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Chapter 15

Regression Models – Examples
15.1 Simple Linear Regression Example:

A study investigated the relationship between energy expenditure and body build. For a
random sample of seven adult men, underwater weighing techniques were used to
determine the fat-free body mass in kg. of each of them. The total 24-hour energy
expenditure was also measured. The data are as follows:

Participant 1 2 3 4 5 6 7
Fat-free mass kg x 49.3 59.3 68.3 48.1 57.6 78.1 76.1
Energy kcal y 1894 2050 2353 1838 1948 2528 2568

15.1.1.The Scatter Diagram:

A plot of the data provides a scatter diagram showing the relationship between x and y.
The response variable y is plotted on the y-axis, the explanatory variable is plotted on the
x-axis. If the relationship between the two variables is linear, then the scatter plot should
show this straight-line relationship (albeit with a certain amount of random scatter)

SPSS step 1 Step2 Step 3

Simple for the
two-variable
case

Move the variables to
the x and y axes using
the arrows
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Example (continued): Scatter Plot .
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It is assumed that energy expenditure depends on fat-free body mass; hence energy
expenditure is the response variable (or dependent variable) y and fat-free mass is the
explanatory variable (or independent variable x).

This plot is approximately linear; as the fat-free mass increases, the energy expenditure
increases.

15.1.2 Least Square Estimation for the simple linear regression line

Analyze – Regression - Linear Move variables to the Dependent and Independent
Boxes

The Method is left at the default ‘Enter’
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Resulting Output

15.1.3 Simple linear regression: inference using SPSS output
a) Model fitting

Variables Entered/Removedb

Fat-free
mass
(kgs)

a . Enter

Model
1

Variables
Entered

Variables
Removed Method

All requested variables entered.a.

Dependent Variable: Energy expenditure (kcal)b.

Variation explained by the model

Model Summary

.981a .963 .956 64.848
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Fat-free mass (kgs)a.

The R Square ( R2 ) measures the % of variation explained by the model. For example in
the above model 96.3 % of the variation in the y-variable (energy expenditure) was
explained by the model.

The least squares estimates of the coefficients

Coefficientsa

607.703 138.765 4.379 .007
25.012 2.189 .981 11.427 .000

(Constant)
Fat-free mass (kgs)

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: Energy expenditure (kcal)a.

From the Table, the estimated regression line is

Energy Expenditure = 607.703 + 25.012 fat-free mass

b) Inference about 1 the slope.

Confidence Interval about 1: a 100(1-)% confidence interval for 1 is given
by:

)̂..(ˆ
12/,21   errorstdt n
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Example: 1= 25.012 with Std. Error = 2.189. There are 7 observations

(n=7) and two parameters have been estimated, giving n-2 df=5df. 025.0,5t = 2.571

Hence 95% CI for 1 is given by 25.012 2.189*2.571 = (19.389, 30.645)

Notice that this interval does not contain zero.

Hypothesis test about 1 :

H
H

0 1

1 1

0
0

:
:






No linear relationship between x and y
There is a linear relationship

Test Statistic:
)̂(.

ˆ

1

1




Errorstd
T 

Reject H T t T to n nif or  2 2 2 2, / , / 

Otherwise accept the null hypothesis

Example

iprelationshlinearaisThere0:
eexpenditurenergyandmassfatfreebetweeniprelationshNo0:

1

1
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Observed T = 11.427, p = 0.000.

Hence very strong evidence to reject the null hypothesis and conclude that there is a linear
relationship between fat free mass and energy expenditure.

b) Similarly, 0 is significantly different from zero in this model since T = 4.379 and
p= 0.007.

c) Test of the significance of the regression using the F-distribution.

ANOVAb

549097.6 1 549097.619 130.575 .000a

21026.096 5 4205.219
570123.7 6

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), Fat-free mass (kgs)a.

Dependent Variable: Energy expenditure (kcal)b.

