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Prices of State-contingent 
Claims Implicit in Option Prices* 

the absence of a natural, agreed upon, 
and manageably small set of state defini- 
tions puts severe obstacles in the way of 
examining data about observable security 
behavior in terms of underlying choices for 
sequences of time state claims. [Hirshleifer 
1970, p. 277] 

While the state-preference approach is 
perhaps more general than the mean- 
variance approach and provides an elegant 
framework for investigating theoretical is- 
sues, it is unfortunately difficult to give it 
empirical content. [Jensen 1972, p. 357] 

I. Introduction 

The time-state preference approach to general 
equilibrium in an economy as developed by 
Arrow (1964) and Debreu (1959) is one of the 
most general frameworks available for the theory 
of finance under uncertainty. Given the prices of 
primitive securities (a security that pays $1.00 
contingent upon a given state of the world at a 
given date, and zero otherwise, is a primitive 

This paper implements 
the time-state prefer- 
ence model in a multi- 
period economy, de- 
riving the prices of 
primitive securities 
from the prices of call 
options on aggregate 
consumption. These 
prices permit an equilib- 
rium valuation of assets 
with uncertain payoffs 
at many future dates. 
Furthermore, for any 
given portfolio, the 
price of a $1.00 claim 
received at a future 
date, if the portfolio's 
value is between two 
given levels at that time, 
is derived explicitly 
from a second partial 
derivative of its call- 
option pricing function. 
An intertemporal capital 
asset pricing model is 
derived for payoffs that 
are jointly lognormally 
distributed with aggre- 
gate consumption. It is 
shown that using the 
Black-Scholes equation 
for options on aggregate 
consumption implies 
that individuals' prefer- 
ences aggregate to 
isoelastic utility. 
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security), the value of any uncertain stream of cash flows is easily 
calculated. However, the two quotes above indicate that the applica- 
tion of the time-state preference model to practical problems in finance, 
such as capital budgeting, is not at all immediate. This paper may be 
viewed as an attempt to make the state preference model operational in 
a multiperiod economy by deriving the prices of primitive securities 
from the prices of European call options on aggregate-consumption 
expenditures at each date. 

The papers of Wilson (1970), Schrems (1973), Friesen (1974), and 
Ross (1976) have shown in a single-period context that the vector space 
of contingent claims on a given portfolio is spanned by options on that 
portfolio with various exercise prices. In Section II, the price of a 
security paying $1.00 in T periods if the value of a given portfolio (e.g., 
the market) is MT at that time, and zero otherwise, is derived from the 
prices of European call options on the portfolio with various exercise 
prices and with T periods to maturity.' If the portfolio's value in T 
periods has a continuous probability distribution, then the price of such 
an "elementary claim" on the given portfolio is determined by the 
second partial derivative (assuming it exists) of the European call- 
option pricing function for the portfolio with respect to the exercise 
price, evaluated at an exercise price of MT. From these elementary- 
claim prices, the value of any asset whose payoffs are known functions 
of the portfolio's values at future dates (derivative assets) is derived. 

As an example, the call-option pricing equation of Black and Scholes 
(1973) is used in Section III to derive the value of a security that pays 
$1.00 if the given portfolio is between two stated levels in T periods, for 
example, if the market portfolio in 1 year is between 10% and 20% 
higher than its current level. The prices of these "delta securities" for a 
plausible set of parameters are presented in tables 2 and 3. Delta- 
security prices may be used to determine the prices of "complex 
options and corporate liabilities" given in Black's (1974) note, and they 
may be used to find values for Hakansson's (1977) "supershares," as 
given in Garman (1976). However, unlike Black's and Garman's pric- 
ing equations, the methods of this paper do not depend upon the 
continuous-time model of prices as diffusion processes, nor upon the 
Black-Scholes option-pricing equation. 

An alternative set of estimates of delta-security prices for the market 
portfolio (corresponding to tables 2 and 3) is given by Banz and Miller 
(1978). They use the Black-Scholes model in a sequential manner to 
estimate call-option prices on the market portfolio when the interest 
rate is stochastic. Of course, as noted in Section III, the Black-Scholes 
equation is consistent with a stochastic interest rate for certain prefer- 

1. The analysis is quite general in that the price of an elementary contingent claim on 
any portfolio may be determined from the appropriate call options on that portfolio. 
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ence and/or probabilistic assumptions, eliminating the need for a se- 
quential approach in those cases. In general, however, option pricing 
with a stochastic interest rate remains an unsolved problem, and the 
Banz-Miller estimates may approximate this unknown solution. From 
an equilibrium-valuation standpoint, their estimates may only be used 
to value derivative assets of the market portfolio since, with a stochas- 
tic interest rate, there exist random returns that have zero expecta- 
tions, conditional upon various market levels, that have positive 
prices. This fact may be seen from Section V or from Merton's (1973a) 
analysis of hedging against opportunity set changes in an intertemporal 
model. 

Anticipating the proof in Section V that the prices of elementary 
claims on aggregate consumption (or, in one case, the market portfolio) 
are essential to the pricing of all securities, Section IV presents a 
comparative statics analysis of the elementary-claim pricing function. 
In the context of the Black-Scholes option equation, changes in the 
market's dividend yield, current value, and variance rates are shown to 
affect elementary-claim prices in economically explicable directions. 
The structures of elementary-claims prices with respect to their times 
to maturity and with respect to their values upon which payment is 
contingent are also examined in Section IV. 

In Section V, it is proven that if individuals have time-additive and 
state-independent lifetime utility functions for consumption expendi- 
tures, and, conditional upon each potential level of aggregate consump- 
tion, all agree upon the probabilities of states of the world, then each 
individual's optimal consumption at each date may be expressed as a 
function of (only) aggregate consumption at that date. Thus it is shown 
that any Pareto-optimal allocation of time-state-contingent claims to 
consumption among individuals can be attained by a securities market 
consisting only of European call options on aggregate consumption at 
each date. It is then shown that the prices of primitive securities may 
be expressed in terms of the prices of elementary claims on aggregate 
consumption, which may be obtained from prices of call options on 
aggregate consumption by the method of Section II. From this deriva- 
tion of primitive-security prices, a valuation equation is obtained for all 
existing securities and capital-budgeting projects in terms of the prices 
of European call options on aggregate consumption. It is shown that 
knowledge of an asset's entire pattern of time-state-contingent payoffs 
is not required for valuation; only the expected payoffs on the asset, 
conditional upon aggregate consumption at each date, are required by 
the valuation equation. 

The portfolio result of Section V is the appropriate multiperiod 
generalization of a similar single-period result obtained by Mossin 
(1973) and Hakansson (1977). Their single-period result that each indi- 
vidual' s optimal state-contingent wealth is a function of only aggregate 
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wealth is seen to be nonoptimal in a general multiperiod economy. 
However, if it is further assumed that there exists a one-to-one corre- 
spondence between aggregate real consumption and aggregate real 
wealth (the market portfolio),2 then European call options on the mar- 
ket portfolio maturing at each future date may effect any Pareto- 
optimal allocation of time-state-contingent claims to consumption. In 
this case, with the assumptions required for the option-pricing theory 
of Black and Scholes (1973) and its extensions by Merton (1973b), the 
prices of primitive securities may be derived in terms of market data 
that are known or may be estimated and in terms of the probability 
distribution of states. However, the required one-to-one' mapping of 
aggregate consumption onto aggregate wealth will exist only for 
specific preference assumptions, for example, logarithmic utility func- 
tions. Therefore, the prices of primitive securities determined from the 
prices of options on aggregate consumption are of considerably greater 
generality, as this derivation requires much weaker restrictions on 
individuals' preferences. 

In Section VI, assuming that the Black-Scholes equation correctly 
prices options on aggregate consumption, equilibrium values are de- 
termined for the class of assets with payoffs that are jointly lognormally 
distributed with aggregate consumption at a future date. These assets 
are shown to be appropriately priced in a multiperiod context by a 
capital asset pricing model similar to that derived by Sharpe (1964) and 
Lintner (1965) in a single-period economy.3 However, the relevant 
"beta" of an asset's payoff that is necessary for pricing should be 
measured with respect to aggregate consumption, rather than with 
respect to the market portfolio.4 Implications of this result for capital 
budgeting are discussed in Section VIII. 

