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A Wordfrom the Authors

Welcome to Calculus of a Single Variable. Seventh Edition. Much has changed since

we wrote the first edition—nearly 25 years ago. With each edition, we have listened

to yoLi. our users, and ha\e tried to incorporate \(iur suggestions for iiiiproxenicnt.

Calculus

A Text Formed by Its Users

Through your support and suggestions, the le\l has c\t)l\cd over seven ediiions to

include these extensive enhaiiccnicnts;

• E.xpanded exercise sets containing a greater variety of tasks such as skill building,

applications, explorations, writing, critical thinking, and theoretical problems

• .Additional applications diat more accui"atcl\ represent the dixerse uses of calculus

in ihc world

• Many more open-ended acti\ itics and in\esligations

• Clearer, less cluttered text, lull annotations and labels

—

carelully |ilanned page layout

• Additional art. composed with more color, accuracy, and icalisin

• A more compiehensi\e and moie nialhematically rigorous text

• Increased technology use, as both a problem-solving tool and an investigative tool

• References to the history of calculus and to the mathematicians who developed it

• fipilatcd references to current malhcniatical louriials

• Considerabh more help in the sLipplements package for both students ami inslructors

• ,Altcniati\cs to the traditional print medium, particularly m the CD-ROM version

What's New and Different in the Seventh Edition

hi the Seventh Edition, we continue to offer mstiiictors and stmlents a text that is

pedagogicalK sound, mathematically precise, and comprehensible. There are many

minor changes in the mathematics, prose, ait, and design. The more significant changes

are noted here.

• New P.S. Problem Solving At the end of each chapter, we have included a two-page

collection of new applied and theoretical exercises. These exercises offer problems

that have some unusual characteristics that set them apart from exercises in a regular

exercise .set.
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Chapter Openers

Each chapter opens with a real-world application

designed to motivate the calculus concepts covered

in the chapter. Follov\ ing a brief introduction,

open-ended questions guide students thiough an

introduction to the main themes of the chapter

In addition, photographs and interesting facts related

to the application are included in the chapter opener.

Section Objectives

Every section begins with a list of learning objec-

tives that outline the key concepts of the section.

This list helps instructors with class planning and

provides students a study guide for the section.
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45. Lei/ be cuniiriuouii on [a. h] jnii diH'ereii liable on (ti, h). U
[here exists c in ia.h) such lhal/'(t') = '\ does Jl follow

that/(<.) - /(/>)•> Explain.

46. Lei/ be continuous on the closed interval [u. h] and dilTer-

enliable on the open iniet^'al (a.h). Also, suppose thai

Jia) = f{h) and ihat c is a real number in Ihe mierva! such

thai /'(() = Find an inicrval for the function v over

which Rolle's Theorem tan be applied, and find ihc

corresponding cntica! number of ,y {k is a constanl).

(a) g{x) =/(.v) + k <b) ,i;(.v) -/(. - k)

(c) g(x)=f{kx)

47. A plane begins its lakeotTai 2:00 p.m. on a 2500-mile flight

The plane amves at its destination at 7,?0 tm, Explain why

there were ai leiisl two limes dunn^ (he flight when the

speed of Ihe plane was -11M> miles per hour

48. When an object is removed Irom j furnace and placed in an

environment with a constant temperature oi 90^F. its core

temperature is ISCWF Five hours later the core tempera-

ture IS 3<)0°F Explain why there must exist a time in the

interval when the temperature is decreasing at a r.iic of

ZZZ'F per hour

BSBBsng:^

HH Kcuon ot 3 spherical ramiirop ) Ttie Ijn nf Rcfrjcii

alL-s Ihul (iin o)/lsin pi = k, inhere * - IJ3 (for walcn

i£lc (if deflcclion l^ pivcn by = ir > la ~ i0.

I) Skelch Ihc enph of O foe

£ a S tr/2. Hit a graph-

ing uiiljry Willi

For Maicr. iihjl ib ihe minimum ajiglc of deflMlion. 0„
(The angle ff - D^^ iM-alied Iht minboH' anik I Wh.iI val

of n rnKJucu Ihii minimum angle'' (A n)' nl vunlighl lii

;mk<s J nindrap al (his :uig1c. a. is i:^l«l a nivil'on m\ )

FOR FUKTHER INFORMATION For more infornialion nhml Ihi-

malhenialic* nf rainbows, sec Ihc uniclc "Somcwhcie Wiihin Ihe

Rainbow hy Slcven Janki- in Tfu- UMAPJaurmil To view thii

Getting at the Concept

These exercises contain questions that check a

student's understanding of the basic concepts of the

section. They are generally located midway through

the section exercise sets and are hoxed and titled for

easy reference.

Section Projects

Appearing at the end of selected exercise sets, the

Sccrion Pidjects contain extended applications, uhicii

can be assigned as an indi\ idual or group acti\ ity.

Open Explorations

The Interactive CD-ROM version ol this text

contains open explorations, which further investi-

gate selected examples throughout the text using

computer algebra systems (Maple. Matlwiiiatua.

Derive. SLTid Mathcad). The icon H^^ identifies

an example for which an open exploration exists.

Additional Featnres

Additional teaching and learning resources can be

found throughout the text. These resources include

explorations, technology notes, historical vignettes,

study tips, journal references, lab series, and notes.

For a coinplete description of these resources, go to

the text-specific website at coilege.lumo.com.

.«a«N:.- ,,.,.»„,„. ,.,...,.dK.ikM.IL-h,uii^^ iU7
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-""-' "'i'-"'-r-' = T^

-•-^ J^-iTl''!^'-:" --f

It. K.4riipk :i.. note ilijt ;i,')'"i JiHoiuniLiiin!: 1

Rewnlinf i> ilw lifM -lef m »••<"< daidr,^nii,ii..i(i pr..hkm

,

/
ap

1 — . Cr- Jv , ,,

Simphfj

L^ Jv _ :

dr '
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' \ /
«.. = -! b, . = 11 c_ . = 1
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'' " V
1

y-
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Jllhjlp,inl.

>jluc
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Supplements

Rfsourtes

\\ehsitc {college. hiiuo.com I

M;iny addilional tcM-spcciric stiuly and interactive rcaluivs loi" sttidents and instruc-

tors can be I'oimd at the Hoiiyhtiin MilTliii website.

I'or the Student

Stiulx iinil Sohaians Ciiidc. Volume I b\ Bniee H. [itluartis (Llniversity ol b'loirda)

Gniphiiiy, I'viiuiolni^Y (iiiiilc lor l'ycciilculii\ aiul Ciilciilus by Benianini N. Lew and

Laiiiel rechnical Sei\ ices

Cniphin;^ C'dii iihilcir I ;</('< '/(//'c by Dana Mosely

CciUulii.s. 7H. \'idc(>hipcs b\ Dana MoseK

For the Instructor

Coinplvic Sohiiioiis Giiiilc. VoUmies 1 and II b\ Bruce II. F.tlwards (llni\ersity of

F-lorida)

Fcv/ lirin /lie b\ Ann Kiitledye Kiaiis ( Ihe I'ennsyUania Stale Univei'sity. The

Belli eiul College)

liisliiK itii 's Resotnrc Guide by Ann Riillediie Krans (The Pennsyhaiiia State

L'niseisity. The Behrend College)

Coiupulcii:cd Tc.siiiii; (WIN. Macintosh)

HMGhi.y^l'icp'^' (Instructor's CD-ROM)



New exciting study aids make
the best supplements package

for Calculus even better.

mmimions

SMARTHINKING?

New! Text-Specific Video Series (available in VHS and DVD formats)

Tied directly to tlie Larson/Hostetler/Edwards CciIcuIks, Seventh Edition, textbooiv.

these videos created by Dana Mosciy piovidc lecture-style instruction, rcxiew of key

concepts, real-life data examples, and more. Ideal for students who want extra guidance

or who have missed a class, the videos co\er select material from Chapters P-9.

.Announcing a v\liole nt'\v suite of electronic study tools for calculus:

The Larson cSoliitions for Calculus.

Calculus Learning Tools Student t'D-RO.M Contains Computer Algebra ,S\stem

Explorations, rotatable .VD art. printable MathGraphs and MathArticlcs referenced

throughout the text, as well as MathBios. labs, and more.

Companion Website Includes rotatable 3-1) art and other student and instructor

resources. Visit www.college.hmco.com/niatliematics.

Interactive and Internet Calculus 3.0 These two products are comprehensive

nuiltimedia courses in calculus. To provide you with a choice, we offer Inlcnutivc

Calculus .\() on CD-ROM and Inlcnict Calculus .>.() online. Bolh contain the

complete text of Calculus. .Seventh Edition, as well as other exciting features such as

solutions to odd-numbered exercises, rotatable .^-D graphs, editable 2-D graphs. Open

Explorations using one of four computer algebra systems, aiumations. videos, simu-

lations. Try Its for every example, and more.

CalcChat.com website An on-lme resource where students can access, discuss, luul

help each other with step-by-step solutions to all the (Kkl-nuiubeied exercises in the

Larson Calculus series

EduSpace On-Line Learning Environment Instructois can easily assign, deliver,

and grade homework and other assignments ba.sed on the even-numbered exercises in

the text via Houghton Mifflin's new EduSpace platform.

Live, on-line tutoring from SMy\RTHINKING.t OM
Houghton Mifflin has partnered with SMARTHiNKING.com to give students the most

advanced on-line tutoring possible. SMARTHINKING is a virtual learning assistance

center created in conjunction with .i| schools. It provides c|ualified tutors (e-structors)

and independent study resources lor core courses and skills. .Students can access tutors

and resources at home, school, or anywhere else they have an Internet connection.

Instructors

To get copies of these supplements or for more information on packaging them at

significant discounts with any Larson Calculus. Seventh Edition, textbook, please

contact your Houghton Mifflin sales representative or call l-800-73.'l-l7l7. AP
Instructors call McDougal Littell at I -SIK)-4h2-6.S9.'^.

Students

For details on how you can order these exciting new learning aids, visit our website at

http://w\v\v.hmco.com or email us at college_inath(s}hmco.com.

xvii



Interactive Calculus 3.0 CD ROM and Internet Calculus 3.0

To acLoninuidatc .1 wide \ariL-l\ ol kMchiiiy aiul learning sl\lcs. CnUiiliis is also available

as Inunictivc Calcidiis 3.1) on an interactive CD-ROM and liilcnici CciUuIks .\(I. These

versions incorporate live niathenialies ihroiisihoiit the entire proiiraiii. Live inatlieniaties

helps students visiiali/e and explore leadiiig to a deeper iinderstandint; ol calctMus

concepts than has ever helore been possible.

Live Mathematics nirou^Iiout

• Open Explorations give students the opportunity

to explore using computer algebra systems.

• Section ytu//es leiiuire students to enter

free-response answers and to click-and-drag

answers into place.

• [{ditablc two-dimensional graphs, leatured

throughotit the entire pi'ogram. pmvide atklitional

opportunities to explore and investigate.

• Rotalablc three-dimensional graphs allow lor a

whole new level ol' visualization.

• New and enhanced explorations, simulations, and

amniations make concepts come alive.

(Massroom Management Tool and

Syllabus Builder

All of the content of the .Seventh Edition text

—

a wealth of applications, exercises, vvorked-out

examples, and detailed explanations—is included in

Inlcraclivc Calculus .10 on CD-ROM and liircriwl

Cdkuhis .^.il. Instructors have the tlexibilitv of

customizing content and interactive features for

students as desired. Instructors may simply add dates

to a default syllabus or may modilv the order of

topics. Hither way. a customized syllabus is easy to

distribute electronically and update instantly. This

tool is particularly useful lor managing distance

learning courses.

7.ta;.'iNii;iti;i .<rriim -nmt?^ -trin?;i -nCTio -mTTn -r-!:H'!i^t -iTi?^

DIFFERENTIATION

Chagtir Opener Gravrtv Finding n EJtpennfwnlairr

I I
2 1 The Denvabve and the Tangent Une Problem

n 22 Base DifleienhalKin Rules and Rates ot Change

2 3 The Product and Quotent Rules

and hl^er-Oder Denvalnres

24 TheChajn Rule

2 6 fnpiat DrtferGntolcn

CJ 26 DenvativesoT Inverse Functions

2 7 Related Flales

28Newton'sHethod

Reriew Exercises

n PS- Problem Sobing

c
Aertal cinemato^aplief s

musi have a thorough

uitdeis landing otgtatfity's

ellecl on a taflirig object

m onJer to control Bie

camera mounted on
Iheit helmets.



Features

Exercises with solutions to all odd cxcivises pio\idc inimediate feedback for

students.

Try Its allow students to try problems similar to the examples and to cheek their

work using the worked-out solutions pro\ided.

Quizzes with responses require students to enter free responses, click-and-drag

answers, and choose multiple choice answers.

Editable (iraplis encourage students to explore concepts by graphing "editable""

graphs as well as to change the viewing window and to use zoddi and tixice features.

Rotatable (Jraphs allow students to view three-dimensional graphs as they rotate,

greath enhancing \ isuali/alion.

Simulations encourage exploration and hands-on interaction w ilh mathematical

concepts.

Animatiuns. which use motion and sound to explain concepts, can he placed and

replayed, or viewed one step at a time.

Complete searchable text-specific Content, Index, Tlieorem Index, and Features

Index facilitate cross-icrcicncing.

N'ideo Clips engage student interest ami show connections between mathematics

and other disciplines.

Syllabus Builder enables instructors to save administialne time and to convey

important information online.

Bookniarkiuf; capability pro\ ides fast, efficient na\ igation of the site.

Other special features include:

.Articles • Connections • History • Look Ahead • Math Trends

.Section Proiects • Technology



Complete AP® Coverage in the 7th Edition

Calculus. Seventh Edition, provides complete coverage of the goals of AP Calculus.

The sample page references listed below are just a few illustrations of the complete

coverase that occurs in the text.

The Goals of AP Calculus

Students should he ahle to:

• work with functions represenlcti in a variety of ways: graphical, numerical, analytical,

or \erbal. They should understand the connections among these representations.

• understainl the meannig of the dcnvative in terms of a rate of change and local linear

approximation and they should be able to u.se derivatives to solve a variety of

problems.

• under.stand the meaning of the definite integral both as a limit of Riemann sums and

as the net accumulation of a rate of change and should be able to use integrals to solve

a \ariet\ of problems.

• understand the relationship between the derivative and the definite integral as

expressed in both parts of the Fundamental Theorem of Calctiliis.

• communicate mathematics both orally and ni well-written sentences and should be

able to explain solutions to problems.

• model a written description of a physical situation with a liinction. a differential

equation, or an integral.

• use technology to help solve problems, experiment, inteipret results, and verify

conclusions.

• determine the reasonableness of solutions, including sign. size, relative accuracy, and

units ot measurement.

• develop an appreciation of calculus as a coherent body of knowledge and as a human

accomplishment.

• give a geometric inteipiclation of differential equations via slope fields and the rela-

tionship between slope fields and solution curves for differential equations. (Effective

in 2004)

AP is II rci^istcrcd Inidfiiniri: nfTlic CoIIi\l;c Bininl.

Tlie Glials nfAP Cahiiliis innlinc sirccnj. Cnpyi'ii^lil 21)111 hy Ci>lli'i;c liulniiicc Exainimilion

Bixinl. Repriiih'il with pcniiissinii. All rights rcscr\cil. www.collegeboard.coni

Sample Pages

p. 41^);

p. 56: Exer. .W-42

p.lll;

pp. 114-11.5: Exer. 77-80;

p. 116: Exer. 99

pp. 265-266:

p. 286: E.xer. 66. 67

p. 275:

p. 282

p. 116: Exer. 104. 105

p. 29: Exer. 71.72

pp. 248. .^65

pp. 45. 94: Exploration;

p. 361: Exploration

p. 18: Exer 79; p. .^4: Exer. 10;

p. -35: Exer 16

pp. 42-44;

p. 94

p. .315; p. 330: E.xer. 41,42;

Appendix A



Additional AP® Preparation with the

7th Edition

Themes for Advanced Placement Calculus is a special supplement that accompanies

the Seventh Edition. This supplement identifies some of the ivey themes that have been

emphasized in the Advanced Placement Calculus examination m recent years. A tew

themes unique to the BC examination are included as well.

Themes for Advanced Placement Calculus

Each theme hcguis with a key to the text coverage, which lists related examples and

exercises from the Se\enth Edition for reference. Important formulas and a quick

summary of the theme follow. On a second page is a worked example with a recom-

mended solution developed in full detail. The third page offers some sample questions

—

multiple choice and free response—formatted to be used as student handouts. The fmal

page of each theme provides the solutions to the sample questions.

Themesfor Adrtinccd Phiccmcnl Calculus can iiclp teachers adapt to the evolving nature

of the Goals of AP Calculus. The material focuses more on concepts and less on

symbolic manipulation. There is a strong emphasis on technology and applications.

Themes

1. Multiple Representation ol Functions: Graphical, Numerical, and Analytical

2. Limits of Functions and Liiibounded Behavior

3. The Deri\at]\e at a Point and the Dernatne as a Function

4. The Geometric Relationship Between First and .Second Derivatives

5. The Definite Integral as Total Change

6. The Integral as an Accumulation Function

7. Volumes with Known Cross Sections and Other .Applications of integration

8. RectiHnear Motion

9. Functions and Their Inverses

10. Writing and Solving Separable Differential Equations and Modeling

BC Thenies

11. Differential Equations, Slope Fields, and the Logistics Equation

12. Differential Equations and Euler's Method

13. Series Investigated Graphically via Polynomial Approximation

14. Polar Coordinates and Graphing

15. Parametric Equations and Vector Functions

Themes for Advanced
Placement Calculus

Calculus Series

iorwn • HoVcllor • Edwordi



Eruptions of Old Faithful

Yellowstone National Park, located in the northwest

corner of Wyoming and adjacent parts of Montana

and Idaho, contains o\er hall of all known geysers on

earth. Few ol these hydrothcrnial spectacles are regular

enough to be anticipated acctirately. 01' the more than

4(H) geysers in Yellov\ stone Natiiinal Park, predictions

are posted for only seven, one of which is Old Faithful.

Old Faithful geyser was named in 1870. In 1938

geologist Harry M. Woodward noticed that there was

a conelation between the duration of Old Faithful's

eruption and the length of time (interval) before the

next eruption.

More than 1 37, ()()() eruptions of Old Faithful have

been observed and recorded. The durations have varied

between 1.5 and 3.5 miiuiles, and the intervals have

\ aried between .^0 and 1 20 minutes. Since Woodward's

ob.servations, the intervals have tended to increase. It

is speculated that major earthquakes in the region have

shifted the circulation of hot water away from the

geyser, resulting in a longer "fill time."

The data below show 35 eruptions as ordered pairs

of the form (.v, y), where v is the duration in minutes

and V is the interval in minutes. (Source: Yellowstone

Ncilioiiiil Park)

(l.XO. 56).

(1.98. 59).

(2.37, hi).

(3.78,79).

(4.30, 84).

(4.53.89).

(1.82.58).

(2.03. 60).

(2,82,73),

(3.83.85).

(4.30. 89).

(4.55, 86),

( 1 .88, 60),

(2.05.57),

(3.13.76).

(3.87,81),

(4.43, 84),

(4.60, 88),

(1.90.62),

(2.13.60),

(3.27.77).

(3.88, 80),

(4.43, 89),

(4.60.92),

(1.92,60),

(2.30.57),

(3.65.77),

(4.10.89),

(4.47,80),

(4.63.91)

(1.93,56),

(2.35,57),

(3.70. 82),

(4.27,90).

(4.47, 86).

•••

. *

•

1
-'''

5

Duration ot eruption (in minutes)

QUESTIONS

1. Describe the relationship between the durations and the intervals of Old Faithful's eruptions. Is

there a correlation between the two measures?

2. Suppose that you observe an eruption that lasts for 2 minutes and 40 seconds. When would you

expect the next eruption'.'

3. Write a model (an equation involving .v and v) that can be tised to predict the length of time

until the next eruption. Explain how you obtained the model. Did you ti.se technology or did

you obtain the model using only hand calculations?

The voncepis piv.sented here will be explored fiinhcr in this eluipler For an e-\len.\i(in of this

applicatuitt. vcc /.(//' / in the tab series that aiennipanies tliis le\l al college. hmco.cdm.
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An eruption of Old Faithful is

capable of shooting up to 8400

gallons of boiling water as high

as 184 feet in the air.

«?5)

Ns--.-'^
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For a geyser to exist, three conditions

must exist: a supply of water, an intense

heat source, and pressure-tight plumbing.

Volcanically heated water enters a

geyser's plumbing system at great

depths, boiling and heating cooler water

that is flowing in from the surface.

Eventually the steam from the boiling

water creates enough pressure to explo-

sively force great volumes of water high

into the air. Once an eruption is over, the

entire filling, heating, and boiling

process begins again.

Harry M. Woodward was the

fnst to describe a relationship

between the durations and

intervals of Old Faithful's

eruptions.
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Rf:NKDts(iRiK.s(I5'>t)-lh50)

Descartes made many contriliiilions to

philosophy, science, and mathematics. The idea

of representing points in the plane by pairs of

real numbers and representing curves in the

plane by equations was described by Descartes

in his book Lci Ghmelric. published in 1637.

Graphs and Models

• Sketch the graph of an equation.

• Find the intercepts of a graph.

• Test a graph for symmetry with respect to an axis and the origin.

• Find the points of intersection of two graphs.

• Inteiprei mathematical models for real-life data.

The Graph of an Equation

In 1637 the French matheniatician Rene Descartes revolutionized the study of mathe-

matics by joining its two major fields—algebra and geometry. With De.scartes's

coordinate plane, geometric concepts could be formulated analytically and algebraic

concepts could be viewed graphically. The power of this approach is such that within

a century, much of calculus had been developed.

The same approach can be followed in your study of calculus. That is, by viewing

calculus from multiple perspectives

—

iiniphically. analytically, and numevically—
you will increase your understanding of core concepts.

Consider the equation 3.v + y = 7. The point (2. 1 ) is a solution point of the

equation because the equation is satisfied (is true) when 2 is substituted for .v and I is

substituted for y. This equation has many other solutions, such as ( I, 4) and (0. 7). To

systematically find other solutions, solve the original equation for \'.

\ = 1 ^ 3-V An.ilMiL appiojch

Then construct a table of values by substituting several values of .v.

\

6
MO. 7,

4 \ ll-ll , —

2 _
'

\(2. 1)

_T -
2\ 4 d 8

\(3.-2)

-6- y (4.-5)

Grapliical approach: .Iv

Fin ire P.l

= 7

X 1 3 4

y 7 4 1 _2 -5
Numerical approach

From the table, you can see that (0, 7). (I. 4). (2. I ). (3. -2). and (4. -5) are solutions

of the original equation .rv + y = 7. Like many equations, this equation has an infi-

nite number of solutions. The set of all solution points is the graph of the equation,

as shown in Figure P.l

.

NOTE Even though we refer to the sketch shown m Figure P. 1 as the graph of 3.V + y = 7,

it really represents only a pnnun] of tlie graph. The entire graph would extend hey(nid the page.

