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Abstract

Using climate change as a prototype motivating example, this paper analyzes the

implications of structural uncertainty for the economics of catastrophes. The pa-

per shows that having an uncertain multiplicative parameter, which ampli�es or scales

exogenous impulses and is updated by Bayesian learning, induces a critical �tail fatten-

ing�of posterior-predictive distributions. Such fattened tails have strong implications

for situations (like climate change) where a catastrophe is theoretically possible because

prior knowledge cannot place su¢ ciently narrow bounds on overall damages. Under

strict relative risk aversion, the impact of an uncertain scale of damages on cost-bene�t

analysis outweighs the impact of discounting.

1 Introduction

A long-standing theme with important rami�cations concerns a basic distinction between

risk and uncertainty. �Risk�is intended to signify a random situation where probabilities

are known measurable frequencies but realized future outcomes are not yet known. �Uncer-

tainty�re�ects a lack of knowledge at a deeper level, where the probabilities driving future

outcomes are themselves unknown because information is limited, vague, or ambiguous.1

Loosely speaking, in the distinction I am trying to make throughout this paper I identify

�Department of Economics, Harvard University, Cambridge, MA 02138 (e-mail: mweitz-
man@harvard.edu). For helpful detailed comments on earlier drafts of this paper, but without implicating
them for its remaining defects, I am grateful to Frank Ackerman, Richard Carson, Stephen DeCanio, Michael
Mastrandrea, Cedric Philibert, Richard Posner, Richard Tol, Gary Yohe, and Richard Zeckhauser.

1Warning: what economists name �risk�and associate narrowly with known probabilities, scientists call
�uncertainty��while what economists name �uncertainty�and associate narrowly with unknown probabil-
ities, scientists label as �deep uncertainty�or �structural uncertainty.�
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�risk�with having known PDFs (probability density functions) while �uncertainty�is about

PDFs of PDFs. I will argue in this paper that a useful way to think about the di¤erence

between risk and uncertainty identi�es risk with the stochastic outcome of a data-generating

process whose structural parameters are known, while uncertainty refers to the part of a

data-generating process concerned with structural parameters that are unknown and must

be estimated. This distinction will be shown to have surprisingly strong consequences for

applications of expected utility theory under strict relative risk aversion.

The key unknown structural parameter in this paper is a crucial multiplier that ampli�es

(or scales) uncertain exogenous impulses, which are subsequently propagated throughout the

system. Very crudely �at an extremely high level of abstraction and without taking the

analogy too literally �the role of this uncertain multiplicative ampli�er or scale parameter

can be illustrated by the role of uncertain �climate sensitivity� in discussions of global

warming.

Let � lnCO2 be sustained relative change in atmospheric carbon dioxide while �T is

equilibrium temperature response. Climate sensitivity S is an amplifying or scaling mul-

tiplier for converting � lnCO2 into �T by the (reasonably accurate) linear approximation

�T � (S= ln 2) � � lnCO2. From the IPCC4 (2007) Executive Summary: �The equilib-

rium climate sensitivity is a measure of the climate system response to sustained radiative

forcing. It is not a projection but is de�ned as the global average surface warming following

a doubling of carbon dioxide concentrations. It is likely to be in the range 2 to 4.5�C with a

best estimate of 3�C, and is very unlikely to be less than 1.5�C. Values substantially higher

than 4.5�C cannot be excluded, but agreement of models with observations is not as good

for those values.� (For IPCC4, �likely�is P > 66% while �very unlikely�is P < 10%.)

In this paper I am mostly concerned with the 17% of those S �values substantially higher

than 4.5�C�which �cannot be excluded.� Eighteen recent studies of climate sensitivity with

18 PDFs of S lie behind the above-quoted IPCC4 summary statement. From Figure 1

in Box 10.2 of IPCC4 (2007), it is apparent that the right tails of these 18 PDFs tend to

be long (and thick). For graphical neatness, Box 10.2 arbitrarily truncates all PDFs at

10�C, but they are actually more open-ended than this in most of the underlying studies.

The upper 5% con�dence level averaged over all 18 studies is S=6.2�C, which I take as

approximately meaning that P [S > 6:2�C] � 5%: For the purposes of this paper I assume
P [S > 8�C] � 2%, which is very roughly consistent with the averaged right tails in Box 10.2.
Such numbers are highly-speculative ballpark estimates, but the subject matter of this paper

concerns just such kind of highly-speculative open-ended scale parameters and my example

here does not depend at all on precise numbers.

Societies and ecosystems whose average temperatures have changed in the course of
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one or two centuries by �T > 8�C (for U.S. readers: 8�C= 14:4�F) are located in terra

incognita, since such high temperatures have not existed for at least tens of millions of

years. IPCC4 (2007) gives several truly frightening examples of possible consequences of

such kind of temperature changes: sudden disintegration of the Greenland or West Antarctic

ice sheets with dramatic raising of sea level, shutdowns or even reversals of the warming com-

ponent of large-scale oceanic circulation systems like the Gulf Stream, major disruptions of

large-scale weather patterns like monsoons, runaway greenhouse warming due to endogenous

heat-induced rapid releases of the immense amounts of GHGs (greenhouse gases) currently

sequestered in arctic permafrost or o¤shore methane hydrates, and so forth. It is di¢ cult

to imagine what �T > 8�C might mean for life on earth, but such temperature changes

(which would be geologically instantaneous) are larger than what separates us now from

past ice ages. Furthermore, we are far from knowing that anthropogenically-injected GHG

stocks will be stabilized at anything like twice pre-industrial-revolution levels. Given cur-

rent trends in GHG emissions, we will attain such a doubling within about 30-40 years and

will then go well beyond that amount unless relatively drastic measures are taken start-

ing soon. A rough guesstimate of the equilibrium temperature response to a tripling of

GHG concentrations (which, projecting current trends in GHG emissions, would be attained

relative to pre-industrial-revolution levels within about a century) might in this case be

P [�T > 8�C] � 3-4%.
The numbers for probabilities of extreme disasters being cited above are all such crude

ballpark estimates that there is a tendency in the literature to dismiss them on the grounds

that they are much too highly speculative to be taken seriously. By contrast with the con-

ventional wisdom of not taking seriously extreme-temperature-change probabilities because

such crude estimates are highly speculative, the purpose of this paper is to prove the ex-

act opposite logic by giving a rigorous sense in which (other things being equal) the more

speculative and fuzzy are the tail probabilities of extreme events, the more serious is the sit-

uation for an agent whose welfare is measured by present discounted expected utility. The

core di¢ culty comes from combining strict relative risk aversion with a highly-uncertain,

e¤ectively-open-ended impulse-amplifying multiplicative factor.

