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Chapter 12

Maximum Likelihood Estimation

12.1 Point estimators and estimates

Let  X X X n1 2, , .. ., be a random sample from a distribution f X X X n( , , .. ., ; )1 2 
depending on a parameter . We wish to 'guess' the value of using the experimental
(observed) values  x x xn1 2, , .. . , of the sample  X X X n1 2, ,. .. , . In order to do that

we define a statistic   , , .. .,t X X X n1 2 such that its distribution is 'massed' around

the true value . Then the observed value of , i.e.   , , ... ,t x x xn1 2 will generally
be close to .

Note that  X X Xn1 2, , ... , is a vector of n random variables while  x x xn1 2, , ... , is

a particular sample from this random vector. The statistic   , , .. .,t X X X n1 2 is an
estimator of unknown parameter . Given the observed sample  x x xn1 2, ,... , ,

  , ,... ,t x x xn1 2 takes a specific value. That is   , ,... ,t x x xn1 2 is an observed

value of the statistic   , , .. . ,t X X X n1 2 ; it is called a point estimate of .

Example:

Let  X X X n1 2, ,.. ., be a random sample from a  N , 2 distribution. Suppose we

wish to estimate . What estimators could we use? Try the estimator X . The

distribution of X is N
n




,
2






. Thus the middle of the sampling distribution is

 and the sampling distribution has a variance which gets smaller as n gets bigger.
Hence we expect X to be close to the true population mean , especially as n gets
bigger.

Suppose a random sample  X X X1 2 3, , of size n=3 is taken i.e.

   x x x1 2 3 4 2 37 5 0, , . , . , . . Then X is an estimator of and the observed sample
mean x = 4.3 is a point estimate of .

We have estimators (which are r.v.’s) and estimates which are observed values
(numbers) of the estimators. The estimators are r.v.’s so they have sampling
distribution, expectations variance etc. However, in practice we often talk about the
expectation and variance, etc, of the estimates (when we understand that we are really
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thinking about the underlying r.v.’s). You may note that this is what we did in chapter
1, where we used small y’s for r.v.’s.

12.2 Desirable properties of estimators

12.2.1 Unbiasedness

Definition 1: An estimator of is an unbiased estimator if ̂E .

Definition 2: The bias of an estimator of is given by    ˆˆbias E .

12.2.2 Efficiency

Definition 3: The mean square error (m.s.e.) of an estimator of is  
 

2ˆE

i.e. the m.s.e. is the average squared distance from to the true parameter .

Theorem 1:    m.s. e. bias     V
2

Proof:
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Definition 4: 1 is a more efficient estimator than 2 for parameter  if
 21

ˆm.s.e.ˆm.s.e.   .

Hence if we have to choose one of several estimators, we would generally like to
choose the one with the smallest m.s.e. If we consider only unbiased estimators then
we would make efficiency comparisons in terms of their variances since, for an
unbiased estimator ,  m.s.e.   V .

There are several methods for choosing an estimator. In the next section we will
describe the most important one called the method of maximum likelihood.
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12.3 Maximum Likelihood Estimation

Definition 5: Let be the unknown parameter of the distribution of interest f xi( ; ) .
The likelihood function,  L x x xn/ , ,. .. ,1 2 of the realisation x x xn1 2, , .. . , of n
random variables X X X n1 2, , .. ., is defined to be the joint density of the n random
variables, considered as a function of the parameter , i.e.

   
 L x x x

f x x x
P X x X x Xn

X X X n

n

n



/ , , ... ,

, , ... , ;
. .. ;

, ,...,
1 2

1 2

1 1 2 2

1 2
    





continuous
discrete

Note that in the above definition the x’s are treated as fixed while the variable is the
parameter .

If we have an independent random sample  X X Xn1 2, , ... , , (that is the underlying
X’s are coming from the same distribution f X j( ; )), then the Likelihood function of
an observed sample x x xn1 2, , .. . , has the form

 
 

 
L x x x

f x

P X x
n

X i
i

n

i
i

n



/ , ,. .. ,

;

;
1 2

1

1





















continuous

discrete

Definition 6: The maximum likelihood estimator (M.L.E.) of the parameter is
the value of which maximises  L L x x xn / , ,. .. ,1 2 .

Note that in general the ML.E.  is a function of the sample  X X Xn1 2, ,. .. , i.e.
 ( , ,. .. , )  X X Xn1 2 . That is  is a statistic having its own distribution. Given an
observed sample  x x xn1 2, , .. ., the quantity   ( , , ... , )x x xn1 2 is called the
maximum likelihood estimate for .

