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INTRODUCTION 

 

In my previous paper 'The Large Scale Structure of the Universe' I 

outlined a proposition that the expansion of the Universe was the result 

of gravitational repulsion, this being a product of the so-called 

cosmological constant or  factor. In that paper I went on to relate the 

maximum radius of the universe,via the use of Hubble's constant, to all 

the other principle constants of physics,thus enabling all the constants to 

be written in terms of the Gravitational constant. It will be recalled that 

this is one of the principle requirements for the quantisation of gravity. 

 

If one accepts the validity of the  proposition, one can then envision 

that all of space is confined inside two parameters, these being the 

Compton Length at the smallest end of the scale and the Radius of the 

Universe at the largest end of the scale. If, in fact, the universe is not 

expanding in terms of it's volume but is held in a steady and finite state 

by cosmic repulsion, then it is clear that that space and time are both 

'trapped' between these two parameters which in turn act as impenetrable 

potentials. 

 

Since the space which we occupy is, itself, the product of the 

gravitational  field it follows that this paper is the description of that 

quantised gravitational field and the quantised space confined by the two 

potentials.     
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In my previous paper 'The Large Scale Structure of the Universe', I 

advanced a 'steady state' model of the universe and showed how the large 

scale structure of the universe was related to the very smallest structures 

of matter. I now intend to develop this model further and to show how it's 

structure leads to the quantization of gravity. 

In the steady state model the dimensions of the universe are known and 

are fixed. This enables us to imagine that the structure of space is, as it 

were, rigid. In other words we can treat space similarly to the way we 

would treat a solid and we can treat a galaxy moving through that 'solid' 

as if it was a quantum particle moving through the potential zones in a 

solid in a  similar manner to the well known models of solid state 

physics. 

The wave description of matter defines a natural scale for a particle 

through it's Compton wavelength i.e.  h mc. This in turn leads to the 

conclusion that the Planck length 10 35 m. is a limiting state of matter, that 

is to say it is a boundary condition at one end of the scale of structure of 

the universe. At the other end of the scale, the boundary condition is the 

limiting distance of the 'event horizon' of the universe i.e its radius of 

1 2 2c  light years. The establishment of these two boundary conditions 

enables us to describe the properties of a galaxy or any other particle 

moving in a quantised gravitational field, because, as described in my 

previous paper, the galaxies are 'falling' in a repulsive gravitational field. 

We can say that both boundary conditions take the form of potential 

barriers and this enables us to describe the wave function of any particle  

(or of any galaxy) in the universe by imagining that the particle (or 

galaxy) is moving through a quantised field. We can call this field the 

Quantum Gravity Field. 

To recap, the description of the gravitationally repulsive repulsive field 

or Lambda field is one where the field strength inside the mass of the 
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universe 'M' is given by g
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Here r
a
 corresponds to a point inside a spherical mass i.e:-

( , ( ))r R V V R
a a
    and  r

b
 correspondscorresponds to a point onthe 

surface of the spherical mass i.e:- ( , )r R V V
b b
 

0 0
 .Thus the potential 

varies within the spherical mass and any particle can be said to be lying 

on an equipotential surface within the mass. 

As with any oscillator or wave function it is the boundary conditions 

which lead to a set of quantised energy levels. The particle cannot have 

zero energy. The lowest energy value occurs at n = 1, known as the zero 

point energy and this is true for any particle which is confined to a region 

of space by the presence of boundary conditions. This is, of course, 

already well known but it is worth reminding ourselves of how boundary 

conditions lead to quantisation of the wave function by referring to the 

familiar 'particle in a box' model, as this will help to lead us into a more 

full description of the quantised gravity field.  

Now a particle in a box is confined by two impenetrable walls (or 

potentials) at x and L. Since the particle (or galaxy) cannot penetrate the 

walls then  = 0 for x  0 and x  L. The requirement that the wave 

function be continuous  leads to the boundary condition  = 0 at x = 0 

and x = L. With  = 0, the Schroedinger wave equation becomes :- 





2

2

2 0
2


x

k where k
mE

  


 the solution to this equation is 

( ) sin( )x A kx    . The boundary conditions are  = 0 at x = 0 and 

from the condition that  = 0 at x = L we find that (kL) = 0 which means 

that kL = n where n is an integer. Thus we have a wave function which 
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satisfies the boundary conditions in the form of a standing wave i.e :- 

( ) , , .....x
n x

L
n









 


1 2 3  . Since k

n

L
 

2




 the wavelength of the nth  

standing wave is  
2L

n
 . When  this  is  equated  to  de  Broglies 

equation  
h

mv
 we find v

nh

mL


2
 . Since 'n' takes on only integer values, 

the speed is quantised. The particle's (or galaxy's) energy, which is purely 

kinetic is 1 2 2mv  , is thus also quantised. The energy of any particle 

moving within fixed boundary conditions is therefore quantised. So 

much is elementary, and we can  go on to expand this fact to illustrate 

more precisely the nature of the quantised gravitational field. 

