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This paper examines the allocational roles of futures markets and commodity 
options in multi-good and multi-period economies. In a continuous-time model with 
time-additive utilities and homogeneous beliefs, trading in “unconditionaly’ futures 
contracts, the market portfolio and a riskless asset gives any Pareto-optimal 
allocation. Individuals’ optimal holdings of futures contracts in the continuous-time 
model are related to their consumption bundles and to their risk tolerances. It is 
shown that both hedging and “reverse hedging” behavior are possible. In the 
general model with discrete trading, options on portfolios of commodity options are 
shown to permit any unconstrained Pareto-optimal allocation. Journal of Economic 
Literature Classification Numbers: 024, 026, 313. 

I. INTR~~~CTI~N 

Recent works by Hakansson [21-231, Ross [32] and Breeden and Litzen- 
berger [g] have considered alternative structures of capital markets that are 
considerably less extensive than a complete Arrow-Debreu securities market, 
but permit all unconstrained Pareto-optimal allocations of time-state 
contingent consumption claims, within the contexts of their models. A 
difficulty with their results is that they do not explicitly consider a multi- 
good economy, which has greater complexity of efficient allocations than 
does the single-good model.’ This paper demonstrates that efficient 
allocations in a multi-good economy can be attained with a limited number 
of markets that include “unconditional” futures contracts or commodity 
options.’ 

The role of contingent commodity contracts in the allocation of goods 
under uncertainty has been amply demonstrated by Debreu 1131. However, 

’ As Ross’s model assumed that the complete state space must be spanned, it includes a 
multi-good economy as a special case; however, the number of options necessary for spanning 
in that model is much greater than in the other, more recent papers referenced. 

’ Throughout this paper the focus is upon ex ante Pareto optimality, rather than upon the 
ex post optimality of Starr [35]. 
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contingent-claims markets are much less prevalent than would appear to be 
optimal. To quote a recent paper by Townsend [36, p. 541: 

In particular, the existence of futures or forward markets in which unconditional 
rather than contingent claims are traded is regarded by some as a phenomenon in 
need of an explanation, and by others as prima facie evidence of some inefficiency. 

Townsend then proves that if there are as many linearly independent spot 
commodity prices as there are states of the world, then unconditional 
forward contracts have the spanning property that Arrow-Debreu securities 
have, and they therefore constitute a Pareto-optimal capital market. Unfor- 
tunately, this is a very weak theorem in answer to the efficiency question 
raised in the quotation, since there surely are more economic states of the 
world than there are commodities. For example, with just two commodities 
that can each have prices of % 1 or $2, four states of the world are necessary 
to provide a complete description of these prices: (($1, $l), ($1, $2), 
($2, $ l), ($2, %2)}. T wo unconditional futures contracts cannot span these 
state payoffs. Thus, the efficiency question remains unanswered for many 
interesting cases. This paper (Section III) shows that, with continuous 
trading in unconditional futures contracts, contingent futures contracts are 
not necessary for optimality of capital markets. Without continuous trading, 
options on specified portfolios of commodity options and aggregate nominal 
consumption are shown (Section VI) to comprise a Pareto-optimal capital 
market; again, contingent futures contracts are not necessary, as they are 
spanned by this capital market. 

Sections IV and V, in a multi-good extension of Merton’s [28] continuous- 
time economic model, derive individuals’ long or short positions in the 
various futures contracts in terms of their measures of relative risk aversion, 
their consumption preferences and their reinvestment risks. These sections 
generalize and extend some of the hedging and ‘reverse hedging” results that 
were presented by Merton [28], Long [26], Fischer [18], Dieffenbach [ 151, 
and Grauer and Litzenberger [ 191. An individual’s futures portfolio is 
considered as part of his overall asset portfolio. Since an individual chooses 
a portfolio that is mean-variance efficient in his real wealth, the futures 
portfolio is related to the effects of those holdings on the mean and variance 
of real wealth. It is shown that the variance-reducing effects of hedging (on 
real wealth) may be offset (in lifetime utility terms) by the mean-expanding 
impact of reverse hedging. Consistent with prior works, logarithmic utility is 
the dividing line between portfolios dominated by mean effects and those 
dominated by variance effects of futures. Throughout the hedging analysis, 
the effects of futures holdings on the mean and variance of lifetime utility are 
distinguished from their effects upon the mean and variance of current con- 
sumption. 
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II. OPTIMAL ALLOCATIONS IN A MULTI-GOOD MULTI-PERIOD ECONOMY 

In this section, characteristics of Pareto-optimal allocations of 
consumption goods in a multi-good multi-period economy are derived, In 
particular, using a preference assumption and an assumption on probability 
beliefs, it is shown that any individual k’s optimal state-contingent 
consumption bundle of the N goods at time t, c: = (c!~,..., &)‘, may be 
written as a function of (only) the vector of aggregate consumption goods at 
that time, C, = Ck c1 k. Furthermore, for any given date it is shown that all 
states of the world with the same level of aggregate nominal expenditure and 
consumption goods prices have the same optimal allocation of consumption 
goods to individuals. The results of these theorems are used in the next 
section to determine optimal capital market structures. 

The restriction on individuals’ preferences that is assumed is: 

(A I ) Each individual’s von Neumann-Morgenstern utility function is 
time-additive and state-independent in terms of consumption bundles. 
Mathematically, individual k maximizes: 

where T, is k’s time of death, S, is the set of possible states at time 1, and x:, 
is k’s subjective probability for state s at time t. The utility function uk is 
monotonically increasing and strictly quasi-concave. 

In each of the paper’s theorems, either homogeneous beliefs or one of the 
folIowing two assumptions of conditionally homogeneous beliefs is used3: 

(A2) Given the vector of aggregate consumption of all goods at date t, 
individuals agree upon the probabilities of states at date t.” That is, rrFS = 

k 
~n,,~ c, where & is k’s subjective probability for an aggregate 
consumption vector of C at time t, and x~,, c is k’s probability that state s 
occurs at time t, conditional upon an aggregate consumption vector of C at 
time t. 

(A3) Given the (N+ I)-vector of aggregate nominai consumption 
expenditure and goods prices at time t, (E, P), individuals agree upon the 
probabilities of states at time t. 

’ Note that assumptions A2 and A3 are equivalent under the conditions of Theorems I and 
2, if the allocation is optimal. 

’ The aggregate consumption vector is important information, but it is not a complete state 
description in the Arrow-Debreu sense. Given an aggregate consumption vector, states may, 
for example, differ in their descriptions of assets’ payof%, production possibilities, and 
probabilities of future consumption rates and asset returns. 
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The following two theorems characterize all Pareto-optimal allocations in 
this class of economies, which includes many of the models in the literature 
of financial economics. 