In this course, you will study many sketching tcchnic|ucs. The simplest is point

plotting— that is. \oii plot points until the basic shape of the graph seems apparent.

4 -.1 -: V 7:34

The parabola

Fi};ure P.2

Example I Sketching a Graph by Point Plotting

Sketch the graph of y = .v- — 2.

Solution First construct a table of \alues. Then plot the points show n in the table.

X _0 -1 1 2 3

y
T -1 -2 -I T 7

Finally, connect the points with a siuoatli curve, as shown in Figure P.2. This graph is

a parabola. It is one of the conies \(iu will study in Chapter 9. .:_
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One disadvantage of point plotting is that to get a good idea about the shape of a

graph, you may need to plot many points. With only a few points, you could badly

misrepresent the graph. For instance, suppose that to sketch the graph of

y = ii.v(39 - l(h- + .v^)

you plotted only fi\'e points:

(-3. -3).(-l. -1).(U.(3),(1. 1). and (3. 3)

as shown in Figure P.3(a). From these five points, you might conclude that the graph

is a line. This, however, is not correct. By plotting several more points, you can see

that the graph is more complicated, as shown in Figure P.3(b).

EXPLORATION
Comparing Graphical and Analytic

Approaches Use a graphing utility

to graph each of the following. In

each case, find a viewing window

that shows the important characteris-

tics of the graph.

a. y =
.V-' - 3.V- + Iv + 5

b. y =
.V-'

- 3.v= + 2.V + 25

c. y = -.v" - 3.v' + 20.V + 5

d. V = 3.v' - 40.V- + 50.V - 45

e. y = -(.V + 12f'

f. V = (.V - 2)(.v - 4)(.v - 6)

A purely graphical approach to this

problem would involve a simple

"guess, check, and revise" strategy.

What types of things do you think an

analytic approach might involve? For

instance, does the graph have symme-

try? Does the graph ha\e turns? If so,

where are they?

As you proceed through Chapters

1, 2, and 3 of this text, you will study

many new analytic tools that will

help you analyze graphs of equations

such as these.

(0,0)

>.(l.l)

( -l.-l)^ -I -

/
/ -, _

/
/

* ( -^.-M -3 -

/

lul

Figure P.3

Plotting only a

few points can

misrepresent a

graph.

(b)

TECHNOLOGY PITFALL Technology has made sketching of graphs easier. Even

with technology, however, it is possible to badly misrepresent a graph. For instance,

each of the graphing utility screens in Figure P.4 shows a portion of the graph of

y = .V-' - .V- - 25.

From the screen on the left, you iiiiglit assume that the graph is a line. From the

screen on the right, however, you can see that the graph is not a line. Thus, whether

you are sketching a graph by hand or tising a graphing utility, you must realize that

different "viewing windows" can produce very different views of a graph. In choos-

ing a viewing window, your goal is to show a view of the graph that fits well in the

context of the problem.

• 10

-10

Graphing titilit\ screens of

Figure P.4

NOTE In this text, we use the term liniphiim utility to mean either a graphing calculator or

computer graphing software such as Mciple. Miirhciiuilica. Derive. Miitliccul. or the TI-S9.
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Intercepts of a Graph

Two types of soliitioti points that are especially useful when graphing an equation are

those having zero as their v- or v-coordinate. Such points are called intercepts because

they are the points at which the graph intersects the v- or y-axis. The point {a. 0) is an

.v-intercept of the graph of an equation if it is a solution point of the equation. To find

the A-intercepts of a graph, let y be zero and solve the equation for .v. The point (0. /))

is a y-intertept of the graph of an equation if it is a solution point of the equation. To

find the y-inlercepts of a graph, let .v be zero and solve the equation for y.

NOTE Some texts denote the .v-intercept as the .v-coordinate of the point {a, 0) rather than the

point itself Unless it is necessary to make a distinction, we will use the term inicrcepi to mean

either the point or the coordinate.

It is possible for a graph to have no intercepts, or it might have several. For

instance, consider the four graphs shown in Figure P.5.

No.v-intercept.s

One r-inlern'pt

Figure P.5

Three v-intercepts

One i-intercept

One v-inlercepl

Two r-intereepts

No intercepts

E.XiinipIc 2 Finding .v and i' intercepts

Intercepts of a graph

Figure P.6

Find the v- and \-intercepts of the graph of y = .v^ — 4.v.

Solution To find the v-intercepts, let y be zero and solve for v.

.V-*
— 4.V = Lcl V Inc zero.

.v(.V - 2)(.V + 2) = Factor.

-V = 0, 2, or -2 Solve lor.v.

Because this equation has three solutions, you can conclude that the graph has three

.v-intercepts:

(0.0). (2.0). and (-2.0). i-mtercepls

To find the \-intercepts. let .v be zero. Doing this produces y = 0. So. the y-iiiterccpt is

(0. 0). i-nitercept

(See Fioui-e P.6.) CZ

TFXHNOI.OCV Example 2 u.ses an analytic approach to finding intei"cepts. When

an analytic approach is not possible, you can use a graphical approach by linding

the points where the graph intersects the axes. Try using a graphing utility to

approximate the intercepts.
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/

/ (v. V)

A-Ax is \ ' ' ^
)

symmetry \

Figure P.7

Origin

symmetry

Symmetry of a Graph

Knowing the symmetry of a graph before attempting to sketch it is iiselul because you

need only half as many points to sketch the graph. The following three types of

symmetry can be used to help sketch the graph of an equation (see Figure P.7).

1. A graph is symmetric with respect to tiie _v-axis if. whenever (,v. y) is a point on

the graph, (-.v. y) is also a point on the graph. This means that the portion of

the graph to the left of the v-axis is a mirror image of the portion to the right of the

y-axis.

2. A graph is symmetric with respect to the .v-axis if. whenever (.v, y) is a point on

the graph, (.v. -y) is also a point on the graph. This means that the portion of the

graph abo\e the v-axis is a miiTor image of the portion below the .v-axis.

3. A graph is symmetric with respect to the origin if. whenever (.v. y) is a point on

the graph, (-.v. -\) is also a point on the graph. This means that the graph is

unchanged by a rotation of 180° about the origin.

Tests for Symmetry

1. The graph of an equation in .v and v is synniietric with respect to the •\-a.xis if

replacing .v by -.v yields an equivalent equation.

2. The graph of an equation in .v and y is symmetric with respect to tlie v-axis if

replacing ^' by -\' yields an equivalent equation.

3. The graph of an equation in .\ and y is symmetric with respect to the origin

if replacing .v by -.v and y by -y yields an equivalent equation.

The graph of a polynomial has synnnctrv with icspecl to the v-axis if each term

has an even exponent (or is a constant). For instance, the graph of

.V- + 2 v-a\is synimeLry

has symmetry with respect to the y-axis. Similarly, the graph of a polynomial has

symmetry with respect to the origin if each term has an odd exponent, as illustrated in

Example 3.

Example 1 TrstiiijJ lor Orijfin Symmetry

Origin symmetry

Figure P.8

Show that the graph of

y = 2.v' - .V

is symmetric with respect to the origin.

Solution

y = Iv' - .V

-y = 2(-.v)-' - (-.V)

-y = -2.V-' + .V

Wnte original equatiem

Replace .v by - v and v by — v.

Simplify,

Eqiiixaienl eL)Liation

Because the replacement produces an equivalent equation, you can conclude that the

graph of y = 2.V'' — .v is symmetric with respect to the origin, as shown in Figure P.8.
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fl^i Example 4 Using Intercepts and Syramctn' to Sketch a Graph

Y - V- = 1 (3.2)
T _

I -
(2. 1 1^'^

(1.0)/

\ 2 3 4 5

-v-inlercept ^~^
^^^^-^

Sketch the graph of v 1.

First plot theA-iiitera.'pt ami the points

above the .v-axis. Then use s\ mmetry to

complete the graph.

Figure P.9

Solution The graph is Nymiiictric with respect to the v-axis becau.se replacing v by

- y yields an equivalent equation.

-V ~ \" = 1 Wrile original equation.

X — (— y)- = 1 Replace V tiy - v,

.V ^ \'" = 1 Equivalenl equation

This means that the portion of the graph below the .v-axis is a mirror image of the poilion

above the .v-axis. To sketch the graph, first sketch the portion above the v-axis. Then

retlect in the.v- axis to obtain the entire graph, as shown in Figure P.9.

[' TECHNOLOGY Graphing utilities are designed so that they most easily graph

• equations in which y is a function of x (see Section P.3 for a definition of

' function). To graph other types of equations, you need to split the graph into

: two or more parts or you need to use a different graphing mode. For instance,

to sketch the graph of the equation m Example 4. you can split it into two parts.

rs V,

1 Vt

y.v Tiip portion t>t graph

Bouiini purtion of graph

Points of Intersection

A point of intersection of the graphs of two equations is a point that satisfies both

equations. You can find the points of intersection of two graphs b\ soK ing their equa-

tions simultaneously.

Example ? Finding Points of Interseciion

(2. I)

.v^-v = 3

Two points of intersection

Figure P.IO

Find all points of intersection of the graphs of .v- - y = 3 and .v - y = 1.

Solution Begin b\ sketching the graphs of both eqiiatunis on the siinic rectangular

coordinate system, as shown in Figure P.IO. Having done this, it appears that the

graphs have two points of intersection. To find these two points, you can use the

follovsing steps.

SoKc ilrst equation for \

Soke second CLpiation for y.

Equate v-values.

Wine in genei.il tonn.

Factor

Sol\c foi- \.

The corresponding values of y are obtained b> substituting v = 2 and v = -
1 into

either of the original equations. Doing this produces two points of intersection:

(2.1) and (—1,-2). Pomls ul inlersecnon

You can check these points by substituting into ImhIi of the original equations or by

using the intersecr feature of a graphing utility.

^^p indicates tluit in tlie Intcracti\e 3.0 CD-ROM and Internet 3.0 versions of rliis text

(availalilc at college.hmco.com) you will find an Open Exploration, which further explores this

example iisina the computer algebra systems Maple. Mathcad. Mathematica. and Deri\e.

y - V-
—

y = .v
-

X- - 3 = .V
-

X- — X - T =

- 2)(.v + 1) =

A
— T or
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The Mauna Loa Observatory in Hawaii

has been measuring the increasing

concentration of carbon dioxide in earths

atmosphere since i960.

Mathematical Models

Real-life applications of mathematics often use equations as mathematical models.

In developing a mathematical model to represent actual data, you should strive for two

(often conflicting) goals: accuracy and simplicity. That is. you want the model to be

simple enough to be workable, yet accurate enough to produce meaningful results.

Section P.4 explores these goals more completely.

Example 6 Coinparing Two Mathematical Models

The Mauna Loa Observatory in Hawaii records the carbon dio.xide concentration y (in

parts per million) in earth's atmosphere. The January readings for various years are

shown in Figure P. 1 1. In the July 1990 issue of Scientific Aincnam. these data were

used to predict the carbon dioxide level in earth's atmosphere in the year 2035. using

the quadratic model

V = 316.2 + 0.70? + O.OlSr^ Qiiadianc model for M(iO-|t)4(l data

where t = represents 1960, as shown in Figure P.I 1(a).

The data shown in Figure P. 1 Kb) represent the years 1973 through 1998 and can

be modeled by

307.9 + 1.50? Laiear iiiiidel tor m7.i-iyyx dala

where f = represents 1960. What was the prediction given in the Scientific Auit'iican

article in 1990? Given the new data for U)9() through I9')X. does this prediction for

the year 2035 seem accurate?

YeardJ^ 1960)

(a)

Fij^urf P.l 1

O
o

(b)

III 1.^ 211 2? Ml f>

Year (()*-> lyhOl

NOTE The models in Example 6 were

developed using a procedure called least

squares regression (see Section 12.9).

Both the quadratic and linear models

have a correlation given by r- = 0.997.

The closer r~ is to I. the "better" the

model.

Solution To answer the first question, substitute t = 75 (for 2035 ) into the quadratic

model.

y = 316.2 + 0.70(7.^) + 0.018(75)- = 469.95 Quadratic model

So, the prediction in the Scientific American ailicle was that the carbon dioxide

concentration in earth's atmosphere would reach about 470 pails per million in the

year 2035. Using the linear model for the 1975-1998 data, the prediction for the year

2035 is

V = 307.9 + 1.50('5) = 420.4. Linear model

So, based on the linear model for 1975-1998, it appears that the 1990 prediction was

too high. :, ,
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EXERCISES FOR SECTION P. 1

In Exercises 1-4. match the equation witli its graph. |(iraphs

are labeled (a), (b). (c), and (dl.l

(a) (b) v

In Kxercises 5-12, sketch the graph of the equation by point

plotting.

5. y = 3A- + 1

7. \- = 4 - A-

9. ^' = |a + 2

1

U. V = v^ - 4

6. y = 6 - 2v

8. y = (a - 3)-

10. y = |a-| - 1

12. V = Va + 2

rp In Exercises 1.' and 14. describe the viewing window that yields

the figure.

13. y = A-' - 3a- + 4 14. A + A - 1(1

21. V =

23. A-v - A- + 4v =

A-- + 3a-

(3a + D-

24. ^^^^\

In Kxercises 25-36. test for symmetry with respect to each axis

and to the origin.

25. V = A- - 2

27. y- = A-' - 4v

29. vy = 4

31. y = 4 - Va- + 3

3i.
A

A- + I

35. , = Ia--- + A-1

26. y = A- - A-

28.

30.

y = A-' + A-

AT- = jJO

32. AT - 3^4 - X- =

34.
A-

'
A-^ + 1

36. l.vl - A = 3

In Exercises 37-54. sketch the graph of the equation. Identify

any intercepts and test for symmetry.

37. 1- = - 3a + 2

39. y = ^v - 4

41. y = 1 - A-

43. y = (a + 3)-

45. y = a' -I- 2

47. y = Av^- + 2

49. A = y'

1

51. V = -
A

53. X = 6 - |a|

rp In Exercises 55-58. use a graphing utility to graph the equation.

(See Technology note, page 6. 1 Identify any intercepts and test

for svnimetr\.

38. y = -iv-h2

40. y = tA + 1

42. y = A-- -1- 3

44. y = 2a- -1- X

46. \
= a' - 4a

48. ./9 - A-^

5(1. A- = y- - 4

52. v =
10

A- + 1

54. V = le> - aI

55. 1- - I = 9

57. A + 3\- = (1

56. A- + 4y- = 4

58. 3a - 4y- = a

rp In Exercises 15 and 16, use a graphing utility to graph the equa-

tion. Move the cursor along the curve to approximate the

unknown coordinate of each solution point accurate to two dec-

imal places.

15. y = J5 - A

16. \ = a' - 5a

(a) (2.v)

(a) (-0,5, v)

(b) (a. 3)

(b) Iv. -4)

In Exercises 17-24. find any intercepts.

17. y = A- + A - 2 18. 1- = A

19. V

4v

A^V^5 20. y = (a - 1 ) Va-- + 1

In Exercises 59-62. write an eqnation whose graph has the 1

inc icated property. (There nia> he more th.m one correct
|

answer.

59. The graph has intercepts at A — _ T
A- = 4 and A = 6.

60. The graph has intercepts at A = -?. A = 2. and A = 3.

61. The graph is synimctric with respect t(i the origin.

62. The graph is symmetric with respect to the v-axis.

Tlw symhiil Ay indicates an exercise in whicli you are uistmclal 10 use f^raplum; leilmology

or a symbolic computer algebra system. The solutions of other exercises max also be facilitated

by use uj appropriate technology-
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In Exercises 63-72, find the points of intersection of the graphs

of the equations.

63. V + V = 2

2.V - V = 1

65. A- + y = 1

3.V - 2.V = 1

1

67. .V- + y = 6

X + y = 4

69. .V- + v^ = 5

A- -1 = 1

71. y = a'

\' = A

64. 2a - 3y = 13

3a- + 3>- = 1

66. 3a - 6y = 9

-7a + 3y = -18

68. A = 3 - y-

y = V - 1

70. A- + \'- = 23

2a + y = 10

72. y = a' - 4a

y = -(a + 2)

/"V 78. Modeling Data The table shows the average number ot acres

per farm in the United States for selected years. {Source:

U.S. Departmeiu <ifAgriculture)

( K In Exercises 73 and 74, use a graphing utility to find the points

of intersection of the graphs. Check your results analytically.

73. y = a' - 2a- + a- - 1

V = -A- + 3.V - 1

74. Iv- +

1 = 1- a'

(c)

X 1 4 9

y 3 24 81

X 1 4 9

y 36 9 4

X 1 4 9

y 7 13 23

(d)
X 1 4 9

y -9 6 71

Year 1970 1973 1980 1983 1990 1995 2000

CPI 38.8 53.8 82.4 107.6 130.7 152.4 168.7

Year 1 930 1960 1970 1980 1990 1998

Acreage 213 297 374 426 460 435

(a) Use the regression capabilities of a graphing iililili to fnid

a mathematical model of the form

y = (//- + hi + c

for the data. In the model. \' represents the average acreage

and / represents the year, with ; = corresponding to 1950.

(b) Use a graphing utility to graph the model and compare the

data with the model.

(c) Use the model to predict the average number of acres per

farm in the United States in the year 2004.

ly 79. Copper Wire The resistance \- in ohms of 1(100 feel ot solid

copper wire at 77"F can be appro.ximaled by the mathematical

model

75. Break-Even Point Find the sales necessary to break even

{R = C) if the cost C of producing .v units is

C = 3.3vA+ 10.000 CsiCLiiialion

and the revenue R for selling a units is

R — 3.29.V. Reienuc eqaaiion

76. Think About It Each table shows solution points for one of

the following equations.

(i) V = tv + 5 (11) V = .V- + k (111) V = ti-''' (iv) .vv = k

Match each equation w ith the correct table and tnid k.

(a)
1

\ , \
,

' rn (b)

/"V 77. Modeling Data The table shows the consumer price index

( CPI ) for selected years. (Source: Bureau ofLabor Statistics)

(a) Use the regression capabilities of a graphing utility to find

a mathematical model of the form y = at- + lit + c for the

data. In the model, i represents the consumer price index

and t represents the year, with t = coiTcsponding to 1 970.

(b) Use a graphing utility to graph the model and compare the

data with the model.

(c) Use the model to predict the CPI for the year 2004.

10.770
0.37. 5 < A < 100

where a is the diameter of the wire in mils (0.001 in.). Use a

graphing utility to graph the model. If the diameter of the wire

is doubled, the resistance is changed by approximately what

factor'^

80. (a) Proic that if a graph is symmetric with respect to the A-axis

and to the y-axis, then it is symmetric with respect to the

origin. Give an example to show that the converse is not

true.

(b) Prove that if a graph is symmetric with respect to one axis

and to the origin, then it is symmetric with respect to the

other axis.

True or False? In Exercises 81-84, determine whether the

statement is true or false. If it is false, explain why or give an

example that shows it is false.

81. If ( I, —2) is a point on a graph that is symmetric with respect

to the .v-a\is. then I 1 .
- 2) is also a point on the graph.

82. If (1. -2) is a point on a graph that is symmetric with respect

to the y-axis, then (- 1, -2) is also a point on the graph.

83. If/)- - 4f(c > and a ^ 0, then the graph of y = i/.v- + /).v -I- c

has two .v-intercepts.

84. If /?- - 4((i' = and u + 0, then the graph of i = ax- + bx + c

has only one ,\-intercept.

85. Find an equation of the graph that consists of all points (.v, y)

whose distance from the origin is A' times (A" ^ 1) the

distance from (2, 0). (For a review of the Distance Formula,

see Appendix D.)
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Lmeair Mod^Isi iatA Rates of Change

• Find the slope of a line passing through two points.

• Write the equation of a line with a given point and slope.

• hiterpret slope as a ratio or as a rate in a real-life application.

• Sketch the graph of a linear equation in slope-intercept form.

• Write equations of lines that are parallel or peipendicular to a given line.

ly = IS -
I'l

- change in i'

A.v = .V, - .V| = change in v

Fi"iiiil'.l2

The Slope of a Line

The slope of a nonverticaj line is a measure of the nuniher of units the line ri.ses (or

falls) vertically for each unit of horizontal change from left to right. Consider the two

points (-V|.y|) and (.v,, y,) on the line in Figure P. 12. As you move from left to right

along this line, a vertical change of

Aa' = A\ — \'| Chaivjc in \

units corresponds to a hori/onlal change of

Av = -Vt — .V| Change in >

units. I A is the Greek uppercase letter Jcltn, and the symbols Ay and A.v are read

'delta \" and "delta .v.")

SYMBOL K)R Sl.OI'E

The use of the letter ni to represent the slope

of a line conies from mmner. the French verb

mcanini; lo mount, to ciuiib, or to rise.

Definition of the Slope of a Line

The slope m of a nonvertical line pa.ssing through the points (.v. , y,) and (.Vi.y,)

IS

Ay y, "
y.m . .V| ^ .Vi.

A.v .V, - .v.

NOTH When usuig the formula Iim' slope, note that

y, - y, -(V| - y,) y, - y.

.V, - .V, -(.V, -.V,) -V,

So. it does not matter in which order you subtract i;.v lou:^, as you are consistent and both

"subtracted coordinates" come from the same point.

Figure P. 13 shows four lines: one has a positive slope, one has a slope of zero,

one has a negative slope, and one has an "tindetined slope." In general, the greater the

absolute value of the slope of a line, the steeper the line is. For instance, in Figure

P. 1 3. the line with a slope of - 5 is steeper than the line with a slope of j.

4-

.1
—

(3, I

)

If 111 is piisitive. then the line rises

from left to right.

Figure P.13

4 »i, =

(-1.21

If 11} is zero, then the hne is

h(H'i/()ntal.

((1.4)

If /;; is negative, then the hue

falls from left to rmht.

4- (3.4)

3- -

2 - -

1
^ (3.1)

-1 1 2 4

-1 J

II //( is (indelined. then the hue

IS vertical.
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ir^li EXPLORATION
Invesligating Equations of Lines

Use a graphing utility to graph each

of the Hnear equations. Which point

is common to all se\en lines' Which

value in the equation deternimes the

slope of each line?

a. V - 4 = -2(.v + I)

b. y - 4 = -U.v + 1)

c. y - 4 = -i(.v + 1)

d. y - 4 = 0(.v + I

)

e. y - 4 = \i\ + 1

)

f. y - 4 = K.v + 1)

g. y - 4 = 2(.v + 1

)

Use your results to write an equation

of a line passing through (-1.4)

with a slope of in.

Equations of Lines

Any two points on a nonveitical line can be used to calctdate its slope. This can he

vefified fiom the similar triangles shown in Figtire P. 14. (Recall that llie ratios of

coiTesponding sides of similar triangles are equal.)

,

(,

(-V,*. y."'iy

(.V,. v,!^-—

d

(.V, -vr>"^ ny^
\~;-' ~ 1* ':-^'i
-V,--V| V, -.1,

.•\in two points (in a nmnortical line can he used to dolcrmiiiL' its sliipc.