Since it is the boundary conditions of a state which produce its quantised 

properties we can say that any galaxy is moving in a quantised 

gravitational field  (because our gravitational field is limited by the 

boundary conditions already described). The field itself can be described 

by imagining a series of spherical potential field lines whose centre is 

located at the  observer's position. The precise position in space of the 

point of the observers position is not relevant because the cosmological 

principle tells us that any point in the universe is equally valid as a 

central reference frame. In other words, any arbitrary point can be 

considered as the centre of the universe for the purposes of this 

discussion. Thus we can imagine each potential field line to be quantised 

in terms of  and an integer where integer 1 occurs at the point of the 

strongest field (i.e. on the outermost circumference of the sphere). Thus 

the galaxy is moving from a position of high potential to a position of 

low potential . We can do better than this and say that the universe is 

seeking  its own lowest energy level. 

Furthermore we can say that the field lines (or equipotential lines) are 

arranged in a manner which exhibit spatial periodicity and the potential 

gaps can be described in a manner similar to the Kronig-Penney model of 
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a solid. This periodicity has an effect on the motion of the galaxys 

moving through the field. The periodicity is built into the potential for 

which we require that V(x + a) = V(x). Since the kinetic term 
h

m

d

dx

2 2

22
 is 

unaltered by the change x  x + a, the whole Hamiltonian is unaltered 

by 'a'. For the case of zero potential when the solution corresponding to a 

given energy E
k

m
is x eikx 

2 2

2
( )  the displacement yields 

 ( ) ( )( )x a e e xik x a ika    that is the original solution multiplied by a 

phase factor so that  ( ) ( )x a x 
2 2

 .The  observables  will  therefore  

be the same at 'x' as at x + a. In our example we shall also insist that (x) 

and (x + a) differ only by a phase factor which need not, however be of 

the form eika  . If we take a series of repulsive delta function potentials 

V x
m a

x na
n

( ) ( ) 





2

2


  , then away from the points x = na, the 

solution will be that of a free particle equation, that is in a linear 

combination of sin kx and cos kx. Let us assume that in the region Rn 

defined by (n - 1)a    x    na  we have :- 

(1)        (x) = An  sin  k(x - na) = Bn  cos  k(x - na)  

and in the region Rn + 1 defined by  na  x  (n + 1) we have :- 

(2)        (x) = A(n + 1) sin x - (n + 1)a + Bn + 1 cos k x - (n + 1)a. 

Continuity of the wave function implies that :- 

  x = na, -An + 1 sin ka + Bn + 1 cos ka = Bn and the discontinuity 

codition implies that :- 

kAn + 1 cos ka + kBn + 1 sin ka - kAn = 


a
Bn  . Letting g

ka



 it follows 

that An + 1 = An cos ka + (g cos ka - sin ka)Bn which leads to :- 

(3)        Bn + 1 = (g sin ka + cos ka)Bn + An sin ka. 

The rquirement that the wave functions (1) and (2) be related by 

    Rn e Rni 1   is satisfied if :- 

(4)          An e An and Bn e Bni i   1 1    
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When this is inserted into (3) we find a consistency condition which  

reads 

    e ka e g ka ka ka g ka kai i     cos sin cos sin cos sin  .That is :- 

 e e ka g kai i2 2 1 0    cos sin  .Multiplication by e i  gives :- 

(5)          cos cos sin .  ka g ka
1

2
  

If we take periodic boundary conditions so that (Rn + N) = (Rn) then 

it follows from (4) that e that is
N

m miN 


    1
2

0 1 2, , .... . We denote  

by qa where q is the wave number of a galaxy in a  'box' of length Na 

with periodic boundary conditions and without any potential. Thus (5) 

should be re-written in the form cos cos
sin

qa ka
ka

ka
 

1

2
 . Now because 

the left side is always bounded by 1, there are restrictions on the possible 

ranges of the energy E
k

m

2 2

2
 that depend on the parameters of the field. 