How warm the climate ultimately gets is approximately a product of two factors �the

amount of GHG concentrations and a critical climate-sensitivity-like scaling multiplier. Both

of these factors are uncertain, but the scaling multiplier is much more open-ended on the high

side with a much longer right tail. The main point I am trying to make with these highly-

speculative extreme climate-change examples is to suggest that the great degree of scienti�c

indeterminacy enters cost-bene�t analysis in the reduced form of some highly-uncertain open-

ended climate-sensitivity-like amplifying or scaling factor. This critical scale parameter is
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then used as a multiplier for converting aggregated GHG emissions � which are largely

economic variables or unknowns �into eventual temperature changes. The paper will show

that a generalization of this same modus operandi packaged in the form of a macroeconomic

model with essentially the same reduced form (structural uncertainty about some unknown

open-ended scale-multiplier parameter) can have very strong consequences for cost-bene�t

analysis, because it can drive applications of expected utility theory under strict relative

risk aversion. It will turn out in this paper that the fact that empirical climate sensitivity

estimates have fat-tailed PDFs is preordained in a certain sense (from being constructed out

of inductive experience), rather than being merely coincidental.

When it is fed back into an economic analysis, the great open-ended uncertainty about

eventual temperature changes becomes yet-greater yet-more-open-ended uncertainty about

eventual changes in utility. Not only is it very di¢ cult to estimate tail probabilities of

high-�T outcomes, but translating this via ambiguous weather consequences and unknown

adaptation capabilities into utility-equivalent units for people living a century or two from

now introduces enormous further fuzziness, especially when such utility includes the existence

values which people at that future time may place on wild species, in situ conservation, and

natural or historical habitats. Even if climate sensitivity were bounded above by some very

high number, the value of what might be called �welfare sensitivity�is e¤ectively unbounded.

Without further belaboring the point, the overall utility e¤ects of global warming that

might accompany a 2% chance of S > 8�C are su¢ ciently open-ended and fuzzy that it seems

fair to say o¤hand there might be a non-negligible probability of a catastrophe. In his book

Catastrophe: Risk and Response,2 Richard A. Posner de�nes the word catastrophe �... to

designate an event that is believed to have a very low probability of materializing but that

if it does materialize will produce a harm so great and sudden as to seem discontinuous with

the �ow of events that preceded it.� Posner adds: �The low probability of such disasters �

frequently the unknown probability, as in the case of bioterrorism and abrupt global warming

�is among the things that ba­ e e¤orts at responding rationally to them.� In this paper I

address what rational economic analysis in the form of expected present discounted utility

theory might o¤er in the way of guidance for thinking coherently about the economics of

uncertain catastrophes (using Posner�s approximate sense of the term).

The prime general example of an unknown structural parameter that best illustrates the

critical distinction I am trying to make between risk and uncertainty is a standard-deviation-

like scale parameter whose way of interacting parallels the interaction of a climate-sensitivity-

like amplifying multiplier. Suppose the true value of this generic scale parameter is unknown

because of limited past experience, which situation can be modeled as if inferences must

2Posner (2004). See also the insightful review by Parson (2007).

4



be made inductively from a �nite number of data observations. At a very high level of

abstraction, each data point might be interpreted as representing an outcome from a par-

ticular study. This paper shows that having an uncertain scale parameter in such a setup

invariably adds a signi�cant tail-fattening e¤ect to posterior-predictive expectations, even

when Bayesian learning takes place with arbitrarily large (but �nite) amounts of data. The

driving mechanism is that, loosely speaking, the operation of taking �expectations of expec-

tations� or �probability distributions of probability distributions� over an uncertain scale

parameter invariably spreads apart and fattens the tails of the reduced-form compounded

posterior-predictive probability distribution. Rare disasters located in the stretched-out

fattened tails of such posterior-predictive distributions must have a large component of un-

certainty because it is inherently impossible to learn their true probabilities of occurrence

from �nite samples alone. The underlying sampling-theory principle is that the rarer is an

event the more unsure is our estimate of its probability.

This paper suggests that standard approaches to modeling the economics of climate

change (even those that purport to treat risk by Monte Carlo simulations) very likely fail

to account adequately for the implications of uncertain large consequences with small prob-

abilities. The overarching general message is that from inductive experience alone one

cannot acquire su¢ ciently accurate information about the probabilities of tail disasters to

prevent the expected marginal utility of an extra sure unit of consumption from becoming

unbounded for any utility function having strict relative risk aversion. Instead, to eliminate

or reduce the possibilities of bad extremes one must rely on �extra�prior information outside

the data-evidence �and subsequent expected-utility analysis will then depend critically on

this exogenously-imposed prior information. In this sense, structural or deep uncertainty

is potentially much more of a driving force than discounting or risk per se for cost-bene�t

applications of expected utility theory to open-ended situations with unlimited exposure.

For such situations where there do not exist prior limits on damages (like climate change

from greenhouse warming), expected present discounted utility analysis of costs and bene�ts

is likely to be dominated by considerations and concepts related more to catastrophe insur-

ance than to the consumption-smoothing consequences of long-term discounting at one or

another particular interest rate.
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2 How Bad Could It Possibly Get?

Let C be consumption. Suppose the existence of a representative agent having a smooth

utility function U(C) with U 0(C) > 0 and U 00(C) < 0. The elasticity of marginal utility


(C) � �
dU 0(C)
U 0(C)

dC
C

= �CU
00(C)

U 0(C)
(1)

is a standard (local) measure of utility curvature (as a function of C). Another name for


(C) is the coe¢ cient of relative risk aversion, because it quanti�es the degree to which an

agent dislikes uncertainty in proportionate consumption changes. De�ne

� � inf
C>0

(C); (2)

and say that a utility function displays strict relative risk aversion if � > 0.

In this paper I am concerned with the economics of catastrophic situations where C might

be disastrously small with tiny probability. A key role in determining the expected-utility

properties of such potentially-catastrophic situations will be played by the behavior of 
(C)

in the region where C is very small. Without loss of generality to anything of substance,

it is convenient for ease of exposition in this paper to assume straightaway the isoelastic or

CRRA (constant relative risk aversion) power utility function whose marginal utility is

U 0(C) = C�� (3)

for some � > 0, which means that

U(C) =
C1��

1� � (4)

for � 6= 1 and U(C) = lnC for � = 1. The more general situation of a utility function

where (2) holds in place of (3) involves more elaborate notation but has essentially identical

consequences and conclusions.

In the model of this paper there are just two periods, the present and the future. (For

applications to climate change, the future would be one or two centuries hence.) Instead of

working directly with C, in this paper it is analytically more convenient to work with lnC.