Section VII demonstrates that probabilistic assumptions about the 
pricing process for claims on consumption cannot be made inde- 
pendently of preference assumptions. Specifically, under certain as- 
sumptions, it is shown that the Black-Scholes formula prices options 
on aggregate consumption correctly if and only if individuals' prefer- 

2. This paper deals with a single-good model which could be extended to the multi- 
good case if all individuals have the same price index. The existence of a price index 
that is independent of an individual's wealth requires that all income elasticities of 
demand be unitary. (See Grauer and Litzenberger [1974] for a discussion of valuation in a 
multicommodity world.) For the single-good case of this paper, since individuals will be 
assumed to have preferences that are state independent in terms of the good, consump- 
tion and wealth should be thought of as real magnitudes. 

3. As this multiperiod model may have stochastic investment opportunities, it is 
entirely consistent with Merton's (1973a) "multifactor" intertemporal capital asset pric- 
ing model (CAPM). 

4. The beta of a security with respect to aggregate consumption is equal to its 
payoff's covariance at time t with aggregate consumption at time t, divided by the 
variance of aggregate consumption at time t. 
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ences aggregate to a function displaying constant relative risk aversion 
(CRRA).5 

Finally, Section VIII summarizes the major results of the paper and 
emphasizes their implications for capital budgeting. 

II. Pricing Elementary Contingent Claims from Option Prices 

An "elementary claim" on any security or portfolio of securities is 
defined here as a security that pays $1.00 at a given date, that is, in T 
periods, if the value of the portfolio is M at that time; if the value of the 
portfolio is not M in T periods, the elementary claim expires paying 
nothing. This section derives the price, P(M, T), of such an elementary 
contingent claim in terms of the prices of European call options on the 
underlying portfolio. The elementary claim may be created by long and 
short positions in call options having various exercise prices, each with 
a time to maturity of T; the price of the elementary claim must then be 
the cost of the portfolio of calls that gives the desired payoff. Under 
certain assumptions, it is shown in Section V that only the values of 
such elementary claims on aggregate consumption, that is, $1.00 if 
aggregate consumption is C in T periods, are essential to the pricing of 
primitive securities in the state preference model of Arrow and Debreu. 
For the special case where there exists a one-to-one mapping between 
aggregate consumption at a given time and the level of the market 
portfolio at that time, the price on an elementary claim on aggregate 
consumption will equal the price of an elementary claim on the corre- 
sponding level of the market portfolio. For this reason, the analysis will 
proceed with the underlying security being denoted as "the market" or 
as "aggregate wealth," although the method of pricing of this section is 
valid for claims on any security or portfolio. Throughout this paper, it 
is assumed that there are no restrictions on short sales, that there are 
no transactions costs or taxes, and that investors may borrow at the 
riskless rates of interest. 

Initially, suppose that the value of the market portfolio in T periods 
has a discrete probability distribution with possible values of: M = 
$1.00, $2.00, . . . , $N. Denote the vector of payoffs of a European 
call option on the market with T periods to maturity and with an 
exercise price of X as c(X, T); its price will be denoted by c(X, T). For 
calls with exercise prices of $0, $1.00, and $2.00, the state-contingent 
payoffs at T, c(X, T) are as shown in table 1. 

Note that as the exercise price of a call option is increased from X to 

5. In a later paper, derived independently of this paper, Brennan (1977) proves the 
same theorem with respect to wealth by assuming that aggregate consumption follows a 
random walk. He also shows that normality implies an assumption of constant absolute 
risk aversion. 
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TABLE 1 Payoffs on Call Options ($) 

Aggregate 
Wealth c(0, T) c(1, T) c(2, T) 

M(T)=1 / 1 0 0 
M(T) = 2 2 1 0 
M(T) = 3 t 3 S t( 2 (12) 

M(T) = N N N- I N-2 

NOTE.-T = time to maturity, M = value of market portfolio. 

X + 1, two changes occur in the payoff vector: (1) the payoff in the set 
of states with M = X + 1 becomes zero, and (2) the payoffs in all states 
with M : X + 2 are reduced by the change in the exercise price. 
Therefore, in this example, c(X, T) - c(X + 1, T) gives a payoff of 
$1.00 in every state with M : X + 1, and c(X + 1, T) - c(X + 2, T) 
gives a payoff of $1.00 in every state for which M ? X + 2. 

A security having a payoff of $1.00 only if M(T) = 1 may be con- 
structed as [c(0, T) - c(l, T)] - [c(l, T) - c(2, T)], since this 
combination of calls would have a payoff vector of: 

1'-1?~~ 1) 

The elementary claim for any given level of the market in T periods 
may be constructed in a similar manner. Given the call prices, c (X, T), 
prices of elementary claims on aggregate wealth, P(M, T), must be 
those computed from the replicating portfolio of calls. The portfolio 
giving $1.00 only if the market is M at T consists of one long call with X 
= M - 1, one long with X = M + 1, and two short calls with X = M. 
For example, if N = 3 and the prices of calls are c (0, T) = $1.7, c (1, T) 
= $0.8, and c (2, T) = $0. 1, then the respective elementary-claim prices 
are: P(M = 1, T) = $0.2, P(M = 2, T) = $0.6, andP(M = 3, T) = $0.1. 
Also, the price of a T-period riskless discount bond paying $1.00 would 
be $0.2 + $0.6 + $0.1 = $0.9. 

In general, if the step size between potential values of aggregate 
wealth is AM, then c(X, T) - c(X + AM, T) has a payoff vector with 
zeroes for aggregate wealth M - X, and with AM for all levels of 
aggregate wealth greater than or equal to X + AM. Therefore, the 
portfolio of call options that produces a payment of $1.00 if the market 
is M, and zero otherwise, is: (1/AM) {[c(M - AM, T) - c(M, T)] - 
[c(M, T) - c(M + AM, T)]}, where the coefficient of c(X, T) in this 
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expression is the number of calls with exercise price of X and time to 
maturity of T that should be held in the portfolio. 

Since the call portfolio gives a payoff of $1.00 if M occurs in T 
periods, the cost of the call portfolio is P(M, T; AM). That is, with step 
size of AM and call prices of c(X, T), P(M, T; AM) divided by the 
step size may be written as 

P(M, T; AM) - 

AM 

[c(M + AM, T) - c(M, T)] - [c(M, T) - c(M - AM, T)] 
(AM)2 , (1) 

and in the limit as the step size tends to zero, 

lim P(M, T; AM) a2c(X, T) 
AMM->0 AM Ix2 (x=2) 

With a continuous distribution for M, the probability of any given level 
of M is formally zero; however, M has a probability density function. 
The pricing function, P(M, T), is analogous to a density function in that 
case, as is seen from (2). Thus (1) gives the pricing function for an 
elementary claim on M maturing in T periods in the discrete case, and 
(2) gives the pricing function for continuous M (assuming that c is twice 
differentiable). Note from (2) that the positivity of elementary-claim 
prices implies strict convexity of c (X, T) in the exercise price. 

From the above pricing function for elementary claims on a 
portfolio, the values of derivative assets with respect to the underlying 
portfolio may be determined. That is, if security has payoffs qf over 
time that are known functions of only the level of the market at each 
date, that is, qf = qf (MT), then its price must be 

= I Tf qf (MT) P(M, T) dT 

= I TfMT qf (MT) cxx(X = M, T) dMT dT, 

where P(M, T) was substituted from (2). The second partial derivative 
of c with respect to the exercise price, evaluated at X = M, is cxx(X = 

M, T).9 Equation (3) must hold due to the arbitrage possibility of 
"creating" elementary claims on the market through portfolios of calls 
on the market (if they exist or can be constructed), then creating 
securityf's payoffs by portfolios of the elementary claims on M at T. 

