# Chapter 15

# **Regression Models – Examples**

# **15.1 Simple Linear Regression Example:**

A study investigated the relationship between energy expenditure and body build. For a random sample of seven adult men, underwater weighing techniques were used to determine the fat-free body mass in kg. of each of them. The total 24-hour energy expenditure was also measured. The data are as follows:

| Participant          | 1    | 2    | 3    | 4    | 5    | 6    | 7    |
|----------------------|------|------|------|------|------|------|------|
| Fat-free mass kg $x$ | 49.3 | 59.3 | 68.3 | 48.1 | 57.6 | 78.1 | 76.1 |
| Energy kcal y        | 1894 | 2050 | 2353 | 1838 | 1948 | 2528 | 2568 |

# **15.1.1.The Scatter Diagram:**

A plot of the data provides a scatter diagram showing the relationship between x and y. The response variable y is plotted on the y-axis, the explanatory variable is plotted on the x-axis. If the relationship between the two variables is **linear**, then the scatter plot should show this straight-line relationship (albeit with a certain amount of random scatter)



## Example (continued): Scatter Plot.



It is assumed that energy expenditure depends on fat-free body mass; hence energy expenditure is the response variable (or dependent variable) y and fat-free mass is the explanatory variable (or independent variable x).

This plot is approximately linear; as the fat-free mass increases, the energy expenditure increases.

# 15.1.2 Least Square Estimation for the simple linear regression line



The Method is left at the default 'Enter'

# **Resulting Output**

# **15.1.3 Simple linear regression: inference using SPSS output** a) Model fitting

#### Variables Entered/Removed<sup>b</sup>

| Model | Variables<br>Entered | Variables<br>Removed | Method |
|-------|----------------------|----------------------|--------|
| 1     | Fat-free             |                      |        |
|       | mass                 |                      | Enter  |
|       | (kgs)ິ               |                      |        |

a. All requested variables entered.

b. Dependent Variable: Energy expenditure (kcal)

## Variation explained by the model

#### Model Summary

|       |                   |          | Adjusted | Std. Error of |
|-------|-------------------|----------|----------|---------------|
| Model | R                 | R Square | R Square | the Estimate  |
| 1     | .981 <sup>a</sup> | .963 🖌   | .956     | 64.848        |

a. Predictors: (Constant), Fat-free mass (kgs)

The R Square  $(R^2)$  measures the % of variation explained by the model. For example in the above model 96.3 % of the variation in the *y*-variable (energy expenditure) was explained by the model.

#### The least squares estimates of the coefficients

### **Coefficients**<sup>a</sup>

|       |                     | Unstandardized<br>Coefficients |            | Standardized<br>Coefficients |        |      |
|-------|---------------------|--------------------------------|------------|------------------------------|--------|------|
| Model |                     | В                              | Std. Error | Beta                         | t      | Sig. |
| 1     | (Constant)          | 607.703                        | 138.765    |                              | 4.379  | .007 |
|       | Fat-free mass (kgs) | 25.012                         | 2.189      | .981                         | 11.427 | .000 |

a. Dependent Variable: Energy expenditure (kcal)

From the Table, the estimated regression line is

# Energy Expenditure = 607.703 + 25.012 fat-free mass

# **b)** Inference about $\beta_1$ the slope.

Confidence Interval about  $\beta_1$ : a 100(1- $\alpha$ )% confidence interval for  $\beta_1$  is given by:

$$\hat{\beta}_1 \pm t_{n-2,\alpha/2}$$
(std.error. $\hat{\beta}_1$ )

**Example:**  $\hat{\beta}_1 = 25.012$  with Std. Error = 2.189. There are 7 observations (n=7) and two parameters have been estimated, giving n-2 df=5df.  $t_{5,0.025} = 2.571$ 

Hence 95% CI for  $\beta_1$  is given by **25.012 ± 2.189\*2.571 = (19.389, 30.645)** 

Notice that this interval does not contain zero.

Hypothesis test about  $\beta_1$ :

 $H_0:\beta_1 = 0$  No linear relationship between x and y  $H_1:\beta_1 \neq 0$  There is a linear relationship

**Test Statistic:**  $T = \frac{\hat{\beta}_1}{std.Error(\hat{\beta}_1)}$  **Reject**  $H_o$  if  $T > t_{n-2,\alpha/2}$  or  $T < -t_{n-2,\alpha/2}$ **Otherwise** accept the null hypothesis

#### Example

 $H_o: \beta_1 = 0$  No relationship between fatfree mass and energy expenditure  $H_i: \beta_1 \neq 0$  There is a linear relationship Observed T = 11.427, p = 0.000.

Hence very strong evidence to reject the null hypothesis and conclude that there is a linear relationship between fat free mass and energy expenditure.

b) Similarly,  $\beta_0$  is significantly different from zero in this model since T = 4.379 and p = 0.007.

