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ABSTRACT 

 

Network design problem has been widely investigated using genetic algorithms. It is known that memetic algorithm 

solutions are better than genetic algorithm solutions. However, studies that investigate the behavior of memetic algorithm for 

various instances of multi-objective optimization problem such as network design are rare. In this paper, a memetic 

algorithm (MA) for communication network design problem is presented. The behavior of the MA is investigated for a set of 

problem instances ranging between 10 nodes and 36 nodes. The results show the most probable pareto-optimal result is not 

the same as the best result obtainable for 10-node network problem unlike in 36-node network problem where the most 

probable optimal result happened to be the best result. For 21-node network problem, the most probable optimal result 

(1167.4, 0.03) is better than the least probable optimal result (1167.4, 0.04) but ranks the same in quality with other likely 

result (1158.6, 0.04).   
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1. INTRODUCTION 

 

The increasing complexity of the network design problems calls for advanced optimization techniques. Network design 

problems where even a single cost function is optimized are often NP-hard (Kumar & Banerjee, 2003). In addition, 

communication network design problems are not time critical. Therefore approaches based on meta-heuristics such as 

simulated annealing, tabu search, evolutionary computing, nature inspired algorithms (Pioro & Medhi, 2004), (Resende & 

Pardalos, 2006) have been designed to tackle these problems. Concerning evolutionary computing in telecommunication 

network design, a comprehensive study is presented in Kampstra (2005) up to 2005 containing relevant research study 

references, where network design problems are classified into node location problems, topology design, tree design, routing, 

restoration, network dimensioning, admission control and frequency assignment/wavelength allocation. The optimization 

techniques employed are mainly variations of Genetic Algorithms (GA). Additional work on telecommunication network 

optimization has followed in the last six years. 

 

Real world network design problem normally involves simultaneous optimization of multiple and usually partially 

contradicting objectives. Therefore more often than not, there is not a single optimal solution, given the diversity of the set of 

objectives, but a set of congruent solutions, known as Pareto-optimal. The topological design of communication networks is 

usually a multi-objective problem involving simultaneous optimization of the cost concerning network deployment as well 

as various performance criteria (for example, average delay, throughput) subject to additional constraints such as reliability 

and bandwidth constraints. These problem-specific objectives are often opposing; for example over-provisioning is a 

strategy for reducing average delay in a network; that is to increase available link capacities which will consequently result 

in the increase of the total network deployment cost 

 

Memetic Algorithm, recognized as a hybrid Genetic Algorithm (Moscato, 1989), (Moscato, 1999) has differentiated itself 

from the genetic algorithm classification. Unlike conventional genetic algorithms which emulate biological evolution, 

Memetic Algorithms imitate cultural evolution. Their conceptual difference is such that GA forbids individuals to choose, 

modify and improve their own genes in its natural process whereas MA allows individuals to intentionally acquire, modify, 

and improve their memes (Moscato, 1999), (Krasnogor & Smith, 2000). In other words, though GA is capable of finding 

good regions in the search space, the exploitation of these good regions needs more attention which GA is not designed for. 

Alternatively, MA has the local search procedure employed every time some new solutions are generated and emphasizes on 

local optimal solutions. Our literature survey shows that MAs are very effective and efficient in many hard combinatorial 

optimization problems (Krasnogor & Smith, 2000), (Herroelen, Demeulemeester, & Van Dommelen, 1997), (Merz & 

Freisleben, 2001), (Yin, 2004) but have been rarely applied in multi-objective network design problems. MA is considered 

and applied to solve multi-objective topology design problem in this paper. 

 

2.  LITERATURE REVIEW 

 

Dengiz, Altiparmak & Smith (1997) proposed a GA for reliable network design. The comparison of the algorithm with the 

Branch and Bound method was made using 79 testing sets. These tests proved that the proposed GA is superior to the 

Branch and Bound method. The algorithm focuses only on the design of the network that should be reliable, neglecting cost 

and delay requirements. Therefore, the results obtained by the proposed GA can only be used as candidates for future 

investigation of its attributes. It cannot be used for real life network design.  
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In Cheng (1998), a comparison of different methods of network design optimization was done. An approach based on 

genetic algorithm was briefly compared with Branch-and-Bound method and simulated annealing technique. It was pointed 

out that the Branch-and-Bound method finds the global optimum but it is a very time consuming search technique. The 

simulated annealing is faster than the Branch-and-Bound method but often finds only a local optimum. On the other hand, 

the genetic algorithm-based approach is very fast but is not able to ensure global extreme finding. In opposite to simulated 

annealing, genetic algorithm provides parallel search and therefore global extreme finding is more probable than for 

simulated annealing. Aggarwal, Chopra & Bajwa (1982) employed greedy heuristic approach to maximize reliability given a 

cost constraint for networks with different reliability of links and nodes. Ventetsanopoulos & Singh(1986) used a two-step 

heuristic procedure for the problem of minimizing network’s cost subject to reliability constraint.  