If present consumption is normalized to unity, then the growth rate of consumption between

the two periods is

Y � lnC: (5)
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In this model, Y is a random variable capturing all uncertainty that in�uences future

values of lnC. For the purposes of this paper Y includes not just economic growth narrowly

de�ned. Much more essential to this paper�s application of the model, Y includes the

consumption-equivalent damages of adverse climate change. This paper is mostly concerned

with the small probability of a large negative realization of Y . (Note: here the �bad�tail

of Y is its left tail.) The �stochastic discount factor�or �pricing kernel�is an expression of

the form

M(C) = �
U 0(C)

U 0(1)
(6)

for discount factor � (0 < � � 1). The amount of present consumption that the agent

would give up in the present period to obtain one extra sure unit of consumption in the

future period is here

E[M ] = �E[exp(��Y )]; (7)

which is a kind of shadow price for discounting future costs and bene�ts in project analysis.

If the random variable Y has PDF f(y), then (7) can be written as

E[M ] = �

1Z
�1

e��y f(y) dy; (8)

which means that E[M ] is essentially the Laplace transform or moment-generating function

of f(y). This is helpful because the properties of the expected stochastic discount factor are

the same as the properties of the moment-generating function of a probability distribution,

about which a great deal is already understood. For example, if Y � N(�; s2) then plugging
the usual formula for the expectation of a lognormal random variable into (8) gives the

familiar expression

E[M ] = exp

�
�� � ��+ 1

2
�2s2

�
; (9)

where � = � ln � is the instantaneous rate of pure time preference. Expression (9) shows

up in innumerable asset-pricing Euler-equation applications as the expected value of the

stochastic discount factor or pricing kernel when consumption is lognormally distributed.

Equation (9) is also the basis of the well-known generalized-Ramsey formula for the riskfree

interest rate

rf = � + ��� 1
2
�2s2; (10)

which (in its deterministic form, for the special case s = 0) plays a key role in recent debates

about what social interest rate to use for intergenerational cost-bene�t discounting of policies
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to mitigate GHG emissions. The intergenerational-discounting debate has mainly revolved

around choosing �ethical�values of the rate of pure time preference �, but this paper will

demonstrate that for any � > 0 the �-e¤ect on rf in formula (10) becomes overshadowed by

the e¤ect of an uncertain scaling parameter s.

Although not phrased in this way, the existing literature already contains an example that

can be interpreted as showing a sense in which expected-utility-maximizing agents are much

more averse to structural uncertainty about the scaling-multiplier parameter s than they

are to pure risk in the form of an equation like (10) with as-if-known s. The example used

here to convey this basic idea is a relatively simple speci�cation consisting of the workhorse

isoelastic or constant-relative-risk-aversion (CRRA) utility function (3) along with familiar

probability distributions: lognormal, Student-t, gamma.3 The question will then arise at the

end of this section of the paper whether the insight that structural uncertainty is potentially

much more worrisome than pure risk is due here to the particular quirks of this relatively

simple example or, alternatively, it represents a generic idea of signi�cantly broader scope.

The answer, given in the next section, is that the result is generic (or at least much broader

than the example), and the relatively simple formulation of this section will at that point

help to motivate the subsequent development of a more general theory of catastrophic change

due to structural uncertainty about the true value of the relevant scale parameter.

Throughout this paper, the structural scale parameter controlling the tail spread of a

probability distribution is the most critical unknown. For the super-simple example of this

section, Y � N(�; s2) where the mean � is known but the scale parameter s is unknown.

In an extremely loose sense this unknown structural scale parameter s is a highly-stylized

abstraction of the e¤ect that is embodied in an uncertain climate-sensitivity-like amplifying

multiplier which was discussed in the introduction. With this rough analogy in this super-

simple example, Y = A�B�T , where A and B are positive constants.
The structural uncertainty about s will be modeled here as if this scale parameter is

a random variable (denoted S) whose distribution must be inferred by inductive reasoning

from n observed data points. At a very high level of abstraction, these data points might

be interpreted as outcomes from various economic-scienti�c studies very roughly akin to the

eighteen climate-sensitivity studies discussed in the introduction. Let y = (y1; :::; yn) be a

sample of n i.i.d. random draws from the data-generating process of the normal distribution

3An example with these particular functional forms leading to existence problems from inde�nite expected-
utility integrals blowing up was �rst articulated by Geweke (2001). It subsequently was rediscovered in a
context of discounting by Weitzman (2007a), who further developed its meaning and implications for asset
pricing. A similar point to the main theme of this paper (tail-thickening of posterior-predictive distributions
under general conditions) was introduced earlier (than Geweke (2001) or Weitzman (2007a)) in the important
pioneering contribution of Schwarz (1999), although for a di¤erent context than expected utility theory.
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whose PDF is

h(y j s) = 1p
2�s

exp

�
�(y � �)

2

2s2

�
: (11)

The sample variance is

� � 1

n

nX
j=1

(yj � �)2 (12)

and the likelihood function for the random variable S here is

L(s;y) _ 1

sn
exp

�
� n�
2s2

�
: (13)

In a Bayesian framework, deriving the agent�s posterior distribution of S requires that

some prior distribution be imposed on S. There is a standard tried-and-tested reference prior

for this particular situation, which forms the Bayesian mirror image of classical linear-normal

regression analysis. This traditional prior (which is explained in any textbook on Bayesian

statistics) is a uniform distribution of lnS on (0;1), meaning the prior PDF expressed in
terms of S is

p0(s) _
1

s
; (14)

which represents an improper probability distribution because the density (14) does not have

a positive normalizing constant that makes it integrate to one. The next section of the paper

will work with a �nite-positive-support generalization of (14) that constitutes a proper prior

distribution (because proper convergence of such kind of inde�nite integrals is a prerequisite

for the analysis that will then follow).

The precision � is commonly de�ned to be the reciprocal of the variance, so that here

� � 1

s2
: (15)

The posterior probability density is proportional to the product of the prior p0(s) times

the likelihood L(s;y). When the change of variables (15) is plugged into the product of

(14) times (13), the posterior becomes conveniently expressed in terms of � by the gamma

distribution

�(�) _ �a�1 exp(�b�); (16)

where

a =
n

2
(17)
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and

b =
n�

2
: (18)

The mean of the gamma distribution (16) is a=b while its variance is a=b2, so that from

(17) and (18),

E[� j y] = 1

�
(19)

and

V [� j y] =
�
2

�2

�
1

n
: (20)

After integrating out the precision from the conditional-normal distribution (11), the

unconditional or marginal posterior-predictive PDF of the growth rate Y is

f(y) _
1Z
0

p
� exp(� �(y � �)2=2) �(�) d� : (21)

Straightforward brute-force integration of (21) (for (16), (17), (18)) shows that f(y) is

the Student-t distribution with n degrees of freedom:

f(y) _
�
1 +

(y � �)2
n �

��(n+1)=2
: (22)

(Any Bayesian textbook shows that a normal with gamma precision becomes a Student-t).