## c) Test of the significance of the regression using the F-distribution.

| Model |            | Sum of<br>Squares | df |   | Mean Square | F       | Sig.              |
|-------|------------|-------------------|----|---|-------------|---------|-------------------|
| 1     | Regression | 549097.6          |    | 1 | 549097.619  | 130.575 | .000 <sup>a</sup> |
|       | Residual   | 21026.096         |    | 5 | 4205.219    |         |                   |
|       | Total      | 570123.7          |    | 6 |             |         |                   |

ANOVA

a. Predictors: (Constant), Fat-free mass (kgs)

b. Dependent Variable: Energy expenditure (kcal)

If the regression is not significant, then y does not depend on x. The hypotheses may be written:

 $H_{o}:\beta_{1} = 0 \text{ (y does not depend on x) model}: y_{i} = \beta_{o} + \varepsilon_{i}$  $H_{i}:\beta_{1} = 0 \text{ (y does depend on x)} \text{ model}: y_{i} = \beta_{o} + \beta_{1}x_{i} + \varepsilon_{i}$ 

Test Statistic  $F = \frac{MS(regression)}{MS(residual)}$ 

Reject  $H_o$  if observed  $F > F_{1,n-2,\alpha}$ . Conclude that y does depend on x. Otherwise accept the null hypothesis and conclude that y does not depend on x.

## **Example:**

 $H_o: \beta_1 = 0$  energy expenditure does not depend on fat - free mass, model:  $y_i = \beta_o + \varepsilon_i$  $H_i: \beta_1 = 0$  energy expenditure depends linearly on fat - free mass model:  $y_i = \beta_o + \beta_1 x_i + \varepsilon_i$ 

Observed F = 130.575 and p = 0.000 < 0.001, Very, very strong evidence to reject the null hypothesis and accept the alternative. Conclude that the energy expenditure depends linearly on fat-free mass.

Here the **best** linear equation is given by y = 607.7 + 25.012 x

## Prediction

The predicting equation is given by:

$$_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}x_{i}$$

Substituting specific values for *x* will give the predicted value of y.

| Predicting equation: | $\hat{y} = 607.7 + 25.012 x$                                 |
|----------------------|--------------------------------------------------------------|
|                      | when $x = 60$ kg, $\hat{y} = 607.7 + 25.012*60 = 2108$ kcals |

#### **Comments:**

- i) Predicting outside the range of values of x on which the equation was estimated, should be done with caution. The seemingly linear relationship may not persist over all values of x
- ii) Interpretation of the coefficients: The *slope* represents the amount by which *y* changes for every unit change in *x*. The *intercept* represents the value of *y* when *x* is zero.

**Example:** The value of 25.012 for the gradient implies that, on average, with every increase in one kg of fat-free mass, the energy expenditure increases by 25.01kcals. The constant term of 607.7 could be interpreted as the energy expenditure when the fat-free mass was zero.

# **15.1.4** Assumptions of the Model:

- 1. For any given *x*, *y* is a random variable with a probability distribution.
- 2. The errors are random errors with mean zero and variance  $\sigma^2$ . The errors are independent.
- 3. The errors are assumed to have constant variance,  $\sigma^2$ .
- 4. In order to make tests of significance and construct confidence intervals, it is necessary to assume that the errors are Normally distributed.

Thus the model is  $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ , i = 1, 2, ..., n. where the  $\varepsilon_i$  are independent,  $N(0, \sigma^2)$  for all i = 1, 2, ..., n.

# **The Residuals**

After fitting the model, the assumptions of the model are validated using residual analysis.

The residuals,  $e_i$  provide an estimate of the errors,  $\varepsilon_i$ .

$$e_i = y_i - \hat{y}_i$$

## Residual Analysis to validate the assumptions of the model.

The residuals are given by:  $e_i = y_i - \hat{y}_i$ 

The assumptions are:

- i) Errors are independent
- ii) Mean zero, constant variance
- iii) Normally distributed.

# Using SPSS to validate the assumptions

| Within the Regression dialog box, | Click on Plots                                                                                                                                                                                                                                                                                                          |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Linear Regression                 | Linear Regression: Plots                                                                                                                                                                                                                                                                                                |
| Fat-free mass (kgs) [fat          | DEFENDNT   Scatter 1 of 1   Continue     "ZPRED   Previous   Next     "ADJPRED   Y: "ZRESID   Cancel     "SDRESID   Y: "ZRESID   Help     "SDRESID   Y: "ZRESID   Produce all partial plots     Standardized Residual Plots   Produce all partial plots     Vormal probability plot   Select the plots that you require |

# **SPSS Output:**

## Plot of residuals v fitted values

Should be randomly scattered about zero with fairly constant 'spread' if assumption of independence and homogeneity are valid.

# If the model fitted is inadequate this can also be noticed from a distinctive pattern to this plot.



## Histogram

Should be symmetric about zero and bell shaped, if the Normality assumption is valid.



