Chapter 14

Multiple linear regression: Theory

14.1 The Regression Model

 $\mathbf{y} = \mathbf{X} \mathbf{b} + \boldsymbol{\varepsilon} \quad \text{where} \quad \boldsymbol{\varepsilon} \sim \mathbf{N} (\mathbf{0}, \sigma^2 \mathbf{I})$

- **y:** is the vector of the response variable
- **X**: the matrix of the k independent/explanatory variables (usually the first column is a column of ones for the constant term).
- **b**: is a k x 1 vector of unknown parameters.
- ε : is a vector of randomly distributed errors.

We assume that

$$E(\varepsilon)=0 \operatorname{Var}(\varepsilon)=\sigma^2 \mathbf{I}$$

where

	1	0	0 0 1 : 0	•••	0
	0	1	0		0
I=	0	0	1		0
	÷	÷	÷		:
	0	0	0	•••	1

Note that

$$E(y) = Xb$$
 $Var(y) = \sigma^2 \mathbf{I}$

and that if

$$\varepsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I}) \Rightarrow y \sim N(X b, \sigma^2 \mathbf{I})$$

14.2 Estimation of the parameters

14.2.1 Least Square Estimation

Minimise W with respect to **b** where

$$W = \varepsilon' \varepsilon = (y - Xb)' (y - Xb)$$

Now W can be written as

$$W = (y'-b'X')(y-Xb)$$
$$= y'y-y'Xb-b'X'y+b'X'Xb$$
$$= y'y-2b'X'y+b'X'Xb$$

(since y'Xb=b'Xy a scalar). Differentiate with respect to b

$$\frac{\partial \mathbf{W}}{\partial b} = -2X'y + 2X'Xb$$

We set $\frac{\partial W}{\partial b}$ to zero to give the **Normal** equations $X'X\hat{b}=X'y$

If now **X** is of full rank \Rightarrow **X**'**X** is of full rank and (**X**'**X** $)^{-1}$ exist so

$$\hat{b} = (X'X)^{-1}X'y$$

 \hat{b} is the least squares estimator of b.

14.2.2 Maximum Likelihood Estimation

We have that

$$y \sim N(Xb, \sigma^2 \mathbf{I})$$

so the likelihood function will be

$$\mathbf{L}(b,\sigma^{2}) = (2\pi\sigma^{2})^{-\frac{n}{2}} \exp\left\{-\frac{1}{2\sigma^{2}}(y-Xb)'(y-Xb)\right\}$$

with log-likelihood

$$\ell(b,\sigma^{2}) = -\frac{n}{2}\log(2\pi\sigma^{2}) - \frac{1}{2\sigma^{2}}(y-Xb)'(y-Xb)$$
$$= -\frac{n}{2}\log(2\pi\sigma^{2}) - \frac{1}{2\sigma^{2}}W$$

Note: Maximising the log likelihood for **b** is equivalent of minimising the least squares quantity W = (y - Xb)'(y - Xb). So in this case MLE and LSE for **b** are identical.

Differentiating the log likelihood with respect to **b** and σ^2 we have

$$\frac{\partial \ell}{\partial b} = \frac{X' y - X' X b}{\sigma^2}$$
$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{(y - X \hat{b})'(y - X \hat{b})}{2\sigma^4}$$

By setting the above equations equal to zero and solving them for **b** and σ^2 we have that the maximum likelihood estimator (MLE) for **b** and σ^2 are

$$\hat{b} = (X'X)^{-1} X'y$$
$$\hat{\sigma}^2 = \frac{(y - X\hat{b})'(y - X\hat{b})}{n}$$

The quantity $(y-X\hat{b})'(y-X\hat{b})$ is called the Residual Sum of Squares (RSS) or Deviance (in GLIM).

The MLE for σ^2 , $\hat{\sigma}^2$ is a biased estimate so we generally use

$$s^{2} = \frac{\left(\mathbf{y} - \mathbf{X} \, \hat{\mathbf{b}}\right)' \left(\mathbf{y} - \mathbf{X} \, \hat{\mathbf{b}}\right)}{n - k}$$

where k is the rank of the matrix **X**.

