Table 2a. Impacts on human systems due to temperature rise, precipitation change and increases in extreme events | Temp-
erature
rise
above
Pre-ind
-ustrial | Year in which this occurs | Populatio
n
scenario | Impact to human systems m.a.r. = additional millions of people at risk than would be the case in absence of climate change OBSERVED IMPACTS | GCM
used | Region
affected | Source | |--|---------------------------|----------------------------|---|-------------|--|--| | <= 0.6 | 1967
onw
ards | | Abrupt change in regional rainfall pattern causing food insecurity, water stress (not attributed) | | Sahel | Dore 2005 | | 0.6 | 2004 | | Extreme weather is causing substantial and increasing damage partly due to climatic factors (not attributed) | | | IPCC 2001 | | 0.6 | 2004 | | Increase in severity and frequency of extreme events in tropical small island states (not attributed) | | | Krishna et
al 2000;
Trotz
2002; Hay
et al 2003 | | 0.6 | 2000 | - | Climate change has been
MODELLED (not observed)
to have caused the loss of
150,000 lives and 5.5 million
DALY/yr since 1970 | | Globe | McMichael
et al 2004 | | 0.6 | 2004 | | Changes in streamflows,
flood and drought observed
(e.g. earlier peak runoff) (not
attributed) | | Europe,
Russia, N
America,
Sahel,
Peru,
Brazil,
Colombi
a | | | 0.6 | 2004 | - | High temperatures of 2004 summer in Europe attributed to anthropogenic cause with greater than confidence | | Europe | Stott 2004 | | 0.6 | 2004 | | Heatwave associated with
unusual 2004 summer caused
14802 deaths in France, and
approximately 25000 in
Europe | | | WHO 2004 | | 0.6 | 2000 | | Since 1970, number people affected by drought increased from | | Southern
Africa | ECF 2004 | | | 0 to 35 million (not attributed) | | | |--|--|---|----------------------------| | 0.6 | Increased frequency and intensity of drought (not attributed) | Africa,
Asia, SW
Australia | IPCC
2001, ECF
2004 | | 0.6 | Increased cloud amount,
annual precipitation, and
heavy precipitation events
(not attributed) | Mid- and
high-
latitudes
N
henispher
e | IPCC
2001, Dore
2005 | | 0.6 | Lake and river ice duration reduced by 2 weeks (not attributed) | Mid and
high
latitudes
N
hemisphe
re | Dore 2005 | | 0.6 2004 | Water stress increase associated with drying & warming (not attributed) | Australia | ECF 2004 | | 0.6 | Rainfall decline in W
hemisphere, subtropics, E
equatorial region observed,
consistent with more frequent
El Nino-like conditions | S hemisphe re, especiall y 5 Andean countries | ECF 2004 | | | PREDICTED CHANGES | | | | From
0.6 C
upward.
rising
with T | Very likely more heatwaves, causing elevated mortality rates in elderly/urban poor, risk crop damage, stress to livestock, increased cooling demand | All land areas | IPCC TAR | | From
0.6C
upward
rising
with T | Decreased cold days in twentieth century. Higher minimum temperatures, reducing cold-related mortality. Increased risk to some crops, decreased to others, reduced heating demand. Extended range of some pests and disease vectors. | Almost
all land
areas | IPCC
TAR; Tol
2002 | | From 0.6C upward rising with T | Increased summer drying over continents likely, decreasing crop yields, damaging buildings, decreasing water resources | Continen
tal
interiors | IPCC TAR | | | and increasing forest fire | | | |---|--|--|----------| | From
0.6C
upward
rising
with T | Increase in magnitude/frequency of precipitation events, very likely: causing floods, landslides, avalanche, increased soil erosion (not attributed) | | IPCC TAR | | From
0.6C
upward
rising
with T | More intense El Nino, increasing strength of associated droughts/floods likely, decreasing agricultural productivity and hydro-power potential, causing water stress | S
America,
Australia | IPCC TAR | | From 2025
0.6C
upward
rising
with T | Water quality degraded | Some
regions | IPCC TAR | | From 0.6C upward rising with T | Melting permafrost disrupts
built infrastructure and
destabilises slopes causing