THEOREM 1. If assumptions Al and A2 hold, then any unconstrained 
Pareto-optimal allocation of time-state contingent consumption goods is such 
that, at each date, all states with the same vector of aggregate goods 
consumption have the same allocation of goods to individuals. Furthermore, 
given Al, A2 is both necessary and sufficient for the theorem. 

THEOREM 2. If assumptions Al and A3 hold, then any unconstrained 
Pareto-optimal allocation of time-state contingent consumption goods is such 
that, at each date, all states with the same consumption-goods prices and 
aggregate nominal consumption expenditure have the same allocation of 
consumption goods and consumption expenditure to individuals. 
Furthermore, given Al, A3 is both necessary and sufJicient for the theorem. 

The proofs of Theorem 1 and Theorem 2 are in Appendix A. 
Theorem 1 implies that each individual’s optimal vector of consumption 

goods at time t can be written as a function of (only) time and the aggregate 
vector of consumption goods at that time, i.e., i$ = @(et, t). A special case 
of this theorem is Breeden and Litzenberger’s [8] single-good version, 
$ = c”(C~,, t), which was a part of the consumption-oriented CAPM theory. 
Their single-good result implied that (with homogeneous beliefs) each 
individual’s optimal consumption rate was locally perfectly correlated with 
every other person’s and with the aggregate consumption rate. In this multi- 
good economy with homogeneous beliefs, marginal utilities of consumption 
dollars will be perfectly correlated. However, in a multi-good economy, the 
consumption rates of all individuals for a single good (such as cheese) will 
not be locally perfectly correlated, but will depend upon the aggregate 
supplies of ah goods. The power of Theorem 1 is its statement that other 
economic variables such as interest rates, prospective returns on risky’assets, 
and aggregate output affect individuals’ optimal consumption rates if and 
only if they affect optimal aggregate consumption rates. 

Theorem 2 is just the dual problem version of Theorem 1, stating the same 
basic result in terms of aggregate expenditure and the vector of goods’ prices. 
The result is that individual k’s optimal nominal expenditure rate at time t, 
e;k, can be written in terms of the aggregate nominal expenditure rate, the 
vector of consumption-goods prices and time, i.e., Zf = ek(gt, P,, t). 

From the result of Theorem 2 that the Pareto-optimal allocation of 
nominal consumption expenditure at date t depends only upon aggregate 
expenditure and consumption goods’ prices at t, it is not surprising that 
futures contracts, forward contracts and commodity options have significant 
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roles in risk allocation. However, with the generality and diversity of 
preferences permitted by the analysis, futures, forwards and options are not 
sufficient to span all possible Pareto-optimal allocations with simple buy- 
and-hold strategies. The risk sharing limitations of buying and holding these 
contracts are well-appreciated, so they will only be outlined prior to the next 
section’s analysis of risk sharing with continuous trading. 

Forward contracts may be viewed as having payoffs at maturity that are 
linear in (equal to) the underlying commodity’s price at maturity. Conse- 
quently, these contracts and futures contracts for aggregate nominal 
consumption span the space of efficient allocations if and only if all 
individuals have optimal nominal consumption levels that are linear in 
aggregate consumption and consumption goods prices at each date, i.e., only 
if: 

Schrems [34], Ross [32], Breeden and Litzenberger ES], and Banz and 
Miller (31 showed that portfolios of call or put options on an asset with price 
pt can achieve any desired contingent payoff function,S(pJ. Thus, portfolios 
of commodity options and options on aggregate consumption span the set of 
allocations that are additive (but not necessarily linear) functions of (E, 
such as: 

Neither portfolios of futures contracts nor portfolios of commodity options 
can span the general space of efficient allocations as given by Theorem 2 
since these simple portfolios do not capture the interactions among 
consumption goods prices and aggregate expenditure that determine the 
cptim_al allocation {ef(& p) 1. For example, the payoff function ek@, , pZ) = 
P, . P, cannot be achieved by simple buying and holding of futures, forwards 
or commodity options on goods 1 and 2. The next sections examine more 
powerful sequential trading strategies. 

III. CONTINUOUS TRADING AND THE OPTIMALITU OF FUTURES MARKETS 

Now consider an economy with continuous trading and with all economic 
variables following diffusion processes, as in the models of Merton [28], 
Cox, Ingersoll and Ross [ll], and Breeden [7]. In those models (as well as 
in discrete-time multi-period models), individual k uses dynamic 
programming to determine his indirect utility function for current wealth, 
Wk, and makes consumption-investment decisions for the current period 

642/32/2-h 
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based upon that function and the utility of current consumption. If the 
relevant characteristics of consumption, income and investment opportunities 
are stochastic over time and are represented by the “state” vector s, then 
individual k’s indirect utility function is written as Jk(Wk, s, t). 

Individual k’s demands for risky assets in the continuous-time multi- 
commodity model are* 

w~W~=T’~~,-A(~-~)+V-~V H,k, -0a -as (4) 

where wk is the A x 1 vector of the individual’s wealth shares invested in 
various risky assets, with 1 - Ci $ = wz as the fraction of wealth invested 
in the (nominally) riskless asset. The A x A incremental covariance matrix 
for instantaneous nominal rates of return on assets is v,,, and v,, is the 
A x S matrix of incremental covariances of assets’ returns with the various 
state variables describing the investment, income and consumption oppor- 
tunity sets. Individual k’s absolute risk tolerance in terms of the indirect 
utility function is Tk = -J”,/JLw and k’s relative risk tolerance is 
T*k = Tk/Wk. The S x 1 vector denoted by H,k = -J&,/J”,, gives individual 
k’s “hedging demands against adverse changes in the consumption- 
investment opportunity set,” in Merton’s [28] terminology. The instan- 
taneous expected rates of return on risky assets are given by the A X 1 
vector, p, and r = r . 1 where 1 is an A x 1 vector of ones and r is the instan- 
taneous riskless interest rate (in nominal terms). 

Aggregating the demand vectors in (4) gives the market portfolio, w”M= 
Ck wkWk. Individual k’s risky asset holdings may be stated in terms of his 
amount in the market portfolio and his amounts in the S portflios having the 
highest correlation with the S state variables, respectively: 

where TM = Ck Tk and Hr = Ck Hf. 
Define a “futures contract of instantaneous maturity on state variable sr” 

as an asset with a gross payoff in the next instant that is equal to the first 
state variable s,. If s1 is the price of corn, then this futures contract would 
have a gross payoff equal to the price of corn in the next instant, just as a 
standard futures contract at maturity can be regarded as having a gross 
payoff equal to the value of the underlying commodity. When an 
instantaneous-maturity futures contract is assumed to exist at all times for a 
variable like s,, the implication is that there is at every instant a futures 

’ See Merton’s [28] Eq. 16, which can be derived with many commodities in terms of a 
general state vector, X. 
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contract on s, that expires and another one created that matures in the 
instanL6 This is analogous to the assumption that there always exists an 
instantaneous riskless discount bond, but that the interest rate on it changes 
stochastically over time. 