14.3 The mean and variance for the least square estimators

The mean

$$E(\hat{b}) = E((X'X)^{-1}X'y)$$
$$= (X'X)^{-1}X'E(\mathbf{y})$$
$$= (X'X)^{-1}X'E(\mathbf{y})$$
$$= b$$

so

 $E(\hat{b}) = b$ that is $\hat{\mathbf{b}}$ is unbiased for **b**.

The variance

$$\operatorname{Var}(\hat{b}) = \operatorname{E}\left[\left(\hat{b} - b\right)\left(\hat{b} - b\right)'\right]$$

since $E(\hat{b}) = b$.

Now $\hat{b}-b=(X'X)^{-1}X'\varepsilon$ Thus

$$\operatorname{Var}(\hat{b}) = \operatorname{E}\left[\left((X'X)^{-1}X'\varepsilon\right)((X'X)^{-1}X'\varepsilon)'\right]$$
$$= \operatorname{E}\left[(X'X)^{-1}X'\varepsilon\varepsilon'X(X'X)^{-1}\right]$$
$$= (X'X)^{-1}X\operatorname{E}(\varepsilon\varepsilon')X(X'X)^{-1}$$
$$= (X'X)^{-1}X'\operatorname{Var}(\varepsilon)X(X'X)^{-1}$$
$$= (X'X)^{-1}X'\sigma^{2}IX(X'X)^{-1}$$
$$= \sigma^{2}(X'X)^{-1}$$

Note that
$$\operatorname{Var}(\varepsilon) = \operatorname{E}\left[\left(\varepsilon - \operatorname{E}(\varepsilon)\right)\left(\varepsilon - \operatorname{E}(\varepsilon)\right)'\right] = \operatorname{E}\left(\varepsilon\varepsilon'\right)$$
 since $\operatorname{E}(\varepsilon) = \mathbf{0}$

14.4 Fitted Values and Residuals

Definitions

Fitted values $\hat{y}=X\,\hat{b}$ Residuals $\hat{\varepsilon}=y-\hat{y}=y-X\,\hat{b}$

 $\hat{\mathbf{y}}$ is an estimate of $E(\mathbf{y}) = Xb$ the mean of \mathbf{y} and $\hat{\mathbf{\varepsilon}}$ is an estimate of $\mathbf{\varepsilon}$ the error term.

The Hat Matrix

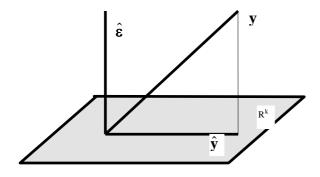
$$\hat{y} = X \hat{b} = X (X'X)^{-1} X'y = Hy$$

$$H = X (X'X)^{-1} X'$$
is called the Hat matrix.

H is symmetric and idempotent, so it is an orthogonal projection matrix. It projects any n-dimensional vector into the subspace generated by X. Also

$$\hat{\varepsilon} = y - X\hat{b} = y - X(X'X)^{-1}X'y$$
$$= (I - H)y$$

(I - H) is symmetric and idempotent so is an orthogonal projection matrix. (I - H) projects any n-dimensional vector into the orthogonal complement of X (see the figure below).



 \hat{y} : is the orthogonal projection of y into the subspace generated by **X**. The hat matrix **H** projects **y** into the linear subspace generated by the columns of **X**, \hat{y} =*Hy*.

 $\hat{\mathbf{\varepsilon}}$: is the orthogonal projection of y into the subspace generated by the orthogonal complement of **X**, $\hat{\varepsilon} = (I - H) y$.

14.5 Properties of the residuals and the fitted values

14.5.1 The mean of the fitted values

$$E(\hat{y})=Xb$$

proof:

$$E(\hat{y})=E(Hy)=HE(y)=HXb$$

$$=X(X'X)^{-1}X'Xb$$

$$=X\underline{b}$$

14.5.2 The variance of the fitted values

$\operatorname{var}(\hat{y}) = \sigma^2 H$
--

proof:

$$\operatorname{Var}(\hat{y}) = \operatorname{Var}(Hy) = H\operatorname{Var}(\underline{y})H'$$

$$=H\sigma^2 IH' = \sigma^2 HH'$$

 $=\sigma^2 H$

because **H** is symmetric and idempotent.

14.5.3 The expected value of the residuals

$$E(\hat{\varepsilon})=\mathbf{0}$$

See exercise 14.1.