Note that no assumptions have been made as to the stochastic 
6. Similarly, Merton's (1973a) convexity proof for c(X, T) in X demonstrates that 

P(M, T) > 0. 
7. The result given by the second line of eq. (3) was noted by Black (1974) for when 

c(X, T) is given by the Black-Scholes option-pricing equation. However, the result was 
noted as a mathematical curiosity rather than being derived as a general proposition, as in 
this section. 
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process governing the movement of the underlying security's price or 
of the option's price. Aside from the perfect-markets assumption, the 
only requirement is that c(X, T) be twice differentiable for (3); even 
this differentiability assumption is not necessary for the discrete valua- 
tion equation obtainable from (1). Individuals' preferences and beliefs 
have not been restricted, as they will be reflected in the call-option 
prices. 

There may be many different states of the world with the same level 
of aggregate consumption or aggregate wealth. For example, the dis- 
tribution of total output among firms may vary over a group of states 
with the same level of aggregate output. Also, the state description at 
any date may include the history of events prior to that date. Thus 
there may be many interesting securities and capital-budgeting projects 
that are not proper derivative securities and whose values may not be 
determined by the valuation equation (3). It is shown in Section V that 
if, conditional upon any given level of aggregate consumption at time T, 
individuals agree upon the probabilities of states, if they have time- 
additive and state-independent utility functions for consumption, and if 
there is a correspondence between aggregate consumption and aggre- 
gate wealth, the same valuation formula (3) is obtained for all assets, 
with cash flows in the formula replaced by their expected values 
conditional upon the level of the market, E(qf I MT). When the first two 
of these conditions are met, but there is not a one-to-one mapping 
between aggregate consumption and aggregate wealth, Section V de- 
rives a general valuation equation similar to (3) in terms of prices of 
elementary claims on aggregate consumption and expected payoffs 
conditional upon levels of aggregate consumption. In that more general 
case,8 it is not appropriate to value all assets by using (3) with qT(MT) 

being replaced by securities' expected payoffs, conditional upon the 
various levels of the market portfolio.9 

III. An Example of Valuation Using the Black-Scholes Equation 

An explicit formula for the value of a European call option, c (X, T), in 
a continuous-time economy when the underlying asset follows a diffu- 
sion process has been obtained by Black and Scholes (1973) and gener- 
alized by Merton (1973b). Also in a continuous-time economy, Cox and 
Ross (1975) and Merton (1976) obtained explicit valuation formulae for 
a European call option when the underlying asset's price follows a 
jump process. The Black-Scholes option-pricing formula has been de- 
rived in a discrete-time economy for individuals whose utility functions 

8. The conditions for a one-to-one mapping are quite stringent, e.g., logarithmic 
utility. 

9. This fact considerably restricts the classes of assets and capital-budgeting projects 
for which the Banz-Miller valuation results are valid. 
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are isoelastic (CRRA) by Rubinstein (1976). For their respective econ- 
omies, each of these formulae may be used to evaluate cXx and, hence, 
the prices of elementary contingent claims on the underlying asset, 
P(M, T). 

In this section and the next, prices of elementary claims on a 
portfolio are examined under conditions that permit the derivation of 
the Black-Scholes call-option pricing equation as generalized by Mer- 
ton. That equation is 

c(X, T) = Moe-8T N(dl) -B(T) X N(d2), (4) 

where 

2 - --~~~~~~~~~~ 

and d, = d2 + O-T\I; rT = -{In [B(T)]}IT is the (continuously com- 
pounded) yield to maturity available on T-period riskless bonds and -T- 
is the average variance rate for (In M), that is, o-r = var (In MT)IT; MO is 
the current value of the optioned portfolio and 5 is the portfolio's 
continuously paid dividend yield.10 The standard normal cumulative 
distribution function is N(d), which is tabulated. 

The European call-option pricing function given by (4) is the same as 
the original Black-Scholes solution when there are no dividends, 5 = 0, 
when the term structure is flat, B(T) = e-rT, and when the variance of 
(In M) is proportional to time, o- 2 = o-2. Merton generalized the Black- 
Scholes solution to the case of a proportional dividend rate and to a 
particular stochastic process for interest rates. To incorporate the 
latter generalization, OT in (4) should be interpreted as oT- T =fT (0 + 

7B2- 2PIBo-ImoB) dt, where o-B is the variance rate on the discount bond 
maturing at T. Also, the Black-Scholes equation correctly values op- 
tions on aggregate consumption, even with a fairly general form of 
stochastic interest rates, if it is assumed that individuals' preferences 
aggregate to a utility function displaying CRRA and if consumption is 
lognormally distributed at each future date." While the CRRA assump- 
tion is quite strong, it is shown in Section VI to be a necessary 
condition for pricing options on aggregate consumption via the Black- 
Scholes formula. The importance of pricing options on aggregate con- 
sumption will be shown in Section V. However, at this point we return 
to the simpler task of pricing elementary claims on any portfolio when 
the Black-Scholes equation is just assumed to correctly value options 

10. With discrete proportional dividends paid n times between now and T, e-8T would 
be replaced by (1 - 8)n and the analysis would be unchanged. See Geske (1976) for a 
CRRA treatment of stochastic dividend yield. 

11. In this model aggregate consumption may follow a discontinuous stochastic pro- 
cess. 
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on that portfolio. Again, the market portfolio is used for illustrative 
purposes. 

By differentiating the call-option pricing function, (4), twice with 
respect to the exercise price and evaluating the resulting function at X 
= M, the price of $1.00 contingent upon aggregate wealth being M in T 
periods (scaled up by dividing by dM) is found from (2) and (4): 

dMT MT O CT\ / n[d2(X = MT)] (5) 

where n(d) is the standard normal probability density function n(d) = 

(2,)-1/2e-d212.12 

By substituting (5) into (3), the valuation equation for all assets with 
cash flows that are known functions of the market level and time 
(derivative assets) is obtained. The needed parameters for valuation 
are the cash flows of the security over time, conditional upon the level 
of the market, the market's dividend yield, and its variance of rate of 
return, which may be estimated. The term structure of interest rates is 
observable. As the analysis of Section II and the present section is 
valid for derivative securities of any security or portfolio that meets the 
Black-Scholes assumptions, the valuation equation from (5) and (3) 
may be quite useful. A numerical example of the general method of 
pricing elementary claims and derivative assets of a portfolio follows, 
using the Black-Scholes call-option pricing equation for c(X, T). 

Consider a security that pays $1.00 at t* if aggregate wealth at t* is 
greater than or equal to a prespecified level Y and zero otherwise. The 
time to maturity of this security is T t* - t. Let the value of this 
security be G(Y, T), the cumulative of the pricing function (from the 
right), since G(Y, T) = fy P(M, T), which is from (5): 

G(Y, T) = K B(T) n[d2(X = Mt*)] dMt* 
jy Mt *0uVT (6) 

= B(T)N[d2(X = Y) 

where the solution given in the second line was obtained by changing 
variables from Mt* to d2 by the following relation: 

Mt* =Moexp[(r-, - '2 ) T-d2&vIr1 

with JacobianJ= -Moo-V7 exp [(r - 8 T - d2o I 13 

For a time period of 1 year, T = 1, the values of G(Y, T) were 

12. By a transformation of variables from MT to d2, it is seen that P(M, T)Idd2 = 

B(T)n(d2), which is the price of a discount bond times the risk-neutral density of Cox and 
Ross (1976). 

13. Note that for Yt = 0, the cumulative pricing function gives the price of a riskless 
discount bond with t periods to maturity, since receipt of $1.00 is certain. 
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calculated and printed in table 2: G(Y, T) is shown for various values of 
Y/Mo and for parameter values of C = .20, 8 = .04, and r, = .06.14 Note 
that the cost of a security paying $1.00 if the market increases by 10% 
or more is approximately 29?, whereas a security paying $1.00 if the 
market is less than 110% of its current value costs B(1) - 29? = 65?. 
For these securities, although they may have the same expected return 
(approximately), the security paying when the market is low has twice 
the price of the security paying when the market is high, reflecting the 
value of negative covariance. In general, the cost of a security paying 
$1.00 if the market at t* is between Y1 and Y2, Y2 > Y1, is given by G(Y1, 
T) - G(Y2, T) = A(Y1, Y2, T). Such securities will be called "delta 
securities" in this paper. From (6), these prices are: 

A (Y1, Y2, T) = B(T){N[d2(X = Y})] - N[d2(X = Y2)]}. (7) 

The prices of delta securities immediately give "supershare" 
prices for Hakansson's (1976, 1977) single-period economic model. 
Garman (1976) (and implicitly Black [1974]) has derived those super- 
share prices by assuming that the underlying asset's price follows a 
geometric Brownian motion. The derivation of (7) is somewhat more 
general, encompassing all stochastic processes or preference assump- 
tions that give the Black-Scholes equation. Furthermore, the general 
method of this paper can be used to price delta securities from any 
call-option pricing equation, c(X, T). 