Assume that there exist S such futures contracts of instantaneous maturity 
that have zero net supplies in aggregate, and whose returns (by definition) 
are perfectly correlated with changes in the various state variables.7 The 
assumption that aggregate supplies of futures are zeroes (as is true with 
futures contracts traded on organized exchanges) implies that their fractions 
of the market portfolio are also zeroes. The fact that the payoffs of the 
futures contracts are the levels of the various state variables implies that 
v&,‘v,, = (II)‘, where 1 is the S X S identity matrix and 0 is the S x 
(A - S) matrix of zeroes. * The subvector of individual k’s demands for 
futures contracts, w: Wk, is obtained by combining these two facts with 

9.10. (51 * 
Tk 

w:wk=H;---qy 
TM 

From (5) and (6), it is seen that individual k’s portfolio consists of 
(TkM/TM) dollars in the market portfolio, S holdings of the form 

’ This constant dimension but changing securities market basis is discussed in Cox, 
Ingersoll, and Ross [ 111. 

’ An important point made by the referee is that if an opportunity set state variable (such 
as an expected inflation rate) is unobservable, then futures or options cannot be written for it. 
Theorem 3 demonstrates that if there is not a portfolio perfectly correlated with each state 
variable, then a reasonable economy can easily be found for which the allocation is not 
optima!. This is not such a significant problem in Theorem 2 since commodity prices and 
aggregate expenditure are more reasonably assumed to be observable. 

’ Breeden [7] demonstrated that V-IV -an --as has as its columns the portfolios of assets that 
have maximum correlations of returns with the various state variables, i.e., column j gives the 
portfolio that has the maximum correlation with state variable si. Given the “futures 
contracts” as defined, clearly these maximum correlation portfolios are holdings of only those 
futures contracts that correspond to the state variables (since they provide perfect 
correlations). Thus V-IV 3 -00 -as must be diagonal. With suitable normalizations of state variables, 
the diagonal elements can all be set to unity. 

9 Standard futures contracts require no investment, which makes the vector of wealth 
fractions, wr, difficult to interpret. The interpretation of w: is that this is the wealth share that 
should be invested in the portfolio of (1) the futures contract for s1 and (2) a number of 
riskless bonds that pay in the next instant the currem Edtures price multiplied by the 
“quantity” specified in the futures contract. In any case, the vector w: divided by the vector of 
futures prices (one-by-one) gives the number of contracts that are optimally heid (assuming 
each contract is for 1 unit). 

” If there exists an asset with positive net supply that is perfectly correlated with a state 
variable, then (from (5)) k would hold (rkM/TM) times its weight in rhe market portfolio, as 
well as its demand component in (6). For such assets, the subsequent analysis should be 
viewed as an analysis of their supplies and demands as deviations from the market portfolio 
holdings of them by individuals. 
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(Htj - f$’ TkITM) in the futures contract for state variable j, and the 
remainder of wealth in the nominally riskless asset. Since the indirect utility 
function Jk(Wk, s, t) and its derivatives (which determine H,k and Tk) are all 
dependent upon the state of the world, each individual’s portfolio weights 
will in general change over time in response to changing wealth, to changing 
consumption and investment opportunities and in response to life cycle con- 
siderations. 

The paper’s principal theorem on allocational efftciency is the following, 
Theorem 3. The theorem states that if individuals hold the market portfolio, 
the riskless asset, and the S futures contracts in the proportions just derived, 
then the resulting intertemporal allocation of consumption goods to 
individuals is an unconstrained Pareto-optimal allocation. The proof of the 
theorem demonstrates that the marginal rate of substitution of dollars at any 
one time and state for dollars at any other time and state is the same for all 
individuals, which is the criterion for an unconstrained Pareto optimum. The 
theorem is a global theorem, in the sense that it is true for allocations that 
are discrete distances apart in time, as well as for allocations that are at 
adjacent points in time; of course, continuous trading is assumed throughout 
the theorem. Furthermore, it is also shown that if there do not exist futures 
contracts or portfolios whose returns are locally perfectly correlated with 
state variables’ changes, then the allocation will not be an unconstrained 
Pareto optimum for all preferences within the time-additive class, given that 
there is at least one stochastic state variable for opportunities. 

THEOREM 3. In the multi-good continuous-time economic model with 
individuals who have time-additive preferences as in (Al) and who have fully 
homogeneous beliefs, the following S + 2 funds (or any nonsingular transfor- 
mation of them) are necessary and sufficient for the capital markets to permit 
all possible unconstrained Pareto-optimal allocations of time-state contingent 
consumption: an instantaneously riskless asset in nominal terms, the market 
portfolio, and S futures contracts (of instantaneous maturity) for the 
elements describing the consumption-income-investment opportunity set. 

Since the proof is not an obvious extension of proofs in the literature, it is 
presented in the text. Readers may skip to the next section, where the actual 
supplies and demands for futures contracts are examined, without losing the 
main points of the paper. 

Proof The criterion for an unconstrained Pareto optimum is that the 
marginal rate of substitution (mrs) of a unit of the numeraire (“dollars”) 
between any two time-states be the same for all individuals. An optimal 
policy has the marginal utility of expenditure for individual k, u,k(ek, P, t), 
equal to the marginal utility of wealth, .I”,( Wk, s, t). Thus, the sufficiency 
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part of the theorem may be shown by proving that (where 0 is the state of 
the world at time t) 

The equivalence of mm’s in (7) is shown in logarithm form by showing 
that 

In Jk,(B, t) - In J&(&J =f(B, t), Vk, (8) 

where f(0, t) is independent of k. As seen today (at time to), the difference 
between the log of the marginal utility of wealth today and at a future time 
and state is given by Ito’s stochastic integral as 

In Jb(t) - In J&(t,,) = 1’ Ld ‘nlF(r’ 
to 

It will be shown that the Ito stochastic differential, d In J”,, is at all points in 
time the same for all k. This implies that the integral in (9) is the same for 
all k, which gives anf(8, t) for which (8) is true, thereby proving sufficiency. 

The drift and diffusion parameters for d In Jk, are given by Ito’s lemma 
from those for a!JL as follows: 

Cox, Ingersoll, and Ross [ 1 l] have shown that pi,/J”, = -Y, which is 
stochastic but the same for all k. l1 Thus, it remains to show only that the 
remaining two terms of (10) are the same for all individuals. 