14.5.4 The variance of the residuals

$$\operatorname{Var}(\varepsilon) = \sigma^2(I - H)$$

See exercise 14.1.

14.5.5 The sum of the residuals

The following result holds for the sum of the residuals provided that the matrix of the explanatory variables X contains the constant term vector i.e. the first vector in X is 1.

$$\sum_{i=1}^{n} \hat{\boldsymbol{\varepsilon}}_{i} = \hat{\boldsymbol{\varepsilon}}' \mathbf{1} = \mathbf{0}$$

proof: From the Normal equation we have

$$\begin{array}{l} X'X\,\hat{b}=X'y\\ \Rightarrow X'(y-X\,\hat{b})=0\\ \Rightarrow X'\hat{\varepsilon}=0 \quad \text{so if } \mathbf{X} \text{ contains the 1's.}\\ \mathbf{1}'\varepsilon=0 \end{array}$$

14.5.6 The fitted values and the residuals are uncorrelated

The above statement is equivalent to the statement that

$$\operatorname{Cov}(\hat{\varepsilon}, \hat{y}) = \mathbf{0}$$

proof:

$$Cov(\hat{\varepsilon}, \hat{y}) = E\left[\left(y - X\hat{b}\right)(X\hat{b} - E(X\hat{b}))'\right]$$
$$= E\left[\left(y - Hy\right)(Hy - Xb)'\right]$$
$$= E\left[\left(I - H\right)y(H(y - Xb))'\right] \text{ since } \mathbf{HX} = \mathbf{X}$$
$$= E\left[\left(I - H\right)(Xb + \varepsilon)(H(y - Xb))'\right]$$
$$= E\left[\left(I - H\right)\varepsilon(H\varepsilon)'\right] \text{ since } (I - H)X = 0$$
$$= E\left[(I - H)\varepsilon\varepsilon'H\right]$$
$$= (I - H)E(\varepsilon\varepsilon')H$$
$$= (I - H)Var(\underline{\varepsilon})H$$
$$= (I - H)\sigma^{2}IH$$
$$= \sigma^{2}(I - H)H$$
$$= \mathbf{0} \text{ since } (I - H)H = \mathbf{0}$$

14.5.7 The covariance of the residuals and the y-variable

$$\operatorname{Cov}(\hat{\varepsilon}, y) = \sigma^2 (I - H)$$

See exercise 14.1.

14.5.8 The covariance of the residuals and the estimator of the parameter b

|--|

proof:

$$Cov(\hat{b},\hat{\varepsilon}) = E\left[(\hat{b}-b)(\hat{\varepsilon}-0)'\right]$$

$$= E\left[((X'X)^{-1}X'y-b)((I-H)\varepsilon)'\right]$$

$$= E\left[((X'X)^{-1}X'(Xb+\varepsilon)-b)((I-H)\varepsilon)'\right]$$

$$= E\left[(X'X)^{-1}X'\varepsilon\varepsilon'(I-H)\right]$$

$$= (X'X)^{-1}X'\sigma^{2}I(I-H)$$

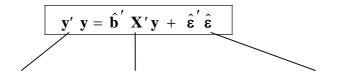
$$= \sigma^{2}(X'X)^{-1}X'(I-X(X'X)^{-1}X')$$

$$= 0$$

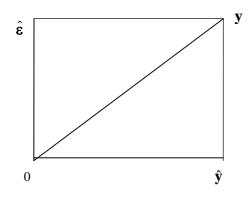
14.6 The Residual Sum of Squares & other Sum of Squares

The residual sum of squares (RSS) or Deviance is defined as

$$RSS = \hat{\varepsilon}'\hat{\varepsilon} = (y - X\hat{b})'(y - X\hat{b})$$
$$= y'y - \hat{b}'X'y - y'Xb + \hat{b}'X'X\hat{b}$$
$$= y'y - 2\hat{b}'X'y + \hat{b}'(X'X)(X'X)^{-1}X\underline{y}$$
$$= y'y - \hat{b}'X'y$$



Total Sum of Squares = Regression sum of squares + Residual Sum of Squares



 $\hat{b}'X'y = ((X'X)^{-1}X'y)'X'y = y'X(X'X)^{-1}X'y = y'Hy = \hat{y}'\hat{y}$

Note that

so

$$\mathbf{y}'\mathbf{y} = \hat{\mathbf{y}}'\hat{\mathbf{y}} + \varepsilon'\varepsilon$$

