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BC Cale NAG it!! Ms. Falk

Chapter 3 Section 3.5

Definition:

Transcendental function, In mathematics, a function not expressible as a finite
combination of the algebraic operations of addition, subtraction, multiplication, division,
raising to a power, and extracting a root. Examples include the functions log x, sin x,
cos x, e*and any functions containing them.

Usea graphing calculator.

1. Find a polynomial that resembles f(x) = sin(x) near x = 0. Determine a domain of
values for which your function and the given are closely related. Hint: try the “simplest”
polynomial! Like, y=x. Provide a sketch below. Let Y1 be sin(x) and Y2 = your
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2. Next, graph the difference between your function and f(x) = sin(x). What are the values

of the differences as x approaches 0? Go to the table feature.
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4. In the past, how did you used to think, or perhaps still do, about the limit above? Did
you give it any thought or was it something just memorized?
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IN class, many weeks ago I provided you with a geometric proof of the limit in question.
This would satisfy the “A” of NAG. Review the proof in your notes, or find it in your

text or any other source. We used the Squeeze or pinching Theorem in a geometry
setting.

5. Reflection: how did NAGing the problem help to clarify your thinking about
. sin(x)
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Differentiation implies local linearization.
6. How do you think the derivatives of y = sin(x) and y = x will behave near x = 0?

So in other words, is “=sin(x) =17 for x near 0? How close to 0 does x need to be will b
ea looming question for the future.
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