�
��� ������ � ������ 
 � �


�
��� ������

(3.7)

thus
�� ���� � �������
 which gives the inverse inequality. Hence

��
 �� can be isometrically realized as the space
��.

4. Similarly ��
 � �� �� �� ���
.

3.3 Exercises:

1. Let � be an �-dimensional normed space, then � is complete.

2. If � is a finite dimensional subspace of
�

, then � is a closed

subspace.

3. Prove that for � � �, ��
 � �� where ��� � ��� � �, i.e. there exists

a one-to-one correspondence � � � for � � ��
, � � �� such that�� ���� � ����

4. Prove that

��� � ��
.

5. (a) Is it true that for all � � ��
such that

�� � � � there exists

� �� so that
���� � and � ��� � �?

(b) What is the answer if
�

is reflexive?

6. Prove that if � ���
then

������ � ��.

7. Prove that if � ���
then � � ������.



Chapter 4

Bounded linear operators

L
ET

�
and � be Banach spaces, � � � � � , a linear map

(operator) defined on
�

. � is called bounded if there exists �
such that

����� � ����� for all � ��. If � is bounded, define�� � � 
��� ��� ��������. One may check that this quantity defines a

norm (check it!). We write ��� � � � for the linear space of bounded

operators with the above norm.

4.1 Completeness of the space of bounded lin-

ear operators

Theorem 4.1.1 Let
�

be a normed space and � be a complete normed

space. Then ��� � � � is a Banach space (i.e. complete).

Proof: Let
��

�
��
��� be a Cauchy series in ��� � � � so


� �� such that 
	�� �� ��
� �

�� � �
�
�

(4.1)

This implies that for every � �� and 	 �� ����
�
��� ��� ����� � ���

� �
��������� ��

� �
�� � 
 ����

�
���

Therefore: for all � � �
, the sequence

��
�
����

�
��� is a Cauchy se-

quence in Y. Since Y is a Banach space, it has a limit we can call

43
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���� � � and thus we define for all � ��,
���� � 	����

��
�
���. � is

a linear operator and it is also bounded since:������� � 
��
���

��
�
���� � ���� 
 
��

���
��

�
�
�

��� � 
��
���

��
�
��(4.2)

thus
� � ��� � � �. Now we still must show that

�
� � �

. If we

assume otherwise, that is
��

� �
�� �� �

, then there exist � � �
and��

��
����� � ��

�
��
��� such that for every � � � we have

��
�� �

�� ��
�. Therefore for every � � � � we can choose �� � �

such that��� � � � and
��

��
���� ������� � �. Recall that

��
�
��
��� is a Cauchy

sequence, so we can choose � � � such that for all 	��� �
� we

have
��

��
���� ��� ����� � �� and this implies

�
� ��

��
���� �������� ��

��
���� ��� ������ ��� ���� ��������

Hence for all 	 �
� ��� ���� ������� � ��(4.3)

contradicting the definition of
�

(we must have
�� ����� �����). �

Note (i)
�

is a bounded operator if and only if
�

is a continuous

operator (i.e.
��� �

�� � �
for �� � �)

(ii)
���� � �� ��� � ��

is a closed subspace.

(iii) Theorem 4.1.1 implies that for any normed space
�

the dual

space
��

is complete. Indeed, take � to be the field � or � depending

over which field our original space
�

is).

4.2 Examples of linear operators

1. In ���� �
 define
�� � � �� 	���� �� �� ��� (for a continuous func-

tion 	 of two variables).
�

is linear and
��� �� ����� � ��	 �� � 


��	� � �� �	���� ����. So
��� ���	� � �� �	���� ����. In fact one may

show that ���� ��	� � �
�
�	���� ���� �(4.4)

2. In �� ��� �
 for 	
���� � � ������ �
��, define the operator

	 � �� ��� �
 
� �� ��� �
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with

	� � � �
� 	���� �� �� ��� �(4.5)

The function of two variables 	�� �� � is called the kernel (or the

kernel function) of the operator 	. Check (as an exercise) that�	 �
��

� �	���� �������� �(4.6)

3. For every bounded linear
� �

� � � operator we have:
��� �


����������� � ��� � � � ��� � ��.
4. Let ���� be a continuous function on ��� 	
. In �� ��� 	
 define the

operator
�

by
�� � ���� 
 � ���. Then

�
is a bounded linear

operator and ����	 � ��	����� �������(4.7)

5. The shift operator in
�� defined by: �� � ������ � � � ��� �

� � ��
for

���
� � �� satisfies

����� ��� and
�� �� �.

6. Let
���� ������� be an infinite matrix and 	� � �

�
����� ���� �� � �

.

Then the operator
�

defined in
�� by

����������� �
��� �

�


���

������
�
���(4.8)

is a bounded linear operator. Check that
��������� �	 
���� ����.

7. Let � be a separable Hilbert space and
�������� be an orthonor-

mal basis; Let
� �

� � � be a bounded operator. Then for

� � ������������ we have
�� � ����������. Moreover

��� �
����� ������. Thus

�� � �� ��� �� ���� �������. Hence, the se- The reader should

now try the
exercises from 1 to
5

quence
���� maps to

��� � �� ���� ������ �����. Consequently, we

see that the example 6 may not be applicable to the matrix
����� �����.

4.3 Compact operators

� �� � � is a compact operator if and only if for every bounded se-

quence �� �
�

the sequence
����

�
has a convergent subsequence.
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4.3.1 Compact sets

In order to be able to work with compact operators we should first

understand well the notion of compact set.

A set 	
� �

is called a compact set if and only if for every se-

quence �� � 	 there exists a subsequence ��� � � � 	 (for some

� � 	). 	 is relatively compact (or precompact) if every sequence

�� � 	 has a Cauchy subsequence ���. For example, if
�

is com-

plete and 	 relatively compact then 	 is compact.

Example Any bounded set in �� is a relative compact.

We will use the following statement which is standard in the

calculus courses:

Theorem 4.3.1 (Arzelá) Let 	 � ���� 	
; 	 is relatively compact (in

���� 	
) if and only if 	 is

1. uniformely bounded [meaning bounded set in ���� 	
] and

2. equicontinuous:
��� ��� � �

for � � �
such that if

��� � �� � � �
then

�� ���� � � ���� � �� ��� for any � �	.

Note that if � is any metric precompact space (instead of the interval

��� 	
) then the same theorem is true for 	 � � �� �.
Examples:

1. Let 	 � ����� � ���� 	
 � ������ � �� and
��� ���� � ��� � ���� 	
 (for

some constants �� and ��). Then 	 is relatively compact (use

Arzelá Theorem:
��� ���� � �� implies the uniform continuity:���	��������	��� � �� ��� for

�� � � � ��, and therefore,
������ � ������ �

�� 
 ��� � �� �).
2. The operator

�� � � �� ��� ��� on ���� �
 is a compact operator.

3. The embedding operator:
� � ����� 	
 � ���� 	
, ���� � � is a

compact operator (� � ����� 	
 � ����	 ���	� ���������	� ��� ����).
4. Let 	

���� � be a continuous function of two variables on ��� �
�.
Then the operator 	� � � �� 	���� ���� ��� � � ��� �
 � ���� �
 is a

compact operator (check it!). [Weaker conditions imposed on
	���� � would give the same result. For example, 	

���� � may be

piecewise continuous with a few discontinuity curves � �
�� ���,

� � �.]
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To build more examples we need some properties of compact sets

and operators.

Definition 4.3.2 Let
�

be any metric space and � ��. We call � an

�-net of
�

if and only if for all � � � there exists � � � such that the

distance from � to � is less than �.

Lemma 4.3.3 	 is relatively compact if and only if for every � � �
there exists a finite �-net in 	.

Proof:
�

�
�

assuming that there exists �� � �
such that there

is no finite ��-net of 	, then we can choose ����� � 	 such that��� � ��� � ��. In this way for every � we can choose �� � 	 such

that
��� � ���� ��� � ��� � � � ��� � ����

� � ��. Such an �� exists for

every �, otherwise
������� � � � �����

�
is a finite ��-net of M. Therefore

no sub-sequence of
���

��
��� is a Cauchy sequence, which means

that 	 is not pre-compact; a contradiction.
� � �

For all � � � we take �� � ��� . 	 has a finite ��-net

for every � (by the assumption). Let
���

��
��� � 	 and consider a

finite ��-net. It divides the sequence between a finite number of

balls around the net’s points. So there is at least one ball which

contains an infinite subsequence from the original sequence. Let

us mark the sub-sequence contained within this ball by
������ ��

���.
In a similar way an ��-net divides the sequence

��������
��
��� between

a finite number of balls and there is one ball which contains an

infinite subsequence of the previously chosen sequence
��������

�
. Let

us call it
������ ��

���.
We know that the ball’s radius is less than �� hence for all 	�� �

� we have ������ ������ � � ��� � �
�
�

The subsequence
������

��
��� of

���
��
��� is a Cauchy sequence. In-

deed, for all � � �
we can choose � �� such that

�� � � and then


	�� �
�

������ ������ � � �
�

� �(4.9)

which imples that 	 is relatively compact.



48 CHAPTER 4. BOUNDED LINEAR OPERATORS

4.3.2 The space of compact operators

Proposition 4.3.4 The set 	
��� � 	�� � ��

of compact operators

on
�

satisfy:

(i) 	
�� ���

is a linear subspace of ��� � ��
(check it!).

(ii) 	���
is a two-sided ideal of ��� � �� � ����

.

(iii) 	���
is a closed subspace of �:

Proof: (ii) Let
� �	�� � ��� � � ��� ���

and
���

��
��� bounded

sequence in
�

. We want to show that
�� ��� �	�� ���

.

The operator
��

:
�

is bounded hence
�� ��������� is bounded

also.
�

is compact hence
���� ��

�
����

��� has a converging subse-

quence thus
��

is compact.

The operator
��

:
�

is compact hence the sequence
�����

���
���

has a converging subsequence
������

������. �
is bounded, so it fol-

lows that the sequence
�� ������������� is also converging thus

��
is

compact.

(iii) Let
�
� � �

(meaning
��

� �
��� �

) and
�
� �	. It is enough

to prove that
�����

(the image of the unit ball) is a precompact.

Thus we have to find for all � � �
a finite �-net.

For all � � �
there exists � � � such that

��
� �

�� � ��� and�
��

���
is a precompact (

�
� is a compact operator). Then take anThe reader should

now try the
exercises 6,7,8

��� net
������ of

�
��

���
. Check (an exercise) that

������ is an �-net

for
�����

. [Additional delicate point to think is that
������ may not

be in
�����

; but it is not important.]

4.4 Dual Operators

Let
� � � � � be a bounded operator. Then �

���� � � ��� (� � �
;

� � � �) is a linear function on
�

. Moreover,�� ���� � �
�
�� � 
 ��� 
 ����(4.10)

Thus � � ��
. Hence, we have an operator � 
� ��

�
� � � �� � � � ���

is linear (obvious) and��� � 
��
�����

������� � 
��
�����


�������
�
�
�������
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� 
��
�����


��
�����

�
�
������� � 
��

�����

��
�����

����
�
�����

� 
��
�����

����
�
���� � ����

(4.11)

Theorem 4.4.1
� � � � � is compact implies

�� � � � � ��
is com-

pact.

Proof: We show that
����� �� � 	 � ��

is precompact. Indeed,

we use the Arzelá Theorem. First “represent” the set
������ ��� �	

as a set of continuous functions on the precompact set � � �����
.

Let � � ����� ��; � ��� � ���
�
���� for � � ����

and some � �

��� ��. Then � ��� � �
���� and � is a (linear) continuous function on

� � �����
. Moreover,��� � ����� � 
��

�����
����

�� ����������� 
��
�����

��
�� ���������

� 
����� ��
�� ���������(4.12)

so ��
�������� � �
�� ������� �. Thus, we may use Arzelá Theorem for

the set of functions
�
� � ��� ��� on the precompact � . This set is

bounded (by
���

) and equicontinuous:
�
�
��� � 
����	������ ����� ����� � �

�
� 
 � � � (independent of �). �

So,
� � 	�� � � � (

�
is a compact operator) implies that

�� �
	�� � � ���

(
��

is also a compact operator).

More examples: (i) We call the quantity dim(Im
�

) the rank of the

operator
�

and we write rk
� �

dim(Im
�

). We say that the operator�
has finite rank if rk

� ��
. For an example of an operator of finite

rank consider a finite number of elements �� � � and �� � ��
where

�
and � are Banach spaces and � � ���� � � � �� for some � � �. Define

the operator
�

by setting
�� ���� �� �����. This operator has rank no

greater than � and it is a bounded operator since
��� ���� ����
����.

Check that its dual operator is
���
� ���� �
������� (a “better notation”

for
�

is
� �� �� � ��)).

Inverse: If
�

is bounded and ��� � �, i.e. ��� � �, ���� �
�, choose

������ a basis in � and let
���� ��� � ��

be a biorthogonal

system (as in the Corollary of the Hahn-Banach Theorem). Then�� � ��� ��� ������ � ��� ������ ������. Let �� � ����� . We then have,� � ��� �� � ��. (Obviously:
���� � ��� 
 ���� �, so �� � ��

.) Check that

every bounded operator of finite rank is a compact operator.
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(ii) Consider 	
���� � � ���	�� (	 � ��� �
) and let

� � �	���� �������� � �� �
�

� �
�

�	���� ����� �� �(4.13)

Define the operator 	 on �� ��� �
 by 	� � � �� 	���� ���� ���. Then 	

is a compact operator in �� ��� �
 and
�	 �

��
� � � �	 �������. Indeed:

first check that
�	 �

��
� �	 �������; for

�
��
������ -orthonormal basis in

�� ��� �
, we checked before that
�
��
���
�� �� �� is an orthonormal basis

in ���	��; so 	���� � ������������ �� �. Let 	�
����������� ����� ����� �� �.

Then
�	� �	 ������� �� �

as � � �
, therefore, considering the op-

erator

	��
� � �

� 	�
���� ���� ��� �(4.14)

we also know that
�	� �	 �

�� �� �
as � � �

. 	� is an operatorThe reader should
now try the exercise

9
of rank

� � and this means that 	 is approximable by finite rank

operators, which are compact. This implies that the limit operator
	 is also compact.

4.5 Different convergences in the space����
of bounded operators

In the space of operators ����
one may define several notions of

“convergence”. The norm convergence, also called “uniform con-

vergence” is defined by saying that the sequence of operators
�
�

converges in norm to the operator
�

and we write
��

� �
��

if��
� � �� �� �

as � � �
. ����

is complete and so if
��

�
�

is a

Cauchy sequence with respect to the norm then it always converges

to a bounded operator.

An other usefull notion is that of the strong convergence:
�
� � �

strongly if for all � � �
we have

�
�� � ��. We note here that if the

sequence
��

�
�

is Cauchy in the strong sense, that is for all � � �

the sequence
�
�� is Cauchy in

�
, then there exists

� � ����
such

that
�
� � �

strongly. The proof of this fact will be given after the

Banach-Steinhaus theorem.

Let us give an example in order to show that norm convergence

and strong convergence do not coincide. Consider the projections
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in �� ��� �
 defined by

���� � �� ��� for
� � ��;�

for
� � ��

(4.15)

It is easy to see that
��� � �

as �� � �
,that is

��� converges strongly

to zero, but
���� �� � and consequently it does not converge in norm

to zero.

Our third notion of convergence is that of the weak convergence:�
� converges weakly to

�
, and we write

�� � �
or
�
�
��� �

, if for

all � �� and for all � ���
we have � ����� � � ����.

Again in order to distinguish this notion from that of the strong

convergence, consider the example of the shift operator
�

in
��. For

this operator we have
�� � �

, but
���� � ��� and so

�� does not

converge strongly.

We continue with two other main theorems of functional analysis

(without proof).

Theorem 4.5.1 (Banach (on open map)) Let
��� be Banach spaces

and let
� � � � � be a bounded linear operator one-to-one �i.e.���� � �


and onto
�
meaning ��� � � �. Then the formally defined

operator
��� � � � �

is bounded.

Theorem 4.5.2 (Banach-Steinhaus) Let
�� � � � � be a family of

bounded operators so that for every � � �
there exists a constant

� ��� such that
����� � � ��� (i.e. the family is pointwise bounded

or bounded in the “strong” sense). Then there exists � such that����� � ����meaning that
���� � �.

In other words: the strong boundness of a family implies uniform

boundness.

Examples

1. Let � � � (or � in the complex case). Let
�� be linear func-

tionals ��. We have
�������� � � ��� for every � � ��

implies��� � ���� � ��
.

2. If
���� � �

and for all � � ��
, there exists constant � �� � so

that �� ����� � � �� � �(4.16)

then there exists constant � independent of � such that
���� �

�.
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3. Combining these applications, let
�� � ��� � � � such that

for all � � �
and for all � � � � there exists constant � �� ���

such that
�� ������ � � �� ���. Then there exists constant �

independent of � and � such that
���� � �.

4.6 Invertible Operators

Let
� � ����

. We call
� �� ����

the inverse operator if and only

if
�� � �� and

�� � ��. In the finite dimensional case the notion

of the determinant implies that
�� � 	� is enough to deduce that�

is invertible and
��� � �

. The reason is that det
� �� �

leads to

a formula for
���

. In the infinite dimensional case though this is

not the case. One may consider for example the case of the shift

operator in
��.

Properties

1.
������ � ������

(meaning that if
�

and
�

invertible, then also��
is invertible and it is computed by the previous formula).

2. If
��� � �, then the inverse exists:

�	����� ��
�
� �

�
. Moreover��	������ � ���������. Indeed, first note that

��� � � ���� � �
as � � �

. Let ��
���� ��. Then �� � �

(��-Cauchy sequence).

Also
�	 �����

� 	 ����� �� 	 as � � �
and ��

�	 ��� �� 	 as� � �
.

3. Let
�

be an invertible operator and
�

be such that
�� ��� ��������. Then

�
is also invertible. Indeed, write

� � ��	 ���������

.
�

is invertible and
�	 ����������

is invertible by

2 because
������ ���� � �. Hence their product is invertible.

4.7 Exercises

1. Let
�

be an operator on ���� �
 which is given by
��� ���� �

����� ��� where ���� is a continuous function on ��� �
. Prove

that
�

is bounded and compute its norm.

2. Let
��� ����� be a sequence of complex numbers. Define an oper-

ator
�
� on

�� by
�
�� � ����������� � � �� for � � ������� � � �� � ��.

Prove that
�
� is bounded if and only if

��� ����� is bounded and

in this case
��
�
�� 
��� ��� �.
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3. Let
�� ��� be the Hilbert space of all sequences

��� �
����� with

�


����

��� �� ��
and the usual inner product. Define an operator � on

�� ��� by

���� �
����� � ������

������

(a) Prove that
����� ��� for any � � �����.

(b) Give a formula and a matrix of representation of the oper-

ators �� for � ��.

4. Given an infinite matrix
���� �������, where �

�
��� �

�
��� ���� �� � �

,

define
� � �� � �� by

�������� � � �� � ������� � � ��, where

���� � �
�
�
��
��
...

�
� �

�
�
����
...

�
� � ������ �

�


���

����� �

Prove that the operator
�

is a bounded linear operator on ��
and

�� ����
�
����

���� ���� ���
5. Let

�
be an operator on

�� given by the matrix
������� ���� (with

respect to the standard basis), where for some fixed 	�� � �
we have that ��� � �

for
� � � � �	 or

� � � � � (so that
�

has

only a finite number of non-zero diagonal entries).