 

This algorithm first used a heuristic to develop an initial feasible network configuration, and then a branch-and-bound 

approach was used to improve this configuration. These two algorithms are capable of designing cost-effective reliable 

network. Unfortunately, they cannot ascertain minimal average delay for data delivery. Again, the method cannot be as 

scalable as pure heuristic method. Kumar, Parida & Gupta (2002) applied Pareto Converging Genetic Algorithm (PCGA) 

and discovered that the convergence properties of PCGA are better than those of branch exchange heuristics. In addition 

PCGA was found to be scalable to large networks.  Banerjee & Kumar (2007) studied multi-objective network design using 

an EA heuristic and empirically showed that the EA heuristic generally provides better solution compared to its deterministic 

counterparts. 

 

Papagianni, Papadopoulos, Pappas, Tselikas, Kaklamani & Venieris (2008) used Particle Swarm Optimization (PSO) to 

solve multi criteria network design problem. It is claimed that the approach is more effective than the GA used in Banerjee 

& Kumar (2007) but the algorithm was only tested for 16-node network and nothing was said about its efficiency.  Duarte & 

Baran (2001) proposed a parallel EA for solving network design problems with cost and reliability as objectives. The 

proposed EA was found to be capable of obtaining a broader set of solutions than the sequential variant did in addition to its 

better efficiency. Watcharasitthiwat & Wardkein (2009) employed Improved Ant Colony Optimization (IACO) method to 

solve the topology network design problem considering both economics and reliability and discovered that IACO is superior 

to GA, Tabu Search algorithm, and ACO both in solution quality and computational time. 

 

3. MATHEMATICAL FORMULATION 

 

3.1 Network Design Parameters 

For the purpose of this paper, the following network parameters are used. 

N denotes the total number of nodes in the network 

 denotes the physical distance between every pair of nodes  and  

 is the amount of traffic (in Kbps) flowing along link ( ) 

 represents the cost of the link between nodes and  

is the cost of network equipment at node  

 is the capacity of link ( ) i.e. the maximum amount of traffic the link can carry at any point in time 

 is selection status of link ( ) :  = 1 if link ( ) is selected, else  = 0 

 is the minimum reliability required of the network  (   = 0.95) 

L is maximum distance for which the signal is sustained without amplification ( L is set to 15km) 

A is the cost of each amplifier unit ( A is set to #6.00)  

Poisson process was used to model the traffic delay 
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3.2 Objective Functions 

Two objective functions; network cost and end-to-end message delivery delay were used (Banerjee & Kumar, 2007), each of 

which is approximated by the following formulation. 

 

1. Network Cost: 

           (1) 

Where; 

 (cost of nodes)             (2) 

 (cost of links)             (3) 

   (cost of amplification units on the links)          (4) 

 

2. Average Delay 
The traffic between nodes is modeled as a Poisson Process. Poisson process has been vastly used in the past to model traffic 

in conventional networks. For delay function, Poisson traffic model is utilized (Resende & Pardalos, 2006), (Banerjee & 

Kumar, 2007) and is as given in equation (6)  

 

Queueing Delay for Poisson Traffic : The delay in a network for the queueing model is largely due to the queueing of 

packets in intermediate nodes. The delay formalization can be stated as follows:  

 

 

            (5) 

From queueing theory, the queueing delay  using standard M/M/1 (Poisson) model is given by: 

             (6) 

 = 0 if there is no link between nodes  and  

  =    if the network cannot handle the traffic load with the existing links’ capacities and routing policy. 

 

3.3 Constraints 

Minimization of Network Cost and Average Delay is done subject to the following constraints: 

Flow Constraints which can be expressed as:  

   ≤                (7) 

and  

 

Reliability Constraint which can be expressed as: 

    R(x)   ≥                                                             (8) 

Monte Carlo Simulation is used to estimate network reliability. The network is simulated t times, given the design and the 

links’ reliabilities. Depth First Search (DFS) is used to implement spanning tree in the algorithm. 

