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ABSTRACT

The selection of climate policies should be an exercise in risk management reflecting the many relevant
sources of uncertainty. Studies of climate change and its impacts rarely yield consensus on the distribution
of exposure, vulnerability, or possible outcomes.  Hence policy analysis cannot effectively evaluate
alternatives using standard approaches such as expected utility theory and benefit-cost analysis. This
Perspective highlights the value of robust decision-making tools designed for situations, such as evaluating
climate policies, where generally agreed-upon probability distributions are not available and stakeholders
differ in their degree of risk tolerance. This broader risk management approach enables one to examine
a range of possible outcomes and the uncertainty surrounding their likelihoods.
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Introduction 

The scientific understanding of climate change and its impacts has increased dramatically in 

recent years, but several interacting sources of uncertainty mean that future climate change and 

its impacts will not be known with precision for the foreseeable future. Some uncertainties 

involve the path of global socioeconomic development, the way it affects the commitment by 

countries to use energy efficient technologies and how greenhouse gas emissions might respond 

to specific climate-related policies.  Other uncertainties involve internal variability and 

incomplete understanding of the climate system and broader Earth-system feedbacks. Still other 

uncertainties involve the way that changes in climate translate to impacts such as changes in 

water availability, agricultural production, sea level rise, or heat waves in different parts of the 

world. A final set involves the evolution of assets at risk (exposure) both in physical and in 

monetary terms and the level of protection that can be undertaken to reduce their vulnerability to 

potential losses (i.e., adaptation measures). The implication of these interacting sources of 

uncertainty is that choosing among climate policies is intrinsically an exercise in risk 

management.  

 

A principal purpose of risk management is to evaluate strategies for responding to an uncertain 

threat. To illustrate this point in the context of a simple example, consider a coastal community 

in Florida deciding whether land 3 meters above sea level is a suitable location for construction 

of a new residential development to be occupied for most of the current century. Suppose that the 

best estimate of the maximum storm surge plus sea level rise over this period is 2 meters. In this 

case, the project looks safe. But if there is a chance of a storm surge plus sea level rise that is 

substantially greater, it is less attractive. So a forecast of 2 meters is very different from a 
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forecast of 1 to 4 meters with 2 meters as the most likely outcome. Key decision-makers in the 

community need to know the range of possible outcomes so they can determine the robustness of 

policy decisions. The final decision on whether to build the residential development, and the 

maximum it is sensible to pay for the land, will be influenced by the characterization of the risk.  

 

For decisions regarding climate policy, the central importance of uncertainty has long been 

recognized.  Schneider1 and colleagues were pioneers in posing policy questions in the context of 

risk and in introducing conceptual frameworks for managing that risk.  Recent research takes a 

more formal approach, highlighting the importance of specifying uncertainty as a key policy 

input. Worst-case scenarios -- the possibility of extremely costly outcomes with small but 

positive probabilities -- can have massive impacts on the cost-benefit analysis of climate change 

mitigation, and on the perspectives of key decision-makers. These low-probability high-

consequence events have motivated a focus on the tail of the distribution of outcomes2,3. For 

example, a 5% chance of a truly unacceptable temperature increase may have a significant 

impact when evaluating the expected benefits and costs of climate adaptation and mitigation 

policies.  

 

To date, much of the focus in assessments of climate change and its impacts has been on central 

tendencies. Uncertainty in future climates is most often represented as the range of outcomes 

generated by different climate models run for a range of scenarios. There are, however, 

numerous physical grounds and some observational ones for suspecting that such ensembles of 

opportunity may not account for all sources of uncertainty.  Some of the open issues relate to the 
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ways the models are calibrated.  Others reflect incomplete understanding of important feedbacks, 

like those involving the carbon cycle.  

 

Relatively few studies systematically explore the uncertainty in climate model parameters or 

structure.  Those studies that have fall into two categories. One set undertakes a large number of 

runs using simplified climate models: these typically produce rather broad ranges of uncertainty, 

but this may simply reflect the difficulty of using observations to constrain simple models.1 The 

other set uses more complex models but much smaller ensembles: these typically give narrower 

ranges that may simply reflect inadequate exploration of parameter and structural uncertainty.2 

The few studies that use large ensembles and complex models5,6 have found relatively broad 

ranges.   