landslides | Arctic | IPCC TAR | | From 2025
0.6C
upward
rising
with T | Increased energy demand for summer cooling demand and decreased winter heating demand very likely | Europe,
N
America | IPCC TAR | | From 2025
0.6C
upward
rising
with T | Market sector losses likely in many developing countries, mixture of gains and losses in developed countries | Globe | IPCC TAR | | From 0.6C upward rising with T | Large scale damage to infrastructure and threat to human lives | Caribbea n & tropical small island states due to increased magnitud e and frequenc y of extreme weather events | IPCC TAR | | From | As above | Himalaya | | |---------------|--------------------------------|------------|------------| | 0.6C | As above | s: glacier | | | | | lake | | | upward | | outbursts | | | rising | | outoursts | | | with T | | | | | From | As above | Andes: | | | 0.6C | | rainfall | | | upward | | decline/ | | | rising | | massive | | | with T | | glacier | | | | | melt | | | | | eliminati | | | | | ng | | | | | hydropo | | | | | wer and | | | | | water | | | | | supplies; | | | | | outburst | | | | | floods | | | From | As predator-prey and plant- | Globe | ref | | 0.6C | pollinator relationships | | | | and | disconnect in shifting | | | | upwards | ecosystems, leading to | | | | | extinctions of pollinators and | | | | | pest-predators, agricultural | | | | | crops lose key pollinators and | | | | | pests increase in many areas, | | | | | reducing yields considerably | | | | Observe | Rainfall decline, loss of | Peru | ECF 2004 | | d and | glaciers predicted; serious | 1 014 | ECI 2001 | | predicte | drinking water, energy | | | | d to | generation and agriculture | | | | worsen | problems, adaptation may not | | | | Worsen | be economically feasible. In | | | | | 20 years glaciers below | | | | | 5500m will have disappeared | | | | | causing hydropower | | | | | problems | | | | 0.8 2030 S550 | Malarial risk increased by | N | McMichael | | 0.6 2030 3330 | | | et al 2004 | | 0.9 2020 5550 | factor 1.27, dengue by 1.3 | America | | | 0.8 2030 S550 | Risk of death due to flooding | W Africa | McMichael | | 0.0 2020 2550 | increased by 1.44 | C/C | et al 2004 | | 0.8 2030 S550 | Risk of death due to flooding | C/S | McMichael | | 0.000 | increased by 3.58 | America | et al 2004 | | 0.8-2.6 2050 | Higher market impact likely | Globe | IPCC 2001 | | | in developing countries, more | | | | | losses and fewer gains in | | | | | developed countries | | | | 0.8-2.6 2050 | Increased insurance prices | Globe | IPCC 2001 | | | | | and reduced availability of insurance very likely | | | | |-----|------|---|---|------------|-----------------------|----------------------| | 1 | 2020 | IS92a +
S750 | 240 mar from water stress | HadC
M2 | Globe | Arnell 02 | | 1 | | | 10% decrease barley yield | | Uruguay | IPCC 2001 | | 1 | | | 6-10% decrease rice yield | | S Asia | ECF 2004 | | 1 | 2020 | - | Disbenefit to agriculture | | Less
develope
d | HBare | | 1 | 2020 | - | Benefit to agriculture | | Develope
d | Hare 03 | | 1.1 | 2025 | B1:2882
or 37%
populatio
n under
water
stress if
no cc | 400 additional mar from water stress under climate change; 1819 m with decrease in water stress* | HadC
M3 | Globe | *Arnell 04 | | 1.2 | 2025 | A2: 3320
or 39%
populatio
n under
water
stress if
no cc | 615-1660 or 500 – 915 (5
GCMs) mar from water stress
1385-1893 or 1140-2423 (5
GCMs) m with decrease in
water stress* | 5
GCMs | Globe | *Arnell 04 | | 1.2 | 2025 | B2: 2883
(36%)
populatio
n under
water
stress if
no cc | 508-592 (HadCM3) or 374 – 1183 (5GCMs) mar from water stress 1651-1937 or 1261-2202 (5 GCMs) m with decrease in water stress* | 5
GCMs | Globe | *Arnell 04 | | 1.3 | 2025 | A1F1:
2882
(37%)
populatio
n under
water
stress if
no cc | 829 mar from water stress 649 m with decrease in water stress* | HadC
M3 | Globe | *Arnell 04 | | 1.3 | - | - | Food price rise begins | | Globe | Hare 03 | | 1.3 | 2060 | - | 21% rise in timber production
for 2045-2095; 30% rise by
