Chapter 6

Important continuous population distributions

6.1 Chi-square distribution

Definition: If $Z_1, Z_2, ..., Z_{\nu}$ are ν independent standard Normal, N(0,1), random variables

then

$$W = \sum_{i=1}^{\nu} Z_i^2 \sim \chi_{\nu}^2$$

has a Chi-square distribution with v degrees of freedom.

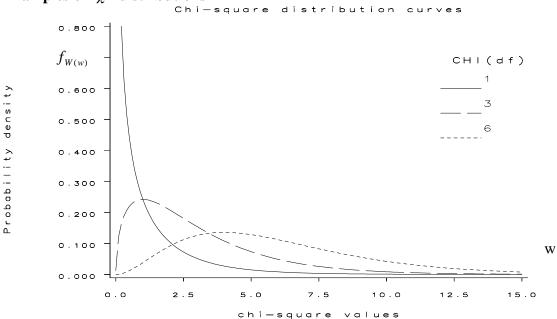
Properties:

i) v is the only parameter of the distribution

ii) range of W is $(0,\infty)$

iii) E(W) = v, V(W) = 2v [Note variance is useful to remember later]

iv) If $W_1 \sim \chi^2_{\nu_1}$ and $W_2 \sim \chi^2_{\nu_2}$ and W_1 and W_2 are independent then $W_1 + W_2 \sim \chi^2_{\nu_1 + \nu_2}$



Examples of χ^2 distributions

Theorem 1: Let $\{X_1, X_2, ..., X_n\}$ be a random sample from a $N(\mu, \sigma^2)$ population then

$$W = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2 \quad \text{where} \quad S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 .$$

6.2 t distribution

Definition: If $Z \sim N(0,1)$ and $W \sim \chi_{v}^{2}$, and Z and W are independent then

$$T = \frac{Z}{\sqrt{\frac{W}{v}}} \sim t_{v}$$

has a t distribution with v degrees of freedom.

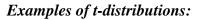
Properties:

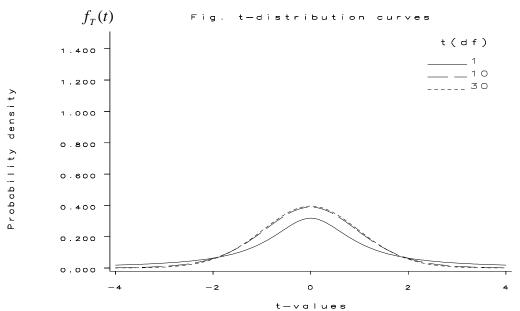
i) v is the parameter of the distribution

i) range of *T* is $(-\infty,\infty)$

iii) distribution is symmetric about zero

iv) as $v \to \infty$ distribution of $T \to N(0,1)$





t

Theorem 2: Let $\{X_1, X_2, ..., X_n\}$ be a random sample from a population with $X \sim N(\mu, \sigma^2)$

then
$$T = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} \sim t_{n-1} \quad \text{where}$$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

Proof:

We know that
$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right) \qquad \Rightarrow Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$
.

Also from the results on the χ^2 distribution we have that

$$W = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$
 where $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$.

Also \overline{X} and S^2 are independent, so Z and W are independent, so

$$\therefore T = \frac{\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2(n-1)}}} \sim t_{n-1}$$

i.e. $T = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} \sim t_{n-1}$

Note: that since the t-statistic $T = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}}$ depends only on μ (and not on σ^2) we can use the

above result for tests and C.I.'s for μ , when σ is unknown.

Exercise on χ^2 -*t* - **Distributions**

- Suppose that X has a χ² distribution with 5 degrees of freedom. Using tables, determine the values x₁ and x₂ for which P(X < x₁) = P(X > x₂) = 0.025 Show these values on a sketch of the probability density function.
- 2. A χ_2^2 distribution simplifies to an Exponential distribution with mean $\mu = 2$. Find the c.d.f. of an Ex(2) distribution and verify the values in the χ^2 table for v=2.
- 3. Let X ~ t_{30} . Use tables to determine the values x_1 and x_2 such that

 $P(-x_1 \le X \le x_1) = 0.90$

 $P(X > x_2) = 0.995$

Compare with the corresponding values from standardised normal distribution tables.