# **Normal Probability Plot**

Should be a straight line if the normality assumption is valid



# 15.2 Multiple linear regression

## **15.2.1 Introduction**

This is applicable when the data are multivariate. A multiple linear regression model relates a **response** variable *Y* to **more** than one explanatory variable.

The main purpose of the multiple regression analysis is to find which explanatory variables contribute to the variation of the response variable. We are usually looking for the 'best' **subset** of the explanatory variables.

#### The Model

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_k x_{ki} + \varepsilon_i, \qquad i = 1, 2, \dots n.$$

where: k is the number of explanatory variables,

 $\beta_o$ ,  $\beta_1, \cdots \beta_k$  are the parameters of the model,

 $\varepsilon_i$  is a random error term.

15.2.2 Example: Data were collected by Rudge (2004) on excess winter morbidity in the period 1993 – 1996 in 25 grouped enumeration districts in Newham, London.

The explanatory variables are as follows: CTB = % households receiving council tax benefit FPR = Fuel poverty risk index HHI = % of households with one or more pensioners PERS = % of over 65 year olds

The basic response variable is the excess winter morbidity EWM in the period 1993-1996 and the analysis uses log(EWM).

#### The Multiple Scatter Diagrams:

The response variable *y* and the all the *x* continuous variables are plotted against each other.



From the scatter plots it is not clear which of the explanatory variables has the 'best' single linear relationship with the response variable. However, there are some very strong relationships between the explanatory variables. This may cause a problem.

# **Correlation Matrix**

The relationships are confirmed by the output from the correlation matrix below.

|                                  |                     |           | % of        |              | % of        |              |
|----------------------------------|---------------------|-----------|-------------|--------------|-------------|--------------|
|                                  |                     |           | Househods   |              | housholds   |              |
|                                  |                     |           | receiving   |              | with one or |              |
|                                  |                     |           | council tax | Fuel poverty | more        | % of over 64 |
|                                  |                     | Log (EWM) | benefit     | risk index   | pensioner   | year olds    |
| Log (EWM)                        | Pearson Correlation | 1         | .473*       | .497*        | .485*       | .436*        |
|                                  | Sig. (2-tailed)     |           | .017        | .012         | .014        | .029         |
|                                  | Ν                   | 25        | 25          | 25           | 25          | 25           |
| % of Househods                   | Pearson Correlation | .473*     | 1           | .430*        | .495*       | .523**       |
| receiving council tax<br>benefit | Sig. (2-tailed)     | .017      |             | .032         | .012        | .007         |
|                                  | Ν                   | 25        | 25          | 25           | 25          | 25           |
| Fuel poverty risk index          | Pearson Correlation | .497*     | .430*       | 1            | .796**      | .797**       |
|                                  | Sig. (2-tailed)     | .012      | .032        |              | .000        | .000         |
|                                  | Ν                   | 25        | 25          | 25           | 25          | 25           |
| % of housholds with              | Pearson Correlation | .485*     | .495*       | .796**       | 1           | .940**       |
| one or more pensioner            | Sig. (2-tailed)     | .014      | .012        | .000         |             | .000         |
|                                  | Ν                   | 25        | 25          | 25           | 25          | 25           |
| % of over 64 year olds           | Pearson Correlation | .436*     | .523**      | .797**       | .940**      | 1            |
|                                  | Sig. (2-tailed)     | .029      | .007        | .000         | .000        |              |
|                                  | Ν                   | 25        | 25          | 25           | 25          | 25           |

Correlations

\* Correlation is significant at the 0.05 level (2-tailed).

\*\*. Correlation is significant at the 0.01 level (2-tailed).

The response variable is significantly correlated with each of the explanatory variables and the Fuel Poverty Risk Index is the single variable that 'best' describes log(EWM).

(% households with one or more pensioners is highly correlated with % of over 64 year olds – unsurprisingly and the other explanatory variables show significant relationships amongst themselves too).

## Model 1: Best Simple Linear Regression Model

The response variable is log EWM. The best simple linear regression model will be the model relating log EWM to fuel poverty risk index. The output is given below.

# **Output from Simple Linear Regression (using ENTER).**

#### Variables Entered/Removed

| Model | Variables<br>Entered          | Variables<br>Removed | Method |
|-------|-------------------------------|----------------------|--------|
| 1     | Fuel<br>poverty risk<br>index |                      | Enter  |

a. All requested variables entered.

b. Dependent Variable: Log (EWM)