The third term in (10) is the locally stochastic component of the change in 
marginal utility. Since Jk, = J”,(W”, s, t), the stochastic movement in k’s 
marginal utility can be derived from the stochastic movements in k’s wealth 
and in the state vector for opportunities. Ito’s lemma gives 

The random wealth impact upon marginal utility derives from k’s portfolio 
weights. Given the market portfolio holding of (MY”/T”) and the futures 
holdings as in (6), we have 

I’ Actually, Cox, Ingersoll and Ross [ll] showed that the riskless rate equals minus the 
expected rate of change of marginal utility in an economy with identical individuals. However, 
their proof can be used to derive that result for any single individual k, and the fact that the 
riskless rate is the same for all implies then that the expected rates of change of al! 
individuals’ marginal utilities must be the same. 
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M 

=--oMdZM+% dZ,, 
TM TM -s 

which is the same for all individuals k. This demonstrates that, with futures, 
all individuals’ marginal utilities are locally perfectly correlated. 

The remaining, second term of (10) is proportional to (a,k,)*/(J$)‘. Again, 
Ito’s lemma can be used to find the variance of k’s marginal utility as 
follows: 

(oJkJ2 = (Jk,,Jk,,) ( p;“) ( 2w) . (13) 
SW-ss SW 

This can be computed by using k’s portfolio weights to compute k’s wealth 
variance, VLw, and ,k’s covariances of wealth with the state vector, Vt, and 
then substituting those into (13). The result is that the second term of (10) is 
proportional to 

which is the same for all individuals. Equation (14) could also be obtained 
straight from (12) and the variance-covariance matrix for (M, s). 

Sufficiency has now been proven since all parts of the change in the log of 
marginal utility in (10) are the same for all individuals. 

Consider individuals’ portfolio demands, (5), when there are not portfolios 
that perfectly hedge against all state variables’ changes: each individual’s net 
hedging demands, H: - (Tk/TM) Hy go to the portfolios v;iv,,, which 
were shown by Breeden [7] to have maximum correlations with respect to 
state variables. Now reformulate the portfolio problem slightly, letting the 
first S assets be those portfolios v,-,’ v,, , and letting the remaining assets be 
those A - S assets that, when combined with the hedge portfolios, span the 
same space as the original A assets. Clearly, the same returns are possible 
and optimal as before. However, letting gP dZ, be the stochastic components 
of returns on the hedge portfolios, the stochastic component of k’s marginal 
utility that corresponds to Eq. (11) is 

Tk 
H: -TM Hr 1 1 tip dZ, 

=~~~dZM+~~pdZp-$$ [~pdZ,-ga,dZ,]. (15) 
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If there are not perfect hedges available, op dZ, # cs dZ, for some states of 
the world. In those cases, preferences (H:) can be chosen so that individuals’ 
marginal utilities are not perfectly correlated, which implies a non-optimal 
allocation. QED. 

IV. SUPPLY AND DEMAND FOR FUTURES ~QNTRACTS 

In the previous section, Theorem 3 demonstrated that continuous trading 
in “futures contracts” for elements of the consumption and investment 
opportunity set allow individuals to achieve an unconstrained Pareto-optimal 
allocation of risk. The characteristics of Pareto-optimal allocations, as given 
earlier by Theorem 1 and Theorem 2, have not changed since a central 
planner is not concerned with whether trading is continuous, discrete, or 
once-and-for-all; the planner simply maximizes expected utilities subject to 
resource constraints. Thus, continuous trading in “unconditional” futures 
contracts achieves a sharing of commodity prices’ risks and aggregate expen- 
diture’s risk that is not necessarily linear or additive in commodity prices 
and expenditure. For example, continuous trading in futures contracts can 
achieve the contingent payoff function at a future time t of .Z( =@~;p”~;,z, 
where buy-and-hold strategies of futures and commodity options could not. 
This construction utilizes the important insights of Black and Scholes [S] in 
their demonstration that the nonlinear payoffs of an option can be replicated 
by continuous trading in the underlying asset and a bond. 

This section examines individuals’ holdings of these futures contracts and 
relates them to individuals’ preferences for the various consumption goods 
and to individuals’ differential exposures to reinvestment risks. The analysis 
of this section generalizes and extends some of the results obtained by 
Merton [28], Long [26], Fischer [18], Dieffenbach 1151, and Grauer and 
Litzenberger [ 191 in their examinations of the consumption and investment 
hedging aspects of individuals’ portfolios. Since the continuous-time model is 
the same as in Breeden’s [7] paper, which. is a multi-good version of 
Merton’s [28] model, the consumption-oriented asset pricing theory applies. 
Given that, the focus of this section is entirely upon portfolio theory and 
hedging. 

Individual k’s portfolio of futures contracts was shown in Section III to be 

k 

w~Wk=H~--&H~. 

Thus, it is clear that whether in equilibrium an individual demands (is net 
long) a particular futures contract or supplies it (is net short) depends 
critically upon the magnitude of his element of Ht relative to his risk 
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tolerance share of the aggregate vector, HF. To understand these supplies 
and demands for futures, an analysis of the H,k vector follows. 

Applying the implicit function theorem to the function for marginal utility 
of wealth, J”,(W”, s, t), gives that Hfj is the compensating variation in wealth 
for a change in state variable j that is required to maintain the current level 
of marginal utility of wealth, i.e., 

-J&s. awk 
Hfj=-..-..L- 

Jkww asj Jw’ (16) 

As noted, at the individual’s optimum, his marginal utility of wealth must 
equal his marginal utility of nominal consumption expenditure: 

J”,( Wk, s, t) = u$(ek, P, t). (17) 

An alternative calculation of H,k is given by finding JkSj and Jbw by implicit 
differentiation of [ 171, then using the implicit function theorem for the 
expenditure function’ 2 

awk awk H,kjzz- 
I I aSj ,k =asj @’ for elements of the investment 

opportunity set, 

Htj= (g IUS--%)/( fo;o;;mption-goods 

’ J’ 

(18) 

(19) 

It is shown in Appendix B that the vector of commodity futures demand 
components, given by (19) and now denoted H,k, may be rewritten in a more 
instructive form: 

,ii i 
aek _ Tkmk - alnP awk 

awk =- 
ap & 

- Tkmk, 
(20) 

where a: is individual k’s current vector of budget shares spent on the 
various consumption-goods (his average propensities to consume), and mk 

I* To get (18) and (19X note that ek = ek(Wk, s, t). Given this, for elements of the 
investment opportunity set (i.e., not commodity prices in P), differentiation of (17) with 
respect to sj gives JLsj = z&e:;.. For elements of the consumption-goods price vector, P, which 
are elements of the state vector s, we have: Jk 
respect to wealth gives: Jsw= z&e”,. 

a,pj = z&e;, + ~2~~. Differentiating (17) with 
Substituting these expressions into definition Hsj = 

-JkwsjIJLw g ives (18) and (19) for investment opportunity set elements and for consumption 
opportunity set elements, respectively. 
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are individual k’s marginal propensities to consume, I?(3ck/aek). That is, 
represents the fractions of an additional dollar’s consumption expenditure 
that k would spend on the various commodities. 