2095-2145 (Temp assumed to
be stable in 2060) | rg | Globe | Sohngen et al 2001 | | 1.3 | 2050 | S550 | Risk of death due to flooding increased by 1.48 | | W Africa | McMichael et al 2004 | | 1.3 | 2050 | S550 | Risk of death due to flooding increased by 3.76 | | C/S
America | McMichael et al 2004 | | 1.3 | 2030 | S750 | Malarial risk increased by factor 1.33, dengue by 1.33 | | N
America | McMichael et al 2004 | |---|------|-----------------|--|------------|--|---| | 1.3 | | IS92a +
S550 | 160-220 mar from malaria | HadC
M2 | Globe | Parry 01 | | 1.3 | 2050 | IS92a +
S550 | 5 mar from hunger | HadC
M2 | Less
develope
d | Parry
01/Hare 03 | | 1.3 | 2080 | IS92a +
S450 | 400 mar from water stress | HadC
M2 | Globe | Parry 01 | | 1.3 | 2080 | IS92a +
S450 | 150 mar from malaria | HadC
M2 | Globe | Parry 01 | | 1.4 | 2050 | | Shorelines behind bleached coral reefs now vulnerable to storm damage; damage and tourism loss could lead to 140-420million\$ loss in Caribbean alone. | | Caribbea
n, Indian
Ocean,
small
island
states | ECF 2004 | | 1.4 | 2020 | | Irrigation requirements increase in 11 out of 17 world regions as result of climate change | HadC
M2 | Globe | Doll 2002 | | 1.4-5.8 | 2100 | | High market impacts likely in developing countries, net losses in developed countries | | | IPCC 2001 | | 1.5 | 2080 | IS92a +
S450 | 165 mar from malaria | HadC
M2 | Globe | Parry 01/Hare 03 | | 1.5 with
8%
increase
in
precipita
tion | | | Farm values increase by between 188-311 bn \$ | | USA | Mendelsoh
n et al
1996 ¹ | | 1.5 | 2025 | | Increase in water stress in
Africa & S America; decrease
in Europe and N America | | | Vorosmart
y et al
2000 | | 2-4 | 2055 | | Increase in water stress in Mediterranean, C & S Africa, | | | *Arnell
2004 | _ ¹ This result is based on the hedonic method, which uses the spatial difference in bio-economics of agriculture between warm and cold regions to predict the consequences of increasing temperatures in present-day cold regions to those of present-day warm regions, thus assuming that changes in time and space are equivalent, that systems immediately just to a new stable state so that there is no consideration of time-dependence, and only annual average regional temperatures are considered, so changes and seasonal variability in temperature or rainfall are not considered (Schneider 1997). The author does not think that these assumptions are credible. It also assumes that precipitation measures the water supply for crops and that future changes in production costs will be capitalised in land values in the same way that past production costs were capitalised in past land values, both of which are problematic assumptions for the area of study, the USA, where large areas of cropland are irrigated, and construction of new water systems would be very much more costly than continued operations of exitsing ones. Using a hedonic model tied to a national data set of farmland values that combines both dryland and irrigated farming counties is likely to be questionable both on econometric grounds, because it combines what we expect to be two heterogeneous equations with different variables and different coefficients into a single regression, and also on economic grounds, since we expect it to understate future capital costs, especially those borne by farmers, in the areas that will need additional surface water irrigation due to the effects of climate change. (Schlenker et al 2004). | | 2085 | | Europe, C & S America. Decreases in SE Asia. | | | | |---------------------------------------|------|--|--|------------|---|-----------------------------| | 1.5 with 8% increase in precipitation | Any | | \$5.3-5.4 billion losses in dryland agriculture | | USA | Schlenker
et al 2004 | | 1.5-2C | - | - | Poor farmers' income declines in this range | | Less
develope
d | Hare 03 | | 1.6 | 2030 | | Malarial risk increased by factor 1.51 | | N