Figure P.14

You can write an equation of a nonxertical line if you know the slope of (he line

and the coordinates of one point on the line, .Suppose the slope is iii aiul the point is

(.V|, y, ). If (.V, v) is any other point on the line, then

This equation. in\olviiig the two \ariables ,v and y. can be rewritten in the lorm

y — y, = ;»(.v -
,\ , ). w Inch is called the poiiil-slope equation of a line.

\' = .\v - .s

The line with a slope of 3 passing through

point (I. -2}

Figure P. 15

Point-Slope Equation of a Line

An equation of the line with slope /;; passing through the point (.v,. \',) is gi\en

by y -
y, = //;(.v - .v,).

Example 1 Finding an Equation of a Line

Find an eciualion of the iine that has a slope of .3 and passes through the point ( I .
— 2)

Solution

y — y, = lll(.\ — .V|) Pninl-sinpe liirm

y - (-2) = M.\ -
1 ) Subsiiiuie -2 111)- V,. I tor \,. and 3 for ;ii.

y + 2 = .Iv - ^ Simplily.

y = .3.V - 5 Solve lor y.

(See Ficure P.I?.) 7^'

NOTE Remember that only nonvertical lines have a slope. Consequently, vertical lines cannot

be written in point-slope form. For instance, the equation of the vertical line passing through

the point 1 1. - 2) is .v = I.
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Ratios and Rates of Change

The slope of a line can be interpreted as either a iiin(} or a rale. If the v- and i-axes

ha\e the same unit of measure, the slope has no units and is a ratio. If the a- and

v-a\es have different units of measure, the slope is a rate or rate of change. In your

study of calculus, you will encounter applications involving both inteipretations

of slope.

94S.0(J0

10

L-V-
lu.sd IWD :u(«i

Year

Population of Ari/ona iii census u'ars

Fiaurc P. 16

Example 2 Population GroH^Ii and Engineering Design

a. The population of Arizona was 2.71 7.000 in 1980 and 3.665.000 in 1990. Over this

10-year period, the average rate of change of the population was

Rate of change
:hange in population

change in years

_ 3.665.000 - 2.717.000

1990 - 1980

= 94.800 people per year.

If Arizona's popidation had continued to increase at this same rate for the next

10 years, it would ha\e had a 2(J()0 population of 4.613.000. In the 2000 census,

however. Arizona's population was determined to be 5.131.000. so the population's

rate of change from 1990 to 2000 was greater than in the previous decade (see

Figure P. 16). (Soiiivc: U.S. Cen.sii.s Bureau. Population Division)

b. In tournament water-ski jumping, the ramp rises to a height of 6 feet on a raft that

is 21 feet long, as shown in Figure P. 17. The slope of the ski ramp is the ratio of

its heiiiht (the rise) to the leniith of its base (the run).

Slope of ramp
rise

run

6 feet

2 1 feet

Rise IS \eiiiL.il ch.iii'jc. luii is liDii/diikil chiinse.

7

In this case, note that the slope is a ratio and has no units.

6 ft

Dimensions of a \valer-ski|) ramp

Figure P. 17

The rate of change found in Example 2a is an average rate of change. An aver-

age rate of change is always calculated over an interval. In this case, the interval is

[Mso, \wi)\ In Chapter 2 you will study another type of rate of change called an

inMaiUiuicinis rate of cimnge.
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Graphing Linear Models

Many problems in analytic geometry can be classified in Iwu basic categories: (1)

Given a giiiph. what is its equation? and (2) Gi\en an etiuation. what is its graph?

The point-slope equation of a line can be used to solve problems m the first category.

However, this form is not especially useful for solving problems in the second

category. The form that is better suited to sketching the grapli of a line is the slope-

intercept form of the equation of a line.

The Slope Intercept Equation of iLine

The graph of the linear equation

is a ine having a slope of i)i and a \ -intcrc pi at (0. M.

Exaiiiple 3 Sketching Lines in the Plane

Sketch the graph of each equation.

a. y = 2.V +1 b. y = 2 c. 3v + .v - 6 =

Solution

a. Because h = \. the ^ -intercept is (0. 1 ). Because tlie slope is ;;) = 2. you kiidw that

the line rises two units for each unit it mo\es to the right, as shown in Figure

P. 18(a).

b. Because /) = 2, the \-intercept is (0. 2). Because the slope is /;; = 0, you know that

the line is horizontal, as shown m ["igurc P. lS(b)

c. Begin by writing the equation in slope-intercept form.

3y + .V — 6 = Wiile iiiitiinji L-qiialKin

3y = —.V + 6 Kiilalc v-ieim 1111 ihe lell

1

y —
.V + 2 Slopc-inlercept tiirm

In this form, you can see that the \ -intercept is ({). 2) and the slope is »/ = - ^. This

means that the line tails one unit for e\ery three units it nio\es to the right, as

shown in Fisure P. 18(c).

(0. 1)

V = 2.V + 1

.c; J

) A\-

A\--

(a) in = 2; line rises

Figure P.18

(0.2)

-H --V

I : .1

(bj in — 0: line is horizontal (c) in = — j; line tali
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Because the slope of a vertical line is not dctlned. its equation cannot be written

in the slope-inteicept form. However, the e(.|uation of miy line can he written in the

general form

Av + Sv + C = General torni ol the etiuation of a line

where A and B are not harli zero. For instance, the vertical line given by .v = (/ can be

represented by the general form .v - a = 0.

Summary of Equations of Lines

1. General form: Ax + By + C =

2. Vertical line: .Y = (;

3. Horizontal line: y = h

4. Point-slope foini: y —
y, = mix - a,)

5. Slope-intercept form: A' = lll\ + /)

Parallel and Perpendicular Lines

The slope of a line is a convenient tool for determining w hether two lines are parallel

or perpendicular, as shown in Figure P. 19. Specifically, nonvertical lines with the same

slope are parallel and nonvertical lines whose slopes are negative reciprocals are

peipendicular

Parallel lines

Figure P. 19

Pcrpendictilar lines

STUDY TIP In mathematics, the

phrase "if and only if is u way of stat-

ing two implications in one statement.

For instance, the first statement at the

right could be reurilten as the lollouing

two impljcalions.

a. It Iwo distnict non\ertical lines are

parallel, then their slopes are equal.

b. If two distinct non\ertical lines have

equal slopes, then they are parallel.

Parallel and Perpendicular Lines

1. Two distinct nomertical lines arc parallel if aiul only if their s lopes are

ct|iial—that is. if and only if »;, III-..

2. Two non\ertical lines are perpendicular if ; nd onU if th :ir slopes are nega-

five reciprocals of each other—that is. if and on ly if

1

III, =
.
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Example 4 FindiniJ Piinillcl and Perpt'nditular Lines

Lines parallel and perpendicular to

2.V - h- = 5

Figure P.20

Find the general fornis ofthe equations of the lines that pass through the point (2. -
1

)

and are

a. parallel to the line 2.\ — ix = 5

(See Figure P.20.)

b. perpendieular to the line 2,v — 3\' = 5.

Solution By writing the linear equation 2.v — 3^' = 3 in slope-intercept Ibrm.

y = ?-v — ,. you can see that the given line has a slope of ni = ^.

a. The line through (2. -
I ) that is parallel to the gneii line also has a slope of ^.

y — y, = /)((.V — .V| ) PuHU-vln|U- Inrni

y - (-1) = ?(.V - 2) SubMitute,

3(v + I) = 2(.v - 2) SLmpiii>

2.V - ^\ - 7 = (I General loim

Note the sinularit\ to the original equation.

b. Using the negative reeipi'ocal of the slope of the given line, you can deteimine that

the slope of a line perpendicular to the gi\ en line is -
^. Therefore, the hue through

the point (2. -
I ) that is perpendicular to the given line has the following equation.

y - y, = ;(/(.v — .v,) Pumt-slnpc lomi

y — (— I) = — i'-^ ~ -' Subsiniite

2(v' + I) = -3(.v - 2) Simpiii\

3.V + 2y — 4 = General lorni Lij-J

TECHNOLOGY PITF\LL The slope of a line will appear distorted if you use

different tick-mark spacing on the .v- and \-a\es. For uistance. the graphing calcu-

,
lator screens in Figures P.21(a) and P.21(h) both shou the lines given by v = 2.> and

y = — rV + 3. Because these lines have slopes that are negative reciprocals, they

must be perpendicular, hi Figure P.2l(a). In)vvever. the lines don't appear to be

,. perpendicular because the tick-niark spacing on the .v-a,\is is not the same as that on
' the y-axis. In Figure P.21(b) the lines appear perpendicular because the tick-mark

' spacing on the .v-axis is the same as on the y-axis. This type of viewing window is

•' said to have a xi/iuirc sclliiii;.

-10 / T-r. ,.^_. ,

y

y .

y
y

10

j-i -10
t.;

i- (a) Tick-mark spaciiiii on the .v-avis is nol the

-; ^ame as lick-mark spacing on Che v-a\is.

U Figure P.21

i' I "> I, I I

I

/

(b) Tick-mark spacing on the i-a\is is the

same as tick-mark spacing im the v-a\is.
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EXERCISES FOR SECTION P. 2

III ExtTcises 1-6, estimate the slope of the hue from its ^raph.

To print an enlarged eopy of the graph, go to the website

wHw.inalhgiaphs.coin.

1. 2.

7- _ /

6 J - /
5- - /
4- - /
3 - - /
2 .

1
-

/ 1 1 1 1 1 ft

1/ 3 4 5 6 7

3. 4.

7-

6-
5--

-l-HH-H-l-

f^ s

5hp\
4- - \
3 ^ - \s^
2 -

1-

-> 4 5 (O^

5.

12 3 4 5 6 7

In Exercises 7 and 8, sketch the lines through the point with

the indicated slopes. Make the sketches on the same set of

coordinate axes.

In Exercises 9-14, plot the pair of points and find the slope of

the line passing through them.

II). (I. 2). (-2.4)

12. (3. -2). (4, -2)

14. (l^),(i-i)

9. (3. -4). (5.2)

11. (2. 1). (2.5)

13. (-M)-(-i^

21). Conveyor Design A moving conveyor is built to rise I meter

for each 3 meters ot horizontal change.

(a) Find the slope ol the conveyor.

(b) Suppose the conveyor rims between two floors in a factory.

Find the length of the conveyor if the vertical distance

between lloors is 10 feet,

21. Modeling Data The table shows the population of the United

.States for 1991-1998. Time in years is represented by I. with

I = I conesponding to 1991. and the population (in millions)

is represented by y. (Source: U.S. Bureau of tlie Census}

t 1 2 3 4

y 2.52.1 255.0 257.7 260.3

t 5 6 7 8

y 262.

S

265.2 2()7.7 270.3

(a) Plot the data by hand and connect adjacent points with a

line segment.

(b) Use the slope to determine the year when the population

increased most lapidly.

22. Rate of Change Each of the following is the slope of a line

icprcscnling daily rexenue y in terms of time .v in days. Use the

slope to interpret any change in daily revenue for a 1-day

increase in lime,

(a) m = 400 (b) m = 100 (c) m =

In Exercises 23-26, find the slope and the v-intercept (if possi-

ble ) of the line.

Piiiiir Slopes
23.

25.

V + 5\' =

V = 4

= 1

7. (2,3) (a) 1 (b) — T (c) -^ (d) llndefined

8. (-4. 1) (a) 3 (b) -3 icl \ (d)

24. 6.V

26. \
=

-5x = 15

-I

In Exercises 27-32, find an ecfuation of the line that passes

through the point and has the indicated slope. Sketch the line.

Foini Shipe Point Slope

11. (0.3) III =
5 28. (-1.2) III undefined

29. (0.0) III =
5

30. (0.4) III =

31. (3. -2) III = 3 32. (-2.4) III = -^

In Exercises 15-18, use the point on the line and the slope of the

line to find three additional points that the line passes through.

( Ihcre is more than one correct answer.)

Foint Slope Point Slope
33. (0. 0). (2. 6)

35. (2. 1). (0.-3)

5. (2. 11 III = 16. (-3.4) III undeluied 37. (2. S). (5. 0)

7. (1.7) III = - 3 18. (-2. -2) III = 2 39. (5, 1). (5. S)

41.(U),(0,i)
19. Writing Write a paragraph explaining why any two points on

a line can be used to calculate the slope of the line.

In Exercises 33—12, find an equation of the line that passes

through the points, and sketch the line.

34. (0.0). (-1.3)

36. (-3. -41.(1.4)

38. (-3.61.(1.2)

40. (1.-21.(3. -2)

42. (U).(!.-i)
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43. Find an equation ot the \ertieal Inte w ith ,v-intereept at 3.

44. Show that the line wuh nileivepts («. 0) and (()./>) has the

t'oHovving equation.

+ ^ = I,

h
a i= n, /) ^

In Exercises 45—18. use the result ol' Kxercise 44 to write

equation of the line.

45. V intcreept: (2.0)

v-intercept: (0. 3)

47. Point on Hne: 11,2)

.v-intereept: {a. 0)

v-intercept: (0. t/)

((/ * 0)

46. ,\-inteicept; (
— ?. 0)

v-uitercept: (0. -2)

48. Point on line: (
- 3. 4)

A-inteicept: (a. 0)

v-intercept: (0, (()

(a * 0)

In Exercises 49-56, sketch a jiraph of the equation.

49. > = - 3 50. A = 4

51. V = -2a + 1 52. V = iv -
1

53. V - 2 = ^(a -
1

)

54. v - 1 = 3(a + 4)

55. 2a- \ t) 56. A + 2\ + 6 = U

57. V A -I- 6. A +

(a)
Xniin = -10

Xmax = 10

Xscl = 1

Ymin = -10

Ymax= 10

Yscl = 1

(b)
Xniin = -15

Xniax= 15

Xscl = 1

Ymin = -10

Ymax = 10

Yscl = 1

58. 3, -iv + 1

(a)

Xmin = -5

Xmax = 5

Xscl = 1

Ymin = -5

Ymax = 5

Yscl = 1

(b)
Xmin = -6

Xmax = 6

Xscl =

Ymin = -4

Ymax = 4

Yscl =

59. (2,1) 4a - 2v ~ 3 60. (-3,2) A -1- y = 7

61. (i^) 5 V - 3\ = 62. -6,4) 3a- + 4y = 7

63. (2,5) A = 4 64. -1,0) ^- = - 3

Rate i)j Change In Exercises 65-68. you are given the dollar

value of a product in 2001 and the rate at which the value of the

product is expected to change during the next 5 years. \\ rite a

linear equation that gives the dollar value V of the product in

terms of the year /, (Let t = represent 2000.)

2001 Viiliie

65. S2540

66. $156

67. 520,400

68. 5245,000

Rule

$125 increase per year

$4.50 nicrease per year

$2000 decrease per year

S5600 decrease per year

rp Square Setting In Exercises 57 and 58. use a graphing utility to

graph hoth lines in each ^ie^^ing window. Compare the graphs.

Do the lines appear perpendicular? .\re the lines perpendicular?

Explain.

rp In Exercises 69 and 70, use a graphing utility to graph the

paraholas and tlnd their points of intersection. Kind an equation

of the line through the points of intersection and sketch its

graph in the same viewing window.

69.

70. V =

In Exercises 71 and 72, determine whether the points are

collinear. (Three points are enllinear if they lie on the same line.)

In Exercises 59-64, write an equation of the line through the

point (a) parallel to the given line and (b) perpendicular to the

given line.

Point Line Point Line

V — .\-

y = 4a -
.V

v = .V^
- 4v + 3

y
= — v- + 2a + 3

71. (-2, 1),(- 1,0), (2, 72. (0,4), (7, -6). (-5, 11)

In E.xercises 73-75, find the coordinates of the point of

intersection of the given segments.

73. 74.

Perpendicular bisevlors

75. (/..I I

(-». 0)

Medians

(-1/. Ill I,/. 0)

.Altitudes

76. Show that the ptiinls ol intersection in Exeicises 73, 74, and

75 are collinear.

77. Temperature Ciinversimi I"ind a linear equation that expresses

the relationship between the temperature in degrees Celsius C
and degrees Fahrenheit f . Use the tact that water freezes at ()°C

(32°F) and boils at lOO'C (212T). Use the equation to convert

72°F to degrees Celsius.
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78. Reiiiilnirscd Expenses A compauy ivuiibuiSL's \\\ sales repre-

sentatives SI 50 per day for lodging and meals plus .i4c per mile

dri\en. Write a luiear equation gi\'ing the daily eost C to the

company in terms of \. the number of miles driven. How much

does it cost the company if a sales representative dri\es 137

miles on a gi\en day'

I V 79. Career Choice An employee has two options for positions in

a large corporation. One position pays SI 2. .50 per hoiu' jiliis an

additional unit rate of Sll.75 per unit produced. The other pays

$^).20 per hour/i/((j a unit rate of $1.30.

(a) Find linear equations for the hourly wages IV in terms of .v.

the number of units produccil per hour, for each option.

(b) Use a graphing utility to graph the linear ct|uations and find

the point of intersection.

(c) Interpret the meaning of the point of intersection of the

graphs in part (bl Hou uoiild you use this inlormation

to .select the correct option il the goal uere to obtain the

highest hourly wage'.'

8(1. Slraighl-IJne Depreciation A small business purchases a

piece of equipment for S87.S. After 5 years the equipment will

be outdated, haxing no \alue.

(a) Write a linear equation gi\ ing the \aluc \ of the equipment

in terms of the time .v. < x < 5.

(b) Find the xalue of the eqtiipment when .v = 2.

(c) Hstimale (to tun-decmial-place acctiracy) the time when

the value of the ci|uipment is S20(l.

rp 81. Apartment Rental \ real estate ofllce handles an a|iartment

complex w ith 50 units. When the rent is $580 per month, all 50

units are occupied. However, when the rent is $625, the average

number of occupied units drops to 47. As.sume that the rela-

tionship between the monthly rent /; and the demand v is linear.

(Note: The term (/t/Hiz/fJ relets to the number of occupied units.)

(a) Write a linear equation gixing the demand \ in terms of the

rent /).

(b) Linear cxlrapohiiiDU I'se a graphing utility to graph the

demand equation and use the tnicc leature to predict the

number of units occupied il the rent is raised to Sb55.

(cl Lutein- iiilcrpiiUiliiiii Predict the luimber ol units occupied

if the rent is lowered to $5^)5. Verify graphically.

rp 82. Modeling Data An instrticlor gi\es regular 2()-point quizzes

and lOO-point exams in a mathematics course. Average scores

for six students, given as ordered pairs (.v. \ ) uheie \ is the

average quiz score and y is the average test score, are { IS. S7).

(10.55). (19.96). (16. 79), (13. 76). and (15. S2).

(a) Use the regression capabilities ol a graphing utility to liiid

the least squares regression line lor the data.

(b) Use a graphing utility to plot the points and graph the

regression line in the same viewing window.

(c) Use the regi"ession line to predict the average exam score

for a student with an average quiz score of 1 7.

(d) Inteipret the meaning of the slope of the regression line.

(e) The instructor adds 4 points to the average test score of

everyone in the class. Describe the change in the position of

the plotted points and the change in the equation of the line.

Distance In Exercises 83-88, find the di.stance between the

point and line, or between the line.s, using the t'orniula for the

distance between the point l-V|.y|) and the line Ax + liy +
C = 0.

Distance =
.4.V| -I- By, -I- C\

.A- + B-

8.V Point: (0.0)

Line: 4\ + .3v = Id

84. Point: (2,3)

Line: 4.\ + 3\' = 10

85. Point: (-2. I)

Line: .v - y - 2 =

86. Point: ((1,2)

Line: .v = —
1

87. Line: .v + y = 1

Line; .v -I- y = 5

88. Line: ,\v - 4\' =
1

Line: 3.v - 4y = 10

89. Show that the distance between the point (v,. i,) and the line

Ax + Bx + C = 0h

Distanc
I.4.V, + B\, + C\

JA' + B-

rp 9(1. Write the distance cl between the point (3, 1) and the line

y = mx + 4 in terms <if in. Use a graphing utility to graph

the equation. When is the distance 0'.' Ex]ilain the result

geometricalh

91. Pro\e that the diagonals of a rhombus intersect at right angles.

(.A rhombus is a quadrilateral with sides of equal lengths.)

92. Pro\e that the figure formed by connecting consecutive mid-

points ol the sides of an\' quadrilateral is a parallelogram.

93. Prove that if the points (.\ ,, v, ) and (.v,, y,) lie on the same line

as (.\. , X, ) and (.v, . vs ), then

Assume .v. , and .V| ^ .V,'.

94. Prove that if the slopes of two nonvertical lines are negative

reciprocals of each other, then the lines are perpendicular.

True or False'.' In Exercises 95 and 96. determine whether the

statement is true or false. If it is false, explain why or give an

example that shows it is false.

95. The hues represented by i/.v + by = c, and Ijx — ay = c, are

pcrpenilicular. Assume </ t= and /) ^ 0.

96. It is possible for two lines with positive slopes to be perpendic-

ular to each other.
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Functions and Their Graphs

L so lunction imtation to ivpreseirt and e\aliiate a function.

Finil the domain and range of a function.

Sketch the graph of a function.

Identify different types oi transformations of functions.

Classif\ functions and recoiinize combinations of functions

Functions and Function Notation

A relation between two sets .V and )' is ;i set of ordered pairs, each of the form (,v. \ ),

where .v is a member of .V and i is a mcmhei of )'. A tiiiii'tion from .V to )' is a relation

between A' and >' that has the property that any two ordered pairs w ith the same .v-\ alue

also have the same y-\aiue. The variable v is the indepi'iuleiit variable, and the

variable v is the dependent variable.

Many real-life situations can be modeled by functions. For instance, the area A of

a circle is a function of the circle's radius r.

A = TTV- A IS .1 lunction o\ ;.

In this case r is the indeiicndcnl \ariablc and A is the depcnilcnt \ariable.

,A real-\akied function /of a rtal \aruihle

Figure P.22

Definition of a Real Valued Function of a Real Variable

Let .V and )bc sets of real numbers. A real- >aliied function/< fa real variable

X from X to ) s a correspondence that assig ns to each number

.

in .V exactly one

ntimber V in
)'

The doniilin of / IS the set .V The niim ler 1 IS the iniasie i f.v under /and is

denoted b_\ /( ). The ranfje of / IS a subsc t of )' and consists ot all images ol

numbers in A' see Figure P.22).

Ft \CTION NOHTIOS

The uord /iHii/imi was first used b> Gottfried

Wilhelm Leibniz in 1694 as a term to denote

any quantity connected with a curve, such as

the coordinates of a point on a curve or the

slope of a curve. Forty years later. Leonhard

Euler used the word function to describe any

expression made up of a variable and some

constants. He introduced the notation

,r = ./(.v).

Functions can be specified in a \ariety of ways. In this te.xt, however, we will con-

centrate primarily on functions that are given by equations involving the dependent

and independent \anablcs. For instance, the equation

.V- + 2v = Eciuation in imiilicil torni

defines \. the dependent variable, as a function of .v. the independent variable. To

evaluate this function (that is. to find the v-value that coiresponds to a given v-\akie).

it IS con\enient to isolate y on the left side of the equation.

y = — ( 1 — .V") Ei.|uauon in explicit form

Using /as the name of the function. \oii can write this equation as

1

l(x) = —
( 1 — A"-). runction nouilion

The original equation. .V- + 2\ = 1. implicitly dctlnes v as a function of .v. When you

sohc the eqtialion for y. you are writing the equation in explicit form.

