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The conventions of modern scientific theory describe the Universe as a 

collection of particles randomly organised with blind forces acting on 

those particles. Our experience of the world tells us that it is anything but 

random, on the contrary we see the world as a complex organisation 

moving towards even greater complexity and organisation with the 

passage of time. Scientific theory does not attempt to explain how it is 

that a totally directionless collection of particles and forces can become 

the immensly complex organisations such as the helical structure of DNA 

and similar  structures which are fundamental to life and to our ability to 

observe nature. 

In my previous works, in particular  'The Large Scale Structure of the 

Universe', I described the  intimate relationships between the very largest 

and very smallest structures in nature. However that description offers no 

indication as to how those relationships arise from a seemingly random 

and directionless pool of component parts. 

The purpose of this paper is to describe how it is that large numbers of 

components of a system can conspire together to arrange themselves into 

organised structures --in other words to describe how it is that order is 

produced from chaotic systems and to create a general mathematical 

model which can be used to describe the beaviour of any macroscopic 

system to include anything from changing weather patterns to 

evolutionary processes. Essentially, my approach is to describe such 

systems as self organising systems.   

Before describing the precise mechanism of self organizing systems, let 

us take a brief look at the philosophical and historical background of the 

subject particularly with regard to the physiological processes of life and 

evolutionary theory. 
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The  idea  of  self  organising  systems  is  not   new.  c.546 B.C, 

Anaximander expressed notions about the development of human life 

forms which seem to indicate that he was aware that the life forms of his 

time must have been different in the past and had arrived at their present 

state of development as a result of undergoing changes in their structure 

and organisation. About 200 years later, Aristotle had defined  the notion 

that nature was a holistic self organising system and, as we know, 

Aristotle's theories on this and virtually every other philosophical and 

scientific subject were the major formative ideas to influence the 

intellectual world for the next 500 years. Following the disastrous period 

of the Dark Ages which dominated the Western world for the next 1000 

years or so, there was a revival of Classical ideas in the West, dominated 

again by the influence of Aristotle. However, early in the period of this 

enlightenment, modern scientific thinking and methods took hold. 

Descartes and others considered that nature was described by linear 

sequences of events, strictly causal in nature. The greatest influence on 

the enlightenment, at least on scientific thought, was Sir Isaac Newton 

and it was Newton's ideas which did more than anything else to shape the 

world we live in today by his invention, but more particularly by the 

application of, the calculus.  These ideas held sway for some 200 years 

until the beginning of the 20th. century when yet another change in 

philosophical outlook took place and the uncertainties of quantum theory 

began to hold sway and holistic scientific thinking finally became 

unfashionable and fell out of favour.  

It is a fact that all the principal equations of physics, which are mainly 

products of the 20th. century, are reversible in time and that time has no 

specific direction. Obviously, as observers of the universe, this is not our 

experience, and I hope that my previous works have gone some way to 

dispelling this notion and to unify the largest and smallest strucures in the 
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universe and by this method to unify the laws of physics. However, now 

is the time to move on and to attempt to create a mathematical description 

and model of the behaviour of the macro-world in which we find 

ourselves. I will show by means of a mathematical model which, in 

principle, can be applied to any large number of physical entities that it is 

possible to model the behaviour of complex physical systems and how it 

is that order is produced from seemingly complex and random systems.  

  

Let me attempt to describe a self organizing system. A self organizing 

system is exactly that, it does not require an input of energy nor does it 

lose energy. It is not a thermodynamic system in the accepted sense of the 

word and therefore entropy is not involved. A self organizing system can 

be described as a collection of a large number of units which can be  

anything from microscopic particles to macroscopic components such as 

pebbles on a beach or shoals of fish or indeed any collection of 'things' 

which can be described collectively. Clearly, all the components of a 

system are different, but most are similar. Individual components 

possessing similar characteristics are the most likely to associate together 

and to occupy the the most favoured or most probable state according to 

some similar characteristic or intrinsic quality possessed by those 

components.Thus we are led to conclude that only so many components 

can occupy any one state at any one time 

 

It is the collective mathematical behaviour of these individual 

components which I wish to describe in this paper and which I intend to 

approach in the following way.  