America | McMichael et al 2004 | | 1.6 | 2030 | S550 | Risk of death due to flooding increased by 1.64 | | W Africa | McMichael et al 2004 | | 1.6 | 2030 | S550 | Risk of death due to flooding increased by 4.64 | | C/S
America | McMichael et al 2004 | | 1.7 | 2030 | | Winter yield increases by % or decreases by 30-40% depending on GCM used to model precip changes | | USA | Tubiello et al 2002 | | 1.7 | 2030 | | Maize yield changes by -30% to +20% depending on degree to which CO2 fertilisation is realised ² | | USA Gt
Plains | Tubiello et al 2002 | | 1.7 | 2055 | B2: 3988 (42%) populatio n under water stress if | 1020-1057 (HadCM3) or
670-1538 (5 GCMs) mar
from water sress
*2407-2623 or 1788-3138 (5
GCMs) m with decrease in
water stress | 5
GCMs | Globe | *Arnell 04 | | 1.75 | 2055 | B1: 3400
(39%)
populatio
n under
water
stress if
no cc | 988 mar (HadCM3) from water stress *2359 m with decrease in water stress | HadC
M3 | Globe | *Arnell 04 | | 1.8 | 2025 | A2 | 0.05 diarrhoeal incidence per capita per year | | Globe | Hijioka et al 2002 | | 1.8 | 1200 | S550 | International tourism flows negatively impacted | | S
Europe,
Caribbea
n, SE
Asia | Viner
2005,
IPCC 2001 | | 1.8 - 2.6 | 2050 | | Large scale displacement of | | Mahgreb | ECF 2004 | _ ² Full CO2 fertilisation effects assume no yield reductions due to potential changes in soil nutrients, pollinator scarcity, pest outbreaks and food quality that are associated with climate change | combine
d with
rainfall
decrease
up to
40% | | | people (climate refugees from
low food security, poverty
and water stress) | | (N
Africa)
and Sahel | | |---|-----------|--|--|-----------|-------------------------------------|---| | 1.82.6 | 2050
s | | 40% rainfall decline from
1961-1990 average (in all
GCMs) | | Africa
Mahgreb | ECF 2004 | | 1.9 | 2050 | A2: 3320
(39%)
populatio
n under
water
stress if
no cc | 1620-1973 (HadCM3) or
1092-2761 (5 GCMs) mar
from water stress
2804-3813 or 1805-4286 (5
GCMs) m with decrease in
water stress* | 5
GCMs | Globe | *Arnell 04 | | Any | | | Increase in magnitude of cyclones likely, increasing risks to human life, infectious disease epidemics, coastal erosion and damaging coastal infrastructure, coral reefs and mangroves | | Tropical & sub-
tropical regions | IPCC 2001 | | Any
Any | Any | | River flood hazard increase Drought, reduced water supplies for irritation, and increases in crop pests/diseases | | Europe
All
regions | IPCC 2001 IPCC 2001; Rosegrant & Cline 2003 | | Any | Any | | Sea level rise and cyclones
displace several million
people from coasts | | Tropical
Asia | | | Any | Any | | Runoff increase in N but decrease in arid areas; however in N may not be in useful season | 5
GCMs | Asia | IPCC
2001;
*Arnell
2004 | | Any | Any | | Vector borne disease expands poleward | | Latin
America
and Asia | IPCC 2001 | | Not
known | | | Loss of sovereignty of small island states and countries with large low lying deltaic regions | | | ECF 2004 | | Not
known | | | Regional conflict over water supplies or food supplies | | Nile,
parts of
Russia | ECF 2004 | | Not specifie d | | | Deglaciation of Himalayan region affects hydrology of Indian region, disrupting | | Nepal,
India | ECF 2004 | | | | | agriculture | | | | |-----------------|-------------------|-----------------|--|------------|--|---| | 2 | - | - | Threshold above which agricultural yields fall | | EU,
Canada,
USA,
Australia | Hare 03 | | 2 | | | Double/triple frequency of
bad harvests leading to inter-
regional political tension | | Russia | ECF 2004 | | 2 | | | Destruction of Inuit hunting culture | | Arctic | ECF 2004 | | 2 | | | Wheat yield decrease | | S Asia | ECF 2004 | | 2 | | | Maize yield 15% decrease | | Uruguay | IPCC 2001 | | 2 – 2.5 | | | Food production threatened | | Southern
Africa, S
Asia,
parts of
Russia | ECF 2004 | | 2 – 2.5 | | | Fisheries impacted | | NW
Africa, E
African