Note that, asymptotically, the limiting tail behavior of (22) is a fat-tailed power-law PDF

whose exponent is n+ 1. In the next section of the paper, this power-law-tail result will be

shown to hold for a generalization of the example in this section.

When the posterior-predictive distribution of Y is (22) (from s being unknown), then (8)

becomes

E[M ] = +1; (23)

because the moment-generating function of a Student-t distribution is in�nite. Something

quite extraordinary seems to be happening here, which is crying out for further explanation!

Thousands of applications of expected-utility theory in thousands of articles and books are

based on formulas like (9) or (10). Yet as soon as it is acknowledged that s is unknown and

its value in formula (9) or (10) must instead be inferred as if from a data sample that is

arbitrarily large (but �nite), expected marginal utility explodes in (23). The question then

naturally arises: what is expected-utility theory trying to tell us when its conclusions for a

host of important applications are so sensitive to merely recognizing that the distribution
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implied by the normal conditioned on �nite realized data is the Student-t?

I want to emphasize as emphatically as I can at this relatively early stage of the paper

that the problem (both here and throughout the rest of the paper) is not that the illegitimate

symbol +1 appears in formula (23), thereby temptingly o¤ering a (illusory) way out of

the dilemma that E[M ]! +1 by somehow discrediting this application of expected-utility

theory on the narrow grounds that in�nities are simply not allowed in a legitimate theory

of choice under uncertainty. It is easy to put arbitrary bounds on utility functions, or to

arbitrarily truncate probability distributions, or to introduce ad hoc priors that are arbitrarily

cut o¤ or otherwise severely dampened. Introducing any of these changes formally causes

the symbol +1 to be replaced by an arbitrarily-large but �nite number. (Indeed, the

escape route of e¤ectively placing arbitrary �nite positive supports on � or S is taken in the

next section.) However, getting rid of the in�nity symbol does not in any way eliminate

(or even marginalize) the underlying problem, which will then come back to haunt in the

form of an arbitrarily large expected stochastic discount factor, whose exact value will now

depend hypersensitively upon obscure bounds, truncations, severely-dampened or cut-o¤

prior PDFs, or whatever other tricks (of whose arbitrary meaning one has no idea) have

been used to banish the +1 symbol. One can easily get rid of the +1 in formula (23)

but one cannot banish the underlying economic problem that expected stochastic discount

factors �which lie at the heart of cost-bene�t discounting, asset-pricing theory, and many

other important applications of expected utility theory �can become arbitrarily large just by

making unobjectionable statistical inferences about limiting tail behavior. The take-away

message here is that reasonable attempts to constrict the fatness or length of the �bad�tail

of the multiplier still leaves us with uncomfortably big numbers.

The core underlying problem is that it is impossible to learn limiting tail behavior from

�nite data, and seemingly thin-tailed probability distributions (like the normal), which are

actually only thin-tailed conditional on known structural parameters of the model, become

tail-fattened (like the Student-t) after integrating out the scale-parameter uncertainty. There

is no clean way to eliminate this core issue, and of necessity it must in�uence any utility

function that is sensitive to low values of consumption. It is important to realize that the

unboundedness potential for E[M ] in (23) comes essentially from the fattened �bad�left tail

of the posterior-predictive distribution of Y given by (22), and that such tail-fattening must

inevitably occur as a result of taking probability distributions over probability distributions

of scale parameters. Utility isoelasticity per se is inessential to the reasoning (although it

makes the argument easier to understand), because the expected stochastic discount factor

E[M ] is +1 for any relatively-risk-averse utility function satisfying the limiting curvature

requirement: lim
C!0

[�CU 00(C)=U 0(C)] > 0.
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The Student-t child posterior-predictive density from a large number of observations

looks almost exactly like its bell-shaped normal parent except that the probabilities are

somewhat more stretched out, making the tails appear relatively fatter at the expense of

a slightly-�atter center. Intuitively, a normal density �becomes�a Student-t from a tail-

fattening spreading-apart of probabilities caused by the variance of the normal having itself

a (inverted gamma) probability distribution. There is then no surprise from expected

utility theory that people are more averse qualitatively to a relatively fat-tailed Student-

t posterior-predictive child distribution than they are to the relatively thin-tailed normal

parent which begets it. A perhaps more surprising consequence of expected utility theory

is the quantitative strength of this endogenously-derived aversion to the e¤ects of unknown

tail-structure. The story behind this quantitative strength is that fattened-posterior bad

tails represent structural or deep uncertainty about the possibility of rare unlimited-exposure

disasters that �using colorful language ��scare�any agent having a utility function with

strict relative risk aversion. With (2) holding, the only way to contain this scary �Student-t

explosion�is to exclude it a priori by prior information via imposing some kind or another

of a restrictive or strongly-dampening prior distribution.

The obvious next issue to be investigated is the extent to which this particular example

generalizes. It turns out that such a scary fattened-posterior-tail e¤ect essentially holds for

any probability distribution characterized by having an uncertain scale parameter (not just

the normal) and for any utility function having strict relative risk aversion (not just CRRA).

When indeterminateness is compounded because probability distributions themselves have

probability distributions, then posterior-predictive tails must inevitably become fattened,

with potentially strong consequences for applications of expected utility theory.

The next section formalizes the idea that structural parameter uncertainty in a much more

general model inevitably leads to a tail-fattened posterior-predictive distribution of growth

rates that can cause expected marginal utility to blow up. It will turn out that there is a

rigorous sense in which containing this explosion of the expected stochastic discount factor

necessitates an unavoidable dependence upon some kind or another of exogenously-imposed

subjective prior beliefs in the form of a restrictive prior distribution, which re�ects critical

�extra�knowledge of limited exposure that cannot be transmitted by �nite data alone.

3 The General Model

In order to focus sharply on structural parameter uncertainty, the model of this section is

patterned closely as a generalization of last section�s example and is very sparse. To create

families of probability distributions that are simultaneously fairly general and analytically
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tractable, the following generating mechanism is employed. Let Z represent a random

variable normalized to have mean zero and variance one. Let �(z) be any continuous PDF

with
1Z
�1

z �(z) dz = 0 (24)

and with
1Z
�1

z2 �(z) dz = 1: (25)

It should be noted that the PDF �(z) is allowed to be extremely general. For example,

the distribution of Z might have �nite support (which means that unbounded catastrophes

will be ruled out conditional on the value of the �nite lower support being known), or it might

have unbounded range (like the normal, which will allow unbounded catastrophes to occur

but assigns them a thin bad tail conditional on the standard deviation being known). Aside

from continuity, the only restrictions placed on �(z) are the two weak regularity conditions

that �(0) > 0 and
1Z
�1

exp(��z)�(z) dz < 1 (26)

for all � > 0, which is automatically satis�ed if Z has �nite support.