 

3.4 Routing Policy 

Breadth First Search (BFS) is used for routing. The metric used for this purpose is the length of the link. Given a graph 

(topology) G = (V, E) and a distinguished source vertex s, BFS computes the distance (smallest number of edges) from s to 

each reachable vertex.  
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3.5 Assumptions 

The following assumptions were made in the problem formulation 

1 The location of each network node is given 

2 Nodes are perfectly reliable 

3 Each  is fixed and known 

4 Each link is bidirectional i.e. a path can be traversed in either direction 

5 There is no redundant link in the network 

6 Links are either operational or failed 

 

 

4. MA DESIGN   

 

A. Memetic Algorithm  
 1 Initialization: randomly generate population of N chromosomes  

 2  Fitness: calculate the fitness of all chromosomes 

 3 Create a new population: 

 a. Selection: select 2 chromosomes from the population 

 b. Crossover: produce 2 offsprings from the 2 selected chromosomes 

 c. Local Search: apply local search to each offspring   

 d. Mutation: perform mutation on each offspring. 

 e.  Local search: apply local search to each offspring. 

4  Replace: replace the current population with the new population 

5  Termination: Test if the termination condition is satisfied. If so stop.  If not, return the best solution in the current 

population and go to step 2.        

 

B. Implementation Details 
Encoding Scheme 

The chosen encoding scheme is such that every chromosome codes a possible network, which corresponds to an individual 

in a set of feasible solutions of the problem. This set of feasible solutions constitutes a population. The chromosome is 

represented by a constant length integer string representation. The chromosome consists of two parts, the first part contains 

details of NE’s at the nodes and the second part consists of details of the links.  For example, if there are H types of nodes, 

then log 2 H bits are required to encode a node. Therefore the first part of the chromosome consists of   N .log 2 H bits.  If a 

link exists between nodes 1 and 2 then the first bit position in the link part is set to 1. Hence the second part of the 

chromosome consists of (N(N-1))/2 bits.  

 

Initial Population 

The algorithm starts by creating an initial population. There are two ways of generating initial population namely heuristic 

process and random process. A random process of generating initial populations is adopted. The random initialization 

procedure does not guarantee the feasibility of each solution in the initial population. As such a checking process is involved. 

A checking process checks if each solution in the population is feasible (i.e. satisfies the constraints). For all infeasible 

solutions a repair strategy is used to replace the infeasible solutions with new feasible solutions.  

 

Fitness Evaluation 

Fitness of a chromosome is evaluated based on principle of Pareto ranking. Pareto-rank of each individual is one more than 

the number of individuals dominating it. All non-dominated individuals are assigned rank one. Network cost and average 

delay are used to evaluate the rank of an individual chromosome using the principle of Pareto dominance. The fitness of an 

individual as defined in Banerjee & Kumar (2007) is given by  

           (9) 

Selection 

Two individuals are selected by Roulette wheel selection in which the probability of an individual i being selected is 

proportional to its fitness. Let   be fitness values of individuals 1, 2, ………n. Then the selection 

probability, , for an individual , is given as 

                                                                                                              (10) 
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Crossover 

This operation operates on two chromosomes. The chromosomes are randomly selected based on the probability of crossover 

which is a randomly generated number ranging between 0 and 10. In this work, the two point crossover technique was 

implemented. The crossover probability (denoted by pC) is the probability of the number of offspring produced in each 

generation to the population size (denoted by popSize). This probability controls the expected number pC × popSize of 

chromosomes to undergo the crossover operation. A high crossover probability is used here to allow exploration of more of 

the solution space, and reduces the chances of settling for a false optimum; but if this probability is too high, it results in the 

wastage of a lot of computation time in exploring unpromising regions of the solution space. 

 

Mutation 

This is the operation of randomly changing some of the bits of the chromosome representing an individual with a view to 

increasing the exploration of the solution space. 

 

Local Search  

The local search technique used in MA is the hill climbing search algorithm. It is essentially an iteration that continuously 

proceeds in the direction of increasing quality value. The algorithm is as shown below. 

 

While (termination condition is not satisfied) do 

New solution ← neighbours(best solution); 

If new solution is better than actual solution then 

Best solution ← actual solution 

End if 

End while 

 

 

5. NUMERICAL EXPERIMENTS 

 

In this section, results of numerical experiments using 3 test problems are reported. All experiments were performed on a HP 

630 NOTEBOOK PC with the following configuration: 

2.13GHz Processor Speed, 3.0GB RAM and 64 BIT OS 

The  algorithm was implemented in Java. The results in bold (objective vectors) are the best pareto-ranked vectors for each 

run (that is, part of the pareto optimal front). Other algorithm design parameters used are:  

Population size - 100 (250 for Problem 3) 

Mutation probability – 0.02 

Two- point crossover was used 

Number of Node Type – 4 

Test Problems: 

Problem 1: 10-node network design  

Problem 2:  21-node network design  

Problem 3:  36-node network design. 