Table 3 presents the values of delta securities for various times to 

TABLE 2 Values of the Cumulative Pricing Function and the Prices of Delta 
Securities: An Example* 

Cumulative Prices 
1-Year Price Pricing of Delta 

Market Change Relatives Function Securities 
in 1 Year (%) (Y11Mo) [G(Y11M0)] ... .; t = 1)] 

-40 .6 93.70 3.0 
-30 .7 90.70 9.00 
-20 .8 81.70 15.70 
-10 .9 66.0? 18.90 

0 1.0 47.10 17.30 
+10 1.1 29.80 12.80 
+20 1.2 17.10 8.1? 
+30 1.3 8.90 4.60 
+40 1.4 4.30 2430 
+50 1.5 2.0? 

* Parameters for this example are: a- .20, 8 = .04, r, = .06, and t = 1 year. 

14. The instantaneous standard deviation of the rate of return of 20% is very close to 
the 22% standard deviation of annual returns on common stocks for the period 1926-74, 
as found by Ibbotson and Sinquefield (1976). The appropriate variance for this model is 
the variance of the logarithm of aggregate wealth on an annual basis. The dividend yield 
of 4% and 1-year riskless rate of interest of 6% were the approximate values of 8 and r1, 
respectively, in June 1977. The standard deviation of 20% may be revised to the present 
time by the method of Latan6 and Rendelman (1976). 
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maturity ranging from 3 months to 5 years, using the same parameters 
as in table 2. Note that the number of rows in this price matrix can be as 
great or as small as desired since equation (7) is quite general. As a 
practical matter, the number of rows chosen should depend upon the 
range and variability of the uncertain cash flows to be valued.t5 The 
value of assetf with payoff qf(Yi, Yi+1, T) when the underlying portfolio 
is between Yi and Yi+ in T periods is 

Vf = YTZiA(Yi, Yi+, T)qf(Yi, Yi+l, T). (8) 

Equivalently, arranging the asset's contingent payoffs in a matrix of the 
form of table 3, the asset's value is the box product of its payoff matrix 
with the matrix of delta prices. This technique has implications for 
capital-budgeting decisions that are discussed in Section VIII. Of 
course, as the underlying asset's price changes, or as other parameters 
change, the delta price matrix will change, causing corresponding 
changes in the values of derivative assets. An example of this effect is 
given by Banz and Miller (1978). 

IV. Properties of Elementary Contingent-Claim Prices 

The pricing function for $1.00 contingent upon a given level of the 
market in T periods, P(M, T), as given by equation (5), is the subject of 
the analysis of this section.t6 In particular, the elasticities of the pricing 
function with respect to its parameters are determined and interpreted. 
Note that, since the price of a riskless discount bond is an argument of 
P(M, T) andf MTP(M, T) = B(T), the partial derivatives of P(M, T) with 
respect to its other arguments must increase P(M, T) at some levels of 
MT and decrease P(M, T) at other levels of MT, since the sum over MT 

remains constant. 
As the initial level of the market, MO, is increased, ceteris paribus, 

the probability distribution for future levels of the market is shifted 
upward. The increased probabilities of "high" levels of MT and the 
decreased probabilities of "low" levels of MT increase and decrease, 
respectively, their contingent-claim prices given by P(M, T). This is 
stated by the elasticity 

O ln P(M, T) _ d2 (9) 
ln MO (9)' 

where 

d2 - l(MTn ) (rT 2 ) 

15. If qf is a continuous function of the portfolio value, rather than a step function as in 
(8), then Vf is given by the direct integration in (3). 

16. The analysis of this section anticipates the utility implications of some of the 
results of Sections V and VI. 
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assuming 0-2 is constant. To verify that an increase in MO increases 
prices at high levels of MT and decreases P(M, T) for low levels of MT, 
note that d2 approaches -Xo as MT approaches +00 and d2 approaches 
+oo as MT approaches 0. 

The elasticity of the pricing function with respect to the instantane- 
ous standard deviation of the rate of growth of aggregate wealth is 

Ol in P = d1d2 -1, (10) 
OIn o- 

where d, = d2 + o-NV/T. This elasticity will be positive for very large and 
very small levels of MT and will be negative for MT near the center of its 
distributions This is explained by the fact that an increase in variance 
increases the probability of extreme observations relative to the proba- 
bility of central observations. 

The elasticity of P(M, T) with respect to the price of a T-period 
riskless discount bond, B(T), is: 

lnB(T) o-V(T 
Therefore, an increase in B(T) lowers the prices of claims that pay 
when MT is very high and raises the prices of claims that pay when MT 
is very low. Since B(T) is such that B(T) = f MTP(M, T), the increase in 
B(T) must increase the sum of all claim prices maturing in T periods. 

The price of a T-period discount bond in equilibrium is equal to each 
individual's ratio of expected marginal utility of consumption in T 
periods to his current marginal utility of consumption. Thus, an in- 
crease in B(T) may be associated with a diminished growth rate for 
consumption, which would decrease the probabilities (and prices of 
elementary claims) of high levels of the market in T periods. Alterna- 
tively, holding the expected growth rate of the market constant while 
decreasing the T-period riskless interest rate would indicate an increase 
in risk aversion as measured by individuals' utility functions for con- 
sumption in T periods. This would also explain the described effects of 
a change in B(T) on elementary-claim prices. 

As the dividend rate is increased, the distribution of the level of the 
market at time T is shifted downward, ceteris paribus; corre- 
spondingly, the prices of securities that pay when MT is low are in- 
creased by an increase in the dividend rate, whereas the prices of 
securities that pay when MT is high are reduced. Mathematically, 

a In P _ DeT (12) 

which supports the preceding interpretation. 

17. Since the mean of the distribution of MT is not a parameter for P(M, T), the phrase 
"near the center of its distribution" is used loosely; those levels of M for which 
Iln(MO/MT) I is not much larger than I (r - 8 - o-212)T I will be denoted as near the center 
of M's distribution. 
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The previous analyses have considered comparative statics changes 
in elementary-security prices due to changes in the parameters of P(M, 
T). These served to illustrate the functional form of the elementary- 
claim pricing equation. Now, consider the structure of elementary- 
security prices at a given point in time for various levels of the argu- 
ments of P(M, T), namely, the time to maturity, T, and the level of the 
market at maturity upon which payment is contingent, MT. These will 
be denoted the "maturity structure" and the "market-value structure" 
of elementary-security prices, respectively. Observe that the maturity 
structure is defined for a given market value (payoff level) M, and the 
market-value structure is defined for a given maturity T. In table 3 of 
the previous section, the maturity structure reflects movement across a 
row and the market-value structure is given by movement down a 
column. 

As the level of the market upon which the claim is contingent 
increases, there are two essential effects on the price of the claim, 
P(M, T): (1) the probability of the payoff being received may increase 
or decrease, thereby increasing or decreasing, respectively, the claim 
price, and (2) the increased wealth of the economy in the payoff states 
will decrease the marginal utility of wealth, thereby decreasing the 
claim price. The elasticity of the claim price with respect to the level of 
the market that it is contingent upon (its exercise price) is 

O InMT 1. (13) 

For very low levels of MT (relative to its initial level), the elasticity will 
be positive due to the increasing probability of payoff as MT increases 
from a very improbable low level. For wealth levels of MT that are 
large, the elasticity of P with respect to MT will be negative due to the 
effects of both diminishing probability of payoff and of diminishing 
marginal utility. 

