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Chapter 14

Multiple linear regression: Theory

14.1 The Regression Model

 I0bXy 2
1xn1xkkxn1nx

,N~where 

y: is the vector of the response variable

X: the matrix of the k independent/explanatory variables (usually the first
column is a column of ones for the constant term).

b: is a k x 1 vector of unknown parameters.

: is a vector of randomly distributed errors.

We assume that
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Note that

  I2=yVarbXyE 

and that if
   II0 22 ,N~,~  bXyN 
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14.2 Estimation of the parameters

14.2.1 Least Square Estimation

Minimise W with respect to b where

  bXybXy  W

Now W can be written as

  bXyXby W

bXXbyXbbXyyy 

XbXbyXbyy  2

(since yXbbXy  a scalar). Differentiate with respect to b

bXXyX
b

 22W



We set
b

W to zero to give the Normal equations

yXbXX ˆ

If now X is of full rank  X X is of full rank and  1XX exist so

  yXXXb  1ˆ

b̂ is the least squares estimator of b.

14.2.2 Maximum Likelihood Estimation

We have that
 I2,~ bXNy

so the likelihood function will be
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with log-likelihood

      bXybXyb  2
22
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Note: Maximising the log likelihood for b is equivalent of minimising the least squares

quantity   bXybXy W . So in this case MLE and LSE for b are identical.

Differentiating the log likelihood with respect to b and 2 we have
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By setting the above equations equal to zero and solving them for b and 2 we have that
the maximum likelihood estimator (MLE) for b and 2 are

 
  

n

ˆˆ
ˆ

ˆ

2

1

bXybXy

yXXXb







 



The quantity   bXybXy ˆˆ 


 is called the Residual Sum of Squares (RSS) or Deviance
(in GLIM).

The MLE for 2 2,  is a biased estimate so we generally use
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where k is the rank of the matrix X.
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14.3 The mean and variance for the least square estimators

The mean

   yXXXb  1ˆ

  )E(1 yXXX  

  XbXXX  1

b

so bb ̂E that is b is unbiased for b.

The variance

   



 

 bbbbb ˆˆEˆVar

since bb ̂E .

Now   XXXbb  1ˆ Thus

     



 

   XXXXXXb 11EˆVar

    11E   XXXXXX 

    11 E   XXXXXX 

   11 Var   XXXXXX 

   121   XXXIXXX 

 12  XX

Note that       



  E)(E)(EEVar since 0E
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14.4 Fitted Values and Residuals

Definitions

Fitted values bXy ˆ̂

Residuals bXyyy ˆˆˆ 

y is an estimate of XbyE  the mean of y and is an estimate of the error term.

The Hat Matrix

  HyyXXXXbXy  1ˆˆ

XXXXH  1)( is called the Hat matrix.

H is symmetric and idempotent, so it is an orthogonal projection matrix. It projects any
n-dimensional vector into the subspace generated by X. Also

  yXXXXybXy  1ˆ̂
 yHI

(I - H) is symmetric and idempotent so is an orthogonal projection matrix. (I - H)
projects any n-dimensional vector into the orthogonal complement of X (see the figure
below).

ŷ : is the orthogonal projection of y into the subspace generated by X. The hat matrix H
projects y into the linear subspace generated by the columns of X, Hyy̂ .

y

Rk

y
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: is the orthogonal projection of y into the subspace generated by the orthogonal
complement of X, yHI )(ˆ  .

14.5 Properties of the residuals and the fitted values

14.5.1 The mean of the fitted values

 bXyE ̂

proof:
   

 
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

1

EEˆ

14.5.2 The variance of the fitted values

 Hy 2ˆvar 

proof:
   

H

HHHIH

HyHyHy

2

22

varVarˆVar











because H is symmetric and idempotent.

14.5.3 The expected value of the residuals

0̂E

See exercise 14.1.