If the regression is not significant, then y does not depend on x. The hypotheses
may be written:

H y
H y x

o i o i

i i o i i

:
:
  
   

1

1 1

0
0

  
   

(y does not depend on x) model :
(y does depend on x) model:
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Test Statistic F MS regression
MS residual

 ( )
( )

Reject Ho if observed >F F n1 2, ,  . Conclude that y does depend on x.
Otherwise accept the null hypothesis and conclude that y does not depend on x.

Example:

iioii

ioio

xyH
yH







11

1

:modelmassfree-fatonlinearlydependseexpenditurenergy0:
:modelmass,free-fatondependnotdoeseexpenditurenergy0:

Observed F = 130.575 and p =0.000 < 0.001, Very, very strong evidence to reject the null
hypothesis and accept the alternative. Conclude that the energy expenditure depends
linearly on fat-free mass.

Here the best linear equation is given by y = 607.7 + 25.012 x

Prediction

The predicting equation is given by:
  y xi i  0 1

Substituting specific values for x will give the predicted value of y.

Predicting equation: y = 607.7 +25.012x
when x = 60 kg, y = 607.7 +25.012*60 = 2108 kcals

Comments:

i) Predicting outside the range of values of x on which the equation was
estimated, should be done with caution. The seemingly linear relationship
may not persist over all values of x

ii) Interpretation of the coefficients:
The slope represents the amount by which y changes for every unit change
in x. The intercept represents the value of y when x is zero.

Example: The value of 25.012 for the gradient implies that, on average, with every
increase in one kg of fat-free mass, the energy expenditure increases by 25.01kcals. The
constant term of 607.7 could be interpreted as the energy expenditure when the fat-free
mass was zero.
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15.1.4 Assumptions of the Model:

1. For any given x, y is a random variable with a probability distribution.
2. The errors are random errors with mean zero and variance 2 . The errors are

independent.
3. The errors are assumed to have constant variance, 2 .
4. In order to make tests of significance and construct confidence intervals, it is

necessary to assume that the errors are Normally distributed.

Thus the model is y x i ni i i     0 1 1 2, , , .. . . where the i are independent,

N(0, 2 ) for all i = 1,2,…n.

The Residuals

After fitting the model, the assumptions of the model are validated using residual
analysis.
The residuals, ei provide an estimate of the errors, i .

e y yi i i 

Residual Analysis to validate the assumptions of the model.

The residuals are given by: e y yi i i 
The assumptions are:
i) Errors are independent
ii) Mean zero, constant variance
iii) Normally distributed.

Using SPSS to validate the assumptions

Within the Regression dialog box, Click on Plots

Select the plots that you
require
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SPSS Output:
Plot of residuals v fitted values
Should be randomly scattered about zero with fairly constant ‘spread’ if assumption of
independence and homogeneity are valid.
If the model fitted is inadequate this can also be noticed from a distinctive pattern to
this plot.

Scatterplot

Dependent Variable: Energy expenditure (kcal)

Regression Standardized Predicted Value
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Comments: This appears to be random
but the sample size is very small

Histogram
Should be symmetric about zero and bell shaped, if the Normality assumption is valid.

Regression Standardized Residual

1.00.500.00-.50-1.00-1.50

Histogram

Dependent Variable: Energy expenditure (kcal)
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Std. Dev = .91

Mean = 0.00

N = 7.00

The smallness of the sample size makes
it difficult to see any definite shape to
the histogram.

Normal Probability Plot
Should be a straight line if the normality assumption is valid

Normal P-P Plot of Regression Standardized Residual

Dependent Variable: Energy expenditure (kcal)

Observed Cum Prob
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The sample size again makes this
difficult to interpret with any degree of
certainty.
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15.2 Multiple linear regression

15.2.1 Introduction

This is applicable when the data are multivariate. A multiple linear regression model
relates a response variable Y to more than one explanatory variable.
The main purpose of the multiple regression analysis is to find which explanatory
variables contribute to the variation of the response variable. We are usually looking for
the ‘best’ subset of the explanatory variables.