Function notation has the advantage of clearly identifying the dependent variable

as/(.v) while at the same time telling you that a is the independent variable and that the

function itself is "f'' The symbol /(v) is read "/of .v." Function notation allows you to

be less wordy, instead of asking "What is the value of i' that corresponds to .v = 3?"

you can ask ""What is/(3)?""
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In an equation that defines a function, the role of the variable a is simply that of

a placeholder. For instance, the function gi\en by

,/(.v) = 2.V- - 4.V + I

can be described by the form

/(
)
= 2( )^-4( )+l

where parentheses are used instead of v. To evaluate /( — 2). simply place ~2 in each

set of parentheses.

/(-2) = 2(-2)- - 4(-2) + 1 SubMiiuic -2iu,-.i.

= 2(4) + S + I .Simphly.

= 17 Simplily.

NOTE Although / is often used as a convenient tunction name and .v as the independent

variable. \c>u can use other synihoK. For instance, the following: equations all defnie the same

function.

,/lv) = .V- - 4v + 7

/(/) = ,- - 4/ + 7

,,(,v) = ,v- - 4,v + 7

Fuiictiini iiaiiio IS /, iiKlcpeaJciiI \aruilTle is v.

Function name is /. independent \.iii.ible is i.

Fiineliiin name is :,'. indepeiuiem \ariable is .v.

Example I Evaluating a Function

For the function /defined by /(.\) = a- + 7. evaluate each of the following.

/ (a + A.V) - fix)
a. liMi) b. /(/) - 11

A.V
Aa *

STUDY TII' In calculus, ii is impoitanl

to clearly communicate the domain of a

function or expression. For instance, in

Example Ic the two expressions

/(a + A.v)-/(.v)
!.v + A A. A V *

are equivalent because A.v = is exclud-

ed from the domain of each expression.

Without a stated domain restriction, the

two expressions would not he equivalent.

Solution

a. /(,!<;) = (.v/)- + 7

= 9a- + 7

b. /(/) -
I ) = (/) - I )= + 7

= /)- - 2/' + I + 7

= h- - 2h + 8

Suhstitiile 3t/ l\)r a.

Siiiiplih'.

SLibsliliile /' -
I for .V.

Expand hiiiomial.

Siinplih.

,/lv + Aa) - /(a) [(.V + Aa)- + 7] - (a- + 7)

A.V A.V

A- + 2aA-v + (Av)- + 7

A.V

2.xAa + M-
A.V

A v(2a + A.V)

Aa

2a + A.V Aa i=

NOTE The expression in Example Ic is called a difference quituenl and has a special

significance in calculus. We will say more about this in Chapter 2.



(a) The domain off is [1. cc)and the range is

[O.cc).
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The Domain and Range of a Function

The domain of a function can be descrihecl explicitly, or it ma\ he described iiiiplicirly

by an equation used to deftne the function. The implied domain is the set of all real

numbers for which the eqtiation is defined, whereas an explicitly defined domain is

one that is given along with the function. For example, the function given by

fix)
1

4
4 < .V < 5

has an explicitly defined ilomain given by |.v: 4 < .v < ."il. On the other hand, the

function given by

.?(v) = -T^
-V— 4

has an implied domain thai is the set |.v; a ^ ±2[.

Example 2 Finding tlie Domain and Range of a Function

! /(.v) = tan V a. The domain of the function

Domain

(b) Tlie domain of/ is all A-\alues such Ihat

77

.V * — + H77and Ihc range is (-cc. -jz).

Figure P.23

S\x] = Jx -
1

is the set of all .v-vahies for which v - 1 > 0. which is the interval [ 1 . ^ ). To find

the range observe that /( v) = s v —
1 is never negative. So. the range is the inter-

val [(). cc). as indicated in Figure P.2.i(a).

b. The domain of the tangent function, as shown in Figure R2.i(b).

/(.v) = tan.v

is the set of all A-\alues such that

77

.V ^ - + /;; ;; IS an intener. nnmam of ian>jeni liinciion

The range of this lunclion is the scl ol all real numbers. For a review of the

characteristics of this and other trigonometric functions, see Appendix D.

Example 3 A Function Defined by More than One Equation

1 2 .1 4

Domain: all real .v

The domain of / is I

-

is[n. tc).

Figure P.24

) and the ranae

Deteriiiine the domain and range of the function.

,1 - .V, if.v < 1

fix)
'x - 1, if V >

Solution Because / is defined for v < 1 and .v > 1 . the domain is the entire set of

real numbers. On the portion of the domain for which v > 1. the function behaves

as in Example 2a. For .v < 1. the \ allies of I
- v arc positive. So. the range of the

function is the interval [O. ryz). (See Figure P.24.) _^^

A function from .V to )' is one-to-one if to each \-\aliie in the range there

corresponds exactly one v-value in the domain. For instance, the function given in

Example 2a is one-to-one. whereas the functions given in Examples 2b and 3 are not

one-to-one. A function from X to }' is onto if its range consists of all of )'.
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V v=/(.v)

(.v./(v))

The graph iif a runclidii

Figure P.25

The Graph of a Function

The graph of the function v = fix) consists of all points (a,/(.v)), where .v is in the

domain o\' f. In Figure P.23, note that

.V = the directed distance from the v-axis

/(.v) = the directed distance from the v-axis.

A vertical line can intersect the graph of a function of a at most once. This obser-

vation provides a convenient visual test, called the vertical line test, for functions of

A. For example, in Figure P.26(a). you can see that the graph does not define y as a

function of a because a vertical line intersects the graph twice, whereas in Figures

P.2fi(b) and (c). the graphs do define y as a function of a.

-H

—

h^-y

(a) Not a function cti" v

Fifjure P.26

di) A function of .v Ic) A function of v

Figure P.27 shows the graphs of eight basic functions. You should be able to

recognize these graphs. (Graphs of the other four basic trigonometric functions are

shown in Appendix D.

)

/(A) = .V
f(x) = A-

./(.v) = .v-'

(.V) = V^

idcnlit} function Squaring: function Cubini; (unction Square root function

4-

3-
./'lV) = |Ai

\
\

_T -f 1 2

fix) = sin X f(x) = cos A"

AhsdJLite \;ilLie t unction

The graphs of eight basic fuiKtioiis

Figure P.27

Riiliona! Uinciion Sine riinciiim Conine function
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^ EXPLORATIONS!^
Writing Equations for Functions

Each of the graphing milit\ screens

below shows the grapli of one of tlie

eight basic functions shown on page

22. Each screen also shows a trans-

formation of the graph. Describe the

transformation. Then use your

description to write an equation for

the transformation.

N
/ ..

.•'

'--~>^>-. .--'

._.-•

Transformations of Functions

Some families of graph.s have the same basic shape. For example, compare the graph

of V = .V- w ith the graphs of the four other quadratic ftinelioiis shown in Figure P.28.

\
1 -v

la) Vertical shill upward

(c) Reflection

Figure P.28

4- -

*i';.,. .

3-

\ / -
- /

y
/ V /

_', _j
1 1

v = (.v + 2)

(b) Hori/ontal shift to the lell

v= I -(.v + 3)

-(-^.v

(d) Shift lell. reflect, ami shill upward

(b)

\ //

(c)

10

Each of the graphs in Figure P.2S is a tran.sforniation of the graph of v = .v-. The

three basic types of transformations illustrated by these graphs are \eilical shifts,

horizontal shifts, and reflections. Function notation lends itself well to describing

transformations of graphs in the plane. For instance, if /(.v) = ,v- is considered to be

the original function in Figure P.28, the transformations shov\ ii can be represented by

the following equations.

A' = ,/(.v) + 2

v=/(.v + 2)

X = -./Iv)

r = -/Iv + .3) + 1

Vertical shift up 1 units

Hori/ontal shift to the left Z unils

RcllCLlion about Ihe v-axis

Shill led ^ units, reflecl about \-a\is. and shift up I unil

(d)

'

I

'
I

I

I I'

,1 /

Basic Types of TransformatioDs (f > 0)

Original graph: y = /(.v)

Horizontal shift ( units to the right: y = ./Iv - c)

Horizontal shift c units to the left: y = /'(.v + c)

Vertical shift c units downward: \ = fix) - c

Vertical shift f units upward: y = fix) + c

Rfflection (about the.v-axis): y = -fix)

Retlection (about the \-axis): y =/(-,v)

Reflection (about the origin): y = -fi-x)
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LioNHAnn El Ilk (1707-1783)

In addition to making major contributions tii

almost every branch of mathematics, Eiiler

was one of the first to apply calculus to

real-life problems in physics. His extensive

published writings include such topics as

shipbuilding, acoustics, optics, astronomy,

mechanics, and magnetism.

FOR FURTHER INFORMATION For

more on tlie history ol the eoneept ol a

function, see the artiele ""Evolution of

the Function Concept: A Brief Survey""

hy Israel Kleiner in The Cullciic Mallic-

iihilics .loiirnal To view this article, go

to the wehsite \v\v\\.nhi!hiirticlcsAni}i.

Classifications and Combinations of Functions

The imKlcni notion of a function is derived from the efforts of many .seventeenth- and

eighteenth-century mathematicians. Of particular note was Leonhard Euler, to whom
we are indebted for the function notation v =./(.v). By the end of the eighteenth

century, itiathetnatician.s and scientists had concluded that many real-world phenom-

ena could be represented hy mathematical models taken from a collection of functions

called elementary functions. Elementary functions fall into three categories.

1. Algebraic functions (polynomial, radical, rational)

2. Trigonometric functions (sine, cosine, tangent, and so on)

3. Exponential and logarithmic Itinclions

You can review the trigonometric functions in Appendix D. The other nonalgebi"aic

functions, such as the inverse trigonometric functions and the exponential and loga-

rithmic tunctions, ;irc introduced in Chapter 5.

The most common type of algebraic lunction is a polynomial function

/(.v) <'„-v" + a„ + U-,X~ + C(|.V + ((,„ a„ +

where the positive integer /; is the degree of the polynomial function. The numbers o,

are coefficients, with <;„ the leading c<»eff"icient and ((„ the constant term of the

polynomial function. It is common practice to use subsct"ipt notation for coefficients

of general polynomial functions, but for polynomial functions of low degree, the

following simpler forms are often u.sed.

VA'ioth degree: /ivi = </ Cimsumt function

First degree: f(.\)
= cl\ + h Linear tunclion

Second degree: fix) = il\- + h.\ + c Quadratic function

Third degree: fix) = ci.\' + /',v- + c.v + </ Culuc luncnon

Although the graph of a polynomial function can have several turns, eventually

the graph will rise or fall without botind as v moves to the right or left. Whether the

graph of

/(.V) = (/„.V" + ((„ -I- (Yt.V^ + (/|.V + (V,,

eventually rises or falls can be determined by the function's degree (odd or even) and

by the leading coefficient k,,. as indicated in Eigut"e P.29. Note that the dashed portions

of the graphs indicate that the leading coefficient test determines aiily the right and

left behavior of the graph.

a <0 >0 ii <()

Up 10 ; ;
left

Up lo

rishl

/Down \ Oown
i' lo left ',lo iighl

n 1

Graphs ol |iiil\nnniKil tunctions ol c\cn ilcgrce

The leading cocfllciont test for polynomial functions

Figure P.29

Up lo

;

ris^ht '

^Down

/
j
lo Icll

I Up to

', left

Down '

10 riaht

Cirapbs nl poKnomial luncuons ol oM degree
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Just as a rational number can be written as the quotient of two integers, a rational

function can be written as the quotient of two polynomials. Specifically, a function/

is rational if it has the form

i/(.v)

Domain

yiSt-v))

Domain of/

The domain of the composite function / g

Figure P.M)

where /)(.v) and qix) are polynomials.

Polynomial functions and rational tunclions are examples of algebraic

functions. An algebraic function of .v is one that can be expressed as a finite number

of sums, differences, multiples, quotients, and radicals involving a". For example,

/(.v) = v^v+1 is algebraic. Functions that arc not algebraic are transcendental. For

instance, the trigonometric functions are transcendental.

Two functions can be combined in various ways to create nev\ functions. For

example, given f(.\)
= 2.\ — ?i and !,'(.v) = .v- + 1. you can form Ihc lollowing

functions.

(J + g)i\) =/(-v) + Ktx) = (2-v - ^) + i\' + I)

(/- ,?)(.v) = fix) - ,i,'(.v) = (2v - 3) - (.V- + 1)

(,/,r)(.v) =/(.v),i,'(.v) = (2v - 3){a' + 1)

/(.v) 2.V - 3
l,//g)(.v)

,i,'(.v) .V- +

.Sum

Dirtercnce

Product

Quotienl

You can combine two functions in yet another way. called composition. The

resulting function is called a composite function.

Definition of Composite Function

Let /and y be functions. The function i. i\cii by ( / !;)(.v )
=

fifi (.v)) is called the

composite of / v\ iih I,'. The domain of / ;,' IS the set of all V in the domain of g

such that t; .v) IS 111 the domain of /'(see Figure P,3()),

The composite of/ uilh ;, may not be ei.|ual lo llic composite of i; with f.

Example 4 Finding Composites of Functions

Given /(.v) = 2.v - 3 and ,i,'(-v) = cos .v. find the follov\ing.

a. /
» g b. ,1,' -f

Solution

a. {f'g){x) =f{g{x))

= /(cos.v)

Deilnitioii ol" / ,c'

.SuliMitute cos I for ,<.;(.v).

2(cos .v) — 3 Definjiion ol /(.»)

= 2 cos .V - 3

b. (g o/)(.v) = gifix))

= g(2x - 3)

= COs(2.v - 3) DeliniUon ol i;(a)

Note that (/,i;)(-v) ^ {g f]lx).

Simplify,

Dcluiilion of ,i; /

SubslUulc 2\ - .1 for /(.i).

GI
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EXPLORATION

Graph each of the following functions

with a giaphing utility. Determine

whether the function is c\-c'ii. add.

or neither.

fix) = X- - A--*

.i;(.v)
= 2.v' + 1

/;(.v) = .v' - 2.v' + v

,/(.v) = 2 - .v" - .v«

k{x) = .v' - 2.V-' + A - 2

p(x) = x' + 3a-" - A-' + A

Describe a way to identify a function as

odd or even by inspecting the equation.

In Section P. I , an .v-intetcept of a graph was defined to be a point (</, 0) at which

the graph crosses the .v-a,\is. If the graph represents a function/, the number a is a zero

off. In other words, the zeni.s of ii function fare the sohitions oftlie equation f(.\)
= 0.

For example, the function/(.v) = .v - 4 has a zero at .v = 4 because /(4) = 0.

In Section P. I you also studied different types of symtnetry. In the terminology of

ftinctions. a function is even if its graph is syniinetric with respect to the y-axis, and

is odd if its graph is symtinetric with respect to the origin. The sytntnetry tests in

Section P.I vield the follow iiiii test for c\cn anti odd ftinctions.

Test lor Even and Odd Functions

The function v = fix) is even if /( -.v) = /lv).

The function y = /(.v) is odd if /( -.v) = -fix).

NOTE Except lor the consiani tuncnon /Id = I), the graph nl a function of a cannot have

symmetry with respect to the \-a\is because it then would fail Ihc \crtical line lest (or llie graph

of the function.

Example 9 Even and Odd Functions and Zeros of Functions

(-1.0)

(a) OJd tuncnon

(b) E\'en hiiKtion

Figure P.3I

Determine whether each function is even. odd. or neither. Then find the zeios of the

function.

/(.v) = A-'-A- a. fix) = .r' b. ,i,>(.v) = I + cos .V

Solution

a. This function is odd because

/(-a) = (-a)-' -
( a) = -.V-' + .V

The zeros of /' are found as follows.

v' - .V =

.v(.\- -
I ) = .v(.v - I )(.v + 1 ) =

.V = 0. 1. -1

See Figure P.^Ka).

b. This function is c\cn because

g(- a| = 1 + cos( a) = 1 + cos .V = ,!,'(.v).

The zeros of i; are found as follows.

1 + cos A =

cos .V = —
I

.v = (2;; + I Itt. //is an integer.

SeeFiiiure R.^l(b).

(.V - .v) = -,/(.v).

Lei /(aI = 0.

Factor

Zeros of f

cos(-.v) = cos(-i-)

Le( .?(.vl = 0.

Siibtracl 1 from each side.

Zeros ot ,l,'

cs

NOTE Each of (he functions in Example 3 is either even or odd. However, some functions,

such as /(a) = .v' + A + 1. are neither e\en nor odd.
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EXERCISES FOR SECTION P. 3

In Exercises 1-10, evaluate (if possible) the ('unction at the given

value(s) of the independent variable. Simplify the results.

1. ,/(.v) = 2a- - 3

(a) /(O)

ib) f{-})

(c) /(/;)

(d)/(A- 1)

3. gM = 3 - A--

(a) giO)

(b) t;(x/3)

(c) g{-2)

(d) git - 1)

5. fix) = cos 2a-

(a) /(O)

(h) fi-TT/4)

(c) /(7t/3)

7. /(a) = A-'

fix + Aa-) - fix)

Aa

9. /(A)
I

/(.v) -/(2)

2. /-(a) = .'a + 3

(a) /(-2)

(h) /(6)

(c) fie)

(d) /'(a + A.v)

4. gix) = x-ix - 4)

(a) g(4)

(b) g(|)

(c) g(r)

(d) ^df + 4)

6. fix) = sin A

(a) fin)

(b) /(577/4)

(c) /(27r/3)

8. ,/(a-) = 3a - 1

fix) - fi 1

)

A- - 1

10. fix) = A-' - A

fix) - fi 1 )

A - 1

In Exercises 1 1-16. find the domain and range of the function.

11. /;(a-) = - Jx + 3 12. gix) = X- - 5

14. hit) = cot I

4

1

13. fii) = secy

15. fix) 16. gix)
1

In P'xercises 17-20. evaluate the function as indicated.

Determine its domain and range.

17. ,/lv)

2a +1, A- <

18. fix

19. fix)

^2x + 2. A- >

(a),f(-l) (h)/(0) (c) /(2) (d)/(f- + I)

V-.+ 2. A < I

2a= + 2. A > I

(a)/(-2) (b)/(0) (c)/(l) (d) /(.v- + 2)

v| + 1. A < 1

-A + 1. A > 1

(a) /(-3) (b)/(l) (c) /(3) (d)/(/7- + 1)

20. fix)
vA- + 4, A- < 5

ix - 5)-. X > 5

(a)/(-3) (b)/(0) (c)/(5) (d)/(iO)

In Exercises 21-28. sketch a graph of the function and find its

domain and range. Use a graphing utility to \erity your graph.

21. fix) = 4 - A 22. i;(a) = -
A

23. hix) = Va - 1 24. fix) = y + 2

25. fix) = V9 - A- 26. fix) = X + J4 - A-

27. git) = 2 sin TTt 28. hiO) ' 5 cos

:

In Exercises 29-32, use the vertical line test to determine

whether y is a function of v. To print an enlarged copy of the

graph, go to the website w»»:i)!afligiaphs.ci)i)i.

29. 30. V-v-

-3 -2 -I

31. V
A + 1. A <

-A- + 2. A >
32. A-- +

In Exercises 33-36, determine whether y is a function of x.

33. A-- + X- = 4 34. A^ + !• = 4

35. V- = A- I 36. A-\- - A" + 4v

37. Think About It Express the function

fix) = |a| + |a - 2

1

without using absolute \'alue signs. (For a review of absolute

\-alue. see Appendix D-)

rp' 38. Writing Use a graphuig utility to graph the polynomial

functions p^ix) = x-' - a + 1 and p^ix) = v' - x. How n-iany

zeros does each function have? Is there a cubic polynon-iial that

has no zeros? Explain.
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Modeling Data In Kxercises 39-42, match the data with a

function from the following Mst.

(i) f{x) = ex (ii) g{x) = f.v-

(iii) /((.v) = f v^jii (iv) ;-(.v) = c/x

Determine the value of the constant c for each function such

that the function tils the data shown in the table.

39.

40.

41.

42.

-r -4 -1 1 4

y -32 -2 _ ") -32

X -4 -1 1 4

y -1 1

4

1

4
1

X -4 -1 1 4

V -8 -32 Undef. 32 8

X -4 -1
1 4

y 6 3 3 6

-Si

43. Water runs into a vase of height 30 centimeters at a constant

rate. The vase is full after 5 seconds. Use this information

and the shape of the vase shown in the figure to answer the

questions if d is the depth of the w ater in centimeters and t '

is the time m seconds.

(a) Explain why </ is a function of /. i

(b) Determine the domain and range of the function.
'

(c) Sketch a possible graph of the function.

(10,6)

M) cm

Figure for 43

" (0,0) 2 4 h s H)

Time (in inimiles)

Figure for 44

44. The graph of the distance that a student drives in a

lO-minute trip to school is shown in the figure. Give a

verbal description of characteristics of the student's drive to

school.

45. A student who commutes 27 miles to attend college

remembers, after driving a few minutes, that a term paper

llial IS due has been forgotten. Driving faster than usual,

the student returns home, picks up the paper, and once

again starts toward school. Sketch a possible graph of the

student's distance from home as a function of time.

46. Modeling Data The table shows the average number of acres

per farm in the United States for selected years. (Source:

Department ofAgriculture)

Year 1950 1960 1970 1980 1990 1998

Acreage 213 297 374 426 460 435

(a) Plot the data where A is the acreage and / is the time in

years, with t = corresponding to 1950. Sketch a freehand

curve that approximates the data.

(b) Use the curve in part (a) to approximate A[ 15).

47. Use the graph of / shown in the figure to sketch the graph of

each function. To print an enlarged copy of the graph, go to the

website www.niatligniphs.coiii.

(a) /(.v + 3) (h) fix - II

(c) /(v) + 2 (d) /(v) - 4

(e) 3/(.v) (f) \f(x)

48. Use the graph of f shown in the figure to sketch the graph of

each function. To print an enlarged copy of the graph, go to the

website w\v\i'.iiiiirlii;riipli.^.C(>iii.

/

(a) /(v - 4)

(c) /(v) + 4

(e) 2/(.v)

(b) fix + 2)

(dl /(a) -
I

(f) \f(x)

(2. 11

/_.,----"'

49. L'se the graph of fix) = s'v to sketch the graph of each

function. In each case, describe the transformation.

(h) ^' = (c) V s/T(a) \ = V-V + 2

50. Specify a sequence of transformations that will yield each

graph of/; from ihe graph of the lunction fix) = sin v.

(a) /;(v) sin V + + 1 (b) /i(.v) = -sini.v - 1)

51. Graphical Rea>:i)niiig An electronically controlled thermostat

is programmed to automatically lower the temperature during

the night (see figure). The temperature T in degrees Celsius is

given in terms of /. the time in hours on a 24 hour clock.

(a) Approximate T(4) and 7'(15).

(b) The thermosial is reprogramnied to produce a temperature

Hit) = 7"(/ -
I ). How does this change the temperature'.'

