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Chapter 13

The Simple Linear Regression Model:
Theory

13.1 The model

13.1.1 The data

observations response variable explanatory variable
1 y1 x1

2 y2 x2

 : :
n yn xn

Plotting the data.
.

Figure 13.1: Displaying the cable data considered by Cohen at al (1993). There are 79
observations of the number of hours y needed to splice x pairs of wires for a particular
type of telephone cable

If the plot is not linear try a simple transformation to linearity. i.e. log, square root,
square.
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13.1.2 Assumptions for the model

i) The assumption about the linearity of the model

Y xi i i     for i n1 2, ,.. .,

ii) The assumption about the error distribution for i

a) Full distributional assumption for error term i .

 i N~ ( , )0 2 and i and j for i j are independent.

Estimation in this case of the parameters , and 2 is achieved by
Maximum Likelihood.

b) Assumption about the first and second moments of the distribution for i .

E i( ) 0

Var i( )  2

Cov i j( , ) 0

Estimation in this case can be achieved by Least Squares.

iii) The assumption about the x-variable.

The x-variable is not a random variable and it is fixed at the observed values

13.2 Least squares estimation of parameters

Let S y xi
i

n

i( , ) ( )    



1

2

where the y i are observed values for the random variable Yi
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In order to find the least square estimators for  and we need to minimise S( , )
(for fixed y's and x’s) with respect to the parameters  and .

That is we find 


S and 


S and we set them equal to zero.
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The quantities   y xi i   are called the fitted values.

The quantities  i i iy y  are called the residuals.

13.3 Properties of the least square estimators

Note that both ̂ and are linear functions of the y’s . For example for we have


( )( )

( )

( )


 




















x x y y

x x

x x y

S
C y

i i
i

n

i
i

n

i i
i

n

xx
i i

i

n
1

2

1

1

1



R. A. Rigby and D. M. Stasinopoulos September 2005 124

where  S x xxx i  2
and C

x x
Si
i

xx


( )

.

(Prove the above statement for ̂).

13.3.1 Expected values for ̂and ̂

i) ̂E : is an unbiased estimator of .

Proof
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(1) since if    iiii zEcyEzcy

(2) since    0axx i (prove it)

(3) since      iiixx xxxxxS 2 (prove it)

ii) E   :  is an unbiased estimator of .

Proof:  
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ii xYn  ˆˆ



R. A. Rigby and D. M. Stasinopoulos September 2005 125

     



n

1i
i

n

1i
i xEyEEnanE  ˆˆˆ

  


 i

n

1i
i xx 

  ii xxn 
n

or



E

13.3.2 The Variances of ̂and ̂

i) 
  xx

n

i
i

Sxx

2

1

2

2
ˆVar


 







Proof.


 

i
xx

n

i
i

Y
S

xx
varˆVar

2

1

















 





2

Sxx
so

xxS
raV

2ˆ
)̂(̂ 

ii) 













xxS
x

n

2

2 1ˆvar 

Proof.

     ˆ,cov2ˆvarvarˆvar 2 yxxy 

But 0)̂,cov( y (see Exercise 13.2), so we have
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13.3.3 The Gauss-Markoff theorem

The least-squares estimators ̂ and have minimum variances among all the linear
unbiased estimators.

13.3.4 The Normality assumption of ̂and ̂

Note that if Y is a linear function of normally distributed variables U i i.e.

Y c U c U 1 1 2 2

Y will be Normally distributed i.e.

 Y N~ ,2 .

The L.S. estimators ̂ and are linear functions of Yi which is

 2,~  ii xNY 

so ̂ and will be Normally distributed as
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13.4 Hypothesis testing

13.4.1 Estimation of 2
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where ii xy  ˆˆˆ  are the fitted values  i i iy y  the residuals and n 2 are the
residual degrees of freedom (df).

13.4.2 t-test for ̂and ̂

Note that if
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Also and   2)̂( yy i are independent (not proven). So
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  is the standard error of .

We can test hypothesis for  using the statistics t.

For example to test

Ho Ho o: :    1

calculate



ˆ

ˆ

es
t o

Now if

2
,2 an

tt




reject the null hypothesis H0 and accept the alternative H1 , otherwise accept H0 .

Note that a is the significant level of the test and not the constant parameter of the
linear model.

To test hypothesis about  i.e.

Ho Ho o: :    1
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use the test statistic

t
se

o



 


.

13.4.3 C.I. for and 

A   %1001 a C. I. for is given by

 ˆˆ
2

,2
set a

n




and for  is given by

 ˆˆ
2

,2
set a

n




13.5 Prediction and Confidence Intervals

13.5.1 Confidence Intervals for oo bxa 

Note that the expected value for y0 the value of the y-variable when the explanatory
variable is at x0 is

  ooo xyE   :

The fitted value at the point x0 is defined as

 xxyxxyxy oo  000
ˆˆˆˆˆˆˆ 

with expected values

  ooo xyE  ˆ as  ˆE and  ˆE
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So the fitted value yo is unbiased for o . The variance for yo is
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so an estimate for the variance is given by.
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where  s y y ni
2 2 2    / .

Since y is a linear combination of Normally distributed variables, it is Normally
distributed; i.e.
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so a C.I for o is given by

 oano ysety ˆˆ
2

,2




where
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13.52 Prediction Interval for oo x/y , a future observation for 0y .