In order to find the M.L.E. for  we would have to differentiate the likelihood
function with respect to and set it to zero. Usually it is easier to work with the log
of the Likelihood function since both functions have the same maximum, (see below).

Definition 7: The log-likelihood function is defined as  l L x x xn( ) log / , ,. .. ,  1 2

Now d L
d

dl
d L

dL
d

log
  

 1

   dL
d

dl
d 

0 0 .

That is the likelihood and the log-likelihood functions have the some maximum.
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It is usually easier to set dl
d

0 .

Note that any quantity in the distribution f x i( ; ) which does not involve the
parameter  is not needed when we try to find the M.L.E for . This leads to an
equivalent definition of the Likelihood functions.

Definition 5a: The likelihood function is proportional to the p.d.f. of the sample

In the case of independent random sample we have

 
 

 
L x x x

f x

P X x
n

X i
i

n

i
i

n



/ , ,. .. ,

;

;
1 2

1

1





















continuous

discrete

Discrete Example

Suppose we toss a coin 10 times and get exactly 3 heads and we wish to estimate p
the probability of getting a head on each toss of the coin. Let X = number of heads
from 10 tosses, Then X B p~ ( , )10 and

P X C p p p( ) ( ) ,    3 1 0 110
3

3 7

The Likelihood function for p is

L p p p( ) ( ) 3 71

and the log likelihood is

l p L p p p( ) log ( ) log log( )   3 7 1 + Constant not involving p

Both functions are shown in figures 12.1 and 12.2 respectively.

To maximise L P X ( )3 with respect to p, set dL
dp

0 .

dl
dp

pM L E  0 3
10

 . . . .

We have plotted the probability of our data ( L P X ( )3 ) against possible values of
the parameter p and found the value  . . .pM L E of p which maximises L . i.e.  . . .pM L E is
the value of p which makes the data we actually obtained (i.e. X 3) most likely.
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Figure 12.1: Showing the Likelihood function for the discrete binomial example.

Figure 12.2: Showing the log-likelihood for the discrete binomial example.



R. A. Rigby and D. M. Stasinopoulos September 2005 107

Generalisation of discrete example

Suppose now n people each toss the same coin 10 times and each count the number of
heads x x xn1 2, ,. .. , , then the probability of getting this data is

 P X x X x Xn1 1 2 2    ...   

P X xi i
i

n

1

and since  X B pi ~ ,10 for

i 1 2 10, ,... , and all Xi 's are independent we have

    L p C p p p px
i

n
x x x x

i

i i i i( )    


   10

1

10 10
1 1

The log likelihood is given by

l p x p x pi i( ) log ( ) log( )    10 1 + Constant

To find the M.L.E

 dl
dp

x

p

x

p
i i 




 10

1

 dl
dp

x

p

x

p

p
x x

n
x

i i

MLE

i
i

n

i

n

i
i

n

  




   

 












0
10

1

10 10 10
1

1

1

 



e.g. if    x x x1 2 5 3 5 2 1 6, ,.. ., , , , , then  .pMLE     3 5 2 1 6
50

0 34
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Figure 12.3: Showing the log-likelihood for the above discrete binomial example.

Continuous Example

Let  X X X n1 2, , ... , be a random sample from an Ex( ) distribution. Find the
M.L.E. of . The likelihood function is

 L f x e ei
i

n
x

i

n
n x

i i( ) ;       





 

1 1

The log-likelihood is

l n xi
i

n

( ) log   



1

To find the M.L.E. of set

dl
d

n x
xi

i

n

MLE 
    


0 1

1




Hence the maximum likelihood estimate of is 1
x

.

The maximum likelihood estimator is obtained by replacing the xi by the
corresponding random variable Xi hence the maximum likelihood estimator of is
1
X

.
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Check also that d l
d

2

2
is negative at 1

x
.

d l
d

n2

2 2 0
 

  .

e.g. if    x x x1 2 5 31 55 2 3 19 6 3, ,.. ., . , . , . , . , . then x 
   


31 55 2 3 19 6 3

5
382

. . . . .
. so


.

.  
1 1

382
0 2617

x
. (see also figure 12.4 for the log likelihood).

Figure 12.4: Showing the log-likelihood for the above continuous exponential
distribution example.
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Maximum Likelihood Estimation when the range depends on a parameter

Let be a random sample from a Uniform (0,) distribution with p.d.f.

f x
hv x

x( )
( )

, 


  
1

0 0





 

where hv(z) is the heaviside function defined as 1 if z>0 and zero elsewhere

The likelihood for n observations is

L f xi
i

n

( ) ( ; ) 



1



1

1 i

n

for 0 0 01 2     x x xn  , ...

and zero if any xi is outside  0, . This can be written as

L
hv x hv x hv xn( )

( ) ( ) ( max( ))












 


1 

The likelihood function with n=4 and max(x)=20 is shown in the figure 4.5 below.