 

Let us consider a system which is composed of components which are 

similar in nature but are different enough to be organised in groups or 
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collective bodies. For example one could consider a shingle beach whose 

pebbles are graded according to size and where each occupies a given 

position on the beach which is the result of it's size or some other intrinsic 

quality common to that group. The whole system is composed of a large 

number N of individual components. Each component has available to it 

several possible states of occupancy with a probability of occupancy 

given by E E E
1 2 3, .
, , . At a particular time the components are distributed so 

that n
1
 components occupy probability level E n

1 2,
 components occupy 

E
2
 probability level, n

3
 components occupy E

3
 probability level and so 

on. 

 

The total number of components of the system is:- 

 

N n n n n n
i i

i

= + + + = 1 2 3
....                       Equ. (1) 

 

The total probability state of the entire system is:- 

 

U n E n E n E n E
i

i
i

= + + + =1 1 2 2 3 3
....                Equ. (2) 

 

The set of numbers ( )n n n. , , ....2 3  we describe as a distribution. A 

distribution defines the micro state of the system consistent with the 

macro state or physical condition of the system which is determined by 

the total number of components, the total probability state, the structure 

of each component (e.g. mass, size etc.) and some external conditions 

which may affect the system (such as tides, gravity etc.) 

 Equations (1) and (2) do not determine the distribution ( )n n n1 2 3, , ....  in a 

unique way and the distribution of the components among the available 
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probability levels may be changing continuously. However, given the 

physical conditions of an isolated system, there is a most probable 

distribution compatible with those conditions. When the most probable 

distribution is achieved, the system is said to be in statistical equilibrium. 

A system which is in statistical equilibrium will not depart from the most 

probable distribution unless it is disturbed by some external action 

(environmental change for example).  

 

In order to find the most probable distribution law we can proceed as 

follows. 

Consider a system composed of a large number of components. Suppose 

that the components can occupy the probability levels E E E
1 2 3
, ,  and that 

there  are n n n
1 2 3
, ,  components in each state. It follows that the total 

number N of components and the total probability for those components 

U are given by Equations (1) and (2).  

We need to calculate the probability P of a distribution ( )n n n1 2 3, , .... . We 

shall assume that the probability of a particular distribution is 

proportional to the number of different ways that the components can be 

distributed among the available probability levels compatible with the 

values of N and U. Next we must find the distribution for which the 

probability P has the maximum value for the given values of N and U.  

There are no restrictions on the number of components which can occupy 

a given probability level, but it may happen that there are probability 

levels that are more likey to be occupied that others. Thus the probability 

levels themselves have different intrinsic probabilities, designated  g
i
 of 

being occupied. Thus the larger the g
i
 the greater the probability that the 

level will be occupied. We can assume that when statistical equilibrium is 

reached and the probabilty P is a maximum, the occupation numbers n
i
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should be proportional to the intrinsic probabilities g
i
 ,since the larger g

i
 

the more probable that it is in state E
i
. 

At equilibrium, components tend to favour lower prbability levels and 

components in higher probability levels may tend to pass to states of 

lower probability and we can say that the larger the probabilitylevel E
i
 the 

less probable that a component will be in that state when statistical 

equilibrium is reached. 

A negative exponential of the form e Ei−  where  is a positive parameter 

satisfies this requirement therefore we can assume that the occupation 

numbers of the most probable or equilibrium distribution should be of the 

form;- 

 

n g e
i i

Ei= −             Equ. (3) 

 

where  is some constant that depends on the structure of the system. 

 

We now require to relate the parameters  and  with the physical 

properties of the system. 

The quantity  may be expressed in terms of the number of components 

in the system i.e:- 

 

N n n n

g e g e g e

g e g e g e

g e

Z

E E E

E E E

i

E

i

i

= + + +

= + + +

= + + +

=










=

− − −

− − −

−

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

....

....

