Chapter 14

Multiplelinear regression: Theory

14.1 The Regression Model

nx1 nxkkxl nx1

y=Xb+e¢ where g~N(O,o-2I)

y: isthe vector of the response variable

X: the matrix of the k independent/explanatory variables (usually the first
column is a column of ones for the constant term).

b: isak x 1 vector of unknown parameters.
g: isavector of randomly distributed errors.
We assume that

E(¢)=0 Var(s)=c’|

where
1 0 0 --- O]
010 -0
=0 0 1 --- O
0 00 1
Note that
E(y)= Xb Var(y)=c2I
and that if

¢~N(0,6%1) = y~N(Xb,c?I)
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14.2 Estimation of the parameters
14.2.1 Least Square Estimation

Minimise W with respect to b where
W=¢'e=(y—Xb) (y-Xb)
Now W can be written as
W =(y —b'X")(y-Xb)
=yy-y' Xb-'X"y+b’ X' Xb
=y'y-2b'X"y+b" X" Xb
(since y'Xb=b'Xy ascaar). Differentiate with respect to b

W __5x'y+2X' Xb
ob

We set % to zero to give the Nor mal equations

X'Xb=X'y

If now X isof full rank = X'X isof full rank and (X'X)™ exist so

b=(X'X)"X'y

b isthe least squares estimator of b.

14.2.2 Maximum Likelihood Estimation

We have that
y~N (Xb,o21)

so the likelihood function will be
Lot Haro?) o]
20

<y—xb>'<y—Xb>}
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with log-likelihood

2 N 2 1 '
Z(b,o )— 2log(27r0 )»2

(y-Xb) (y-Xb)

(72

1
:—glog(Zﬂaz)— 202 w

Note: Maximising the log likelihood for b is equivaent of minimising the least squares
quantity W =(y—X b)’ (y—Xb). Soin thiscase MLE and LSE for b areidentical.

Differentiating the log likelihood with respect to b and o2 we have

o0 X'y—X'Xb

b o’
a__n (y—XB)’ (y—XB)
6o’ 257 20"

By setting the above equations equal to zero and solving them for b and o we have that
the maximum likelihood estimator (MLE) for b and o2 are

O
o

X

X

The quantity (y—XB) (y—XB) is called the Residual Sum of Squares (RSS) or Deviance
(in GLIM).

The MLE for o2, 62 is abiased estimate so we generally use

where k is the rank of the matrix X.
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14.3 Themean and variancefor the least square estimators

The mean

B(B)=E((x X ) x"y)
=(X'X)* X"E(y)
=(X' X)X "'Xb
=b

so | Elp)b | thatis b isunbiased for b.

Thevariance
Var(a):{(t;bxrs_b)'}
since E(B):b.
Now b—b=(X'X )*X'e Thus
Var(B):E{((x X) XE)(XX)* Xg)}
E|(X'X) " Xee X (XX )]
= (X'X ) X E(ge)X(X'X)™
= (X'X)*X'Var(s)X(X'X)*

= (X'X)* X' 2l X(X'X)™
=o?(X'X)*

Note that Var(e)= E[(g ~E())e - E(e)),} = E(ee’) since E(g)=0
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14.4 Fitted Values and Residuals

Definitions
Fitted values S/zXB
Residuals é=y-y=y— Xb

y isan estimate of E(y)=Xb themean of y and ¢ isan estimate of ¢ the error term.
TheHat Matrix

g=Xb=X(XX)"* XYy =Hy

H=X(X'X)*X"| iscaledthe Hat matrix.

H is symmetric and idempotent, so it is an orthogonal projection matrix. It projects any
n-dimensional vector into the subspace generated by X. Also

E=y-Xb=y-X(X'X)*X'y
=(1-H)y
(I - H) is symmetric and idempotent so is an orthogonal projection matrix. (I - H)

projects any n-dimensional vector into the orthogonal complement of X (see the figure
below).

m>

7
7

¥ . isthe orthogonal projection of y into the subspace generated by X. The hat matrix H
projectsy into the linear subspace generated by the columns of X, y=Hy .
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g . is the orthogona projection of y into the subspace generated by the orthogonal
complement of X, £=(1 —H)y.

145 Propertiesof theresidualsand thefitted values

14.5.1 The mean of the fitted values

E(¥)=Xb

roof:
T E(yrEMHyHEly XD

=X(X'X )" X'Xb

=Xb

14.5.2 The variance of the fitted values

var(y)=c’H

proof:
Var(§)=Var(Hy)=Hvar(y)H’

=HGc?IH'=6*HH’

=o?H
becauseH is symmetric and idempotent.