 
Many impact studies use climate forcing from multiple climate models or multiple climate 

scenarios but few provide a probability distribution of possible impacts for a given climate 

forcing scenario.  The result is a striking gap between the available information and the demand 

for information framed in the context of risk and uncertainty that form the essential lens through 

which the entire issue must be viewed.  One possible response to this gap is a greater emphasis 

on characterizing well-defined probability density functions (PDFs) as a foundation for policy 

advice.  There have been many attempts to do this, for example Kolstadt9, Fisher and Narain10, or 

for a survey, Heal and Kristrom.11  An alternative is a fundamental change in the focus of future 

research and the communication of uncertainty as it relates to climate change, with increased 

 

1 For more details on this point see Yohe, Andronova and Schlesinger4, Piani et al.5 and Rowlands et al.6 

2 See Shiogama et al.7 and Yokohata et al.8  for more details on these complex models with smaller ensembles. 
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emphasis on probabilities based on subjective likelihoods of various outcomes.12  The problem 

with proposing these  probabilities, however, is that they may be divorced from the data 

available and may thus appear to be arbitrary.  

 

A third option, the focus of this paper, is to take advantage of available tools for decision support 

that do not depend on information about the entire PDFs for each scenario. Some of the 

approaches that evaluate alternatives, such as expected utility theory, cannot deal with situations 

with limited or no information on probabilities.  

 

Incorporating Uncertainty in Climate Risk Management 

The challenge in evaluating alternative strategies for addressing climate change issues is that 

many risk assessments and climate impact studies provide ranges of outcomes, but with 

relatively little information on probability distributions.  For example, the IPCC AR4 presents 

most of its climate model projections based on multi-model ensembles. For line or bar charts, 

uncertainty is represented variously as the 5% to 95% range, means ± 1 standard deviation, mean 

plus 60% to mean minus 40%, and results of all models plotted individually. For maps of 

projected precipitation, multi-model means are shown only where at least 66% of the models 

agree on the sign of the change, with stippling indicating areas where 90% of the models agree 

on the sign of the change.     

 

A recent report of the IPCC (SREX)14 presents extremes of temperature and precipitation in 

terms of future return intervals for the regionally most extreme value in 20 years, showing the 

median and the range across 50% and 100% of the models that participated in the multi-model 
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intercomparison project.  While this is a major advance in the presenting probabilistic outcomes, 

it is still far from providing complete PDFs.  

 

In the absence of complete PDFs, one way to specify information about the tails of the 

distribution is to leave off extremes when the likelihood of an outcome is sufficiently small that 

key decision makers feel that they can ignore its consequences. For example, if climate scientists 

agree that it is highly unlikely that the global average temperature increase will exceed 6 oC  by 

2050, then the consequences of this possible outcome would not be considered in choosing 

between alternatives. More generally,  this process entails specifying a threshold probability and 

removing extremes that have lower probabilities in determining risk management strategies for 

dealing with climate change. 

  

Insurers and reinsurers utilize this approach in determining the amount of coverage that they are 

willing to offer against a particular risk. They diversify their portfolio of policies to keep the 

annual probability of a major loss below some threshold level (e.g., 1 in 1,000).15  This behavior 

is in the spirit of a classic paper by Roy16 on safety-first behavior.  

 

Consider our example of the coastal community in Florida reviewing a development at 3 meters 

above sea level. One way of evaluating this is to undertake a benefit-cost analysis delineating 

climate change scenarios where the construction costs, operating expenses and restoration costs 

should it be flooded exceed the expected benefits.  If the cumulative probability of these 

scenarios is below the required safety level, the facility should be constructed at 3 meters. If 

these criteria are not met, then one could repeat the benefit-cost analysis for alternative 
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adaptation measures such as elevating the facility so its foundation is at 4 meters above sea level.  