Two examples will be given to indicate the implicati.ons of this analysis for 
individuals’ holdings of future contracts. First, consider the effect on an 
individual of an increase in an interest rate, ceteris paribus. Assume that the 
interest rate increase has a real wealth effect that is positive, thereby tending 
to increase current consumption expenditure, e. However, the change has a 
negative effect on current consumption, in that the price of current 
consumption has increased relative to the price of future consumption. The 
net result on current consumption is ambigious; thus, individual k’s demand 
component r-Izj may be either positive or negative. In any case, those who 
consume more with an increase in interest rates would tend to be long in 
bonds, and those who consume less would tend to be short in bonds. Since 
equilibrium prohibits all investors from being net short or net iong, 
equilibrium expected excess returns must create asset demands such that 
markets are cleared; this effect explains the second component of futures 
demands in (6), -(Tk/TM)HF. 

The second example of an individual’s futures market position is of an 
increase in a consumption-goods price, P,i. From (20), an individual who 
increases current total consumption expenditure would tend to be short in 
this commodity’s futures market, whereas an individual who decreases 
current expenditures would tend to be long in this futures market. 
Furthermore, an individual with a very low income elasticity of demand for 
the given commodity would tend to be long in this futures market, as the 
good would have a relatively small share of his marginal consumption 
bundle. This has an intuitive basis in that goods that are “necessities” (low 
income elasticities of demand) are “hedged” more than “luxuries” (goods 
with high income elasticities). 

A more complete analysis of individuals’ supplies and demands for 
commodity futures contracts is given in Section V for the case where an 
invariant price index exists, i.e., when individuals have unitary income 
elasticities of demand for all goods. First, however, consideration will be 
given to the more general concept of hedging against changes in 
consumption and investment opportunities in this multi-period model, with 
particular emphasis upon the role of futures markets as hedging instruments. 

Merton [28], in a single-good model with changing investment oppor- 
tunities, has characterized the Ht demands as “hedging” demands. The sense 
in which this is an apt characterization should be examined. From (18), 
futures contracts for investment set state variables held due to H: will 
provide state-contingent wealth that combines in effect with investment 
opportunity changes to precisely maintain the utility of current consu 
This is a myopic view of hedging, as only the stability of an indi 
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utility of current consumption is considered. Since an individual chooses a 
consumption bundle and asset portfolio to maximize his expected utility of 
lifetime consumption, a more appropriate concept of hedging considers the 
use of futures contracts in stabilizing an individual’s expected utility of 
lifetime consumption. 

A perfect hedge, as defined here, is a portfolio of assets whose return in 
the various states of the world is such that the individual’s utility of lifetime 
consumption, Jk(Wk, s, t), is the same in all states of the world. Conse- 
quently, an individual’s hedging portfolio would have weights that are the 
compensating variations in wealth required to maintain expected lifetime 
utility, i.e., the weights would be (-J,k/Jk,). 

To examine the relation of the portfolio demand component Ht (which is 
Merton’s hedging portfolio) to the lifetime hedging portfolio defined here, the 
following simplifying assumption is made for the remainder of this section: 

(A4) Individual k’s vector of percentage compensating variations in 
wealth for changes in the state variables is not a function of k’s wealth 
leve1.i3,i4 

Mathematically, this assumption is that: (3/aW”)[J$/W”Jk,] = 0, which 
implies that 

H,k = ,,“r- - = Wk( 1 - T”k) yf, (21) 
Jww 

I3 Assumption A4 will be true with complete (or Pareto optimal) capital markets for 
individuals with time-additive isoelastic utility functions. This is easiest to see in a discrete- 
time, multi-period state preference model, where the individual’s subjective probability belief 
today for the occurrence of time-state ts is nts, the individual’s wealth is IV,,, and the price of 
a $1 claim for time-state ts is #,,. With those definitions, the individual maximizes the 

Lagrw3ian: L = Ct CSESt 7wWy+ aIwo - C1 C, 54, tS c 1. First-order conditions are the 
budget constraint and E conditions of the form: 

which may be rewritten as cts = c&$,/z~,P’)-“Y where E is the number of time-states. In the 
latter form of the first-order conditions, it is seen that there are E linear equations in he E + 1 
unknowns, [c,, (c,,)]. Combining these and the budget equations into a matrix system, we 
may write AC = W,b, where 4 is the coefficient matrix, c is the vector of contingent 
consumption claims purchased, and b is a vector with a one in the first position and zeroes 
elsewhere. Note that the coefficient matrix, 4, depends on probability beliefs, contingent claim 
prices, relative risk aversion, and pure time preference, but not upon initial wealth. The 
consumption vector may be found by pre-multiplying by A-i, i.e., e = (A-lb) IV,. 
Substituting these optimal consumption claim purchases back into the objective function, we 
find that the indirect utility function for wealth may be written as J( IV, s, t) = W’ - yf(s, t), 
where s describes the state of the world and 4 = A(s, t). It is easily verified that this utility 
function satisfies assumption A4. 

I4 A similar assumption was made by Dieffenbach [ 15, 161, who also provided some 
estimates for percentage compensating variations in wealth for changes in consumer prices 
and Treasury bill rates. 
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where yft is k’s vector of percentage compensating variations, i.e., 
yi = -.lf/WkJ$ and T*k is k’s relative risk tolerance, as defined earlier. 

Given assumption (A4), individual k’s portfolio of futures can be rewritten 
by substituting (21) into (6): 

~:=(l-T*~)(y~-y~)+ ji-&+“+T”k(y~-y*). (22) 

where yM = zk ( wk/M) y k and yy= Ck (Tk/TM) yk are wealth and risk 
tolerance-weighted averages of individual’s compensating variations, respec- 
tively. 

From (22), an individual will hedge, in the sense that he will hold futures 
long for state variables whose increases hurt him rnore than the average 
person, if his relative risk tolerance is less than unity (the logarithm). If he is 
more risk tolerant than the logarithm, then the individual will tend to 
“reverse hedge,” being short in futures for state variables whose increases 
hurt him more than the “typical” person. This generalizes similar results 
obtained by Dieffenbach [ 151 and by Grauer and Litzenberger [ 191 to 
investment opportunities, as well as consumption opportunities, and to more 
general utility functions. l5 

Individuals who have greater relative risk tolerance than the average wiH 
bear more of the social risk of changes in consumption and investment 
opportunities. The final term in (22) is a residual portfolio that will be the 
same for all individuals; it represents the difference between the risk 
tolerance weighted average index weights and the wealth-weighted average. If 
all individuals have identical relative risk tolerance, then this term is a vector 
of zeroes. Of course, an individual who is infinitely risk averse (zero risk 
tolerance) would perfectly hedge against changes in investment and 
consumption opportunities, i.e., w$ = yk, and would hold no other risky 
assets. 