(a) Prove that
�

is bounded if and only if

�
���� 
��� ��� ���� � � ��

(b) Prove that ��� � �
���� 
��� ��� ���� ��
(These kind of matrices are called band matrices.)
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6. Let �� and �� be Hilbert spaces. Define � � �� ��� to be the

Hilbert space consisting of all pairs
������� with �� � �� and

�� ��� with

�������� ��� � ��� � ��� � ����� � ���(4.17) �������� � ��������(4.18)

and an inner product defined by

��������� �������� � ��������	 � ��������� �
Given

�� � ����� and
�� � ����� define

�
on � by the matrix

� � � �� �
� ��

� �

i.e.
�������� � �����������. Prove that

�
is in ����

and that���� ��	������ ��� ��.
7. Which of the following operators 	 � �� ��� 	
 � �� ��� 	
 have

finite rank and which do not?

(a)
�	� ���� ���� � ��� ��� � �� �� ���� ������

(b)
�	� ���� � � �� �������

8. Let
��� ����� be a sequence of complex numbers. Define an op-

erator
�
� on �� by

�
�� � ����������� � � ��� Prove that

�
� is com-

pact if and only if
	����

��� � ��
9. Let

��� ����� be a sequence of complex numbers with �
���� ��� � ���

Define an operator on �� by the matrix

� �
�
�
��

�� �� �� � � �
�� �� � � � � � �
�� � � � � � � � � �
� � � � � � � � � � � �

�
�
��
�

Prove that
�

is compact.

10. Let �
� �
 ������ 
� �
 ������

for � � � � �
with

�� � ���� �� �� � ��. Find the operator � �.
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11. Let
�
� be as in exercise 2 and let �
� ��� � � �

and 
��� ��� � � �
.

Which of the following equalities or inequalities hold for any�?
��� ��� �� ����	� � � �	� ��� � � ����	� � � ��� ��� � � ����	� � �
��� ��

�
� � ����	� � � ��� ��� � � ����	� �

12. Let the operator
�
� be as in the previous problem. Prove that�

� is invertible if and only if �
�� ��� � � ��
Give a formula for���

�
�

13. Let 	 be an operator of finite rank on the Hilbert space �. For� �� assume

	� � �

��� ������

�� �
Suppose that

�� � �
span

���� � � ������
for � � ���� � � � ��. Prove

that 	 � �	 is invertible for any
�

and find its inverse.

14. Let � be a Hilbert sapce and let
� ���� � ����

. On �
��� �

� �� �� define
�

by the matrix

� �
�
�

� � �
� � �� � �

�
� �

Prove that:

(a)
� � �

�
�

����
;

(b) 	 � ��
is invertible for any

� � � and find its inverse.

(The norm of �
���

is defined by

���� ����
�


���

��� ��
for � � �������� �� �� ��.)

15. Given
��� � ����

for
� �� � ��� define on �

��� � � � � an

operator
�

by
� � � ��� ������ ���

� �

Prove that
�

is compact if and only if each
��� is compact.
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16. Suppose that
��� � ����

and
��

is compact. Which of the

following statement must be true?

(a) Both
�

and
�

are compact.

(b) At least
�

or
�

are compact.

17. Let
����� be the Hilbert space of all sequences

��� ������ that

satisfy �
����� ��� �� � �

and the usual inner product. Define

an operator � on
����� by ���� ������ � ������

������
(a) Prove that � is invertible. What is it’s inverse?

(b) Give a formula and a matrix of representation of the oper-

ators
������ for � � �.

18. Let �
� �

������� be a sequence of complex numbers with 
��� ��� � ��. Prove that the following system of equations has a unique

solution in
�� for any

���� in
��. Find the solutions for �� �

��� � �� � ������.
(a)

�� ������� � �� � � � ���� � � �
(b)

�� ������� � �� � � � ���� � � �



Chapter 5

Spectral theory

L
ET

� � � � �
be a bounded operator. A complex number� � � is called a regular point of

�
if and only if there exists

�� � �	��� as a bounded operator from
� 
� �

The rest
� � �

form a set which is called the “Spectrum of
�

” and we denote it by

��
��

. Thus ��
�� � � .

From 4.6 it follows that the set of regular points is open; there-

fore, ��
��

is a closed set.

5.1 Classification of spectrum

The points in the spectrum of an operator
�

can be categorized as

follows:

(i) The point-spectrum �
 is the set of the eigenvalues of the oper-

ator
�

, that is
� � �
 if and only if there exists � �� �� and

�� � ��.

In other words
�

is an eigenvalue and � is an eigenvector of
�

, corre-

sponding to the eigenvalue
�
. This is obviously equivalent to saying

that
����� ��	� �� �

. So, next we assume that
����� ��	� � �

, mean-

ing that
� � �	 � � � �

is one-to-one correspondence between
�

and ���� � �	�. By the Theorem of Banach, if ���� � �	� � �
then

there exists the bounded inverse
�� � �	���. Such

�
’s are called

regular.

So, in our classification of ��
��

, if
� �� �
, but

� � ��
��

, we con-

clude that ���� � �	� ���
.

Lemma 5.1.1 Let
� � � � �

be any bounded operator and
�� �� ��

57
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for � �� � ����� are distinct eigenvalues. Let �� �� �
,
��� � ���� (eigenvec-

tors of different eigenvalues). Then
������, are linearly independent.

Proof: Let
���� ���� ���� � �

. Take a polynomial
� ���

such that
� ���� � � and

� ���� � �
for � � �

. Note that
� ����� � � ������ (

� ���� is

an eigenvalue of operator
� ���

). Appling now
� ���

we get

� � ��� ����� � �

�

��� ����� � �����

So
�� � �

. We repeat the same procedure for the rest of
��’s. �

(ii) The continuous spectrum �� is defined as follows:
� � �� if and

only if
� � ��

�� � �
 ��� and

���� � �	� is dense in
�

.

Example: On �� ��� �
 define
� � �� ��� �
 � �� ��� �
 with

�� � � 
����.
Then ��� �
 � ��

��� � ��
��

.

(iii) The residual spectrum is the set �� ��� � ����� ��
 ���� (what-

ever remains). So for
� � �� ��� we have, ���� � �	� ���

.

Example Consider the shift operator
��� � ���� on

��. Trivially,� � �� ���. In fact for all
�

with
��� � �, � � �� ���.

Remark. We agree to write
��	�� for

�	 or
�	. Following theThe reader should

now try the
exercises from 1 to

5

standard inner product notation, that is
������ � �������, we must

choose
��	�� to be

�	.
5.2 Fredholm Theory of compact operators

We restrict now our attention on infinite dimensional Banach spa-

ces. Let �
� � 
� �

be a compact operator. Let �� denote the

operator � � �	 and ��
� ����.

Lemma 5.2.1 Let �� be a closed subspace of � and such that � ��
�� �� � �� �

. Then there exists �� � �,
���� � � and such that the

distance dist
��� ���� � ��.

Proof: Take any � � � ���; ������� � � � �
(such a � exists since

�� is closed). Let �� ��� be such that
������ � ��. Then �� � ����

������
satisfies the statement. Indeed,

����� � and if we assume that there
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exists � � �� so that
��� � �� � �� then substituting �� in this last

inequality we get

�
�
�
� ��� ���� �������� �� �� ���� � ��

a contradiction since �
������ � � � �

. �
Corollary 5.2.2 If ���� � �

, then the identity operator 	 � � � �

is not compact.

Proof: It is enough to see that the unit ball
���� � �� � ��� � �� is not

a compact set. Consider any family of subspaces �� �� �� �� 
 
 
 ��
�� ��


 
 

where dim��

� �. They are closed subspaces (because they

are of finite dimension) and by the previous Lemma, there exists a

sequence
��� ����, ��� �� � such that �

��� ������ � ��. Obviously,
����

is not a Cauchy sequence and there is no Cauchy subsequence of it

(why?).

1. For every compact operator � ,
� � ��� �. Indeed, if not, then

there exists � �� and � ��� � 	 is a compact operator (the com-

pact operators form an ideal), which contradicts the previous

corollary. So, next we assume that
� �� �

.

2. For every � � �
, there is only a finite number of linearly in-

dependent eigenvectors corresponding to the eigenvalues
��,��� � � �. I.e. there exists a finite number of

�� � �
, ��� � � �, and

every
�� has finite multiplicity.

Proof: If not, then there exists
����

�
� linearly independent vec-

tors and ��� � ����, ��� � � �. Consider �� � 
��
������ �� ����.
By the last lemma, take �� � ��, ��� � � � and �

��� ������ �
��. We will show that

�� �
��
�

�
does not contain Cauchy subse-

quences which will mean that � is not compact because �����
is bounded (here we used

��� � � �).
Indeed: Let �� ��

�
� ����. Then �

�
��
�

� ���������� ����
�

�
�� � �����

for some �� �����. Then, for any � � �, we have
�
�
�
��

���� ��
���
�
�
�
�
�
� ��� � ��� ��� � ��

�
� �� �

��
��	

� � ��(5.1)

(by the choice of
����). Thus there is no Cauchy subsequence

of � �������.
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The structure of �
 (the point spectrum) is now clear: it is

at most a sequence
�� converging to

�
and every

�� has finite

multiplicity. Next, we will show that no other spectrum exists,

besides
� � �

, for a compact operator � .

3. ��
� �� (So, �� is always a closed subspace.)

Let ��� � �; denote �� � �� � ��� � ��. Clearly �� � � � ��
where �� � �����. We prove first the following lemma:

Lemma 5.2.3 Let
���� � �
����� � � � ���. Then there exists

constant � independent of � such that
���� � ����.

Proof: By the homogeneity of the inequality we seek, ������ �
����� for � � �


, we can assume that if it is wrong then there

exists �� such that
����

� � � and �� � �
. Let �� be such

that ����
� �� � �

and
���� � �

(because
����

� � �, we may

choose �� to be in norm close to 1). By the compactness of

� there exists a subsequence ��� such that ���� � � (and
�� � �	���� � �

). So
���� � �; but ��� � ��� � �� � ��. Then

clearly ��� � �� � ���
�

and therefore
�����

� � �
which is a

contradiction since we assumed that
����

� � �. �
Now return to the proof of the 3rd statement. Let �� � �� and�� � �. Note that

���
�

is bounded. By the lemma above there

exists ��,
��� � � � such that ��

� ����
�� ��. Then there exists

��� such that ���� � � which implies ��� �
���
�

� ��, and

hence ��� � ��� � �. Thus � ���.

��. Consider the dual operator � � which is also compact. Let ��� �
��	�� �� ��

. Then also ��� � ��� for any
� �� �

. It can be also

shown that ��� � ���
��

(we omit the proof). In fact a stronger

statement will be used later. This is
��������

� � ���.

4. ��
� �

implies
����� � �

. (or, equivalently,
����� �� �

� �� ��
�

).

Proof: If not, then there exists �� � ����� so that �� �� �
. Hence

there exists ��, such that ���� � �� (���� is the entire space).

Similarly, for every �, there exists �� such that ���� � ����,
� � ���� � � � For such �� �

�
�
��� � �� �� �

but �
���
� �� � ��� � �

.

Therefore, if �� � �� � � ��� � �� � ���� �� , we have ���� �����.
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By the lemma 5.2.1, there exists ���� � ����, ��� � � � and

�
��������� � ��. Then

�� ��� does not contain a convergent

subsequence (contradicting the compactness of � ). Indeed, let
� � �, then � � �� � ��

�
�� ���

��
� �����. Therefore�� �� �� ��

� � ����� � ��� ����� �
����� ���� � ���� ����� �����

��� ��� 
 �� ���
. Similarly ��� ���

implies
���� �� � �

. (Just because � � is also a

compact operator.)

5. �
�
�
� ���� ��, and because �� is a closed subspace by (3), �� ��

�
�

���� �� �� �
, and moreover we have ��

� ����� �� ��).

Proof:
������ � � ���� ��� � � �

if ���� for every �. Thus � ��� � �
implies �

�
� �� ���� ��.

Now, if � � ���� �� then ������ � � �
for all �, hence ������.

��
.
����� � ������ (as the above). From this and (�

�
) it follows that

�������� � ��� �
(5.2)

6.
���� �� �� � � ����� �� �

(use (4),(5) for the one direction and

(4*),(5*) for the other).

7. Also (4) may be inverted:
����� � �

implies ��
� �

(by (6) and

(5)). Thus we conclude that

��� � � ����
��(5.3)

The statement (6) above is also called First Theorem of Fredholm

It states that,

�
 �� � � � � �
 �� �� � �(5.4)

An interpretation of (5)–(5*) is the Second theorem of Fredholm: when

does the equation
��

and � �� are given)

�� � �� � � have a solution � ��?(5.5)

Answer: Consider the homogeneous part of the dual (adjoint) equa-

tion in
��

:

�
�� � �� � ��

(5.6)
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Let
���� � � � ���� be the maximal set of linearly independent solutions

(we know that it may be at most finite). Then, a solution � of (5.5)

exists if and only if �� ��� � �
, � � �� � � � ��. (i.e. � is “orthogonal” to all

the solutions of the homogeneous dual equation). This is equivalent

to (5).

Notes: (i) Think about � as an integral operator:

� �
� 	���� ���� ��� � ����� � ���� �(5.7)

Also, in the theory of Integral Equations usually instead of
�
, we

consider the characteristic numbers �: ������ � �, i.e. �
� �

�, and

��
� �

�� is a characteristic number if and only if
�� is an eigenvalue.

Then
�� � �

corresponds to �� � �
.

(ii) There is also a Third theorem of Fredholm which we will not

study: �������� � ������� ��.

It may happen that ��� � � ���
in which case there are no char-

acteristic numbers at all.

Example: The Volterra operator. Let
� � ���� �
 and 	���� � be a

continuous function. Consider

� �
� �
� 	���� ���� ��� � � ���� �(5.8)

We will show that this equation has a solution for every � � ���� �
,
which means that � �� �
 (but any other

� �� �
may be in �
). Let

��	��� �	���� �� � � and ��	� ������ � ��. Write ��
� ��� �� 	���� ������� ���

(and ���� � � �
). Then, by induction, we assume that

��� � ����
� �

������������ � ��� and we have

����� ���
� � � �

�
�	���� �� 
 ��� �����

���
� ����

� �
�

����
�� � �����

� ����
����

�
(5.9)

Thus, �� is a convergent sequence in ���� �
. Indeed, ��
� ��� ��� ������. Thus

��� ���� � ����� so �� � � � ���� �
 which is a solution of

the equation.
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5.3 Exercises

1. Find the spectrum of the operator
�
� in

�� which is defined by�
�� � ����������� � � �� for � � ������� � � ��.

2. Find the spectrum of the operator
�

in �� ���� �
 which is given

by
��� ���� � ����� ���, where

���� � � �� for
� � � � ��� for � � � � � ��

3. Let
� � ����

be an invertible operator. Prove that ��
���� �

���� � � � ��
���

.

4. Let
� � ����

,
� � � , and assume that there exists a sequence���

��
���

� �
such that

��� � � � and
��� �

��� � �
as � � �

.

Prove that
� � ��

��
.

5. Let �� be the space of functions ���� continuous and bounded

on all of the line
������

with norm
���� 
����� ������. On the

space �� we define the operator
�

by
������� � ��� � �� where� � � is a constant. Prove that ��

�� � �� � � � ���� ��.
6. Find in �������
 or �
 ������
 —for � � � � �

— the solution of

the equation (which will depend on
�
)

� ��� � �� ���
� ��
�� � ��� ������

7. Decide if there exists a solution in �
 ������
 for � � � � �
, of

the equation

� ��� � �� ���
� ��
�� � ��� ����� � ��

8. Let
�

be an invertible operator, and 	 be a compact operator

in a Banach space. Prove that

(a) dimker
�� �	� ��

;

(b) codimIm
�� �	� ���
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9. For what � � �����
 the integral equation

� ��� � � �

�

�
�� � ��� ����� � � ���

has a solution in the space �����
?
10. For what

� � � the equation

� ��� � �� �
� ����� ����� � �

has a solution in the space �
 ��� 	
, for � �� ��
?

11. Prove that for a compact operator � the following holds:

codim��
�

dimKer
��
� � �	��

12. Let �� and �� be the right shift and left shift respectively on
��,

i.e.

�� ������� � � �� � ��������� � � ���
�� ������� � � �� � ������ � � � ���

Find the spectrum of these operators.

13. Define the operator 	
� �� ��� �
 
� �� ��� �
 by

�	� ���� � � �
�
������� �����

where
������ � � �� � � �

�� � � ��
Find the spectrum of 	.



Chapter 6

Self adjoint compact
operators

We call a bounded operator
� �

� 
� � a self-adjoint or symmetric

operator if and only if for every ��� in � we have ������ � ������.
We start with a few general properties of such operators.

6.1 General Properties

We present here the main properties of the self-adjoint operators.

1. The spectrum �
 of a self-adjoint operator
�

satisfies �
 � �.

Indeed, let
� � �
 and

�� � �� (� �� �
). Then����� � ������ � ������ � ����� � � � ��

(6.1)

2. If
�� �� ��, ����� � �
 and

��� � ����, ��� � ���� then �����.
Indeed,

�� ������� � �������� � �������� � �� ������� � but
��

are distinct reals, thus ������� � �
.

3. A subspace � of � is called invariant with respect to
�

if and

only if
���� � �. For a symmetric operator

�
, if � is invariant

then �
�

is also an invariant subspace.

Indeed, consider � � ��� � � �. Then
�� � � and we get:

������ � �
� ������ � � 
 � � ��(6.2)

which means
�� � �

�
.

65
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4. If
�

and
�

are symmetric and
�� � ��

then
��

is symmetric

[exercise].

5. Define � � 
��� ��� ������������ . Then if
�

is a symmetric operator we

have � � ���
.

Proof: Using the Cauchy-Schwartz inequality� ������ � � ������� � ������� �(6.3)

hence
������������ � ���

for all � �� �
and consequently � � ���

,

which proves the easy inequality. Now we must show the re-

verse. Note first that

���� � ���� � �� � ���� � ���� � �� � ��������� ������
�(6.4)

Using the triangle inequality we get�� ������� ������ � � � ���� � ���� � �� �� � ���� ����� � �� �(6.5)

It follows from the definition of � (and the Parallelogram Law)

that � ������� ������ � � ��� ��� � ��� � �� � ����
� � ����� � ����� �

Now let � be (any) vector with
��� � � and � � ������ (the case�� � �

does not give the “sup” hence we may assume that�� �� �
). Then

���� � and��������������� � ����������� ���� � �� �
���� � �(6.6)

for all � �� with
���� ��

This means
��� � �. �

6. ������ � � for any � �� if and only if
�

is symmetric.

Proof: “
�

” is obvious;

“�” we use a standard —but important— trick: we express a

bilinear form through the “correct” combination of quadratic

forms:

���� � ���� � �� � ���� � ���� � ��
� � ���� � ����� � ��� �� ���� ������ ����� � ������(6.7)
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(use (6.4) to simplify the checking of this indentity).

Changing the positions of � and � and taking complex con-

jugate the left side will not change (this should be carefully

checked), but the right side becomes
� ������, which means

that ������ � ������. �
7. Let �

� 
��������� ������ ��. Then either � or �� � ��
��

.

Proof: Take ��,
����� �, and

� �������� �� ��� ��
�
�
(by 5.). Let

�������� �
�

(it may be necessary to pass to a subsequence).

Clearly
� � �

�. Now
� � ���� � ����� � ���� �� � �� ���������������� � ��� � �� �������� � �

as � � �
. Therefore, the

inverse operator
����	��� cannot exist and be bounded which

means
� � ��

��
.