( .... )

  







  

  



 

 

where 
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Z g e
i

i

Ei= 
−            Equ.(4) 

 

and we define the quantity Z as the distribution function. Here Z is a 

function of the parameter  and depends on the values of g
i
 and E

i
. Thus 

we can write  = N/Z and equation (4) becomes:- 

 

n
N

Z
g e

i i

Ei= −            Equ. (5) 

 

and Equation (5) constitutes a distribution law for a system in statistical 

equilibrium and we can define the total probability of a system of 

components in total equilibrium as;- 

 

( )

U n E n E n E

N

Z
g E g E g E

N

Z
g E e

E E E

i i

E

i

i

= + + +

= + + +

=










− − −

−

1 1 2 2 3 3

1 1 2 2 3 3
1 2 3

....

....
  



        Equ. (6) 

 

However, our concern is not with systems in equilibrium as such, but is 

with fluctuations and perturbations in those systems which cause the 

probability distribution to move in one direction or another. Having 

described the physical conditions relating to states which are in 

equilibrium, we must now examine the probability of a particular 

distribution of components and show how even a minor perturbation of a 

system in equilibrium, can produce a major and significant change in the 

probability distribution and we will proceed as follows. 
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We wish to estimate the probability of a distribution ( , , ,.... ....)n n n n
i1 2 3

 for 

a system of identical components. First we note that the intrinsic 

probability g
i
 gives the probability that the probability level E

i
 is 

occupied by one component. If there are no restrictions on the occupation 

of the state E
i
 by more than one component, then the probability of 

occupation by two components is g xg
1 2

 or g
i

2  or for three components is 

g xg xg
i i i

 or g
i

3 . Thus the intrinsic probability of finding n
i
 components in 

the state whose probability level is E
i
 is g

i

ni  and we can assume that the 

probability P of the distribution ( , , .... ....)n n n n
i1 2 3

 is proportional to 

g g gn n n

1 2 3
1 2 3, , .... .  

Any permutation of components in the same probability level does not 

give rise to a new distribution. The number of permutations of n
i
 

components is n
i
! . Therefore we must expect that the probability P is 

inversely proportional to n n n
1 2 3
!, !, !,.... and we can write :- 

 

P
g g g

n n n

n n n

= 1 2 3

1 2 3

1 2 3 ....

!, !, !....
              Equ. (7) 

 

To illustrate the meaning of the expression for P, let us consider two 

different systems each composed of 4000 components in three probability 

levels, each with the same intrinsic probability as in Figs. (1) and (2) 

below. 

 

E n

E n

E n

3 3

2 2

1 1

2 577

1146

0 2277





_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

        Fig. (1) 

 

The most probable or equilibrium distribution for this system is 

n n n
1 2 3

2277 1146 577= = =, , . 
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The corresponding distribution probability is:- 

 

P
g

1

4000

2277 1146 577


! ! !
. 

 

The change in P when two components are removed from the middle 

level and transferred to the upper and lower levels is given by a new 

distribution probability i.e:- 

 

P
g

2

4000

2278 1144 578


! ! !
. 

 

The ratio of these two probabilities is;- 

 

P

P

x

x

2

1

1146 1145

2278 578

1312170

1316684
0 9966= = = . . 

Therefore the two probabilities are essentially the same since if P
1
 is a 

maximum, the change in P
1
 must be very small for a change in the 

distribution numbers. Thus the equilibrium microstate may fluctuate 

among partitions close to the most probable equilibrium distribution 

without too much change. This confirms that the Distribution Law 

corresponds to the maximum of the probabilty P
1
 for a system satisfying 

Equations (1) and (2). 

Let us now examine the same 4000 components distributed differently as 

per Fig. (2) below:- 

 

E n

E n

E n

3 3

2 2

1 1

2 300

1700

0 2000

= =

= =

= =





_ _ _ _ _ _ _

_ _ _ _ _ _ _

_ _ _ _ _ _ _

           FIG. (2)  
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We first compare the relative probabilities of two non-equilibrium 

distributions. The distribution in Fig. (2) has 2000 components in the 

lower level, 1700 components in the middle level and 300 components in 

the upper level. 

The second distribution results from the transfer of one component from 

the middle level to the lower level and one component from the middle 

level to the upper level. 

According to the above expression for p in Equ. (7) above the 

probabilities for the first and second distributions are :- 

 

P
g

1

4000

2000 1700 300
=

! ! !
  and  P

g
2

4000

2001 1698 301


! ! !
 . 