lakes | ECF 2004 | | 2 – 2.5 | | | Fishery damage removes primary protein source for 50% of population | | Malawi | ECF 2004 | | 2 – 2.5 | | | Combined effects of precipitation changes, floods, droughts, reducing crop yields leading to significant risk commercial & subsistence of up to 80% crop failure | | Southern
Africa | ECF 2004 | | 1-3 (not known) | 2050
-
2100 | | Dry season water security loss & complete loss glaciers | | W China | ECF 2004 | | 2 - 3 | 2050
-
2100 | A1B: | Increase in magnitude/frequency of precipitation: causing high flood damage | | Japan | Emori
2005 | | 2.1 | 2080 | IS92a +
S750 | 2.3-3.0 bar from water stress | HadC
M2 | Globe | Parry 01 | | 2.3 | 2050 | IS92a | 26 mar from coastal flood (ie
a doubling of the 26 mar in
absence of climate change) | HadC
M2 | Globe
especiall
y S & SE
Asia | Parry 2001,
IPCC
2001,
Nicholls &
Lowe 2004 | | 2.3 | 2050 | IS92a | 180-230 mar from malaria | HadC
M2 | Globe | Parry 01 | | 2.3 | 2050 | IS92a | 10% loss in maize production equivalent to losses of | | Africa &
Latin | Jones &
Thornton | | | | | \$2bn/yr | | America | 2003 | |----------|------|---|---|--|-----------------------|---------------------| | 2.3 | 2100 | | 30-70% loss snowpack losing | | Californi | Hayhoe | | | | | 13-30% water supply | | a | 2005 | | 2.3 | | | 13-30% loss water supply due | | Californi | Hayhoe | | | | | to snowpack loss | | a | 2004 | | 2.3 | 2080 | IS92a
>S1000 | 230-270 mar from malaria | HadC
M2 | Globe | Parry 01 | | 2.3 | 2080 | IS92a,
>S1000 | 33 mar from hunger | HadC
M2 | Less
develope
d | Parry
01/Hare 03 | | 2.3 | 2080 | B1 | 4-8% increase in millions at risk of hunger (4 – 8 million) | HadC
M3
CSIRO
NCAR
CGCM
2 | Globe | Fischer et al 2001 | | 2.3-2.7 | 2080 | B1/B2 | 5% fall in cereal production yield | HadC
M3 | | Parry 04 | | 2.36 | 2080 | B1 | 2-3 mar from coastal flood | HadC
M3 | Globe | Parry 04 | | 2.36 | 2080 | B1 | 10-20 mar from hunger | HadC
M3 | | Parry 04 | | 2.36 | 2050 | IS92a,
unmit | 7 mar of hunger | HadC
M2 | Less
develope
d | Parry
01/Hare 03 | | 2.36 | 2085 | B1:2860
(37%)
populatio
n under
water
stress if
no cc | 1135 mar water stress increase 1732 m with decrease in water stress | HadC
M3 | Globe | *Arnell 04 | | 2.36 | 2085 | B2:4530
(45%)
populatio
n under
water
stress if
no cc | 1196-1535 (HadCM3) or
867-2015 (5 GCMs) mar
water stress
2791-3099 or 2317-3460 (5
GCMs) m with decrease in
water stress | 5
GCMs | Globe | *Arnell 04 | | 2.5 - 3 | | | Rice yields reduced 10-20% (no CO2 fertilisation) (or change by -10% to 20% assuming total CO2 fertilisation) | | China | ECF 2004 | | 2.5 to 4 | - | - | Crop failure rise from 50 to 75% | | S Africa | ECF | | 2.56 | 2055 | A1F1:340
0 (39%)
populatio | 1136 mar (HadCM3) from water stress | HadC
M3 | Globe | *Arnell 04 | | | | n under
water
stress if
no cc | 2364 m with decrease in water stress | | | | |----------------------|------|--|--|--|-----------------------|------------------------------| | 2.6 | 2100 | - | 30-70% snowpack loss ie 13-30% water supply lost | | Californi
a | ECF | | 2.6 | - | - | Rapid increase in flooding damaging agriculture and endangering life | | Banglade
sh | ECF 2004 | | 2.6 and · 20% precip | | | 5 to 30% loss rice/wheat yields putting food security at risk | | Indian subcontin ent | ECF 2004 | | 2.7 | 2060 | | Increase of 265 million or decrease of 84 million from reference level of 641 million in 1960, at risk of hunger in developing countries as cereal production falls by 4 to 9%, whilst production increases by 2 to 11% in developed countries | GISS | Globe | Rosenzwei
g et al
1995 | | 2.7 | 2080 | B2 | 15% increase in millions at risk of hunger, includes CO2 fertilisation (40 mar) | HadC
M3 | Globe | Fischer et al 2001 | | 2.7 | 2080 | B2 | 16-27 mar from coastal flood | HadC
M3 | Globe | Parry 04 | | 2.7 | 2080 | B2 | 150 to (-12) mar from hunger (range due to CO2 fertilisation inclusion or not) | HadC
M3 | | Parry 04 | | 3 | - | - | 65 countries lose 16% agricultural GDP, includes CO2 fertilisation | HadC
M3
CSIRO
CGCM
2
NCAR | Less
develope
d | Fischer
2001 | | 3 | | 2070 | Irrigation requirements increase in 12 of world's 17 regions | HadC