14.5.4 The variance of the residuals

  HI 2Var 

See exercise 14.1.
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14.5.5 The sum of the residuals

The following result holds for the sum of the residuals provided that the matrix of the
explanatory variables X contains the constant term vector i.e. the first vector in X is 1.

  i
i

n


  

1

1 0

proof: From the Normal equation we have
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14.5.6 The fitted values and the residuals are uncorrelated

The above statement is equivalent to the statement that

 0ŷ,̂Cov 

proof:
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14.5.7 The covariance of the residuals and the y-variable

   HIy  2,̂Cov 

See exercise 14.1.

14.5.8 The covariance of the residuals and the estimator of the parameter b

 0̂,̂Cov b

proof:

    
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14.6 The Residual Sum of Squares & other Sum of Squares

The residual sum of squares (RSS) or Deviance is defined as

  

  

yXbyy

yXXXXXbyXbyy

bXXbbXyyXbyy

bXybXy














ˆ

ˆˆ2

ˆˆˆ

ˆˆˆ̂RSS

1


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or

     y y b X y 

Note that

     yyyHyyXXXXyyXyXXXyXb ˆ̂ˆ 11 


 

so  yyyy ˆ̂

also  yHIyyHyyyyXbyy  ˆˆ̂

So we have

 
RSS+SSRegression=TSS

yHIyyHyyy 

Total Sum of Squares = Regression sum of squares + Residual Sum of Squares

y


y0
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14.7 The R-square

How good the model is depends on how close the fitted values y are to the actual values
y . The quantity

yy
yHy

yy
yy









ˆ̂

R̂2

could be used as a measure of goodness of fit but the problem is that X usually contains
the vector of ones. In order to eliminate the contribution of the constant term we use the
quantity.

 
 AdjustedSSTotal

AdjustedSSRegression
yn
ynˆ̂

R 2

2
2 





yy
yy

Note: R2 100 % of variation explained by the fitted model.

Another measure which takes into consideration the number of x-variables used in the
model is

 

 

 
1-n
AdjTSS

1kn
AdjSSRegression

AdjustedRR 22 

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14.8 Statistical Hypotheses

14.8.1 The expected value of RSS.

   knˆ̂E 2  

2

kn
ˆ̂

E 













so s
n k

2  


 is unbiased estimator for 2

14.8.2 The distribution and C.I. for b

Note that

  12,N~̂ XXbb 

So

   1
ii

ii
2

ii ofelementsdiagonaltheareawhere1,0N~
a

bb̂ 
XX


.

Also it can be proved that.

 kn~
ˆ̂ 2
2 






and that b and

2 are independent.

From section 2.4.1, we note that if Z ~ N (1 , 0) and v~W 2 and Z and W are
independent then

T Z
W





.
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hence we have that

 
 

 unt
bse

bb

a

bb

un

a

bb

t
i

ii

ii

iiii

ii





























 ~
)̂(

ˆ

ˆ

ˆ

/̂ˆ

ˆ

2
1

22
1

2

2
1

2





where

 
2 





n u

Using the above result we can define 100 (1 - )% confidence intervals (C.I.) for the

b si
 .

i
kn

i bsetb ˆˆ
2

,





Note: The variance covariance matrix for b is   12ˆvar  XXb . Since we do not

know 2 we use  12̂ XX as an estimate. This matrix in general does not have the
off-diagonal elements equal to zero so the b are correlated.

14.8.3 t - test for the b s.

We can use the quantity

bes
bbt i

ˆ
0

to test whether the coefficient is equal to some specific value b0 or not. The most
common hypothesis is bi 0 . i.e.

H bo i: 0 the other b s are unconstrained.

H1 : All the b s are unconstrained.

Reject Ho if

t
b

se b
ti

i
n k

 




() ,
2

(for two tail test).
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Note:
(i) This test is appropriate when we want to test the coefficient of a term

given that all the other term are included in the model.

(ii) This test is not appropriate to test b b1 2 0  simultaneously.

14.8.4 The F - test

This is relevant for testing whether a subset of the x-variables contributes significantly
in explaining the variation in the y-variable.

The model

 
 


 



 









 n

xk
kxn

knxn

xkkxnxn
1

2

1
21

11

b
b

XXbXy

The test

(i) H o : b 02  and b1 unconstrained (that is the true model is
y X b 1 1 )

H 1 2: b 0 b b1 2and unconstrained (the true model is
y X y )

(ii) Fit the Ho model and obtain its RSS= Deviance = Do and its degrees of
freedom df0.