 

The ratio of the two probabilities is :- 

 

P

P

x

x

2

1

1700 1699

2001 301

2888300

602301
48= = = . . 

 

  Thus the mere transfer of two components out of 4000 to other levels 

increases the probability by a factor of 4.8. This means that the 

distributions P
1
 and P

2
 are far from equilibrium distribution. This is due to 

the excessive population of the middle level, Thus the system will try to 

evolve to a state where the middle level is less populated. That is to say it 

is a self organizing system in that it has a natural propensity to attain a 

state of equilibrium and this propensity is entirely due to the inherent 

physical properties of the individual components of the system. 
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We can use the relationships in Fig. (2) to calculate the most probable or 

equilibrium distribution. 

Each component can be in one of three probability levels whose 

probabilities are 0,  and 2 and we assume that each probability level has 

the same intrinsic probability g. 

The system is composed of 4000 particles and it's total  probability  is 

2300.  i.e.:- 

 

U n E

x x x

i
i

i
= 

= + +

=

2000 0 1700 300 2

2300

 



( )            Equ. (8) 

 

Using Equation (5) for the most probable distribution and setting 

g g g g
1 2 3
= = =  we have n g n ge n ge

1 2 3
= = =− −   , , . If we designate  

e−  by x we can write n n x
2 1
=  and n n x

3 1

2= . Thus Equation (1) and (2) 

become n n x n x
1 1 1

2 4000+ + =   and  ( ) ( )( )n x n x
1 1

2 2 2300  + = . Cancelling 

the common factor  in the second relation above we have :- 

 

n x x
1

21 4000( )= = =   and  n x x
1

22 2300( )+ =          Equ. (9) 

 

Dividing one equation by the other to eliminate n
1
 we obtain a quadratic  

equation for x  i.e: 57 17 23 02x x+ − =   or  x=0.50377. 

Returning to Equ. (9) above and using this value for x we find 

n n
1 2

2277 1146= =,   and  n
3

577=   which gives the equilibrium distribution 

for the system. This distribution is different from that given in Equ. 

(8)above and therefore Equ. (8) was not in statistical equilibrium. 
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The foregoing is all very well but we must establish exactly what it is that 

causes these perturbations in statistical equilibrium and we discussed 

earlier the physical parameter  . 

Using the distribution function, Equation (5) we note that n
i
 depends on 

the structure of the system through the g s
i
'  and the E s

i
'  and on it's 

physical state through . 

The total probability of an entire system in statistical equilibrium is;- 

 

U n E n E n E

N

Z
g E e g E e g E eE E E

= + + +

= + = +− − −

1 1 2 2 3 3

1 1 2 2 3 3
1 2 3

....

( ....)  
 

 

Using Equ. (5) and noticing that 
d

d
e E eE

i

Ei i



 ( )− −= −  we can write U in the  

following alternative form:- 

U
N

Z

d

d
g e

N

Z

dZ

d
i

E

i

i= −








 = −

−
 

 . 

This expression can be written as:- 

U N
d

d
Z= −


(ln )            Equ. (9) 

The average probability state of the component is then;- 

E
U

N

d

d
Z

AVE
= = −


(ln )              Equ. (10) 

 

Thus we can calculate the properties of a system in statistical equilibrium 

in terms of it's internal structure which is determined by the values of 

g E
i i
,   and the parameter , and therefore Equ.(8) relates to E

AVE
. The 

value of the exponential e Ei−  decreases as E
i
 increases and vice versa. 

Likewise as E
i
 becomes larger, the occupation of the state with 

probability level E
i
 becomes smaller and vice versa and we can conclude 
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that a large  favours the smaller values of E
i
 and reduces the average 

probability level of the particles. Likewise a small  favours larger values 

of of E
i
 and increases the average probability level of the component 

parts of the system. 

 

From this we can see that the effect of a change in  is precisely the 

opposite to that of a change in exterior environment  of the the system. 

This suggests a general statistical definition of the exterior environment  

of the system by relating it to the parameter . Because the effects of  

and  are opposite we can obtain a statistical definition of the exterior 

environment by the inverse relation;- 

 




=
1

k
  or  k


=

1
          Equ. (11) 

where k is some constant. 

