Chapter 13

The Simple Linear Regression Model: Theory

13.1 The model

13.1.1 The data

observations	response variable	explanatory variable
1	${\mathcal Y}_1$	x_1
2	${\mathcal{Y}}_2$	<i>x</i> ₂
:	:	:
n	${\mathcal Y}_n$	\boldsymbol{X}_n

Plotting the data.

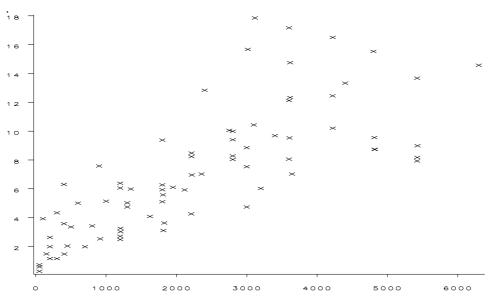


Figure 13.1: Displaying the cable data considered by Cohen at al (1993). There are 79 observations of the number of hours y needed to splice x pairs of wires for a particular type of telephone cable

If the plot is not linear try a simple transformation to linearity. i.e. log, square root, square.

13.1.2 Assumptions for the model

i) The assumption about the linearity of the model

 $Y_i = \alpha + \beta x_i + \varepsilon_i$ for i = 1, 2, ..., n

ii) The assumption about the error distribution for ε_i

a) Full distributional assumption for error term ε_i .

 $\varepsilon_i \sim N(0, \sigma^2)$ and ε_i and ε_j for $i \neq j$ are independent.

Estimation in this case of the parameters α , β and σ^2 is achieved by Maximum Likelihood.

b) Assumption about the first and second moments of the distribution for ε_i .

$$E(\varepsilon_{i}) = 0$$
$$Var(\varepsilon_{i}) = \sigma^{2}$$
$$Cov(\varepsilon_{i}, \varepsilon_{i}) = 0$$

Estimation in this case can be achieved by Least Squares.

iii) The assumption about the x-variable.

The x-variable is not a random variable and it is fixed at the observed values

13.2 Least squares estimation of parameters

Let $S(\alpha,\beta) = \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$

where the y_i are observed values for the random variable Y_i

In order to find the least square estimators for α and β we need to minimise $S(\alpha, \beta)$ (for fixed y's and x's) with respect to the parameters α and β .

That is we find
$$\frac{\partial S}{\partial \alpha}$$
 and $\frac{\partial S}{\partial \beta}$ and we set them equal to zero.

$$\frac{\partial S}{\partial \alpha} = \sum_{i=1}^{n} -2(y_i - \hat{\alpha} - \hat{\beta} x_i) = -2(\sum_{i=1}^{n} y_i - n\hat{\alpha} - \hat{\beta} \sum_{i=1}^{n} x_i) = 0$$

$$\frac{\partial S}{\partial \beta} = \sum_{i=1}^{n} -2x_i(y_i - \hat{\alpha} - \hat{\beta} x_i) = -2(\sum_{i=1}^{n} x_i y_i - \hat{\alpha} \sum_{i=1}^{n} x_i - \hat{\beta} \sum_{i=1}^{n} x_i^2) = 0$$

with solutions

$$\hat{\alpha} = \bar{y} - \hat{\beta} \, \bar{x}$$

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y}}{\sum_{i=1}^{n} x_i^2 - n \bar{x}^2} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

The quantities $\hat{y}_i = \hat{\alpha} + \hat{\beta} x_i$ are called the **fitted values.**

The quantities $\hat{\varepsilon}_i = y_i - \hat{y}_i$ are called the **residuals.**

13.3 Properties of the least square estimators

Note that both $\hat{\alpha}$ and $\hat{\beta}$ are linear functions of the y's. For example for $\hat{\beta}$ we have

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})y_i}{S_{xx}} = \sum_{i=1}^{n} C_i y_i$$

where $S_{xx} = \sum (x_i - \overline{x})^2$ and $C_i = \frac{(x_i - \overline{x})}{S_{xx}}$.

(Prove the above statement for $\hat{\alpha}$).

13.3.1 Expected values for $\hat{\alpha}$ and $\hat{\beta}$

i) $E(\hat{\beta}) = \beta$: $\hat{\beta}$ is an unbiased estimator of β .