Explain.

(c) The thermostat is reprogramnied to produce a temperature

H(t) = T(t) - 1. How does this change the temperature'?

Explain,

7"

28--

16-1 ' '

Hl-

-i 1 1 1 1 1 1
1-

3 6 9 12 15 18 21 24
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52. Given /'(.v) = v'.v and i;{.\) = x- - I, find the following,

(a) /(i'(l)) (h) ,.,'(/d)) (c) ,d,/(0))

(d)/(^i;(-4)) (e) /(,d-v)) (f) ,i;(/(a))

In Exercises 53-56. find the composite lunctions (/».?) and

(g </). Wliat is the domain ol each composite function? Are the

two composite functions equal?

rp 71. Voliiine An open hox of niaxiniinii volume is to he made

from a square piece of material 24 centimeters on a side by

cutting equal squares from the comers and limiing up the sides

(see figure).

(a) Use the lahle feature of a graphing utility to complete six

rows of a table. (The first two rows are shown.) Use the

result to nuess the maxmiinii \olunie.

53.

55.

57.

,/(.v) = .V-

g(x) = v^

./Xv) = -
-V

g{x) = v^
-

54. /(.v) = .V- -
1

,?(.v) = cos .V

56. fix)
1

.V

I g(x] = V.v + 2

^5F 58.

Ripples A pebble is dropped into a calm pond, causing

ripples in the form of concentric circles. The radius (in feet) of

the outer ripple is given by lit) = 0.6f. where t is the time in

seconds after the pebble strikes the water. The area of the circle

is given by the function A(r) = Try-. Find and interpret

(A
"
i-)U).

Automobile Aerodynamics The horsepower H required to

o\ercome u ind drag on a certain automobile is approximated by

H(x) = 0.002.V- + 0.005.V - 0.029. 10 < .V < 100

where .v is the speed of the car in miles per hour.

(a) Use a graphing utility to graph H.

(b) Rewrite the power function so that .v represents the speed in

kilometers per horn'. [Fmd f/l.v/ l.hl.]

Height, .V

Length

and Width Volume, V

1 24-2(1) 1[24 - 2(1)]- = 484

2 24 - 2(2) 2[24 - 2(2)]- = 800

(b) Use a graphing utility to plot the points ( v, \'). Is V a-func-

tion of .v'

(c) if yes. write V as a function of .v. and determine its domain.

(d) Use a graphing utility to graph the volume function and

approximate the dimensions of the box that yield a maxi-

mum volume.

In Exercises 59-62, determine whether the function is even,

odd, or neither. Use a graphing utility to \erify your result.

59. fix) = .v-(4 -

61. fix) = X COS .V

60. /(.v) = i/x

62. fix) = sin-.v

Think About It In Exercises 63 and 64. fmd the coordinates of

a second point on the graph of a function/ if the given point is

on the graph and the function is (a) even and (h) odd.

63. (-1.4)

65. Prove that the Itinction is odd.

64. (4.1-;)

fix) = ((i„^i.v-"*' + + a^x^' + iifX

66. Prove that the function is even.

fix) = fli„.V-" -f ((,„^,-V-""- + + (-(,.V- -I- (7,1

67. Prove that the product of two even (or two odd) functions is even.

68. Prove that the product of an odd function and an even function

IS odd.

'r 69. Use a graphing utility to graphically demonstrate the results of

Exercises 67 and 68. Use functions of your choice.

70. What can be said about the sum or difference of (a) two even

functions, (b) two odd functions, and (c) an odd function and an

even function? Demonstrate your conclusions graphically.

72. Length A right triangle is lornicd in the first i.|uadranl by the

.V- and y-a.xes and the line through the point (.i, 2) (see figure).

Write the length L of the hypotenuse as a function of x.

^-. ^(0,, )

3 -

I-

\\ {.\:i

\
N<

V.O)

1

1 3 4 s 6 7

True or False? In Exercises 73-76, determine whether the

statement is true or false. If it is false, explain why or give an

example that shows it is false.

73. If/(fl) = /(/'). then ,/ = h.

74. A vertical line can intersect the graph ol a function at most

once.

75. lf/(.v) = /( -.v) for all .v in the domain off then the graph of/

is symmetric with respect to the y-axis.

76. Iff IS a function, then fitix) = afix).
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A computer graphics drawing based on the

pea and inl< drawing of Leonardo da Vinci's

famous study of human proportions, called

]'ilniriiiii Man

Fitting Models to Data

• Fit a linear model to a real-life data set.

• Fit a quadratic model to a real-life data set.

• Fit a trigonometric model to a real-life data set.

Fitting a Linear Model to Data

A basic premise of science is thai mticli of the physical world can be described

iiiaihematically and that many physical phenomena are predictable. This scientific

outlook was part of the scientific revokitioii that took place in Europe during the late

I5()()s. Two early publications that are connected with this revolution were On the

Revolutions of the Heavenly Spherex by the Polish astronomer Nicolaus Copernicus

and ()/( the Stnietitre of the Hiitncin Bodx by the Belgian anatomist Andreas Vesalius.

Each of these books was published in l.'id.i and each broke with prior tradition by

suggesting the use of a scientilic method rather than tmc|ueslioned reliance on

authority.

One characteristic of modern science is gathering data and then desciibing the

data with a mathematical model. For instance, the data given in E.xample I are

inspired by Leonardo da Vinci's famous drawing that indicates that a person's height

and arm span are ec|ual.

Example 1 Fitting a Linear Model to Data

hO 111 M hh 6K 7(1 7:: 74 7fi

Heighl (in inches)

Linear model and data

Finiire r.32

A class of 2X people collected the following data, which represent their heights x and

arm spans v (rounded to the nearest inch).

(60. 61 ). (6_S. 6.S). (68. 67). (72. 73). (61. 62). (6.\ 63). {10. 71 ).

(75. 74). (71.72). (62.6(1). ((i5.(i5). (66. 6S). (62.62). (72. 73).

(71). 70). (6^). 6.S). {M. 70). (60.61). (63.63). (64.64). (71. 71).

(68. 67). {M. 70). (70. 72). (6,S. 6,S), (64. 63). (71. 70). [bl. 67)

Find a linear model to represeni these data.

Solution There are different ways to model these data v\'ith an et|nation. The

simplest would be to observe that .v and \' are about the same and list the model as

simply y = x. A more careful analysis would be to use a procedure from statistics

called linear regression. (You will study this procedure in Section 12.9.) The least

.sc]uai"es regression line for these data is

I.006.V - 0.22,S. Leasl sL]Liarcs regress ion line

The graph of the model and the data are shown in Figure P.32. From this model, you

can .see that a person's arm span tends to be about the same as his or her height.

': TECHNOLOGY Many scientific and graphing calculators have built-in least

V squares regression programs. Typically, you enter the data into the calculator and

then run the linear regression program. The program usually displays the slope and

y-intercept of the best-fitting line and the correlation coefficient ;. The closer |;| is

to I, the better the model fits the data. For instance, in Example I. the \alue of r

' is 0.97. which indicates that the model is a good fit for the data. I( the /-value is

positive, the variables have a positive correlation, as in Example I. If the

.:. /'-value is neeative, the variables have a neiiative correlation.
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Fitting a Quadratic Model to Data

A function that gives the height ,v of a falhng object in terms of the time / is called a

position function. If air resistance is not considered, the position of a falling object can

be modeled by

.s(r) = \gt- + v,/ + .Sfi

where g is the acceleration due to gravity, v,, is the initial velocity, and f,, is the initial

height. The value of g depends on where the object is dropped. On earth, g is approx-

imately — 32 feet per second per second, or —9.8 meters per second per second.

To discover the value of g experimentally, you could record the heights of a

falling object at several increments, as shown in Example 2.

Example 2 Fitting a Quadratic Model to Data

A basketball is dropped from a height of about Sj feet. The height of the basketball is

recorded 2.3 times at intervals of about 0.02 second. The results are shown in the table.

Time 0.0 0.02 0.04 0.06 0.08 0.099996

Height 5.23594 5.20353 5.16031 5.0991 5.02707 4.95146

Time 0.119996 0.139992 0.159988 0.179988 0.199984 0.219984

Height 4.85062 4.74979 4.63096 4.50132 4,35728 4.19523

Time 0.23998 0.25993 0.27998 0.299976 0.319972 0,339961

Height 4.02958 3.84593 3.65507 3.44981 3.23375 3.01048

Time 0.359961 0.379951 0.399941 0.419941 0.439941

Height 2.76921 2.52074 2.25786 1.98058 1.63488

Find a model to fit these data. Then use the model to predict the time when the

basketball \\\\\ hit the ground.

6-

5 -

4-

.?
-

1

-

L«».,.

-- —
s •••••..

T;j
•

I •

1 1——
\ ! \

—

^

(I I II,: 0..1 114 II. .^

Time (in seconds)

Scatter plot of data

Figure P.33

Solution Begin by drawing a scatter plot of the data, as shown in Figure P.33. From

the scatter plot, you can see that the data do not appear to be linear, it does appear,

however, that they might be quadratic. To check this, enter the data into a calculator

or computer that has a quadratic regression program. You should obtain the model

.S"
= —15.45/" — 1.30? + 5.234. Least squares regression quadratic

Using this model, you can predict the time when the basketball hits the ground by

substituting for s and solving the resulting equation for t.

= - 15.45f- - 1.30; + 5.234 Lei ,s = n

1.30 + J{- 1.30)= - 4(- 15.45)(5.234)

15.45)

0.54

Quadratic Formula

Choose positive solution.

The solution is about 0.54 second. In other words, the basketball will continue to fall

for about 0.1 second more before hitiins: the t:round.

Daui were coUeeted witli a Texas liisirniiieiit.s CBL (Ciilcitlator-Bused Laboraton) Sxstem.
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The plane of earlli s orhit aliout Ihe sun anil

Its axis of rotation are not perpenillculan

Instead. earths axis is tilted with respect to

its orbit. The result is that the amount of

daylight received by locations on earth varies

with the time of year. That is. it varies with

the position of earth in its orbit.

Fitting a Trigonometric Model to Data

What is mathematical modeling? This is one of the questions that is asked in the book

Guide to Mcilhciiuitiiiil Mtuleliiii;. Here is part of the answer.

1. Mathematical modeling consists of applying your mathematical skills to obtain useful

answers to real problems.

2. Learning to apply mathematical skills is very different from learning mathematics itself.

3. Models are used in a very wide range of applications, some of which do not appear initially

to be mathematical in nature,

4. Models often allow quick and cheap evaluation of alternatives, leading to optimal solutions

that are not otherwise obvious

5. There are no precise rules in matliemalical modeling and no "correct" answers.

6. Modeling can be learned only by tlniiii;.

Example 3 Fitting a Trigonometric Model to Data

I I I I I I I I I I I

411 i:il 200 280 .IhO 44(1

[);iv (0«-> December 21)

Graph of model

Figure P.34

The number of hours of daylight on earth depends on two variables: the latitude and

the time of year. Here are the numbers of minutes of daylight at a location of 20°

latitude on the longest and shortest days of the year: June 21 (summer solstice). 801

minutes: December 21 (winter solstice). 635 minutes. Use this data to write a model

for the number of minutes of daylight tl on each day of the year at a location of 20°

latitude. How could you check the accuracy of your model?

Solution Here is one way to create a model. You can hypothesize that the model is

a sine function whose period is ,-^65 days. Using the given data, you can conclude that

the amplitude of the graph is (SOI - 655)/2, or 73. Thus, one possible model is

/277/ 7?-

(/ = 728 - 73 sin + -
\365 2

In this model. / represents the number of each day of the year, with December 21

represented by / = 0. A graph of this model is shown in Figure P.34. To check the

acciiracv of this model, we used a weather almanac to find the numbers of minutes of

daylight on different days of the year at the location of 20
' latitude.

Dale

Dec 2

1

Jan 1

Feb I

Mar 1

Apr I

May I

Jun I

Jim 21

Jul I

Aug I

Sep I

Oct I

Nov I

Dec I

Viihic oft

II

42

70

101

131

162

IS2

142

223

254

284

313

343

Actual Daylitiht l)aylii;ht Given hr Model

633 niin

637 min

676 min

703 min

740 mm
772 mm
796 min

801 min

799 min

782 min

732 min

718 min

683 min

661 min

633 min

636 min

673 min

702 min

740 mm
774 min

797 min

801 min

800 min

784 min

752 min

715 min

680 min

639 min

You can see that the model is fairly accurate. rryi

Textfrom Dilnvii Edwards and Mike Hamsoii. Guide to Mathematical Modeling tHaea Rati>n:

CRC Press. 1990). Used hy permission of the authors.
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EXERCISES FOR SECTION P. 4

In Exercises 1-4, a scatter plot of data is <;iven. Determine

whether the data can be modeled by a linear t'nnclion. a (|nadratic

function, or a tri<>onometric function, or thai there appears to be

no relationship between .v and v. To print an enlarj;ed copy of the

graph, ^o to the website www.mathgraphs.coin.

1.

5. Carcinogens The ordered pairs give the exposure index v of a

caicinogenic substance and the cancer mortality v per lOO.OlM

people in the population.

(3.50, 150.1). (3.58. 133.1). (4.42. 132.4).

(2.26. 116.7). (2.63. 140.7). (4.X5. 165.5).

(12.65.210.7). (7.42. ISl.O), (4.35.213,4)

(a) Plot the data. From the graph, do the data appear to he

approximately linear'.'

(b) Visually find a linear model lor ihc data Graph the model

(c) Use the model to approximate y if .v = 3.

6. Quiz Scores The ordered pairs represent the scores on two

consecuti\e 15-point qui/zes lor a class ol IN \iiidcnts.

(7. 13). (9. 7). (14. 14). (15. 15). ( 1(1. 15). (4. 7),

(14. 11), (14. 15). (8, 10). (15.4), (10, 11), (y. 10).

(11. 14). (7, 14), (11, 10), (14, ID, (10. 15), (4,6)

(a) Plot the data. From the graph, does the rclalionship between

consecutive scores appear approximately linear.'

(b) If the data appear approximately linear, find a linear model

for the data. If not, give some possible explanations.

rp 7. Hooke's Law Hooke's Law states that the force F required to

compress or stretch a spring (within its elastic limits) is propor-

tional to the distance (/ that the spring is compressed or stretched

from its original length. That is, F = kd. where k is a measure of

the stiffness of the spring and is called the spring conslant. The

table shows the elongation d in centimeters of a spring when a

force of F kilograms is applied.

F 20 40 60 80 100

d 1.4 2.5 4.0 5.3 6.6

(a) Use the regression capabilities of a graphing utility to find a

linear model for the data.

(b) Use a graphing utility to plot the data and graph the model.

How uell does the model fit the data? Explain your

reasoning-

(c) Use the model to estimate the elongation of the spring v\hen

a force of 55 kilograms is applied,

. , (7^ 8. Falling Object In an experiment, ^ludents measured the speed

\ (m meters per second) of li falling ob|ecl ; seconds alter it was

released- The results are shown in the table.

/ 1
s 3 4

s 11.0 19.4 29.2 34.4

(a) Use the regression capabilities of a graphing utility to find a

linear model tor the data.

(b) Use a graphing utility to plot the data and graph the model.

How well does the model fit the data? Explain your

reasoning.

(c) Use the model to eslim,ilc the s|iecd of the ohjecl after 2.5

seconds,

rp y. Energy Consumptimi and dross .National Product The da(a

show the per capita energy usage (in niillions ol Blul and the per

capita gross national product (in thous,iiids ol fi.S. dollars) for a

sample of countries in 1997. iSmtrcc: liiuiiiiiliniial Fncri^v

Anniiid and die WurUI Bank)

Argentina (71.9.0) Banglailcsh (3.0,4)

Brazil (4S. 4S) Canada (402. 19,6)

Denmark (1 84. ,^4.4) Finland (232, 24.8)

France (166,26,3) Greece (112. 11,6)

India (12.0,4) llaly (131.202)

Japan (169.38.21 Mexico (59.3,7)

Pakistan (13.0.5) South Korea 62. 10.6)

Sweden (244. 26.2) United Stales (352.29,1)

(a) Use the regression capabilities of a graphing utility to find a

linear model for the data. What Is the conelation coefficient?

(b) Use a graphing utility to plol Ihe data and gr.ipli the model.

(c) Interpret the graph in pail (h). Use the graph to identify the

three countries that differ most from the linear model.

(d) Delete the data for the three countries identified in part (c).

Fit a linear model to the resulting data and gl\e the conela-

tion coefficient.
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rp 10. Brinell Hardness The (.lata in llie table show the Brinell rp 13. Health Maiiiteiiaiice Organizations The bar graph shows

hardness H of 0. i.'i carbon steel when hardened and tempered the number of people N (in millions) receiving care in HMOs
at temperature / (degrees Fahrenheit). (Source: Standunl for the years 1940 through 1998. (Source: buerstudy

Huudhook for Mcclhuiical I-Jii:iiiccrs) Puhhciirionsj

t 200 400 600 800 1000 1200

H 5.U 49? 415 352 269 217

(a) Use the regi"ession capabilities of a graphing utihty to fmd

a luiear model for the data.

(b) Use a graphing utility to plot the data and graph the model.

How well does the model 111 the data? E.xplain your

reasoning.

(c) Use the model to estimate the hardness when / is 500°F.

IF 11. Automobile Costs The data m (he table show the variable

costs for operatmg an aiKomobile in the United Slates for the

years 1990 through 1997. The finictions \',. ^',. and \', repre-

sent the costs ni cents per mile lor gas and oil. maintenance,

and tires. (Source: Anicnciui Autoinohilc Muiuiliictincrs

Awociiinon

)

7(1-

b> - _ 64.8
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1) 1 : .1 4 .s b 7 S

Yeai (0^ 1990)

Year yi J2 .V3

1990 5.40 2.10 0.90

1991 6.70 2.20 0.90

1992 6.00 2.20 0.90

1993 6.00 2.40 0.90

1994 5.60 2.50 I.IO

1995 6.00 2.60 1.40

1996 5.90 2.80 1.40

1997 6.60 2.80 1.40

(a) Let / be the time in years where / = repre.sents 1990. Use

the regression capabilities of a graphing utility to find a

cubic model loi' v, and linear models for \'-, and \;.

(b) Use a graphing utility to graph y,, i,. y,. and y, + \\ + y,

in the same viewing window. Use the model to estimate the

total \ariablc cost per mile m 2002.

rp 12. Beam Strength .Sttidcnls in a kih measured the breaking

strength .V (m pounds) of wood 2 inches ihick. v inches high,

and 12 inches lone. The results are shown m the table.

(a) Let / be the time in years, with / = corresponding to

1990. Use the regression capabilities of a graphing utility to

find linear and cubic models for the data.

(b) Use a graphing utility to graph the data and the linear and

cubic models.

(c) Use the graphs in part (h) to determine which is the better

model,

(d) Use a graphing utility to fmd and graph a quadratic model

for the da(a,

(e) Interprcl the slope of the linear model in terms of the

conte.\t of the data.

(f ) Use the linear and cubic models to estimate the number of

people recei\ing care m HMOs m (he year 2000.

rp 14. Car Performanee The time ; (in seconds) required to attain a

spceil of s miles per hour from a standing start for a Dodge

Avenaer is shown 111 the table. (Source: Rood S: Truck)

s 30 40 50 60 70 80 90

t 3.4 5.0 7.0 9.3 12.0 15.8 20.0

X 4 6 S 10 12

S 2370 5460 10.310 16.250 23,860

(a) Use the regression capabilities of a graphing ii(ilil\ (o \\i a

quadratic model to the data.

(b) Use a graphing utility to plot the data and graph the model.

(c) Use the moilcl (o appr<i\imate the breaking strength when

(a) Use the regression capabilities of a graphing ulilily to find

a quadradc model for the data,

(b) Use a graphing utility to plot the data and graph the model.

(c) Use the graph in part (b) to state why the model is not

appropriate for determining the lime iei.|uired to attain

speeds less than 20 miles per hour.

(d) Because ihe les( began from a standing start, add the point

(0. 0) to the data. Fit a quadratic model to the revised data

and graph the new model. Does it more accurately model

the beha\ ior of the car for low speeds'' Explain.
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rp 15. Car Peiformance A VS car engine is coupled lo a dynanionic-

tei" and llic liorsepower v is nieasiiied at different engine speeds

.V (m liiOLisands of rexoliUions per minute I- Tlie results are

shown in the table.

X 1
T 3 4 5 6

y 40 85 140 200 223 245

(a) Use the regression capabilities of a graphing utMit\ to find

a cubic model for the data.

(b) Use a graphing utility to plot the data and graph the model.

(c) Use the model to approximate the horsepower when the

engine is running at 4500 re\olutions per nimutc.

rp 16. Boiling Temperature The tabic shows the temperature

( F) at which water boils at selected pressures p (pounds per

square inch). (SinircL': Sniinlcinl Hniulhnok far Mccluiniciil

Eiit^iiicfr.'il

p 5 10 14.6% (1 atmosphere) 20

T 162.24= 193.21' 212.00' 227.96°

P 30 40 60 80 100

T 250.33^ 267.25° 292.71° 312.03° 327.81°

(a) Use the regression capahduics ol a gi"a]ihmg iililit> to fmd

a cubic model for the data

(b) Use a graphing utility to plot the dala and graph the model.

(c) Use the graph lo estimate the pressure required for the boil-

ing point of water to exceed 300 b.

(d) Explain why the model would not be conect for pressures

exceeding 100 pounds per square inch.

rp 17. Harmonic Motion The motion of an oscillating weight

suspended by a spring was measured by a motion detector. The

data collected and the approximate maximum (positixc and

negative) displacements from ei|uilibrium are shown in the

figure. The displacement y is measured in centimeters and the

time ; is measured in seconds.

(a) Is y a function of ;' Explain.

(b) Approximate the amplitude ami period of the oscillations

(c) Find a model for the data-

Id) Use a graphing utility to graph the model in part (c).

Compare the result w ith the data m the figure.

t

(0.125.2.35)

(0.375, 1.65)

-4-*'

0.2 0.4 0.6 0.8

rj^ 18. Temperature The table shows the normal daily high tempera-

tures for Honolulu H and Chicago C ( in degrees Fahrenheit) for

month f. with ; = I corresponding to January. (Scurcc: NOAA)

t 1
T 3 4 ,1 6

H SO. 1 80.5 81.6 82.8 84.7 86.5

C 29.0 33.5 45.8 58.6 70.

1

79.6

/ 1 8 9 10 11 12

H 87.5 88.7 88.5 86.9 84.1 81.2

C 83.7 81.8 74.8 63.3 48.4 .U.O

(a) A model for Honolulu

H(t) = 84.40 + 4.28 sin| — -I- 3.86 ).

(bl

(c)

(d)

Find a model lor Chicago.

Use a gra|iliing iilility to graph the data and the model for

the temperatures in Honolulu. How well does the model fit?

Use a graphing utility to graph the data and the model for

the temperatures m Chicago. How well (.Iocs the model f\l'''

Use the models to estimate the a\eragc annual temperature

in each city. What term of the model did you use? Explain.

What is the pcriotl ol each model'.' Is u what you expected?