Remark 6.1.1 If
�

is in addition a compact operator, then there

exists a subsequence
���� that converges, say to ��. This im-

plies
����� �

���� � ��
that the limit

	�����
� �� (

� ����) ex-

ists. So, �� is an eigenvector and
�

is an eigenvalue. It also

means that there exists a maximum ��	����� � ������ � and it is

achieved on an eigenvector. Also as a consequence, if a sym-

metric compact operator
�

is not identically zero then it has a

non-zero eigenvalue
�� �� �

.

Theorem 6.1.2 (First Hilbert-Schmidt theorem) For every compact

symmetric operator � �
� � �, � �� �

, there exists a set of eigenval-

ues
��

�
�
���

� � such that
��� � � � � � � ��

�
� � ��

���
� � � � �

(converging

to zero if this sequence is infinite) and an orthonormal system
���

�
���

of eigenvectors: � ��
� �

��, such that

1. 
 � �� � � � � ����� ������ �� where � � ���� �

2. �� ����� ������� �� and 
 � � ��� � � ����� �� ���� ��
Proof: We will build

���
�

by induction. First define �� as in the

remark above (��	����� � ������ � � � �������� � and �� is an eigenvec-

tor of an eigenvalue
��, ��� � � ��� � ��	 ��������). Let

������ be

defined
�� �� � ���� � ��� � � ��� � � � � � � ��

�
��
. Let ��

� 
��
������.�� is invariant subspace of � and therefore ��� is an invariant
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subspace of � as well. Of course � is symmetric on every invari-

ant subspace as well, and in particular on ��� . Therefore, ����
�


���� ������ � � ��� � �� ������ � �� � � �� � � � ��� � ��
���

�
(
� �� ���� �).

Therefoe if ���� �� �
by the same remark there exists ���� � ��� ,

� ����
� �

�������. Of course if ����
� �

then � ���� � �
and we stop

our induction. Consider ��
� ��� ������ ��. Then �� � � � �� � ��� .

Thus,
����� � ����

���� �� �
as � � �

, because we know that��
���

� � ���� � �
(� � �

), and
���� � ���; this is under the as-

sumption that there is an infinite sequence of
�
� �� �

; and if not,

then, after a finite number of steps,
�
���

� �
meaning � ���� � �

.

Therefore � �����
������� �� � ���� . This proves the first item.

To prove the second item apply the operator � to the equality in

(1) and use that � � � �
and the symmetry of � :

�� � 

���

������� �� �

���

�� ������� �� �

��� ��

������ ��
� 
 ���� ��� ��
� 
 ������� �� �

Finally,
������� is an orthogonal basis in the 
��
������� � � and

��� �� � implies ��� �� � (in fact ��� � �). Then we know from the

general theory (theorem 2.1.10) that
���� is a basis for ��� . �

Exercise: If � is symmetric then
�������� .

Corollary 6.1.3 Let � be a separable Hilbert space. Then there ex-

ists an orthonormal basis of eigenvectors
��������.

Proof: Indeed, � � ���� � ��� and so only the case
���� �� �

should be added to (2). Consider the orthonormal basis
������� of

��� we built above. Add to it any orthonormal basis of
���� , say����. Note that � �� � �
�� � �

and so �� is an eigenvector of eigenvalue� � �
. �

Corollary 6.1.4 Let ������ � ���� �� � ������ ��. We will separate in

this expression the positive and negative eigenvalues, and we denoteWhat is the

statement

here?

by ��� the eigenvector corresponding to the positive eigenvalue
��� .

Similarly, for the negative eigenvalue and the corresponding eigen-

vector ��� .


 ��� � ������ � �� �
��� � ������ � �� � ������ �(6.8)
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(of course, if there is no, say, negative
��’s, then the second sum

does not exist). Let
��� � ��� � � � �

and
��� � ��� � � � �

Corollary 6.1.5 Let � be an infinite dimensional Hilbert space. As

a consequence of the last corollary we have:

��	�����������
� ��� �
� ��
�����������

� ���(6.9)

(or
� �

, if there is no negative
��’s; similarly, if there is no positive��’s, ��	������ � �

. We use here that
�� � �

as � � �
or becomes

zero after some �). Since by Bessel inequality
���� ����� ��������� we

get

���� ����� � ������ � ��� �����(6.10)

under the assumption that both positive and negative eigenvalues

exist, or otherwise put zero on the corresponding side. So, ������ � �
for every � �� if and only if there are no negative eigenvalues.

Corollary 6.1.6 (Minimax principle) (of Fisher, in the finite dimen-

sional case; of Hilbert Courant, in the infinite dimensional Hilbert

space.) Let
��
��� � �

(meaning that there exist at least
�� � �� positive

eigenvalues). Then ��
���

� ��

�	������������� � � � ����(6.11)

where

�
���� � � � ���

� � 
��
�����

� ������ � � � �
��
������ ���(6.12)

(A similar formula can be written for
��� .)

Proof: We know by corollary 6.1.5 that
��
���

� ��	������������� � � ��� � � � ���. Thus, if we will prove that �
���� � � � ���

� � ��
��� (for any

������), this will imply that ��
� � ��
���.

Let us show that there exists ������ � � � ���
�
,
��� � � and � �


��
���� ����� . Indeed, find � � ����� ����� such that
� � ����� � �

����� �� ���� ��� �. This is a system of �-equations with
�� � �� un-

knowns
����. Hence, there is a non-zero solution �. We may nor-

malize it so that � ��� �� � �. Thus we built such a �. Then

�
���� � � � ���

� � �� ����� 
���� �� ��� ���� �
� ���


�
��� ��� �� � ��

���
�
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�
Theorem 6.1.7 (Hilbert-Schmidt, on symmetric kernels)

Let � � �� ��� 	
. Consider the operator

	� � � �
� 	��� ���������(6.13)

where 	��� �� � �� �	��, 	 � ��� 	
 and 	 � 	�
(meaning, 	��� �� �

	�����). Let
��� ���� be all orthonormal eigenvectors of 	 from the

above theorem of Hilbert-Schmidt and 	�� � ����. Then:

	��� �� �

���

���� ����� ���(6.14)

(the convergence of the series and the equality is understood in the

sense of �� �	��). As a consequence


��� � � �
�

� �
� �	��� ���������(6.15)

Proof: Let �� ��� �� � �� ����� ���. Then
���� is an orthonormal system in

���	��. Hence there exists a function

���� �� �

��� �

	���������� ��
�
����(6.16)

and
��������� � ����� . Indeed,

�	���������� � � �
�

� �
� 	��� ���� ����� �������(6.17)

� � �
�

�� �
� 	��� ���� ������ �� �����(6.18)

� �	�� ��������� � �� ��� ���� � �� �(6.19)

Take ��������� � ���	�. By the first Hilbert-Schmidt theorem we

know that 	� ���	� ������. Then on one hand:

�	� ��� �
� �
�

� �
� 	��� ������������ �� � �	���������������� �(6.20)

and on the other hand,

�	� ��� � �
�	� ������ ��� �
�� �� ���� ��� ��� �(6.21)
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This can be written in the �� �	�� scalar product as:


�� ��� ���������� � ������������ �(6.22)

Consequently, for every function ���� and ���� in �� �	� we have

������ � �	����(6.23)

or equivalently

�� �	���� � ��
(6.24)

Note that set
��������� � � � ���	��� � � �� �	��� is complete in ���	��

[why?]. Therefore � �	 � �
(in the sense of �� �	��). �

Remark 6.1.8 The integral operators defined by the kernel functions
	����� from ���	�� lead to a very small subclass of compact symmetric

operators. Their set of eigenvalues must tend to zero so quickly that

���� � �
. For example there is no such operator with eigenvalues�

�
� ����.

Remark 6.1.9 Note that if 	
��� �� is a continuous function then it is

easy to check (check it!) that the eigenvectors �� ��� are continuous.

Theorem 6.1.10 (Mercer) Let 	
��� �� be continuous and

�� � �
(no

negative eigenvalues, which means �	���� � � 
 �.) Then 	��� �� �
���� ���� ����� ��� and this series converges absolutely and uniformly.

We omit the proof.�

Corollary 6.1.11 Under the above conditions: ��� � � �� 	��� ����
and 	��� �� � �

.

Indeed, by Mercer’s theorem 	��� �� ���� ��� �����. Recalling that

� �
� ��� ������� � ��(6.25)

and integrating both sides we get: ��� � � �� 	��� ����
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6.2 Exercises

1. Let
�

be in ����
, where � is a Hilbert space. Define on �

��� �
� �� the operator

�
by

� � � � ��
���� � � �

Prove that
���� ���

and that
�

is itself adjoint.

2. Let � and � be given vectors in a Hilbert space �. When does

there exist a selfadjoint operator
�

on ����
such that

�� � �?
When is

�
of rank �?

3. The operator 	
� �� ��� �
 
� �� ��� �
 is given by

�	� ���� � � �
�
������� ������

where ������ � ��
����� for
� � ��� � �.

(a) Prove that 	 is a compact self adjoint operator.

(b) Find the spectrum of 	.

(c) Find
�	 �

.

(d) Prove that 	 is positive and find the sum of it’s eigenval-

ues.

4. The same as in the previous exercise for the case

������ � � �� �� � � � � � � ��� �� � � � � � � ��
5. The operator 	

� �� ��� �
 
� �� ��� �
 is given by

�	� ���� � � �
�
������� ������

where ������ � ��	����� for
� � ��� � �.

(a) Prove that 	 is a compact self adjoint operator.

(b) Find the spectrum of 	.

(c) Is 	 a positive operator?



Chapter 7

Self-adjoint bounded
operators

7.1 Order in the space of symmetric operators

Definition 7.1.1 An operator
�

is called non-negative (and we write� � �
) if and only if

������ � �
for all � � �. This of course implies

that
�

is symmetric by the sixth propert of section 6.1. Also
� � �

means that

1. both
�

and
�

are symmetric

2.
� �� � �

7.1.1 Properties

1. �	 �� � 	 implies
��� � �. Indeed, the inequalities mean that�

is symmetric and 
������� � ������ � � �. Now use the fifth

property of section 6.1).

2.
� � �

and
� � � � � �

(again by property 5 of section 6.1).

3. Let
� � �

. Then
� ������ �� � ������� 
 ������� (this follows

from the fact that ����� � ������ is a quasi-inner product and

by the Cauchy-Schwartz inequality for such products (see the

exercise immediately after the theorem 2.1.1).

4. If � is symmetric and
� ��

then
� �� �� ��.

73
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5. If
�

is symmetric then
��� � �

. Indeed,

�������� � ��������� � ������ � ��
(7.1)

If
� � �

then also
����� � �

because

���������� � ���������� � ��
(7.2)

It follows that for any polynomial
� ���

with nonnegative coeffi-

cients
� ��� � �

.

Theorem 7.1.2 (On the convergence of monotone sequences of operators)
Let

�� ��� � � � � ��
�
� � � ��

. Then there exists a strong limit of
��

�
�
�

(i.e. there exists a bounded operator
�

and
�
�� � �� for all � ��).

Proof: For every symmetric operator
�

there is a number � such

that
� � � 
 	. So, changing the sequence to

� � ��
� �

������ � 	
(where �� is such that

� ��� � �� 
 	) we can assume, without loss

of generality that our original sequence already satisfies

� ��
�
� 	 �(7.3)

For � � 	 define
��� � �

� �
�� � �

. Also
���� � � � since� � ��� � 	. Then using the inequality of propert 3 above it follows

that for any � and � � ���� we have���� ������ � � ����������� �(7.4) � � �������� � 
 � ������������ �� � �������� � 
 �����(7.5)

again because
������ � ��� and

������� � ���. Thus,���� ������ � � ������� � ������� � 
 ���� �� �
(7.6)

as � �	 � �
for all � � � because the sequence ������� is mono-

tone, increasing and bounded, and therefore it converges.

Hence,
��

��
�

is a Cauchy sequence and the limit
	�����

�� ��
exists. Obviously

�� depends linearly on �. Also
� � �������

�
����� so it follows that

� � ������ � ���� which implies that
�

is a

bounded operator.
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Proposition 7.1.3 (The Main Proposition) Let
�

be such that

	 
 	 �� �	 
 	(7.7)

for some 	�	 � � and let
�

be a polynomial satisfying
� ��� � �

for

all � � �	�	

. Then

� ��� � �
.

The main point in the proof of this proposition is the following

lemma:

Lemma 7.1.4 If
� � �

,
� � �

and
�� � ��

, then
�� � �

.

This is nontrivial; the symmetry of
��

is trivial, but not the

positiveness. This lemma follows immediately from the next one.

Lemma 7.1.5 Let
� � �

. Then there exists an operator
�

(and it is

unique) such that
�� � �

and
� � �

. We write �� for
�

. Moreover,


� such that
�� � ��

it is also true that ��� � ���.

Note that the lemma 7.1.5 implies the lemma 7.1.4. Indeed,

���������� � ���������� � ��
(7.8)

Proof of Lemma 7.1.5. We want to find
� � �

such that
�� � �

.

We may assume that
� � � � 	. Let

� � 	 �� and � � 	 ��
. Then� � 	 ��

,
� � 	 � � ,

� � � � 	 and the equation to be solved is
�	 � � �� � 	 � �� � � � � 	 ��

, i.e. � � �� �� � � ��. We solve it by

approximating its solution through the sequence ��:
����

� �� �� � � ��
� �
� �� � � �

(7.9)

We can see by induction on � that:

(a) ��
� �

and �� is a polynomial with non-negative coefficients

of
�

for all � � � (this is straightforward).

(b) ��
� 	. Indeed, ����

� 	 � ��
� 	 because

� � 	 and � ����
�

	. We must explain the last fact: it follows from the inequalities� � ����
� 	 that

������ � �. Then
�� ��������

� �������������
� ����.

(c) Statement: ���� ���
� �� �� �� �� ����

� � �� ��� �����
���� �����

�

(we use here that ������
� ������ because they are ((by (a)) polyno-

mials of the same operator
�

). Now, �� � �� � ���, and assuming
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by induction that �� � ���� is a polynomial of
�

with nonnegative

coefficients we derive the same conclusion for ���� � ��. So, by in-

duction, ������� is a polynomial of
�

with nonnegative coefficients

and as a result

���� ���
� �

(for every � � �� �� � � �)�(7.10)

Hence, by theorem 7.1.2, �� � �� for some operator �� (strongly).

Clearly, �� � �� �� � � ��� meaning that
� � 	 � �� is ��. Also� � �� � 	 implies

� � �
.
�

is a (strong) limit of polynomials of
�

(and also of
�

); therefore for all � such that
�� � �� we have

� ���� � �� ��� � �� � ���
(7.11)

Corollary 7.1.6 . If
� � �

and ������ � �
then

�� � �
Proof: Indeed taking

� � ��we have ������� � �
implies ������� ��

and this implies
�� � �

. Thus
�� � �

. �
We do not need the fact that the positive square root of

�
is

unique in the proof of lemma 7.1.4. However as a usefull exercise

let us show it. If
�� � �

and
��� � �

, then
�� ��

. Indeed:

(i)
��� ���� � ��� ���� ����

(ii) If � � �� ����� �
� � ��� �������� � ������

� �� ���
� �������� �� ���

�
�� �

�
and

��� � �
�

�� ���� � �

(iii)
��� ������� � ��� ��������� � �

�
� ���.

Now we will prove the Main Proposition from lemma 7.1.4.
� ��� ��

for � � �	�	 �
implies

� ��� � � �����
�� ���� �����

��� ��� 
���� ����� � ��� 


for some � � �
. Obviously

� � ��	 � �
, ��	 �� � �

and
�� � ��	�� ���� 	 � �

. Since all these operators are pairwise commutative, their

products are also
� �

by lemma 7.1.4. �
Corollary 7.1.7 If 		 �� �		 and

�������� ��� are real polynomials

and
����� � �� ��� for all

� � �	�	

then

����� � �����.
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7.2 Projections (projection operators)

Let � be a linear space. A linear operator
� � � � � is called a

projection if and only if
� � � �

. Define �� � ���
and �� � ���� .

7.2.1 Some properties of projections in linear
spaces

1.
� ��	 � ���	 (i.e. 
 � ��,

�� � �).

Indeed, for all � ��� there exists � �� such that

�� � � �
� �� � �� � � � �� � � �� � �� � � � ���

2. 	 �� � �
is a projection

��� � ��
and

��� � ����	 �� � � ���� � ���	 �� ��
(7.12)

Indeed,
� �	 �� � � �

implies ���	 �� � � ���� �(7.13)

also if � � ���� we get
�	 � � �� � � and this means

���� �
���	 �� �

.

3. Let �� � ���� ���� � ����� � then ����� � � and ����� � �
(i.e.

�� ���� is a direct sum and � is a direct decomposition on ��
and ��). Indeed,

�� � �	 �� �� � � and
��� � �� �	 �� �� � ��

imply � � �
.

4. Let � � � � � be any linear operator, �� ���� � � and
�

be a

projection onto �� parallel to ��. Then
�� � �� if and only if

�� and �� are invariant subspaces of � .

Proof: ��� � ���� � ���� �� ��. Thus � � �� � ��. Similarly

for ��: use instead of
�

operator
� � 	 ��

. The other direction

is left to the reader as an exercise. �
Now, let

�
be a projection in a Hilbert space � and assume that

it is also a symmetric operator: ������ � ������.
Then,

1.
�

is an orthoprojection
�������: for all � and � in �,

���� �	 �� ��� � ��� �� �� ���� � �
(7.14)

i.e. �������	 �� ��
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2.
� � � � 	 since ������ � �� ����� � ����� � ���� (from item 1),

hence
� � � � 	.

3. Let �� � ����, i.e. �� � ���. If
���� � �

then
���� � �

,

����� and
�� � �� is an orthoprojection onto �� ���. Indeed,

��������� � ��������� � �
;
� � ������� � ����; ��� � ���� �

�� � �� and ����� � ��� � �� ���.
4. Let

���� � ���� � �
. Then

�
is an orthoprojection (obvious)

and � � ��� � �� ��� ��� � ����
.

Indeed, obviously �� ��� �� � (
�� and

�� are equal to ���	���
when restricted to �� � ��). Also

�� � �� (because
� � ����)

and
�� ��� (because

� � ����). So � �� �� ���.
5. If

���� � �� then �� �� �� [
�� � � �� � ���� � ���� then apply

item 4 above] and
�� � �� � ��� ����� � �� ��� and so

� �
.

Moreover,
�� � �� implies

���� � ��. Indeed,

����	 ������� � �
��

�
� �� �
�	 ������

�
� �� �
�	 ������� ��� �	 ������ �	 ������� �

(7.15)

which implies
�� ����� � ��



Chapter 8

Functions of operators

L
ET 		 �� �	 
	; AND � �	 �	 � 	. Let 	 ��� 	
 be the set of

piecewise continuous bounded functions and such that they

are monotone decreasing limits
���

of continuous functions.

Examples:

This function �	 and this function is not

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������� �

�

� 	
�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� �������������������� ��

� 	
(8.1)

(Such functions are semicontinuous from above (meaning that

for all
� � ��� 	
, 	����������� � ���� ) which is equivalent to saying that

all sets
�� � ���� � �� (
 � � �) are closed sets.)

Lemma 8.0.1 Let �
��� � 	 ��� 	
. Then there exists a sequence of poly-

nomials
�
�
����

�
���

as � � � 
 � � ��� 	
.
Proof: First, it is given that

�
��

��� � ���� 	
 such that ��
��� �

�
���

.