Proof

$$E\left(\hat{\beta}\right) = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x}) E(Y_{i})}{S_{xx}} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x}) (a + \beta x_{i})}{S_{xx}}$$

$$= \frac{\beta \sum (x_{i} - \bar{x}) x_{i}}{S_{xx}}$$

$$= \beta^{(3)}$$
(1) since if $y = \sum c_{i} z_{i} \Longrightarrow E(y) = \sum c_{i} E(z_{i})$
(2) since $\sum (x_{i} - \bar{x})a = 0$ (prove it)
(3) since $S_{xx} = \sum (x_{i} - \bar{x})^{2} = \sum (x_{i} - \bar{x})x_{i}$ (prove it)

ii) $E(\hat{\alpha}) = \alpha : \hat{\alpha}$ is an unbiased estimator of α .

Proof:
$$n\hat{\alpha} = \sum_{i=1}^{n} Y_i - \hat{\beta} \sum_{i=1}^{n} x_i$$

$$E(n\hat{a}) = n E(\hat{\alpha}) = \sum_{i=1}^{n} E(y_i) - E(\hat{\beta}) \sum_{i=1}^{n} x_i$$
$$= \sum_{i=1}^{n} (\alpha + \beta x_i) - \beta \sum x_i$$
$$= n\alpha + \beta \sum x_i - \beta \sum x_i$$
$$= n\alpha$$

or

 $E(\dot{\alpha}) = \alpha$

13.3.2 The Variances of $\hat{\alpha}$ and $\hat{\beta}$

i)
$$\operatorname{Var}(\hat{\beta}) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \overline{x})^2} = \frac{\sigma^2}{S_{xx}}$$

Proof.

$$\operatorname{Var}(\hat{\beta}) = \left\{ \frac{\sum_{i=1}^{n} (x_i - \overline{x})}{S_{xx}} \right\}^2 \operatorname{Var}(Y_i)$$
$$= \frac{\sigma^2}{S_{xx}}$$

so

$$V\hat{a}r(\hat{\beta}) = \frac{\hat{\sigma}^2}{S_{xx}}$$

ii)
$$\operatorname{var}(\hat{\alpha}) = \sigma^2 \left[\frac{1}{n} + \frac{x}{S_{xx}} \right]$$

Proof.

$$\operatorname{var}(\hat{\alpha}) = \operatorname{var}(\bar{y}) + \bar{x}^2 \operatorname{var}(\hat{\beta}) - 2\bar{x} \operatorname{cov}(\bar{y}, \hat{\beta})$$

But $\operatorname{cov}(\bar{y}, \hat{\beta}) = 0$ (see Exercise 13.2), so we have

$$\operatorname{var}(\hat{\alpha}) = \frac{\sigma^2}{n} + \overline{x}^2 \frac{\sigma^2}{S_{xx}}$$
$$= \sigma^2 \left[\frac{1}{n} + \frac{\overline{x}^2}{S_{xx}} \right]$$

hence

$$V\hat{a}r(\hat{\alpha}) = \hat{\sigma}^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right]$$

13.3.3 The Gauss-Markoff theorem

The least-squares estimators $\hat{\alpha}$ and $\hat{\beta}$ have minimum variances among all the linear unbiased estimators.

13.3.4 The Normality assumption of $\hat{\alpha}$ and $\hat{\beta}$

Note that if Y is a linear function of normally distributed variables U_i i.e.

$$Y = c_1 U_1 + c_2 U_2$$

Y will be Normally distributed i.e.

$$Y \sim N(\mu, \sigma^2).$$

The L.S. estimators $\hat{\alpha}$ and $\hat{\beta}$ are linear functions of Y_i which is

$$Y_i \sim N\left(\alpha + \beta x_i, \sigma^2\right)$$

so $\hat{\alpha}$ and $\hat{\beta}$ will be Normally distributed as

$$\hat{\alpha} \sim N\left(\alpha, \sigma^{2}\left[\frac{1}{n} + \frac{\bar{x}^{2}}{S_{xx}}\right]\right)$$
$$\hat{\beta} \sim N\left(\beta, \frac{\sigma^{2}}{S_{xx}}\right)$$

13.4 Hypothesis testing

13.4.1 Estimation of σ^2

$$\hat{\sigma}^{2} = s^{2} = \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{n-2} = \frac{\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2}}{n-2}$$

where $\hat{y}_i = \hat{\alpha} + \hat{\beta} x_i$ are the fitted values $\hat{\varepsilon}_i = y_i - \hat{y}_i$ the residuals and n - 2 are the residual degrees of freedom (df).