Explain.

Which city has a greater variability of temperatures

throughout the year' Which factor ol the models deter-

mines this variability? Explain.

-'-'^^-s&}^-ivfy^::j^::^>;<^^ :

}-'pi
---—''-:^ - -'-'-- -^'^.^-.--.... .. ..;.;

19. Search for real-life datti in a newspaper or maga/ine. Fit the

data to a model What docs your model imply about the (.lata?

20. Describe a possible real-life situation for each data set. Then

describe how a model could be used in the real-life selling.

(a) -< (b) V

t t

• • 1

• •

• •

• •

• •

(c) (d)

i

1

i

t

• • !

•
• •

•

•
• •
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REVIEW EXERCISES FOR CHAPTER P

In Exeriisi's 1—t. fiiul tlii' iiiteixepts (if any).

1. V = 2a - 3 2. V = (a - l)(x - 3)

3. 1' =
I

4. .vv = 4

In Exercises 5 and 6, clieck lor s>ninielry witli respetl to ijotli

axes and to tiie orifjin.

5. A-\- - A- + 4\- = 6. ! = A-' - A- + 3

In K.xercises 7-14, sketch the <;raph of the ecjiiation.

7. y = 3(-A + 3) 8. 4a - 2v = 6

9. -iv + ^y = 1 -_ 10. 0.02a- + 0.1 5y = 0.25

n. \ = 1 - 6a - .V- 12. y = 6a - v-

13. \' = s '5 - A 14. 1- = |a- - 4| - 4

rp In Exercises 15 and 16. descrihe the viewing window of a graph-

ing utility that yields the figure.

15. V = 4a= 16. \' = X^/a- - 6

,

—

.—,—.—C—^—.

—

,1

rp In Exercises 17 and 18. use a graphing utility to find the point(s)

of intersection of the graphs of the equations.

17. 3> - 4v = 8

A- + V = 5

18. - y + 1 =

V - A- = 7

19. Think About It Write an equation whose graph has

intercepts at a = -2 and a = 2 and is symmetric with respect

to the origin.

20. Think About It For what \akic of k docs the graph of \ = tv"'

pass through the point'

(a) 11.4) (b) 1-2. I)

(c) 10.01 (d) I- I. - 1)

In Exercises 21 and 22. plot the points and find the

slope of the line passing through the points.

21. (il).(5.=) 22. (7. - I), (7. 12)

In Exercises 23 and 24. use the concept of slope to find t such

(hat the three points are collinear.

23. {-2.5}. (()./), (I, 1) 24. {-3, 3). (;. - I). (8. 6)

In Exercises 25-28. find an equation of the line that passes

through the point «ith the indicated slope. Sketch the line.

25. (0. -.'^1. w =

27. (-3,0). Ill
=

26. (-2,6). Ill =

28. (5, 4), III is undefined.

29. F'nid the equations of the lines passing through (-2,4) and

liaving the following characteristics.

(a) Slope of 7^

(h) Parallel to the line 5a - 3y = 3

(c) Passing through the origin

(d) Parallel to the y-a\is

30. I'ind the e(.|iiations of the lines passing through (1.3) and

having the lollowing characteristics.

(a) .Slope of -5

(h) Perpendicular to the Hne a + y =

(c) Passing through the point (2, 4)

(d) Parallel to the .v-a\is

31. Rate of Change The purchase price of a new machnie is

$12,500. and its value will decrease by $850 per year. Use this

information to write a linear equation that gives the value V of

the machine t years after it is purchased. Find its \alue at the

end of 3 years.

32. Break-Even Analysis A contractor purchases a piece of

equipment for $36,500 that costs an average of $9.25 per hour

for fuel and maintenance The equipment operator is paid

$13.50 per hour, and ctistoniers are charged $30 per hour.

(a) Write an equation for the cost C of operating this e(.|nip-

ment for i hours.

(b) Write an ec|uation for the rc\eniic A' ileri\ed troni / hours

of use.

(c) Find the break-e\en point tor this equipment by tuiding the

time at which R = C.

In Exercises 33-36. sketch the graph of the equation

and use the vertical line test to determine whether the equation

expresses y as a function of .v.

33. A

35. 1-

v^ = 34. v^

36. A = 9 - V-

37. Exaluate (if possible) the function /(a) = l/.v at the specified

\ alucs of the independent variable, and simplify the results.

/( 1 + A.v) - ,/( I

)

(a) /(O) (b)
A.v

38. F.valuate (if possible) the tunction at each value of the indepen-

dent \ariable.

./(.v)

v- + 2, A <

1|a - 2|. A >

(a) /(-4) (b) /(()) (c) f(\)
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39. Find the domain and range of each lunduin.

7 f.v-. A <

2 - V. A >
(a) V 36- A- (b) V (e) V

40.

41.

^42.

2a- K)

Given/tv) =
1 - a- and ,i;(a) = 2a- + I. find the rollowing.

(a) fix) - g{x) (b) /(a)i;(a) (c) ,i,'(/(a))

Sketch (on the same set of coordinate axes) a graph of / for

c = -2,0, and 2.

(a) fix) = A-' + c (b) ,/lv) = (a - ()"

(c) fix) = (a - 2)' + ( (d) /(a) = ex'

Use a graphing utihty to graph /(a) = a'" - 3a-. llse the graph

to write a formula for the function s; siiovvn in the figure.

To print an enlarged copy of the graph, go to llic website

wwnjiuithgniph.s.cdiu.

(a) (b)

(0. I I

(4.

^

^

^45.

43. Conjecture

(a) Use a graphing utilil> lo grapli Ihe finictions /, g. and /( in

the same viewing uniikiw. Write a description of any

similarities and differences you observe among Ihe graphs.

Odd powers: fix) = .v, ,i;(.v) = .v\ /;(.v) = v^

Eve}i powers: fix) = a~. ,i;(v) = v^. hix) = .v"

(b) Use the result in part (a) to make a conjecture about ihc

graphs of the functions i = \
' and i = .v^. Use a graphing

utility to verify your con|cctuic

44. Think About It Use the result of E.xerci.se 43 to guess the

shapes of the graphs of the functions /', g. and /(. Then use a

graphing utility to graph each function and compare the result

with your guess.

(a) fix] = x-ix - 6)- (b) .^'(a) = a'(a - 6)-

(c) /i(a) = xK\ - 6)-'

Area A wire 24 inches long is to be cut into four pieces to

form a rectangle whose shortest side has a length of .u

(a) Express the area A of the rectangle as a function of .v.

(b) Determine the domain of the function and use a graphing

utility to graph the function over that domain

(c) Use the graph of the function to approximate the maximum

area of the rectangle. Make a conjectuic about ihe dimen-

sions that yield a maximum area.

46. Writing The following graphs give the profits P for two small

companies over a period /; of 2 years. Create a story to describe

the behavior of each profit function for some hypothetical

product the company produces,

(a) p (b) p

u

47. Think About It What is the minimum degree of the polyno-

mial function whose graph approximates the given graph? What

sign must the leading coelllcieni have?

(b)

f*-v

+--V

rp 48. Stress Test A machine pan was lesicd by bending it .v

centimeters ten limcs |X'r minule until the lime \ Im hours) of

failure. The results are recorded in the table.

X 3 6 9 12 15 IS 21 24 27 30

y 61 56 53 55 4X 35 36 33 44 23

(a) Use the regression capabilities of a graphing utility to find

a linear model lor the data

(b) Use a graphing ulilit\ lo ploi llic data .mil giaph ihc model.

(c) Use the graph lo determine whether there may have been an

error made in conducting one of the tests or in recording the

results. If so, eliminate the erroneous |ioint anti find the

model for the revised data.

rp 49. Harmonic Motion fhe molioii ol an osLillaling weight sus-

pended by a spring was measured by a motion detector. The

data collected and the approximate maximum (positive and

negative) displacements from equilibrium arc shown in the

figure. The displacement y is measured in lect and the time / is

measured in seconds.

(al Is y a lunction of ;
'.' Explain.

(b) Approximate the amplitude and period ol the oscillations.

(c) Find a model for the data.

(d) Use a graphing utility lo gi.iph the model in part (c).

Compare the result with the data in the figure.

(I i.o:s)

III - /'

-i-f-

-0.25

-0.50

.1 I 4 I I I I l»l !
• >

/

(0.5.-0.25)
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P'S, ^robl&m 3olv/ng

1. Consider the circle

A- + y- - 6.V - 8v = 0.

(a) Find the center and radius of the circle.

(b) Find an equation of the tangent line to the circle at the point

(0. 0).

(c) Find an equation of the tangent line to the circle at the point

(6,0).

(d) Where do the two tangent lines intersect?

1 h^.v

h— -V

Figure for 1 Figure for 2

2. There ;ire two tangent lines from the point (0. 1 ) to the circle

.V- + ( y + 1)- = 1. Find equations of these two lines by using the

fact that each tangent line intersects the circle in exactly one point.

3. The Heaviside function H{\) is widely used in engineering

applications.

1 1 , -v >

jo. .V <
Mix)

Sketch the graph of the Heaviside function and the graphs of the

following functions by hand.

(a) Hix) - 2 (b) Hix - 2) (c) -Hix)

(d) Hi-x) (e) \H{x) (f) -//(.v - 2) + 2

Oluf.r Hkavmuk (1850-1925)

Heaviside was a British mathematician and physicist who contributed to

the field of applied mathematics, especially applications of mathematics to

electrical engineering. The HcariiiulcfwKliim is a classic type of "on-olf"

function that has applications to electricity and computer science.

Consider the graph of the function / shown below. Use

this graph to sketch the graphs of the following functions.

To print an enlarged copy of the graph, go to the website

www.mathgniphs.com.

(a) /(.v +1) (b) /(.v) + 1 (c) 2/(.v) (d) f(-.x)

(e) -fix) (f) |/(.v)| (& .fi\.x\)

A rancher plans to fence a rectangular pasture adjacent to a river

The rancher has 100 meters of fence, and no fencing is needed

along the river.

(a) Express the area A of the pasture as a function of A', the length

of the side parallel to the river. What is the domain of Al

(b) Graph the area function A(x) and estimate the dimensions

that yield the maximum amount of area for the pastures.

(c) Find the dimensions that yield the maxiinuni amount of area

for the pastures by completing the square.

i
3' y

X

X X x\

y y

Figure for 5 Figure for 6

6. A rancher has 300 feet offence to enclose two adjacent pastures.

(a) Express the total area A of the two pastures as a function of

.V. What is the domain of A?

(b) Graph the area function and estimate the dimensions that

yield the maximum amount of area for the pastures.

(c) Find the dimensions that yield the maximum amount of area

for the pastures by completing the square.

7. You are in a boat 2 miles from the nearest point on the coast.

You are to go to a point Q located 3 miles down the coast and

I mile inland (see figure). You can row at 2 miles per hour and

walk at 4 miles per hour. Express the total time T of the trip as

a function of x.

\ ;\

X \ 3-x

1 mi
+

- 3 mi ! 2
**.
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8. You drive to the beach at a rate of 120 kilometers per hour. On
the return trip, you drive at a rate of 60 kilometers per hour What

is your average speed for the entire trip'^ E.xplain your reasoning.

9. One of the fundamental themes of calculus is to fnid the slope

of the tangent line to a curve at a point. To see how this can be

done, consider the point (2. 4) on the graph of /(.v) = .\-.

(a) Find the slope of the line joining (2. 4) and (3. 9). Is the

slope of the tangent line at (2. 4) greater than or less than

this number?

(b) Find the slope of the line joining (2. 4) and (1, 1 ). Is the

slope of the tangent line at (2, 4) greater than or less than

this number?

(c) Find the slope of the line joining (2,4) and (2.1,4.41). Is

the slope of the tangent line at (2, 4) greater than or less

than this number?

(d) Find the slope of the line joining (2, 4) and (2 + h.

f{2 + /()! in terms of the nonzero number Ii. Verify that

/i =1, -1, and 0.1 yield the solutions to parts (a)-(c)

above.

(e) What is the slope of the tangent line at (2. 4)? E.xplain hov\

you anived at your answer.

10. Sketch the graph of the function /(.v) = Va^ and label the point

(4, 2) on the graph.

(a) Find the slope of the line joining (4, 2) and (9. 3). Is the

slope of the tangent line at (4, 2) greater than or less than

this number?

(b) Find the slope of the Hnc joining (4, 2) and (1, 1 ). Is the

slope of the tangent line at (4, 2) greater than or less than

this number?

(c) Find the slope of the line joining (4, 2) and (4.41. 2.1). Is

the slope of the tangent line at (4. 2) greater than or less

than this number?

(d) Find the slope of the line joining (4.2) and (4 + /i,

/(4 + /;)) in terms of the nonzero number /;.

(e) What is the slope of the tangent line at the point (4, 2)?

Explain how you arrived at your answer.

11. A large room contains two speakers that are 3 meters apart. The

sound intensity / of one speaker is twice that of the other, as

indicated in the figure. (To print an enlarged copy of the graph,

go to the website www.mathgmphs.com.) Suppose the listener

is free to move about the room to find those positions that

receive equal amounts of sound from both speakers. Such a

location satisfies two conditions: (I) the sound intensity at the

listener's position is directly proportional to the sound level of

a source, and (2) the sound intensity is inversely proportional to

the square of the distance fiom the source.

(a) Find the points on the .v-axis that receive equal amounts of

sound from both speakers.

(b) Find and graph the equation of all locations (.v, y) where

one could stand and receive equal amounts of sound from

both speakers.

I
--

/ ^*^.v

Figure for 1

1

I 2 .1

Figure for 12

12. Suppose the speakers in Exercise 11 are 4 meters apart and the

sound intensity of one speaker is k times that of the other, as

indicated in the figure. To print an enlarged copy of the graph,

go to the website www.mathgraphs.com.

(a) Find the equation of all locations (.v, y) where one could stand

and receive equal amounts of sound from both speakers.

(b) Graph the equation for the case k = 3.

(c) Describe the set of locations of equal sound as k becomes

very large.

13. Let </| and </, be the distances from the point (.v, y) to the points

(-1,0) and (1,0), respectively, as indicated in the figure. Show

that the equation of the graph of all points (.v, r) satisfying

(/,(/, = 1 is (.V- + y-)- = 2(.v- - y-). This curve is called a

lemniscate. Graph the lemniscate and identify three points on

the graph.

(.v,.v)
1-

-1 I

-1- -

14. Let/(.v
1

1 - .V

(a) What arc the domain and range of /'','

(b) Find the composition/) /(.v)). What is the domain of this

function.'

(c) Find /(/( /'(.v))). What is the domain of this function?

(d) Graph /(/(/(.v))). Is the graph a line' Why or why not?



Swimming Speed: Taliing It to the Limit

A look at records set in various sports over the past

century shows that humans continue to run taster,

jump higher, and throw farther than ever before. What

is allowing this to occur?

One factor is training. Physiologists are working to

identify which systems in the human body limit perfor-

mance, and to create training techniques that develop

those systems. Similarly, sports psychologists work

vv ith individual and team members to help them develop

the mental "flow" that will allow them to deliver peak

performances. Moreover, trainers ha\c developed

devices to monitor athletes" bodies and provide them

with more feedback on their performance than was

available even 20 years ago.

Equipment has also improved vastly over the years.

In some sports, the advancement is obvious. Bicycles

are lighter and more aerodynamic than ever before.

Imprtwcd track surfaces have boosted runners' speeds

and altiminum poles have drastically increased vault

heights.

Even sports such as swimming, with no obvious

equipment, have benefited from technology. Shaving

body hair cut a full second from male swimmers' times

in the lOO-meter freestyle, and new styles of swimsuits

are expected to reduce drag and improve lime even

more. The two scatter plots below show the successive

world records (in .seconds) for two men's swimming

events.

.S6--

53

52

51 --

50

49

4S

47

U- H h H 1 h
6: (iS 74 S(l S6 92 98

Yeardl^ 1900)

Men's lUO-meter freestyle

560-

550-
•

540- - .

5M) - •
•

52(1 - •

510- "

500-

4Kn- - •-

470- -

4(i0 - L

^\^—I—I—I

—

\—I—1—

H

5(1 h2 (iS 74 SI) ,S(i 92 98

Ye;ii(0<-^ 1900)

Men's 800-meter freestyle

QUESTIONS

1. From the scatter plots shown above, can you determine which year body shaving was started?

Explain your leasoiiing.

2. In which other years do you think thei'c may have been technological advances in swimming?

l:xpiain your reasoning.

3. What does the lower limit appear to be for a man to swim 1(10 meters? To swim 800 meters?

How did you determine this?

4. Copy the two scatter plots and draw a curve that .seems to fit the data best. What type of equa-

tion do you think would produce the cmve you have drawn?

5. Read the excerpt from /Vcir.vurcA on the next page. What do the authors mean by the phrase

"approach a limit asymptotically"?

Till' cimccpts prcsciilcd Iwrc ivill he c.vploiril fiirlhci- in this cbiiph'i: For an extension of this

iippltetttion. see l.ali 2 in the Inh seiies tlitil tii eoitipiinies this ti'\l tit college. hmcu.com.
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Limits and TheirProperties

By the age of 17. Australian swimmer Ian Thorpe had set ten world

records. At the 2000 Summer Olympics in Sydney. Australia, he broke

his own world record in the 400 meter freestyle.

Excerpted from John MacDonald. Xarlile calls lor hold

on use ot bodysuits" from Sports com, September 4,

2000

Stager (Joel Stager. Indiana

University's Councilman Centre for

the Science of Swimming) did an

analysis of times and the recent

U.S. Swiinming Trials, where 90

percent of the 1 309 competitors

wore Speedo suits.

He found there was only a 0.34 per-

cent improvement compared with

predictions made based on perfor-

mances from the past 25 years.

This compared with manufacturers'

claims of between 3 and 7 percent.

How High? How Fast?

Exceipled tVoin Sharon Begley and

Adam Rogers. "How High? How Fast''"

from Newsweek. July 22. 1996.

Look more closely at the march of winning times and

record distances, of gold-medal weights and precedent-

setting heights. The law of diminishing returns has set

in. The world-record time in the women's 4()()-meter

freestyle, for example, dropped more than two minutes

—a full .^3 percent—from 1921 (6:16.6) to 1976

(4: 1 1 .69). In the 20 years since, it has fallen just eight

seconds, to Janet Evans's 4:03.85 at the 19S8 Seoul

Olympics. If you were to plot world records on graph

paper, you would get curves that seein to approach a

limit asymptotically, coming tantali/.ingly closer but

never quite reaching it. It is as if the curves were little

south-pole magnets and the limit an imposing bar of

north polarity. But what is the limit?

Copyright © 1996. New.sweek. Inc.

All rights reserved.

Reprinted by permission.

The recent development of a swimming bodysuit

proves to be a controversial issue.

41
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STUDY TIP As you progress lliroiigli

this course, remember that learning

calculus is just one of your goals. Your

most important goal is to learn how to

use calculus to model and solve real-lilc

problems. Here are a tew problem-

solving strategies that may help you.

• Be sure you understand the question.

What is given'.' What are you asked

to find.'

• Outline a plan. There are many

approaches you coidil use: look tor

a pattern, solve a simpler problem,

work backwards, draw a diagiam.

use technology, or any of man\ other

approaches.

• Complete your plan. Be stire to

answer the question. Verbalize your

answer. For example, rather than

writing the answer as .v = 4.6. it

would be better to write the answer

as "The area of the region is 4.(i

meters."

• Look back at yotir work. Does your

answer make sense' Is there a wa_\

\ou can check the reasonableness ol

vour ansv\ er'

Grace Chisholm Volm, (IShS-lW-l)

Grace Cliisholm Young received her degree in

mathematics from Girton College in

Cambridge. England. Her early work was

published mider the name of William Yoinig.

her husband. Between 1914 and 1916. Grace

Young published work on the foundations of

calculus that won her the Gamble Prize from

Girton College.

PiriJvleiriore^ciiliis

• Understand what calculus is and how it compares to precalcukis.

• Uiidcrslaiid that the tangent line problem is basic to calculus.

• Understand that the area problem is also basic to calculus.

What Is Calculus?

C\ilcLilus is the mathcniatics of chunge—velocities and accelerations. Calculus is also

the mathematics of tangent lines, slopes, areas, volutnes, arc lengths, centroids.

curvatures, and a variety of other concepts that have enabled scientists, engineers, and

economists to model real-life situations.

Although piecalculus mathematics also deals with velocities, accelerations,

tangent lines, slopes, and so on, there is a fundamental difference between precalcukis

mathematics and calculus. Piecalculus mathematics is more static, whereas calculus

is more dynamic. Here are some examples.

• An object traveling at a constant velocity can be analyzed with piecalculus math-

ematics. To analyze the velocity of an accelerating object, you need calculus.

• The slope of a line can be analyzed v\ itii piecalculus mathematics. To analyze the

slope of a curve, you need calculus.

• A tangent line to a circle can he analyzed with piecalculus mathematics. To

analyze a tangent line of a general graph, you need calculus.

• The area of a rectangle can be analyzed with precalcukis mathematics. To analyze

the area under a general curve, you need calculus.

Each of these situations involves the same general strategy—the reformulation of pre-

calcukis mathematics through the use of a limit process. So. one way to answer the

question "'What is calculus?" is to say that calculus is a "limit machine'" that involves

three stages. The first stage is precalcukis mathematics, such as the slope of a line or

the area of a rectangle. The second stage is the limit process, and the third stage is a

new calculus formulation, such as a derivative or integral.

Precalcukis

mathematics
cX-

Limit

process
c:> Calculus

.Some students try to learn calculus as if it were simply a collection of new

formulas. This is unfortunate. If you reduce calculus to the memorization of differen-

tiation and integration formulas, you will miss a great deal of undcistanding, self-

confidence, and satisfaction.

On the following two pages we have listed some familiar piecalculus concepts

coupled with their calculus counterparts. Throughout the text, your goal should be to

learn how piecalculus formulas and technic|ucs arc used as building blocks to produce

the more general calculus formulas and techniques. Don't worry if you are unfamiliar

with some of the "old formulas" listed on the following two pages—we will be

reviewing all of them.

As you proceed through this text, we suggest that you come back to this discus-

sion repeatedly. Try to keep track of where you are relative to the three stages involved

in the study of calculus. For example, the first three chapters break down as follows.

Chapter P: Preparation for Calculus Precalcukis

Chapter 1: Limits and Their Properties Limit process

Chapter 2; Differentiation Calculus
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Without Calculus With Differential Calculus

Value of ,/'(.v)

when A = c

\=/(v)

Limit of /(a) as

A approaches c

Slope of a line
lAv

Slope of a curve

A.v

Secant line to

a curve

Tangent line to

a curve

Average rate of

change between

I = (( and r = h
i = h

Instantaneous

rate of change

at t = c

Curvature

of a circle

Curvature

of a curve

Height of a

curve when

Maximum height

of a curve on

an inters al

Tangent plane

to a sphere

Tangent plane

to a surface

Direction of

motion along

a straight line

Direction of

motion along

a curved line
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Without Calculus With Integral Calculus

Area of a

lectanale

Area under

a curve

Work done by a

constant force

Work done by a

variable force

Center of a

rectancle

Centroid of

a reizion

Length of a

line sesment

Length of

an arc

Surface area

of a cylinder

Surface area of a

sohd ol re\(ilution

Mass of a solid

of constant

density

Mass of a sohd

of variable

density

Volume of a

rectangular

solid

Volume of a

region under

a surface <
Sum of a

finite number

of terms

a, + n, + "„ = 5

Sum of an

infinite nimibc

of terms

(/, + ci^ + fl, +
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The tangent line to the graph of/at P

Figure 1.1

The Tangent Line Problem

The notion of a limit is fundamental to the study of calculus. The following brief

descriptions of two classic problems in calculus

—

the tanf^ciu line problem and the

area problem—should give you some idea of the way limits are used in calculus.