The logarithm of P is concave in the logarithm of MT as 

O2In P I <KO. (14) 
a(ln MT)2 T2 T 

To verify the statement that, for a given probability of occurrence, as 
aggregate wealth in the payoff state increases the price of the state- 
contingent claim decreases due to the effects of diminishing marginal 
utility, assume that aggregate wealth follows a geometric Brownian 
motion and consider the following. Under this assumption, the ratio of 
P(M, T) to the probability of MT at T, IT(M, T) is18 

18. With geometric Brownian motion for MT, the probability of MT at T, given MO, is 

vr(M, T) = (27roT exp |- 1 [in (M - (a - a - 2/2)T1 . 
MT MO 2nd e M5). 

Eq. (15) follows from this fact and eq. (5). 
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Pr(M, T) -B(T) exp 
a 
-t r In MO 

T(a-r)(a + r-2-- 2-) (15) 

where a is the expected total return on the market. Thus, the elasticity 
of the ratio of price to probability with respect to MT is 

O In [P(M, T)/IT(M, T)] - _ --r < ? (16) 
OIn MT . (16 

This proves the statement that, holding probabilities of MT at T con- 
stant, the prices of elementary claims on the market are a decreasing 
function of aggregate wealth.t9 As will be argued in Section VI, the fact 
that the right-hand side of (16) is independent of MT implies that use of 
the Black-Scholes option equation for pricing options on consumption 
requires an implicit assumption of preferences that aggregate to a 
function that exhibits constant relative risk aversion. 

By examining the partial of P(M, T) with respect to the time to 
maturity, T, the maturity structure of elementary claim prices is ob- 
tained. Since B(T) = f MT P(M, T) = e-rTT is decreasing in T if all 
interest rates implicit in the term structure are positive, the sum of the 
claim prices must decrease as the time to maturity increases. However, 
the effects of a changing probability of the given level of M at T as T 
changes are evident in the following: 

8In P = -r - 1 - - (r8 2 2 (17) 
OT ~27' /I 2~ 29 

assuming that r is constant over time. 
The first term in (17) reflects the time effect on the value of $1.00. If 

(r - 8 - o-2/2) is positive, then payoff levels of MT that are lower than 
the current level of the market MO will decrease in value with an 
increased time to maturity due to their diminished probabilities of 
occurrence. For payoff levels of aggregate wealth that are extremely 
high or low relative to the current level, the d2 term dominates (17), 
increasing the prices of payoffs at both extremes. This effect is due to 
the increased variance of aggregate wealth as time to maturity is 
increased, thus increasing the probabilities of extreme observations 
relative to the probabilities of more central observations. 

V. Primitive Security Pricing in a Multiperiod Economy 

In this section, the prices of primitive securities (each paying $1.00 
contingent upon a given state at a given date) in a general multiperiod 

19. In (16) it is assumed that (a - r)/o-2 > 0, which will be true if the return on the 
market portfolio is positively correlated with aggregate consumption. See Section VI for 
more explanation in terms of the CAPM. For options on aggregate consumption P(C, T)I 
vr(C, T) is shown in Section V to be proportional to social marginal utility. 
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state preference model are derived from the prices of call options on 
aggregate consumption maturing at each point in time, with exercise 
prices equal to the various possible levels of aggregate consumption at 
those points in time. Given these primitive-security prices, the prices 
of all assets may be calculated from their state-contingent payoffs. In 
fact, it will be shown that each security price may be determined from 
its expected payoffs, conditional upon aggregate consumption, and the 
prices of call options on aggregate consumption. 

The economic model is of a multiperiod exchange economy with a 
single "real" good; there are F productive units (firms) in the economy 
whose output decisions are taken as predetermined. Contingent upon 
the occurrence of time-state ts, defined here as the occurrence of state 
s at time t, where s E St, the output of unit f is qf5 units of the 
consumption good. There are K consumers, each of whose preferences 
for state-contingent consumption allocations, {Ctk}, are assumed to be 
representable by the expected value of a von Neumann-Morgenstern 
utility function of the following form:20 

Uk(ck, ci1, . . * , Ct%) = Xt~seSt 7TkUk(Ck), (18) 

where u () is assumed to be monotonically increasing and strictly 
concave for each t. Individual k's subjective probability assessment for 
the occurrence of state s at time t is 7Tk , and Ctk is his consumption in 
period t if state s occurs. Note that individuals' preferences for lifetime 
consumption are assumed to be time additive and state independent, in 
that their utilities at t depend only on the amounts of the good con- 
sumed at that time, not on the state of the world or past or future 
consumption levels. It is assumed that all individuals have an infinite 
lifetime in (18), but their respective utilities for consumption may 
depend quite generally on time, that is, u(Ctk) = u(Ct, t). 

Debreu (1959) has shown that there is a correspondence between 
Pareto-optimal allocations of contingent claims on consumption over 
dates and states among individuals and the allocations achieved by a 
competitive equilibrium with complete markets. Thus the equilibrium 
prices of securities in any competitive capital market that attains the 
same allocation of time-state-contingent claims on consumption as a 
complete market may be examined by analyzing the Lagrange multi- 
pliers (shadow prices for primitive securities for each time and state) 
of the corresponding Pareto-optimal allocation.2t In the following 
theorem and corollary, it is proven that a securities market consisting 
only of options on aggregate consumption at each date is sufficient for 

20. For a model with continuous time and states, the summations in (18) would be 
integrals. A countably infinite number of states is permissible in a state preference model. 

21. Debreu (1959) showed the correspondence between Pareto-optimal allocations and 
those of a competitive equilibrium with complete markets. See Nielsen (1974) for a 
discussion of the relation between pricing in Pareto-optimal capital markets and pricing 
in complete markets. 
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the attainment of an unconstrained Pareto optimum, given the follow- 
ing two assumptions: (Al) each individual has a time-additive, state- 
independent utility function for time-state contingent consumption al- 
locations, and (A2) all individuals agree on the probabilities of states, 
conditional upon the level of aggregate consumption at the time.22 
Therefore, individuals may disagree about the entire probability dis- 
tribution for aggregate consumption at each date, but they must agree 
on the conditional probability distribution for states, for each given 
level of aggregate consumption. Mathematically, A2 implies that irks = 

iTrcirtsic, where tk is individual k's probability for aggregate consump- 
tion being C at time t, and rtslc is his probability that state s occurs at 
time t, conditional upon consumption C at t. 

Theorem 1. Intertemporal diversification: If (Al) each individual has 
a time-additive, state-independent utility function for lifetime con- 
sumption and (A2) all individuals agree upon the probabilities of states 
at any given date, conditional upon aggregate consumption at that date, 
then any unconstrained Pareto-optimal allocation of time-state- 
contingent consumption claims is such that, at each date, all states with 
the same level of aggregate consumption supplies have the same alloca- 
tion. Furthermore, given (Al), (A2) is both necessary and sufficient for 
the theorem.23 

An immediate corollary to theorem 1 is the following: 

Corollary. Pareto-optimal capital markets: If assumptions (Al) land 
(A2) are satisfied, then a securities market consisting only of European 
call options on aggregate consumption at each date is sufficient to 
achieve any unconstrained Pareto-optimal allocation of time-state- 
contingent claims to consumption.24 

22. These conditions are equivalent to assuming that the allocation between present 
consumption and future consumption is ex post Pareto optimal, as defined by Starr 
(1973). These conditions are also equivalent to the Jaffee and Rubinstein (1975) condition 
that the equilibrium be full-information efficient with respect to contingent probabilities. 

23. In general, with heterogeneous beliefs and time- and state-dependent utility of 
consumption, the necessary and sufficient condition for theorem 1 may be stated as 
follows in terms of the inverses of individuals' marginal utility function: 

ulk-1 (At, /ak tk) 

= c%,Vff1= U(tsulak 49%) for all k. 
I 
sk- (Xts2/a k7rTks 

Note that the assumption of state-independent preferences in theorem 1 (and subsequent 
theorems) may be replaced by the weaker assumption that "utility" may depend upon 
the level of aggregate consumption as well as upon c,. 