Fig.1. where marked yellow shows a plot of the function cos
sin

x
x

x


2
 as a 

function of x = ka. The horizontal line represents the bounds on cos qa 

and the regions of x for which the curve lies outside the strip are 

FORBIDDEN regions. Thus there are allowed energy bands separated by 

regions which are forbidden. Note that the onset of a a forbidden band 

corresponds to the condition  ka = n,       n = 1,  2,  3.....  which is 

the condition for Bragg reflection with normal incidence. 

Referring again to Fig.1. but this time noting the pink shaded region. this 

region indicates a region of space which is forbidden to a wave moving 

from left to right but which is occupied by a matter wave moving from 

right to left. This matter wave is of opposite parity to the wave moving 

from left to right. Clearly this indicates a condition of broken symmetry 

which occurs occurs in the following way. 

Schroedinger's equation can be written as :-  
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( )6
2

2
2   




m
V i

t
 




 where in cartesian co-ordinates the wave 

function of the galaxy is given as :- = (x, y, z, t ) and, 

 7 2

2

2

2

2

2

2   
  









x y z
. In the foregoing the potential energy of 

the galaxy is given by V = (x, y, z, t ) and i = 1 . If V is independent of 

time,we can separate space and time variables by setting =(x, y, z, )  

(t). Substituting into (6) and dividing by  we find :- 

 8
2

2 2




 
 

m
V

i d

dt



 


. 

From the R.H.S. of (8) we then obtain   Ce i E t( / )  and the L.H.S of (8) 

can be written as :- 

 9
2

2

2
  



m
V E

u

   . 

 Now from Equs. (7) and (9) we can see that the substitutions x  -x, y 

 -y, z  -z, (abbreviated by r r
 

  below will not alter the solution of 

Schroedinger's equation if :- 

     10 V x y z V x y z   , , , , . 

The substitution r r
 

  is called the parity operation, and a potential 

which has the property expressed in Equ.(10) is said to be conservative 

under the parity operation, or to conserve parity. For a potential of the 

form of (10), the wave function  in Equ.(9) must have the property :- 

 

   

11

12

 

 




 


  



 






 


  

 



r r

or

r r

 

The wave function (11) is said to possess even parity, the other wave 

function (12) is said to possess odd parity. Further if any system, 

however complicated, has a wave function of a given type it can never 

change over to the wave function of the other type as long as all the 

interactions in the system remain parity conserving. 



10 

What has this to do with the manifest a-symmetry we see in the direction 

of the arrow of time? This a-symmetry can be explained by returning to 

the 'particle in a box' model. 

We recall again the Cosmological principle which permits us to use the 

concept that any point in the universe can be described as the 'central 

reference frame' of the universe. With this in mind we now take the 

somewhat unconventional step of treating a galaxy in our spherical 

universe in the same way as we would treat a particle in a closed cubical 

box. now if the universe was indeed a closed cubical box the parity of the 

wave function given by  










2
3

2

L

n

L

n

L

n

L

x x y y zsin sin sin 
 is not a definate 

quality (since = 0 outside the box we can see that (x)  (-x) for  0 

xL ). This occurs because the location of the box with respect to the 

origin  causes 'V' NOT to have the property as in (10) BECAUSE THE 

ORIGIN STARTS AT THE END OF THE BOX. But if the origin is 

moved to the centre of the box as permitted in our universal model 

(because the Cosmological principle allows any point to be considered as 

a central reference frame) then 'V' WILL  have the property as  in (10) 

and the wave function then has the form :-  

 








 









 









 











2

2 2 2

3

2

L

n x

L

n n y

L

n n z

L

nx x y y z z
sin sin sin

' ' '     
 where x y z' ' ', , , 

are the coordinates measured with respect to the centre of the box 

x x
L

etc' . 










