Chapter 15

Regression Models — Examples

15.1 Simple Linear Regression Example:

A study investigated the relationship between energy expenditure and body build. For a
random sample of seven adult men, underwater weighing techniques were used to
determine the fat-free body massin kg. of each of them. The total 24-hour energy
expenditure was also measured. The data are as follows:

Participant 1 2 3 4 5 6 7
Fat-freemasskg  x 49.3 59.3 68.3 48.1 576 | 781 |76.1
Energy kcal y 11894 2050 2353 1838 1948 | 2528 | 2568

15.1.1.The Scatter Diagram:

A plot of the data provides a scatter diagram showing the relationship between x and y.
The response variable y is plotted on the y-axis, the explanatory variable is plotted on the
x-axis. If the relationship between the two variablesis linear, then the scatter plot should
show this straight-line relationship (albeit with a certain amount of random scatter)
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Example (continued): Scatter Plot.
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It is assumed that energy expenditure depends on fat-free body mass; hence energy
expenditure is the response variable (or dependent variable) y and fat-free massisthe

explanatory variable (or independent variable x).

This plot is approximately linear; as the fat-free mass increases, the energy expenditure

increases.

15.1.2 Least Square Estimation for the simple linear regression line
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Resulting Output

15.1.3 Simplelinear regression: inference using SPSS output
a) Modd fitting

Variables Entered/Removed

Variables Variables
Model Entered Removed Method
1 Fat-free
mass . | Enter
(kgs)

a. All requested variables entered.

b. Dependent Variable: Energy expenditure (kcal)

Variation explained by the model

Model Summary

Adjusted Std. Error of
Model R R Square R Square the Estimate
1 .9812 o« 963 .956 64.848

a. Predictors: (Constant), Fat-free mass (kgs)

The R Square ( R?)/measures the % of variation explained by the model. For example in
the above model 96.3 % of the variation in the y-variable (energy expenditure) was
explained by the model.

The least squares estimates of the coefficients

Coefficients?

Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 607.703 138.765 4.379 .007
Fat-free mass (kgs) 25.012 2.189 .981 11.427 .000

a. Dependent Variable: Energy expenditure (kcal)

From the Table, the estimated regression line is

Energy Expenditure = 607.703 + 25.012 fat-free mass
b) Inference about g, the slope.

Confidence Interval about f,: a 100(1-a)% confidence interval for [, is given
by:

Bl itn—Z,ot/Z(Qd'error'ﬁ}\l)
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Example: Bl= 25.012  with Std. Error = 2.189. There are 7 observations
(n=7) and two parameters have been estimated, giving n-2 df=5df. ts 005 =2.571

Hence 95% ClI for S, isgiven by 25.012 + 2.189*2.571 = (19.389, 30.645)

Notice that thisinterval does not contain zero.

Hypothesistest about f;:

Ho:B, =0 No linear relationship between x and y
H,:3,#20 Thereisalinear relationship

Test Statistic: T= ¢
std.Error (8,)

Reject H, if T>t , ., or T<-t ..,
Otherwise accept the null hypothesis

Example

H, : B, =0 Norelationship between fatfreemassand energy expenditure
H. :B, #0 Thereisalinear relationship
Observed T = 11.427, p = 0.000.

Hence very strong evidence to reject the null hypothesis and conclude that there is alinear
relationship between fat free mass and energy expenditure.

b) Similarly, B,issignificantly different from zero in thismodel since T = 4.379 and
p= 0.007.

c) Test of the significance of theregression using the F-distribution.

ANOVA
Sum of
Model Squares df Mean Square F Sig.
1 Regression | 549097.6 1 | 549097.619 130.575 .0002
Residual 21026.096 5 4205.219
Total 570123.7 6

a. Predictors: (Constant), Fat-free mass (kgs)
b. Dependent Variable: Energy expenditure (kcal)

If the regression is not significant, then y does not depend on x. The hypotheses
may be written:

H,:5, =0 (y does not depend on x) model :y, = 5, +¢,
H:p, =0 (ydoesdepend on x) model: y. =5, + B, X +¢,
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MS(regression)

MS(residual )
Reject H, if observed F > F , .. Conclude thaty does depend on x.
Otherwise accept the null hypothesis and conclude that y does not depend on x.