#### Model Summary

| Model | R                 | R Square | Adjusted<br>R Square | Std. Error of the Estimate |
|-------|-------------------|----------|----------------------|----------------------------|
| 1     | .497 <sup>a</sup> | .247     | .214                 | .1414701                   |

a. Predictors: (Constant), Fuel poverty risk index

#### ANOVA<sup>b</sup>

| Model                                              | Sum of<br>Squares | df      | Mean So                  | quare | F         | Sig.  |      |  |
|----------------------------------------------------|-------------------|---------|--------------------------|-------|-----------|-------|------|--|
| 1 Regression                                       | .151              |         | 1                        | .151  | 7.538     | .012  | а    |  |
| Residual                                           | .460              | 2       | 3                        | .020  |           |       |      |  |
| Total                                              | .611              | 2       | 4                        |       |           |       |      |  |
| a. Predictors: (Constant), Fuel poverty risk index |                   |         |                          |       |           |       |      |  |
| b. Dependent Variab                                | le: Log (EW       | ′M)     |                          |       |           |       |      |  |
|                                                    |                   | ,       |                          |       |           |       |      |  |
|                                                    |                   |         |                          |       |           |       |      |  |
|                                                    |                   | Co      | oefficients <sup>a</sup> | /     |           |       |      |  |
|                                                    |                   | Unstand | ardized                  | Stand | dardized  |       |      |  |
|                                                    |                   | Coeffic | cients                   | /Coet | fficients |       |      |  |
| Model                                              |                   | В       | Std. Error/              | [ Е   | Beta      | t     | Sig. |  |
| 1 (Constant)                                       |                   | .213    | .042                     |       |           | 5.066 | .000 |  |
| Fuel poverty risk index 5.982E-05 .000 .497 2.746  |                   |         |                          |       |           | .012  |      |  |
| a. Dependent Variable: Log (EWM)                   |                   |         |                          |       |           |       |      |  |
|                                                    |                   |         |                          |       |           |       |      |  |

**Comment:** From the ANOVA Table and from the Table of Coefficients, it can be seen that there is a significant, linear relationship between log(EWM) and the Fuel Poverty Risk Index since the sig. values are less than 0.05.

Write down the assumptions of the model and use the residual analysis to comment on whether they are likely to be valid



#### Scatterplot



# **15.2.3 Multiple Regression Analysis**

This example is a small example. In the Regression dialog box, all or some of the explanatory variables of choice can be moved to the **Independent(s)**/Box. The **Method** can be selected from a list including ENTER, STEPWISE, REMOVE, FORWARD, BACKWARD.



The main ones to use are ENTER, REMOVE and STEPWISE. There are 4 explanatory variables to choose from. Fuel Poverty Risk Index (FPR) was entered first. We now can think about adding another variable to the list of independent variables and achieving a better model that explains more of the variation.

% of households with one or more pensioners (HHI) is the next most correlated variable with log (EWM). However this variable is also very highly correlated with the FPR (their correlation is 0.796 with sig = 0.000). A better choice may be to include % Households receiving Council Tax Benefit (CTB) as this is less correlated with the already included explanatory variable FPR but significantly correlated with the response variable log(EWM)

## Model 2: Multiple Regression Model including FPR and CTB

|       |                   |          | ,        |               |
|-------|-------------------|----------|----------|---------------|
|       |                   |          | Adjusted | Std. Error of |
| Model | R                 | R Square | R Square | the Estimate  |
| 1     | .574 <sup>a</sup> | .329     | .268     | .1365235      |

Model Summarv<sup>b</sup>

a. Predictors: (Constant), % of Househods receiving council tax benefit, Fuel poverty risk index

b. Dependent Variable: Log (EWM)

R Square Model 2 = 0.329, compared to R Square Model 1 = 0.247 Adjusted R Square Model 2 = 0.268 compared to Adjusted R Square Model 1 = 0.214

| ANOVA |  |
|-------|--|
|-------|--|

| Model |            | Sum of<br>Squares | df | Mean Square | F     | Sig.              |
|-------|------------|-------------------|----|-------------|-------|-------------------|
| 1     | Regression | .201              | 2  | .101        | 5.396 | .012 <sup>a</sup> |
|       | Residual   | .410              | 22 | .019        |       |                   |
|       | Total      | .611              | 24 |             |       |                   |

a. Predictors: (Constant), % of Househods receiving council tax benefit, Fuel poverty risk index

b. Dependent Variable: Log (EWM)

Model 2 is significant as the Sig = 0.012 < 0.05. Hence FPR and CTB are jointly significant in explaining log(EWM).

#### **Coefficients**<sup>a</sup>

|       |                                           | Unstandardized<br>Coefficients |            | Standardized<br>Coefficients |       |      |
|-------|-------------------------------------------|--------------------------------|------------|------------------------------|-------|------|
| Model |                                           | В                              | Std. Error | Beta                         | t     | Sig. |
| 1     | (Constant)                                | .034                           | .116       |                              | .298  | .769 |
|       | Fuel poverty risk index<br>% of Househods | 4.337E-05                      | .000       | .360                         | 1.862 | .076 |
|       | receiving council tax<br>benefit          | .005                           | .003       | .318                         | 1.642 | .115 |

a. Dependent Variable: Log (EWM)

The Sig values here indicate that **after including FPR** in the model, CTB does **not** add significantly to the model and hence should **not** be included, 0.115>0.05.