The Model
.,...2,1,22110 nixxxy ikikiii   

where: k is the number of explanatory variables,

.error termrandomais
model,theofparameterstheare,,

i

k1


 o

15.2.2 Example: Data were collected by Rudge (2004) on excess winter morbidity
in the period 1993 – 1996 in 25 grouped enumeration districts in Newham,
London.

The explanatory variables are as follows:
CTB = % households receiving council tax benefit
FPR = Fuel poverty risk index
HHI = % of households with one or more pensioners
PERS = % of over 65 year olds

The basic response variable is the excess winter morbidity EWM in the period
1993-1996 and the analysis uses log(EWM).

The Multiple Scatter Diagrams:
The response variable y and the all the x continuous variables are plotted against
each other.
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From the scatter plots it is not clear which of the explanatory variables has the ‘best’
single linear relationship with the response variable. However, there are some very
strong relationships between the explanatory variables. This may cause a problem.

Correlation Matrix
The relationships are confirmed by the output from the correlation matrix below.

Correlations

1 .473* .497* .485* .436*
.017 .012 .014 .029

25 25 25 25 25
.473* 1 .430* .495* .523**

.017 .032 .012 .007

25 25 25 25 25

.497* .430* 1 .796** .797**

.012 .032 .000 .000
25 25 25 25 25

.485* .495* .796** 1 .940**

.014 .012 .000 .000
25 25 25 25 25

.436* .523** .797** .940** 1

.029 .007 .000 .000

25 25 25 25 25

Pearson Correlation

Sig. (2-tailed)
N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation
Sig. (2-tailed)

N
Pearson Correlation

Sig. (2-tailed)

N
Pearson Correlation

Sig. (2-tailed)
N

Log (EWM)

% of Househods
receiving council tax
benefit

Fuel poverty risk index

% of housholds with
one or more pensioner

% of over 64 year olds

Log (EWM)

% of
Househods

receiving
council tax

benefit
Fuel poverty

risk index

% of
housholds
with one or

more
pensioner

% of over 64
year olds

Correlation is significant at the 0.05 level (2-tailed).*.

Correlation is significant at the 0.01 level (2-tailed).**.

The response variable is significantly correlated with each of the explanatory
variables and the Fuel Poverty Risk Index is the single variable that ‘best’ describes
log(EWM).
(% households with one or more pensioners is highly correlated with % of over 64
year olds – unsurprisingly and the other explanatory variables show significant
relationships amongst themselves too).

Model 1: Best Simple Linear Regression Model
The response variable is log EWM. The best simple linear regression model will be
the model relating log EWM to fuel poverty risk index. The output is given below.

Output from Simple Linear Regression (using ENTER).
Variables Entered/Removedb

Fuel
poverty risk
index

a . Enter

Model
1

Variables
Entered

Variables
Removed Method

All requested variables entered.a.

Dependent Variable: Log (EWM)b.

Model Summary

.497a .247 .214 .1414701
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Fuel poverty risk indexa.
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ANOVAb

.151 1 .151 7.538 .012a

.460 23 .020

.611 24

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), Fuel poverty risk indexa.

Dependent Variable: Log (EWM)b.

Coefficientsa

.213 .042 5.066 .000
5.982E-05 .000 .497 2.746 .012

(Constant)
Fuel poverty risk index

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: Log (EWM)a.

Comment: From the ANOVA Table and from the Table of Coefficients, it can be
seen that there is a significant, linear relationship between log(EWM) and the Fuel
Poverty Risk Index since the sig. values are less than 0.05.