Test Statistic  F =

Example:

H, : B, = 0 energy expendituredoes not depend onfat - freemass, model :y, = S, + &
H, : B, =0 energy expenditure dependslinearly onfat -freemass model:y, = 5, + B, +¢,

Observed F = 130.575 and p =0.000 < 0.001, Very, very strong evidence to reject the null
hypothesis and accept the alternative. Conclude that the energy expenditure depends
linearly on fat-free mass.

Here the best linear equation isgiven by y=607.7 + 25.012 x

Prediction

The predicting equation is given by:

yi = Po+ B1%
Substituting specific values for x will give the predicted value of y.

Predicting equation: y =607.7 +25.012x
when x =60 kg, ¥ =607.7 +25.012*60 = 2108 kcals
Comments:
i) Predicting outside the range of values of x on which the equation was

estimated, should be done with caution. The seemingly linear relationship
may not persist over all values of x

i) Inter pretation of the coefficients:
The slope represents the amount by which y changes for every unit change
in X. The intercept represents the value of y when x is zero.

Example: The value of 25.012 for the gradient implies that, on average, with every
increase in one kg of fat-free mass, the energy expenditure increases by 25.01kcals. The
constant term of 607.7 could be interpreted as the energy expenditure when the fat-free
mass was zero.
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15.1.4 Assumptions of the M odd!:

1. For any given x, y isarandom variable with a probability distribution.
2. The errors are random errors with mean zero and variance o. The errors are

independent.

3. Theerrors are assumed to have constant variance, c’.

4.

In order to make tests of significance and construct confidence intervals, it is

necessary to assume that the errors are Normally distributed.

Thusthemodel is Y, = B, + B, X +¢& ,
N(O, o?)forali=1.2,...n.

The Residuals

i =12,...n. where the ¢, are independent,

After fitting the model, the assumptions of the model are validated using residual

analysis.

Theresiduas, & provide an estimate of the errors, &; .

&=y ¥

Residual Analysisto validate the assumptions of the model.

Theresiduals are given by:
The assumptions are:
i) Errors are independent
i) Mean zero, constant variance
iii) Normally distributed.

&=y -V

Using SPSSto validate the assumptions
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T
Ml Linear Regression 3| incar Regression: Plots |
[ Forfiom e (el [t Dependent: I -
 Fatfiee mass (kos) [fat % Eva cmendis e 0K | | TR ot o
Block 1 of 1 Eeste | ~ %EEE% Previous | Hew | Cancel |
Frevious | Mext | Beset | [ *DRESID v Hel
- "ADJPRED I |"ZF|ESID elp |
el || LeREe
Help | B *SDRESID -.’ % [ZPRED
Method IEntel 'I B - Standardized Residual Plots [™ Produce all partial plats
: [v\ Histogram
Selection Y ariable: -
l— Fule.. - p\o;mal probability plat
LCaze Labels: |
LS e B Select the plots that you
- require
§latlst\cs...| Flots... | Save.. | Optionz... —
H. Robert and D. M. Stasinopoulos © September 2005 160




SPSS Output:
Plot of residuals v fitted values

Should be randomly scattered about zero with fairly constant ‘spread’ if assumption of

independence and homogeneity are valid.

If the model fitted isinadequate this can also be noticed from a distinctive pattern to

thisplot.

Scatterplot

Dependent Variable: Energy expenditure (kca
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o
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Comments. This appears to be random
but the sasmple sizeisvery small

Histogram

Should be symmetric about zero and bell shaped, if the Normality assumption is valid.

Histogram

Dependent Variable: Energy expenditure (kcal’

25

20

15

1.0

5 Std. Dev = .91
Mean = 0.00

N=7.00

Frequency

0.0

-150  -1.00 -.50 0.00 .50 1.00

Regression Standardized Residual

The smallness of the sample size makes
it difficult to see any definite shape to
the histogram.

Normal Probability Plot

Should be astraight line if the normality assumptionisvalid

Normal P-P Plot of Regression Stanc
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The sample size agan makes this
difficult to interpret with any degree of
certainty.
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15.2 Multiplelinear regression

15.2.1 Introduction

This is applicable when the data are multivariate. A multiple linear regression model
relates aresponse variable Y to mor e than one explanatory variable.

The main purpose of the multiple regression analysis is to find which explanatory
variables contribute to the variation of the response variable. We are usually looking for
the ‘best’ subset of the explanatory variables.

The Model
Vi = Bo+ BiXy + BoXo ++ B X +E; s i=12,...n
where: k isthe number of explanatory variables,
B, » B, By arethe parameters of themode,

g, Isarandom error term.