Also, by Weierstrass theorem 
 � ��
�
���

-polynomial such that��
�
��� � ���

���� �����

 � � �����

�
(8.2)

Then
�
���

��� �
����

��� � ����	 �
��

��� � ����	 � �
�. So

�
�
���

is non-

increasing and obviously
�
�
����

�
���

(because ��
���

does). �
The Lemma gives us the possibility to define for every � � 	, an

operator �
���

:

79
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Definition 8.0.2 (Defining �
���

) Let
�
�
����

�
���

for 
 � � ��� 	
. Then
�
�
��� � �

���
��� � � � �

and it is bounded (because �
��� � �� ��

�
��� � �� 
 	). So, by (vi) the strong limit of

	���
�
���

exists (call

it
�

) (later it will be called �
���

).

We would like to call such a limiting operator
�

as �
���

. In this case

though, we must prove correctness (consistence) of such a defini-

tion. This means that
�

should depend only on �
���

and not on the

specific sequence �� ��� � �
���

. So, we should prove that if another

sequence of polynomials
�

�
��� �

�
���

(
 � � ��� 	
) then the strong

limit of
�

�
���

is the same
�

.

We prove a stronger statement needed below:

Lemma 8.0.3 Let
�

�
��� � ���� � 	 (
� � ��� 	
) and

�
�
��� �

�
��� �

	. Let
���� �

�
��� 
 � � ��� 	
 Then

	����
��

�
��� � �� � �� �

	����
� �

�
���

.

(So, if
���� �

�
���

�
�� � �� and

�� � ��, which implies
�� � �� �

�
���)

Proof: 
 ��
 � � ��� 	
 ������ such that for every � ��� ���
�� ��� � �

�
���� �

� ����(8.3)

This implies that
�

open interval 	 ��� around
�

where
��� is also

satisfied. So, we have a covering of ��� 	
 by open intervals. Choose

(by Heine-Borel Theorem) a finite subcovering
�	 ���������. Then 
 ���� � ��	����� ������ and for every � ���

�� ��� � �
�
���� �

� for every
� � ��� 	
 .(8.4)

Then letting � � �
we get

�� � �
�
���� �

�	 (� is fixed here). Letting� � �
and we have

�� ���. �
So, we define a correspondence � �	 
� �

��� � ����

8.1 Properties of this correspondence (�� � �)

(i) �� � �� 
� ����� � �� ��� that is,
�
�� � ������ �

����� � �� ���.
[Indeed

� ���
�

�
�� � � ���. Then

� ���
� �� ���

�
�

����� and the choice of

polynomials tending decreasingly to �� � �� does not influence the

limiting operator.]
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(ii) For � � �
,
�������� � � 
 �����

(iii)
�
�� 
 ������ � ����� 
 �� ��� right now this makes sense only

for �� � �
and �� � �

because otherwise �� 
 �� may not belong to

the class 	.]

(iv) �� � �� � ����� � ����� (this was proved before).

We consider now the linear class of functions 	–	 of the form� � � � � where �, � � 	. Then we write
���� � � ��� � �

���
(by

definition) and we trivially check that if
� � �� � �� � �� � ��, then�� � �� �

�� � �� � ����� � �� ��� � ����� � ����� � ����� � ����� ������ ��� ��� and hence
����

is defined correctly. We may complete

now the property (iii) above:

Let �� be constants such that �� � �� � �
and �� � �� � �

. Then

define �� 
�� � �
�� ������� ��������� ����������, and

�
��������

is defined through this identity and equals ����� 
 �� ���.
We are now ready to derive the spectral decomposition of a self-

adjoint (=symmetric) bounded operator in �.

Consider the function

�� ��� � �� for
� � �

�
for

� � �(8.5)

����� � 	 ��� 	
 and define ��
� �� ���. Then,

(i) ��
�

� �� (because �� ��� 
 �� ��� � �����) and �� is symmetric

(because �� ��� is a real valued function, so
������� � �).

Thus �� is an orthoprojection and �� is symmetric.

Moreover �� � �
and �� � � (because one compares it with the

0-function and with the identically 1 function).

(ii) �� is continuous (with respect to
�
) from the right (in the

strong sense): Indeed, let
�
�
��� � ��� 	� ��� and

�
�
��� � ����� then

�
�
��� � ��� 	� � ����� � �� (��� � �

�
� �

) and as � � �
,
�
�
��� �

��
�
So ����� ������ �

�].

(iii) ��

��

� �� (
� �

�), because ����� 
 �� ��� � �� ���.
A family

���
�

with such properties is called “spectral family” or

a “decomposition of identity”.

(iv) ��
� � ��� (because �� is a limit of polynomials of

�
).

Therefore (by the property (iv) of linear projections) ����
� �� is

an invariant subspace of
�

.
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8.2 The main inequality

Let
�� � ��. Then������ ��� � ��	 ���
 � � 
 ���� ��� � ��	 ���
 � �� ���� ��� � ��	 ���
 �(8.6)

inserting
�

in the place of
�

we get������ ���	� ������ ���	� � �� ���� ���	� ���(8.7)

Observe that ����	 � ��� ���	 is an orthoprojection. Let ����	 �������	. It is an invariant subspace of
�

and (for � �����	) we have��	����	 �������	 � ��	����	. Therefore, for 
 � � ������
:�� � �	 �����	 � � � �� � ��(8.8)

Thus, our operator is close to a constant operator on this subspace.

We are going to build now an integral.

Consider a partition of
��� 	� � � � ��	 � � � � � 	 � �

�
� 	, with

norm of partition � � ��	 ����� � �� � � �. Choose (any) �� � ��� �����
.
Adding (�) we have

���

�
�� ���

�
�	 ���

�
� � � ����


� ��

�
�	 ���

�
�

� ���

�
�������

�
�	 ����

��
(8.9)

Then

��	 � ���

�
��� �������

�
�	 ���

�
�

(8.10)

� � � ���

� �� ���

�
�	 ���

�
�

(8.11)

� ���

�
����� �������

�
�	 ���

�
�

(8.12) � �	 �(8.13)

since �� � �� ��� and
���� ��� � �. Consequently, by the property

(i) of symmetric operators if ��	 � � � �	 �
�� � � � and we have

�
�
�
�
� � ���


� �� ���

�
�	 ���

�
�
�
�
�
�
� �(8.14)
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for any partition of the interval with the norm of partition
� � and

any choice of �� inside the intervals of the partition.

Then, there is a limit (in the norm of operators) when � � �
and

the natural name for this limit is “integral”. So, we define a notion

of integral:
� � � �

���
����

� � �
��

����(8.15)

(meaning that we should take (any) � �	 as the low boundary, but,

because of continuity from the right of ��, we may take the upper

bound to be 	; note that �� � 	 for
� �	 and �� � �

for
� �	).

Theorem 8.2.1 (Hilbert) For every
�

self-adjoint bounded (or � sym-

metric bounded) operator � there exists a spectral decomposition (�

spectral family) ��
�� � �� of orthoprojections, such that,

(i) ��
� � �� �	�

[we assume that 		 �� �	 
 	] � 	 �� �	 �

(ii) ���� � �� (continuous from the right)

(iii) ��	 ���� for
�� � ��

(iv)
� � �

�
�� ����

(v) �� are strong limits of polynomials of
�

and therefore they com-

mute with any operator
�

which commutes with
�

(vi)
��� �� � � ������� �� �

(vii) a family
���

�
that satisfies (i)-(iv) is unique.

Proof: We proved above (i)-(v). We will not prove (vii) (uniqueness) in

this course.

But we will prove (vi): just return to the definition (description) of� ���� and observe that ���� � ����	 ���� are pairwise orthogonal

orthoprojections: ��������� for � �� �
(���� 
���� � �

). Moreover,������ �� � ������ �� � � �����	� �� � � ����� �� �. Therefore, for any

partition of
��� 	� the Riemann–Stiltjies integral sum���
�

�� ������ �� � � ��� �� ��� � �(8.16)

which proves (vi). Note that
���� �� � is a monotone function of

�
for any � and

� ������ �� �� � can be understood as Riemann–Stiltjies

integral.

Let us finish with one additional fact.
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Proposition 8.2.2 (Fact) If � is a continuous function on �	 � ��	

then �

��� � ����� ������� and the integral exists (converges) in the

operator norm (i.e. “uniformly”) and
�
�
������ � �

�� �����������.
Thus, we should prove two things: that the integral converges to

some operator and that this operator was called before �
���

.

Let �
��� � ��

. Then
�� � �������� �� ���

�
����� � � �����.

Hence,
�� � ����� �����. From this follows that for any polyno-

mial
� ���

we have
� ��� � ����� � ������.

Let � � ���� 	
. For a given � � �
, find a polynomial

� ���
such that�

�
��� �� ���� ���
��� �� � �� �
 � � ��� 	
� and

Then (i):
�
�
��� �� ���� � �

Also for a suitable partition of ��� 	
, define the corresponding Rie-

mann integrable sums for
� � ���

as ��� ��
��
��� and as ��

�
��
���

for
�
� [we take � in the same points �� as for

� ���
]. Then, (ii)���� ��

��
��� ���

�
�
��
��� � � � �

���� ������� ������� � � [now it is

integral sums for operators]. Also, because we proved the theorem

for polynomials
� ���

, we have

(iii)
�� ��� ���� ����� � �

All together we have (joining (i), (ii) and (iii)):

�
�
��
��� �
 �

�
������

�
� �� �

(8.17)

Consequently, the integral sums for �
���

converge in norm to an

operator that was defined earlier as �
���

.

Examples: (1) Let
�

be a compact operator;
�� � ��� ��������.

Then ��� ���

�
��
�������� for

� � �
and

��� � � � 

�

�
��
�������� ��� � � � �

(8.18)

(2)
����� � � 
 ���� � �

������� � �
��� 
���� and ������ � �� ��� 
����.

We may define the operator �
���

for a larger class of functions:

Let �
���

be a measurable and bounded integrable function with re-

spect to ��
� � ���� � ������� for any ��� ��. Then, by definition,

�
�
������� �

�
�
������������ ����(8.19)

Note that ��
������ is of bounded variation (for every ���). How-

ever, returning to � � ���� 	
 we see that, given
�����, we have (by
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����) a linear continuous functional on ���� 	
 defined by ��
������.

Then it is known that such functional defines a function ��
������

of bounded variation in the unique way under the normalization

conditions: ���� � �
and semicontinuous from the right.

Hence
������� is uniquely defined for every ���, which implies

that ��� is uniquely defined for every �. Thus
���

�
is uniquely

defined by the conditions (i)-(iv) of the theorem of Hilbert.

8.3 Simple spectrum

We say that
�

has a simple spectrum if
��� � � called a generator

such that
������ � ���� ���	�� � 
 �� � ��� is a complete set in �.

It is easy to see that this is equivalent to the fact that
�
�
������ is a

complete [set] for a family of all continuous functions on ��� 	
.
We say that two opererators

�� and
�� are unitary equivalent if��

-unitary and
�� � ������. In fact, we use this notion also in the

case
�� ��� � ��, � � ��� and

� �
�� � �� being an isometry onto.

Theorem 8.3.1 Let
�

be a self-adjoint (bounded) operator with a

simple spectrum and generator ��. Let ��
�� � ����� ���� where

���
�

is a spectral family of orthoprojectors defined by
�

. Then
�

is unitary

equivalent to operator � � ������ � ������ where ����� � � 

�
���

.

Proof: Consider first any continuous function �
��� � ���� 	
 (where
������� � ��� 	
). Note that a set of all such functions is dense in

������ (in fact, it follows from the definition of ������).
Consider the map

� �
�� �

�
�
�
����� � �

�
��������. Then��

�
�� � � �

� �
������� ���� � �

�
��������(8.20)

It is easy to check that the condition of simplicity of spectrum im-

plies that
���� is a dense set of �.

Thus, the linear map
�

is extended from a dense set
�
�
�
con-

tinuous functions
�

to the completion ������ and we built an isometry
� � ������ � � (onto, because the image of an isometry is a complete

space). It remains to check
������ � �

�
���

:

�
�
����� �

� �
�
�������� �

(8.21)
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So
��

� 
� �
�
���

.



Chapter 9

Spectral theory of unitary
operators

� �
� � � is unitary if

������� � ����� 
 ��� � � and ��� � �
(otherwise, we talk about isometry).

Properties 1.
��� � 	 � ���

(unitary) 2. Linearity of
�

is a

consequence of
��� ���� � ����� 
 ��� � �. 3. If

�
is linear and

��� ���� � ����� 
 � then
�

is unitary.

Example �� ������
:

�� �� � � �
��� 	���

�
�
� �

�� � ��������� � � � ��
������(9.1)

��� �� � � [substitute � with ��].
[regularization: � � � ����

�
��

�
�
�� ���������� � �����].

9.1 Spectral properties

(1)
�� � �� �

���� �;
(2)

��� � ���� and
�� �� �� then

������� � �
[Indeed:

������� �
��������� � ���� ������� � ������� � �

].

We say that a subspace � �� � reduces
�

iff

� � � � � �
� � � �� ���(9.2)

(that is, both � and �� are invariant subspaces).

(3) If
� � � � � and

��� � � � � then
� � �� � ��. (Just use

������ � ������� �.)
87
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Consider now a polynomial
� ��� of � and ��� for

�� � � � (i.e. for

� � ���, � � �):

� ��� � �

��

������ �
���� �
� ��� �
���� �

(9.3)

Properties of this correspondence:
(i)

��� � ������ � �������� ��� �	�
�������
(ii)

��� 
������ � ����� 
�� ��� ���	���	����������
(iii)

� ���� ������� � � ����� � � ������� �
(iv) If

� ��� � �
for

�� �� �, then
� ��� � �

.
Proof: We start with a lemma.

Lemma 9.1.1 Let
� ��� � �

,
�� � � �; then there is another polynomial

���� so that
� ��� � ���� 
���� � �������. (Note

���� � ���� � ������.)
Proof: Let

� ��� � �
(we may consider

� ��� � � � �
for the original

� ��� to create a strict inequality and then � � �
). Then ��� ��� �

����� ����� � ������� ����� � ���. Next remember that
�� � � �. � ��� �

����� ��� ����� ��� � �� � � � ��� (because it is real for
�� � � �). Note

that ��� � �� and the number of all roots is � �	.

So
� ��� �

������ ��� �� � ��� �� �� � ��� � � � ��� (for some ��). Since

it is still the same polynomial with the same roots we see that there

is correspondence �� � ��� (
 � � �� � � � ��), 	 �� � �� and � � 	 � �.
Define

���� � ���� ����� � ���. Then
���� 
���� � ���� ���� ������� ��� �

��� ��� � �
meaning �� � �

. �
Returning to prove we write (iv),

� ��� � ���������� � ���� 

����� � �

.

We continue as in the case of self-adjoint operators. Let �
��� �

�
������ � �

(remember:
�� � � �) and

�
�
��� � �

����� (for every
�
) (
�
�
���

are trigonometric polynomials). Then we define �
��� � �

as the

strong limit of
�
�
���

. We extend the definition of �
��� for func-

tions � � 	� � ����� � ����� for any complex numbers �� and ��.
We check, of course, consistence of our definitions considering the

unique decomposition
���� � ������ � ������� [�

�� � ���] and then���� � ������ ��� ���.
All the properties of the correspondence

������ 
� ����
can be

checked as in the case of self-adjoint operators. The one which

should be checked in addition is:

�
���� �

�
�������(9.4)
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(because it is true for approximating polynomials).

To build a “spectral family of projections” for a unitary operator

we consider the functions

�
�
����� � �� for

� � � � �
�

for
� � � � ��(9.5)

and
�� ����� � �

,
��� � �. Let also

��� ��� � �� for
� � �

�
for

� � � � ��(9.6)

Then
�
�
��� � �� are orthoprojections. To prove continuity from

the right of this family, introduce
��� � �������� and prove continuity

from the right of the family
���� ����. Then return to

���
�
. We build

spectral integral. First functional inequality is

��� � �

�
���� ���� ����� �����	 �����
 � ������ �(9.7)

�������� � ���� � ���� � � �� ��� � � � (where
���� � � � ����(9.8)

then ������ 
������ � �� which implies

�
�
�
�
� � �


���
���� ���� �����


�
�
�
�
� � �

(9.9)

Thus,
� � � ��

�
������ �
� �� � � ��

�
������� �(9.10)

for � � �������� � � � (For negative powers take the dual operators
�� � ��� � � ��� �������). Similarly, for continuous functions �

�����

�
��� � � ��

� �
�������� �(9.11)
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Chapter 10

The Fundamental
Theorems.

W
E STUDY THE following structure: a linear space � over

the field of real numbers � or the field of complex num-

bers � . Usually we assume that the dimension of � is

infinite. We endorse � with a norm
� 
 �

and set
� � ��� � 
 ��. We

assume that
�

is a complete linear space with norm and we call

such a space a Banach space.

A linear functional � � � 
� � (or � if
�

is over � ) is called a

“linear functional” or just a “functional”. The set of all linear func-

tionals is a linear space denoted with
��

( or �
�

emphasizing that

only the linear structure is involved). A subspace of
��

consisting

of bounded (i.e. continuous) functionals is called the dual space
��

and it is a normed space under the norm�� �� 
��
� ���

�� ������� �
(10.1)

The dual space of any normed space
�

is a Banach space.

Let � be the set (linear space) of all bounded linear maps (oper-

ators) from
�

to � . Again, this is a Banach space under the norm�� �� 
� � �� 
��
� ���

�������(10.2)

if � is complete.

We will deal now with the three most fundamental theorems of

Functional Analysis. Some of them are based on the notion of cate-

gory (Baire category).

91
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10.1 The open mapping theorem

Let 	 be a complete metric space (not necessarily linear). We call

a subset
� � 	 to be of first category if

�
is a union of countably

many sets
� � ���� and the

��’s are nowhere dense (meaning that

the closure
�� does not contain any interior points) for every �. A

set � which is not of first category is called a set of second category.

Note that if a closed set
�

is of second category then
�� �� �

.

Theorem 10.1.1 (Baire-Hausdorff) Every complete metric space 	
is a set of second category.

Proof: Assume 	 � �
�
� �� and that every

�
� is nowhere dense.

Then there exists �� �	 � �� meaning that there exists �� � �
and

a ball
�� � �������� of radius �� and center �� so that

�� � �����.
Similarly since

�� is nowhere dense there exists �� � ��� �����, that

is, there exists
� � �� � �� and a ball

�� � �������� � �� � ��. We

continue in this manner thus producing a sequence
���

��
��� and�� � ��

� ��
such that

�������
� ������������

� ����(10.3)

Then, by the completence of the space 	 the limit �� � 	����
exists and �� �� �� for every

� � ���� � � �. Thus 	 �� ���, a contradic-

tion. �
Definition 10.1.2 A set 	

��
is called perfectly convex if and only

if for every bounded sequence �� � 	 and for every sequence of reals�� � �
such that �

�
����� � � we have that �

�
��� ���� � 	.

We also define 	�
to be the interior of 	, 	 the closure of 	 and

	c � �� � 	 � 
� � � �� � � �
� �� � �� � ��� � 	 ��� � � � � �
is the

kernel of 	 (sometimes called the “center” of 	).

Note that for any � �� if we put 	� �	 �� we have,

�	��� � 	� ��� �	��� � �	�� ���(10.4)

	�c � 	c ��� 	�c �	
c

���(10.5)

so 	 �� is perfectly convex if and only if 	 is perfectly convex.