24. If the assumptions of the original Black-Scholes model hold for the set of securities 
paying aggregate consumption at the various dates, then only two securities for each date 
would be necessary for any Pareto-optimal allocation. With continuous trading and the 
Black-Scholes assumptions, call options can be created by holdings of the underlying 
security and the riskless bond of appropriate maturity. 
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Proof of theorem 1. For a Pareto-optimal allocation, the marginal 
rates of substitution between any two time-state-contingent claims on 
consumption are equal for any two individuals, k andj. Letting XtS be 
the shadow price of a primitive security for time-state ts and using A2, 
we have:25 

xtis1 __ iC17Tt1sliclu tl (S 1) 1 c1rtC rt1s1 llU t' (S1) 

Xt2s2 7Tt2C27Tt2s21C2U t2 (S2) 'rt2C27rt2s21C2U t (s2) 

K lk 
( 

A ) 
((19) rt2C2 ty a2 7t2C2 a t s2) 

where U k(S) = auk(Ctk)IOCtk. Consider two states of the world at a given 
date that have the same level of aggregate consumption, that is, t1 = t2 
= t and C1 = C2 = C in (19). From the first-order conditions for a 
Pareto-optimal allocation given by (19), the allocation in these time- 
states must satisfy the following (by canceling the probabilities in the 
second line of [19]): 

Utk(SO) _ Utt(s) for all individuals, k and (20) 
Utk(s2) Ut(S2) for any two states s1, S2 E Stc, 

where Stc is the set of states at time t with aggregate consumption of C. 
The conservation equation implies that XkCtks = YkCts2 for all s1, S2 E 
stc. 

Since each individual has a state-independent, strictly concave util- 
ity function for consumption at each date, utk(S)Itk(S2) = 1 iff ctks = 

Ct.2. Also, utk(s)Itk(S2) > (<) 1 iff ct1 < (>) ct2. Thus for (20) to be 
satisfied, Ctk - ck2 must be of the same sign for all individuals k. 
However, this and the conservation relation cannot be satisfied unless 
Cks = C k2 for all k and for any two states sl, s2 E S Thus, sufficiency of 
Al and A2 is proven. 

The necessity of A2 for the theorem, given Al, is seen as fol- 
lows. Since Ctks = C 2 implies that (k Z1Iu 72) = 1, for Ck1 = k 

25. Eq. (19) is derived as follows. Any efficient (Pareto-optimal) allocation of time- 
state-contingent claims to consumption among individuals solves: max IkakUk, for a set 
of positive constants {ak}, where the maximum is taken over all feasible time-state- 
contingent allocations of consumption, subject to resource constraints. Thus, a central 
planner (competitive equilibrium) would maximize the Lagrangian 

max L = I uo(ct%)] + EtSEsSt XA(yfqfts - Ykts), 

{CfkS } 

where Xts is the Lagrange multiplier (shadow price of $1.00 at time t, contingent upon 
state s at t) for the resource constraint in time-state ts. These shadow prices must satisfy 
the first-order conditions Xts = aktiCTrtsic uk(s), for all k, and each ts. Eq. (19) follows 
directly from this relation. It is assumed that the nonnegativity constraints on consump- 
tion by individuals are not binding. The analysis is unchanged when the nonnegativity 
constraints are imposed, as demonstrated by Litzenberger and Sosin (1977). 
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for all s , S2 E Stc, to be consistent with the first-order conditions 
for a Pareto-optimal allocation, it must be that (irc1 /tS21C1) = 

(1itsC17rs2ic2) for all so, 1 2 E Stc, and for all j, k. Since 
ISEStC7k IC = 1 for all k, this condition implies A2. (Q.E.D.) 

Proof of corollary. Theorem 1 implies that when assumptions Al and 
A2 are satisfied a characteristic of all Pareto-optimal allocations of 
time-state-contingent claims to consumption among individuals is that, 
at each date, each individual has the same consumption for all states 
having the same aggregate-consumption endowment. Since, for each 
date, elementary securities that pay $1.00 conditional upon each level 
of aggregate consumption can be created (as in Schrems 1973, Ross 
1976, and Section II) from linear combinations of call options on 
aggregate consumption, the sufficiency of Al and A2 in the corollary is 
established. (Q.E.D.) 

Theorem 1 may be viewed as a diversification theorem. Consump- 
tion paths are the primitive objects of choice for individuals, and 
theorem 1 states that social risk may be summarized by the distribu- 
tion of aggregate consumption supplies over time. If the aggregate- 
consumption endowment at a given date in two states is the same, but 
the distribution of payoffs across securities is different between the two 
states, it is not optimal for individuals to vary their consumption 
between the two states as they would be "creating" risk unnecessarily. 
Without assumption A2 of conditionally homogeneous beliefs, indi- 
viduals would wish to speculate on the occurrence of the various 
states. With A2, the desired speculation by individuals due to diversity 
of beliefs may be achieved by trading only in options on aggregate 
consumption supplies, since it is the probability distribution of those 
supplies about which individuals may disagree. 

The corollary states that the allocation achieved by complete capital 
markets in a competitive equilibrium may be achieved by a capital 
market consisting only of options on the level of aggregate consump- 
tion for each date. Of course, any securities market that spans the 
vector space of payoffs from these options can also achieve the uncon- 
strained Pareto-optimal allocation of complete markets for time-state- 
contingent claims. 

In an explicitly single-period context where individuals were as- 
sumed to have state-independent preferences defined over wealth and 
homogeneous probability beliefs, Mossin (1973) informally proved a 
theorem similar to theorem 1. In particular, he demonstrated in that 
world that each individual's state-contingent wealth will be a function 
of only aggregate wealth.26 Furthermore, Hakansson (1977), again in a 

26. See Mossin 1973, pp. 108-9. 
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single-period model, demonstrated formally that Mossin's result holds 
with the less restrictive assumption of conditionally homogeneous be- 
liefs. Hakansson also demonstrated in that world that elementary 
claims on the market portfolio or, alternatively, supershares, comprise 
a Pareto-optimal capital market. As shown in this section, their results 
do not follow in a muiltiperiod economy, except for the special case of 
a one-to-one mapping between aggregate consumption and aggregate 
wealth. In the general multiperiod economy (without a one-to-one 
mapping), the results of theorems 1 and 2, the corollary, and the 
lemmas will hold. 

Now, consider the pricing of securities in an economy with Pareto- 
optimal capital markets. "Pareto-optimal capital markets" (POCM) are 
structures of securities markets that permit all ex ante Pareto-optimal 
allocations of time-state-contingent claims to consumption by trading 
in only those securities. The price of any security in a POCM is equal 
to YTYseST qfTsTs = Vf, where XTs is the shadow price of consumption at 
time T in state s in the central planner's problem. However, since the 
definition of states of the world is unrestricted in this paper, this 
general valuation equation is not very useful in its present form. The 
following theorem on security valuation in a Pareto-optimal capital 
market makes the state-preference valuation equation more easily ap- 
plicable. 

Theorem 2. Valuation: In a capital market that spans the vector space 
of payoffs from options on aggregate consumption at each date, the 
value of any security may be determined from its expected payoffs, 
conditional upon each possible level of aggregate consumption at each 
date, and from the prices of options on aggregate consumption if 
assumptions Al and A2 are met. The valuation equation for any secu- 
rity f is 

Vf = YTYCT E(qTICT) P(CT, T), (21) 

where P(CT, T) is the price of an elementary claim on aggregate con- 
sumption in T periods, which may be obtained from the prices of 
options on aggregate consumption. 

The following two lemmas, which are instructive in themselves, will 
prove theorem 2. 

Lemma 1. In a Pareto-optimal capital market, the value of a security 
with an arbitrary pattern of time-state-contingent payoffs may be de- 
termined from its expected payoffs, conditional upon the level of 
aggregate consumption, as in (21), if and only if the shadow prices of 
primitive securities are proportional to their respective state prob- 
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abilities for all states at a given date with the same level of aggregate 
consumption. That is, (21) holds iff 

XTsi _ ~Ts~I C ,for all si, sj E STC. (22) 
XTSj 7rTS;IC 

Proof of lemma 1. To establish sufficiency of (22) and (21), substitute 
(22) into the general valuation equation and sum over sj E STC: 

V= YTYSEST qT XTs =ITIC2TYSjESTC [ * ] 
77TsTIC 

= STECT [ |rT~t I E(qf |CT), 
7r Tsilc C 

which implies that P(C, T) = (XTs)I(7rTsjc). Substituting P(C, T) into the 
previous expression gives (21). 