M3
(also
ECHA
M 4) | Globe | Doll 2002 | | 3 | | | 17-18% increase in seasonal
AND perennial potential
malarial transmission zones;
overall increase for all zones
10% | HadC
M2/3 | Globe | Martin &
Lefevre
1995 | | 3 – 4 | | | Loss in farm income between 9 and 25% | | Indian subcontin ent | ECF 2004 | | 3 – 4 | | | Wheat yield decline of up to 34% | | Indian subcontin ent | ECF 2004 | |---|-------------------|--|--|------------|--------------------------|---| | 3.1 | 2090 | No
evolving
baseline:
fixed at
1990
world | 19% fall in cereal supply without farm level adaptation, 4% with; falls to zero allowing for trade, changes in demand and land use changes to provide new cropland | OSU | Globe | Darwin et
al 1995 ⁵ | | 3 with 25% less rain | | | Maize and potato yields increase | | Chile | Downing
92 | | 3 with -
25%
less rain | | | Wheat and grape yields fall | | Norte
Chico,
Chile | Downing
92 | | 3 with
8%
higher
precipita
tion | | | Farm values increase by between 227-403 bn \$ | | USA | Mendelsoh
n et al
1996 ³ | | 3.3 | 2070
-
2100 | IS92a
710 ppm | Increase in cropland
suitability of estimated 16%
average 4 GCMs if three
agree | | N
Hemisph
ere | Ramankutt
y et al
2002 | | 3.3 | 2070
-
2100 | IS92a
710 ppm | Small decrease in cropland suitability Average 4 GCMs if 3 agree | | Tropics | Ramankutt
y et al
2002 | | 3.3 | 2080 | IS92a | 75-100 mar from hunger | | Globe | Parry 01 | | 3.3 | 2080 | IS92a | 80 mar from coastal flooding (only 14 million at risk in absence of climate change) | HadC
M2 | Globe | Parry 01,
Nicholls &
Lowe 2004 | | 3.3 | 2080 | IS92a
unmit | 280-330 mar from malaria | HadC
M2 | Globe | Parry 01 | | 3.3 | 2080 | - | 560-1350 thousand at risk from coastal flooding | HadC
M2 | Caribbea
n | Parry 99 | | 3.3 | 2080 | IS92a,
unmit | 3.1-3.5 bar from water stress | HadC
M2 | Globe | Parry 01 | ³ This result is based on the hedonic method, which uses the spatial difference in bio-economics of agriculture between warm and cold regions to predict the consequences of increasing temperatures in present-day cold regions to those of present-day warm regions, thus assuming that changes in time and space are equivalent, that systems immediately just to a new stable state so that there is no consideration of time-dependence, and only annual average regional temperatures are considered, so changes and seasonal variability in temperature or rainfall are not considered (Schneider 1997). The author does not think that these assumptions are credible. It also assumes that precipitation measures the water supply for crops and that future changes in production costs will be capitalised in land values in the same way that past production costs were capitalised in past land values, both of which are problematic assumptions for the area of study, the USA, where large areas of cropland are irrigated, and construction of new water systems would be very much more costly than continued operations of exitsing ones. Using a hedonic model tied to a national data set of farmland values that combines both dryland and irrigated farming counties is likely to be questionable both on econometric grounds, because it combines what we expect to be two heterogeneous equations with different variables and different coefficients into a single regression, and also on economic grounds, since we expect it to understate future capital costs, especially those borne by farmers, in the areas that will need additional surface water irrigation due to the effects of climate change. (Schlenker et al 2004). | 3.3 | 2080 | IS92a
unmit | Coastal flooding several times worse than in 1990 | | Globe | Arnell 02 | |---------|------|--|---|----------------------------|---|--------------------------------| | 3.3-6.3 | | | 5-12% drop in country's production;14-41% in agricultural regions | | Russia | ECF 2004 | | 3.55 | 2085 | A2:8065 (57%) populatio n under water stress if | 2583-3210 (HadCM3) or