Write down the assumptions of the model and use the residual analysis to comment on
whether they are likely to be valid
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Dependent Variable: Log (EWM)

Normal P-P Plot of Regression Standardized Residual
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N = 25

Dependent Variable: Log (EWM)

Histogram
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Regression Standardized Predicted Value
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Dependent Variable: Log (EWM)

Scatterplot
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15.2.3 Multiple Regression Analysis

This example is a small example. In the Regression dialog box, all or some of the
explanatory variables of choice can be moved to the Independent(s) Box. The
Method can be selected from a list including ENTER, STEPWISE, REMOVE,
FORWARD, BACKWARD.

The main ones to use are ENTER, REMOVE and STEPWISE.
There are 4 explanatory variables to choose from. Fuel Poverty Risk Index (FPR) was
entered first. We now can think about adding another variable to the list of
independent variables and achieving a better model that explains more of the
variation.

% of households with one or more pensioners (HHI) is the next most correlated
variable with log (EWM). However this variable is also very highly correlated with
the FPR (their correlation is 0.796 with sig = 0.000). A better choice may be to
include % Households receiving Council Tax Benefit (CTB) as this is less correlated
with the already included explanatory variable FPR but significantly correlated with
the response variable log(EWM)
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Model 2: Multiple Regression Model including FPR and CTB

Model Summaryb

.574a .329 .268 .1365235
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), % of Househods receiving
council tax benefit, Fuel poverty risk index

a.

Dependent Variable: Log (EWM)b.

R Square Model 2 = 0.329, compared to R Square Model 1 = 0.247
Adjusted R Square Model 2 = 0.268 compared to Adjusted R Square Model 1 = 0.214

ANOVAb

.201 2 .101 5.396 .012a

.410 22 .019

.611 24

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), % of Househods receiving council tax benefit, Fuel poverty
risk index

a.

Dependent Variable: Log (EWM)b.

Model 2 is significant as the Sig = 0.012 < 0.05. Hence FPR and CTB are jointly
significant in explaining log(EWM).

Coefficientsa

.034 .116 .298 .769
4.337E-05 .000 .360 1.862 .076

.005 .003 .318 1.642 .115

(Constant)
Fuel poverty risk index
% of Househods
receiving council tax
benefit

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: Log (EWM)a.

The Sig values here indicate that after including FPR in the model, CTB does not
add significantly to the model and hence should not be included, 0.115>0.05.

Model 3: Multiple Regression Model including FPR and HHI

Model Summaryb

.518a .269 .202 .1425511
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), % of housholds with one or
more pensioner, Fuel poverty risk index

a.

Dependent Variable: Log (EWM)b.
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ANOVAb

.164 2 .082 4.038 .032a

.447 22 .020

.611 24

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), % of housholds with one or more pensioner, Fuel poverty
risk index

a.

Dependent Variable: Log (EWM)b.

Coefficientsa

-.019 .290 -.065 .949
3.650E-05 .000 .303 1.006 .325

.009 .012 .243 .808 .428

(Constant)
Fuel poverty risk index
% of housholds with
one or more pensioner

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: Log (EWM)a.

In all respects this model is worse than model 2. And model 1 was better than model
2.

It can be seen, perhaps, that finding the best subset of the explanatory variables to
explain the behaviour of the response variable is not easy.

The Method: Stepwise can often provide useful guidance.

15.2.4 Stepwise Regression

There are many ways to construct a ‘best’ regression equation from a large set of x-
variables.

Backward elimination: We begin with a model that includes all the predictors and we
try to eliminate the ones that contributed the least to the model.

Forward selection: We start with the constant and add only significant variables.

Stepwise selection: Add one variable at the time in the models as in forward but also
check whether existing variables can be removed.

The following output uses the option STEPWISE.

In stepwise regression, all the explanatory variables are usually included in the
independent(s) list. Using Stepwise procedure on the Rudge example provides the
following output
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Stepwise Output on the Rudge Example:
Move log(EWM) to the dependent box

Move ALL the possible explanatory variables to the Independent Box

Set the Method to Stepwise

STEPWISE Output

Variables Entered/Removeda

Fuel
poverty risk
index

.