 

Using Equ. (11) we can now write Equ. (6) in the form:- 

 

n
N

Z
g e

i i

E ki= − /                 Equ. (12) 

 

which gives the average occupation numbers when the system is in 

statistical equilibrium. Similarly the distribution function, Equ.(4) 

becomes:- 

Z g e
i

i

E ki= 
− /   

and this a function of the external environment of the system. 
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From Equ. (11) we can write d d k  = − / 2  and therefore Equations (9) 

and (10) can be written in terms of the external environment of the 

system as:- 

U kN
d

d
Z= 



2 (ln )   and  E k
d

d
Z

AVE
= 



2 (ln ) and thus we can conclude that 

the total probability U and the average probability E
AVE

 of the components 

are both determined by the external environment of the system. 

Since the exponential e E ki− /    in Equ. (12) is a decreasing function of 

E k
i
/  , the larger the ratio E k

i
/  , the smaller the value of the occupation 

number n
i
, therefore the larger the probability level E

i
, the smaller the 

value of n
i
. In other words, the occupation of probability levels available 

to the components decreases as their probability level increases. It is for 

this reason we can say that as the value of  in a system increases, the 

system becomes more disordered. At higher levels of  components 

transfer from more probable to less probable states. Therefore at lower 

levels of  components transfer from less probable to more probable 

states.  Conversely, if a system becomes more disordered, the value of  

will increase and if a system becomes more ordered  the value of  will 

decrease. It follows that the probability level of a system, that is to say its 

state of equilibrium, and the state of the environment which the system 

inhabits are inversely proportional to each other, thus constituting an 

inverse ratio. More simply, we can say that the more stable a system is, 

the less likely it is that the environment will change and the more chaotic 

the system then the more likely it is that the environment will change . 

Recalling that stabilising parameter  of any statistical system is the 

inverse of the environmental input   we can write a general rule:- 

 

‘The internal statistical equilibrium of a system is inversely proportional 

to the influence of its external environment’. 
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 From the foregoing we can say that a disordered state has an intrinsic 

tendency to stabilise itself towards a state of statistical equilibrium. 

Moreover we note that a system which is out of statistical equilibrium is 

stable until it is acted upon by an outside force and that it cannot achieve 

equilibrium spontaneously.  The macro world can only change as a result 

of environmental change and change  is induced  by the external 

parameter . Thus the forces which produce change in any system are 

non-linear and logarithmic in nature. But we should note that these 

changes are induced in systems which are themselves linear in nature. 

This then is a  mathematical model which is essentially holistic in 

character in that it is simultaeously both linear and non-linear.  

 

The model can be applied to any statistical system comprised of any large 

numbers of components and which can be applied to evolutionary theory. 

Clearly evolutionary theory can be mathematized in the manner described 

above in that all life forms have an intrinsic tendency towards a form 

statistical equilibrium  

Conventional evolutionary theory states that  random mutations of certain 

individuals within species are more likely to survive than others but, if we 

think about this scenario, the chances of a particular mutation coinciding 

with a subtle, or for that matter radical change in the environment, are 

slim if not unlikely. Thus, it is my contention that evolutionary processes 

are statistical in their nature and if, for any reason, the population of a 

specific environment should find itself in a state of dis-equilibrium, then 

that population has an intrinsic tendency to regain its statistical 

equilibrium. 
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That equilibrium state is a product of the intrinsic qualities of the 

population which is in turn solely a product of the numerical structure of 

the system and my model shows that the slightest perturbation from 

equlibrium can produce masive distortions in the probability distributions 

of genetic change.  

 

To conclude, we can state that the genetic content of any species is 

inherently stable unless strongly influenced by non linear processes in the 

environment. Conversely these non linear environmental processes can be 

stongly influenced by the equilibrium state of the genetic content of a 

particular species. 

 

This being the case,we must conclude that if the environment and the 

gene pool together costitute a self regulating system, then evolutionary 

processes can only change over time and time is not, in itself, an 

environmental parameter. Since it is the repulsive gravitational field 

which is the creator of time (see ‘The Large Scale Structure of the 

Universe’) then gravity is the creator and engine of evolutionary 

processes and indeed, of life itself. 

 

 

 

                                                 END 

   

 

 

 

 