## Model 3: Multiple Regression Model including FPR and HHI

### Model Summary<sup>b</sup>

| Model | R                 | R Square | Adjusted<br>R Square | Std. Error of the Estimate |
|-------|-------------------|----------|----------------------|----------------------------|
| 1     | .518 <sup>a</sup> | .269     | .202                 | .1425511                   |

 Predictors: (Constant), % of housholds with one or more pensioner, Fuel poverty risk index

b. Dependent Variable: Log (EWM)

#### ANOVAb

| Model |            | Sum of<br>Squares | df | Mean Square | F     | Sig.              |
|-------|------------|-------------------|----|-------------|-------|-------------------|
| 1     | Regression | .164              | 2  | .082        | 4.038 | .032 <sup>a</sup> |
|       | Residual   | .447              | 22 | .020        |       |                   |
|       | Total      | .611              | 24 |             |       |                   |

a. Predictors: (Constant), % of housholds with one or more pensioner, Fuel poverty risk index

b. Dependent Variable: Log (EWM)

## **Coefficients**<sup>a</sup>

|       |                                           | Unstandardized<br>Coefficients |            | Standardized<br>Coefficients |       |      |
|-------|-------------------------------------------|--------------------------------|------------|------------------------------|-------|------|
| Model |                                           | В                              | Std. Error | Beta                         | t     | Sig. |
| 1     | (Constant)                                | 019                            | .290       |                              | 065   | .949 |
|       | Fuel poverty risk index                   | 3.650E-05                      | .000       | .303                         | 1.006 | .325 |
|       | % of housholds with one or more pensioner | .009                           | .012       | .243                         | .808  | .428 |

a. Dependent Variable: Log (EWM)

In all respects this model is worse than model 2. And model 1 was better than model 2.

It can be seen, perhaps, that finding the best subset of the explanatory variables to explain the behaviour of the response variable is not easy.

The Method: Stepwise can often provide useful guidance.

# **15.2.4 Stepwise Regression**

There are many ways to construct a 'best' regression equation from a large set of x-variables.

**Backward elimination:** We begin with a model that includes all the predictors and we try to eliminate the ones that contributed the least to the model.

Forward selection: We start with the constant and add only significant variables.

**Stepwise selection:** Add one variable at the time in the models as in forward but also check whether existing variables can be removed.

The following output uses the option STEPWISE.

In stepwise regression, all the explanatory variables are usually included in the independent(s) list. Using Stepwise procedure on the Rudge example provides the following output

# **Stepwise Output on the Rudge Example:** Move **log(EWM)** to the **dependent** box

Move ALL the possible explanatory variables to the Independent Box

Set the Method to Stepwise



# **STEPWISE Output**

### Variables Entered/Removed<sup>a</sup>

| Model | Variables<br>Entered          | Variables<br>Removed | Method                                                                                                                          |
|-------|-------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 1     | Fuel<br>poverty risk<br>index |                      | Stepwise<br>(Criteria:<br>Probabilit<br>y-of-<br>F-to-enter<br><= .050,<br>Probabilit<br>y-of-<br>F-to-remo<br>ve >= .<br>100). |

a. Dependent Variable: Log (EWM)

## This confirms that the best model contains Fuel Poverty Risk Index only

#### Model Summary<sup>b</sup>

|       |                   |          | Adjusted | Std. Error of |
|-------|-------------------|----------|----------|---------------|
| Model | R                 | R Square | R Square | the Estimate  |
| 1     | .497 <sup>a</sup> | .247     | .214     | .1414701      |

a. Predictors: (Constant), Fuel poverty risk index

b. Dependent Variable: Log (EWM)

## ANOVAb

| Model |            | Sum of<br>Squares | df | Mean Square | F     | Sig.              |
|-------|------------|-------------------|----|-------------|-------|-------------------|
| 1     | Regression | .151              | 1  | .151        | 7.538 | .012 <sup>a</sup> |
|       | Residual   | .460              | 23 | .020        |       |                   |
|       | Total      | .611              | 24 |             |       |                   |

a. Predictors: (Constant), Fuel poverty risk index

b. Dependent Variable: Log (EWM)

## Coefficients<sup>a</sup>

|       |                         | Unstandardized<br>Coefficients |            | Standardized<br>Coefficients |       |      |
|-------|-------------------------|--------------------------------|------------|------------------------------|-------|------|
| Model |                         | В                              | Std. Error | Beta                         | t     | Sig. |
| 1     | (Constant)              | .213                           | .042       |                              | 5.066 | .000 |
|       | Fuel poverty risk index | 5.982E-05                      | .000       | .497                         | 2.746 | .012 |

a. Dependent Variable: Log (EWM)

#### Excluded Variables<sup>b</sup>

| Model |                                                                        | Beta In                                | t            | Sia.         | Partial<br>Correlation | Collinearity<br>Statistics<br>Tolerance |
|-------|------------------------------------------------------------------------|----------------------------------------|--------------|--------------|------------------------|-----------------------------------------|
| 1     | % of Househods<br>receiving council tax<br>benefit                     | .318                                   | 1.642        | .115         | .330                   | .815                                    |
|       | % of housholds with<br>one or more pensioner<br>% of over 64 year olds | .243 <sup>a</sup><br>.109 <sup>a</sup> | .808<br>.357 | .428<br>.724 | .170<br>.076           | .366<br>.365                            |

a. Predictors in the Model: (Constant), Fuel poverty risk index

b. Dependent Variable: Log (EWM)

This table lists the excluded variables.