15.2.2 Example: Data wer e collected by Rudge (2004) on excess winter mor bidity
in the period 1993 — 1996 in 25 grouped enumer ation districtsin Newham,
London.

The explanatory variables are asfollows:

CTB =% households receiving council tax benefit
FPR = Fud poverty risk index

HHI =% of householdswith one or more pensioners
PERS =% of over 65 year olds

The basic response variableisthe excess winter morbidity EWM in the period
1993-1996 and the analysis uses log(EWM).

The Multiple Scatter Diagrams:
The response variable y and the all the x continuous variables are plotted against
each other.
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From the scatter plotsit is not clear which of the explanatory variables has the ‘ best’
single linear relationship with the response variable. However, there are some very
strong relationships between the explanatory variables. This may cause a problem.

Correlation Matrix
The relationships are confirmed by the output from the correl ation matrix below.

Correlations

% of % of
Househods housholds
receiving with one or
council tax Fuel poverty more % of over 64
Log (EWM) benefit risk index pensioner year olds

Log (EWM) Pearson Correlation 1 A473* A497* 485* 436*

Sig. (2-tailed) 017 012 .014 .029

N 25 25 25 25 25
% of Househods Pearson Correlation AT73* 1 430* .495* .523*4
receiving council tax Sig. (2-tailed) 017 032 012 007
benefit : ’ ! !

N 25 25 25 25 25
Fuel poverty risk index  Pearson Correlation A97* .430* 1 796 797

Sig. (2-tailed) 012 032 .000 .000

N 25 25 25 25 25
% of housholds with Pearson Correlation 485* 495* .796% 1 9404
one or more pensioner - gig. (2-tailed) 014 012 .000 .000

N 25 25 25 25 25
% of over 64 year olds  Pearson Correlation 436* 523* 797* .940*4 1

Sig. (2-tailed) .029 .007 .000 .000

N 25 25 25 25 25

*. Correlation is significant at the 0.05 level (2-tailed).
**. Correlation is significant at the 0.01 level (2-tailed).

The response variable is significantly correlated with each of the explanatory
variables and the Fuel Poverty Risk Index isthe single variable that ‘best’ describes
log(EWM).

(% households with one or more pensionersis highly correlated with % of over 64
year olds — unsurprisingly and the other explanatory variables show significant
relationships amongst themselves too).

Model 1: Best Simple Linear Regression Model
The response variable islog EWM. The best simple linear regression model will be
the model relating log EWM to fuel poverty risk index. The output is given below.

Output from Simple Linear Regression (using ENTER).

Variables Entered/Removed

Variables Variables
Model Entered Removed Method
1 Fuel
poverty risk . | Enter
index

a. All requested variables entered.
b. Dependent Variable: Log (EWM)

Model Summary

Adjusted Std. Error of
Model R R Square R Square [ the Estimate
1 4972 247 214 1414701

a. Predictors: (Constant), Fuel poverty risk index
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ANOVA

Sum of
Model Squares df Mean Square = Sig.
1 Regression 151 1 151 7.538 .0122
Residual .460 23 .020
Total 611 24
a. Predictors: (Constant), Fuel poverty risk index
b. Dependent Variable: Log (EWM)
Coefficients?
Unstandardized %ndardized
Coefficients Coefficients
Model B Std. Error, Beta t Sig.
1 (Constant) .213 .042 5.066 .000
Fuel poverty risk index |5.982E-05 /000 497 2.746 > .012

a. Dependent Variable: Log (EWM)

Comment: From the ANOVA Table

seen that there isa significant, linear
Poverty Risk Index sincethe sig. va

fromthe T
ationsht

Coefficients, it can be
etween log(EWM) and the Fuel
are less than 0.05.

