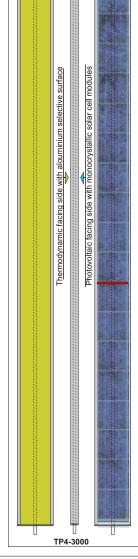
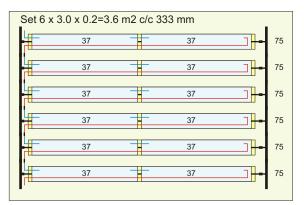
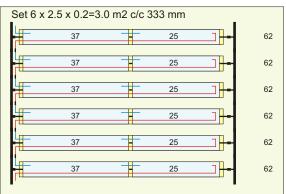

Technical characteristics of solar Twin-faced Multi-Panel TP4-Enersol

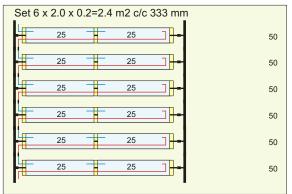

The double faced TP4-Multipanels can be rotated 360' around its own central pipe, thus exposing either the main facing side (A) the 'thermodynamic mode', or the other side (B) 'photovoltaic' mode towards the insolation.

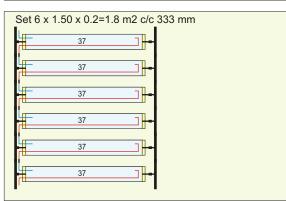
The length of the solar collectors, correspondes to the total length of the 'multiple' photovoltaic modules incorporated. 2 PV-modules are available, 6-cell and 9-cell. Both types can be combined in a frame e.g. (6 or 9 or 6+6 or 6+9 or 9+9) obtaining the above standard sizes.

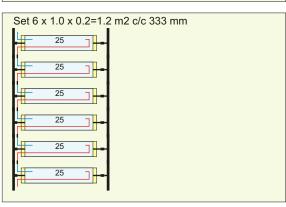
The photovoltaic modules incorporated are connected in serie within the solar collector frame. It is possible to exchange any of the PV modules locally at the building site, without any dismounting of the solar panels, from the central distribution solar hot water pipings.




Modul M6 GYS-2	23D (6x6"cells)
Technical specifications	5
Dimensions	980 x 176 x 6 mm
Maximum Power	25 Watt
Module efficiency	14.58%
Open Voltage (Voc)	3,76 V
Short Current (Isc)	8,60 A
Mpp Voltage (Vpm)	3,10 V
Mpp Current (lpm)	8,11 A
Max System Voltage	1000 V
Power Tolerance	+/- 10 %
Temp. Coefficient voltage	ge -12,84 mV/°K
Temp. Coefficient curre	nt + 4,93 mA/°K
Temp. Coefficient power	er - 0,43 %
Norm STC (AM1.5, 10	


Modul M9 GYS-37D	(9x6"cells)
Technical specifications	
Dimensions	1460 x 176 x 6 mm
Maximum Power	37,5 Watt
Module efficiency	14.58 %
Open Voltage (Voc)	5,64 V
Short Current (Isc)	12,9 A
Mpp Voltage (Vpm)	4,65 V
Mpp Current (Ipm)	8,11 A
Max System Voltage	1000 V
Power Tolerance	+/- 10 %
Temp. Coefficient voltage	-12,84 mV/°K
Temp. Coefficient current	+ 4,93 mA/°K
Temp. Coefficient power	- 0,43 %
Norm STC (AM1.5, 1000W	//m2, 25°C)
•	·


Panel type	TP4-1000	TP4-1500	TP4-2000	TP4-2500	TP4-3000	Παρατηρησεις
Panel length Panel width Panel height Hydro-pipe length Collector weight Module combinatior	996 198 50 1146 7.6	1476 198 50 1626 11.2 1xM9	1976 198 50 2126 14.4 2xM6	2466 198 50 2616 18.0 M6+M9	2946 198 50 3096 21.6 2xM9	mm mm mm mm kg mm (6" 156)
Nom. Output	25 W	37.5 W	50 W	62.5 W	75 W	Watt


Solar collector mounting sets

Solar set output data

Each mounting set consists of 6 panels with 2 modules of 9+9 cells = 18 PV-cells Mounting area 3.253 m x 2,0 m = 6,5 m2

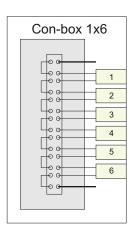
Electrical connection	on	Pm	Vpm	lpm
All in serie	1 x 6	450W	55,8V	8,1A
twin combination	2 x 3	450W	27,9V	16,2A
triple combination	3 x 2	450W	18,6V	24.2A
All in paralell	6 x 1	450W	9,3V	48.4A

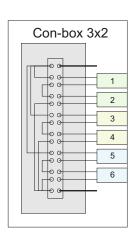
Each mounting set consists of 6 panels with 2 modules of 6+9 cells = 15 PV-cells Mounting area 2,75 m x 2,0 m = 5,5 m2