 $\hat{\varepsilon}'\hat{\varepsilon}=y'y-\hat{b}X'y=y'y-yHy=y'(I-H)y$

also

So we have

$$y'y=y'H y+y'(I-H)y$$

TSS = Regression SS + RSS

14.7 The R-square

How good the model is depends on how close the fitted values $\hat{\mathbf{y}}$ are to the actual values $\mathbf{y}.$ The quantity

$$\hat{\mathbf{R}}^2 = \frac{\hat{y}'\hat{y}}{y'y} = \frac{y'Hy}{y'y}$$

could be used as a measure of goodness of fit but the problem is that \mathbf{X} usually contains the vector of ones. In order to eliminate the contribution of the constant term we use the quantity.

$$R^{2} = \frac{\hat{y}'\hat{y} - n\overline{y}^{2}}{y'y - n\overline{y}^{2}} = \frac{\text{Regression SS (Adjusted)}}{\text{Total SS (Adjusted)}}$$

Note: $R^2 \times 100 = \%$ of variation explained by the fitted model.

Another measure which takes into consideration the number of x-variables used in the model is

$$\overline{R}^{2} = R^{2} (Adjusted) = \frac{\frac{Regression SS (Adj)}{n-k-1}}{\frac{TSS (Adj)}{n-1}}$$

14.8 Statistical Hypotheses

14.8.1 The expected value of RSS.

$$E(\hat{\varepsilon}'\hat{\varepsilon}) = \sigma^{2}(n-k)$$
$$\Rightarrow E\left(\frac{\hat{\varepsilon}'\hat{\varepsilon}}{n-k}\right) = \sigma^{2}$$

so $s^2 = \frac{\hat{\boldsymbol{\varepsilon}}'\hat{\boldsymbol{\varepsilon}}}{n-k}$ is unbiased estimator for σ^2

14.8.2 The distribution and C.I. for $\hat{\mathbf{b}}$

Note that

$$\hat{b} \sim \mathrm{N}(b, \sigma^2 (X'X)^{-1})$$

So

$$\frac{\hat{\mathbf{b}}_i - \mathbf{b}_i}{\sqrt{\sigma^2 a_{ii}}} \sim N(0,1)$$
 where a_{ii} are the diagonal elements of $(X'X)^{-1}$.

Also it can be proved that.

$$\frac{\hat{\varepsilon}'\hat{\varepsilon}}{\sigma^2} \sim \chi^2 (n-k)$$

and that $\hat{\mathbf{b}}$ and $\frac{\hat{\boldsymbol{\epsilon}}'\hat{\boldsymbol{\epsilon}}}{\sigma^2}$ are independent.

From section 2.4.1, we note that if $Z \sim N(1, 0)$ and $W \sim \chi^2(v)$ and Z and W are independent then

$$T = \frac{Z}{\sqrt{\frac{W}{v}}}$$

hence we have that

$$t = \frac{\frac{b_{i} - b_{i}}{(\sigma^{2} a_{ii})^{\frac{1}{2}}}}{\left(\frac{\hat{\underline{\varepsilon}}' \hat{\underline{\varepsilon}} / \sigma^{2}}{n - u}\right)^{\frac{1}{2}}} = \frac{\hat{b}_{i} - b_{i}}{(\hat{\sigma}^{2} a_{ii})^{\frac{1}{2}}} = \frac{\hat{b}_{i} - b_{i}}{se(\hat{b}_{i})} \sim t(n - u)$$

where

$$\hat{\sigma}^2 = \frac{\hat{\underline{\boldsymbol{\varepsilon}}} \ \underline{\boldsymbol{\varepsilon}}}{n-u}$$

Using the above result we can define 100 (1 - α)% confidence intervals (C.I.) for the b'_i s.

$$\hat{b}_i \pm t_{n-k,\frac{\alpha}{2}} se(\hat{b}_i)$$

Note: The variance covariance matrix for $\hat{\mathbf{b}}$ is $\operatorname{var}(\hat{\mathbf{b}}) = \sigma^2 (X'X)^{-1}$. Since we do not know σ^2 we use $\hat{\sigma}^2 (X'X)^{-1}$ as an estimate. This matrix in general does not have the off-diagonal elements equal to zero so the \hat{b} are correlated.