With s > 0 given, make the change of variable of the linear form y = sz + �, which

implies that the conditional PDF of y is

h(y j s) = 1

s
�

�
y � �
s

�
; (27)

where s and � are structural parameters having the interpretations

� = E[Y j s] =
1Z
�1

y h(y j s) dy (28)

and

s2 = V [Y j s] =
1Z
�1

(y � �)2 h(y j s) dy: (29)

For the ideas of this paper what matters most is structural uncertainty about the scale

parameter controlling the tail spread of a probability distribution, which is the most critical

unknown. The scale parameter smay be conceptualized extremely loosely as being a highly-
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stylized abstract generalization of a climate-sensitivity-like amplifying or scaling multiplier.

In this crude analogy, Z = � lnCO2= ln 2, �T = SZ, Y = A� B�T . Without signi�cant
loss of generality, it is assumed for ease of exposition that in (27) the mean � is known, while

the standard-deviation scale parameter s is unknown. The case where � and s are both

unknown involves more intricate notation but otherwise gives essentially identical results.

The point of departure here is that the conditional PDF of growth rates h(y j s) given
by (27) is known by the agent and, while the true value of s is unknown, the situation

is as if there are available some �nite number of i.i.d. observations on which to base an

estimate of s by some process of inductive reasoning. Suppose that the agent has observed

the random sample y = (y1; :::; yn) of growth-rate data realizations from n independent

draws of the distribution h(y j s) de�ned by (27) for some unknown �xed value of s. An

example relevant to this paper is where the sample space represents the outcomes of various

economic-scienti�c studies and the data y = (y1; :::; yn) are interpreted at a very high level

of abstraction as the �ndings of n such studies so that n measures inductive knowledge.

From (27) the relevant likelihood function of s is

L(s;y) _
nY
j=1

h(yj j s): (30)

The prior PDF of s is taken to be a generalization of (14) of the form

p0(s) _ s�k (31)

for some number k. As k can be chosen to be arbitrarily large, it should be appreciated that

the prior distribution (31) can be made to place arbitrarily small prior probability weight on

big values of s. It should also be appreciated that any invariant prior must be of the form

(31). Invariance (discussed in the Bayesian-statistical literature) is considered desirable as a

description of a �noninformative�reference prior that favors no particular value of s over any

other. For such a noninformative reference prior, it seems reasonable to impose a condition

of scale invariance that might be justi�ed by the following logic. If the action taken in a

decision problem should not depend upon the unit of measurement used, then a plausible

principle of rational invariance of a scale parameter would require that

p0(s) _ p0(�s); (32)

and the only way that (32) can then hold for all � > 0 and all s > 0 is when the prior is of

the form (31).
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In order to turn the improper prior (31) into a proper distribution that allows integrals

to converge, arbitrary �nite positive supports (!;
) are imposed where ! > 0 is arbitrarily

small and 
 <1 is arbitrarily large. Thus, when k = 1 then p0(s) = 1=(ln
� ln!)s, while
with k 6= 1, (31) becomes

p0(s) =

�
k � 1

!1�k � 
1�k

�
s�k (33)

holding for ! < s < 
 and p0(s) = 0 elsewhere.

The posterior probability density pn(s jy) is proportional to the product of the prior p0(s)
from (33) times the likelihood L(s;y) from (30), which here yields

pn(s j y) _ p0(s)
nY
j=1

h(yj j s) (34)

for ! < s < 
 and pn(s jy) = 0 elsewhere.
Integrating out the agent�s uncertainty about s described by the probability density (34),

the unconditional or marginal posterior-predictive density of the growth-rate random variable

Y is

f(y j 
) =

Z
!

h(y j s) pn(s j y) ds; (35)

and (8) then becomes

E[M j 
] = �

1Z
�1

e��y f(y j 
) dy: (36)

4 The Main Result

Section 2 gave a �Student-t example�where E[M ] ! +1. The primary �nding of this

paper is that E[M ]! +1 actually holds under quite general structural uncertainty about

the unknown scaling parameter.

Theorem 1 For any given n and k,

lim

!1

E[M j 
] = +1: (37)

Proof. Combining (27) with (33)-(36) gives

E[M j 
] _

Z
!

1

sk+n+1

nY
j=1

�

�
yj � �
s

�24 1Z
�1

e��y �

�
y � �
s

�
dy

35 ds: (38)
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Make the change of variable z = (y � �)=s and reverse the order of integration to rewrite
(38) as

E[M j 
] _
1Z
�1

� (z)

24 
Z
!

e��zs
1

sk+n+1

nY
j=1

�

�
yj � �
s

�
ds

35 dz: (39)

Pick any value of z0 for which simultaneously z0 < 0 and �(z0) > 0, and note here that

lim

!1

24 
Z
!

nY
j=1

�

�
yj � �
s

�
e��z

0s 1

sk+n+1
ds

35 � � (0)n lim

!1

�
e��z

0
 1


k+n+1

�
= +1; (40)

which, in conjunction with (39), concludes the proof.

In the model of this paper, people are averse to two types of indeterminacy �not knowing

y given s, and not knowing s. Theorem 1 can be interpreted as providing a rigorous sense

in which aversion to structural or deep uncertainty (in the form of not knowing the scale

parameter s) is potentially far greater than aversion to the pure risk per se of not knowing

the realized value of the growth-rate random variable y (when s is known). The underlying

logic behind the strong result of Theorem 1 is described in (40) by the limiting behavior

of E[M j 
] for large values of 
. For any given n and k, the probability of a disaster

declines polynomially in the scale 
 of the disaster from (40), while the marginal-utility

consequence of a disaster (when there is strict relative risk aversion) increases exponentially

in the scale 
 of the disaster. Irrespective of the original parent distribution, the e¤ect of

an uncertain scale parameter fattens the tails of the posterior-predictive child distribution so

that it behaves asymptotically like a power-law distribution whose power coe¢ cient is n+k.

In this sense power-law tails need not be postulated, because they are essentially unavoidable

in posterior-predictive distributions. No matter how many observations there are, the race

between a polynomially-contracting power-law probability times an exponentially-expanding

marginal utility is won in the limit every time by marginal utility, so long as there is strict

relative risk aversion (which might be considered a minimal assumption).