Stepwise
(Criteria:
Probabilit
y-of-
F-to-enter
<= .050,
Probabilit
y-of-
F-to-remo
ve >= .
100).

Model
1

Variables
Entered

Variables
Removed Method

Dependent Variable: Log (EWM)a.

This confirms that the best model contains Fuel Poverty Risk Index only

Model Summaryb

.497a .247 .214 .1414701
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Fuel poverty risk indexa.

Dependent Variable: Log (EWM)b.
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ANOVAb

.151 1 .151 7.538 .012a

.460 23 .020

.611 24

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), Fuel poverty risk indexa.

Dependent Variable: Log (EWM)b.

Coefficientsa

.213 .042 5.066 .000
5.982E-05 .000 .497 2.746 .012

(Constant)
Fuel poverty risk index

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: Log (EWM)a.

Excluded Variablesb

.318
a

1.642 .115 .330 .815

.243
a

.808 .428 .170 .366

.109a .357 .724 .076 .365

% of Househods
receiving council tax
benefit
% of housholds with
one or more pensioner
% of over 64 year olds

Model
1

Beta In t Sig.
Partial

Correlation Tolerance

Collinearity
Statistics

Predictors in the Model: (Constant), Fuel poverty risk indexa.

Dependent Variable: Log (EWM)b.

This table lists the excluded variables.

The output confirms the decision that the best model relates log(EWM) to the Fuel
Poverty Risk Index. When FPR is included, the other explanatory variables do not add
significantly to the model.



H. Robert and D. M. Stasinopoulos September 2005 171

15.3 Stepwise Regression

15.3.1Example
These data are from Statistical Methods for the Social Sciences, Third Edition

by A. Agresti and B. Finlay (Prentice Hall, 1977). The variables are as follows:

Crime: violent crimes per 100,000 population
Murder: murders per 1,000,000 population
Pctmetro: % population living in metropolitan areas
Pctwhite: % population that is white
Pcths: % population with high school education or above
Poverty: % population living under the poverty line
Single: % population that are single parents

The data are collected from the states of the USA. The variable of interest is crime.

viol ent crime rate

murder rate

pct metropolitan

pct white

pct hs graduates

pct poverty

pct single parent
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Comment: Notice that in most of the plots there is one unusual observation. It may be
worth investigating (at some point) the effect of removing this case.
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Correlations

1 .886** .544** -.677** -.256 .510** .839**
.000 .000 .000 .070 .000 .000

51 51 51 51 51 51 51
.886** 1 .316* -.706** -.286* .566** .859**

.000 .024 .000 .042 .000 .000
51 51 51 51 51 51 51

.544** .316* 1 -.337* -.004 -.061 .260

.000 .024 .016 .978 .673 .066

51 51 51 51 51 51 51
-.677** -.706** -.337* 1 .339* -.389** -.656**

.000 .000 .016 .015 .005 .000

51 51 51 51 51 51 51
-.256 -.286* -.004 .339* 1 -.744** -.220
.070 .042 .978 .015 .000 .121

51 51 51 51 51 51 51

.510** .566** -.061 -.389** -.744** 1 .549**

.000 .000 .673 .005 .000 .000

51 51 51 51 51 51 51
.839** .859** .260 -.656** -.220 .549** 1

.000 .000 .066 .000 .121 .000
51 51 51 51 51 51 51

Pearson Correlation

Sig. (2-tailed)
N

Pearson Correlation
Sig. (2-tailed)

N
Pearson Correlation

Sig. (2-tailed)
N

Pearson Correlation
Sig. (2-tailed)

N

Pearson Correlation
Sig. (2-tailed)
N

Pearson Correlation

Sig. (2-tailed)
N

Pearson Correlation
Sig. (2-tailed)

N

violent crime rate

murder rate

pct metropolitan

pct white

pct hs graduates

pct poverty

pct single parent

violent
crime rate murder rate

pct
metropolitan pct white

pct hs
graduates pct poverty

pct single
parent

Correlation is significant at the 0.01 level (2-tailed).**.