Theorem 10.1.3 (Livshič) If 	 is perfectly convex in a Banach space
�

then
	� �	c �	

c � �	�� �
(10.6)
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Proof: We will show that

�	�� �	� �	c �	
c � �	���

(10.7)

Of course the middle two relations are trivial. We will show the

first and the last one. For the first one it is enough to prove that� � �	��
implies

� � 	�
. Let � be such an �-ball that � � 	. This

implies

� �	 �� �	 �� � ��� �
(10.8)

Then, for every
� � �

�� � ��	 ����
��� �

(10.9)

It follows that for any � � ��� we may write � � ���� � �� where

�� � 	 � � � �� � ��� and again using (10.9) �� � ���� � �� with

�� � 	 �� and �� � ���, and so on. Therefore, � � �
�
���

����� � 	

(since 	 is perfectly convex). Thus, we proved the first inclusion.

To prove the last one, we deal again only with the case
� � 	

c

. It

follows from the definition of the kernel of 	 that

� �
��
���

� �	 � ��	���
(10.10)

By Baire’s Theorem
�

is of second category meaning that one of the

sets in the above union is a set of second category; so, 	
� ��	�

is

of second category and consequently it has an interior point, say ��;
i.e. for some � � �

���� ��� � �	 � ��	���(10.11)

where ���� ��� is the �-ball centered at ��. It follows that������ ��� � ������ ��� �	 �(10.12)

meaning that
� � �	�� � �

Corollary 10.1.4 (Open Mapping Theorem) Let
�

and � be Banach

spaces and
� � � 
� � be a bounded linear operator onto � . Then�

is an open map meaning that for every open set �
� �

its image���� is an open subset of � .
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Proof: If �� is an open ball in
�

then
����� is perfectly convex in

� (we use here that our map is onto). Obviously
� � ����c

implies by

the previous theorem that
� � ����� and this proves the corollary

(again we proved only that
� � ����c

but similarly we prove that for

all � ��c
we have

�� � ����c

). �
Important partial case: Let

� � ��� 
���
be onto and one-to-one.

Then there is
��� � ��� 
� ��

and
�

is an isomorphism between

these two spaces. In other words,
�

can be considered the identity

map (from the linear point of view) between
�

and � (by just renam-

ing in � �� as �). This implies that if a constant � exists such that���� � ����� for all � � �
and the linear space is complete with

respect to both norms it follows that there exists an other constant

�� such that
���� � ������ for all � ��.

10.2 The Closed Graph Theorem

Let
� �� 
� � be a linear operator. The set

���� � �������������� �� ��(10.13)

is called the graph of
�

. We say that
�

is a closed graph operator if
����

is a closed set in
� �� ; this means that whenever �� ����

�
,

�� � � and
��� � � then � ����� and

�� � �.
Theorem 10.2.1 (Banach) Let

� �� 
� � be a closed graph operator

and Dom
� ��

. Then
�

is a continuous (i.e. bounded) operator.

Proof::
����� is perfectly convex [indeed: take any bounded set���� � ����� i.e. there exists �� � � and

��� � ��; let
�� � �

and

��� � �; then ��� ���� � � � � and ��� ���� � �; by the closed

graph condition
�� � � meaning ����� � ����]. Clearly

� � ����c �

implying the continuity of
�

. �
Examples: We say that an operator

� � � 
� � admits a closure

if and only if
�� �� �� is the graph of a closed operator.

(a)
� � �� ��� �
 
� �� ��� �
 and

�� � ���� 
 � and Dom
� � ���� �
.

Clearly this operator does not admit a closure.

(b)
�� � �

��� in �� (or �) with Dom
� � �� � �� � �� � ��� (or

Dom
� � �� � � � �� � ��

). This operator admits a closure and

to understand this the following easy fact is useful:
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Fact: If
�

has its graph closed and the inverse
���

exists, then���
has also a closed graph (since the graph of

�
and

���
are the

same). Thus if
� � � 
� � is a compact operator and Ker

� � �
then���

is formally defined on Im
��� ������� and has a closed graph.

Remark: It is also possible to prove Closed Graph Theorem from

Theorem from the Open Mapping Theorem with the following direct

argument:

Consider the subspace � � ������ � � � ��� �� � �� . If
�

has

its graph closed then � is a closed subspace therefore complete.

Define � � � 
� �
by ������ � �. This operator is onto (because

Dom
� � �

) and one-to-one. Then ��� is bounded. Moreover the

operator � � � 
� � defined by � ����� � � is continuous. Thus� � ���� is a continuous operator. �
We give next an application of the Closed Graph Theorem:

Theorem 10.2.2 (Hörmander) Let
�� ������ be Banach spaces and

�� � �� 
� ��, �� � �� 
� ��, Dom�� � �����, �� is a closed op-

erator and �� admits a closure. Then there exists � � �
such that����� � �������� ���
 for all � ��������.

Proof: Consider the closed subspace � of
�� ��� with

� � �������� � � �������(10.14)

and set � ������� � ���. Then � is a closed operator [indeed: �� � �,

���� � � and by the closeness of �� it follows that � � ��� and also

���� � � implies � � ���]. Also Dom� � �. This implies that

� is continuous, i.e., there exists constant � such that
����� �

����������. �

10.3 The Banach-Steinhaus Theorem

We start with a late version which belongs to Zabreiko:

Theorem 10.3.1 (Zabreiko) Let � be a function on a Banach space
�

, �
��� � �

, �
����� �

as
� � � � �

for every � �� (continuity in every

direction). Assume that � is perfectly convex, that is, if the series

�
�
� �� converges then

�
��


� ��

� � �


� �

���
��

(10.15)
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Then � is a continuous function.

Proof: Consider, for every � � �
, the set 	� � �� � ���� � ��� Then� �	c � (because of the continuity in each direction) and

�
��


�

����� � �


�

������� � �(10.16)

for every
�� � �

, �
�
� �� � � and �� � 	�. Thus, 	� is perfectly

convex. Therefore, by the above theorem
� �	o � meaning that there

exists
� � �

such that the ball �� of radius
�

and center at zero.

In other words, for every � � �
there exists

� � �
such that

��� � �
implies �

��� � �. So � is continuous at
�
. The continuity at any other

point � follows from the continuity at
�
: let �� � �; by convexity it

follows that
�
�
��� ��

���
�� �

�
�� ���

�� �
.

Remark: If �
���� � ���

�
���, then �

��� � �
�
���, i.e., there exists �

such that �
��� � ����.

Theorem 10.3.2 (Banach-Steinhaus) Let
��� � � � � �� be a fam-

ily of bounded operators between two Banach spaces
�

and � , and

let 
��� ����� � ��� Then there exists � such that
����� � ����

for every � and any
�� from the family. This means that

���� is a

bounded set in ��� � � �.

Proof: Introduce the function �
��� � ���������. All of the condi-

tions of the Zabreiko theorem are obvious. So, there exists � such

that �
��� � ����which is the statement of the theorem. �

Corollary 10.3.3 Let
�

be a Banach space over the field
�

(which in

our theory is either � or � ). Let
� � �� ����

be the set of all bounded

linear functionals such that for every � �� �� ������� is bounded, i.e.,
����� �� ���� � ��� Then
�

is a bounded set in
��

, that is, there exists

� such that
�� � � � for every � ��.

In the ��-topology of
��

the boundness of a set
� ���

is defined

by the boundness for every � ��:
�� ���� � �� for every � ��; so the

Corollary means that ��-boundness implies boundness in the norm

topology. Indeed, this follows if one uses the Banach-Steinhaus

theorem for
�� � � � ��

���.
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Corollary 10.3.4 Let
� ��

be a set in
�

bounded in the ��-topology

meaning that for every � � ��
, 
����� �� ���� � � �� �. Then

�
is

bounded in the norm topology: there exists � such that
��� � ��

Indeed, use the Banach-Steinhaus theorem for the family of lin-

ear operators �� � �� � ����� �(10.17)

Corollary 10.3.5 Let �
� ��� � � � be the set of bounded operators

such that for every � � �
and every � � � � we have that

�� ����� �
� ���� � for all � � �. Then there exists � such that

�� � � � for all

� ��.

We now show a few examples that use the Banach-Steinhaus

theorem.

1. Let � be a Hilbert space and
� �

� � � be a linear operator

with ���� �



(not yet necessary continuous) and

� � ��
, i.e.,������ � ������. Then

�
is continuous.

Indeed, �������� � �������� � ����� � ���(10.18)

for all � � �
with

��� � �. Then
���������� is bounded:

���� �
����.

2. Integration formulas. Define ��� � � � �� � ������ � � ���� �
. Let������ ������ � ��� �
 and let ����� be numbers such that

�� �� � ����
�


� ����� � ������ � � ��� ��(10.19)

for all � being polynomial up to degree �. Then we have the follow-

ing:

Theorem 10.3.6 (Polya) �� �� �� ��� � for all � � ���� �
 if and only if

there exists 	 such that �� ������ � �	 �

Proof: Check first that
����� � �� ������ �

(the norm as a linear

functional over ���� �
). Then �� �� � � ��� � on a dense set of func-

tions (in our case for every polynomial) and the uniform boundness���� �	 implies the convergence �� �� �� ��� � for every � � ���� �
.
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Now in the opposite direction, we use the Banach-Steinhaus

Theorem: if �� �� � � ��� � for all � � ���� �
 meaning, in particular,��� �� �� � � �� �, then there exists 	 such that
���� �	. �

3. Use of the Banach-Steinhaus Theorem for establishing counter

examples in Analysis. We give one example: There exists function� � �����
 such that
���� �� �

as � � �
where

���� ���� � ��� � ��
�


�
�� � �� ��� � ��

�
 ���� � �� ���(10.20)

Then ���� � ��� 
��� � ��
�

����
�
�� � �� ��� � ��

�
 ����

������(10.21)

� �
�

� �

�
����
�
��� � ���


�
 �
������(10.22)

� �
�

�
��
� �

�	���	�
�����	

� 
 
 
 ���(10.23)

� 	
�
�� � �

(10.24)

as � � ��
Therefore, there exists � such that

���� �� �
as � � ��

In the few following theorems we demonstrate the use of Banach

Theorem on open map.

Theorem 10.3.7 Let �� �� �
be closed subspaces of a Banach space

������� � �
and ����� ���

Then the projection
� �� ����parallel

to �� (i.e Ker
� � ��) is a bounded operator. In other words,

�� � �
such that

��� � ��� � ���	��������� for �� ��� �

Proof:
���� is a Banach space (because �� is closed) and obvi-

ously there is a natural linear isomorphism
���� � ��� Also

��� �
������� � �
����� � � ��� � � ��� � ���� (for �� � ��). So (again be-

cause �� is a Banach space),
���� and �� are isomorphic as Banach

spaces and
�� such that���� � ���� � �� 
�� ����� ����(10.25)

This means the boundness of the projection.



10.4. BASES IN BANACH SPACES 99

10.4 Bases In Banach Spaces

Let
�

be a Banach space and � � ������ be a linearly independent

complete system in
�

. Introduce the linear projections

�

�
��


�
����� � �


�
���� �(10.26)

for 	 � � and for all �� � �. Of course these projections are defined

only on a dense set of all finite linear combinations of �. Note that if

there exists a linear functional ��� ���
such that ��� ���� � ��� (called

biorthogonal functionals) then we call � a minimal system. Clearly,

in this case

� � �

�

���� � �

�
��� �����(10.27)

and
�

��
� ��� ��� �����. This implies

��
�
� � ��� ���� � 
 ��� � � ��

� �
.

Also in the opposite direction, if
�

� are bounded operators then
�

�� � �

����
� ���

����� and
���� � 
 ��� � � ��

� �
�

���
�

and ��� � ��
.

Thus we have the following:

Fact: � is a minimal system if and only if the
�

� are bounded

operators.

We call � a basis of
�

if and only if for every � �� there is exactly

one decomposition � ��
�
� ����. We call the basis � a Shauder basis

if in addition � is a minimal system.

Theorem 10.4.1 (Banach) Every basis of a Banach space is a

Schauder basis.

We will prove this theorem in the following form

Theorem 10.4.2 Let � be a complete linearly independent system.

The � is a basis of a Banach space � if and only if the projections
�

�
(defined above) are bounded and moreover there exists � such that��

�
� � � (i.e.

�

� are uniformly bounded).

Proof: We prove first the sufficient condition: if there exists �
such that

��
�
� � � then � is a basis (and, automatically a Schauder

basis) because � is a minimal subsystem. Let

� � �� �� � � �
�


�

���� ��
�����
��(10.28)
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This means that
�

�� � � �� � ��
for � � �. Clearly,

�
is dense in

�
. We will show that

�
is closed, meaning that

� � �
and 
� � �

,

� ��
�
� ���� (the uniqueness of the series is trivial by the minimality

of �). Indeed, let �� � � and �� � �. Then
�

��� � �� �� � ��
. For

� � �
there exists

�� such that
���� � �� � �. Then there exists �

such that for every � ��,
��

���� ���� � � �. Therefore for � � � we

have that,��
�� ��� � ��

�� �
�

����
�� ��

���� ���� �� ���� ���(10.29) � ���
�
�� ���� ���� �� ��

���� ���� �(10.30) � �� � ��� � ��(10.31)

Since � � �
is arbitrary, we show that

�

�� � �.

Now we prove that this condition is necessary. Define a new

norm by
����� � 
��� ���� ����� � ��which is defined for every � ��.

Obviously, the operators
�

��
� ��� ���� are defined and

������ � �
Then, by the sufficient condition proved before

�

� are uniformly

bounded, � is a basis in the completion
��

of
�

in the
� 
 �� norm

(since
�

� are uniformly bounded). However, for every
�� �

�� � �� �
�
�
� ���� and the series being converging in

�� 
 ��, also converges in� 
 �
and define � ��

�
� ���� � �.

By uniqueness, we have the identity map:

�� �� 
� �� �(10.32)

between two Banach spaces, is one-to-one, onto and
����� � ���.

By the Banach Theorem there exists � such that
����� � ����. This

means that
��

�
� � �.

10.5 Hahn-Banach Theorem.

Linear functionals

Let
�

be a Banach space.
��

is the Banach space of all linear

functionals and
��

is the space of continuous linear functionals or,

equivalently, the space of bounded linear functionals, that is, there

exists � such that
�� ���� � ����. Then

��� � � 
 ��� where
�� �� �


��� ��� �� ������� �
This space is (always) complete.

Examples.
�� �� �

����
���� ����, where ��
��� � �� � � ��� � ���

Sublinear functionals.
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Let � be a linear space over �; a real function � ��� � �
is called

sublinear if

(i) � �� � �� �� ����� ��� for all ��� � �
(ii) � ���� � �� ��� for

� � �
.

Theorem 10.5.1 (Hahn-Banach) Let � ��� � �
for all � � �, �� �� �

be a subspace and let �� � �
�
� be a linear functional defined on ��.

Let ����� �� ��� for all � � ��. Then there exists � ��� � �� such that

(i) � ��� �� ��� for all � � � and

(ii) � ��� � ��
(� ��� � ����� for all � � ��; so � is an extension of ��).

Proof: Introduce a partial ordering
� � ���� �� ������ of pairs of

subspaces �� �� � with �� �� �� and a linear functional �� � �
��

such that ����� � � ��� for all � � �� and �� ��� � ��, by defining
��� ���� � ��� ���� if and only if �� �� �� and �� ��� � ��. Note that for

any linear chain
��� ���� there is a supremum element

��� � �� ������ � �
. Then, by Zorn’s Lemma there exists a maximal element

���� ���� �. We have to prove that ��� � �. If � � � � ��� then define

the subspace �� � 
��
�������. Any � � �� � � ����� � � �� � � ���.
For any extension of ��� on ��,

� ��� � �� ���� ��� ����(10.33)

So, the choice of the extension is defined by the value � ���.
Let � � � ���. We have to determine conditions on � such that

� ��� � �� � �� � ��� ��� �� ��� � ���(10.34)

for every � � ��� and � � �. This is, in fact, two conditions: one for� � �
and one for � � �

.

� �� �� � �� � � ��� ���� ��� � � �
(10.35)

and

�� ���� � �� � ��� ���� � � ���� � ��
(10.36)
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Call �� � ��� in (10.35) and �� � ��� in (10.36) and consider �� and

�� as different (independent) vectors. Then the condition

�� ���� � �� � ��� ���� �� �� � ��� � ��� ����(10.37)

for every �� and �� in ��� would imply the existence of � satisfy-

ing (10.35) and (10.36) and, as a consequence it would satisfy also

(10.34). We rewrite (10.37) as:

��� ��� ���� �� �� � ����� ���� � ��(10.38)

which follows from the fact ��� ��� � ��� � � ��� � ��� � � ��� � �� �� ��� ���� (the first inequality is satisfied for any vectors in ��� and

the second is the triangle inequality satisfied for for every � � �).

So, there is an extension of ��� to a subspace �� which satis-

fies all the conditions of our order, meaning that
���� ���� � is not a

maximal element. This is a contradiction, hence ��� � �.

Proof of the complex case: We assume now that
���� �, � ���� ����� ��� for

� � � and
������� � � ��� for every � � � � � �� �. Then

there exists extension � ��� � �
�

(complex) linear functional such

that � ��� � �� and
�� ���� �� ��� for every � � �.

Indeed: Consider �� ��� � 
������ which is a real valued linear

functional on �� as a linear space over �. Then for every � � ��
�� ��� � ��� ���� �� ����(10.39)

So, by the real case of the Hahn-Banach theorem it follows that

there is an extension � � �� (considering � as a space over �).

Note that ����� � ����� � � ���� � � ���. Therefore for every

� � �����, ������ �� ����(10.40)

Note now the connection between the complex linear functional� ���� ����� ������ 
�� � �� 		� � �
and its real part ����:

�� ��� � � ���� � ������ �������(10.41)

So, � ��� ������ � ������ and 		� ��� � ������� Therefore, if the ����
above is a real-valued linear functional then

(i) � ��� � ���� ������� is a (complex-valued) linear functional over

� .
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(ii) Clearly, � is an extension of ��: 
�� ����� � �� meaning that�� � 
��� � �		� � � � �� ���� ��
�.
(iii) Check now that

�� ���� �� ���: � ��� � �� ���������� and � ���������� ��� ����.
Thus the inequality

������ �� ��� implies
�� ���� �� ���. �

Corollary 10.5.2 Let
�

be a normed space, �� �� �
be a subspace

and �� � ���. Then there exists � � ��
such that � ��� � �� and�� ��� � ������� �

In order to prove this, use the Hahn-Banach Theorem for � ��� �����where � � ������� .
Corollary 10.5.3 For every ��, ����� � there exists �� ���

,
����� �

and ������ � �. (So �� is a supported functional at �� � ����
.)

In order to prove this, one can consider the one-dimensional sub-

space �� � ����� and the functional ����� � �
for � � ���. Clearly������� � �. Then consider an extension � of �� with the same norm.

Corollary 10.5.4 For every �� there exists �� �� �
such that ������ ����� 
 ����.

Corollary 10.5.5 For every �� �� �� there exists � � ��
such that� ���� �� � ����. This means that

��
is a total set.

Corollary 10.5.6 The ��	� ��� �� ������� exists and equals
���. This means

that
� �� ���

and

The Minkowski functional:

Let 	 be a convex set,
� �	 �� consider

�� ��� �
��
�

� � � �� �� �� � �� � ��� �	�
��� � �� ���� �	�
otherwise

(10.42)

Obviously �� ���� � ��� ��� for
� � ��

(homogeneity) and �� is a

convex functional: � ��� � ��� �� ������ �����
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Indeed: Fix � � ��
Take

�� such that � ���� � �� �� ������ (of course,

only the case � ���� � �
is non-trivial). So ����� � 	 �

Let
� � �� � ���

Then
�	����	��� � �	�	���	 � �������� � ��	�	 � ���� 
 �	 (by convexity of M).