14.5.3 The expected value of theresiduals
E(£)=0

See exercise 14.1.

14.5.4 Thevariance of theresiduals

Var(e)=c2(1-H)
See exercise 14.1.
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14.5.5 The sum of theresiduals

The following result holds for the sum of the residuals provided that the matrix of the
explanatory variables X contains the constant term vector i.e. thefirst vector in X is 1.

>4 =81=0

i=1

proof: From the Normal equation we have

X'Xb=X"y
:>X’(y—X6):O
= X'¢=0 <soif X containsthel's.
1¢=0
14.5.6 Thefitted values and the residuals are uncorrelated

The above statement is equivalent to the statement that

Cov(£,9)=0

proof:
cou 98]y x5\ £l |

[(y HyXHy- Xb)}
E{(I—H)y(H(y—Xb))'}sinceszx
:[ “HYXb+¢)( (y_Xb))'}

[ }smce(l H)X=0
[(1-H
| —

)gg’H]
H)E(ze")H
| -H )Var(e)H
(I-H)o?1H
=o?(1-H)H

=0 since (I-H)H=0

E
(
(
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14.5.7 The covariance of theresiduals and the y-variable

Cov(é,y)=c*(1-H)

See exercise 14.1.

14.5.8 The covariance of the residuals and the estimator of the parameter b

Covlbé =0

proof:

Iy

covp,é)=E (b—b)(é—o)'}

| (X" X)* X y-b)(1-H )g)'}

€[ (X' X)X (Xb+2)-bJ(1 -H ) |

—E[(x'X) X e’ (1-H)]
=(X'X)*X'a21(1-H)

o 2(X XY X = X(X'X) X))
-0

14.6 The Residual Sum of Squares & other Sum of Squares
The residual sum of squares (RSS) or Deviance is defined as
RSS=¢%=(y-Xb) (y-Xb)
=yy—b'X'y-y'X b+b' X' Xb
=yy-20'X"y+0' (X X X'X)* Xy

=yy-b'X'y
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or

Total Sum of Squares = Regression sum of sguares + Residual Sum of Squares

m>

Note that
B'X'y=((X'x)‘1X'y) X'y=y'X(X'X)'X'y=yHy=¥§
SO vy =yV+e's
aso gé=y'y-bX'y=y'y-yHy =y/(I-H )y
So we have

yy=yHy+y(1-H)y
TSS =Regression SS + RSS
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14.7 The R-square
How good the model is depends on how close the fitted values § are to the actual values

y. The quantity

Rz Yy _yHy
yy Yy

could be used as a measure of goodness of fit but the problem is that X usually contains
the vector of ones. In order to diminate the contribution of the constant term we use the

quantity.
Rr2_YY-ny" _Regression SS (Adjusted)

Total SS (Adjusted)

yy-ny*
Note R? x 100 = % of variation explained by the fitted model.

Another measure which takes into consideration the number of x-variables used in the

model is
Regression SS (Adj)

R?-R?(Adjusted)=— <
TSS (Adj)
n-1
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14.8 Statistical Hypotheses

14.8.1 The expected value of RSS.

A

m>
m

is unbiased estimator for o2

n-k

14.8.2 Thedistribution and C.I. for b

Note that

b~N(b,o?(X'X)™)

o
|
o

A

andthat b and % are independent.
0

From section 2.4.1, we note that if Z~N (1, 0) and W~x2(v) and Z and W are
independent then

<=
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hence we have that

b -b
o2a): :
t= o a'n 2 —= bi_bi _bl _Abl "‘t(n—U)
2 a2 ) (624, ) se(b,)
n-u
where
£ &

Using the above result we can define 100 (1 - « )% confidence intervals (C.1.) for the

q' S.

Yy

n-k, —
2

Note: The variance covariance matrix for b is var(B):crz(X'X)’l. Since we do not

know o we use 62(X'X )™ as an estimate. This matrix in general does not have the

off-diagonal elements equal to zero so the b are correlated.
14.8.31 - test for the b’ s
We can use the quantity

b

to test whether the coefficient is equal to some specific value by or not. The most

common hypothesisisly = 0.1i.e.
Ho 1l = O theother b’s are unconstrained.

Hq : All the b’ s are unconstrained.

Reject Hy if

(for two tail test).
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Note
(i) This test is appropriate when we want to test the coefficient of a term
given that all the other term are included in the model.

(if) Thistestisnot appropriatetotest by = b, = 0 simultaneously.