In the tangent line pmblem, you are given a function /' and a point P on its graph

and are asked to find an equation of the tangent line to the graph at point P. as shown

in Figure 1.1.

Except for cases involving a vertical tangent line, the problem of finding the

tangent line at a point P is equivalent to finding the slope of the tangent line at P. You

can appro.xiniate this slope by using a line through the point of tangency and a second

point on the curve, as shown in Figure 1.2(a). Such a line is called a secant line. If

P(c.f(c)) is the point of tangencv and

Qic + Ax.fic + A.v))

is a .second point on the graph of f. the slope of the secant line through these two

points is given by

/(c + A.V) - /(c) /(c + A.v) - /(c)

c + A.V- Ax

>/(i+A.>) -/((-)

(a) Tlie scciMil line Uiniugli d. /d II and

(< + \\.tU + \\)}

Figure 1.2

(b) As Q approaches P. the secant lines

approach the tangent line.

As point Q approaches point P, the slope of the secant line approaches the slope

of the tangent line, as shown in Figure 1.2(b). When such a "limiting position" exists,

the slope of the tangent line is said to be the limit of the slope of the secant line.

(Much more will be said about this important problem in Chapter 2.)

:^-:::rw!::T¥w-^:-~mK::^z exploration

The following points lie on the graph of /(.v) = .v-.

(2,(l.5,/(1.5)). Q,(\.l.f(Ll)). 2,(1.01-/(1.01)).

e4( 1.001. /(1.001)). 2,(1.0001. /(1. 0001))

Each successive point gets closer to the point P{\. 1 ). Find the slope of the secant

line through 2, and P. Q^ and P. and so on. Graph these secant lines on a graph-

ing utility. Then use your i-esults to estimate the slope of the tangent line to the

graph of/ at the point P.
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Area iinilci a ctir\e

Figiirt' 1.3

The Area Problem

In the tangent line problem, you saw how the limit process can be applied to the slope

of a line to find the slope of a general curve. A second classic problem in calculus is

finding the area of a plane region that is bounded by the graphs of functions. This

problem can also be solved with a limit process. In this case, the limit process is

applied to the area of a rectangle to tliid the area of a general region.

As a simple example, consider the region bounded by the graph of the function

V = f(.x). the .v-axis. and the vertical lines a = a and .v = h. as shown in Figure 1.3.

You can approximate the area of the region with several rectangular regions, as shown

in Figure 1.4. As you increase the number of rectangles, the approximation tends to

become better and better because the amount of area missed by the rectangles

decreases. Your goal is to determine the limit of the sum of the areas of the rectangles

as the number of rectansjles increases without bound.

HisTORifa Note

In one of the most astounding events ever to

occur in niatheniatics, it was discovered that

the tangent line problem and the area problem

are closely related. This discovery led to the

birth of calculus. You will learn about the

relationship between these two problems when

you study the Fundanienlal Theorem of

Calculus ui Chapter 4.

Approximation using four rectangle.s

Figure 1.4

Approximation using eight rectangles

EXPLORATION 5?^sm^?S£mps^^S5,^^;ssss®sps^>S^JS^^^

Consider the region bounded by the graphs of fix) = .r. y = 0. and .v = 1, as

shown in part (a) of the figure. The area of the region can be approximated by two

sets of rectangles—one set inscribed within the region and the other set circum-

scribed over the region, as shown in paits (b) and (c). Find the sum of the areas of

each set of rectangles. Then use your results to approximate the area of the region.

y

/(.v)=v- /

1-

^^
/
y

/

(a) Bounded region (b) Inscribed rectaimles {c) Circumscribed rectangles
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EXERCISES FOR SECTION 1.1

In Exercises 1-4, decide whetlier ttie problem can be solved

using precalculus, or whether calculus is required. If the prob-

lem can be solved using precalculus, solve it. If the problem

seems to require calculus, explain vour reasoning and use a

graphical or numerical approach to estimate the solution.

1. Find the distance traveled in 15 seconds hy an object traveling at

a constant velocity of 20 feet per second.

2. Find the distance traveled in 15 seconds by an object moving

with a velocity of r(r) = 20 + 7 cos i feet per second.

3. A bicyclist is riding on a path modeled by the function

fix) = 0.04(8.v - .v-^). where .v and /(.v) are measured in miles.

Find the rate of chauizc of elevation when .v = 2.

4. A bicvclist is riding on a path modeled by the function

fix) = 0.()8.v, where v and/fv) are measured in miles. Find the

rate of change of elevation when .v = 2.

.V

3- -

T - _

1
-

/(.v) = O.OS.v

-1 -
1 2 3 4 5 6 7 8

In Exercises 5 and 6, find the area of the shaded region.

5. .V 6.

3
-

4- " (2.3)
3- ».

T -
^ / ^\

1
- / ^\(5.0)

-1 -
jO, 0) 3 4 5 6

In Exercises 7 and 8, find the volume of the solid shown.

7. _ 8. ,^^,-^

9. (a) Use the list feature of a graphing utility to graph the

following.

= 4.V - .V-

\V|(1 + 12. 1.5. 1.0.51) - V|(l)

1.5. 1.0.51
(.V- l) + v,(l)

(b)

(c)

10. la)

(Note: If you cannot use lists on your graphing utMity,

graph Vt four times using 2, 1.5. 1. and 0.5.)

Give a written description of the graphs of v, relative to

the graph of y,.

Use the results in part (a) to estimate the slope of the

tangent line to the graph of v, at ( I . .^), It you want to

improve your approximation of the slope, how could

you change the list in the formula for v,'.'

flse the rectangles in each graph to appro.\imate the

area of the region hoiuided by v = 5/.v. y = 0, .v = I,

and .V = 5

.

4 \
\3+ \

2 — X.

1 — "==^

12 3 4 5

(b) Describe how you could continue this process to obtain

a more accurate approximation of the area.

.._..J

11. Consider the length of the graph of fix) = 5/.v from (1.5) to

(5, I).

5-
(1.5)

4- - y .

3 -

2 -

1-
1

1 2 3 4 5

(1.5)
5 -

\
4-

\
3- V
1 ~

I
-

\V- (5. 11

—

•

1 2 3 4 5

(a) .Approximate the length of the curve by finding the distance

between its two endpoints. as shown in the first figure.

(b) Approximate the length of the curve by finding the lengths

of four line segments, as shown in the second figure.

(c) Describe how you could continue this process to obtain a

more accurate approximation of the length of the curve.

The symbol f^ indicates an exercise in niiich yoii are instructed to use graplunt^ technology

or a symbolic computer algebra systeni. The solutions of other exercises may also be facilitated

by use of appropriate technology.
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Till' limit 111 /(a) as .v approaches I is 3.

Figure 1.5

Finding Limits Graphically and Numerically

• Estimate a limit using a numerical or graphical approach.

• Learn different ways that a limit can fail to exist.

• Stud\ and use a formal definition of a limit.

An Introduction to Limits

Suppose you are asked to sketch the graph of the function / given by

.v' - 1

fix) X ^ 1

.

For all values other than .v = I. you can use standard curve-sketching techniques.

However, at .v = 1. it is not clear what to expect. To get an idea of the behavior of the

graph of / near .\ = 1 , you can use two sets of .v-values—one set that approaches I

from the left and one that approaches 1 from the right, as shov\u in the table.

V appu>achc-s I horn the loll \ approaches i from Ihe right

X 0.75 0.9 0.99 0.999 1 I.OOI 1.01 1.1 1.25

fix) 2.313 2.710 2.970 2.997 7 3.003 3.030 3.310 3.813

/ (a I approaches 3. / Ia) appiouclics 3.

The graph of / is a parabola that has a gap at the point ( 1 , 3), as shown in Figure

1.5. Although .V cannot equal I. you can move arbitrarily close to 1. and as a result

f{.\) moves arbitrarily close to 3. Using limit notation, you can write

lim/(.v) 1 his IS re.iJ as '"the hiriit ol /(a) as v aiipiiiaehes 1 is 3."*

This discussion leads to an informal description of a limit. If /'(.v) becomes arbitrarily

close to a single number L as .v approaches c fiom either side, the limit of /(.v). as .v

approaches c\ is L. This limit is written as

lim/(.v) = L.

The discussion above gives an example of how you can estimate a limit numeri-

cally by constructing a table and gnipliiccilly by drawing a graph. Estimate the

following limit numerically by completing the table.

.V- - 3.V + 2
lim

X 1.75 1.9 1.99 1.999 9 2.001 2.01 2.1 2.25

f(x) 7
}

7 7 9 )
7 9 7

Then use a graphing utility to estimate the limit graphically.
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/"is undefined

at .V = 0.

The limit of fix) as v approaches (1 is 2.

Figure 1.6

Example 1 Estimating a Limit Numerically

Evaluate the tiincttoii fix) = x/{ V.v + 1
-

I ) at several points near \ - and use

the result to estimate the limit

lini

A

r.'-" ^'.v +1-1

Solution The table lists the values of /(.v) for several .v-values near 0.

V approaclios from the lett A appntaches lioni the riglil

X -0.01 -0.001 -0.0001 0.0001 0.001 0.01

f(x) 1.99499 1.99950 1.99995 7 2.00005 2.00050 2.00499

l{-\) appro. ilIics 1 /(>) approadies ;

From the results shown in the table, you ean estimate the limit to be 2. This limit is

reinforced by the graph of / (see Figure 1 .6),

In Example 1. note that the function is undefined at a =0 and yet /(v) appears to

be approaching a limit as a approaches 0. This otfen happens, and it ts important to

realize that the cxislciuc or iiniu'xi.stciicc of /(a) hi x = i has no hcoiiiii; on the

existence of lite Hunt of /(vl ii.\ x iipprinielie.s e.

2-- f(x)
I..V * 2

0. .V = 2

lim /( V) = 1

The limit of /(a) as .v approaches 2 is 1.

Figure 1.7

Example 2 Findinga Limit

Find the liiuit of /(.v) as a approaches 2 where / is defined as

[l, A^2
fix) =

lO, A

Solution Because /(a) = 1 for all a other than a = 2, you can conclude that the

limit is 1. as shown in Figure 1.7. ,So. \ou can write

lim/(A) = 1.

The fact that /(2) = has no bearing on the existence or value of the limit as .v

approaches 2. For instance, if the function were defined as

./Iv)

1, A- ^ 2

the limit would be the same.

So far in this section, you have been estimating limits numerically and graph-

ically. Each of these approaches produces an estimate of the limit. In Section 1 .3, you

will study analytic techniques for evaluating limits. Throughout the course, try to

develop a habit of using this three-pronged approach to problem solving.

1. Numerical approach Conslruct a tabic of values.

2. Graphical approach Draw a graph b\ hand or using technoiogy.

3. Analytic approach Use algebra or calculus.
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Limits That FaU to Exist

111 the next three examples you will exatnine some limits that fail to exist.

t /(.v) =

I ^
,/(.v) = 1

liin /(,\) does not exist.

Figure 1.8

H ->-

Example i Behavior That Differs from the Right and Left

.Show that the limit does not exist.

HmM

Solution Consider the graph ol the riinclioii /(.v) = |.v|/.v. From Figure 1.8, you can

see that for positi\c \-\alues

\A
v

.V >

and for negative .v-values

\^--^. .v<o.

This means thai no matter how close .v gets to (1. there will he both positive and

negative .v-values that yield /(.v) = I and /(.v) = ~
1 . Specifically, if 6 (the lowercase

Greek letter delta) is a positive number, then for v-values satisfying the inequality

< |.v| < 6. you can classify the values of |.v|/.v as follows.

5.0)

JL
Negative .v-values

yield |.v|/.v = -I.

(0. 8)

Positive \-valiies

yield |.v|/a = I.

This implies that the limit does not exist.

Example 4 Unbounded Behavior

Discuss the existence of the limit

lim —

.

I— II A'-

lini fix) does not exist.
I ^11

Figure 1.9

Solution Let fix) = l/.v-. In Figure 1.9. you can see that as x approaches from

either the right or the left. f(x) increases without hound. This means that by choosing

v close enough to 0. you can force /(.v) to be as large as you want. For instance, fix)

will be larger than 100 if you choose .v that is within jj; of 0. That is,

< Lv <
1

fix)
1

> 100.
10 .V"

.Similarly, you can force /( v) to be larger than 1.000,000. as follows.

< .V <
I

1000
,/-(.v)

1

> l.OOO.OOO

Because fix) is not approaching a real number L as .v approaches 0. you can conclude

that the limit does not exist. [2D
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rtm-t Example 'i Oscillating Behavior

/"(A) = Sin

Discuss tiic existence of the limit liiii sin -.

lim /(.v) does not exist.

Figure 1. 10

Si
f-

Peter Gusto Dirkhi tr (1805-1X5'))

In the early developnieiU of calculus, the defi-

nition of a function was much more restricted

than it is today. and"functions"such as the

Dirichlet I'unction would not have been

considered. The modern definition of a

fiinction was given by the German

mathematician Peter Gustav Dirichlet.

Solution Let fix) = siiid/.v). In Figufe 1.10, you can see that as \ approaches 0.

/(.v) oscillates between -
1 and 1. Thei-efofe. the limit does not exist because no

matter how small you choose 8. it is possible to choose .v, and \, wilhm iS tinits of

such that sin( l/.v,) = 1 and sin( l/.v,) = - 1. as indicated in the table.

-) 1 "> 1 "> -)

X — A-^O
77 377 .177 777 977 1I77

. 1
sin - 1

-1
1

-1
1

-1 Limit does not exist.
X

Common Types of Behavior Associated with the Nonexistence of a Limit

1. /(.v) appfoaches a different number from the right side nli than it approaches

ffom the left side.

2. /(.v) increases or decreases without bound as \ approaches c.

3. /(.v) oscillates between two fixed \alues as v approaches c.

There aie many other interesting functions that have unusuai limit beha\ior. An

often cited one is the Dinchlcl tinuluin

[O. if A is rational.

1. if V IS irrational.
./(v)

This function has no limn at an\ real number c.

TECHNOLOGY PITK.M.L When you use a graphing utility to investigate the

behavior of a function near the v-value at which you are trying to evaluate a limit,

remember that you can't always Irusi the pictures that graphing utilities draw, l-or

instance, if vou use a graphing utility to sketch the graph of the function in

Example .i o\er an interval containing (I. sou will most likelv obtain ,in mcoiiect

graph such as that shown in Figure 1.11. The reason that a graphing utility can't

show the coiTect graph is that the graph has infinitely many oscillations over any

interval that contains 0.

1 2

-0 25

Incorrect graph of /fv) = shiII/a).

Figure 1.11

^^P iiuliciih's thai ill llic Interactive 3.0 CD-R(JM ciiid Internet 3.0 vcrxiom uj ihi.s icM

{iiviiikibic at coIlege.hnieo.com) yoH will find an Open Exploration, wliiiii further explores this

example using the eoinpiiter algebra systems Maple, Mathcad, Mathematica, and Derive.
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i+f

L

L-c

/
(c. L)/

J
/

+ 5

The E-h definition nl' the limit of / ( v) as v

approaches c

Fifjiire 1.12

A Formal Definition of a Limit

Let's take another look at the informal description of a limit. If /'(.v) becomes arbi-

trarily close to a single niimber L as v approaches c from either side, we say that the

limit of /tv) as v approaches c is L. written as

lim,/(.v) = L.

At first glance, this description looks fairly technical. Even so, we call it informal

because we have yet to give exact meanings to the two phrases

"/( v) becomes arbitrarily close to L'

and

"v approaches c."

The first person to assign mathematically rigorous meanings to these two phrases was

Augustin-Louis Cauchy. His s-h detmition of a limit is the standard used today.

In Figure 1.12. let e {the lowercase Greek letter epsilaii) represent a (small)

positive number. Then the phrase "/(v) becomes arbitrarily close to L" means that

f(-\) lies in the interval {L - e, L + t;). Using absolute value, you can write this as

|/(.v) - L\ < H.

Similarly, the phrase "v approaches t" means tliat there exists a positixe number iS

such that v lies in either the Interval ic — 8. c) or the interval (c. c + S). This fact can

be concisely expressed by the double inequality

< |,v - c\ < 8.

The first inequality

< |.V — <'| Till- Jirifiviue Ix-UM-eii i .iml , c mmv th.in (1.

expresses the fact that .v i^ c. The second inequality

|.v — r| < S \ IS wiiiiin i^i iiiiiis of f.

says that a is within a distance S of c.

Definition of Limit

Let /' be a function defined on an open interval containing (except possibly

at c) and let L be a real number. The statement

lim ,/lv) = L

means that for each e > there exists a 5 > such that if

< |.v - r| < 5. then |/(.v) - L\ < e.

FOR FURTHER INFORMATION For

nmre on ihc iiilKidiiction ol rigor to

calculus, see "Who Gave You the

Epsilon? Cauchy and the Origins of

Rigorous Calculus" by .Uidilh V.

Grahiner in The Aiiicn'ccin Miitlu-iiiciliitil

Mimlhly. To view this article, go to llie

website wivwjik/ihiinickw.ciiin.

NOTE Throughout this text. v\ hen we w rite

Inn /(v) = L

we imply two stalemenis— ihe limit exists iiiul Ihe limit is /..

.Some functions do not have limits as .\-—*c. but those that do cannot have two

different limits as x^c. That is. if the Hum ofH function exists, it is unique (see

Exercise ."iS).
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v= 1.01

y = 0.99

.V = 2.995 '
,

.V = 3 1

.V = 3.005 -

The limit of /(>) as .v approaches 3 is 1.

Figure 1.13

The next thiee examples should help you develop a better uiideistandiiig of the

E-S delinition of a limit.

Example 6 Finding a 8 for a Given f

rri\'eii the limit

Inn (Iv - 3) = 1

find <Ssuch that |(2.v - 3) - l| < 0.01 whenever < |.v - 3| < 8.

Solution In this piublem, \ou are working with a given \aliie of ,-:— namely,

e = 0.01. To find an appropriate (S. notice that

^v - 3) -
1 Iv - (1

Because the inequality |(2.v - 3) - Ij < 0.01 is equivalent to 2|.v - 3| < 0.01

you can choo.se 8 = ,(0.01 ) = 0.005. This choice works because

< |.v - 3l < 0.003

implies that

IC.v - 3) - l| = 2|.v - 3| < 2(0.003) - 0.01

as shown in Ficure 1.13. [x?"

NOTE In Example 6, nolc that ().()()5 is llic /k/x'C.s; value nl iS lliat will giiaianlcc

|(2.v — 3) —
1 1 < 0.01 whenever < |.v — 3| < (5, Any \/»((//("r positive xakie of (i would, of

course, also work.

In Example 6, you found a 6-value for a i;iveii e. This does not prove the exis-

tence of the limit. To do that, you must prove that you can find a 5 for any e. as demon-

strated in the next example.

Example 7 Using the e 8 Definition of a Limit

Use the (---(S definition of a limit to pro\e that

lini (3.V - 2) = 4.

Solution You must show that for each k > 0, there exists a <S > such that

|(3.v - 2) - 4| < f- whenever < |.v - 2| < 5. Because your choice of (i depends

on e. you need to establish a connection between the absolute values |(3.v - 2) - 4|

and |.v - 2|.

|(.\v - 2) - 4| = |,\v - 6| = 3|.v - 2|

So. for a given e > you can choose 8 = e/3. This choice works becau.se

< l.v - 21 < 6
3

The limit of /(,v) as ,v approaches 2 is 4.

Figure 1.14

implies that

|(3.v - 2) - 4| = 3|.v - 2| <
3(^)

a.s shown in Figure 1.14. kg:
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E.xuwple 8 Using tlic t- R Dctinition of n IJmit

The limit of fix) as v appniachi's 2 i.s 4.

Figure 1.15

Use the s-S definition of a limit to prove that

lim .V- = 4.

Solution You must show that for each s > (I. there exists a (S > such that

|.Y- - 4| < F. when < |.v - 2\ < 8.

To tlncl an appropriate (5. begin hy writing |.v" - 4| = |.v - 2| |.v + 2j. For all .v in the

interval (1.3). you know that |.v + 2| < 5. So, letting iS be the minimum of e/5 and

1. it follows that, whenever < j.v — 2| < 8. you have

|.v^-4| = |.v-2||..

as shown in Fiiiure 1.1,'i.

21 < \^-j{^) = e

Throughout this chapter you will use the e-8 definition of a limit primarily to

prove theorems about limits and to establish the e.xisteiice or nonexistence of particu-

lar types of limits. Fov fhuilni^ limits, you will learn techniques that are easier to use

than the f;-fi dcllnition of a liiiiil.

EXERCISES FOR SECTION 1.2

rp In Kxercises 1-8. complete the table and use the result to

estimate the limit. I'se a j;raphinu utility to graph the tunetiiin

to coiirinn \our result.

I. Inn ^-

X L9 1.99 1.999 2.001 2.01 2.1

fix)

2. hm
.V- - 4

X 1.9 1.99 1.999 2.001 2.01 2.1

fix)

3. Inn
/7T3- s/3

X -0.1 -0.01 -0.001 0.001 0.01 0.1

fix)

4. hm
'1 -.V- 2

,^ .1 .V + 3

5. Inn
[l/(.v + I)] - (1/4)

X 2.9 2.99 2.999 3.001 3.01 3.1

fix)

6. lim
[.v/(.v + D] - (4/5)

,-4 .V - 4

X 3.9 3.99 3.999 4.001 4.01 4.1

fix)

7. Inn

X - 0.

1

-0.01 -0.001 0.001 O.OI 0.1

fix)

8. lim
cos .V — 1

x -O.I -0.01 -0.001 0.001 O.OI 0.1

fix)

x -3.1 -3.01 -3.001 - 2.999 -2.99 -2.9

fix)
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In Exercises 9-18, use the graph to find the limit (if it exists). If rp 19. Modeling Data The cost ol a telephone call between two

the limit does not exist, exphiin why.

9. lim (4 - a)

II. lim /(a)

/(.v)
4 - A-, A * 2

lo.

13. Inn
l-v - 3

1

Vi A - 5

4
3--

I M -V

-3-
-4--

15. lim tan A

17. lim cos -

1

10. lim (a- + 2)

I

H 1 1 1-

-2-1 12

H h^-v

14. lim
,3 A - 3

16. lim sec A

K K
2

18. lim sin tta

cities is $0.75 for the first minute and SO. 50 lor each addition-

al minute. A formula for the cost is given by

C(l) = 0.75 - 0.50 I- (/ - 1)1

where i is the time in niinulcs.

iNcic: [-v] = greatest integer/; such that ii < x. For example.

p. 21 = 3andl-l.bl = -2.)