(iii) Fit the H1 model and obtain its Deviance = D1 and its degrees of freedom
df1.

(iv) It can be shown that if Ho is true  10
2

2
1 ~ dfdf

DDo 





independently

of  1
2

2
1 ~ df

D



so the ratio

 
  110 ,

1

1

10

1

~ dfdfdf

o

F

df
D

dfdf
DD

F 





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(If Ho is true then both D Do  1 and D1 measure the random error, but if Ho is false
then we would expect D Do  1 which measures the variation explained by X1 to be
significantly bigger than D1).

This test is a one-sided F test, that is, reject Ho at 100% level if the observed

 
  ,,

0

1

10

1

11 dfdfdf

o

o
F

df
D

dfdf
DD

F 





Special cases.

(a) Testing whether jointly all the x-variables explain a significant part of the
variation in y . (Note that b1 represent the constant term).

H b b bo k: . .2 3 0    b1 : unconstrained. (that is the true model
is yi i  ).

H b b bk1 1 2: , , .. unconstrained. (y Xb is the true model).

The F test will be

 

1

1

10

1

df
D

dfdf
DD

F

o






(b) Testing whether only one of the x's explains a significant part of the
variation given the rest.

H bo j: 0 the test of bi unconstrained

H b b bk1 1 2: , .. . all the b’s unconstrained.

Consider the case k=4 for illustration

with
 

F

D D
df df

D
df

F

o

df




1

0 1

1

1

1 1
~ , .
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Note that  t Fn k n k
2

1  , or t Fk k
2

1 , so this is equivalent to a t - test.

Exercise 14.1

1. If X is a (n x k) matrix of rank k.

i) show that X X and XXare symmetric matrices.

ii) show that H X(X X) X1   and I H are both symmetric and idempotent
matrices. (That is, both matrices are orthogonal projections)

2. Shown that b b (X X) X1    where b is the least squares estimator and is the
error term

3. Show that the expected value of the residuals is zero i.e. E()0 and that
Var() ( )  I H .

4. Show that Cov(, ) ( )y I H  , and deduce that in general the residual estimates are
correlated with the observations.

5. Show that the residual sum of squares is given by y (I H)y where H X(X X) X1   .
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Exercise 14.2

1) Let the design matrix  X x x x x1 2 3 4 where x1 represents the constant term in
the linear model. Give the model equation corresponding to the null and alternative
hypothesis in the following test.

H b b b0 2 3 4 0:    : b1 unconstrained.

H b1 4 0:  : b b b1 2 3, , unconstrained

2) With the same design matrix as above give the model equation corresponding to the
null and alternative hypothesis in the following test.

H b b0 3 42:  : b b1 2 0,  unconstrained.

H1: : b b b b1 2 3 4, , , unconstrained

3) Write down the GLIM commands in order to test the hypothesis in 1) and 2) and
indicate how to use the resulting Deviances to test the relevant hypotheses.

4) From the anaerobic Threshold output in section 10.2 test whether the quadratic model
X<2> is better than the X<6> model.
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Exercise 14.3

Assume the multiple linear regression model of the form

y Xb 

where y is an (n x 1) vector of observations, X is an (n x k) design matrix of rank (k < n), b is
a (k x 1) vector of parameters and is an (n x 1) vector of random variables (error term) such
that

 ~ ( , )N 0 I2

i) Show that  ( )b X X X y1   is the Least Squares Estimator of b, and that b is an
unbiased estimator for b.

ii) Show that the likelihood function for b and 2 is given by







  

2
2/22

2
)()'(exp)2(),(


 XbyXbyb nL

iii) State briefly the reason why the Least Squares estimator and the Maximum Likelihood
estimator for b are identical.

iv) Use the result  ( ) 'b b X X X1    to show that the variance-covariance matrix of
b is equal to 2 ( ) X X 1 .

v) Show that  ( )  I H , where H X X X X1  ( ) is the hat matrix, is the vector of
residuals and the error term. Use this result to find the expected value, and the
variance-covariance matrix of .