The interpretation of Theorem 1 is sensitive to a behind-the-scene tug of war between

pointwise-but-nonuniform limiting behavior in 
 and pointwise-but-nonuniform limiting be-

havior in n. To see more clearly how the issue of risk vs. uncertainty plays out in determining

E[M ] under such form of pointwise-but-nonuniform convergence, suppose that, unbeknownst

to the agent, the true value of s is s�. Since the prior p0(s) de�ned by (33) assigns positive

probability to an open neighborhood around s� (provided only that ! < s� < 
), the im-

posed speci�cation has su¢ cient regularity for large-sample likelihood dominance to cause

strong (almost sure) convergence of the posterior distribution (34) of S to its true data-
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generating value s = s�. This in turn means that the posterior-predictive distribution of

growth rates (35) converges a.s. to its true data-generating distribution h(y j s�). The latter
further implies that for any given 
 <1 (which via (26) places an upper bound on expected

marginal utility), in the limit as n!1, risk is more important than structural uncertainty
in the sense that as full structural knowledge is approached E[M ] converges strongly to its

true value:

n!1 =) E[M j 
] �!
a:s:

1Z
�1

e��y
1

s�
�

�
y � �
s�

�
dy: (41)

A conventional pure-risk application of expected utility theory essentially corresponds

here to a situation where there is enough inductive knowledge to identify the structure

because n is reasonably large relative to the limited-exposure bound 
. However, it is

critical here to note that in (41) the a.s. convergence of E[M j 
] to its true value is
pointwise but not uniform in n. No matter how much data-evidence exists �or even can be

imagined to exist �Theorem 1 says that E[M j 
] is always exceedingly sensitive to 
. In

this sense, structural uncertainty always has the potential to trump pure risk for situations

of potentially-unlimited exposure where no plausible bound 
 < 1 can legitimately be

imposed by prior knowledge. The dominant statistical-economic truth behind Theorem 1

is that no �nite sample can assess probabilities or magnitudes of the most extreme disasters

lurking in the distant tails of distributions �and the expected utility of a Bayesian agent

with strictly-positive relative risk aversion will be driven to an arbitrarily large extent by

this unavoidable feature of learning-inference unless potential exposure is limited by prior

information. Theorem 1 can therefore be interpreted as implying a sense in which it is

unnecessary to append to the theory of decision making under uncertainty an ad hoc extra

postulate of �ambiguity aversion��because expected utility theory itself already tells us a

precise way in which the �ambiguity�of structural-parameter uncertainty can be especially

important and why people may be much more averse to it under some circumstances of

limited information than to pure risk with known structure.

There is a general point being made by Theorem 1 and a particular application to the

economics of climate change. The general point is that Theorem 1 embodies a very strong

form of a �generalized precautionary principle.� From experience alone one cannot acquire

su¢ ciently accurate information about the probabilities of bad-tail disasters to prevent the

expected marginal utility of an extra sure unit of consumption from becoming unbounded for

any utility function having strict relative risk aversion, thereby potentially dominating cost-

bene�t applications of expected utility theory. The underlying problem that Theorem 1 is

illustrating concerns a fundamental limitation on the ability of empirical learning or inductive

knowledge to shed light on extreme events. Even in a stationary world, it is not possible
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to learn enough about tail events from �nite samples alone to make expected stochastic

discount factors be other than highly sensitive to possibly-ruinous disasters. A risk-averse

expected-utility maximizer is potentially scared by structural uncertainty to a degree that is

potentially beyond what any �nite amount of empirical information can overcome. Of course

in reality people are not in�nitely scared by fat tails �due, presumably, to some combination

of �high enough�e¤ective n or k with �low enough�e¤ective 
. The point here is primarily

to be alerted to the potentially-overwhelming consequences (on expected-utility applications)

of high-
 low-(n+k) scary situations, such as climate change.

The part of the distribution of possible outcomes that can most readily be learned (from

inductive information that comes in a form as if conveyed by data) concerns the most-

likely outcomes in the central body of the distribution because, from previous experience,

past observations, plausible extrapolations, and perhaps even the law of large numbers,

there may be at least some modicum of con�dence in being able to construct a reasonable

approximation of the central regions of the PDF. As we move towards probabilities in the

periphery of the distribution, however, we are increasingly moving into the unknown territory

of subjective uncertainty where our probability estimates of the probability distributions

themselves becomes increasingly di¤use because the frequencies of rare events in the tails

cannot be pinned down by previous experiences or past observations. Climate change

generally and climate sensitivity speci�cally are prototype examples of this general principle,

because we are trying to extrapolate inductive knowledge far outside the range of our limited

experience. The upshot of this deep uncertainty about tail uncertainties is that the reduced-

form probability distribution of Y (after integrating out the probabilities of tail probabilities)

has a fat left tail. The exact fatness of this bad left tail depends not only upon how bad a

disaster might materialize and with what probabilities, but also upon how imprecise are our

probability estimates of the probabilities of these disasters.

The degree to which the kind of �generalized precautionary principle�embodied in The-

orem 1 is relevant for a particular application must be decided on a case-by-case basis. It

depends generally upon the extent to which prior 
-knowledge (and k-knowledge) combine

with inductive-posterior n-knowledge in a particular case to fatten the bad tail. In the par-

ticular application to the economics of climate change, where there is so obviously limited

data and limited experience about the catastrophic reach of climate extremes (and where

what we do know about nonlinear dynamic stochastic climate predictions produces here a

long fat right tail of �T ), to ignore or suppress the signi�cance of rare tail disasters is to

ignore or suppress what economic theory is telling us loudly and clearly is potentially the

most important part of the analysis.
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Global climate change unfolds over a time scale of centuries and, through the power of

compound interest, a standard cost-bene�t analysis of what to do now to mitigate GHGs

is hugely sensitive to the discount rate that is postulated. This has produced some sharp

disagreements among economists about what is an �ethical�value of the rate of pure time

preference � to use for intergenerational discounting in the deterministic version (s = 0)

of the Ramsey equation (10) that forms the analytical backbone for most analyses of the

economics of climate change.4 For the model of this paper, which is based on structural

uncertainty, arguments about what value of � to use in equation (9) or (10) translate into

arguments about what value of � to use in the model�s structural-uncertainty generalization

of the Ramsey formula, which is the expectation formula (36). (A zero rate of pure time

preference � = 0 in (10) corresponds to � = 1 in (36).) In this connection, Theorem 1 is

saying that no matter what value of � is selected (so long as � > 0, which is equivalent to

� < 1), the outcome of any cost-bene�t analysis of what to do now to mitigate GHGs is
always potentially driven by structural uncertainty about s.

The unknown scale parameter s (whose uncertainty potentially drives the economic analy-

sis) is an abstract generalized version of an amplifying multiplier whose role is very crudely

analogous to the role of open-ended climate sensitivity. Therefore, it is no accident and no

surprise that the PDF of climate sensitivity based on inductive data and studies has a fat

tail. Expected utility theory is telling us here analytically that the debate about discounting

may be secondary to a debate about the open-ended catastrophic reach of climate disasters.