PRACTICAL 5 Continuous Distributions

- Q1 The heights X of elderly women are stored in column C1 of ELDERLY.MTW [From : Hand et al. 'Small data set']
 - a) Open MINITAB and input the saved worksheet ELDERLY.MTW by
 > File > Open Worksheet
 and finding the file J: \SCTMS \SOM \MA109 \PRACTICALS \ELDERLY.MTW
 - b) Obtain **descriptive statistics** for the variable X (height), including a graphical summary with a fitted Normal distribution by :

> Stat > Basic Statistics > Display Descriptive Statistics

| Variables 'C1' |

> Graphs | O Graphical Summary | OK > OK

- c) Obtain a Normal **probability plot** to check whether X can be modelled using a Normal distribution.
 - > Graph > Probability Plot
 - | Variables 'C1' |
 - > Distribution > Normal | OK > OK

Does a Normal distribution provide a suitable model for the distribution of X ?

- d) Use the MINITAB commands for calculating pdf, cdf and inverse cdf values
 [i.e > Calc > Probability Distributions > Normal etc]
 to calculate the following for the Normal model for the variable X having the same mean and standard deviation as the sample :
 - i) $p(X \le 160)$, $p(X \le 170)$ and hence state $p(160 \le X \le 170)$
 - ii) quartiles Q_1 and Q_3 and hence state the Semi-Interquartile Range (SIR) for X.
 - iii) find x_1 and x_2 such that $p(X \le x_1) = 0.025$ and $p(X > x_2) = 0.025$ and hence state a 95% interval for *X*.
 - iv) find a 99% interval for X.
- Q2 The diameter X of cherry trees was recorded and stored in column C1 of worksheet CHERRY.MTW. [From : Hand et al. 'Small data set'].
 - a) Open MINITAB and input the saved worksheet CHERRY.MTW by
 > File > Open Worksheet and finding the file CHERRY.MTW from J: \etc
 - b) Obtain **descriptive statistics** for the variable X (diameter), including a graphical summary with a fitted Normal distribution .
 - c) Obtain a Normal probability plot to check whether X can be modelled using a Normal distribution.Does a Normal distribution provide a suitable model for the distribution of X ?
 - d) Use the **alternative probability plots** in MINITAB to see if you can find a suitable alternative model for the distribution of X, i.e. by > Graph > Probability Plot etc.

- Q3 If $W \sim \chi_5^2$ use > Calc > Probability Distributions > etc. to find i) p(W > 6), p(W > 10)
 - ii) find w_1 and w_2 such that $p(W \le w_1) = 0.025$ and $p(W > w_2) = 0.025$ and hence state a 95% interval for *W*. [Note in this example $w_1 = \chi^2_{5,0.975}$ and $w_2 = \chi^2_{5,0.025}$ where the standard notation is that if $p(W > w) = \alpha$ where $W \sim \chi^2_v$ then $w = \chi^2_{v,\alpha}$]
- Q4 If $T \sim t_{10}$ find i) p(X > 2), p(X > 3)
 - ii) find t such that p(T > t) = 0.05[Note in this example $t = t_{10,0.05}$ where the standard notation is that if $p(T > t) = \alpha$ where $t \sim t_v$ then $t = t_{v,\alpha}$]
- Q5 To compare graphically the pdf of a standard Normal distribution N(0,1) with t distributions with v = 1 and 5 degrees of freedom.
 - i) Open MINITAB and type the following values into column 1:
 -3, -2.75, -2.5, -2.25, -2, -1.75, -1.5, -1.25, -1, -0.75, -0.5, -0.25,
 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3
 - ii) Calculate the corresponding of the pdf f(z) of Z~N(0,1) in column 2
 [i.e use > Calc > Probability Distributions > Normal etc]
 - iii) Calculate the corresponding of the pdf f(t) of $t \sim t_1$ in column 3 [i.e use > Calc > Probability Distributions > t distribution etc]
 - iv) Calculate the corresponding of the pdf f(t) of $t \sim t_5$ in column 4 [i.e use > Calc > Probability Distributions > t distribution etc]
 - v) Graph C2-C4 against C1. Annotate the graph with a title, axis labels etc.
 - vi) Comment on the graphical comparison of the standard Normal with the t distribution