1560-4518 (5 GCMs) water
stress
4688-5375 or 3372-5375 (5
GCMs) m with decrease in | 5
GCMs | Globe | *Arnell 04 | | 3.55 | 2080 | no cc
A2 | water stress 29-50 mar from coastal flood | HadC
M3 | Globe, especiall y S/SE Asia, Africa, Mediterr anean, and small islands o Indian & Pacific Oceans | Parry 04 | | 3.55 | 2080 | A2 | 600 mar from hunger
(-30 CO2 ff) | | | Parry 04 | | 3.55 | 2080 | A2 | 15% increase in number at risk from hunger (120 million), includes CO2 fertilisation | HadC
M3
CSIRO | Globe | Fischer et al 2001 | | 3.7 | 2055 | A2 | 0.1 diarrhoeal incidence per capita per year | | Globe | Hijioka et al 2002 | | 3.7 | 2060 | - | Global timber production increases by 17% (2045-2095) and 28% (2095-2145). Temperature is at equilibrium in 2060. | UIUC | Globe | Sohngen et al 2001 | | 4.3 | 2060 | billion people (UN medium populatio n estimates, similar to IS92a) | +11 to -33% change in wheat yields (depending on CO2 fertilisation included/not); +16 to -57% change in soy -15 to -31% change in maize -2 to -12% change in rice cereal price rise of -17 to 145% -13 to 58% increase in numbers at risk of hunger | GISS
GFDL
HadC
M2 | Globe, if
no
adaptatio
n | Rosenzwei
g et al
1995 | | 4.3 | 2090 | No
evolving | 23% fall in cereal supply without farm level adaptation, | GFDL | Globe | Darwin et al 1995 ⁵ | | 4.3 | 2060 | baseline:
fixed at
1990
world
10.2
billion
people | 4.4% with; falls to zero allowing for trade, changes in demand and land use changes to provide new cropland -2 -19% increase in numbers at risk of hunger | GISS
GFDL
HadC
M2 | Globe,
with
farm-
level
adaptatio | Rosenzwei
g et al
1995 | |---------|------|---|---|--|---|---------------------------------| | 4.3 | 2080 | A1F1 | Increase of 26% in millions at risk of hunger (28 million), includes CO2 fertilisation | HadC
M3
NCAR
CSIRO
CCCm
a | n
Globe | Fischer et al 2001 ⁴ | | 4.3 | 2085 | A1:2860 (37%) population under water stress if no cc | 1256 mar water stress 1818 m with decrease in water stress | HadC
M3 | Globe | *Arnell 04 | | 4.3 | 2080 | A1F1 | 7-10 mar from coastal flood | HadC
M3 | Globe | Parry 04 | | 4.3 | 2080 | A1F1 | 300 mar from hunger
(30 CO2 ff) | HadC
M3 | | Parry 04 | | 4.3 | - | - | Entire regions out of production | | | Hare 03 | | 4.3/3.6 | 2080 | A1/A2 | 10% fall in cereal production | HadC
M3 | | Parry 04 | | 4.5 | 2090 | No
evolving | 30% fall in cereal supply without farm level adaptation, | GISS | Globe | Darwin et al 1995 ⁵ | _ ⁴ Fischer et al highlight the fundamental role of SRES scenario choice in influencing additional millions at risk. Under the A2 scenario, the increase in millions at risk due to climate change is very significant, whilst the increase risk is smaller under the other three scenarios. However, note that full benefits of CO2 fertilisation are assumed in this study. Without this assumed benefit, more significant risks would be found for the other scenarios, as found by Parry et al 2001. None of the agricultural studies consider the impacts of extreme weather events on crop production, and only the Parry study provides any insight on the effects of rates of change of climate. All studies consider farm level adaptation. ⁵ The Darwin et al study predicts large impacts of climate change, but puts forward the view that adaptations and economic processes, together with land use change can largely offset these impacts. It also does not consider impacts of extreme events or rates of change of climate. To offset the impacts in the UKMO model in 2090, a 15% increase in world cropland is considered necessary, including a doubling of the area farmed in Canada. Such large scale conversion of previously uncultivated land would increase the stresses on ecosystems. ^{*} Arnell 2004 show that although under climate change more watersheds move out of the water stressed category than into it, the increases in runoff generally occur in high flow seasons, and thus will | | | baseline:
fixed at
1990
world | 6% with; falls to zero