While it is always fair game to challenge the assumptions of a model, when theory provides

a generic result (like �free trade is Pareto optimal�or �steady growth eventually outstrips

one-time change�) the burden of proof is commonly taken as residing with whomever wants

to over-rule the theorem in a particular application. The take-away message here is that the

burden of proof in the economics of climate change is presumptively upon whomever wants

to model or conceptualize the expected present discounted utility of feasible trajectories un-

der greenhouse warming without having structural uncertainty tending to matter much more

than discounting or pure risk per se. Such a middle-of-the-distribution modeler needs to

explain why the inescapably-fattened tails of the posterior-predictive distribution (for which

the fat bad tail represents rare disasters under uncertain structure from an unknown scaling

parameter) is not the primary focus of attention and does not play the decisive role in the

4While this contentious intergenerational-discounting issue has long existed (see, e.g., the various essays
in Portney and Weyant (1999)), it was elevated to recent prominence by publication of the controversial
Stern Review of the Economics of Climate Change (2007). The Review argued for a base case of preference-
parameter values � � 0 and � � 1, on which its strong conclusions depended analytically. Alternative views
of intergenerational discounting than Stern�s were provided in, e.g., Dasgupta (2007), Nordhaus (2007), and
Weitzman (2007b). The latter account also contains a heuristic exposition of the contents of this paper, as
well as giving Stern some credit for emphasizing the great uncertainties associated with climate change.
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analysis.

5 Concluding Discussion

A common reaction to the likes of Theorem 1 is to acknowledge its mathematical logic

but to wonder how it is to be used in practice for deciding what to do without e¤ectively

blocking all progress on account of the theoretical possibility of severe downside risks. After

all, horror stories about theoretically-possible speculative disasters can be told for many

situations without this aspect necessarily paralyzing decision-making by freezing the status

quo. Dismal Theorem 1 gives an almost lexicographic or binary ordering, in the limit of

which agents will pay virtually any price to eliminate deep uncertainty �an idea which is

hard to wrap one�s mind around. Is this an economics version of a kind of �impossibility

theorem�that says there are limits to quantitative analysis when dealing with complex chaos-

prone dynamic systems where knowledge is incomplete and deep uncertainty predominates?

And in that case, what are we supposed to put in the place where ordinary cost-bene�t

calculations used to be before? Even if it were true that the dismal Theorem 1 represents

a valid economic-statistical precautionary principle which theoretically dominates decision

making, would not applying this �generalized precautionary principle� freeze all progress

if taken too literally? What are we to do in practice with a situation of deep structural

uncertainty? I don�t know the answers to these kinds of questions. But I also don�t think

such questions can be ignored or even evaded in potentially-catastrophic situations where

there is unlimited exposure to damages.

In seeking enlightenment about what it might mean to apply Theorem 1 to the eco-

nomics of climate change, I don�t believe the best route is via an abstract general discus-

sion of tail probabilities (or theoretical considerations of when limited exposure to damages

might, or might not, apply). Rather, I think it more useful to illustrate concretely what

is involved by contrasting the speci�c situation regarding possible climate-change-induced

environmental catastrophes with possible environmental catastrophes unleashed by another

speci�c situation. The example I choose here is the widespread cultivation of crops based

upon bioengineered genetically-modi�ed organisms (GMOs).

At �rst glance, the two situations might appear casually similar. In both cases, there

is deep unease about human-induced tinkering with the natural environment, which can

generate frightening tales of a world turned upside down. Suppose for the sake of argument

that in the case of GMOs the overarching fear of disaster concerns the possibility that

widespread cultivation of so-called �Frankenfood�could somehow allow bioengineered genes

to escape into the wild and wreak havoc with delicate ecosystems and native populations
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(including perhaps humans) �ne-tuned by millions of years of natural selection. I think

that the potential for environmental disaster with Frankenfood is quite di¤erent from the

potential for environmental disaster with catastrophic climate change along the lines of the

following reasoning.

Theorem 1 and the subsequent discussion of non-uniform convergence in 
 and n imply

that deep uncertainty about the unknown scale of a disaster has the potential to dominate

expected-utility cost-bene�t calculations when the scope 
 of such disasters is large relative

to the amount of prior-plus-inductive knowledge k+n. I think that in the case of Frankenfood

interfering with wild organisms that have evolved by natural selection, there is a basic

underlying principle that plausibly limits the extent of catastrophic jumping of arti�cial DNA

from cultivars to landraces. After all, nature herself has already tried endless combinations

of mutated DNA and genes over countless millions of years and what has evolved in the

�erce battle for survival is only an in�nitesimal subset of the very �ttest permutations. In

this regard there exists a basic prior argument making it fundamentally implausible that

Frankenfood arti�cially selected for traits that humans �nd desirable will compete with

or genetically alter the wild types that nature has selected via Darwinian survival of the

�ttest. Wild types have already experienced genetic mutations akin to human-induced

arti�cial modi�cations �and these potential modi�cations have already been shown not to

have survival value in the wild. I think that analogous arguments may also apply for invasive

�superweeds,�which (at least so far) represent a minor cultivation problem and have not

displayed any ability to displace landraces. Besides all this, and importantly, safeguards

in the form of so-called �terminator genes�can be inserted into the DNA of GMOs, which

directly prevents GMO genes from reproducing themselves.

Contrast the above discussion about the limits of disaster (and the limits of a precau-

tionary principle) in the case of Frankenfood with the lack of any such prior limitation on

the magnitude of disasters possible from climate change. The climate-change �experiment,�

whose eventual outcome we are trying to infer now, concerns the planet�s response to a

geologically-instantaneous exogenous injection of GHGs. This planetary experiment of an

exogenous injection of this much GHG this fast is probably unprecedented in Earth�s history

�even stretching back billions of years. Can anyone honestly say now from very limited

information what are reasonable upper bounds on the eventual degree of global warming or

climate change that we are currently trying to infer will be the outcome of such a �rst-ever

planetary experiment? What we DO know about climate science and extreme tail proba-

bilities is that chaotic dynamics cannot be ruled out and eighteen of the best current models

of climate sensitivity are estimating on average that P [S >6�C] � 5%. To my mind this

open-ended aspect makes GHG-induced global climate change vastly more worrisome than
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global cultivation of Frankenfood. I think this example shows that it is possible to make

meaningful distinctions among situations where Theorem 1 might conceivably apply. While

we cannot rule out a biotech disaster, I would say on the basis of this assessment that it

seems very very unlikely (or maybe even very very very unlikely), whereas a climate disas-

ter seems �only� very unlikely. In the language of this paper, biotech looks like a low-
,

high-k, high-n situation whereas climate change feels much more like a high-
, low-k, low-n

situation. I don�t think there is a smoking gun in the biotech scenario �or in most other

catastrophe scenarios �quite like average expert assessment in climate change being that