Figure 4.5: Showing the log-likelihood for the above uniform distribution example.

It can be seen that the likelihood decreases when  and that the likelihood is
zero if  is less that 20 (i.e. zero if less than the maximum of x i ). Hence L is at a

maximum when is equal to the largest value of xi , i.e.  max( ) x i . The likelihood



R. A. Rigby and D. M. Stasinopoulos September 2005 111

is discontinuous at the maximum point ; therefore the likelihood derivative does not

exist there. That is the M.L.E is not a solution to 


L 0 .

Important: whenever the range of X depends on the parameter it is important to see
whether the maximum of the likelihood is achieved at an extreme rather than at a

solution of



L
0.

12.4 Optimum properties of maximum likelihood estimators

12.4.1 The invariance property

Let be the M.L.E. of then the M.L.E. of  g( ) is  ( ) g .

Example:

For a random sample from  N , 2 , the M.L.E. of  is X . By the invariance

property, the M.L.E. of 



1

is 
1
X

. Similarly, the M.L.E. of 2 is X 2

12.4.2. Asymptotic Normality

Let  X X X n1 2, ,. .., be a random sample from a distribution with p.d.f. f x( ; )

depending on an unknown parameter . If is the M.L.E. of  then under certain
regularity conditions,  is asymptotically Normally distributed with mean  and

variance
1

2

E d L
d
log




















.

i.e. distribution of  ,
( )

 









N
i

1
as n  .

where i E
d L

d
E

d L
d

( )
log log


 

 




























2 2

2 is called the expected information for

 (it is defined under certain regularity conditions).

The quantity
1

i( )
is the Cramer-Rao lower bound for the variance of unbiased

estimators of .

Alternatively the quantity I d L
d

( ) log













2

2
can be used instead of i( ) in the

above approximation. I ( ) is called the information for .
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Note that in general the evaluation of both i( ) and I( ) depends on the parameter 
which is usually unknown. An estimate of the information or the expected information
can be obtained by replacing by its M.L. estimate . The quantities i() and I()
are then called the observed expected information and the observed information
respectively.

If g(.) is differentiable, then g N g
dg

d
i

asymptotically
 ( ),

( )
( )~ 




















2

Example

The Exponential distribution p.d.f. is given by

  xexf x 0)(

Let us assume that we have a random sample of size n from an exponential
distribution. The Likelihood function and the log-likelihood are

 L f x e

e

i
i

n
x

i

n

n x

i

i

( ) 







 








 

 
1 1

and

l L n xi
i

n

( ) log ( ) log     



1

.

By differentiating the log-likelihood and setting it to zero we have

d L
d

n
xi

i

nlog
 

 



1

d L
d X
log 


  0
1
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From the asymptotic normality property we have,

 ,
( )~ 


asymptotically

N
i

1







where i E
d L

d
E

n n
I( )

log
( )

  










 




 

2

2 2 2

That is, in this case i( ) and I( ) are the identical since the second derivative does
not involve the random variables, X i .








 ,~ 

asymptotically

N
n

2

Hence we can construct an approximate 100 1( )% C.I. for . We have

 ,
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~ 
approx

N
n

2
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



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n

N
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.

~
 
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0 1

We require
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Thus an approximate 100 1( )% C.I. for is


,
 

 

1 12 2 









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12.5 Maximum Likelihood Estimation of k parameters

If the likelihood function contains k parameters     1 2, , . .. , k , then the maximum
likelihood estimators of the parameters are obtained by solving the k equations










log
,

log
, .. .

log
,

L L L

k1 2

0 0 0   simultaneously.

Also

i( ) log log log 






































 























E L L E L

i j ij i j ij

2

is the k x k expected information matrix for the parameters     1 2, , ... , k and

I( ) log 


 
























2 L

i j
ij

is the k x k information matrix.

Example: M.L.E. of 2 parameters

Let  X X X n1 2, , ... , be a random sample from a Normal distribution with unknown

mean and variance 2 . Find the M.L.E. of and 2 .
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The likelihood function is

L f x e

e

i
i

n

i

n x

n
x

i

i

( , ) ( ; , )
( )

( )

/

( )

/
( )

 












2

1

2
2 1 2

1

1
2

2 2
1
2

1
2

2

2

2

2

2

 



 




 
 

 

By dropping the constant ( )2 2


n

and letting   2 the log-likelihood is

l n xi
i

n

( , ) log( ) ( ) 


  

2

1
2

2

1

Differentiate the log-likelihood with respect to and we have







l

xi
i

n





( )


1 0


 




l n

x i
i

n

 







( )


1

2

2
0

resulting to the MLE’s

 / 

x x ni
i

n

1

(the usual sample mean)

and

  ( ) / ( ) /      
 
 2 2

1

2

1

x n x x ni
i

n

i
i

n

This is not the usual sample variance which is defined by

s x x ni
i

n
2 2

1

1  

( ) / .