Equations (4) and (5) give the optimal portfolio of all assets for individual 
k. From (5), the total optimal portfolio consists of market portfolio holdings, 
futures holdings (6), and holdings of the riskless asset. The futures 
components of individuals’ optimal portfolios have been described and 
related to individuals’ consumption bundles and to their compensating 
variations in wealth for state variables’ changes. An individual’s total 
portfolio (market, futures, and riskless asset) can be viewed as a mean- 

I5 The “reverse hedging” possibility was discussed in a 1974 version of the Grauer- 
Litzenberger [19] paper. However, their model was quite different, being a Zperiod state 
preference model with complete markets. Stochastic investment opportunities were no% 
considered by them. Dieffenbach [15] considered hedging against changes in investment 
opportunities in a multi-period model and also found log utility to be the dividing line between 
hedging and reverse hedging. 
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variance efficient portfolio in his “real wealth,” as shown by the following 
analysis. 

An individual’s asset portfolio is chosen to maximize his expected change 
in real wealth for a given variance of real wealth. l6 The individual’s real 
wealth, W*, is defined as nominal wealth deflated by an inverse index of 
consumption and investment opportunities, i.e., W*k = Wk/lk(s, W”). An 
asset’s portfolio weight is an increasing function of its contribution to the 
individual’s expected change in real wealth, and it is a decreasing function of 
its contribution to the variance of real wealth. With a wealth-invariant 
wealth deflator, an individual’s asset portfolio, (4) may be restated as 

Wk = T*ky;&l - Y) + v - ‘v -aa -as yk( 1 - T”k) 

= V&5!,,, + T* “K~(P - r - Valk), 
(23) 

where V,,, is the A X 1 vector of covariances of assets’ returns with the 
individual’s wealth deflator. If futures contracts exist for all of the state 
variables for the opportunity set, then this simplifies to 

Wk= (~)+T*k[l!;~(p-r)-(~) 1. (24) 

The individual’s total portfolio demands with incomplete markets, (23), 
and those with effectively complete markets, (24), can be explained as 
follows. The portfolio given by V,-dV,,, has the maximum correlation of 
return with the wealth deflator and, therefore, is the best hedge against shifts 
in the opportunity set. If futures contracts exist, that portfolio is a futures 
portfolio with weights yk. These holdings may be viewed as a result of the 
minimization of the variance of real wealth, i.e., they represent normal 
hedging demands. 

As an asset’s real value is its nominal value divided by the wealth deflator, 
P” = p/z the expression (II - r - ValJ is the continuous-time vector of 
expected real returns on assets in excess of the expected real return on the 
nominally riskless asset. Assets that have positive covariances with the 
deflator have lower expected real returns. Thus, there are offsetting 
considerations in the holdings of assets to “hedge” against opportunity set 
change. Variance minimization considerations result in positive holdings of 
assets that hedge against opportunity set shifts, while mean maximization 
considerations result in offsetting negative holdings of the same assets. The 
net result is ambiguous, depending upon the individual’s risk tolerance (as 
discussed). The reverse hedging possibility of the myopic hedging portfolio, 

I6 See Breeden’s 1977 Stanford University dissertation for a definition of real wealth with 
stochastic opportunities and for a proof of the efficiency result in this model. 
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Ht, is due to its juxtaposition of the conflicting effects of the holdings on real 
wealth’s mean and variance. 

V. COBB-DOUGLAS CONSUMPTION PREFERENCES: AN EXAMPLE 

In this example, it is assumed that all consumers have utility functions for 
goods consumed that are members of the Cobb-Douglas class with 
homogeneity of unity. That is, U(C, t) = V(nj’, , cj”‘, t), where Cj Clj = 1. 

The optimal budget share for any commodity j is the constant a:, 
regardless of total expenditures, ek, or prices, P. Demand functions have 
unitary expenditure elasticities, zero cross-price elasticities, and unitary 
income elasticities. Budget shares, ok, could vary non-stochastically over 
time without changing the nature of the results, thus allowing consumption 
preferences to vary with age. However, this complication will be avoided 
here. 

It is well-known” that an expenditure-invariant price index exists for 
individuals with these homothetic preferences. The vector of budget shares 
gives the weights for the price index. If it is further assumed that the only 
changes in consumption and investment opportunities are changes in 
consumption-goods prices and that those prices follow a random walk over 
time, then the same price index would be a valid deflator for nominal wealth 
That is, real wealth would simply be nominal wealth deflated by the price 
index. The vector of percentage compensating variations i.n wealth for 
percentage changes in consumption-goods prices would be the individual’s 
vector of budget shares, ak; thus, the individual’s demands for commodity 
futures are as given in the general equation (22), but with yk identified as ak. 

The analysis of which investors will be long and which will be short 
proceeds much as in the previous section. To examine the effects of hedging 
and risk allocation on the supply and demand for futures, two polar cases 
are instructive: (1) assume that all individuals have the same level of relative 
risk tolerance, but different vectors of budget shares, or (2) assume that all 
individuals have the same vector of budget shares (or price index), but 
different levels of risk tolerance. Consider first the case where all investors 
have the sam^e level of relative risk tolerance, and let it be r*. From (22) 
and the above discussion, individual k’s wealth shares in the various 
commodity futures contracts, wz, are 

wz = (1 - T*)(ak - a”). (25) 

Therefore, when relative risk tolerance is less than unity, if an individual 
consumes more of a good than the aggregate, then he will be long in that 

"See Samuelson and Swamy [33]. 
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good’s commodity futures market. Unless the individual’s consumption 
bundle is precisely equal to the average bundle, he will be long in all futures 
such as those, and short in futures of goods that he consumes less of than the 
average. Conversely, if T* is greater than unity, then all individuals would 
reverse hedge, being long in goods that they consume relatively less of and 
being short in futures for goods of which they consume relatively large 
amounts. In light of the previous section’s analysis, the reverse hedging 
possibility occurs when the increased real wealth variance effect is offset in 
the individual’s expected utility by the increased expected change in real 
wealth created by the reverse hedging policy. 

Consider now the other polar case-all investors have the same 
consumption bundles, ~8 = a, but they have varying degrees of relative risk 
tolerance. In this case, investor k will hold the following portfolio of 
commodity futures. 