Write down the assumptions of the model and use the residual analysis to comment on
whether they are likely to be valid

Normal P-P Plot of Regression Standardized Residual

Dependent Variable: Log (EWM)
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Scatterplot

Dependent Variable: Log (EWM)
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15.2.3 Multiple Regression Analysis

Thisexampleisasmall example. In the Regression dialog box, al or some of the
explanatory variables of choice can be moved b the I ndependent(s)/Box. The
Method can be selected from alist including ENTER, STEPWISE,/REMOVE,
FORWARD, BACKWARD.
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e 4 — . ¥ y
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Dependent;
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® Fuel poverty risk index giock 1 of 1 Paste |
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@ % of over B4 year olds

Independent{z): K Carcel |
(@ Fuel poverty sk index [Fﬂ Help
> % of Housshods receivin

4 % of houshalds with one |

Fethod: | Enter > I

Selection Vanable:

i

m | Fule,. |
LCaze Label:
WLS ‘weight:
Statistics... | Flotz... | Save... Optiors...
|—?— iSPSS Processor is ready |
i Startl @ Chapter 15b.doc - Micra. .. | rudge.sav - SPSS Data k... “ﬁ Outputl - SPSS Yiewer I%@ ﬁ

The main onesto use are ENTER, REMOVE and STEPWISE.

There are 4 explanatory variables to choose from. Fuel Poverty Risk Index (FPR) was
entered first. We now can think about adding another variable to the list of
independent variables and achieving a better model that explains more of the
variation.

% of households with one or more pensioners (HHI) is the next most correlated
variable with log (EWM). However this variable is also very highly correlated with
the FPR (their correlation is 0.796 with sig = 0.000). A better choice may be to
include % Households receiving Council Tax Benefit (CTB) asthisisless correlated
with the aready included explanatory variable FPR but significantly correlated with
the response variable log(EWM)
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Model 2: Multiple Regression Model including FPR and CTB

Model Summary®

Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 5742 .329 .268 .1365235

a. Predictors: (Constant), % of Househods receiving
council tax benefit, Fuel poverty risk index

b. Dependent Variable: Log (EWM)

R Square Moddl 2 = 0.329, compared to R Square Model 1 =0.247
Adjusted R Square Model 2 = 0.268 compared to Adjusted R Square Model 1 = 0.214

ANOVA
Sum of
Model Squares df Mean Square F Sig.
1 Regression .201 2 101 5.396 .0128
Residual 410 22 019 P
Total .611 24

a. Predictors: (Constant), % of Househods receiving counci

risk index

b. Dependent Variable: Log (EWM)

Model 2 issignificant as the Sig =

enefit, Fuel poverty

significant in explaining log(EWM).

Coefficients?

.012 < 0.05. Hence FPR and CTB arejointly

Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) .034 116 .298 .769
Fuel poverty risk index [4.337E-05 .000 .360 1.862 .076
% of Househods
receiving council tax .005 .003 .318 1.642 115
benefit /

a. Dependent Variable: Log (EWM)

The Sig values here indicate that after including FPR in the

add significantly to the model and hence should not be included, 0.115>0.05.

Model 3: Multiple Regression Model including FPR and HHI

Model Summary?

Adjusted Std. Error of
Model R R Square | R Square the Estimate
1 5182 .269 .202 1425511

a. Predictors: (Constant), % of housholds with one or
more pensioner, Fuel poverty risk index

b. Dependent Variable: Log (EWM)

. Robert and D. M. Stasinopoulos © September 2005
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ANOVA

Sum of
Model Squares df Mean Square F Sig.
1 Regression .164 2 .082 4.038 .0328
Residual 447 22 .020
Total 611 24

a. Predictors: (Constant), % of housholds with one or more pensioner, Fuel poverty
risk index

b. Dependent Variable: Log (EWM)

Coefficients?

Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) -.019 .290 -.065 .949
Fuel poverty risk index |3.650E-05 .000 .303 1.006 .325
% of housholds with
one or more pensioner .009 .012 .243 .808 .428

a. Dependent Variable: Log (EWM)

In al respects this model isworse than model 2. And model 1 was better than model

2.

It can be seen, perhaps, that finding the best subset of the explanatory variables to

explain the behaviour of the response variableis not easy.

The Method: Stepwise can often provide useful guidance.

15.2.4 Stepwise Regression

There are many ways to construct a ‘best’ regression equation from a large set of x-

variables.

Backward elimination: We begin with a model that includes al the predictors and we
try to eliminate the ones that contributed the least to the model.

Forward selection: We start with the constant and add only significant variables.

Stepwise selection: Add one variable at the time in the models as in forward but aso
check whether existing variables can be removed.

The following output uses the option STEPWISE.