allowing for trade, changes in
demand and land use changes
to provide new cropland | | | | |-----|------|--|--|--------------|-------|-----------------------------------| | 4.5 | | | 25% increase in potential malarious zones; 40% increase in seasonal zones and 20% decrease in perennial | HadC
M2/3 | Globe | Martin &
Lefevre
1995 | | 5.5 | | | 30% increase in potential malarial transmission zones; 55% increase in seasonally affected zones and 40% reduction in perennially affected zones | HadC
M2/3 | Globe | Martin &
Lefevre
1995 | | 5.5 | 2090 | No
evolving
baseline:
fixed at
1990
world | 23% fall in cereal supply without farm level adaptation, 2.4% with; falls to zero allowing for trade, changes in demand and land use changes to provide new cropland | UKMO | Globe | Darwin et
al 1995 ⁵ | | | IS92a | A1 | B1 | A2 | B2 | |------|--------|------|------|-------|-------| | 2025 | ~8200 | 7926 | 7926 | 8714 | 8036 | | 2050 | ~9800 | 8709 | 8709 | 11778 | 9541 | | 2075 | ~15200 | 7914 | 7914 | 14220 | 10235 | Table 2b. Impacts on human systems due to sea level rise | Table 2b. Impacts on human systems due to sea level rise | | | | | | | | |---|---------------------------|--------------------------------------|---|-----------------|---|--|--| | Sea-level
rise
above
1961-
1990
average
(m) | Year in which this occurs | Population scenario | Impacts to human systems | Region affected | Source | | | | 0.0 | Present day | Present day | 46 million people are exposed to storm surge flooding at present | | Hoozemans
et al 1993,
Baarse 1995 | | | | 0.3 | 2050 | IS92a | 26 mar from coastal
flood (ie a doubling of
the 26 million in
absence of climate
change) | HadCM2 | Parry 2001,
Nicholls &
Lowe 2004 | | | | 0.4 | 2140 | S550
(stabilisatio
n) in IS92a | 45 mar coastal flooding (compared to 3 million in absence of climate change) | HadCM2 | Nicholls &
Lowe 2004 | | | | 0.46 | 2140 | S750
(stabilisatio
n) in IS92a | 60 mar coastal flooding (compared to 3 million in absence of climate change) | HadCM2 | Nicholls &
Lowe 2004 | | | | 0.5 | If occurre d present day | Present day | Sea level rise causes
number of people
exposed to storm surge
flooding to 92 million
per year | | Hoozemans
et al 1993,
Baarse 1995 | | | | 0.5 | 2080 | IS92a | 80 mar from coastal
flooding (only 14
million at risk in
absence of climate
change) | HadCM2 | Parry 01,
Nicholls &
Lowe 2004 | | | | 0.58 | 2110 | IS92a | Additional 140 mar
coastal flooding (only 3
million at risk in
absence of climate
change) | HadCM2 | Nicholls &
Lowe 2004 | | | | 0.75 | 2140 | IS92a | Additional 160 mar
coastal flooding (only 1
million at risk in
absence of climate
change) | HadCM2 | Nicholls &
Lowe 2004 | | | | 1.0 | If occurre d present day | Present day | Sea level rise causes
number of people
exposed to storm surge
flooding to almost triple
to 118 million per year | | Hoozemans
et al 1993,
Baarse 1995 | |------|--------------------------|-------------|---|---|---| | 1.0 | | | \$1000 billion damage
due to sea level rise | Global | Fankhauser
1995 | | 1 | | - | Additional 2m people
and additional 55 trillion
yen of assets exposed to
tides, requiring
protection barriers of
between 2.8 and 3.5m
high | Japan | Harasawa
2005 | | 1.0 | 2100 | | Damages due to the 1:1000 year flood increase from zero to £25bn (we are currently protected by the Thames barrier against the 1:1000 year flood) for constant population | London if
Thames Barrier
not upgraded | Hall 2005 | | Any | Any | | Population displaced | Nile delta | IPCC 2001 | | Any | Any | | Population displacement & livelihood impacts due to inundation and coastal erosion | Banjul, Gambia
Lagos, Nigeria,
Gulf of Guinea,
Senegal | IPCC 2001 | | 2.0 | | | \$2000 billion damage
due to sea level rise | Globe | Fankhauser
1995 | | 3-5m | 2300 | | Widespread loss of
many of the world's
largest cities,
widespread loss coastal
and deltaic areas
including Bangladesh,
Nile, Yangtze, Mekong | Globe | ECF 2004;
Oppenheimer
& Alley
2004 |