The output confirms the decision that the best model relates log(EWM) to the Fuel Poverty Risk Index. When FPR is included, the other explanatory variables do not add significantly to the model.

# 15.3 Stepwise Regression

# 15.3.1Example

These data are from *Statistical Methods for the Social Sciences, Third Edition* by A. Agresti and B. Finlay (Prentice Hall, 1977). The variables are as follows:

| Crime:          | violent crimes per 100,000 population            |
|-----------------|--------------------------------------------------|
| Murder:         | murders per 1,000,000 population                 |
| Pctmetro:       | % population living in metropolitan areas        |
| Pctwhite:       | % population that is white                       |
| Pcths:          | % population with high school education or above |
| <b>Poverty:</b> | % population living under the poverty line       |
| Single:         | % population that are single parents             |

The data are collected from the states of the USA. The variable of interest is crime.



**Comment:** Notice that in most of the plots there is one unusual observation. It may be worth investigating (at some point) the effect of removing this case.

|                    |                     | violont    |             | not          |           | not be    |             | not single |
|--------------------|---------------------|------------|-------------|--------------|-----------|-----------|-------------|------------|
|                    |                     | crime rate | murder rate | metropolitan | nct white | graduates | pct poverty | persingle  |
| violent crime rate | Pearson Correlation | 1          | .886**      | .544**       | 677**     | 256       | .510**      | .839**     |
|                    | Sig. (2-tailed)     |            | .000        | .000         | .000      | .070      | .000        | .000       |
|                    | N                   | 51         | 51          | 51           | 51        | 51        | 51          | 51         |
| murder rate        | Pearson Correlation | .886**     | 1           | .316*        | 706**     | 286*      | .566**      | .859**     |
|                    | Sig. (2-tailed)     | .000       |             | .024         | .000      | .042      | .000        | .000       |
|                    | N                   | 51         | 51          | 51           | 51        | 51        | 51          | 51         |
| pct metropolitan   | Pearson Correlation | .544**     | .316*       | 1            | 337*      | 004       | 061         | .260       |
|                    | Sig. (2-tailed)     | .000       | .024        |              | .016      | .978      | .673        | .066       |
|                    | N                   | 51         | 51          | 51           | 51        | 51        | 51          | 51         |
| pct white          | Pearson Correlation | 677**      | 706**       | 337*         | 1         | .339*     | 389**       | 656**      |
| -                  | Sig. (2-tailed)     | .000       | .000        | .016         |           | .015      | .005        | .000       |
|                    | Ν                   | 51         | 51          | 51           | 51        | 51        | 51          | 51         |
| pct hs graduates   | Pearson Correlation | 256        | 286*        | 004          | .339*     | 1         | 744**       | 220        |
|                    | Sig. (2-tailed)     | .070       | .042        | .978         | .015      |           | .000        | .121       |
|                    | Ν                   | 51         | 51          | 51           | 51        | 51        | 51          | 51         |
| pct poverty        | Pearson Correlation | .510**     | .566**      | 061          | 389**     | 744**     | 1           | .549**     |
| ĺ                  | Sig. (2-tailed)     | .000       | .000        | .673         | .005      | .000      |             | .000       |
|                    | Ν                   | 51         | 51          | 51           | 51        | 51        | 51          | 51         |
| pct single parent  | Pearson Correlation | .839**     | .859**      | .260         | 656**     | 220       | .549**      | 1          |
|                    | Sig. (2-tailed)     | .000       | .000        | .066         | .000      | .121      | .000        |            |
|                    | Ν                   | 51         | 51          | 51           | 51        | 51        | 51          | 51         |

Correlations

 $^{\star\star}\cdot$  Correlation is significant at the 0.01 level (2-tailed).

\* Correlation is significant at the 0.05 level (2-tailed).

The correlations show that, unsurprisingly, the murder rate is highly correlated with the crime rate.

#### SPSS Stepwise:

The response variable **crime** goes in the **Dependent** box

All the scale explanatory variables go in the **Independent** box (do not include categorical variables here)

Stepwise is the chosen method

| 1: sic Linear Regression                                                                                                                                                                         |                                                                                                            | ×                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------|
| sid id istate murder rate [murder] for metropolitan [pctme pct white [pctwhite] for the graduates [pcth pct hs graduates [pcth pct poverty] for poverty [poverty] for pct single parent [single] | Dependent:<br>violent crime rate (crime<br>Block 1 of 1<br>Previous<br>Independent(s):<br>Method: Stepwise | OK<br><u>B</u> aste<br>Cancel<br>Help |
|                                                                                                                                                                                                  | Selection Variable:   Bule   Case Labels:   WLS Weight:                                                    | ]                                     |
|                                                                                                                                                                                                  | Statistics Plots Save Op                                                                                   | otions                                |

You should investigate the options offered by **Statistics, Plots, Save, Options.** The plots will be required when we have selected a model and wish to test the validity of the assumptions.