14.8.3 t - test for the b's

We can use the quantity

$$t = \frac{b_i - b_0}{se(\hat{b})}$$

to test whether the coefficient is equal to some specific value b_0 or not. The most common hypothesis is $b_i = 0$. i.e.

 $H_o: b_i = 0$ the other b's are unconstrained.

 H_1 : All the *b*'s are unconstrained.

Reject H_o if

$$\left|\mathbf{t}\right| = \left|\frac{\hat{\mathbf{b}}_{i}}{\operatorname{se}(\hat{\mathbf{b}}_{i})}\right| > t_{n-k,\frac{\alpha}{2}}$$

(for two tail test).

Note:

- (i) This test is appropriate when we want to test the coefficient of a term given that all the other term are included in the model.
- (ii) This test is not appropriate to test $b_1 = b_2 = 0$ simultaneously.

14.8.4 The F - test

This is relevant for testing whether a subset of the x-variables contributes significantly in explaining the variation in the y-variable.

The model

$$\mathbf{y} = \mathbf{X} \mathbf{b} = \begin{bmatrix} nxk \\ \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} \begin{bmatrix} nxk \\ \mathbf{b}_1 \\ \mathbf{b}_2 \end{bmatrix} \begin{bmatrix} kxl \\ \mathbf{b}_1 \\ \mathbf{b}_2 \end{bmatrix} \begin{bmatrix} kxl \\ \mathbf{b}_1 \\ \mathbf{b}_2 \end{bmatrix} \begin{bmatrix} kxl \\ \mathbf{b}_1 \\ \mathbf{b}_2 \end{bmatrix}$$

The test

- (i) $H_{o}: \mathbf{b}_{2} = \mathbf{0}$ and \mathbf{b}_{1} unconstrained (that is the true model is $\mathbf{y} = \mathbf{X}_{1} \mathbf{b}_{1} + \mathbf{\varepsilon}$) $H_{1}: \mathbf{b}_{2} \neq \mathbf{0}$ \mathbf{b}_{1} and \mathbf{b}_{2} unconstrained (the true model is
- (ii) Fit the H_o model and obtain its RSS= Deviance = D_o and its degrees of freedom df₀.

 $\mathbf{y} = \mathbf{X} \mathbf{y} + \mathbf{\varepsilon}$)

(iii) Fit the H_1 model and obtain its Deviance = D_1 and its degrees of freedom df_1 .

(iv) It can be shown that if H_o is true $\frac{D_o - D_1}{\sigma^2} \sim \chi^2 (df_0 - df_1)$ independently of $\frac{D_1}{\sigma^2} \sim \chi^2 (df_1)$ so the ratio

$$F = \frac{\frac{D_o - D_1}{(df_0 - df_1)}}{\frac{D_1}{df_1}} \sim F_{(df_0 - df_1), df_1}$$

(If H_o is true then both $D_o - D_1$ and D_1 measure the random error, but if H_o is false then we would expect $D_o - D_1$ which measures the variation explained by \mathbf{X}_1 to be significantly bigger than D_1).

This test is a one-sided F test, that is, reject H_o at 100α % level if the observed

$$F = \frac{\frac{D_o - D_1}{(df_0 - df_1)}}{\frac{D_1}{df_0}} > F_{(df_o - df_1), df_1, \alpha}$$

Special cases.

(a) Testing whether jointly all the x-variables explain a significant part of the variation in \mathbf{y} . (Note that \mathbf{b}_1 represent the constant term).

$$H_o: b_2 = b_3 = ... = b_k = 0$$
 $b_1:$ unconstrained. (that is the true model
is $y_i = \mu + \varepsilon_i$).

 $H_1: b_1, b_2, \dots b_k$ unconstrained. ($\mathbf{y} = \mathbf{X}\mathbf{b} + \boldsymbol{\varepsilon}$ is the true model).

The F test will be

$$F = \frac{\frac{D_{o} - D_{1}}{(df_{0} - df_{1})}}{\frac{D_{1}}{df_{1}}}$$

(b) Testing whether only one of the x's explains a significant part of the variation given the rest.

 $H_o: b_i = 0$ the test of b_i unconstrained

 \mathbf{H}_1 : \mathbf{b}_1 , \mathbf{b}_2 ... \mathbf{b}_k all the b's unconstrained.