To establish necessity, assume the contrary, that is, that (22) does 
not hold but (21) does. Let securities i andj be the primitive securities 
for states si and sj in STC, for which (22) does not hold. Clearly, Vi = XTsj 
and V3 = XTS3. However, E(q I|C) = lTTsilC and E(q I|C) = 7TTsjlCg which 
implies from (21) that Vi = 7rTS~IcP(C, T) and Vj = TrTsj3cP(C, T). These 
values are consistent with the shadow prices as values iff (22) holds. 

(Q.E.D.) 

Lemma 2. In a Pareto-optimal capital market, the shadow prices of 
primitive securities are proportional to their respective state prob- 
abilities for all states at a given date with the same level of aggregate 
consumption if assumptions Al and A2 obtain. 

Proof of lemma 2. Sufficiency of Al and A2 for the proposition (22) is 
immediate from theorem 1 and the first-order condition, (19). (Q.E.D.) 

Proof of theorem 2. Lemmas 1 and 2 imply the theorem. (Q.E.D.) 

From the valuation equation of theorem 2 (21), it is seen that the 
entire pattern of state-contingent payoffs over time on a security is not 
required for valuation: Only expected payoffs on the security, condi- 
tional upon the possible levels of aggregate consumption at each point 
in time, are needed. Given these conditional expectations for cash 
flows, any asset may be valued in terms of the prices of options on 
aggregate consumption for each date by combining equations (1) or (2) 
and (21). Note that the price of a real discount bond and, thus, the real 
term structure of interest rates, could be determined if there existed 
call options of various maturities and exercise prices that were de- 
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nominated in real dollars. Of course, the value of any assetf that is held 
for one period and then sold at its new value (including any dividend) 
Vf is the same as its value if it is held forever. Thus a special case of 
theorem 2 is the following corollary, which states the relation between 
present value and the equilibrium expected one-period return on any 
security in the multiperiod economy. 

Corollary 2. When the assumptions of theorem 2 are met, the value of 
any securityf may be expressed as: Vf = Sal E(VfjCIP(C1, 1). 

Finally, consider a security that pays some fraction, for example, 
one, of aggregate consumption in T periods. Let the current price of 
this security be SO. By the analysis of Section II, elementary claims on 
aggregate consumption in T periods could be constructed from call 
options on the specified security. If the assumptions required for the 
Black-Scholes/Merton option-pricing model to obtain as presented in 
Section III are met for the security paying aggregate consumption, then 
P(C, T)IdCT = cxx(X = C, T), where c(X, T) is the European call- 
option pricing formula for the aggregate consumption security as given 
by equation (4). Substituting for P(C, T) in (21), a very useful valuation 
equation is obtained that rests only upon assumptions Al and A2, the 
Black-Scholes/Merton assumptions for the aggregate-consumption se- 
curity, and the existence of Pareto-optimal capital markets: 

f= TI CT E(qf |CT ) B(T) nI[d2(X = CT)]dCTdT, (23) 
CTOTV7/ 

where 

In ( .o)+ Tr - 

UT 

d2(CT) CTn( +( 2~~ 
OTVT 

and S-2 = var (In CT)IT. In the next section, it is shown that a capital 
asset pricing model (CAPM) exists for securities whose returns are 
jointly lognormally distributed with aggregate consumption. This 
"single-factor" CAPM, with betas measured relative to the aggregate- 
consumption security's payoffs, is entirely consistent with Merton's 
(1973a) two-factor CAPM and its multifactor generalization, since Mer- 
ton's betas are measured with respect to the market portfolio and the 
elements changing the investment opportunity set. 

Typically, options are written on securities, rather than on aggregate 
consumption. In the two-period economy, aggregate consumption is 
aggregate wealth in the second period. Thus, in a two-period economy, 
options on the market portfolio maturing at period 2 are sufficient for 
an efficient allocation, and the valuation equation given by (23) would 
obtain with the conditioning and elementary claim prices being on the 
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market portfolio. In the multiperiod and continuous-time economies, if 
it is assumed that there exists a function at each point in time, t, that 
gives a one-to-one mapping of aggregate real wealth at that time to 
aggregate real consumption at that time, that is,ft: Mt - Ct andf't1: Ct 
-- Mt, then options on the market portfolio of assets are sufficient for a 
Pareto-optimal allocation of state-contingent claims to consumption. In 
this case, the valuation equations (21) and (23) may be rewritten with 
the conditioning and call options being on the market portfolio. It 
should be noted, however, that such one-to-one mappings will exist 
only for specific preference assumptions, for example, logarithmic 
utility. For this reason, the valuation equation given by (23) (or [21]), 
which requires only the restrictions of Al on preferences, is of consid- 
erably greater generality. 

VI. A Capital Asset Pricing Model for a Class of Assets 

In this section, the valuation relations found in Sections II and V are 
used to derive the values of assets with payoffs that are jointly lognor- 
mally distributed with aggregate consumption at any future date t. It is 
shown that the values of such assets are appropriately found by a 
multiperiod version of the CAPM of Sharpe (1964) and Lintner (1965). 
However, the relevant risk of an asset's payoff is shown to be mea- 
sured by its covariance with aggregate consumption, rather than with 
the market portfolio. 

Let security f have a cash flow at time t that is jointly lognormally 
distributed with aggregate consumption at time t, that is, In qf and In Ct 
are jointly normally distributed at t. The distribution of In qf, condi- 
tional upon a given level of (In Ct) is normal with the following mean 
and variance:27 

In qf Iln Ct - normal {G(y - f12)t + (ln Vf) + /f[ln Ct - In SO 
- (wy - o'f12)t], (oj'- fffC)t}, (24) 

where Lf and y, are the average instantaneous expected rates of return 
on securityf and on the security paying aggregate consumption at time 
t, respectively. The unconditional variances of (In qf) and (In Ct) are 
o-lt and o- 2t, respectively, and aift is the covariance of (In qf ) with (In 
Ct.); 13f = OfC.c The current price of the security paying aggregate 
consumption at time t is SO. 

Since the expected value of a lognormally distributed variable x is 
E(x) = exp (kin 1 + i-ln xI2), the expected value of the cash flow at t, 

27. If the price of securityf and the price of the aggregate consumption security each 
followed a geometric Brownian motion, uf, u, and of and O- would appear as dVflVf = 
/ufdt + o-f(dzf) and dSIS = udt + o-,(dz,), where zf and j, are Wiener processes. Ito's 
lemma would imply that d In Vf = (,uf - o-2f2)dt + o-f(dzf) and d In S = (yu - o-I2)dt + 
OC(dzc). 
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E(qf), conditional upon aggregate consumption of Ct at t is (from [24]) 

E(q{ICt) = exp I(ln Vf) + ptft + 13f[ln( st |( 
I L\ 

0/~~~~~~ (25) 
- C - OIC )tj - 1f0-fct/2j. 

From the expectation of cash flows conditional on the possible levels 
of aggregate consumption at t as given by (25), the valuation equation 
(23) may be applied to find the correct value of the set of cash flows, qf. 
Substituting (25) into (23) and integrating gives 

Vf = Zt{e-[rt + 6f(tkc - rt)]t E(qf)}. (26) 

Alternatively, the valuation (26) implies the capital-asset pricing rela- 
tion: 

ptf - rt = 1ff(uc - rt). (27) 

Equation (26) states that the CAPM may be used to find a risk- 
adjusted discount rate that appropriately discounts expected cash flows 
to an asset. Each cash flow at a future date to a given asset should be 
discounted at a rate appropriate to its particular volatility with respect 
to aggregate consumption at the time of its flow. As previously noted, 
the correct beta to be used in finding the risk-adjusted discount rate is 
the cash flow's volatility with respect to aggregate consumption, not 
with respect to the market portfolio. For capital budgeting, these betas 
may be easier to estimate than "market" betas, since the cash flows of 
many projects may be more closely related to GNP or aggregate con- 
sumption than to the level of the market portfolio. Furthermore, na- 
tional income measures of aggregate consumption may be better esti- 
mates of "true" consumption than stock prices are of the "true" 
market portfolio. Irrespective of empirical benefits or difficulties, the 
multiperiod equilibrium model clearly denotes the relevant risk of a 
payoff as its covariance with consumption. 