In stepwise regression, all the explanatory variables are usually included in the

independent(s) list. Using Stepwise procedure on the Rudge exampl e provides the

following output
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Stepwise Output on the Rudge Example:
Move log(EWM ). to the dependent box

Move AL L the possikle explanatory variables to the | ndependent Box

x|
Lo |
Block 1 of 1 Bets |
ook 1 a
g Prewious I Mext I Heset |
Independint(z): Cancell
Help |

Method: I Stepwize - l

Selection Yariable:
I Fule... |

LCaze Labelx:

3 N —

WLS 'weight:

-

§tatistics...| Flots... | Save... | Dptions...

[l SRR ] R KRR RN el O R R R R RN R R Bl |

STEPWISE Output

Variables Entered/Removed®

Variables Variables
Model Entered Removed Method
1 Stepwise
(Criteria:
Probabilit
y-of-
Fuel F-to-enter
poverty risk . | <=.050,
index Probabilit
y-of-
F-to-remo
ve >=,
100).

a. Dependent Variable: Log (EWM)

This confirms that the best model contains Fuel Poverty Risk Index only

Model Summary?

Adjusted Std. Error of

Model R R Square R Square the Estimate

1 4972 247 214 1414701
a. Predictors: (Constant), Fuel poverty risk index

b. Dependent Variable: Log (EWM)
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ANOVA

Sum of
Model Squares df Mean Square = Sig.
1 Regression 151 1 151 7.538 .0128
Residual .460 23 .020
Total 611 24
a. Predictors: (Constant), Fuel poverty risk index
b. Dependent Variable: Log (EWM)
Coefficients?
Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) .213 .042 5.066 .000
Fuel poverty risk index |5.982E-05 .000 497 2.746 .012
a. Dependent Variable: Log (EWM)
Excluded Variables
Collinearity
Partial Statistics
Model Beta In t Sig. Correlation Tolerance
1 % of Househods a
receiving council tax .318 1.642 115 .330 .815
benefit
% of housholds with 243a 808 428 170 366
one or more pensioner ) ) : : :
% of over 64 year olds .1092 .357 724 .076 .365

a. Predictors in the Model: (Constant), Fuel poverty risk index
b. Dependent Variable: Log (EWM)

This table lists the excluded variables.

The output confirms the decision that the best model relates log(EWM) to the Fuel
Poverty Risk Index. When FPR is included, the other explanatory variables do not add
significantly to the model.
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15.3 Stepwise Regression

15.3.1Example

These data are from Satistical Methods for the Social Sciences, Third Edition

by A. Agresti and B. Finlay (Prentice Hall, 1977). The variables are as follows:

Crime:
Murder:
Pctmetro:
Pctwhite:

Poverty:
Single:

The data are collected from the states of the USA. The variable of interest iscrime.

violent crimes per 100,000 population
murders per 1,000,000 popul ation
% population living in metropolitan areas
% population that iswhite
Pcths: % population with high school education or above
% population living under the poverty line

% population that are single parents

(¢]

violent
W

(¢]

(¢]

oy

)

t... murder ... Vi

O
O

?‘:?oéo
o

of [y

pct white

pcths ...

pct ...

pct singl...

Comment: Notice that in most of the plots there is one unusual observation. It may be

worth investigating (at some point) the effect of removing this case.
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Correlations

violent pct pct hs pct single
crime rate | murder rate metropolitan pct white graduates | pct poverty parent
violent crime rate  Pearson Correlation 1 .886*% 544* -B77* -.256 510*¥ .839%*
Sig. (2-tailed) .000 .000 .000 .070 .000 .000
N 51 51 51 51 51 51 51
murder rate Pearson Correlation .886*4 1 .316* -.706* -.286* .566** .859**
Sig. (2-tailed) .000 .024 .000 .042 .000 .000
N 51 51 51 51 51 51 51
pct metropolitan Pearson Correlation 544*¥ 316* 1 -.337* -.004 -.061 260
Sig. (2-tailed) .000 .024 .016 .978 .673 .066
N 51 51 51 51 51 51 51
pct white Pearson Correlation -.677* -.706* -.337* 1 .339* -.389*4 -.656*
Sig. (2-tailed) .000 .000 016 015 .005 .000
N 51 51 51 51 51 51 51
pct hs graduates ~ Pearson Correlation -.256 -.286* -.004 .339* 1 =744 -.220
Sig. (2-tailed) .070 .042 .978 .015 .000 121
N 51 51 51 51 51 51 51
pct poverty Pearson Correlation .510*4 .566* -.061 -.389% - 744 1 549+
Sig. (2-tailed) .000 .000 .673 .005 .000 .000
N 51 51 51 51 51 51 51
pct single parent  Pearson Correlation .839* .859*4 .260 -.656* -.220 .549*4 1
Sig. (2-tailed) .000 .000 .066 .000 121 .000
N 51 51 51 51 51 51 51

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

The correlations show that, unsurprisingly, the murder rate is highly correlated with
the crimerate.