P [S >8�C] � 2%.
Many situations, especially those involving pure risk, have prior limited-exposure-like

bounds on the possible damages that might materialize, for which the theory of this paper

may be less relevant or perhaps even have no relevance. But a few real-world situations

have potentially unlimited exposure due to structural uncertainty about their potentially

open-ended catastrophic reach. This paper shows that the expected utility analysis of those

relatively few deep-uncertainty situations with potentially catastrophic reach �like climate

change �can give very di¤erent conclusions than what might emerge from a typical cost-

bene�t analysis of a more ordinary limited-exposure situation. The conclusions can even be

very di¤erent from what would come out of a Monte Carlo simulation with a discrete grid

or with a �nite number of runs of a model whose core structure resembles the model of this

paper. The theoretical outcome of Theorem 1 of this paper can be approached by a Monte

Carlo simulation only as a double limit where the grid size and the number of runs both go

to in�nity.

Sampling based upon standard Monte Carlo simulations of any existing integrated-

assessment model of the economics of climate change is liable to give a totally misleading

picture of the expected-utility consequences of alternative GHG-mitigation policies.5 The

core underlying problem is that while it might be true in expectations that utility-equivalent

damages of climate change are enormous, when chasing a fat tail this will not be true for the

overwhelming bulk of Monte Carlo realizations. To see this most clearly in a crisp thought

experiment, imagine what would happen to the simple stripped-down model of this paper

in the hands of a Monte Carlo simulator. A �nite grid may not reveal true expected utility

in simulations of this model (even in the limit of an in�nite number of runs) because the

most extreme damages in the fattened tails will have been truncation-compressed into being

evaluated at a single grid-point. A �nite sample of simulations may not reveal true expected

5I am grateful to Richard Carson for suggesting the inclusion of an explicit discussion of why a Monte
Carlo simulation may fail to account fully for the implications of uncertain large consequences with small
probabilities.
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utility in this model either (even in the limit of an in�nite grid) because the limited sample

may not be able to go deep enough into the fattened tails where the most extreme damages

are. Nor will typical sensitivity analysis of Monte Carlo simulations necessarily penetrate

su¢ ciently far into the fattened-tail region to accurately represent disastrous damages. In-

stead of the existing emphasis on estimating or simulating the economic impacts of what

are e¤ectively the most plausible risk-like climate-change scenarios, to at least compensate

partially for �nite-sample bias the model of this paper calls for a dramatic oversampling

(relative to probability of occurrence) of those strati�ed climate-change scenarios associated

with the most adverse imaginable economic impacts. With limited sampling resources in big

models, Monte Carlo analysis could be used much more creatively �not to defend a speci�c

policy result, but to experiment seriously with what happens to the outcomes in the limit

as the grid size and number of runs simultaneously increase. Of course this emphasis on

sampling climate-change scenarios in proportion to marginal-utility-weighted probabilities

of occurrence forces us to put marginal-utility weights on catastrophes (as well as subjective

probabilities) �but that is the price we must be willing to pay for having a genuine economic

analysis of potentially-catastrophic climate change.

In situations of potentially unlimited damage exposure �like climate change �a reframing

of the focus of economic analysis might be called for, with more emphasis on a better

treatment of the worst-case tail extremes (and what might be done about them, at what

cost) relative to re�ning the calibration of merely-likely outcomes or arguing over discount

rates. Perhaps it might be possible to reason somewhat by analogy with insurance for

extreme events and to compare the cost to the world economy of buying an insurance policy

going some way towards lowering the extreme high temperatures with, say, a homeowner�s

cost of buying �re insurance or a young adult�s cost of buying life insurance. On a U.S.

national level, rough comparisons might be made with the potentially-huge payo¤s, small

probabilities, and large costs involved in building anti-ballistic missile shields or eliminating

hostile dictatorships that could be harboring weapons of mass destruction. A crude natural

metric for calibrating cost estimations of climate-change environmental-insurance policies

might be that the U.S. already spends approximately 3% of national income on the overall

cost of a clean environment.6

The point is that economic analysis is not completely helpless in the presence of deep

structural uncertainty. The analysis is more frustrating, more subjective, and less conclusive-

looking because it requires some form of speculation (masquerading as an �assessment�)

about the extreme bad-tail probabilities and utilities. Compared with the thin-tailed case,

6U.S. Environmental Protection Agency (1990), executive summary projections for 2000 updated and
extrapolated by me to 2007.
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cost-bene�t analysis of potential catastrophes is inclined to favor paying a lot more attention

to learning now how fat the bad tail might be and �if the tail is discovered to be too thick for

comfort after the learning process �is a lot more prone to investing in mitigation measures

to slim it down. This slimming-down of overweight tails is likely to be a perennial theme in

the economic analysis of catastrophes. The key economic issues here are: what is the cost of

such a tail-slimming weight-loss program and how much of the bad fat does it remove from

the overweight tail? A clear implication of this paper is that more research e¤ort targeted at

describing and estimating the risk-like central tendencies of what we already know fairly well

is largely wasted �relative to understanding even slightly better the deep uncertainty (which

potentially dominates the economic analysis) about what is in the bad fat tail and what to

do about it. This being said, the bind we �nd ourselves in now on climate change starts

from a high-
, low-k situation to begin with, and has convergence of inductive knowledge

towards resolving the deep uncertainties being extremely slow in n relative to the lags and

irreversibilities from not acting before structure is fully identi�ed.

It is painfully apparent that the likes of Theorem 1 makes economic analysis trickier

and more open-ended in the presence of deep structural uncertainty. The economics of

fat-tailed catastrophes raises di¢ cult conceptual issues which cause the analysis to appear

less scienti�cally conclusive and to appear more contentiously subjective than what comes

out of the analysis of thin-tailed situations. But if that is the way things are with fat tails,

then that is the way things are �and it is a fact to be lived with rather than a fact to be

evaded just because it looks less scienti�cally-objective in cost-bene�t applications.

The contribution of this paper is to phrase precisely and to prove rigorously a basic

theoretical principle that must hold under a standard assumption of strict positive relative

risk aversion. In principle, what might be called the �catastrophe-insurance aspect�of a

fat-tailed unlimited-exposure situation dominates the social-discounting aspect, the pure-risk

aspect, or the consumption-smoothing aspect. Even if this principle in and of itself does not

provide an easy answer to questions about how much catastrophe insurance to buy (or even

an easy answer in practical terms to the question of what exactly is catastrophe insurance

buying), I believe it still might provide a useful way of framing the economic analysis of

catastrophes.
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