 

Tables of Results for Problem 1  

 

Run 1  

 

 

 

 

Run2 

 

 

 

MA 

No of Gen C/Ratio Cost AvDelay CPU Time 

5 98 619.6 0.06 145 

10 100 619.6 0.05 410 

15 100 619.6 0.05 548 

20 100 619.6 0.05 643 

MA 

No of Gen C/Ratio Cost AvDelay CPU Time 

5 98 619.6 0.06 145 

10 100 619.6 0.05 410 

15 100 619.6 0.05 548 

20 100 619.6 0.05 643 
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Run3 

 

 

Run4 

 

 

Run 5  

 

Run 6 

 

MA 

No of Gen C/Ratio Cost AvDelay CPU Time 

5 98 534.0 0.06 166 

10 100 534.0 0.05 472 

15 100 534.0 0.06 537 

20 100 534.0 0.07 615 

 

Run7 

MA 

No of Gen C/Ratio Cost AvDelay CPU Time 

5 98 534.0 0.06 166 

10 100 534.0 0.05 472 

15 100 534.0 0.06 537 

20 100 534.0 0.07 615 

 

 

 

 

 

 

 

MA 

No of Gen C/Ratio Cost AvDelay CPU Time 

5 98 619.6 0.06 145 

10 100 619.6 0.05 410 

15 100 619.6 0.05 548 

20 100 619.6 0.05 643 

MA 

No of Gen C/Ratio Cost AvDelay CPU Time 

5 98 619.6 0.06 145 

10 100 619.6 0.05 410 

15 100 619.6 0.05 548 

20 100 619.6 0.05 643 

MA 

No of Gen C/Ratio Cost AvDelay CPU Time 

5 98 619.6 0.06 145 

10 100 619.6 0.05 410 

15 100 619.6 0.05 548 

20 100 619.6 0.05 643 
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Tables of Results for Problem 2  

 

Run1 

 

MA 

No of Gen C/Ratio Cost AvDelay CPU Time 

5 97 1259 0.06 954 

10 100 1167.4 0.05 1892 

15 100 1167.4 0.04 4467 

20 100 1158.6 0.04 5665 

 

 

Run 2 

 

MA 

No of Gen C/Ratio Cost AvDelay CPU Time 

5 97 1259 0.06 910 

10 100 1167.4 0.05 1989 

15 100 1167.4 0.04 4320 

20 100 1167.4 0.03 5766 

 

Run 3 

 

MA 

No of Gen C/Ratio Cost AvDelay CPU Time 

5 97 1259 0.06 954 

10 100 1167.4 0.05 1892 

15 100 1167.4 0.04 4467 

20 100 1158.6 0.04 5665 

 

 

Run 4 

 

MA 

No of Gen C/Ratio Cost AvDelay CPU Time 

5 97 1259 0.06 910 

10 100 1167.4 0.05 1989 

15 100 1167.4 0.04 4320 

20 100 1167.4 0.03 5766 
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Run 5 

 

MA 

No of Gen C/Ratio Cost AvDelay CPU Time 

5 97 1259 0.06 910 

10 100 1167.4 0.05 1989 

15 100 1167.4 0.04 4370 

20 100 1167.4 0.03 5766 

 

 

Run 6 

 

MA 

No of Gen C/Ratio Cost AvDelay CPU Time 

5 98 1167.4 0.06 910 

10 100 1167.4 0.05 1989 

15 100 1167.4 0.04 4322 

20 100 1167.4 0.09 5756 

 

Run 7 

 

5 MA 1259 0.06 910 

10 No of Gen C/Ratio Cost AvDelay CPU Time 

15 100 1167.4 0.04 4320 

20 100 1167.4 0.03 5766 

 

 

Tables of Results for Problem 3 

 

Run 1  

MA 

No of Gen C/Ratio Cost AvDelay CPU Time 

5 97 1259 0.06 3987 

10 100 1167.4 0.05 5673 

15 100 1167.4 0.05 9210 

20 100 1167.4 0.05 14900 

25 100 1167.4 0.05 18634 
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Run 2 

 