2
. For any odd value of nx  , the first sine function 

beecomes  cos
'n x

L

x  which has even parity. For any even value of nx  the 

first sine function becomes  sin
'n x

L

x . Hence the overall parity of the 

wave function is even or odd depending on whether or not  n n nx y z   is 

an odd or even integer.  From the above it follows that FIG.1. is 

describing a quantised gravitational field, brought about principally 
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because it describes a matter wave moving from an area of high 

gravitational potential to an area of low gravitational potential under the 

influence of a gravitational field. Further it describes the wave function 

for those areas of space which are of opposite parity (i.e. that part of the 

universe which consists of anti - matter and negative energy). Thus in our 

model of a steady state universe we have described space as functioning 

in a similar manner to a solid with a matter wave (the galaxy) travelling 

through it. The next obvious question to ask is 'What happens to the 

matter wave which has travelled furthest from its central reference frame 

and is at the point where it has gained it's maximum velocity?' Firstly let 

us remind ourselves of the relatvistic addition of velocities. Here we seek 

to add the velocities of two galaxies, A and B, receding from each other . 

Their combined velocity is given by :- V
V V

V V

c

AB
A B

A B




1
2

. Thus the test galaxy 

has exchanged all its gravitational potential energy for the kinetic energy 

of motion and since the galaxy cannot escape from the universe, clearly 

something must happen to the wave function. I have already mentioned 

that the wave function reaches a point which resembles the condition for 

Bragg reflection and indeed this is exactly what happens to the matter 

wave. It is reflected back into space at the point of the impenetrable 

potential barrier at the 'edge of the sphere, but the reflected wave is of 

opposite parity to the incident wave. This being the case we can write the 

wave equation of the reflected wave in gravitational terms as follows. 

The potential V(x) on the left of the diagram can be said to represent the 

high potential at the centre of the sphere and the potential V(o) at the 

right is the potential of the energy barrier so we can write :- 

    
2 2

22m

d

dx
mV x mgx E


 ( )  where mV(x) is the energy due to the 

motion of the galaxy and 'mgx' is the energy due to the gravitational 
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field. the slope of the potential barrier is given by mg
E

a
or a

V

g
   

where E represents the height of the energy gap in electron volts (i.e. 

2 2mc  expressed in electron volts and 'a' is the width of the energy gap in 

metres). Normally a particle will tunnel when its wavelength is equal to 

or shorter than 'a'. But in our case, since the energy gap or potential is of 

infinite width, the particle cannot tunnel and is therefore totally internally 

reflected. Thus we can say that the matter wave at R0  undergoes a total 

internal reflection which can be described in the following manner. 

Essentially what is happening is that the potential is generating a rotation 

in internal symmetry space. To generate this rotation we define the 

potential in the language of a Rotation group. A three dimensional 

rotation R() of a wave function is written as R e i L( )     where  is 

the angle of rotation and L is the angular momentum operator. This 

rotation is comparable with the phase change of a wave function after a 

gauge transformation. The rotation has the same mathematical form as 

the phase factor of the wave function. But this does not mean that the 

potential itself is a rotation operator like R(). The amount of the phase 

change must be proportional to the potential to ensure that the 

Schroedinger equation remains gauge invariant. To satisfy this condition 

the potential must be proportional to the angular momentum operator L. 

The most general form of the Yang Mills  potential to which the 'barrier 

potential' is exactly similar, is a linear combination of the angular 

momentum operators :- 

   13 A A x Li

i
i    

where the coefficients  A xi

  depend on the space-time position. This 

relation indicates that the potential is not a rotation but is the generator of 

a rotation. 
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The relation in Equ.13. displays the dual role if the potential is both a 

field in spacetime and an operator in the isotpic spin space. The potential 

acts like a raising operator Lx  and can, for example, transform a down 

state into an up state. Thus a total internal reflection has induced a phase 

change in space-time. This is because the phase of a wave function can 

be described as a new local variable. Instead of a change of scale a gauge 

transformation can be reinterpreted as a change in the phase of a wave 

function i.e:- 

 14   e ie  

and the familiar gauge transformation for the potential A  becomes :- 

 15 A A      

Thus the wave equation is left unchanged after the two transformations in 

Equs.(14) and (15) are applied. 

The non relativistic wave equation for the test galaxy can be written as :- 

 
1

2

2

m
i gA g V i

d

dt
    













  where the canonical momentum now 

appears as the quantum operator for   i gA . After the phase change 

in Equ.14. there will be a new term proportional to e from the operator 

-i acting on the transformation wave function. This new term will be 

cancelled exactly by the gauge transformation of the potential according 

to Equ.15. 

 

This then is the broad description of a spacetime which is trapped 

between two potentials. The form of this entrapment means that the 

galaxies can be likened to particles which are moving against the back 

ground of a field which is omnipresent in nature and which can be 

likened to the aether filed which was long since abandoned. 
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