## **Stepwise Output**

| Model | Variables               | Variables | Mothod                                                                                                                                   |
|-------|-------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------|
| woder | Entered                 | Removed   | Stenuino                                                                                                                                 |
|       | murder<br>rate          |           | Criteria:<br>Probabilit<br>y-of-<br>F-to-enter<br><= .050,<br>Probabilit<br>y-of-<br>F-to-remo<br>Ve >= .                                |
| 2     | pct<br>metropolit<br>an |           | 100).<br>Stepwise<br>(Criteria:<br>Probabilit<br>y-of-<br>F-to-enter<br><= .050,<br>Probabilit<br>y-of-<br>F-to-remo<br>ve >= .          |
| 3     | pct single<br>parent    |           | 100).<br>Stepwise<br>(Criteria:<br>Probabilit<br>y-of-<br>F-to-enter<br><= .050,<br>Probabilit<br>y-of-<br>F-to-remo<br>ve >= .<br>100). |

#### Variables Entered/Removed<sup>®</sup>

a. Dependent Variable: violent crime rate

Murder Rate goes in first (highest correlation) Pct metropolitan goes in second Pct single parent goes in third.

The following variables are not included:

| Pctwhite: | % population that is | white |
|-----------|----------------------|-------|
|-----------|----------------------|-------|

- **Pcths:** % population with high school education or above
- **Poverty:** % population living under the poverty line

#### Model Summary<sup>d</sup>

| Model | R                 | R Square | Adjusted<br>R Square | Std. Error of the Estimate |
|-------|-------------------|----------|----------------------|----------------------------|
| 1     | .886ª             | .785     | .781                 | 206.441                    |
| 2     | .929 <sup>b</sup> | .863     | .857                 | 166.804                    |
| 3     | .942 <sup>c</sup> | .888     | .881                 | 152.369                    |

a. Predictors: (Constant), murder rate

- b. Predictors: (Constant), murder rate, pct metropolitan
- c. Predictors: (Constant), murder rate, pct metropolitan, pct single parent
- d. Dependent Variable: violent crime rate

This provides diagnostics for the three models that have been fitted. Notice how the adjusted R Square increases to 0.881.

|       |            | Sum of  |    |             |         |                   |
|-------|------------|---------|----|-------------|---------|-------------------|
| Model |            | Squares | df | Mean Square | F       | Sig.              |
| 1     | Regression | 7640199 | 1  | 7640198.858 | 179.272 | .000 <sup>a</sup> |
|       | Residual   | 2088276 | 49 | 42617.875   |         |                   |
|       | Total      | 9728475 | 50 |             |         |                   |
| 2     | Regression | 8392939 | 2  | 4196469.484 | 150.824 | .000 <sup>b</sup> |
|       | Residual   | 1335536 | 48 | 27823.662   |         |                   |
|       | Total      | 9728475 | 50 |             |         |                   |
| 3     | Regression | 8637307 | 3  | 2879102.319 | 124.012 | .000 <sup>c</sup> |
|       | Residual   | 1091168 | 47 | 23216.336   |         |                   |
|       | Total      | 9728475 | 50 |             |         |                   |

| ANC | ) V Ad |
|-----|--------|
|-----|--------|

a. Predictors: (Constant), murder rate

b. Predictors: (Constant), murder rate, pct metropolitan

c. Predictors: (Constant), murder rate, pct metropolitan, pct single parent

d. Dependent Variable: violent crime rate

The ANOVA shows that the three fitted models are all highly significant. (The sig values are all less than 0.001).

|       |                   | Unstandardized<br>Coefficients |            | Standardized<br>Coefficients |        |      |
|-------|-------------------|--------------------------------|------------|------------------------------|--------|------|
| Model |                   | В                              | Std. Error | Beta                         | t      | Sig. |
| 1     | (Constant)        | 294.527                        | 37.428     |                              | 7.869  | .000 |
|       | murder rate       | 36.473                         | 2.724      | .886                         | 13.389 | .000 |
| 2     | (Constant)        | -69.117                        | 76.174     |                              | 907    | .369 |
|       | murder rate       | 32.658                         | 2.320      | .794                         | 14.077 | .000 |
|       | pct metropolitan  | 5.890                          | 1.132      | .293                         | 5.201  | .000 |
| 3     | (Constant)        | -707.561                       | 208.727    |                              | -3.390 | .001 |
|       | murder rate       | 21.663                         | 3.997      | .526                         | 5.420  | .000 |
|       | pct metropolitan  | 5.971                          | 1.035      | .297                         | 5.771  | .000 |
|       | pct single parent | 64.364                         | 19.839     | .310                         | 3.244  | .002 |