If there is no adaptation measure where the expected benefit/cost ratio exceeds 1 also meets the 

safety first criteria, then the community may not want to build the facility.  

 

 

Risk Management and Ambiguity  

In contrast to risk situations where the probabilities are known, ambiguous (or imprecise) 

situations are ones in which the uncertainty about possible outcomes cannot be objectively 

characterized by a single well-defined PDF. Individuals and institutions are ambiguity-averse 

and will pay a premium to reduce the ambiguity that they face.17,18,19 For example, estimates of 

the PDF of equilibrium climate sensitivity (ECS, or multi-century time-scale warming in 

response to a doubling of atmospheric CO2) differ greatly among approaches and data sets. To 

illustrate this point, representative PDFs of ECS are depicted in Figure 1. Estimates of the 

probability of ECS exceeding 4.5oC range from less than 2% to over 50% in different studies.20 

Milner, Dietz and Heal use this example to show that the impact of such imprecision on decision 

processes can be substantial.13 
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Figure 1: Estimated probability distributions for (bottom axis) Equilibrium Climate Sensitivity 

from various published studies, collated by ref. 16, and (top axis) corresponding concentrations 

of CO2 consistent with a long-term CO2-induced warming Tmax  of 2oC, given by the expression 

. Current concentrations are 397ppm.  

 

Pursuing this example, the top axis of Figure 1 shows concentrations of CO2 consistent with 2oC 

of warming21 corresponding to the values of ECS on the bottom axis. Suppose emissions decay 

exponentially at an average rate r, and f is the average future airborne fraction (circa 45% over 

recent decades). CO2 concentrations would then increase by a further f/r times current 

emissions E0 of about 10 GtC per year (equivalent to 4.7ppm atmospheric CO2). Limiting CO2-

C2K Cpre-industrial exp(ln(2)Tmax / ECS)
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induced warming to 2oC would therefore require emissions to fall at an average rate of 1.3%/year 

(so concentrations rise by a further E0f/r≈160ppm) if ECS is 2oC and 4.4%/year if ECS is 3oC, a 

major difference. Uncertainty matters in this range of ECS values. As shown in Figure 1, there is, 

however, a high level of consensus across studies that the probability of ECS>3oC is 50% or 

more.   

 

Meeting the 2oC goal for any value of ECS much greater than 3oC, would require either 

offsetting the impact of CO2 with other forcings and/or deploying large-scale negative CO2 

emission measures in the future.  The scale of these measures will depend not only on the 

trajectory of emissions but also on changes in the airborne fraction and climate system response22 

which will only become clear when emissions start to fall.  Hence the steps required today to 

meet the 2oC goal are not qualitatively affected by ambiguity in the shape of the distribution for 

ECS above 3oC.  

 

Modeling decision-making under ambiguity requires a framework for rational choice in the 

absence of well-defined probabilities. Several have been proposed in the last two decades (see 

Gilboa23 for a review). Millner, Dietz and Heal13 work with the framework developed by 

Klibanoff et al.24 that separates preferences and subjective beliefs, a hallmark of expected utility 

theory. Their model allows one to consider the distributions forecast by several approaches, for 

example, the ECS distributions in Figure 1. The authors demonstrate that aversion to ambiguity, 

given the different predictions, leads to a greater willingness to invest in climate change 

mitigation. 
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Non-Probabilistic Models for Making Choices   

Non-probabilistic approaches to decision-making, including minimax regret25 and maximin26 

criteria, described in more detail below, can be applied when the probabilities of possible 

outcomes are not known. 