Therefore,
�� ��� ���� � � � �� � �� �� ������ ����� ��� Note also that� �	� implies (and equivalent

��).� ��� �� 
� ��(10.43)

Theorem 10.5.7 (on separation of convex sets) Let 	� and 	� be

convex sets in � and let 	�� �� �
and 	�� �	� � ��

Then
�� � ��

such

that � �	�� � � � � �	�� [meaning for every � � 	��� ��� � � and


� �	��� ��� � �
�

Proof: Consider the set 	 �	�� �	�� Then
� ��	 �	� �� �

(because

	�� �� �
). We want to build a functional � �� ��� � �� and � �	 � � ��

meaning � ��� � �
for every � � 	 �

Let �� � 	� � Introduce still an-

other set 	� �	 ��� � Then
� �	�� and the Minkowski’s functional

��� ��� � � ��� is defined and finite for every 
� � ��
Also ��� �� 	�

(because
� �� 	). Consider the �-dim space �� � ����� and define

the (linear) functional ������� � �� on �� � Since � ����� � � (recall

��� ��	�� we have ������� � � ������ So, by the Hahn-Banach theo-

rem, there exists extension � ��� �� ���� Then � ��� � � for � �	� and� ���� � ������� � �� Therefore 
� �	 �� ��� � ��
Corollaries of Hahn-Banach theorem; continuation.

If
��

is separable space then
�

is also separable.

Indeed: Let
���� be a dense set in �����

- the unit space of
�� �

Let �� � ����
such that

��� ����� � �� � Consider � �
span

����� If � ��

then
�

is separable. But if � �� �
then

�� � �� � �� � � ��� ��� � ��
Now, for any � � � ��� and

� � �� � ��� � ��� � ��� ����� ��� ���� ���� �� � ��(10.44)

a contradiction.

Lemma 10.5.8 (Mazur) Let ��
�� �� [meaning that for all � � ��

,� ����� � ����]. Then �� � ��������
�
� �

Proof: Indeed, if �� ��	 � ��������
�
� then use the previous Corol-

lary:
� � and � ���� � �
� � ���� which contradicts the weak conver-

gence ��
�� �� �
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Remark: Let 	�
� ��������

�
�
�

Then �� � 	� for every � and

�� � �
�
� 	�

�
[Check that, in fact �� � �	�


�
13. Let 	 ��

be a convex set. Then 	 is closed iff 	 is �-closed

(i.e. closed in weak topology).

Indeed, 	-closed iff 
� ��	 � � which separates � from 	�
Let 	 be closed convex set and �� �� 	�

Then
� � � ��

such that� ���� � �
� � ���� �	�
Indeed,

�� � �
and the ball ���� ��� with center

�� and radius
�

such that ���� ��� �	 � ��
Use the theorem on the

separation of convex sets for 	� � ���� ��� and 	� �	�
Then 	 is the intersection of all layers

�� �� � � ��� � �� � ��
�����

such that 	 ���
������ This means that 	 is �-closed set.��� Let � ���
be a closed subspace. Then

(i)
������ � �� ����

and

(ii) �� �������

��� Let
�

be reflexive space [i.e.
� � ���

]. Then every closed

subspace � �� �
is also reflexive. [Obviously from �� � �� � �����

and
�������� � ����� � �]. ��-topology. ��-topology is defined in

the dual space � � �� �
Then we define a weak topology in � using

only linear functionals from
� �� ��� �

subbasis of neibourhoods of� � � is defined by � � �
and � �� � ������� � �� � � � ������ � ��

Theorem 10.5.9 (Alaoglu) . ����� � �� ��� � �� � � �� is a compact

set in ��-topology.

Proof: Let 	� � ������ ���
 and 	 � �
	� be a product of interval

named by elements � � �
and equipped with the product (Tihonov)

topology. Then 	 is a compact in this topology. Consider the one-to-

one embedding ����� �� 	 � � ������
corresponds ��� � � �� ���� � �

� � 	�
Note that ��-topology on �����

is exactly restriction of the

product topology on 	�
Also �����

is intersection of closed subsets

in 	 � �	�
��� ��	����

 � � ��� � ��� � � ����� � ����� 
 
 
�
The next fact is describing convex ��-closed sets in

�� �

Theorem 10.5.10 If 	 ���
is a convex set and ��-closed and if �� ��

	��� � ���
then

�� � �
such that ��� � 
��������� � 	��

Therefore,
	 � ���������� �

Proof: We need the following lemma:
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Lemma 10.5.11 Let � �� � � ���	���� � �� � 	�� and � ��� � �
for

some � � �
�

(i.e. � �	��� �) Then � ���� ���� �
Proof: Consider the space ����

Then �� � ������ and also � �
������ 
 Note,

������ is a total set on ����
Indeed, if ��
 � � �� � ���

and �� ����
� � ��� � �� � � � ��� means �� ��� � �
for � � �� 
 
 
 ��� Then

� � � and ��
 � �
in the quotient space. Thus span

������ � ������
and � � span

������ meaning � � ��� ���� for some members �� � We

return now to the proof of the theorem.

Since 	 is closed in ��-topology and �� �� 	, then there is a

neibourhood
� ���� from a sub-basis set of neibourhoods of �� such

that 	 � �� ����� � ��
The neibourhood

� ���� is defined by � � �
and ��� 
��� � �

such that
� ���� � �

� � �� � �
�
���� � ������� � ��� ��� 
 
 
 ��� Define

� ������� Now, by Hahn-Banach Theorem,
�� � ���

which separates 	 from
� ����: This means that

�� and
��� � � �

for every� � � ���� � �������� ��� � ��� ���� 	 �
Let � � ��� 	���� and

	 � � � �� � We show that � � 	����
Indeed, if not and

�
�� �

� 	��� � let
��

��� � � �� �� also �� ���� � ��
Consider

�
�� � �� � 	

(then �� ���� � ��� � �� for 
� � �)

However
���

�� ��� � �� ������ and
�

is any which is a contra-

diction. By Lemma
� �������� � ��

Theorem 10.5.12 (Goldstein) : ���� � ����� and it is dense in the��-topology.

Proof: Note first that the unit ball of the dual space is closed in

the ��-topology and there ������ is closed in ��-topology. Let 	
�

�����
�
� ������� If

� � � ������ �	 then
�� � ��

separating
�

and
	. This means � ��� � ����� ����� �	� � �� ��(10.45)

But then
�� � � �� contradiction.

Around Eberlain-Schmulian theorem.

Theorem 10.5.13 : If
�

is reflexive, then for every bounded se-

quence �� there exists ���
�� �� ���

Proof: The sufficient condition is easy: If
�

is reflexive and
�

be

separable consider a dense set
������ ��� �
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(Note, that
��

is separable because
��� � �

is). Let
���

�
be a

bounded sequence. Then choose a subsequence
������ � � ���

�
such that � 	����

��������� ��� �������(10.46)

Choose
������ � � ��������

� � 
 
 
 � ���
�

such that�� ������ �� ������(10.47)

Then �������� �� ����� 
�� as � � �
and, since

���
�

is bounded and ��
is dense, � ������ � � ��� � for some � ��� �

Note that a � is just a name

the limit. However, it is easy to see that � is linearly dependent, � �
��

and
���� �� � ��� �� ������ �� � �� � 
 
�� ����. So � is a bounded linear

functional, so � � ��� � �
by reflexivity (Extend to not necessary

separable
��

Before we start to prove necessary condition, let us

note that it is a trivial consequence of another theorem.

Theorem 10.5.14 (James) Let
�

be non-reflexive Banach space.

Then
� �� ���

such that there is no element � �� such that����� � ���� 
 ���(10.48)

So, normalizing �� to satisfy
����� �, the affine hyperplane ���

��� ��� �� � ����� � � has no common point with the unit ball

���� � �� �� � ��� � �� �
���

��� ����� � ��
(10.49)

This is extremely non-trivial fact and we will not treat it here.

However let us note how James Theorem implies the remaining part

of the Eberlain-Shmulian Theorem: since����� 
�������� � ��� � ���(10.50)

take ���
��� � � �� and

�� �������� � �� �
� �(10.51)

Obviously, there is no �� � �
and subsequence

������ � � ���
�

such that �����
�� �� � �

because otherwise ������ � � and
���� � �

which contradicts the property of �� �
Returning to the proof of the theorem, we need a few observa-

tions and definitions.
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10.6 Extremal points; The Krein-Milman Theo-

rem

Consider a linear space � over �� Let �
�

be the linear space of all

linear functionals on � and � � �
�
be a subset of separating points

of �, i.e. 
�� �� �� � � � � and � ���� �� � ����� Let 	 be a set in �
which � �� �-compact (meaning a compact set in the weak topology

generated by � ). We call a subset 	 � 	 an extremal set of 	 iff


� �	 � � ��� � �� �����, � � � � � , ���	 implies �� �	 �
A point

�� � 	 is called an extremal point of 	 if
���� is an extremal set

of 	
�
Note, that an extremal set 	� of another extremal set 	 of 	

is itself an extremal set of 	
�
Define Extr	 the set of all extremal

points of 	. Examples:

(i) ����� has no extremal points.

(ii) Extr
������� �
�� � ���� (so, it is two points set consisting of

functions identically �� or ��).
Theorem 10.6.1 (Krein-Milman) . Let 	 be a convex compact set

in the space
���� �� ��� Then

(i) Extr	 �� �

(ii) ����Extr	
�	�

Moreover, we don’t need the convexity condition: for every � �� �--
compact set 	 � �, ����	 � ��������	�

Proof: (i) First we use Zorn Lemma. Consider an ordering
�	� ���

when 	� are extremal compact subsets of 	 and 	� � 	� means
	� � 	� � Note that any linear chain of extremal sets

�	�� has a

minorant element 	� � ��	� (obviously extremal compact set). So,

there is a minimal element 	� in this order. We want to show that
	� contains only one point.

Assume there 	� � �� �� 	�� Then
�� � � and � ��� � � � � �	� � � �

Consider � � �� � 	� � � � ��
 � ��� � � ����� Note that � is a continu-

ous function on the compact 	�, and so the minimum exists. Also

� � 	� � 	 �� � and � � 	� � �� � � ��� � ��
. Therefore � is closed,

meaning compact in our situation. Also it is extremal set of 	� and,

as a consequence, extremal set of 	
�
This contradicts the minimality

of 	� and proves that 	� � ��� is a point so Extr	 �� ��
(ii) Let � � �����	��	 and � � ����	�

Let � � ����	 �� ��� � �
and

� � ����� ���
������ � � ���
(by the separation theorem). Again
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� � �� � 	 � ����� � ��
��� ������ and � � 	 � �� � ����� � �������
This is a closed set (a compact subset of 	) and extremal set of 	

�
By (i) Extr� �� �

and ����� �����	�
But �

�� � �
, a contradiction.

Examples.

1. (Birkhoff’s Theorem) Let 	 be the set of all double stochastic

matrices in ��:

	 � ����� ������� � ��� � �� �

���

��� � � � �

���

��� ��(10.52)

(Clearly this is a convex subset of the 	�-space of all ��� matrices.)

Then 	 is a convex combination of the permutations in

� � ����� �� ����� ��� � ��� ����(10.53)

Indeed, �	��	 is exactly the set of the permutations
�

.

2. � ���� �
�, ��, �� are not dual spaces to any other Banach space.

Indeed, if
� � � � for some � then ����

is compact in the ��-
topology and has a lot of extremal points:

��
��	�������� � �����
(10.54)

(i.e. there is a topology such that the closure in this topology is

����
). But these spaces either do not have any extremal points or,

in the case of � ���� �
�, do not have enough.

3. Let 	 be the set of the probability measures on a compact set
	. Then �	��	 � ��� � � �	�

.

4. The unitary operators in � � form the set of extremal points of

����� � ��� ��
5. (Herglotz Theorem) Let 	 be the set of all analytic functions

defined on
�� � � � �� � � � �
� 
����� � �� ���� 
����	������
 ���� ���.
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Chapter 11

Banach algebras

A
BANACH SPACE

�
is called a Banach Algebra if an operation

“product” � 
 � is defined for the elements of
�

and it is con-

tinuous with respect to every variable (� and �). We always

require that
�

contains an identity element and that this product is

associative:
�� 
 �� 
 � � � 
 �� 
 ��. We also require that this product is

linear with respect to both variables.

The theory of Banach algebras was developed by Gelfand in the

end of the thirties and in the forties.

Theorem 11.0.2 There exists an equivalent norm
�� � on

�
such that�� 
 � � � �� � 
 �� � �
� ���� ��(11.1)

Proof: Consider a map � 
� �� � ���� ��
by ��� � � 
�. The property

� �� 
 �� � � � 
 � defines operators in ��� � ��
which is the image

of this map (i.e.
� �� ��� � ��

). Indeed, define � � � � and then

� � � ��� �� 
 ��. Note that this property is closed (even with respect

to strong topology). Therefore
�

is a closed subspace of ���� and it

is complete in both topologies. Now, we have the operator norm on�
: ��� ��
 � �

�
�
�� 
 ��������� ������ �
� �	 �� � �	 � �

�
��

(11.2)

By Banach theorem the open map
��� ��
 is equivalent with

��� and

obviously
�� 
 ���
 � ����
 ����
.

Note that if
�� 
 �� � ��� 
 ��� and

��� � � then
� 
 ��
 � � 
 �

(
��� � ��� 
 ����� 
������� �� 
 �� � ��� ). Note also that the product

map � 
 � is continuous with respect to both variables.

111
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Examples. 1. ���� �
 (obviously
�� 
 ��� � ���� 
 ����) or � �	�

.

2. � (the Weiner ring): � � � iff � � �
�
�� ���

��� and
��� �

�
�
�� ��� � � �

. ���� 
 ���� � ���� (as functions on �����
) which means

that � � ����
��� and � � � 	��

��� implies � � � ���
��� for

���
� �

���
� � �	�

� � ��
�
���� ����	�

�
(convolution of sequences).

3. �������

: ��� � �

�
�� ����� ���� ���. Similarly for ����� �
: ��� �

� �� ��� � � ���� ��� (in order to deal with convolution for any functions

from ��, consider first continuous functions, prove that
�� � ���	 �����	 
 ����	 and then extend the operation using continuity for all

��).
Let � be the set of invertible elements of

�
:

� � �� �� �������(11.3)

Note that � is an open subset of
�

. We proved this in the part of

the course that dealt with operators, when we showed that for any

� with
��� � � there exists

�� ����� and then if there exists ��� and��� is very small then � �� � ��� ������ is invertible.

Let 	 be a proper ideal (meaning an ideal which is not trivial

(iėṅot equal to
�
or
�

)). Note that since it is proper it can not contain

any invertible element. Then 	, the closure of 	, is a proper ideal

(because an open ball of radius 1 around � is not contained in 	
hence it is not contained in 	). We make now a few observations:

1. If there exists the inverse of
����� then both � and � are in-

vertible. Indeed, �������� � �, hence ������� � ��� (commutativity

used).

2. � is invertible iff � does not belong to any proper ideal. Indeed,

if � is invertible then � 
� � �
thus the minimal ideal spanned by

� is all of
�

. If, on the other hand, � is not invertible then � 
�
is a

proper ideal (if ��� � � then there exists
����

���
which implies the

existence of ���).
Corollary 11.0.3 If

�
does not have any proper ideal then

�
is a

field.

We call 	 � �
a maximal ideal if there is no proper ideal which

contains the ideal 	. Note that if 	 is maximal ideal then 	 is

closed (if not, then its closure is an ideal that contains 	).

Example ���� �
. Obviously, 	�
� �� � ��� � � ��

or a fixed � � ��� �

is a maximal ideal (it is both a hyperplane and an ideal). In the
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opposite direction, if 	 is a maximal ideal then there is a � � ��� �

and 	 �	� (as above).

Indeed, if such a � does not exist and 
� � ��� �
 there exist �� �

���� �
 and ��
�� � �� �

, then there is an open interval 	� around � and

��
�	� � �� �

. Take a finite covering
�	������� and consider the function

� � �


��� �

�
�� ��� �� � �������� � � ��� �
�(11.4)

Thus � �	 and � has is invertible, meaning 	 � �
, a contradiction.

Theorem 11.0.4 (Gelfand) For every proper ideal 	
��

there exists

a maximal ideal 	 such that 	
�	.

Proof: We use the lemma of Zorn (historically this is the first

use of this lemma in functional analysis). Consider the set � of all

proper ideals � � 	. Define �� � �� iff �� � ��. Obviously for any

chain � � ���� (that is for all ����� � � either �� � �� or �� � ��)
there is a majorizing element

� � ����� ��(11.5)

which is a proper ideal. Consequently by Zorn’s lemma there exists

a maximal ideal. �
Corollary 11.0.5 � is invertible iff � does not belong to any maximal

ideal 	.

(Exercise).

Let 	 be a closed ideal of the algebra � Then
��	 is a Banach

algebra. Indeed,

(i)
���	����	�

� ���	 and let
���	 ���� � ������� ���	 ���� � ���

��� (�� � 	). Then
����	 ���� � ������
 ������� ���	 ���� 
 ���	 ����.

(ii)
����� �� �. Indeed, it is clear that

����� � � � and since
����� �� implies the existence of ��� we get that

����� � � �.
Note also that if � � 	 then � is a proper ideal of

�
iff ��	 is a

proper ideal of
��	.

Corollary 11.0.6 Let 	 be a maximal ideal of �. Then ��	 is a field

and if for some closed ideal 	, ��	 is a field then 	 � 	 a maximal

ideal.

For an example one can see that ���� �
�	 � � (or � ) were 	 is

maximal ideal of ���� �
.
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11.1 Analytic functions

Let � be a function from � to the algebra �, that is, ���� �� for every� � � . We say that the function ���� is analytic at
�� if the complex

derivative �� ���� exists (convergence with respect to the norm of the

algebra �). Then for any � ���, � ������ is an analytic function (this

can be also taken as an equivalent definition to a function � being

analytic).

An example is the the function
��������. This function is analytic

at every regular point
� � � (meaning, at every point that the inverse

element exists). For this function we have:

�� � ������ � �� � �������� � �� � �� � �������� � ������(11.6)

which gives
��� � �������� � �� � ������

The Cauchy integral is defined by

� ��
�
������� � �

�
� ��������(11.7)

for all � ��� where
�

is a rectifiable curve. Now we have the follow-

ing theorem:

Theorem 11.1.1 (Cauchy) Let
� � ��

as above,
�

being simply

connected and ���� is analytic in a neighborhood of
�

. Then,

�
�
������ � ��

(11.8)

Indeed, let
�
� ���� � �. By the Cauchy theorem for complex func-

tions we have that
�
� � �������� � � � � ���. Hence � ��� � �

for all� �� thus � � �
.

Corollary 11.1.2 (Integral representation)

���� � ���� �� ����� � � �(11.9)

Note that we also have � ������� � � ��� ���� and the Taylor expan-

sion is valid:

���� � ������ �� � ����� ����� �� � ������ ��� ����� 
 
 

(11.10)
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and the radious of convergence is the distance to the closest singu-

lar point of ����.
Example:

�� � ����� � �
�
� ����, it converges for small

�
but

then convergence is extended to the first singularity. The radius

of convergence is

 � �� 	���

�������. To see this first note that

the above limit exists: let ��
� ���� then ���� � ��


 ��. Thus,����� � ��� 
 ��. So
	�� 
������� � ����� . Taking now

	�� �
� both sides

we are done.

Theorem 11.1.3 (Liouville) Let ���� be an analytic function for all� � � which is assumed to be uniformelly bounded, that is,
������ �

�. Then ���� is constant.