Consider the case k=4 for illustration

with
$$F = \frac{\frac{D_o - D_1}{(df_0 - df_1)}}{\frac{D_1}{df_1}} \sim F_{1,df_1}$$
.

Note that $t_{n-k}^2 = F_{1,(n-k)}$ or $t_k^2 = F_{1,k}$ so this is equivalent to a t - test.

Exercise 14.1

- 1. If \mathbf{X} is a (n x k) matrix of rank k.
 - i) show that **X'X** and **XX'** are symmetric matrices.
 - ii) show that $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ and $\mathbf{I} \mathbf{H}$ are both symmetric and idempotent matrices. (That is, both matrices are orthogonal projections)
- 2. Shown that $\hat{\mathbf{b}} = \mathbf{b} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{\varepsilon}$ where $\hat{\mathbf{b}}$ is the least squares estimator and $\boldsymbol{\varepsilon}$ is the error term
- 3. Show that the expected value of the residuals is zero i.e. $E(\hat{\epsilon}) = 0$ and that $Var(\hat{\epsilon}) = \sigma^2 (I H)$.
- 4. Show that $Cov(\hat{\boldsymbol{\epsilon}}, \mathbf{y}) = \sigma^2 (\mathbf{I} \mathbf{H})$, and deduce that in general the residual estimates are correlated with the observations.
- 5. Show that the residual sum of squares is given by $\mathbf{y}'(\mathbf{I} \mathbf{H})\mathbf{y}$ where $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$.

Exercise 14.2

1) Let the design matrix $\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 & \mathbf{x}_4 \end{bmatrix}$ where \mathbf{x}_1 represents the constant term in the linear model. Give the model equation corresponding to the null and alternative hypothesis in the following test.

H_0 :	$b_2 = b_3 = b_4 = 0$:	b_1	unconstrained.
H_1 :	$b_4 = 0:$	b_1, b_2, b_3	unconstrained

2) With the same design matrix as above give the model equation corresponding to the null and alternative hypothesis in the following test.

$$H_0: b_3 = 2b_4: b_1, b_2 = 0$$
 unconstrained.
 $H_1:: b_1, b_2, b_3, b_4$ unconstrained

- 3) Write down the GLIM commands in order to test the hypothesis in 1) and 2) and indicate how to use the resulting Deviances to test the relevant hypotheses.
- 4) From the anaerobic Threshold output in section 10.2 test whether the quadratic model X < 2> is better than the X < 6> model.

Exercise 14.3

Assume the multiple linear regression model of the form

$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{\varepsilon}$$

where **y** is an (n x 1) vector of observations, **X** is an (n x k) design matrix of rank (k < n), **b** is a (k x 1) vector of parameters and $\boldsymbol{\varepsilon}$ is an (n x 1) vector of random variables (error term) such that

$$\boldsymbol{\varepsilon} \sim N(\boldsymbol{0}, \boldsymbol{\sigma}^{2}\mathbf{I})$$

- i) Show that $\hat{\mathbf{b}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ is the Least Squares Estimator of **b**, and that $\hat{\mathbf{b}}$ is an unbiased estimator for **b**.
- ii) Show that the likelihood function for **b** and σ^2 is given by

$$L(\mathbf{b},\sigma^2) = (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{(\mathbf{y}-\mathbf{X}\mathbf{b})'(\mathbf{y}-\mathbf{X}\mathbf{b})}{2\sigma^2}\right\}$$

- iii) State briefly the reason why the Least Squares estimator and the Maximum Likelihood estimator for **b** are identical.
- iv) Use the result $\hat{\mathbf{b}} \mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{\varepsilon}$ to show that the variance-covariance matrix of $\hat{\mathbf{b}}$ is equal to $\sigma^2 (\mathbf{X}'\mathbf{X})^{-1}$.
- v) Show that $\hat{\boldsymbol{\varepsilon}} = (\mathbf{I} \mathbf{H})\boldsymbol{\varepsilon}$, where $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ is the hat matrix, $\hat{\boldsymbol{\varepsilon}}$ is the vector of residuals and $\boldsymbol{\varepsilon}$ the error term. Use this result to find the expected value, and the variance-covariance matrix of $\hat{\boldsymbol{\varepsilon}}$.