Two other differences in the multiperiod version of the CAPM of (26) 
and (27) from the single-period version of Sharpe and Lintner are 
notable. The appropriate riskless rate of interest for finding the risk- 
adjusted discount rate is the rate of interest on riskless discount bonds 
that mature at the time of the cash flow, not the current instantaneous 
interest rate. Also, the expected excess return on the market portfolio 
in the single-period CAPM is replaced by the expected excess return on 
the security that pays aggregate consumption at the date of the cash 
flow. 

Finally, it should be noted that the CAPM derived here is valid only 
for securities with payouts that are jointly lognormally distributed with 
aggregate consumption. However, the general valuation equations (21) 
and (23) may be used to value securities with arbitrary (nonnormal) 
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patterns of cash flows over time. No assumption has been made that 
investment opportunities are stationary over time, or that aggregate 
consumption changes have a stationary distribution over time.28 

VII. The Pricing of Options on Aggregate Consumption 

In Section V, under rather weak assumptions, it was shown that the 
prices of elementary claims (or call options via Section II) on aggregate 
consumption are fundamental to asset valuation in a multiperiod 
equilibrium model. This section briefly examines the use of the Black- 
Scholes (1973) option-pricing equation for options on consumption. 
The principal result of this section is the following theorem.29 

Theorem 3. Constant relative risk aversion and options on consump- 
tion: With assumptions Al, A2, and Pareto-optimal capital markets, if 
the probability distribution of aggregate consumption at each future 
date is lognormal, a necessary and sufficient condition for the Black- 
Scholes option-pricing formula to correctly price options on aggregate 
consumption is that individuals' preferences aggregate to a utility func- 
tion displaying constant relative risk aversion. 

Proof of theorem 3. Under the assumptions of the theorem, the 
elasticity of the ratio of an elementary-claim price to its corresponding 
probability was found in Section IV (eq. [16]) to be 

I ln [P(C, T)i7r(C, T)] _- - rT (28 
a In CT UT 

which is independent of the level of CT. The ratio of price to probability 
is seen from (19) of Section V to be proportional to the social marginal 
utility of consumption at the level of CT. The negative of the elasticity 
of aggregate marginal utility with respect to aggregate consumption is 
precisely the level of relative risk aversion in aggregate. Thus (28) 
implies that using Black-Scholes for pricing options on consumption is 
tantamount to assuming that aggregate relative risk aversion is con- 
stant. 

The proof of sufficiency of CRRA for the theorem requires only a 
very modest extension of Rubinstein's (1976) proof,30 and will not be 
reproduced here. (Q.E.D.) 

28. The original derivations of the CAPM were in a single-period context; however, 
Merton derives the CAPM in a continuous-time context under the assumption that all 
asset prices follow diffusion processes with nonstochastic drift rates and diffusion 
coefficients for dPIP. These stationarity assumptions are not needed here. For a 
generalization of this section's results to the nonlognormal case, see Breeden (1978). 

29. See n. 5 above. 
30. See Rubinstein 1976, pp. 416-24. 
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This theorem proves that assumptions about pricing processes are 
definitely not preference-free assumptions. The pricing process is en- 
dogenous and, ultimately, must be related to the preferences of indi- 
viduals. Theorem 3 implies that the same degree of approximation is 
involved by assuming that the Black-Scholes model can be used to 
price options on consumption as is involved in the CRRA-lognormal 
model.31 Note that the proven relationship between the Black-Scholes 
equation and CRRA is only required when pricing options on aggregate 
consumption or aggregate wealth by their equation. When pricing other 
securities' options by the Black-Scholes equation, (28) will hold, but 
P17T cannot be identified with the marginal utility of consumption. 

Assuming that the Black-Scholes equation correctly prices options 
on aggregate consumption, the implied degree of aggregate relative risk 
aversion b is given by (28) as 

b - ILT rT (29) 2 
UT 

where ps is the expected T-period rate of return on a security paying 
aggregate consumption in T periods and o-2 is the variance of the 
logarithm of consumption in T periods. From the intertemporal asset- 
pricing model of Section VI, if the market's value in T periods is jointly 
lognormally distributed with aggregate consumption, then from (27), 

T rT 
1 
M,C(PIT 

- 
rT), (30). 

and, from (29), 
MM 

b= LT rT - gm (31) 
1M ,CUT CM,C 

Thus, although returns on the aggregate-consumption securities may 
not be presently observable, the level of aggregate relative risk aver- 
sion may be estimated as the T-period expected excess return on the 
market portfolio divided by the covariance of the market in T periods 
with aggregate consumption in T periods. This estimate of relative risk 
aversion from a multiperiod model differs from that calculated by 
Blume and Friend (1975), which was based upon a single-period econ- 
omy. In particular, (31) differs from their estimate by having 0M,C in the 
denominator rather than SM2. An estimate of b as in (31) permits a direct 
application of the intertemporal asset-pricing model of Section VI. 

VIII. Summary and Implications for Capital Budgeting 

Throughout this paper, most results have been stated in terms of their 
implications for asset valuation; in summarizing the major results, the 
implications for capital budgeting will be explicitly stated. 

31. Similarly, Merton's (1973a) assumption of stationarity of the investment opportu- 
nity set in deriving the CAPM can be shown to imply CRRA preferences. 
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Sections II, III, and IV derived and analyzed the price of a security 
paying $1.00 at a given future date if an underlying asset had a given 
value at that date. From these elementary claim or delta-security 
prices, the value of any stream of uncertain cash flows (such as those of 
a capital-budgeting project) that depend only on the (uncertain) levels 
of the underlying asset at future dates may be determined from equa- 
tion (3). As an example, the value of any asset whose value at a future 
date depends only on the level of the market portfolio at that future 
date is easily determined. The relation between the future cash flow 
and the underlying portfolio may be of any type-not necessarily linear 
or jointly normal. By multiplying each contingent cash flow by its 
corresponding elementary price and summing, the "present certainty- 
equivalent value" (see Hirshleifer 1970, p. 261) of a stream of cash 
flows is obtained. As usual, firms should choose projects that maximize 
their present values, net of inputs. 

Sections V and VI take cognizance of the fact that not all cash-flow 
streams can be valued by such arbitrage relationships. In particular, (1) 
how would the "underlying assets" be priced, and (2) how would 
streams of cash flows that are not exact functions of another asset's 
future value be priced? The theory of Section V answers both ques- 
tions in the time-state preference model of Arrow and Debreu by 
making a preference assumption and a probabilistic assumption. It is 
shown that, given the prices of options on aggregate consumption, 
every asset may be valued in terms of its expected payoffs at future 
dates, conditional upon the various levels of aggregate consumption at 
the same dates. Thus, a valid computation formula for the net present 
value of a set of cash flows has been obtained in a multiperiod equilib- 
rium model in terms of option prices for aggregate consumption. Some 
estimates of the prices of elementary claims on aggregate consumption 
will be an object of future research. 

Section VI demonstrates that, if the Black-Scholes formula can be 
used to correctly value options on aggregate consumption, then the 
present value of a stream of cash flows that are jointly lognormally 
distributed with future consumption may be obtained by a con- 
sumption-oriented CAPM. This result is, of course, entirely consis- 
tent with the time-state preference theory of Section V, which permits 
stochastic investment opportunities. Operationally, the set of "betas" 
of future dates' cash flows with respect to aggregate consumption at the 
same dates must first be determined. Then, using the derived multi- 
period CAPM, risk-adjusted discount rates for the various dates' cash 
flows may be determined. Of course, the discount rates for cash flows 
at different dates will differ according to the differential risks of the 
cash flows at those dates. Having obtained these discount rates, each 
period's (unconditional) expected cash flow is discounted by the corre- 
sponding rate to find present values. To use the multiperiod CAPM, 
expected excess returns on securities perfectly correlated with aggre- 
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gate consumption are necessary, similar to the expected excess return 
on the market portfolio in the single-period CAPM. 

Section VII investigated the conditions under which the Black- 
Scholes formula could be used to value options on aggregate consump- 
tion. It was shown that, under certain assumptions, use of their formula 
for these options is correct if and only if individuals' preferences 
exhibit constant relative risk aversion in aggregate. 
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