SPSS Stepwise:
The response variable crime goesin the Dependent box
All the scale explanatory variables go in the I ndependent box (do not include

categorical variables here)

Stepwise is the chosen method

1: i

bt

A sid

E state

@ murder rate [murder]
@ pct metropolitan [potme
@ pct white [potwhite]
’ pct he graduates [pcth
’ pct poverty [poverty]
@ pct single parert [singl

Il Linear Regression

Dependett: m
I@violent crime rate [crim: -
Paste |

Mest I Beset |

Cancel |

Block 1 of 1

Frewvious |

x|

Independent(z]:

Method:

Selection Variable:

—

Help |

LCaze Labels:
WLS weight:
ﬁtatistics...l Flats... | Save... | Dptions... I

Y ou should investigate the options offered by Statistics, Plots, Save, Options.
The plots will be required when we have selected amodel and wish to test the validity
of the assumptions.
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Stepwise Output

Variables Entered/Removed

Variables
Model Entered

Variables
Removed

Method

murder
rate

pct
metropolit
an

pct single
parent

Stepwise
(Criteria:
Probabilit
y-of-
F-to-enter
<=.050,
Probabilit
y-of-
F-to-remo
ve >=,
100).
Stepwise
(Criteria:
Probabilit
y-of-
F-to-enter
<=.050,
Probabilit
y-of-
F-to-remo
ve >=,
100).
Stepwise
(Criteria:
Probabilit
y-of-
F-to-enter
<=.050,
Probabilit
y-of-
F-to-remo
ve >=,
100).

a. Dependent Variable: violent crime rate

Murder Rate goesin first (highest correlation)
Pct metropolitan goesin second

Pct single parent goesin third.

The following variables are not included:
Pctwhite: % population that is white

Pcths: % population with high school education or above
Poverty: % population living under the poverty line
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Model Summaryd

Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 .8862 .785 .781 206.441
2 .929b .863 .857 166.804
3 .942°¢ .888 .881 152.369

a. Predictors: (Constant), murder rate

b. Predictors: (Constant), murder rate, pct metropolitan

C. Predictors: (Constant), murder rate, pct metropolitan,

pct single parent

d. Dependent Variable: violent crime rate

This provides diagnostics for the three models that have been fitted. Notice how the
adjusted R Square increasesto 0.881.

ANOVA
Sum of
Model Squares df Mean Square F Sig.
1 Regression 7640199 1 | 7640198.858 179.272 .0002
Residual 2088276 49 42617.875
Total 9728475 50
2 Regression 8392939 2 | 4196469.484 150.824 .000"
Residual 1335536 48 27823.662
Total 9728475 50
3 Regression 8637307 3 | 2879102.319 124.012 .000°¢
Residual 1091168 47 23216.336
Total 9728475 50

a. Predictors: (Constant), murder rate

b. Predictors: (Constant), murder rate, pct metropolitan

C. Predictors: (Constant), murder rate, pct metropolitan, pct single parent

d. Dependent Variable: violent crime rate

The ANOV A shows that the three fitted models are al highly significant. (The sig

values are all lessthan 0.001).
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Coefficients?

Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.

1 (Constant) 294,527 37.428 7.869 .000
murder rate 36.473 2.724 .886 13.389 .000
2 (Constant) -69.117 76.174 -.907 .369
murder rate 32.658 2.320 794 14.077 .000
pct metropolitan 5.890 1.132 .293 5.201 .000
3 (Constant) -707.561 208.727 -3.390 .001
murder rate 21.663 3.997 .526 5.420 .000
pct metropolitan 5.971 1.035 297 5.771 .000
pct single parent 64.364 19.839 .310 3.244 .002

a. Dependent Variable: violent crime rate

This table gives the coefficients for the three models that were fitted.
Notice that the higher the pct metropolitan, the higher the crime rate
The higher the pct single parent, the higher the crime rate

For the excluded variables, at each stage, diagnostics are presented below:

Excluded Variabled

Collinearity
Partial Statistics

Model Beta In t Sig. Correlation Tolerance
1 pct metropolitan .2932 5.201 .000 .600 .900
pct white -.1022 -1.098 278 -.157 .501
pct hs graduates -.0032 -.040 .969 -.006 .918
pct poverty .0122 .146 .885 .021 .680
pct single parent .2962 2.402 .020 .328 .262
2 pct white -.037P -477 .636 -.069 487
pct hs graduates -.031P -.543 .590 -.079 .910
pct poverty 127b 1.915 .062 .269 .616
pct single parent .310b 3.244 .002 428 .262
3 pct white -.004°¢ -.060 .953 -.009 AT77
pct hs graduates -.040¢ -.776 442 -.114 .907
pct poverty .099¢ 1.604 116 .230 .603

a. Predictors in the Model: (Constant), murder rate

b. Predictors in the Model: (Constant), murder rate, pct metropolitan

C. Predictors in the Model: (Constant), murder rate, pct metropolitan, pct single parent
d. Dependent Variable: violent crime rate

Looking at the table above, when model 1 isfitted, you can see that the next most
important variableis pct metropolitan (t = 5.201) and that is the variable next
included.

At stage 2 (murder, pct metropolitan included) pct single parent will beincluded
next (t = 3.244).

At stage 3, none of the remaining variables are significant (pct poverty has at value of
1.604 which is non- significant).
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Diagnostics:

The assumptions of the model are that the errors are

WD P

Random errors with mean zero and variance o°. .

The errors are assumed to have constant variance, o°.

The errors are independent

In order to make tests of significance and construct confidence intervals, itis

necessary to assume that the errors are Normally distributed.

The Residuals

After fitting the model, the assumptions of the model are validated using residual
analysis. Theresiduas, e provide an estimate of the errors, ¢, .

e=%-¥

Histogram

Dependent Variable: violent crime rate

Frequency

Mean = -5.45E-16

T T T T T
2 0 1 2 3 4

-1
Regression Standardized Residual

Std. Dev. = 0.97
N=51

The histogram evaluates the normality
assumption. This looks reasonably
symmetric.

Normal P-P Plot of Regression Standardized Residual

Dependent Variable: violent crime rate
1

!
o

Expected CumProb

3

T T
00 02 04 06 08 10
Observed Cum Prob

The points should lie on a straight line if
the errors are normally distributed.

This seems to show that there may be
further work required before the
normality assumption isvalid.

Scatterplot

Dependent Variable: violent crime rate
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Regression Standardize d Re sid ual
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°

000
o
o
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Regression Standardized Predicted Value

Residuals v fitted values should show
random scetter.

Woutlier. The next step
e to remove this and see what

effect that has.
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Practical 15: Multiple Linear Regression

The data set in the file SHARED
(K):\SCTMSSOM\MA2010\REGRESSION\RUDGE1.SAV comprises data collected
by Rudge (2004) on excess winter morbidity in the period 1993 — 1996 in 25 grouped
enumeration districtsin Newham, London.

The explanatory variables are as follows:

CTB = % households receiving council tax benefit
FPR = Fuel poverty risk index

HHI = % of households with one or more pensioners
PERS = % of over 65 year olds

The basic response variable is the excess winter morbidity EWM in the period 1993-
1996 and the analysis uses In(EWM).

a) Open the datafile in SPSS and calculate In(EWM).

b) Reproduce the results from the multiple linear regression example in your
course notes (section 15.2.2 and 15.2.3)

i) Use Graph>Scatter/Dot>Matrix Scatter to produce multiple plots of
InN(EWM) and the explanatory variables.

i)  UseAnalyze>Correlate>Bivariate to obtain a correlation matrix of
InN(EWM) and the explanatory variables.

i) Fit the best linear regression modd relating IN(EWM) to fuel poverty
risk index, FPR (Model 1) and use the option PLOTS to obtain residual
plots for the model.

Write down the estimated regression equation for the best simple linear
model fitted. Calculate the predicted value of EWM for FPR = 2500.

Write down the assumptions of the model and use the residual analysis
to comment on whether they are likely to be valid.

iv)  Now fit the multiple regression model relating In(EWM) to FPR and
CTB (Modédl 2) and the model relating In(EWM) to FPR and HHI
(Modedl 3).

For each of the models, write down the estimated regression equation

and cal cul ate the predicted value of EWM for CTB = 50, FPR = 2500,
HHI = 40 and PERS = 30.
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