#### Coefficients<sup>a</sup>

a. Dependent Variable: violent crime rate

This table gives the coefficients for the three models that were fitted. Notice that the higher the pct metropolitan, the higher the crime rate The higher the pct single parent, the higher the crime rate

For the excluded variables, at each stage, diagnostics are presented below:

|       |                   |                   |        |      | Partial     | Collinearity<br>Statistics |
|-------|-------------------|-------------------|--------|------|-------------|----------------------------|
| Model |                   | Beta In           | t      | Sig. | Correlation | Tolerance                  |
| 1     | pct metropolitan  | .293 <sup>a</sup> | 5.201  | .000 | .600        | .900                       |
|       | pct white         | 102 <sup>a</sup>  | -1.098 | .278 | 157         | .501                       |
|       | pct hs graduates  | 003 <sup>a</sup>  | 040    | .969 | 006         | .918                       |
|       | pct poverty       | .012 <sup>a</sup> | .146   | .885 | .021        | .680                       |
|       | pct single parent | .296 <sup>a</sup> | 2.402  | .020 | .328        | .262                       |
| 2     | pct white         | 037 <sup>b</sup>  | 477    | .636 | 069         | .487                       |
|       | pct hs graduates  | 031 <sup>b</sup>  | 543    | .590 | 079         | .910                       |
|       | pct poverty       | .127 <sup>b</sup> | 1.915  | .062 | .269        | .616                       |
|       | pct single parent | .310 <sup>b</sup> | 3.244  | .002 | .428        | .262                       |
| 3     | pct white         | 004 <sup>c</sup>  | 060    | .953 | 009         | .477                       |
|       | pct hs graduates  | 040 <sup>c</sup>  | 776    | .442 | 114         | .907                       |
|       | pct poverty       | .099 <sup>c</sup> | 1.604  | .116 | .230        | .603                       |

## Excluded Variables<sup>d</sup>

a. Predictors in the Model: (Constant), murder rate

b. Predictors in the Model: (Constant), murder rate, pct metropolitan

c. Predictors in the Model: (Constant), murder rate, pct metropolitan, pct single parent

d. Dependent Variable: violent crime rate

Looking at the table above, when model 1 is fitted, you can see that the next most important variable is **pct metropolitan** (t = 5.201) and that is the variable next included.

At stage 2 (murder, pct metropolitan included) **pct single parent** will be included next (t = 3.244).

At stage 3, none of the remaining variables are significant (pct poverty has a t value of 1.604 which is non- significant).

## **Diagnostics:**

The assumptions of the model are that the errors are

- 1. Random errors with mean zero and variance  $\sigma^2$ ...
- 2. The errors are assumed to have constant variance,  $\sigma^2$ .
- 3. The errors are independent
- 4. In order to make tests of significance and construct confidence intervals, it is necessary to assume that the errors are Normally distributed.

## **The Residuals**

After fitting the model, the assumptions of the model are validated using residual analysis. The residuals,  $e_i$  provide an estimate of the errors,  $\varepsilon_i$ .







# **Practical 15: Multiple Linear Regression**

The data set in the file SHARED

(K):SCTMSSOMMA2010REGRESSIONRUDGE1.SAV comprises data collected by Rudge (2004) on excess winter morbidity in the period 1993 – 1996 in 25 grouped enumeration districts in Newham, London.

The explanatory variables are as follows: CTB = % households receiving council tax benefit FPR = Fuel poverty risk index HHI = % of households with one or more pensioners PERS = % of over 65 year olds

The basic response variable is the excess winter morbidity EWM in the period 1993-1996 and the analysis uses ln(EWM).

- a) Open the data file in SPSS and calculate ln(EWM).
- b) Reproduce the results from the multiple linear regression example in your course notes (section 15.2.2 and 15.2.3)
  - i) Use Graph>Scatter/Dot>Matrix Scatter to produce multiple plots of ln(EWM) and the explanatory variables.
  - ii) Use Analyze>Correlate>Bivariate to obtain a correlation matrix of ln(EWM) and the explanatory variables.
  - iii) Fit the best linear regression model relating ln(EWM) to fuel poverty risk index, FPR (Model 1) and use the option PLOTS to obtain residual plots for the model.

Write down the estimated regression equation for the best simple linear model fitted. Calculate the predicted value of EWM for FPR = 2500.

Write down the assumptions of the model and use the residual analysis to comment on whether they are likely to be valid.

iv) Now fit the multiple regression model relating ln(EWM) to FPR and CTB (Model 2) and the model relating ln(EWM) to FPR and HHI (Model 3).

For each of the models, write down the estimated regression equation and calculate the predicted value of EWM for CTB = 50, FPR = 2500, HHI = 40 and PERS = 30.