14.8.4 TheF - test

This is relevant for testing whether a subset of the x-variables contributes significantly
in explaining the variation in the y-variable.

The model

kxt

nx1 nxkkxl nxk b } g
=Xb=[X, X, |
Y fom][bj L ones

Thetest

() H,:b, =0 and b, unconstrained (that isthe true model is

y=X,b, +¢)
H,:b, #0 b, and b, unconstrained (the true model is
y=Xy+e)

(i)  Fitthe Hy model and obtain its RSS= Deviance = D, and its degrees of

freedom df,,
(iii)  Fitthe Hy model and obtain its Deviance = D4 and its degrees of freedom
df,.
. . . DO - Dl 2 .
(iv) It can be shown that if Hy is true —~x*(df ,—df,) independently
(o}

D
of —~x°(df,) sotheratio
(3

Do_ Dl

df ,—df
F Z%"' F (dfo—dify), dfy

df,
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(If Hg is true then both D, — Dy and D; measure the random error, but if Hy is false
then we would expect D, — D; which measures the variation explained by X, to be

significantly bigger than D).
Thistest isaone-sided F test, that is, reject H, at 1000 % level if the observed

D,-D,
df ,—df
F:( OD l)>F(df0—dfl),df1,a
U

df,

Special cases

@ Testing whether jointly al the x-variables explain asignificant part of the
variationin y . (Notethat b, represent the constant term).

Ho:bp =bg=..=b,=0 b, : unconstrained. (that is the true model
is Vi =u+ Si).
Hi:by, by, .. by unconstrained. (y = Xb + € isthe true model).

The F test will be

Do_ Dl
(df ,—df,)
Dl

o,

F=

(b)  Testing whether only one of the x's explains a significant part of the
variation given the rest.

:b, =0 thetest of b unconstrained

o Mj

H
H,:b ,b,..Db all the b’s unconstrained.
Consider the case k=4 for illustration
Do B Dl
with F = —(df"[;ldfl) ~Fug, -

o,
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Note that t*»« =F, , ort’ =F, sothisisequivalenttoat -test.

Exercise 14.1

1

If Xisa(n x K) matrix of rank k.
i) show that X'X and XX’ are symmetric matrices.

i) show that H =X(X'X)™*X" and | -H are both symmetric and idempotent
matrices. (That is, both matrices are orthogonal projections)

Shown that b =b + (X'X)*X'e where b is the least sguares estimator and € is the
error term

Show that the expected value of the residuas is zero i.e. E(¢)=0 and that
Var(g)=c*(l —H).

Show that Cov(g,y) = o (I —H), and deduce that in general the residual estimates are
correlated with the observations.

Show that the residual sum of squaresis given by y’(I — H)y where H = X(X’X) X",
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Exercise 14.2

1) Let the design matrix X =[x, X, X, X,| where x, represents the constant term in

the linear model. Give the model equation corresponding to the null and alternative
hypothesis in the following test.

H,: b,=b,=b, =0: b, unconstrained.
H;: b, =0: b,,b, b, unconstrained

2) With the same design matrix as above give the model equation corresponding to the
null and alternative hypothesisin the following test.

H,: by, =2b,: b.,b, =0 unconstrained.
H;:: b,b,b;,b, unconstrained

3) Write down the GLIM commands in order to test the hypothesis in 1) and 2) and
indicate how to use the resulting Deviances to test the relevant hypotheses.

4) From the anaerobic Threshold output in section 10.2 test whether the quadratic model
X<2> is better than the X<6> model.
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Exercise 14.3

Assume the multiple linear regression model of the form

y=Xb+eg
wherey isan (n x 1) vector of observations, X isan (n x k) design matrix of rank (k <n), b is
a(k x 1) vector of parameters and ¢ isan (n x 1) vector of random variables (error term) such
that

&~ N(0,6°)
i) Show that b = (X'X)* X'y isthe Least Squares Estimator of b, and that b is an

unbiased estimator for b.

i) Show that the likelihood function for b and o2 is given by

L(b,o?) = (210%) ™" eXp{_ (y = Xb)' (y - Xb)}

262

i)  State briefly the reason why the Least Squares estimator and the Maximum Likelihood
estimator for b areidentical.

iv) Usetheresult b—b = (X'X)*X'e to show that the variance-covariance matrix of
bisequa to o?(X'X)™.
V) Show that & = (1 —H)e, where H = X(X'X) X’ isthe hat matrix, & isthe vector of

residuals and ¢ the error term. Use thisresult to find the expected value, and the
variance-covariance matrix of &.
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