13.4.2 *t-test for* $\hat{\beta}$ and $\hat{\alpha}$

Note that if
$$\begin{array}{c} z \sim N(0,1) \\ \omega \sim \chi^2(\eta) \end{array}$$
 then $t = \frac{z}{\sqrt{\frac{\omega}{\eta}}} \sim t(\eta)$

and z and ω are independent we have that

$$\frac{\hat{\beta} - \beta}{\frac{\sigma}{\sqrt{S_{xx}}}} \sim N(0,1)$$

and that

$$\frac{\sum (y_i - \hat{y}_i)^2}{\sigma^2} \sim \chi^2 (n-2)$$

Also $\hat{\beta}$ and $\sum (y_i - \hat{y})^2$ are independent (not proven). So

$$t = \frac{\frac{\hat{\beta} - \beta}{\sqrt{S_{xx}}}}{\sqrt{\frac{\sum(y_i - \hat{y})^2}{n-2}}} = \frac{\hat{\beta} - \beta}{\frac{\hat{\sigma}}{\sqrt{S_{xx}}}} = \frac{\hat{\beta} - \beta}{se(\hat{\beta})} \sim t(n-2)$$

where $se(\hat{\beta}) = \frac{s}{\sqrt{S_{xx}}} = \frac{\hat{\sigma}}{\sqrt{S_{xx}}}$ is the standard error of $\hat{\beta}$.

We can test hypothesis for β using the statistics t.

For example to test

$$Ho: \beta = \beta_o \qquad \qquad H_1: \beta \neq \beta_o$$

calculate

$$t = \frac{\hat{\beta} - \beta_o}{se(\hat{\beta})}$$

Now if

$$\left|t\right| > t_{n-2,\frac{a}{2}}$$

reject the null hypothesis H_0 and accept the alternative H_1 , otherwise accept H_0 .

Note that *a* is the *significant level* of the test and not the constant parameter α of the linear model.

To test hypothesis about α i.e.

$$Ho: \alpha = \alpha_o \qquad \qquad H_1: \alpha \neq \alpha_o$$

use the test statistic

$$t = \frac{\hat{\alpha} - \alpha_o}{s e(\hat{\alpha})}.$$

13.4.3 C.I. for α and β

A (1-a)100% C. I. for β is given by

$$\hat{\beta} \pm t_{n-2,\frac{a}{2}} \times se(\hat{\beta})$$

and for α is given by

$$\hat{\alpha} \pm t_{n-2,\frac{a}{2}} \times se(\hat{\alpha})$$

13.5 Prediction and Confidence Intervals

13.5.1 Confidence Intervals for $\mu_o = a + bx_o$

Note that the expected value for y_0 the value of the y-variable when the explanatory variable is at x_0 is

$$E(y_o) = \mu_o = \alpha + \beta x_o$$
 :

The fitted value at the point x_0 is defined as

$$\hat{y}_0 = \hat{\mu}_o = \hat{\alpha} + \hat{\beta} x_o = \overline{y} - \hat{\beta}\overline{x} + \hat{\beta}x_0 = \overline{y} + \hat{\beta}(x_0 - \overline{x})$$

with expected values

$$E(\hat{y}_o) = \alpha + \beta x_o = \mu_o \text{ as } E(\hat{\alpha}) = \alpha \text{ and } E(\hat{\beta}) = \beta$$

So the fitted value \hat{y}_o is unbiased for μ_o . The variance for \hat{y}_o is

$$\operatorname{var}(\hat{y}_{o}) = \operatorname{var}(\overline{y}) + \operatorname{var}(\hat{\beta})(x_{0} - \overline{x})^{2} + 2(x_{0} - \overline{x})\operatorname{cov}(\overline{y}, \hat{\beta})$$
$$= \frac{\sigma^{2}}{n} + \frac{\sigma^{2}}{S_{xx}}(x_{0} - \overline{x})^{2} = \sigma^{2}\left[\frac{1}{n} + \frac{(x_{o} - \overline{x})^{2}}{\sum(x_{i} - \overline{x})^{2}}\right]$$

so an estimate for the variance is given by.

$$\hat{\operatorname{var}}(\hat{y}_o) = s^2 \left[\frac{1}{n} + \frac{(x_o - \overline{x})^2}{\sum (x_i - \overline{x})^2} \right]$$

where $s^{2} = \sum (y_{i} - \hat{y})^{2} / n - 2.$

Since \hat{y} is a linear combination of Normally distributed variables, it is Normally distributed; i.e.