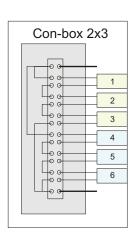
on	Pmax	Vmpp	
on	Pm	Vpm	lpm
1 x 6	375W	46,50V	8,1A
2 x 3	375W	23,25V	16,2A
3 x 2	375W	15,50V	24.2A
6 x 1	375W	7,75V	48.4A
	on 1 x 6 2 x 3 3 x 2	on Pm 1 x 6 375W 2 x 3 375W 3 x 2 375W	on Pm Vpm 1 x 6 375W 46,50V 2 x 3 375W 23,25V 3 x 2 375W 15,50V

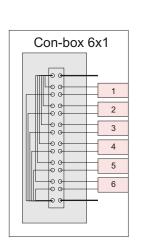
Each mounting set consists of 6 panels with 2 modules of 6 cells = 12 PV-cells Mounting area 2,25 m x 2,0 m = 4,5 m2

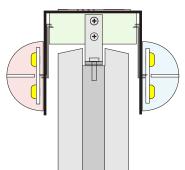
1A
2A
.2A
.4A


Each mounting set consists of 6 panels with 1 modules of 9 cells = 9 PV-cells Mounting area 1.75 m x 2,0 m = 3.5 m2


Electrical connection		Pm	Vpm	lpm
All in serie	1 x 6	225W	27,90V	8,1A
twin combination	2 x 3	225W	13,95V	16,2A
triple combination	3 x 2	225W	9,30V	24.2A
All in paralell	6 x 1	225W	4.65V	48.4A


Each mounting set consists of 6 panels with 1 modules of 6 cells = 6 PV-cells Mounting area 1,25 m x 2,0 m = 2,5 m2


Electrical connection		Pm	Vpm	lpm
All in serie	1 x 6	150W	18,6V	8,1A
twin combination	2 x 3	150W	9,3V	16,2A
triple combination	3 x 2	150W	6,2V	24.2A
All in paralell	6 x 1	150W	3.1V	48.4A



Twin faced solar tracking system TP4

The double faced tracking eye rotates together with the collectors tracking panels towards the sun. Depending on season and functional mode it operates with one or the other sensor eye which is positioned on the front collector.

A special feature is the automatic safe and clean vertical position in which the panels are exposed to the rain for self cleaning and also protected against snow and hail.

Tracker

Drives

Rotating device TP4 Worm-Gear Drive

On the central pipe of each collector is mounted a worm-gear wheel in brass.

Paralell to the distribution pipe goes the worm-gear axes in stainless steel, laying upon the brass wheels and fixed onto the distribution pipes.

The electric motor is mounted in the front turning the endless screw to position the panels.

The motor has several switches incorporated in order to make seasonal changes of functioning side and automatic safety positioning for rain, snow and hail.

Technically one motor can cover the rotation of up to 5 collector sets (10 meters) in a row.

Complete & simple. Converters Sunny Boy

Easiness in communication and control, friendly to the user and more efficient then ever before, the converters 3000 TL, 4000 TL and 5000 TL make a new prototype in conversion technology.

Modern graphic screen shows all the daily input and output electricity data, easily installed with twin input ports for comparing of efficency and wireless communication possibility by Bluetooth contineous surway of installation, makes the new generation Sunny Boy an excellent tool.

With a maximum efficiency output of 97% the 4000 TL and 5000 TL offers the connection of multiple collector-sets without any transformer. Optimal energy output and high flexibility is of great value for the installer as well as increased compatibility to most types of PV-modules makes it perfect for even the most complex requirements.

Sunny Boys

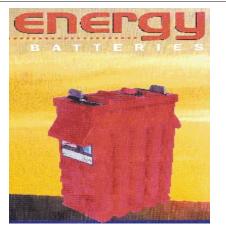
2000HF 2500HF 3000HF

3000TL 4000TL 5000TL

2100TL 3300TLS HC

<u>3300</u>

3800


 $\frac{1100}{1200}$

 $\frac{1700}{2500}$ $\frac{3000}{3000}$

Converters

Accumulators. High performance 5000 cycles

Cycle Life - 5000

	The second section of the s
	~*
	N 10
S .	the North Control of the Control
% Discharge	
B -	
D x-	
a. w	100
	The state of the s
20	Townson, and
	H - 41 10 10 10 10 10 100 100
	Number of Cycles Usumposed coding codes
	15 year average hie acceptioned

Accumulators

 6 Volt (3 Cell) Dual Container / Capacitu / Dimension / Weight Kg

 Series
 Model
 Hours (100) (20) (10)
 L
 W
 H
 Dry
 Wet

 5000
 6 CS 17PS
 770
 546
 453
 559
 210
 464
 81
 100

 5000
 6 CS 21PS
 963
 683
 567
 559
 248
 464
 99
 123

 5000
 6 CS 25PS
 1156
 820
 81
 550
 268
 464
 145