 

MA 

No of Gen C/Ratio Cost AvDelay CPU Time 

5 97 1167.4 0.06 3598 

10 100 1167.4 0.05 5890 

15 100 1167.4 0.05 9673 

20 100 1167.4 0.05 15897 

25 100 1167.4 0.04 18754 

 

 

Run 3 

 

MA 

No of Gen C/Ratio Cost AvDelay CPU Time 

5 97 1259 0.06 3987 

10 100 1167.4 0.05 5673 

15 100 1167.4 0.05 9210 

20 100 1167.4 0.05 14900 

25 100 1167.4 0.05 18634 

 

 

 

Run 4 

 

MA 

No of Gen C/Ratio Cost AvDelay CPU Time 

5 97 1167.4 0.06 3598 

10 100 1167.4 0.05 5890 

15 100 1167.4 0.05 9673 

20 100 1167.4 0.05 15897 

25 100 1167.4 0.04 18754 
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Run 5 

 

MA 

No of Gen C/Ratio Cost AvDelay CPU Time 

5 97 1167.4 0.06 3598 

10 100 1167.4 0.05 5890 

15 100 1167.4 0.05 9673 

20 100 1167.4 0.05 15897 

25 100 1167.4 0.04 18754 

 

Run 6 

MA 

No of Gen C/Ratio Cost AvDelay CPU Time 

5 97 1167.4 0.06 3598 

10 100 1167.4 0.05 5890 

15 100 1167.4 0.05 9673 

20 100 1167.4 0.05 15897 

25 100 1167.4 0.04 18754 

 

 

Run 7 

 

MA 

No of Gen C/Ratio Cost AvDelay CPU Time 

5 97 1167.4 0.06 3598 

10 100 1167.4 0.05 5890 

15 100 1167.4 0.05 9673 

20 100 1167.4 0.05 15897 

25 100 1167.4 0.04 18754 
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6. DISCUSSION 

 

From the tables of results, it is evident that the time taken by MA to return solution increases with the number of generation 

and with the network size. The results also show that: (1) for 10-node network problem, the most probable pareto-optimal 

result is (619.6, 0.05) which was obtained in 5 runs out of the 7 runs. However, a better result of (534.0, 0.05) is obtainable. 

(2) for 21-node network problem, the most probable pareto-optimal result is (1167.4, 0.03) which was obtained in 4 runs out 

of the 7 runs. (3) for the 36-node network problem, the most probable pareto-optimal result is (1167.4, 0.04)   

  

 7. CONCLUSION 

 

A memetic algorithm is designed and implemented for multi-objective design of communication networks. The algorithm is 

effective for finding optimal results. Our future work will focus on investigating the impact of intelligent initialization and 

smarter local search mechanism on solution quality and the overall performance of the algorithm. Currently the choice of 

mutation position in a chromosome is made randomly. A guided mutation based on the feature of the network topology is 

also to be investigated. 
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TEST DATA FOR 10-NODE NETWORK 

 

Node Details (NodeType, ) =  { (01,42) ,(0, 78) ,(10,33) ,(00,53) ,(01,42) ,(00,13) ,(10,9) ,(11,23) ,(10,57) ,(10,25) } 

Link Details ( , ) = 

{ (28,47,60,46) ,(20,43,90,72) ,(28,12,54,28) ,(62,39,61,46) ,(42,23,24,9) ,(42,30,16,14),(36,3,44,16) ,(40,18,75,54) ,(10,36,2

9,8) ,(44,30,79,53) ,(44,45,54,35) ,(36,18,66,51) ,(32,13,78,25) ,(14,16,96,54) ,(16,13, 

84,74) ,(21,28,76,17) ,(22,3,80,71) ,(3,39,55,54) ,(47,12,66,62) ,(26,11,89,56) ,(13,42,77,47) ,(46,22,45,39) ,(28,6,53,16) ,(5,

38,89,57) ,(28,40,16, 

9) ,(48,49,49,40) ,(18,34,37,9) ,(34,35,11,8),(11,41,39,31) ,(46,20,32,9) ,(11,3,50,35) ,(70,1,54,41) ,(18,6,8,65) ,(35,42,91,66

) ,(14,33,10,26) ,(11,33,60,9) ,(43,16,79,49) ,(20,43,88,56) ,(16,13,96,68) ,(6,30,91,67) ,(34,49,16,7) ,(37,21,57,49) ,(20,12,7

9,62) ,(33,46,81,70) ,(48,25,8,7)  } 

 

 