Proof: From the known Liouville theorem for analytic functions

it follows that if � � �� the function � ������ is constant. Lets say

that � ������ � ��. So, fixing any
�� we have that � ������ � � �������

for every �. Thus ���� is constant. �

Theorem 11.1.4 The spectrum of every � �� is not empty.

Recall here that the spectrum ���� is the set of
� � � such that

�� � ��� is not invertible.

Proof: If ���� � �
then for every

� � ���� � ������� ���� �� �� � ����� ��(11.11)

But, �� � ����� � �(11.12)

as
�

tends to infinity, and this means that
� �� � �

�

��� �
is bounded.

Thus
�� � ����� is a constant and sending

�
to infinity we get

�� ������ � �
which contadicts the invertibitily of � � ��. �

Corollary 11.1.5 (Gelfand-Mazur) If a Banach algebra � is a field

then � � � .

Indeed, ���� �� Let
� � ����� Then � � �� is not invertible hence it

equals zero as � is assumed to be a field. Hence we proved that for

every � �� there exists
� � � such that � � ���.
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Corollary 11.1.6 For any maximal ideal 	 � � there is a natural

(algebraic) isomorphism �� ���	 � � .

This implies that �����	 � � and thus 	 is a hyperplane. Also�� is a multiplicative map, meaning that �� is a multiplicative lin-

ear functional:

�� �� 
 �� � �� ��� 
 �� ���(11.13) �� ��� � �(11.14)

Corollary 11.1.7 If � �� � � is an algebraic homomorphism onto �
then ���� �	 is a maximal ideal.

Now for such homomorphism �� (with ����� � 	 a maximal

ideal) we define ��	 � � �� ��� � � .Thus ��	 �
satisfies the following

properties.

(i)
��� � ����	 � � ���	 ���� �	 �

(ii) �����	 � � ���	 ��� �	 �
and ��	 � � �

(iii) � �	 iff ��	 � � �
and 	� ��	� then there exists � such that

��	�� �� ��	��.
Corollary 11.1.8 (a) There exists ��� iff ��	 � �� �

for every maximal

ideal 	.

(b) �
��� � ���	 � � 	 �
 � ��	���	 ����	�

(iv)
���	 �� � ��� and the norm of any multiplicative functional�� equals one:

��� �� �.
Indeed,

�� � �� � � for all � � 	 (otherwise � is invertible and

does not belong to 	) and ��� ��� � ���
(11.15)

for every � �	. Thus, �� ��� ��� � �
and

��� �� �.
Moreover in the opposite direction, � ������ � �

is a definition of

a linear functional �� such that ����� �	 and it is multiplicative.

So this is the construction of a multiplicative map.

Let � be the Wiener space that consists of elements of the form

���� � �
�
�� ���

��� where the series is absolutely convergent, i.e.,

� ��� � � �
.
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Theorem 11.1.9 (The Weiner Theorem) If � � � then ������ is an

absolutely convergent series with�
����

�
�


��

�(11.16)

and � �	� � � �
.

Proof: We first describe a maximal ideal 	 of �. Let ��� �	 � � �.
Then ���� �	 � � ��� and

���� �� � ����� �� � �. So
��� � � and

���� � � �
which gives

���� � and there exists
�� such that � � ����. By linearity

and multiplicativity we get that

��

��

������� �	 � � �

��

������� �(11.17)

for all ��	���. Thus, by continuity, for any � � � ��	 � � �����.
Therefore 	 � �� � � � ����� � ��

. Hence, ���� does not belong to

any maximal ideal and there exists ��� ��. �
Let now � be a Banach algebra of functions � ��� which are ana-

lytical for
��� � � and continuous on

��� � �. Let�� �� � ��	����� �� �����(11.18)

We want to describe the set
�

of maximal ideals of �. Let 	 ��

and ���� � � be a generator function. Let ��	 � � ��. Since
���� � �,��� � � �. Then �� �	 � � ��� and ������ � ����� for any � ��. Thus,

� � �� � ��� � ���(11.19)

We study now the space
���� of maximal ideals of �. We equip

���� with the ��-topology (remember that
� ������ the unit ball

of ��). Also note that ��	 �
are continuous functions on

�
(by the

definition of the ��-topology) and
������ is a Hausdorff space.

Theorem 11.1.10
��������� is compact.

Proof: For every � �� consider
���� � �� � � � �� � � ����. Clearly

���� � ����
���� �	(11.20)
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is compact in the ��-topology on
����. Moreover,

���� � � � �	 � ��� ��� � �� ��� 
 �� ����� ������ ��� �� ��� ���� 	�� ���� �
�
��� � ��

where �� ��� is a �-coordinate of � ����� ����.
The conditions that define

���� are all closed conditions in the�-topology. So,
���� is a closed subset of a compact set and hence

compact in itself. �

Corollary 11.1.11 If
���� � is compact in some topology � and ��	 �

is continuous in � for every � �� then � � ��.
Proof: Consider the map 	� � ���� � 
� ������. Any basic neigh-

borhood in �� is also a neighborhood in � -topology because ��	 �

is continuous, and by the Hausdorff theorem (since � is compact

topology on
�

and �� is a Hausdorff topology) it follows that 	� is a

homomorphism. �
Exercises. 1. � � ��� � � ��

(with the natural topology).

2.
� �� ���� � � for any compact metric space �.

3.
���� � � (the unit disk)

So, in these examples,
�

is a natural domain of functions.

11.2 Radicals

Definition 11.2.1 Consider the homomorphism

�
� � 
� �

� � ����� � 
� ��� �� � ���
(11.21)

The set

� � ����� � � �� � ���� � ��
(11.22)

is called the radical of the algebra �.

Clearly, the radical is an ideal. Also � � ����� � iff there is
�� ������ for every

� � � (meaning that
�� � ����� is an entire function).

Then the corresponding series at
� � �

converges in all � and the

radius of convergence equals infinity. Thus we have arrived at the

following theorem:
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Theorem 11.2.2 � � � iff
	�� ��� ���� � �

.

Such an � is also called a generalized nilpotent.

Example. Consider the space
�

����� �
 � ����� �
 ���. Let ����� � �.
It is a generator of this Banach algebra and

����� � ���	������. Thus,���� � � �
��,

������� � �
and for every � � ����� �
 is in the radical. So,

��� ��� is the only maximal ideal. Existence of (non-trivial) radical

is a “bad” property for the general theory but has an interesting

consequence for the theory of integral equations:

consider the equation

���� � �� �
�
��� � � ���� ��� � � ���(11.23)

where � and � are in ����� �
. Then for every
�

there exists solution
� � ����� �
. Indeed, the equation (11.23) can be rewritten as

� � ��� � �� � � �� �� � ��� � � � � �(11.24)

Since � is in the radical there exists
�� � ����� and � � �� � ����� � �

(so it is a Volterra equation and ���� � �
).

Theorem 11.2.3 Let
���� � � � 
������	 � � 	 � ��

. Then � �
	�� ��� ����.

Proof:
�� � ��� is invertible for all

��� � � means that there exists
�� � ����� and it is analytical in

�
�
� � ��. Thus � � 	�� ��� ���� From

the other side though, 
�� ��� �	 �� � �� and
������� � �. We see that

the limit
	�� ������� exists and equals �.

Next we consider Banach algebras with radical equal to zero,

called semisimple Banach algebras.

Theorem 11.2.4 Every algebraic isomorphism � ��� 
� �� between

two Banach algebras �� and �� is also a topological isomorphism.

We will actually prove a stronger statement:

Lemma 11.2.5 If
�� � �� is a subalgebra (both algebras are as-

sumed with zero radical),and the sets of maximal ideals satisfy
����� ������ then �� � � (in

��) implies �� � � (in
��).
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Proof: Introduce a new norm on �� by,�����	������ ������(11.25)

If �� is a Cauchy sequence in
� 
 �

then it is also Cauchy in both

norms
� 
 �� and

� 
 ��. Now, both spaces are complete, thus �� � �
(in

� 
 ��) and �� � � (in
� 
 ��). But for every maximal ideal 	,

�� �	 � � ��	 � � ��	 � � ��	 �
. This implies � � �. Then �� � �

in
� 
 �

as well, which proves completence of
���� � 
 ���. It follows

from Banach Theorem that
� 
 �

is equivalent to
� 
 �� Obviously,

convergence in
� 
 �

implies convergence in
� 
 ��. �

Corollary 11.2.6 Automorphisms of Banach algebras without radi-

cal are continuous.

Consider now an algebra of functions
�
� �� ���	 ������.

Problem. When
�
� is dense in � ���

? (i.e. when is it true that�
�� � � ���

?).

The example of the algebra of analytical functions on the disk �
shows that some conditions are necessary.

Theorem 11.2.7 If
�
� is symmetric, then

�
� is dense in � ���

.

This is a form of the Weierstrass theorem. The straightforward con-

sequences of this theorem are:

1. Weierstrass theorems on the density of polynomials and tri-

gonometric polynomials.

2. Let � and � be compact metric spaces. The functions of the

form ��� �� ����� ��� are dense in � �� �� �.
3. If

�
� is symmetric and

���� � ���� then � � � ���
[Indeed,

��	 ���	 ��� ��� and
�
� is dense in � ���

].

11.3 Involutions

Definition 11.3.1 We call involution a map � 
� �� with the proper-

ties:

a.
����� � �

b.
��� � ���� � ��� � ��� (anti-linearity)

c.
����� � ����.
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The main example of involution for us is the dual operators for an

algebra of operators in a Hilbert space.

We call �� the conjugate of �.

Examples. 1. � ���: ����� � ����
2. Le � be the analytical functions on �. Then ���� � ����

(meaning ���
�� ����

��) is an involution.

3. Let
�� be the set of pairwise commutative normal operators

from a Hilbert space � to itself. Then consider the norm-closure

of the algebraic span:
� �

algspan
��� � ������. We obtain a closed

subalgebra of ��� � ��
such that for every � � �

we also have

� � � �
. So,

�
is a commutative Banach algebra with involution.

A few more definitions follow: if � � �� then � is called self-adjoint

element. For every � � �, � � � � �� where � and � are self-adjoint

and this decomposition is unique (
����� and

������ � �)
Note that � is invertible iff �� is invertible (���� � � iff

��������� ���.
An algebra � with an involution � is called symmetric iff ���	 � �

��	 �
. Of course if

��� �� is symmetric then
�
� is symmetric.

We add now an other property of the convolution:

Definition 11.3.2 A Banach algebra � with involution � is called a

��-algebra iff ������ ��� 
 �����(11.26)

Theorem 11.3.3 (Gelfand-Naimark) If � is a commutative ��-alge-

bra then � � � ���
.

Proof: We will prove this by showing that
���� � ���� and � is

symmetric. Now,��������� ������������ ������ � ���� ������(11.27)

From the other side, using commutativity we have that the same

expression is equal to ���������� ������������(11.28)

This implies that we have equality, that is,����� ���� ��������� ���
(11.29)
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Now assume that � is not symmetric. Then there is �� and 	�,
a maximal ideal, so that ����	�� �� ��	�. Then Im

��� � �����	�� �� �
and there is an element

� � �� ���� �
����� ������	��
�
Im

��� ������	��
�

(11.30)

We see that � � �� and ��	�� � �. Som
������ is not invertible. Then

it follows that
�� � ���� � � � �� is not invertible meaning that there

is a maximal ideal 	� such that ��	�� � ��. Thus for every
� � �

�� � �����	�� � ��� ��� �
��� � �����	�� � ���� ����(11.31)

Therefore,
�� � ���� � �� �

. Finally��� � ����� �� � ���� 
 �� � ���� � ��� ���
(11.32)

and ��� � ���� � ���� ���
(11.33)

This is a contradiction because it is wrong that � � �� � ��� ���
for

a large
�

no matter what is the constant �. �
This theorem implies a spectral decomposition for a family of

pairwise commutative operators. But before we show this, let us

establish a few additional properties and examples of symmetric

algebras with involution.

Theorem 11.3.4
��� �� is symmetric iff

������� is invertible for every

� ��.

Proof: It is obvious that
��� �� being symmetric implies that

�� �
���� is invertible. For every 	,

�� ������	 � � �� ���	 ��� � ��
(11.34)

In the opposite direction, let us show that if � � �� then ��	 � � �.

It is enough to prove that for any � � � and 	 � � � ��� the inverse of
�� � �� � �	��� exists. Consider,

�� � �� � �	��� �� � �� ��	��� � �� � ���� � 	�� � 	� ��� ���
(11.35)

and hence it is invertible. It follows that
�� � �� � �	��� is invertible.

�
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Example. Let � be the algebra of bounded functions on a set �

with the uniform norm:
�� � � 
��� �� ����. Let ��� � �. Then define

the involution �� � �. This is a symmetric involution. Indeed, for

every � ��,
������� ��: let

���� �. Then��� �� �� � �
�� � � ��� �����������

� �
�� � �

�


�

��� � �� ���� � � ��

which converges uniformly in �. Now, since
���� � ���� we have

that � � � ���
.

A few important concrete examples are:

1. All bounded continuous functions on
������

.

2. B-almost periodic functions on
������

. For example:
�������

[���� � ���� is almost periodic].

Next we present a criterion for an algebra � being semisimple

(i.e. with zero radical). We call a linear functional � positive iff� ����� � �
for every � �� and we say that the involution is essential

if for every non-zero � there exists � � �
such that � ����� � �

.

Theorem 11.3.5 If the involution � is essential then � is semisimple.

Proof: Take a positive linear functional � such that for a given �
we have � ����� � �

.Then

� � � ��� � ����� � ����
 � � ������ �� ����� �� ���� ���� ����(11.36)

for every
� � � . Take

� � � and then
� � ��; we obtain � ���� � � ���

[because
� � � gives Im� ���� � �Im� ��� and

�
purely imaginary

implies

�� ���� � 
�� ���]. Put now

� � � ���� for
� � �. Then (for

every
� � �) �� �� ������ ���� �� �� ����� � � ����� � ��(11.37)

which means � ������ ����� ����� � �� ����� �(11.38)

Thus,
�� �� � � ���� �����. Let � � ���. Then similarly

�� ����� �� ���� ����, �� ���� � � ������� ������
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...

� � �����	� �������	 ����� �
as � tends to infinity. Using this inequality for � instead of � � ���
and a special positive functional � such that � ��� � �

we get

� � � ��� � � �����	� ���	 �� 
 ����	 ���
(11.39)

This implies that ��	 � �� �
for some 	 and � outside the radical.

Thus the radical is zero. �
Now we return to the spectral theory of a family of commutative

normal operators
�

and �. Let � �
algspan �������
 �� ����

where

the closure is in the strong operator topology. Clearly � has invo-

lution � � � 
� � � � � and � is a ��-algebra. So,
� � � ���

which

means that there is a correspondence (map) which is algebraic ho-

momorphism:

� ��� �� � �� ��� � ���
(11.40)

For every � � � ���
corresponds a �� � �

, �� �
� � � with the

following properties:

1. If � is real-valued then �� is self-adjoint (since involution is

symmetric: � 
� � ��
� �� ).

2. � � �
implies that �� � �

(because � � ���� and thus,

�� � � ���).
3.

������� is a three dimensional functional; in particular it is

linear on � ���
for fixed � and �. Therefore there is a measure ����

on
�

such that:

������� �
�
�

������ ��� �
� � � � ����
(11.41)

Our purpose now is to extend this correspondence to the class of

Baire functions on
�

. In particular:

4. Define for the characteristic function � of a “good” subset

(Borel subset) an operator by

������� �
�
�
������ �� ������ �� � ���
�(11.42)

Let us check the properties of this correspondence � 
� �� �
� � �.
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5. By multiplicativity: (�� 
� ��� � �� 
��) we have

������������� � �
���� �� � �(11.43)

since
� ������� � � �������� and so on

� � �
6. Using (11.42) and (11.43) we have that

������ � �
������ �
� ��������� � ���������� � �

���	������ �(11.44)

So,

��	��� � ��	 
��� �(11.45)

thus our extension on Baire functions is multiplicative.

Lemma 11.3.6 If � � ��� � ��
is such that for every � � � ���

��� � ��� then �� commutes with � for any Baire function �.

Proof:
�������� � ��������� which implies

� ������� � � ��������(11.46)

hence �
����� � �

������ �(11.47)

Then

������� � �������� �(11.48)

Therefore
�������� � ��������� and ��� � ���. �

Lemma 11.3.7 If ��
� � �� for every � � � ���

then �� � � �� where �
is any Baire function.

Proof: Note that
�
���� � �

����. Indeed,
� ������ � ������� � �� �� ���� �

������� � � ������. Then

�
������ � �

������ �(11.49)

meaning
������� � ������� � ��������(11.50)

so, �� � � �� �
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Corollaries. 1. If �� is a characteristic function of �
��

then

��� � �� is an orthoprojection (it is self adjoint because �� is real-

valued function and ��� � ��, since ��� � ��). Also, �� commutes

with all operators from the algebra � and therefore is the orthopro-

jection on an invariant subspace for all these operators.

2. The individual spectral theorem: Let � � � � and let � be

an algebraic envelope of � , closed in the strong topology. Let
�
�

be the corresponding function in � ���
. Let �	 � � � 	. Then

�� � �
� �	 � � �. Take an �-partition �� � �� � �� � � � � � �

�
� � and

let
���

�

































Then,

� �� � �

�
��� � ���� � �����	� ����� � ��(11.51)

for functions in ���. This implies that�� �
 �� ���� �����	� ��
 � �(11.52)

and

� � � ����
�

(11.53)



Chapter 12

Unbounded self-adjoint and
symmetric operators in

�

L
ET

�
BE A LINEAR operation defined on some (linear) subset

Dom
�

, the domain of
�

, of a Hilbert space �. Then the pair
��� Dom

��
is called an operator. We always assume that

Dom
� � � and we use write �� instead of Dom

�
.

Let, for given � ��, �� be such that for every � ���
������ � �������(12.1)

Then we then write �� � ���. The condition �� � � guarantees that

if such a �� exists then is is unique: if
������ � ������� � ������� then

������ � ���� � �
for all � ��� hence ��� � ���.

The operator
��

has a natural domain, that is, the set ��� con-

taining all � for which the �� exists.

Examples. 1. Let � � �� ��� �
 and
�� � ���� with domain �� �

�� ��
� ���� �� �
� ���� � �� ��� � ��

.

2. The same space and operation as above but with domain

�� � �� � �
� ��� � � �
� ���� � ��

. We will see that this is a very

different operator than the previous one.

Two other examples would be if we start with the Hilbert space

�� �����
.

The notion of closed graph operator (or shortly, just “closed op-

erator”) will play an important role in what follows.

Definition 12.0.8 The operator
������ is called a closed operator iff

for any �� � �� such that �� � � � � and
��� � � � � it follows

that � ��� and
�� � � (that is, � � Im

�
).

127
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Some first properties of the dual operator
��

are the following:

1.
��

is closed operator: it is obvious that if �� � �, ��� � �� and
������

� � ������
�

for every � � �� then
������ � ������ which means

that � ���� and
��� � ��.

2. We say that
�� � �� if ��	 � ��� and

��� � ��� for every

� � ��	 (that is,
�� ���	 � ��). It is clear that

�� � �� implies��� ����.
3. For any operator

������ we define
�

the closure of
�

(if it

exists) to be the operator with the graph ��� � ���. Of course,

it may happen that the set ��� �
� �� is not the graph of any

operator. We say that
�

permits the closure if the closed operator
�

exists.

Now if
�

permits the closure then
�� � ��

(obvious) and if
�����

exists (which means that ��� is dense in �) then
� ���� �

(12.2)

We call
�

a symmetric operator if �� � � and for every � ���
������ � �������(12.3)

Therefore
� ���

(and it is, in fact, the definition of symmetry of
�

).