Correlation is significant at the 0.05 level (2-tailed).*.

The correlations show that, unsurprisingly, the murder rate is highly correlated with
the crime rate.

SPSS Stepwise:
The response variable crime goes in the Dependent box
All the scale explanatory variables go in the Independent box (do not include
categorical variables here)
Stepwise is the chosen method

You should investigate the options offered by Statistics, Plots, Save, Options.
The plots will be required when we have selected a model and wish to test the validity
of the assumptions.
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Stepwise Output

Variables Entered/Removeda

murder
rate

.

Stepwise
(Criteria:
Probabilit
y-of-
F-to-enter
<= .050,
Probabilit
y-of-
F-to-remo
ve >= .
100).

pct
metropolit
an

.

Stepwise
(Criteria:
Probabilit
y-of-
F-to-enter
<= .050,
Probabilit
y-of-
F-to-remo
ve >= .
100).

pct single
parent

.

Stepwise
(Criteria:
Probabilit
y-of-
F-to-enter
<= .050,
Probabilit
y-of-
F-to-remo
ve >= .
100).

Model
1

2

3

Variables
Entered

Variables
Removed Method

Dependent Variable: violent crime ratea.

Murder Rate goes in first (highest correlation)
Pct metropolitan goes in second
Pct single parent goes in third.

The following variables are not included:
Pctwhite: % population that is white
Pcths: % population with high school education or above
Poverty: % population living under the poverty line
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Model Summaryd

.886a .785 .781 206.441

.929b .863 .857 166.804

.942c .888 .881 152.369

Model
1
2
3

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), murder ratea.

Predictors: (Constant), murder rate, pct metropolitanb.

Predictors: (Constant), murder rate, pct metropolitan,
pct single parent

c.

Dependent Variable: violent crime rated.

This provides diagnostics for the three models that have been fitted. Notice how the
adjusted R Square increases to 0.881.

ANOVAd

7640199 1 7640198.858 179.272 .000a

2088276 49 42617.875
9728475 50
8392939 2 4196469.484 150.824 .000b

1335536 48 27823.662
9728475 50
8637307 3 2879102.319 124.012 .000c

1091168 47 23216.336
9728475 50

Regression
Residual
Total
Regression
Residual
Total
Regression
Residual
Total

Model
1

2

3

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), murder ratea.

Predictors: (Constant), murder rate, pct metropolitanb.

Predictors: (Constant), murder rate, pct metropolitan, pct single parentc.

Dependent Variable: violent crime rated.

The ANOVA shows that the three fitted models are all highly significant. (The sig
values are all less than 0.001).
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Coefficientsa

294.527 37.428 7.869 .000
36.473 2.724 .886 13.389 .000

-69.117 76.174 -.907 .369
32.658 2.320 .794 14.077 .000
5.890 1.132 .293 5.201 .000

-707.561 208.727 -3.390 .001
21.663 3.997 .526 5.420 .000
5.971 1.035 .297 5.771 .000

64.364 19.839 .310 3.244 .002

(Constant)
murder rate
(Constant)
murder rate
pct metropolitan
(Constant)
murder rate
pct metropolitan
pct single parent

Model
1

2

3

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: violent crime ratea.