$$\hat{y}_{o} \sim N\left(\mu_{o}, \sigma^{2}\left[\frac{1}{n} + \frac{(x_{o} - \mu)^{2}}{\sum(x_{i} - \bar{x})^{2}}\right]\right)$$
$$\Rightarrow z_{o} = \frac{\hat{y}_{o} - \mu_{o}}{\sqrt{\sigma^{2}\left[\frac{1}{n} + \frac{(x_{o} - \bar{x})^{2}}{\sum(x_{i} - \bar{x})^{2}}\right]}} \sim N(0,1)$$

or

$$t = \frac{\hat{y}_{o} - \mu_{o}}{S^{2} \left[\frac{1}{n} + \frac{(x_{o} - \bar{x})^{2}}{\sum (x_{i} - \bar{x})^{2}} \right]} \sim t_{n-2}$$

so a C.I for μ_o is given by

$$\hat{y}_o \pm t_{n-2,\frac{a}{2}} \times se(\hat{y}_o)$$

where

$$se(\hat{y}_o) = S\left[\frac{1}{n} + \frac{(x_o - \bar{x})^2}{\sum (x_i - \bar{x})^2}\right]^{\frac{1}{2}}$$

13.52 Prediction Interval for y_o^*/x_o , a future observation for y_o .

Let y_o^*/x_o denote a future observation of the y-variable at the x-variable value x_o . Then

$$E\left(y_{0}^{*}/x_{o}\right) = \alpha + \beta x_{o} = \mu_{o}$$

Since $\hat{y}_o = \hat{\alpha} + \hat{\beta} x_o$ is an unbiased estimator for μ_o it can be used to predict the mean of a future observation y_o^* / x_o .

In general in order to evaluate how good our predictor \hat{y} is for predicting a further observation y^* we have to know the mean square error for prediction or PSE.

Definition: $PSE(y^*) = E(y^* - \hat{y})^2$

Theorem: Let \hat{y} be an estimate of μ and let y^* be a new observation such that $E(y^*) = \mu$. Then $PSE(y^*) = Var(y^*) + MSE(\hat{y})$ where $MSE(\hat{y}) = E(\hat{y} - \mu)^2$.

Proof:

$$PSE(y^{*}) = E(y^{*} - \hat{y})^{2}$$

= $E[(y^{*} - \mu) - (\hat{y} - \mu)]^{2}$
= $E[(y^{*} - \mu)^{2} - 2(y^{*} - \mu)(\hat{y} - \mu) + (\hat{y} - \mu)^{2}]$
is independent of \hat{y} , as y^{*} is a new observation. Hence
 $E[(y^{*} - \mu)(\hat{y} - \mu)] = E(y^{*} - \mu)E(\hat{y} - \mu) = 0$ as $E(y^{*}) = \mu$

Hence

*y**

$$PSE(y^*) = E\left[(y^* - \mu)^2 + E(\hat{y} - \mu)^2\right]$$
$$= Var(y^*) + MSE(\hat{y})$$
$$= Var(y^*) + Var(\hat{y}) + (bias)^2$$

In the simple linear regression example we have

$$E(y_o^* - \hat{y}_o)^2 = Var(y_o^*) + Var(\hat{y}_o) \quad \text{since} \quad \hat{y}_o \text{ is unbiased}$$
$$= \sigma^2 + \sigma^2 \left[\frac{1}{n} + \frac{(x_o - \overline{x})^2}{\sum (x_i - \overline{x})^2} \right]$$
$$= \sigma^2 \left[1 + \frac{1}{n} + \frac{(x_o - \overline{x})^2}{\sum (x_i - \overline{x})^2} \right]$$

A 100(1-*a*)% prediction interval for y_0^* / x_0 is given by

$$\hat{y}_{o} \pm t_{n-2,\frac{a}{2}} s \left[1 + \frac{1}{n} + \frac{(x_{o} - \overline{x})^{2}}{\sum (x_{1} - \overline{x})^{2}} \right]^{\frac{1}{2}}$$

13.6 Maximum likelihood estimation of the parameters α , β and σ^2 in the simple linear regression.

The **likelihood function** is the probability of observing the sample seeing as a function of the parameter rather than a function of the random variables.

For independent random variables $x_1, x_2 \dots x_n$ the likelihood will be

$$L(\theta) = f(x_1; \theta) f(x_2; \theta) \dots f(x_n; \theta)$$

In the simple regression model we have

$$Y_i = \alpha + \beta x_i + \varepsilon_i$$

where

$$\varepsilon_i \stackrel{ind}{\sim} N(0,\sigma^2) \implies y_i \stackrel{ind}{\sim} N(\alpha + b x_i,\sigma^2)$$

i.e.

$$E(Y_i) = \alpha + \beta x_i$$

$$\operatorname{var}(Y_i) = \sigma^2$$

and $\theta = (\alpha, \beta, \sigma^2)$.