Observe that any symmetric
� � � (symmetric extension) satis-

fies
� ���

(because
� ��� ���

). So, all symmetric extensions
�

of

a symmetric operator
�

stay between
�

and
��

, that is,
� �� ���

.

We call
�

a self adjoint operator if
� � ��

. Note that if Im
� � � ��

� then
����� �� �

(meaning that
�

is an eigenvalue of
��

): indeed,
������ � ������� and � � � means

��� � �
.

Theorem 12.0.9 Let
�

be a symmetric operator with �� � �. Then�
is a bounded operator.

Proof: For every � � �,
������ � ������. Consider a family�������� . Then

�������������� is a bounded set for every � because�������� � �������� � ��� 
 ����. By the Banach-Steinhaus Theorem

it follows that
�������� is bounded meaning that

�
is a bounded

operator.

Before we continue to develop the general theory let us consider

a few examples.

Examples. 1a. Let
�� be an operator on �� ��� �
 defined by the

operation
�� � � ����. Let

Dom
� � �� � �� ��� �
 � � �
 
����� ��
����
����� � ���� � ���
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Then,

������ � ������ �
� �
� �����

� �
�� �
�
���� � �

� ����� � �
��

�� �
�
���� � �

���
� � �

�
����

�� �
�
�������� � �

� �

So, since
������Dom

� is dense in ��, � � � �� ������. Therefore there

is �� � �� and �� � ����. Thus ����� � ��� and Dom�� � �� �� � �� �
��� (note the lack of boundary conditions). Hence

�
is symmetric

and
� � ��

.
�

is not closed (since Dom
�

was chosen to be “too

small”). But
�

admits a closure and
�� � �

i.e.
��� � �� and

Dom�	 � �� � �� ��� �
� �� � �� �
� ���� � ���� � ���
(12.4)

1b. Let
�� be an operator defined on � � �� ��� �
 and

Dom
�� � �� �� � �� � �� ��� �
 �
� ���� � ������(12.5)

Thus,
�� ���. Therefore �� � ��� (

��� ����).
������ � � �

� �
�������������

� ���������� ���������
 �
� �
� �������

Now, the quantity 	 � ���������� �����
 must be zero because
������ � ������ and there exists �� � �

(in ��) but ���� � ���� � �.
Then

������ �� �
but

�����
�� � �

a contradiction. So ���� � ���� and

we see that
��� � ��; this operator is self-adjoint.

Let us return to 1a and 1b examples and compute the eigenval-

ues and eigenfunctions of
��

.

In the 1a example,
��� � ��� and

��� � ��� � �� � 
� ����� ��
�����

��
��� � ��. So, � � ����� and a non-trivial solution exists for every�
. Moreover ��������� � �	� � � meaning that ��������� � �	� � �.

We call this codimension “index of defect”. It may be shown that it
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is the same number (for symmetric operators) for
�� ��� � �

and

(probably another) the same for
�� ��� � �

. Thus in this example

the indices are
��� ��. (Note that

�� � ��� has no eigenvalues because

the solution of the equation does not satisfy the conditions ���� �
���� � �

.)

In the 1b example now,
�� � �

and the conditions are ���� � ����.
This gives � � ���� and

� � ���� � � �������� � � � . So, there are no

solutions for ��� � �
or ��� � �

and the indices are
�����.

1c. Let �� ����� � �� � ��� and �� � �� � �� � �� � ��� ���� ���
. (We start first with smooth functions of finite support and then

take closure.) Then the same line of computation as in example 1a

implies ��� � ��� �
� ��� � �� � �� � �� � ����(12.6)

Thus
�

is symmetric (
� � ��

). Computing the eigenvalues of
��

we

see that � � ����� is an eigenvalue only if ��� � �
because � must be

in �� �����
. Thus the indices are

��� ��.
2. The operation

�� � ����.
2a. In �� �����

let

�� � �� � �� � ��� � �� �
� ���� � �� ��� � ���
(12.7)

Again, we start with �� which contains only smooth functions of

finite support but then take closure. First in the same way as in 1a

we show that � � ��� implies that there exists ��� � �� �����
. Then

we proceed as follows:

������ � � �
�

��������� � ���� ��� �
� �
� ������

� ����� � ��� ��� � ���������

(if � � � we see that
������ � �

). So, �� � ���� and

��� � �� � �� � ��� � �� 
� ���
���� ��
�����

��(12.8)

Call this operator
��. So,

�� � ��� and it is a symmetric operator

but not self-adjoint.

2b. Consider the same operation in the same space �� �����
,�� � ���� but now

�� � �� � �� � ��� � �� ����� �
� ���� � ���
(12.9)
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Call the operator we obtain
��. Obviously

�� ��� and
��� � ���. So,� � ���� implies that there exists ��� � �� �����

. Repeating the above

line of computation we have that for � �����
������ � ������ � ��� ������� � ���������(12.10)

and we must have ���� � �
(otherwise we take �� � �

in �� but

���
��� � � arriving to a contradiction). So,

�� � ��� and
�� is a self-

adjoint extension of
��. Computing now indices of defect of

�� and�� we have to look for eigenvalues of the dual operators
��� and

���:
���� � ��(12.11)

and ���� � ������� � ��������. However we are looking for solutions

���� � �� �����
. So, if ��� �� �

only one of the functions ����� or ������
remain. Therefore the indices of

�� are
��� ��. In the case

��� � ��
there is another condition ���� � �

and no such solutions exist.

Thus, the index of
�� is

�����.
3. Let ��������

and
�� � ��, �� � �� � �� � �� � ���. Obviously� � ��

and the operator is self-adjoint.

12.1 More Properties Of Operators

We add to Theorem 1 above a few more facts.

Theorem 12.1.1 If
�

is a symmetric operator and ��� � � then
�

is self-adjoint.

Proof: Take any � � ���, ��� � �. Since ��� � � there is � � ��
and

�� � ��. Let us show that � � � which would mean ��� � ��
and

� � ��
. So, for every � ��� we have that

��� ��� � �� ���� � �� ���� � ��� ���(12.12)

by the assumption. Thus, � � �.

Theorem 12.1.2 If
�

is a self-adjoint operator and there is a formal

inverse
���

(meaning that
���� � �

, i.e.
�

is one-to-one from �� to

���) then
���

is also self-adjoint.
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Proof: First if
���� � �

and
� � ��

then ��� � �. Indeed, if ��� �
� � � then there is a �� �� �

and such that
���� � �

; but
�� �

�
and

���� �� �
. So, ���	 is dense in �. To describe the dual

operator
������

we should consider the equation
�������� � ������.

Let � � ����. Then
�� ��� � ��� ����. Since

�
is self-adjoint,

��� � �
and �� � ��. Thus, � � ��� � ���	 and �� � ����. We see that
�������� � ��������. �

Note that the Theorem 3 gives us many examples of self-adjoint

unbounded operators. Start with any self-adjoint compact operator�
without non-trivial kernel. Then

���
is an unbounded self-adjoint

operator.

12.2 The Spectrum ����

Similarly to the case of the bounded operators we say that
� � � is

a regular point if there exists a bounded operator
�� � �	���. The

spectrum ��
��

consists of all non-regular points. We devide ��
��

in:

(i) the point spectrum �
 ��� of eigenvalues of
�

, that is,
� �

�
 ��� iff there exists an � ��� such that
�� � �� (i.e.

���� �� �
).

(ii) the continuous spectrum ��
���

where
� � ��

���
iff

� ��
�
 ��� and ���� � �	� is dense in � (but not equal to �). Of course,� � �	 is defined on ��.

(iii) the residue spectrum �� ��� where
� � �� ��� iff

� � �	 is

one-to-one, that is,
� �� �
 ��� and ���� � �	� �� �.

Now let
� ���

(i.e.,
�

is symmetric). Define ����� � ���� � �	�.
(a) ����� is not dense in � iff

� � �
 ���. Indeed, ��� is the span of

eigenvectors of �
�

for
�
.

(b) Again,
� � ��

; then
� � �
 ��� implies that

� � �. and if�� �� �� are both in �
 ��� the the eigenvectors
��� � ���� for � � ����

are orthogonal:
������� � �

. As for bounded operators,������ � ������ � ������ � ������ �� �����(12.13)

(c) Let now � � �� �� for
��� � � with � �� �

, and let
�

be a closed

symmetric operator. Then ����� is a closed subspace.

Proof of (c). Note that for symmetric
�

,
�
�
� � � �	 is also sym-

metric (for
� � �). For � ��� we have��� ����� � ��

���� � ��
��� ���� � �����������

� ������
�
����� �
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So,
�� � �	��� is formally defined (� �� �
 ��� because �
 ��� � �)

and ��� ��	��� ������� � ��
�
��(12.14)

Thus,
� � �	 � �� 
� ����� �� � is “onto” and bounded operator

and
�� � �	��� � ����� 
� �� is also a bounded operator. But a

bounded operator is extended on the closure �����. Now we recall

that
�� � � ��	 is closed, therefore

����
is closed which means that

����� � �����. �
Combining (a), (b) and (c) in the case of the self adjoint operator� � ��

we have that if � � � � �, then ����� � � (otherwise � �

�
 ���� � �
 ���). So, the index of
�

is
����� and ��

�� � �.

Let now
� � �. We will show that ��

�� � �
 ��� � �����. If

����� �� � then
�
�
 ���. If ����� � � then there exists the in-

verse
�� � �	��� and it is bounded. Indeed,

� � �	 is self ad-

joint; by Theorem 3
�� � �	��� is self-adjoint; then by Theorem 1

?????????????????????????????????

12.3 Elements Of The “Graph Method”

Theorem 12.3.1 Let �� � �. If
�

admits a closure, then
���

exists

and
��� � �

. In the opposite direction, if
���

exists (meaning that ���
is dense in �) then

�
admits a closure and

��� � �
.

Proof: Let
���� � ������������ � � � � ��

be the graph of
�

. Consider the unitary operator
� ����� � �� ����.

Note that
�� � �	. Then

� ������ � ��� ���� � ������������� � �� ������� �� ����� � �� � ������
(12.15)

The above line means that if
������

is a graph of some operator

then this operator is
��

. Now, if
����

is closed then

� � ������ ��
���

(12.16)

and applying
�

(which does not change
�

) we get that

� � ������� ��
���(12.17)
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since
�� � �	 and ����� � ����

. So,
���� � ������

. Similarly in

the case that
�

exists:
����� � �����

and the equality
� � ����� �

�����
implies that

���� � ������
.

Also in the inverse direction, if
���

exists then � ����� � ����
and

����
is a graph of some operator called (by definition)

�
. �

12.4 Reduction Of Operator

Let �� ��� � � and let
�

be an orthoprojection onto the subspace

��. We say that �� reduces
�

iff
��� � �� and ����� are invariant

subspaces of
�

. Note that the linearity of �� implies that
�	�� ��� �

�� and for every � � �� �� � ��� � ��� where �� � �� and �� �
� ���.
Lemma 12.4.1 � reduces

�
iff

(i)
��� ��� and

(ii)
��� � ��� for every � ���.

(Here as before,
�

is the orthoprojection onto �.) The proof of this

lemma is obvious.

Theorem 12.4.2 (Decomposition) Let
�

be a closed operator, �� ��
� and

� � �

�

����� �(12.18)

the orthogonal decomposition of � into the sum of subspaces ��. Let
�� be the orthoprojection onto �� and

�
is reduced by every ��. Then

� ��� iff
��� ��� and �

�
� ������� ��

. Moreover,
�� ��

�
� ����.

Proof: If � � �� then
��� � �� and

��� � ���. Moreover for all

� ��� we have
�� ������ and����� �
 ������� �
 ������� ���

(12.19)

In the opposite direction, let � ������� � �
; then ��� ��� � � and���� ��� � �. Since � is closed

�� � � and � ���. �
An example of spectral decomposition is provided by the follow-

ing theorem.
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Theorem 12.4.3 Let
���

���� be a spectral family of orthoprojections

��, i.e., �� � �
in the strong sense as

� � ��. and �� � 	 as� � �
, ��

� �� for
� �

� and ���� � �� (semicontinuity from the

right). Consider the operator
�

with

�� � �� � � �
��

���������� ���

and
� � � �

��
���� �

which means that for � � �� � �� � �
�
�� �����. Then

�
is a self-

adjoint operator and ����� � � �����������

We say that
�

has a spectral decomposition.

Proof: All properties but the self-adjointness of
�

follow imme-

diately from the theorem of decomposition (obviously the sequence���� ����� is Cauchy). To prove that
�

is self-adjoint, let
����� �

�� ���� be an orthoprojection. Then for every ��� ���
����������� �

� �

��
��������� � ���

� �

��
������(12.20)

and
������ � ������. So,

�
is symmetric and

������ � ������.

Now for all � ����
����������� � ������������(12.21)

which implies that
����������� � ����������� for all � � ��. Put-

ting together (12.20) and (12.21) we get that for every � ���
������������ � ������������(12.22)

which implies
�������� � �������� and this is (by (12.20)) equal

to � �

��
������

Thus, sending both � and 	 to infinity we get that

��� � � �
��

����� � ��(12.23)

and � ��� (since the convergence of the integral is in norm). �
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12.5 Cayley Transform

Let
�

be a closed symmetric operator. Define for every
� ���

�� � �	�� � �
�� ��	�� � � �

We proved before that �� � ��� � ������	� are closed subspaces of

�. Also both operators
� � �	 are one-to-one because

�� cannot be

the eigenvalues of a symmetric operator. So, � defines both � and �
in a unique way. Then the operator � � � � is defined. We checked

that ���� � ����� � ���� � ����
and � is an isometry. Note that � is not an eigenvalue of � because

� � � implies that � � �
and � � � � �

.

We call this isometric operator �
�
�� 
� �� the Cayley Trans-

form of
�

. The inverse transform is

� � ��� �	 � � �� �
� �� � �� �	 � � ���

So,
�� � ��	 � � ��	 � � �

���.

Remark 12.5.1 We proved before that
�

is self-adjoint implies that

�� � �� � � (the indices of defect are
�����) and � is a unitary

operator.

Theorem 12.5.2 If
�

is a closed symmetric operator and the Cayley

transform � is a unitary operator (i.e., �� � �� � � and the indices of

defect are
�����) then

�
is self-adjoint with a spectral decomposition

����

and
� � ���� �����, where

������� is the spectral decomposition of

� . This means that

�� � �� � � �
��

���������� ���
(12.24)

and
�� � � �

��
������(12.25)
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Proof: Let � ��� and � � ��� �	 � � ��. Then

��� � ��� �	 � � ���� � ��� �
�

�
��� ��� ����(12.26)

and

������� � �� ���	 � � � �
��������� � � �

�

�
� �� ���������(12.27)

where we used that
� � ��� � ���� � � 
�
� �� . Similarly, for � � �� we

have that
�� � �� �	 � � �� � �� � ��

�
��� ���������(12.28)

which, using (12.26), gives:

�� � ��� � ��
�

�� ����� ���
�� ����� ����

� � ��
� �

�� ����� �������
� �

� ��
� ��� ���������

� � �
��

������
Now, using (12.28), for � ��� we have that

����� � ������� � �� ���	 � � � �
�������

� � ��
�

��
������
�
������ 
�
�
�������������

and by (12.27) it follows that this equals

� ��
� ���� �������������� �

� �
��

�����������

This means that � ��� implies
�
�
�� ���������� ���

The last part of the proof shows that if � is such that

� �
��

���������� � � ��
� ���� ������������� ���
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then � ���. To show this we have to find � �� such that
���� ���� �

�. In order to find such a � we start with the information

� ��
� ���� ���������� ���

for ���� � ������� being a monotone function of bounded variation:

� ��
�

�
���� ���

(12.29)

Then also � ��
�

�

�
� �����

�
���� ���

(12.30)

Therefore there exists

� � � ��
�

������

�
�����

��� �

[Indeed, consider first the ���� � � ����
����
�
������������ which exists be-

cause it is the integral of a continuous function; we cut off singular

points. Then observe that it is a Cauchy sequence when � � �� � � �
since (12.30) exists.]

Consider now
�	 � � �� � � ��� ��� �������� and note that

��� � �
� �

�
������

�
����������

Therefore,

�	 � � � � � ��
�

��� ����������

�
�����

����
� �� � ��

�
����

� ���
and � ���. �

Corollary 12.5.3 If � �� ��� � then
�

is a bounded (self-adjoint) oper-

ator.
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Return back to the construction of the Cayley transform of a

symmetric operator. Let
�� be a symmetric extension of

�
,
�� � �

and
�� �� �

. Then there exists �� ���	 ��� which means that
�� � �	��� � �� �
� �� ��	��� � �� � ����

and both �� �� ��, �� �� ��. So, the Cayley transform �� of
�� is an

isometric extension of � and does not coincide with � . This means

that there exists a �� �� ��� and there exists a �� �� ���. Hence

we have the following:

Fact 1. If the indices of defect are
����� and

����� for � �� �
then

�
does not have any symmetric extension, i.e.,

�
is a maximal

symmetric (and not self-adjoint) operator.

Let ��	 � � �� � �� � �� and ���� � � �� � �� � ��. So, �� �
�� � �� 
� �� � ��. Also, �� ��	 � � and �� restricted on �� is an

isometry between �� and ��. In particular, ����� � �����. Therefore

we arrive at

Fact2. If the indices of
�

are
�	��� and 	 �� � then there is no

self-adjoint extension of
�

[because any self-adjoint extension
��

has Cayley transform �� �
� 
� � meaning that �� � �� � � and

�� ��� � � and ������� � �������].
Consider now the inverse question: let � be that Cayley trans-

form of
�

and let �� be some isometric extension of � .

Does there exist a symmetric extension
�� of

�
such that �� is the

Cayley transform of
��?

The answer is “yes” and formulas for � builds this extension: we

consider an operator
�� with

�� � �� � � � ��� �	 � � ��� � ���	�(12.31)

and for � ���	, � � ��� �	 � ����,
��� � �� �	 � �����

In order to see that the operator
�� is well defined we need to show

that � �� �
 ����, i.e.,
����	 � ��� � �

. If � � �
 ���� then there exists�� �� �
such that �� � ����. Let us check that such a �� � ��	, which

will be a contradiction because ��	 � �� and �� is dense in �. So

for any � ���	 there is a � and � � ��� �	 � ���� and

��� ��� � ��� � ��� �	 � ����� � ��� ���� ��� � ��� �����
 � ��(12.32)
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because ���� � �� and
����� ����� � ��� ��� since �� is an isometry.

It follows that �� � �
. It remains to show that

�� is a symmetric

operator: for any ����� ���	 we have that

��������� � �
��� ��	 � ������ �	 � ������ � ����������(12.33)

[Indeed,

��������� � �
��� ��������� ��������� � ��������� � �����������


� �
��� ���������� � ���������
�

Similarly,

��������� � ��� ��	 � ������ �	 � ������(12.34)

� ��� ������������ ���������
�
(12.35)

As a consequence we have:

Fact 3. If the indices of a symmetric operator
�

are
�����, then

there exists a self-adjoint extension
�� of

�
.

Indeed, if � is the Cayley transform of
�

and �
�
�� 
� ��,

� � �� � ��, � � �� � ��, ����� � ����� � � then it is trivial to

build an extension of � to a unitary operator �� �
� 
� �. The

corresponding symmetric extension
�� of

�
has indices

����� and by

the last Theorem it is self-adjoint.

Example. Consider the operation
�� � ��� on the spaces �� ��� �
�

�� �����
, and �� ������

.
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