This shows that an investor will be long in all futures contracts if his relative 
risk tolerance is less than that of the market, and he will be short in all 
contracts if his risk tolerance is greater than the market. This result arises 
from the fact social risks and individual risks coincide for each individual in 
this case; such social risk and the rewards appropriate in equilibrium are 
allocated to individuals according to their respective tolerances for risk- 
bearing. 

VI. COMMODITY OPTIONS 

In Section II it was noted that, while buy-and-hold portfolios of 
commodity options spanned a much larger space than that spanned by 
forward contracts, commodity options did not span the space of efficient 
allocations. Section III demonstrated that continuous trading in futures 
contracts or forward contracts spanned the space of efficient allocations. Of 
course, continuous trading in commodity options can span the same space of 
efficient allocations, but why have options when continuous trading in 
futures will do the same job? The reason is that transactions costs and 
heterogeneous beliefs were not considered in the analysis of futures. Desired 
nonlinear payoffs may require less trading with commodity options than with 
futures or forwards, making commodity options cost-effective in non-linear 
risk allocation. This section briefly combines some of the results of the 
recent options literature with this paper’s theorems to demonstrate that 
commodity options and options on portfolios of forward contracts have 
significant allocational roles in an economy with costly transactions. 
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TABLE I 

Price 
of - 

Beef 

Payoffs on Payoffs on Spreads 
Call Options 

- Spread A Spread B 

WI C(3) C(4) C(2jC(3) C(3jC(4) 

Butterfly Spreads 
Spread A-Spread B 

C(2 j2C(3)+C(4) 

$1.00 0 0 0 0 0 
2.00 0 0 0 0 0 
3.00 1 0 0 1 0 
4.00 2 1 0 1 
5.00 3 2 1 1 1 
6.00 4 3 2 1 I 

Consider an economy where individuals have diverse beliefs about the 
future price of beef. I8 All agree that the price per pound at date t will be in 
the set ($1, $2, $3, $4, $5, $6}, but disagree on probabilities. The current 
futures price is $4. Individual k receives information that the price is more 
likely to be $3 or $5 than k previously believed, with $2 and $6 being less 
likely. It is not possible for k to profit from this new information by simply 
buying or selling a futures contract and, since k is therefore unlikely to trade 
on the information, the allocation will not be efficient and prices will not 
“fully reflect all information.“” 

The literature on option pricing has shown that commodity options on the 
price of beef will allow k to speculate precisely on the new information, 
making both the allocation and prices more efficient.” For readers 
unfamiliar with this construction, Table I shows the contingent payoffs on 
commodity call options with exercise prices of $2, $3, and $4, respectively, 
and shows how a $1 payoff contingent upon a $3 beef price is achieved by a 
portfolio (“butterfly spread”) of those commodity options.21 Since the 

method of construction is general, a set of commodity options with all 
exercise prices lets indivials create general risk sharing functions of the form 
f(B,). In the beef price example, individual k would sell $2 and $6 claims 
(portfolios of call options) and buy commodity option portfolios that pay 
when the price of beef is $3 or $5. Thus, marginal rates of substitution of 
beef in different states would be equated for all individuals with commodity 
options. Both prices and allocations should be more efficient as a result. 

I8 Note that heterogeneous beliefs with respect to commodity prices are possible under 
assumption A3 and, hence, in Theorem 2. 

l9 See Fama [ 171 for a discussion of the efficient market hypothesis. 
” Hart’s [24] result that the addition of a new market can make al1 worse off must be 

noted as a qualifier to this efficiency statement. 
2’ The particular technique for constructing elementary claims in Table I was in Breeden 

and Litzenberger [8]. Equivalent techniques were presented by Ross [32] and by Banz and 
Miller j3 j. 
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Actually, the allocational efficiency problem is more complex than in the 
example. For allocational efficiency, the marginal rate of substitution of beef 
in one state of the world for beef in another state must be the same for all 
individuals. For example, if beef and pork are substitutes, then the marginal 
utility of beef increases with decreases in pork consumption. Trading in 
commodity options for beef will ensure that the expected marginal rates of 
substitution of beef in various states, conditional upon the price of beef, is 
the same for all individuals. The problem is that there may be a number of 
states of the world with the same price of beef, but different prices of pork. 
Commodity options for beef will have the same payoff in all states with the 
same price of beef; therefore, they will not span the space of potential payoff 
functions across these states. Portfolios of commodity options for pork will 
span states with different port prices, but will do so with payoffs that are 
independent of the price of beef, given the price of pork. Simple holdings of 
commodity options for beef and pork cannot span the general space of 
efficient allocations since the optimal holding today of beef options is 
dependent upon the (uncertain) future price of pork and since the optimal 
holding of pork options is dependent upon the future price of beef. 

For general optimal allocations, claims must be available that pay $1 only 
if the price of beef is $3/pound and, simultaneously, the price of pork is 
$2/pound. Such payoffs are particular mappings of commodity prices and of 
aggregate consumption into the real line and are, therefore, subsets of Ross’s 
[32] multiple options. As was just argued, simple commodity options will 
not span that space of efficient allocations. However, Ross has shown that 
options on portfolios of the underlying assets (forward contracts) span the 
larger space that is spanned by multiple options. Combining Ross’s result 
[32, Theorem 51 with Theorem 2 gives the following corollary to Theorem 2: 

COROLLARY 1. Given assumptions Al and A3, for each date t there 
exists a portfolio of forward contracts (maturing at date t> on consumption 
goods prices and on aggregate nominal consumption, such that call options 
on the portfolio span the space of eflcient allocations of consumption at j 
date t. 

To see this result, assume that the prices of beef and pork may be any of 
j%l, $2, $3, $4, $5, %6}, so that there are 36 “states.” A portfolio of 10 
forward contracts for beef and 1 forward contract for pork has a payoff that ~ 
is different in each state. Therefore, options on that portfolio of forward 
contracts will span all 36 states, giving general payoffs of the form f (FB, pD). 
After the options on the portfolio are purchased, no additional trading is 
required until the options mature. At that time, k uses the proceeds to 
purchase his desired consumption bundle in the spot market. 

Ross’s [32] characterization of the portfolio in Corollary 1 as an “efficient 



FUTURES AND COMMODITY OPTIONS 295 

fund” is apt in the sense that options on that fund’s return span the space of 
efficient allocations. However, as Arditti and John [l] have shown, in 
general there are a virtual continuum of portfolios that span the same space 
and are, therefore, just as “efficient.” The sets of weights that may be used 
for the portfolio of forward contracts depend upon the contingent price and 
expenditure combinations that are the possible states. As the commodity 
prices’ joint probability distribution is made more fine (continuous in the 
limit), the weights in the portfolio of forwards for Cotrollary I involve more 
computations. 