This table gives the coefficients for the three models that were fitted.
Notice that the higher the pct metropolitan, the higher the crime rate
The higher the pct single parent, the higher the crime rate

For the excluded variables, at each stage, diagnostics are presented below:

Excluded Variablesd

.293a 5.201 .000 .600 .900
-.102a -1.098 .278 -.157 .501
-.003a -.040 .969 -.006 .918
.012a .146 .885 .021 .680
.296a 2.402 .020 .328 .262

-.037b -.477 .636 -.069 .487
-.031b -.543 .590 -.079 .910
.127b 1.915 .062 .269 .616
.310b 3.244 .002 .428 .262

-.004c -.060 .953 -.009 .477
-.040c -.776 .442 -.114 .907
.099c 1.604 .116 .230 .603

pct metropolitan
pct white
pct hs graduates
pct poverty
pct single parent
pct white
pct hs graduates
pct poverty
pct single parent
pct white
pct hs graduates
pct poverty

Model
1

2

3

Beta In t Sig.
Partial

Correlation Tolerance

Collinearity
Statistics

Predictors in the Model: (Constant), murder ratea.

Predictors in the Model: (Constant), murder rate, pct metropolitanb.

Predictors in the Model: (Constant), murder rate, pct metropolitan, pct single parentc.

Dependent Variable: violent crime rated.

Looking at the table above, when model 1 is fitted, you can see that the next most
important variable is pct metropolitan (t = 5.201) and that is the variable next
included.
At stage 2 (murder, pct metropolitan included) pct single parent will be included
next (t = 3.244).
At stage 3, none of the remaining variables are significant (pct poverty has a t value of
1.604 which is non- significant).
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Diagnostics:
The assumptions of the model are that the errors are

1. Random errors with mean zero and variance 2 . .
2. The errors are assumed to have constant variance, 2 .
3. The errors are independent
4. In order to make tests of significance and construct confidence intervals, it is

necessary to assume that the errors are Normally distributed.

The Residuals
After fitting the model, the assumptions of the model are validated using residual
analysis. The residuals, ei provide an estimate of the errors, i .

e y yi i i 
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Mean = -5.45E-16
Std. Dev. = 0.97
N = 51

Dependent Variable: violent crime rate

Histogram

The histogram evaluates the normality
assumption. This looks reasonably
symmetric.
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Dependent Variable: violent crime rate

Normal P-P Plot of Regression Standardized Residual

The points should lie on a straight line if
the errors are normally distributed.

This seems to show that there may be
further work required before the
normality assumption is valid.
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Dependent Variable: violent crime rate

Scatterplot

Residuals v fitted values should show
random scatter.

Notice here the outlier. The next step
should be to remove this and see what
effect that has.
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Practical 15: Multiple Linear Regression

The data set in the file SHARED
(K):\SCTMS\SOM\MA2010\REGRESSION\RUDGE1.SAV comprises data collected
by Rudge (2004) on excess winter morbidity in the period 1993 – 1996 in 25 grouped
enumeration districts in Newham, London.

The explanatory variables are as follows:
CTB = % households receiving council tax benefit
FPR = Fuel poverty risk index
HHI = % of households with one or more pensioners
PERS = % of over 65 year olds

The basic response variable is the excess winter morbidity EWM in the period 1993-
1996 and the analysis uses ln(EWM).

a) Open the data file in SPSS and calculate ln(EWM).

b) Reproduce the results from the multiple linear regression example in your
course notes (section 15.2.2 and 15.2.3)

i) Use Graph>Scatter/Dot>Matrix Scatter to produce multiple plots of
ln(EWM) and the explanatory variables.

ii) Use Analyze>Correlate>Bivariate to obtain a correlation matrix of
ln(EWM) and the explanatory variables.

iii) Fit the best linear regression model relating ln(EWM) to fuel poverty
risk index, FPR (Model 1) and use the option PLOTS to obtain residual
plots for the model.

Write down the estimated regression equation for the best simple linear
model fitted. Calculate the predicted value of EWM for FPR = 2500.

Write down the assumptions of the model and use the residual analysis
to comment on whether they are likely to be valid.

iv) Now fit the multiple regression model relating ln(EWM) to FPR and
CTB (Model 2) and the model relating ln(EWM) to FPR and HHI
(Model 3).

For each of the models, write down the estimated regression equation
and calculate the predicted value of EWM for CTB = 50, FPR = 2500,
HHI = 40 and PERS = 30.