The M.L.E 2 is a biased estimator for 2 since E x x ni
i

n

( ( ) ) ( )

   

1

2 21  while

s 2 is unbiased.



R. A. Rigby and D. M. Stasinopoulos September 2005 116

Example:

Let the sample    x x x1 2 10 113 8 15 5 68 136 16 7 9 9 20 7 113 9 2, ,.. ., . , , . , . , . , . , . , . , . , .

We have

 . x 12 3
and

 / .2 168 10 168  .

The usual sample variance is s2 168 9 18 66 / . .

The log-likelihood function for the above data in terms of and 2 is shown below in
figure 12.6. The log-likelihood function has quadratic shape for the parameter and
is very flat in terms of 2 .

Figure 12.6: Showing the log-likelihood function from the above Normal distribution
example.
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Exercise 12.1

1. A manufacturing process produces fibres of varying lengths. The length of a
fibre is a continuous variable with p.d.f.

f x x e x( ) /   2 for x 0

where 0 is an unknown parameter. Suppose that n randomly selected
fibres have lengths x x xn1 2, , . .. , . Find expressions for the MLE for .

2. Suppose that x x xn1 2, , ... , are independent values from a Normal distribution
N ( , )1 . Find the MLE of .

3. Suppose that x x xn1 2, ,. .. , are independent values from Normal distribution
N ( , )0 2 . Find the MLE of . Is the estimate unbiased?
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Exercise 12.2

a) Let X i be a random variable having a binomial distribution with
probability density function given by

f x
n
x

p pi
i

i

x n xi i i( ) ( )






  1 for x ni i0 1, , .. .,

where and 0 1 p .

Let also X X X k1 2, , .. ., be an independent random sample of
observations from the above distribution

i) Write down the Likelihood function L p x xk( ; .. . )1 and
show that the log likelihood function l p x xk( ; .. . )1 for the
parameter p is given by:

l p x x x p n x pk i i
i

k

i

k

i( ; . .. ) log( ) ( )log( )1
11

1   



ii) Find the maximum likelihood estimator of p .

iii) Show that the Expected information for the parameter p is
given by

)(
log)(

p

n

p

n

dp
LdEpi

k

i
i

k

i
i
















1
11

2

2

(Note that E X n pi i( )  )



R. A. Rigby and D. M. Stasinopoulos September 2005 119

b) The following data concern teenage pregnancy in k=13 north central
Florida counties during the 3 year period 1989-91. Let ni denote the
total number of births in county i during the reporting period and let
x i denote the numbers involving underage mothers (i.e. women 17
or under).

x i ni

1 91 2848
2 16 344
3 36 1617
4 34 688
5 7 160
6 2 133
7 13 171
8 2 66
9 10 360
10 80 2753
11 43 982
12 12 351
13 7 135

Assuming that the rate (p) of teenage pregnancies is the same in all
the 13 Florida counties calculate the Maximum Likelihood
estimator for p and give an asymptotic 95% Confidence Interval for
p by using its Observed Expected information.
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Exercise 12.3

a) Let X i be a random variable having a Poisson distribution with
probability density function given by

f(x )
!i 
 x

i

i e
x

for xi 0 1, ,. ..

where 0 < < . Let also x x xn1 2, ,.. ., be an independent random
sample of observations from the above distribution.

i) Write down the Likelihood function L x xn( ; .. . ) 1 and
show that the log likelihood function ( ; x ...x )1 n for the
parameter is given by:

( ; . .. ) log( ) log( !)  x x x n xn i i
i

n

i

n

1
11

  



ii) Find the maximum likelihood estimator of 

iii) Show that the Expected information for the parameter is
given by




n
d
d

Ei 







 2

2

)(


(Note E Xi( ) . You do not need to prove this.)

b) Ten families were randomly selected in a certain district, with the
aim to determine the average number of children per family in the
district. The numbers children for the ten families was as follows

2, 4, 0, 1, 1, 3, 6, 0, 1, 2

Assuming that the number of children per family follows a Poisson
distribution with mean , calculate the Maximum Likelihood
estimator for and give an asymptotic 95% Confidence Interval for
.


