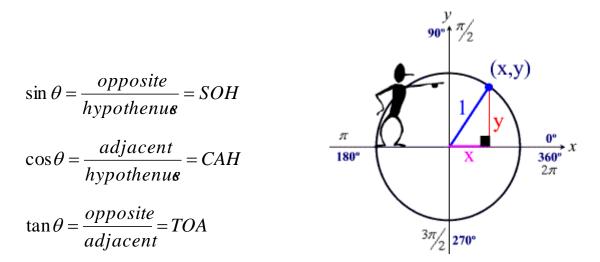
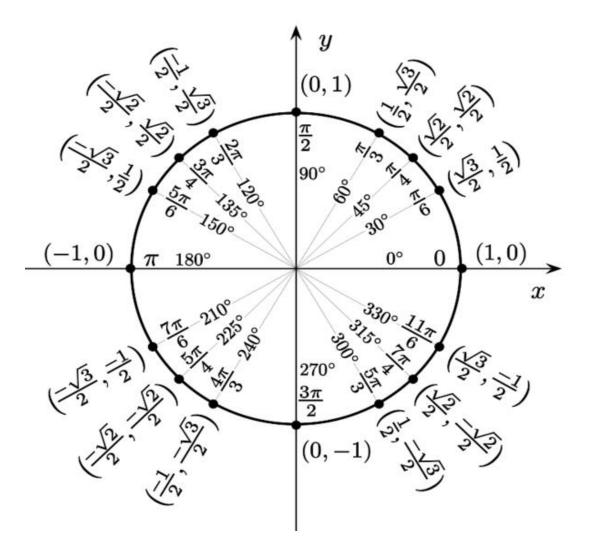
Solving Trigonometric Equations

We have been doing Trig identities, reference angles and graphing lately. Today we will take a look at solving trigonometric equation.

Before starting anything, we need to review our reference angles



This is the trigonometry unit circle, studying this chart will help a lot in solving trig.



The difficulties can be varied from problems to problems. Let's start with the easy one.

Example 1:

 $2\cos x - 1 = 0$

*Step*1: add 1 on both side

• $2\cos x - 1 = 0$

+1 = +1

Step 2: divide 2 on both side

• $2\cos x = 1$ • $\cos x = \frac{1}{2}$

Step 3: take the arccosx (the inverse function of cosine) on both side

• $\arccos(\cos x) = \arccos \frac{1}{2}$

Step 4: cross out arccos(cos), leaving the x

• $x = \arccos \frac{1}{2}$

Step 5: What is the arccos $\frac{1}{2}$? it's 60° based on the unit circle above

•
$$x = 60^{\circ}$$

Example $2:3\sec^2 x - 4 = 0$

Step 1: Add 4 on both sides [always try to isolate X since that's what we're looking for]

$$3\sec^2 x - 4 = 0$$
$$+ 4 = +4$$
$$3\sec^2 x = 4$$

Step 2 : divide 3 on both sides

$$\left(\frac{1}{3}\right)3\sec^2 x = 4\left(\frac{1}{3}\right)$$
$$\sec^2 x = \frac{4}{3}$$

Step 3: take the square root of 2 on both sides

$$\sqrt{\sec^2 x} = \sqrt{\frac{4}{3}}$$
$$\sec x = \pm \frac{2}{\sqrt{3}}$$

Step 4: take the inverse of sec which is arcsec

 $\operatorname{arcsec(secx)} = \operatorname{arcsec} \pm \frac{2}{\sqrt{3}}$ bubble thought : $\operatorname{sec} = \frac{1}{\cos x} = \pm \frac{2}{\sqrt{3}}, \cos x = \pm \frac{\sqrt{3}}{2}$ since we flip both side up side down. $\operatorname{arccos} \pm \frac{\sqrt{3}}{2}$ is 30° and 150° based on the unit circle, this is why memorizing it is help ful *FINAL* ANSWER: x = 30°,150° *Example* 3 : $\tan x \sin^2 x = 2 \tan x$

Step 1: subtract 2 tan x on both sides to set the equation equal to zero

some of you might be asking the question why dont we divide tanx , we will answer it later on $\tan x \sin^2 x = 2 \tan x$ $-2\tan x$ $-2\tan x$ $\tan x \sin^2 x - 2 \tan x = 0$ Step 2: Factor out $\tan x$ $\tan x(\sin^2 x - 2) = 0$ Step 3: Set $\tan x = 0$ and $(\sin^2 x - 2) = 0$ $\tan x = 0$, $(\sin^2 x - 2) = 0$ Step 4: Solve for x $\arctan(\tan x) = \arctan 0$ Bubble thought : $\tan x = \frac{\sin x}{\cos x} \rightarrow 0 = \frac{\sin x}{\cos x} \rightarrow 0 = \frac{0}{1}$ sin and cos might be at 0° or 180° since we go with the first answer, 0° is the correct answer $x = 0^{\circ}$ Step 5: solve for $(\sin^2 x - 2) = 0$ $\sin^2 x - 2 = 0$ $\sin^2 x = 2$ $\sin x = \pm \sqrt{2}$ $\arcsin(\sin x) = \arcsin \pm \sqrt{2}$ $x = \arcsin \pm \sqrt{2}$ since this is not our reference angles , we can't solve unless we use calculator you can write the final solution as

$$x = \arcsin \pm \sqrt{2}$$

so we have 3 answers for x : 0° and arcsin $\pm \sqrt{2}$

- IMPORTANT: you do not shorten equations by eliminating variables when it comes to SOLVING. When you ELIMINATE the VARIABLE, you are ELIMINATING ANSWERS.
- When it's solving, you are trying to ISOLATE X
- When solve for x, the solutions might be various due to its reference angle. For example

 $\sin 30^\circ = \frac{1}{2}$

AND

 $\sin 150^\circ = \frac{1}{2}$ Even though the angles are different but since they are reference angles, their

- We normally account for the first solution if they do not ask to list all the possible values for x within a certain interval
- General solution is more like a formula for infinite solution
- Arc means the inverse of whatsoever comes after it.
- If you have double angle, you have to account for 2 angles, for example

 $\sin 2\theta = 0$ $2\theta = \arcsin \theta$ $2\theta = 0^{\circ}, 180^{\circ}$ *divide* by 2 $\theta = 0^{\circ}.90^{\circ}$