An alternative construction of a Pareto-optimal capital market in a multi- 
good economy will now be presented. It involves more complex financial 
instruments than Ross’s simple options on a portfolio of forwards, but has 
simple and intuitive portfolio weights and spans the same space of 
allocations. The technique follows from the following observations: (I) As 
shown in Table I, a $1 payment contingent upon a beef price of $3/pound at 
time 1 can be obtained from a portfolio of commodity options for beef; let 
this be portfolio A. Similarly, let portfolio B be the portfolio of commodity 
options that pays $1 if the price of pork is $2/pound at time t. (2) The 
portfolio C that consists of portfolio A plus portfolio I? has its maximum 
payoff when, simultaneously, beef is %3/pound and pork is $X/pound, and 
that maximum payoff equals $2, the number of “contingencies.” (3) An 
option on portfolio C, with an exercise price equal to the number of 
contingencies minus one, pays $1 if and only if all contingencies are met, 
and pays zero otherwise. (4) By similar arguments, the same construction 
will work for a $1 payoff contingent upon a number of commodity prices 
being equal to the vector P. If there are N contingencies, then the exercise 
price of the option-on-a-portfolio-of-options is N - 1. 

This analysis demonstrates that if there exist sets of commodity options 
for a number of different goods, then a financial intermediary could buy 
those commodity options and issue warrants that would pay off only if 
commodity prices for the component goods simultaneously equaled pre- 
specified levels. With diverse preferences, each individuai has a different 
price index; since the relation of such warrants’ payoffs to the commodity 
price vector is precise, each individual could construct a personalized index 
bond from a complete set of those warrants. Potential hedging and 
speculative uses of these options on portfolios of commodity options are 
immediate. 

In practice, the increased hedging and speculative precision that is 
attainable with such option portfolios is partially offset by the costs of 
setting up the portfolios. The more fine the partition, the lower the 
probability of a payoff and, hence, the lower the value of the payoff. With a 
number of tightly defined contingencies, each warrant would be nearly 
worthless. However, with the advent of widespread commodity options 

642/32/2-l 
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trading apparently on the horizon in the U.S., more sophisticated 
construction of payoffs contingent upon the prices of groups of goods is not 
implausible. 

VII. CONCLUSION 

This paper has described the roles of futures markets and commodity 
options in the optimal allocation of consumption across time-states. With 
certain assumptions, it was shown that contingent futures contracts are not 
necessary for allocational efficiency, since the same allocations can be 
attained by options on portfolios of commodity options or by continuous 
trading in unconditional futures contracts. In the continuous-time model, 
individuals’ optimal holdings of the various futures contracts were derived 
and interpreted. Both normal hedging and reverse hedging are possible due to 
the offsetting effects of futures holdings on real wealth’s mean and variance. 

APPENDIX A 

Proof of Theorem 1. Any Pareto-optimal allocation of time-state 
contingent vectors of consumption-goods solves: max Ck akUk for a set of 
positive constants {a,}, where the maximum is taken over all feasibie 
allocations, which are subject to resource constraints. A central planner 
(competitive equilibrium with optimal capital markets) would maximize the 
Lagrangian: 

With assumption A2, the RHS of (Al) can be rewritten as 

where S,c is the set of all states at t with aggregate consumption vector C. 
Thus, due to the assumption of time-additivity of utility functions, the central 
planner’s problem may be solved separately for each time-state, given {a”} 
and {C&). As shown by examining expression (A2), the assumptions of state 
independenc,e of utility and of conditionally homogeneous beliefs as in A2 
make the central planner’s objective, resource constraint and, hence, solution 
the, same for all states with the same aggregate consumption vector 
(assuming uniqueness of the solutions to these subproblems). The critical 
elem,ent in this proof is that the central planner’s objective function and 
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constraint are effectively the same for all states with the same vector of 
aggregate consumption. The only state-dependent element of the central 
planner’s weights on (U:} is nrs, c, but this is assumed to be the same for all 
individuals and does not affect the maximum problem. 

Necessity of A2, given Al, is easily seen from the first-order conditions to 
(Al), which imply if A2 is not assumed to hold: 

&&,,cu:,“, 4 &z,c u;Iz’ 

vs, 7 s2 E s,c P-3) 

where uii, is individual k’s marginal utility in time state ES, of another unit 
of, say, good 1. Since c& = cfs2 implies that (u;$&l= 1, for the theorem to 
hold it must be that 

(Z)=(Z), tfs,, s2 E s*c. 
2 

Since CseStC~2FlC= 1 for all k, this condition implies A2. 

Proof of Theorem 2. At any given date, an individual k with state- 
independent consumption preferences has an optimal consumption bundle 
that depends upon nominal consumption expenditure, ek, and consumption 
good prices, P, at that date, i.e., cf, = c:,(el; PJ. Any two states in which k 
has the same nominal expenditure and the same prices result in the same 
consumption bundle, as the solution to that subproblem is assumed to be 
unique. Consequently, to prove the first part of the theorem, it is sufficient to 
show that any two states at the same date with the same (E, P) have the 
same optimal allocation of nominal expenditure, {ek), where E = Ck eka 

Considering two states at data t with the same (E, P), an optimal 
allocation of consumption expenditure results in the same marginal rate of 
substitution (mrs) of “dollars” in one state for dollars in the other state for 
all individuals, i.e., 

where StE is a set of states with a common vector (E, P). Since each 
individual has a utility function for nominal expenditure that is monotonic 
with 41, > 0 and u,, < 0, ui(e$,; P, t)/ui(e$ P, t) > (=) (<) 1 iff ef, < (=) 
(>) et,. Thus, for (A4) to be satisfied, et, -et, must be of the same sign for 
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all individuals for all states sr, sz E S,,. However, this relation and the 
conservation equation cannot hold unless ef, = et*, Vk, Vs,, s2 E S,c. Part I 
is proven. 

Necessity of A3 for the theorem, given Al, is proven in the same way it 
was proven for Theorem 1. 

APPENDIX B 

The definition of the consumer’s indirect utility function is 

u(e, t; P,) = ~~~ U(c, t) = m:x{U(c, t) + A(e - P$)], 031) 

and the first-order conditions for a maximum are 

u, = AP,, up = -AC, and the shadow price d = u,. W) 

It is most convenient to deal in changes in the logarithm of price changes. 
Doing so, from Eq. (19): 

HhlPj= & 
( I 

ae ae 

J ue -2-Gq aw’ )I( 1 

By differentiating the optimality conditions in (B2) 

ae -‘j’Pje U, ___ = 
a In pj u, uee 

=,Pj$+PjCj, 
6-e 

and 

-Jw T=-.-----= - @iuee> 
J ww (ae/aW) * 

Q33) 

w 

By substituting (B4) and (B5) into (B3), one finds Eq. (20): 

- TPjf$ (20) 
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