The likelihood for one observation is

$$L(\alpha,b,\sigma^{2};y_{i}) = \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left\{-\frac{1}{2\sigma^{2}}(y_{i}-\alpha-bx_{i})^{2}\right\}$$

for n independent observations the likelihood will be

$$L(\alpha, b, \sigma^{2} / y_{1} ... y_{n}) = \prod_{i=1}^{n} \left(\frac{1}{\sqrt{2\pi\sigma^{2}}} \right) \exp\left\{ -\frac{1}{2\sigma^{2}} (y_{i} - \alpha - bx_{i})^{2} \right\}$$
$$= \left(\frac{1}{\sqrt{2\pi\sigma^{2}}} \right)^{n} \exp\left\{ -\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y_{i} - \alpha - bx_{i})^{2} \right\}.$$

Note that $S = \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$ is the function that we minimised in the least square estimation approach.

In order to find the MLE's for α , β and σ^2 we have to maximise $L(\alpha, \beta, \sigma^2)$ with respect to the parameters or equivalently maximise $\log L(\alpha, \beta, \sigma^2) = \ell(\alpha, \beta, \sigma^2)$ Now

$$\ell(\alpha,\beta,\sigma^2) = -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\pi\sigma^2}\sum_{i=1}^{n}(y_i - \alpha - \beta x_i)^2$$

so we differentiate with respect to α , β and σ^2

$$\frac{\partial \ell}{\partial \alpha} = \frac{1}{\sigma^2} \sum_{i=1}^{n} \left(y_i - \hat{\alpha} - \hat{\beta} x_i \right) = 0$$
$$\frac{\partial \ell}{\partial \beta} = \frac{1}{\sigma^2} \sum_{i=1}^{n} \left(x_i \left(y_i - \hat{\alpha} - \hat{\beta} x_i \right) \right) = 0$$

$$\frac{\partial \ell}{\partial \sigma^2} = \frac{n}{2\hat{\sigma}^2} + \frac{1}{2\hat{\sigma}^4} \sum_{i=1}^n \left(y_i - \hat{\alpha} - \hat{\beta} x_i \right)^2 = 0$$

solving for $\hat{\alpha}, \hat{\beta}, \hat{\sigma}^2$ we have

$$\hat{\alpha} = \overline{y} - \hat{\beta} \overline{x}$$
$$\hat{\beta} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$
$$\hat{\sigma}^2 = \frac{\sum (y_i - \hat{\alpha} - \hat{\beta} x_i)^2}{n}$$

Note:

i) $\hat{\alpha}$ and $\hat{\beta}$ are also the least-square estimators. This is because the maximisation of the log-likelihood (for fixed σ^2) is the equivalent of the minimisation of the least-square quantity $S = \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$.

ii) We generally prefer to use an unbiased estimator of
$$\sigma^2$$
 given by

$$s^{2} = \frac{\sum_{i=1}^{n} (y_{i} - \hat{\alpha} - \hat{\beta}x_{i})^{2}}{n-2} = \frac{D}{df} \quad \leftarrow \text{ deviance}$$

 \uparrow the residual degrees of freedom

Exercise 13.1: Simple linear regression theory

a) Consider the simple linear regression model of the form

$$Y_i = a + bx_i + \varepsilon_i$$
 for $i = 1, 2, ..., n$

where

 Y_i is the response variable,

 x_i is the independent variable,

a and b are parameters to be estimated.

 ε_i , for i = 1, 2..., n are independent Normally distributed variables with mean 0 and variance σ^2 .

i) Find the likelihood function for a single observation and hence show that the log-likelihood function for all n observations from the above model is

$$l(a,b,\sigma^{2}) = -\frac{n}{2}\log(2\pi\sigma^{2}) - \frac{1}{2\sigma^{2}}\sum_{i=1}^{n}(y_{i} - a - bx_{i})^{2}$$

ii) Give the Normal equations used to find the Maximum likelihood estimators for the parameters a, b and σ^2 , and state the resulting maximum likelihood estimators of a, b and σ^2 .

b)

i) State the distribution of \hat{b} and $\frac{\sum_{i=1}^{n} \hat{e}_{i}^{2}}{\sigma^{2}}$ where $\hat{e}_{i} = y_{i} - \hat{a} - \hat{b}x_{i}$, i.e. the residual for the *i*th observation and the numerator in the expression is the Residual Sum of Squares (RSS). Note that the variance of \hat{b} is $\frac{\sigma^{2}}{S_{xx}}$

where
$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2$$
.

ii) We know that \hat{b} and $\sum_{i=1}^{n} \hat{e}_{i}^{2}$ are independent. We also know that if $z \sim N(0,1)$ and $w \sim \chi_{v}^{2}$, independently, then $\frac{z}{\sqrt{(w/v)}} \sim t_{v}$.