Let y xo o
/ denote a future observation of the y-variable at the x-variable value xo .

Then

  ooo xxyE  /0

Since oo xy  ˆˆˆ  is an unbiased estimator for o it can be used to predict the mean

of a future observation y xo o
/ .

In general in order to evaluate how good our predictor y is for predicting a further
observation ywe have to know the mean square error for prediction or PSE.

Definition:    2
ŷyEyPSE  

Theorem: Let ŷ be an estimate of and let *y be a new observation such that
)( *yE . Then   )̂()( yMSEyVaryPSE   where .)ˆ()̂( 2 yEyMSE

Proof:

   2ŷyEyPSE  

   2ˆ   yyE

      22 ˆˆ2    yyyyE
*y is independent of ŷ , as *y is a new observation. Hence

     0)ˆ()ˆ(    yEyEyyE as )( *yE

Hence

    22* ˆ)(    yEyEyPSE
=   yMSEyVar ˆ

=    2ˆ biasyVaryVar 
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In the simple linear regression example we have

     oooo yVaryVaryyE ˆˆ2
  since oŷ is unbiased
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A  %1100 a prediction interval for y xo0
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13.6 Maximum likelihood estimation of the parameters ,  and
2 in the simple linear regression.

The likelihood function is the probability of observing the sample seeing as a
function of the parameter rather than a function of the random variables.

For independent random variables x x xn1 2, . .. the likelihood will be

      ;...;; 21 nxfxfxfL 

In the simple regression model we have

Y xi i i    

where

 i

ind

N~ ( , )0 2  2,~  i

ind

i xbNy 
i.e.

E Y xi i  
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var Yi 2

and  ( , , )2 .

The likelihood for one observation is
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Note that  S y xi i
i

n

  

   2

1

is the function that we minimised in the least

square estimation approach.

In order to find the MLE's for , and 2 we have to maximise  2,, L with
respect to the parameters or equivalently maximise    22 ,,,,log  bL
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so we differentiate with respect to , and 2
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solving for 2ˆ,̂,̂  we have
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Note:
i) ̂ and  are also the least-square estimators. This is because the

maximisation of the log-likelihood (for fixed 2 ) is the equivalent of the

minimisation of the least-square quantity  S y xi i
i
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ii) We generally prefer to use an unbiased estimator of2 given by
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Exercise 13.1: Simple linear regression theory

a) Consider the simple linear regression model of the form

Y a bxi i i   for i n12, . .. ,
where
Yi is the response variable,
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x i is the independent variable,
a and b are parameters to be estimated.
i , for i n1 2, ... , are independent Normally distributed variables with mean
0 and variance 2 .

i) Find the likelihood function for a single observation and hence show
that the log-likelihood function for all n observations from the above
model is

l a b
n

y a bxi
i

n

i( , , ) log( ) ( ) 


2 2
2

1

2

2
2

1
2

   



ii) Give the Normal equations used to find the Maximum likelihood
estimators for the parameters a , b and 2 , and state the resulting
maximum likelihood estimators of a , b and 2 .

b)

i) State the distribution of b and
ei

i

n
2

1
2





where   e y a bxi i i   , i.e. the

residual for the ith observation and the numerator in the expression is

the Residual Sum of Squares (RSS). Note that the variance of b is
2

S xx

where S x xxx i
i

n

 

( )

1

2 .

ii) We know that b and ei
i

n
2

1
 are independent.

We also know that if z N~ ( , )0 1 and w ~ 
2 , independently,

then
z

w
t

( / )
~

 .

Use this to construct a 100(1-)% confidence interval for b.
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Exercise 13.2: Simple linear regression theory

For a simple linear regression model, prove that   0̂,ycov

Note: an outlined method is as follows:
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    0  ji yyE (Why?)

Hence deduce   0̂,ycov .
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Exercise 13.3: Simple linear regression theory

For the regression iii bxay  , ),(N~i 10 show that the least squares estimate
of b is given by
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A test of b= 0 can be based upon
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Show that, under 00 b:H , we have E(T) = 0.

Also show that     22 xxTV i .

Deduce that
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Practical 13: Simple Linear Regression

The data set in the file SHARED (K):\SCTMS\SOM\MA2010\REGRESSION\FOOT
GESTATION TIME.SAV comprises measurements of foetal foot length in mm (Y)
and gestational age in weeks (X) for 450 foetuses.

1. Produce a scatter plot of Y against X using the procedure
> Graphs > Scatter > Simple Scatter > Define | Y Axis ‘foot’ | X Axis ‘gest’
> OK.
Comment on this plot.

2. Fit a simple linear regression line using
> Analyse > Regression > Linear | Dependent: ‘foot’ | Independent(s): ‘gest’ to
declare your y and x variable and fit the model.
You can use the PLOTS option to get the residual plots.
> Plots | Y: ZRESID | X: ZPRED |Histogram |Normal probability plot
> Continue > OK

i) State the model fitted and its parameter estimates. Interpret these
estimates.

ii) Test whether there is a linear relationship between foot length and
gestational age.

iii) State the assumptions necessary for your model to be valid.
iv) Do the residual plots show that any of the assumptions does not hold?