 

The minimax regret approach requires the analyst to identify the regret associated with any 

policy. The regret is the difference between the value of the best policy in each state of the world 

and the value under the policy actually chosen. The optimal policy choice is that which 

minimizes, over all policy choices, the maximum regret (over all states) associated with a policy 

choice. Formally, if S is a state, and P a policy choice, P*(S) is the best policy choice conditional 

on S being the state, and V(S,P) is the value of choosing policy P if the outcome is S, then the 

goal is:  

MinPMaxS V S,P* S   V S,P    

 

Consider the application of this idea to the example of the Florida community determining 

whether or not to permit construction of a residential facility on the coast. To determine the 

optimal choice when using the minimax regret model, one first selects possible amounts of storm 

surge plus sea level rise and calculates the optimal design of the residential facility for each of 

these scenarios. Suppose there are n climate scenarios, and the optimal facility design for 

scenario j is labeled  j*,  j=1….n.   For every other possible design of the facility, calculate how 

far its outcome diverges in present value from the optimal choice for each climate scenario: this 

is the regret for that scenario. The maximum regret is the largest possible divergence between the 

outcome from the optimal choice j* for scenario j and the actual outcome over all possible 
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scenarios if j* is chosen. The chosen option is the one that gives the lowest value of the 

maximum regret.   

 

The maximin criterion (Wald26) is far simpler: it involves ranking policies by their worst-case 

outcomes; the optimal policy is the one that has the best worst-case outcome. There is no concept 

of regret here and so no need to measure the differences between outcomes, but merely to rank 

them. It is more demanding to use the minimax regret criterion in that it requires us to compare 

differences between outcomes; however, one gains information in the process. Crucially, neither 

approach requires relative probabilities to be assigned to the different climate scenarios, although 

some threshold would be required to avoid results being dominated by entirely implausible 

outcomes.  

 

Robust Decision-Making 

Robust decision making (RDM) is a particular set of methods and tools developed over the last 

decade to support decision-making and policy analysis under conditions of ambiguity. RDM uses 

ranges or, more formally, sets of plausible probability distributions to describe deep uncertainty 

that play a role in evaluating alternative strategies for today and the future. In contrast to 

expected utility theory, it assesses different strategies on the basis of their robustness rather than 

their optimality. In the context of the design of a facility to reduce the likelihood of damage from 

storm surge and sea level rise, choosing Design 1* may be optimal based on a specific set of 

estimates of the likelihood of each scenario  j=1….n  occurring. However, Design 2* may have a 

higher expected loss than Design 1* but much less variance in its outcomes, and thus be a 

preferred choice by the community.  
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Lempert et al.27 review the application of a range of robust approaches to decisions with respect 

to mitigating or adapting to climate change.  A World Resources Institute webpage on Managing 

Uncertainty (http://www.worldresourcesreport.org/decision-making-in-depth/managing-

uncertainty) summarizes several applications of robust decision/non-probabilistic approaches, 

each using various types of climate information.  These applications include the Thames River 

Barrier, energy production in the Niger Basin, water management in Yemen, and flood risk 

management in a large southeast Asian metropolis. The examples illustrate how climate 

information can be used to identify various thresholds or bounding cases beyond which certain 

policies will fail. In some cases robust decision methods generate probability thresholds for 

certain scenarios above which a decision maker might choose a different risk management 

strategy. This threshold can then be compared to one or more probabilistic estimates from the 

literature, such as the study by Hall et al. 28   

 

Conclusions  

Studies by the climate science and climate-change impacts communities have provided a range 

of possible outcomes of climate change. Formal approaches such as the maximization of 

expected utility or benefit-cost analysis are difficult to apply in the presence of ambiguity with 

respect to the distribution of future climate scenarios. For most issues relevant to policy choices, 

the solution is to utilize more robust approaches to risk management that do not require 

unambiguous probabilities.  Risk management strategies designed to deal with the uncertainties 

that surround projections of climate change and their impacts can thus play an important role in 

supporting the development of sound policy options.   
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Figure 1: Estimated probability distributions for (bottom axis) Equilibrium Climate Sensitivity 

from various published studies, collated by ref. 20, and (top axis) corresponding concentrations 

of CO2 consistent with a long-term CO2-induced warming of 2oC, given by the expression 

. Current concentrations are 397ppm. 

  

Tmax

C2K Cpre-industrial exp( ln(2)Tmax / ECS)
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