Use this to construct a $100(1-\alpha)\%$ confidence interval for b.

Exercise 13.2: Simple linear regression theory

For a simple linear regression model, prove that $cov(\bar{y}, \hat{\beta}) = 0$ Note: an outlined method is as follows:

$$cov(\overline{y}, \hat{\beta}) = E\left[(\overline{y} - \mu)(\hat{\beta} - \beta)\right]$$

$$= E\left[\left(\overline{y} - \mu\right)\left(\frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} - \beta\right)\right]$$

$$= E\left[\left(\overline{y} - \mu\right)\left(\frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} - \beta\right)\right] - E\left[(\overline{y} - \mu)\beta\right]$$

$$= E\left[\left(\overline{y} - \mu\right)\left(\frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} - \beta\right)\right] - 0 \quad \text{(Why?)}$$

Now

$$E[(y_{i} - \overline{y})(\overline{y} - \mu)] = E[((n-1)y_{i} - y_{1} - \dots - y_{i-1} - y_{i+1} - \dots - y_{n})(y_{1} + \dots + y_{n} - n\mu)/n^{2}]$$

= $E[((n-1)\{y_{i} - \mu\} - \{y_{i} - \mu\} - \dots)(\{y_{1} - \mu\} + \dots + \{y_{1} - \mu\})/n^{2}]$
= $(n-1)\sigma^{2} - \sigma^{2} - \sigma^{2} \dots - \sigma^{2}$
= 0

as

$$E\{(y_i - \mu)(y_j - \mu)\} = 0$$
 (Why?)

Hence deduce $cov(\bar{y}, \hat{\beta}) = 0$.

Exercise 13.3: Simple linear regression theory

For the regression $y_i = a + bx_i + \varepsilon_i$, $\varepsilon_i \sim N(0,1)$ show that the least squares estimate of *b* is given by

$$\hat{b} = \frac{S_{xy} - n\overline{x}\overline{y}}{S_{xx} - n\overline{x}^2}.$$

A test of b=0 can be based upon

$$T = S_{xy} - n\overline{yx} = \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} y_i \overline{x}$$
$$= \sum_{i=1}^{n} y_i (x_i - \overline{x})$$

Show that, under $H_0: b = 0$, we have E(T) = 0.

Also show that $V(T) = \sigma^2 \sum (x_i - \overline{x})^2$.

Deduce that
$$\frac{S_{xy} - n\overline{yx}}{\sigma\sqrt{\sum (x_i - \overline{x})^2}} \sim N(0,1)$$

And hence that
$$\frac{S_{xy} - n\overline{yx}}{s\sqrt{\sum (x_i - \overline{x})^2}} \sim t_{n-1}$$

Practical 13: Simple Linear Regression

The data set in the file SHARED (K): $\SOM\MA2010\REGRESSION\FOOT GESTATION TIME.SAV comprises measurements of foetal foot length in mm ($ *Y*) and gestational age in weeks (*X*) for 450 foetuses.

- Produce a scatter plot of *Y* against *X* using the procedure
 > Graphs > Scatter > Simple Scatter > Define | Y Axis 'foot' | X Axis 'gest'
 > OK.
 Comment on this plot.
- 2. Fit a simple linear regression line using
 > Analyse > Regression > Linear | Dependent: 'foot' | Independent(s): 'gest' to declare your y and x variable and fit the model.
 You can use the PLOTS option to get the residual plots.
 > Plots | Y: ZRESID | X: ZPRED | ✓ Histogram | ✓ Normal probability plot
 > Continue > OK
 - i) State the model fitted and its parameter estimates. Interpret these estimates.
 - ii) Test whether there is a linear relationship between foot length and gestational age.
 - iii) State the assumptions necessary for your model to be valid.
 - iv) Do the residual plots show that any of the assumptions does not hold?