(a) Use a graphing utility to graph the cost kinction lor

< / < 5.

(b) Use the graph to complete the table and observe the behav-

ior of the function as / approaches 3.5. Use the graph and

the table to find

lim an.

t 3 3.3 3.4 3.5 3.6 3.7 4

c 7

(c) Use the graph to complete the table and observe the behav-

ior of the function .is / approaches 3.

t
-)

2.5 2.y ^ 3.1 3.5 4

c 7

Does the limit of C(t) as / approaches 3 exist' Explain.

/^ 20. Repeat E.xercise 14 if CI/) = 0.35 - 0,12l-(; - 1)1.

21. The graph of /(a) = 2 — 1/a is shown in the figure. Find ?i

such that if < ]a -
1 1 < 5 then |/(a) - ll < 0.1.

Figure for 21

2 3 4

Figure for 22

22. The graph of /(a) = a^ -
1 is shown in the figure. Find iS such

that if < |a - 2| < (5 then |/(a) - 3| < 0.2.

In Exercises 23-26, find the limit L. Then find rt > such that

I

/(a) - L\ < 0.01 whenever < |a - c| < i>.

23. lini (3a + 2)

25. lim (a- - 3)

24. hm 4 -

26. lim (a- + 4)
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111 Kxercises 27-38. find the limit L. Then use the e-^ detlnilion

to pr()\e that the limit is L.

11. lim (,v + 3)

rp -IS. Graphical Analysis Tlie statement

4

29. Iim \-..\- - 1)

.M. lim 3

.^.^. lim N -V

.^.=;. Imi^ |.v - 2|

37. lim (a- + I)

28. lim^ (2.V + 5)

M). lim {\x + 9)

32. Imi(-l)

.M. lim s -V

36. lim
I

A - 3

1

38. lim (a- + 3a)

rp Writing In P^xeriises 39-42. use a jiraphinf; utility to uraph the

function and estimate the limit lit' it exists). What is the domain

of the function? Can you detect a possible error in determining;

the domain of a function solely by analy/inj;; the g^jraph

generated by a );rapliin<; utility? Write a short paragraph about

the importance of cxamininj; a function analytically as «ell as

j;raphicall\.

39. ,/(a)
Jx + 5 3

- 4

lim /'(a)
1—4

41. fix)

- 9

lim /(a)

40. /(a) =-
A

lim /(a)

42. /(a) = -
A

lim /(a)

V -- 3

- 4v + 3

43. Write a brief description ol the meaninL' ol the nouilion

lim fix) = 25.

44. (al It /(2I = 4. can noli conclude ainthinti about the limit

of /(a) as \ approaches 2? Explain your reasoning.

(h) It the limit ol /(.v) as a approaches 2 is 4. can you

conclude anything about / (2)' Explain your reasoning.

45. Identify three types of behavior associated with the nonex-

istence of a limit. Illustrate each type with a graph of a

function

46. Determine the limit of the lunction describing the atmos-

pheric pressure on a plane as it descends from 32,000 feet

to land at Honolulu, located at sea level. (The atmospheric

pressure at sea lexel is 14,7 lb/in.- )

47. Consider the ftmction fix) =
( I + .v)' '. Estimate the limit

lim (I + a)'
>

by evaluating /' at A-values near 0. Sketch the graph of /;

lim

means that for each p > I) there eonesponds a 6 > such that

ifO < |a - 2| < (^. then

< E.

E = O.OOI, then

- - 4
< O.OOI.

Use a graphing utility to graph each side of this inequality. Use

the :i<(>in feature to find an interval (2 — 5. 2 + 6) such that

the graph of the left side is below the graph of the right side of

the inequality.

True or False'.' In Exercises 49-52, determine whether the

statement is true or false. If it is false, explain «hy or give an

example that shows it is false.

49. II / is undefined at a = c. then the limit of fix) as a

approaches < does not exist.

50. II the limit of / (a I as v approaches i is 0. then there must exist

a number k such that /(/.!< O.OOI.

51. II lie) = /.. then Vim fix) = L.

52. II Mm fix) = L then /(c) = L.

rf' 53. I'rograinniing Use the programming capabilities of a graph-

ing utility to write a program for approximating lim /(.v).

Assume the program will be applied only to functions whose

limits exist as a approaches c. Let y, = fix) and generate two

lists whose entries form the ordered pairs

(c + [O.lJ", /(. + [O.lJ"))

for;i = 0. 1.2. 3, and 4.

rp 54. LIse the program you created in Exercise 53 to approximate the

limit

12
Inn .

.-4 A - 4

55. Pid\e that if the limit of fix) as a ^c exists, then the limit must

he unique. [Hiiil: Let

lini/(.\) = /., and lim /(a) = Z.-.

and prove that L, = Z.,.|

56. Consider the line fix) = nix + h. where in i^ 0. Use the e-S

dermilion of a limit to prove that lim /'(.v) = nic + h.

57. Pro\e that Inn /(i) = Z, is equi\alent to lim [fix) - L] = 0.

58. Given that lim ,i,'(.v) = /,. where L > 0. prove that there exists

an open interval (a, b) containing c such that g(x) > for all

A # ( in ((/. /)).
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Evaluating Limits Analytically

• Evaluate a limit using properties of limits.

• Develop and use a strategy for Imding limits.

• Evaluate a limit using dividing out and rationalizing techniques.

• Evaluate a limit using the .Squeeze Theorem.

Properties of Limits

In Section 1 .2. vou learned that the limit of /Iv) as .v approaches c does not depend on

the value of / at \ = c. It may happen, however, that the limit is precisely f{c). In such

cases, the liiiul can be evaluated by direct suhstitutiDii. That is.

lim/(.v) = fie). SubMiiiiiei for -v.
- '''

''

.Such wcll-hclhivcd liuiclions are continuous at <. ^'ou will c\amine this concept more

closely in Section 1.4.

/(() = -V

f(c) = c

Figure 1.16

THEOREM 1 . 1 S').iic Basic Limits-

Let /' and c be real ntinibcrs and let /; be I positive integer.

1. lim b = b 2. lim .v = c 3. lim .v" = c"
-V—'L 1—'( V—.f

Proof To prove Property 2 of Theorem I.I. you need to show that for each e >

there exists a 5 > such that |.v — c\ < e whenever (I < |.v
- c\ < <S. Because the

second inequality is a stricter version of the first, you can simply choose 8 = e. as

shown in Figure 1.16. This completes the proof. (Proofs of the other properties of limits

in this section arc listed in .Appendix B or are discussed in the exercises.)

NOTE When you encounter new nota-

tions or symbols in mathematics, be sure

you know how the notations are read.

For instance, the limit in Example Ic is

read as "the limit of .v- as .v approaches 2

is 4."

Example 1 Evaluating Basic Limits

a. lim 3 = 3 b. 1 1111 A = -4 I- = 2" = 4

THEOREM 1.2 Propcilics of Limits

Let /) and < be real numbers, let ;; be a positive integer, and let / and s,' be func-

tions with the following limits.

lim /Iv) = L aiid lim .tr(.v) = K

1. Scalar miiltipie hm [/)/lv)] = bL

2. Sum or difference: lim [fix) ± ,i;(.v)] = L ± K

3. Product: lim [,/lv),i,'(.v)] = LK

4. Quotient: lim ,,= ,.. provided K i^

.^, ,t,'(.v) k

5. Power: lim [/(.v)]" = L"
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Example 2 The IJniit of a Polynomial

liiii (4a- + 3) = Mm 4.V- + liiii 3 Pn.peny 2

= 41 lim A-
I
+ lim 3 Property I

Example i

Siniplir\,

4(2-) + 3

19

In Example 2. iiolc that the hunt (as .\ —^ 2} ol the polyiioiuUtl ttmctioit p(.\) =

4a- -I- 3 is simply the value of /) at v = 2.

\\mp(\) = /'(:) = 4(2 =
) -H 3 = 19

This direct suhstiuitidii piopert\ is \alid lor all polynomial and lational luiictions w ith

non/ero denoiiiinatois.

The Squrf. Root Si mboi

The first use of ii symbol to denote the si.]ii;irc

root can be traced to the sixteenth century.

Mathematicians first used the symbol v/.

which had only two strokes. This symbol was

chosen because it resembled a lowercase r. to

stand for the Latin word iwrfo. meannm root.

THEOREM 1 .3 Limits of Polynomial and Rational Functions

If/. is a polynomi; 1 function ;md 1 is a real ntimhei . then

lim p[x) --
-/-(. ).

If/ IS a latioHi il funetion ei\en bv /•(a) = />(.v)/(/(a) and ( is a real luimbet such

that ,/(<

lim

+ 0.

;iv) =

then

= /((

q{c)-

Example 3 The Limit of a Rational Function

Find the limit: lim
.V- -I- A + 2

1
.V + I

Solution Becau.se the denominator is not (1 when v

to obtain

,. X- + X + 2 \- + \ + 2 4 ^

['",] .v-fl = 1 + 1 =2 = --

=
I , you can apply Theorem 1 .3

m

Polynomial riinclions and rational functions are two of the three basic types of

algebraic functions. The following theorem deals with the limit of the third type of

algebraic function—one that involves a radical. See Appendix B for a proof of this

theorem.

THEOREM ] A The Limit of a Function Involving a Radical

Let ;; be a positive integer. The

is valid fore > if /i is even.

following limit is valid for all ( if;; is odd. and

lim^ = 'Vc
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The following theorem greatly expands your ability to evaluate limits because it

shows how to analyze the limit of a composite function. See Appendix B for a proof

of this theorem.

THEOREM 1.5 The Limit of a Composite Function

If /' and g are functions such that lim ,i;(.v) = L and lim fix) = fiU. then

\imf(g{A)) = /(hm -(-v)) =,/U).

Example 4 The Limit of a Composite Function

a. Because

hm (.V- + 4) = 0' + 4 = 4 and lini v'x
J-»0 ^—

4

it follows that

lim V-v' + 4 = v'4 = 2.

b. Because

lim (2a- - 10) = 2(_V) - 10 = 8 and lim^ (v = 2
\^.^ .(—-s

it follows that

lim ^2.v- - H) = i./?, = 2.
rr^'-'

You have seen that the limits of many algebraic functions can be evaluated by

direct substitution. Each of the six basic trigonometric functions also possesses this

desirable quality, as shown in the next theorein (presented without proof).

THEOREM 1 . 6 Limits of Trigonometric Functions

Let c- be a real numbei 111 the domain of the given trigonometric function.

1. lim sin .v = sin c 2. lim cos .V = cos c

3. lim tan A = tan ( 4. lim cot -V = cot c

5. lim sec .v = sec c 6. lull CSC A = CSC c
X 'L >^,

Example S Limits of Trigonometric Functions

a. lim tan v = tan(O) =

b. lim fvcos.v) = lim .v I hm cos .v I
= ttcosItt) = — tt

c. lim sin-.v = lim (sin.v)- = 0- =
!Zi
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A Strategy for Finding Limits

On the previous three pages, you studied several types of functions whose hniits can

be evahiated by direct substitution. This knowledge, together with the following

theorem, can be used to develop a strategy for finding limits. A proof of this theorem

is given in Appendix B.

/and 1,'agrt'o at all but one ponil.

Figure 1.17

THEOREM 1 . 7 Functions That Agree at AH But One Point

Let ( be a real number and let fix) = g{x) for all .v i= c in an open interval

containing c. If the limit of c;(.v) as a approaches c exists, then the limit of /(v)

also exists and

lim /Iv) = lim .i,'(a).

Example 6 Finding the Limit of a Function

Find the limit: lim
Y^ - 1

V - I

Solution Let /(.v) = (.v' - l)/(.v - I). By factoring and dixiding out like factors.

you can rewrite /' as

,/lv)
tt^-^)

= .V- + .V + I = ,l,'(v), .V ^ 1.

So. for all .V-values other than .v = 1. the functions / and g agree, as shown in Figure

1.17. Because lim gl.v) exists, you can apply Theorem 1.7 to conclude that / and g

have the same limit at \ = 1.

Inn = lim
.V-.I .V — I v^l

lim

Lv- l)(.v- +.V + 1)

.V - 1

Lv—^K.v- + .V + I)

liml.v- + .V + 1)

1- + 1 + 1

= 3

Factor.

Divide out like laclors.

Apply Theorem 1 .7,

Use direct substKution.

Simplily. zi

STUDY TIP When applying this

strategy tor findnig a limit, remember

that some functions do not have a limit

(as A approaches c). For instance, the

following limit does not exist.

lim
.v' + 1

A Strategy for Finding Limits

1. Learn to recogni/e which liiuils can be e\alualed b\ direcl substitution.

(These limits are listed in Theorems I.I through 1.6.)

2. If the liinit of /(.v) as .v approaches c cannot be evaluated by direct substitu-

tion, try to find a function g that agrees with /' for all .v other than .v = c.

[Choose ,t; such that the limit of .(.'(a) ((/;; be evaluated by direct substitution.)

3. Apply Theorem 1.7 to conclude iumIxiUhIIx that

lim ,/lv) = lim,t;(A) = g(c).

4. Use a graph or table to reinforce your conclusion.
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Dividing Out and Rationalizing Tecliniques

Two techniques for finding limits analytically are shown in Examples 7 and 8. The

first technique involves dividing out common factors, and the second technique

involves rationah/ing the numerator of a fractional expression.

Example 7 Dividing Out Technique

Find the hniit: lim
V- + .v - 6

A- + ?.

/ is iintlcfined «hi'n .v = — 3.

Figure 1.18

NOTE In the solution of Example 7,

be sure yon see the usefulness of the

Factor Theorem of Algebra. This

theorem states that if c is a zero of a

polynomial function, (v - c) is a factor

of the polynomial. Thus, if you apply

direct substitution to a rational lunction

and obtain

r{c)
pic)

(/(c)

you can conckidc tlial { \ — c) lunst be a

coiuinon factor to both /il vl and (/(a).

Solution Although you arc takmg the limit of a rational lunction, you caniuit apply

Theorem I ..i because the limit of the denominator is 0.

lim
.V- + .V - 6

.v^-3 .V + 3

lim (.V- + .V - 6) =
-v-»-3

Direcl substitution fails.

lim (.V + 3) =

Because the limit of the numerator is also 0, the numerator and denominator have

a common factor of (.v + 3). Thus, for all .v r -3, you can divide out this factor

to obtain

,/lv)
.v' + .V - 6 U-+^(.v

.V + 3 x^-3

Using Theorem 1 .7, it follows that

.V- + .V - 6

.V ^ -3.

lim
+ 3

lim (a - 2) Appiv Theorem 1.'

-5. L'se direct substitution.

This result is shown graphically in Figure 1.18. Note that the graph of the function /

coincides with the graph of the function ,<,'(.v) = a — 2, except that the graph of/ has

a gap at the point ( - 3, - .S).
, :?]

In Example 7, direct substitution produced the meaningless fractional form 0/0.

An expression such as 0/0 is called an indeterminate form because you cannot (troin

the form alone) determine the Itmit, When you try to evaluate a limit and encounter

this form, remember that you must rewrite the fraction so that the new denominator

does not ha\c as its limit. One way to do this is to ilividc oiil like faclors. as shown

in Example 7. A second way is to nilioiuilizc the uimicmtor. as shown in Example 8.

-3-ci -3 +

Incorrect graph of/

Figure 1.19

TECHNOLOGY PITFALL Becau.se the graphs of

.v' + A - 6
/(.v)

+ 3
and g(.\) = X

differ only at the point (-3, -5), a standard graphing utility setting may not dis-

tinguish clearly between these graphs. However, because of the pixel configuration

and rounding eiTor of a graphing utility, it may be possible to find screen settings

that distinguish between the graphs. Specifically, by repeatedly zooming in near the

point (
— 3, -5) on the graph of / your graphing utility may show glitches or irreg-

ularities that do not exist on the actual graph. (See Figure 1.19.) By changing the

screen settings on your graphing utility you may obtain the correct graph of /
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Example 8 Rationalizing Technique

Find the limit: lim
vA- + 1

-^0 X

Solution By direct substitution, you obtain the indeterminate form 0/0.

lim (v'-v + 1 - l) =

lim
'.V +1-1

Direct sulistitiition tails.

lim .V =

In this case, you can rewrite the fraction by rationalizing the numerator.

V + 1 - 1 / V.v + 1 -
1 \/ v-V + 1 + 1

-V /\V.v + 1 +

(.V + 1) -
1

-V V.v +

File I mill of /(.\) a.s.v approaches is

,

Figure 1.20

4 y.v + 1 +
1

)

1

.v^
^'.v +1 + 1

Now, using Theorem 1.7. you can c\'akuite the limit as follows.

lim = lim — ,

v^o .V ,-11 Va" +1 + 1

1 + 1

A table or a graph can reinforce your conclusion that the limit is ,. (See Figure 1.20.)

\ appRiaches from the left -V approaches n from the right

X -0.25 -0.1 -0.01 -0.001 0.001 0.01 0.1 0.25

f(x) 0.5.\S9 0..5 1 32 0.5013 0.5001 7 0.4999 0.4988 0.4881 0.4721

/(v) approaclies 0.^ fix) approaches 0.5.

NOTE The rationalizing technique for evaluating limits is based on multiplication by a

convenient form of 1. In Example 8. the convenient form is

1

Jx +1 + 1

y.v + 1 + r
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/7(.v)</(.v)<i;(A-)

The Squeeze Theorem

Figure 1.21

The Squeeze Theorem

The next theorem concerns the limit of a function that is squeezed between two other

functions, each of which has the same hmit at a given .v-vakie. as shown in Figure

1.2 i. (The proof of this theorem is given in Appendix B.)

THEOREM 1.8 The Squeeze Theorem

If /;(-v) < fix) < g(x) for all v in an open interval containing ( . except possibly

at ( itself, and if

lim hix) = L = lim ,i?(.v)

then lini /(.v) exists and is equal to L.
A 'L

You can see the usefulness of the Squeeze Theorem in the proof of Theorem 1.9.

THEOREM 1.9 Two Special Trigonometric Limits

sin .V . _ . . 1 — cos .Y

1. lim
-0 .V

2. lim

(cos 9. sin 9)

(I. tan 9)

A circular sector is used to prove Theorem 1 .9.

Figure 1.22

Proof To avoid the confusion of two different uses of .v, the proof is presented using

the variable 6. where fl is an acute positive angle measured in radians. Figure 1.22

shows a circular sector that is squeezed between two triangles.

> tan 9

Area of triangle

tan e

1

> Area of sector >

e
> — >

Area of triangle

.sin

1

Multiplying each expression by 2/sin B produces

FOR FURTHER L\FORMATION For

more information on the function

fix) = (sin x)/.v, see the article "The

Function (sin x)/x" by William B.

Gearhart and Harris S. Shultz in The

College Mathematics Journal To view

this article, go to the website

www'.matharticles.com.

1

> I

cos 6 ~
sin H

and taking reciprocals and reversing the inequalities yields

sin
cos < < 1

.

H

Because cos 6 = cos{—6) and (sin 6]/B = [sin(— &}]/{- d). we can conclude that this

inequality is valid for all nonzero 6 in the open interval (— n/2. ir/l). Finally, becau.se

lim cos d = 1 and lim 1 = 1, you can apply the Squeeze Theorem to conclude that

lim (sin 6)/0 = I . The proof of the second limit is left as an exercise (see Exerci.se 120).
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Example 9 A Limit Involving a Trigonometric Function

Find the limit: lim
1 ^u .V

^ J

Solution Direct substitution yields the indeterminate fonii 0/0. To solve this

problem, you can write tan.v as (sin.\")/(cos.v) and obtain

tan.v /sin.v'i/ 1

lim = Inn
.1—11 .V I— (I \ .V /\cos.v

Now. because

hm = I anil lini
>— 11 .V v^OCOS.V

you can obtain

tan .V

hm
1— II .V

,. sm.vW 1

Inn Inn
>— II .V /.\i— II cos .V

:i)(i)

The limit (if /( v) as v a|)proai.'lii.'s is

Figure 1.23 (See Fiiiuie 1.23.)

Exnmpic 10 A Limit Involving a 'J'rigonometric Function

Find the limit: lim
in 4.V

,?(-V)
sin 4.V

^
\

Till' limit of ,<;( A ) as v approaihi's is 4.

Figure 1.24

Solution Direct substitution yields the indeterminate form 0/0. To solve this prob-

lem, you can lewrite the limit as

sill 4.V / sm 4.V
hm = 4 Inn —,

—

i-.(i .V \i— II 4.V

Now. by letting y = 4v and obscr\ing that .v —> if and only it y —> 0. you can write

sin 4.V / sin 4.\

Inn = 4 hm
.-II 4.V

4| Inn
i-ii 1'

= 4(1)

= 4.

(See Fieure 1 .24.)

/ TECHNOLOGY Try using a graphing utility to confinn the limits in the examples

and exercise .set. For instance. Figures 1.23 ami 1.24 show the graphs of

./Iv)
tan .V

and ,t;(.v)

sin 4v

X

Note that the First graph appears to contain the point (0, I) and the second graph

appears to contain the point (0. 4). which lends support to the conclusions obtained

in Examples 9 and 10,
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EXERCISES FOR SECTION 1.3

rp In Exercises 1-4, use a graphing utility to graph the function

and visually estimate the limits.

1. h{.\) = A- - 5.\

(a) lim /;(.vl

(b) lim /((a)
>— I

3. fix) = .V cos .V

(a) lim /(a)

(b) lim yXv)

In Exercises 5-22, Ihicl the limit.

5. liniA-*

7. Imi (2a - 1)

9. lim^ (a- + 3a)

11. lim (2a- + 4v + 1)

2. s(a-)
12(v^-3)

A - 9

(a) lim ,t,'(A)

(b) lim ,^'(a)

4. fir) = i\t - 4|

(a) lmi/(?)
/—

4

(b) lim /(;)

6. Inii a'

8. Um^ (3a + 2)

10. lim i-\~ + 1)

12. lim (3a-' - 2a- + 4)

13. lim -

15. lim —

;

v-1 A-- + 4

17.
5a

v-v y.v + 2

19. lim v'a- + 1

21. lim (a -1- 3)-
.1—'-4

14. lim

16. lim

--1 A -I- ,2

V - 3

18. lim

-3 A- -I- 5

Va + 1

-1 A - 4

20. lim </.v + 4

22. lim (2a- 1)-'

In Exercises 23-26, find the limits.

23. fix) = 5 - A. ,i,'(A) = a'

(a) lim fix) (h) lim (;(a)
1— I A—4

"

24. fix) = X + 1. gix) = X-

(a) lim fix) (h) lim ,!,'(a)

25. fix) = 4 - A-, ,?(a) = Va + 1

(a) lim fix) (b) lim,i;(A)

26. fix) = 2a- - 3a + 1. ,i;(A) = <-v + 6

(a) lim fix) (b) lim i^ix)

(c) limi^(/(A))

(c) lim^ ^?(/(.v))

(c) lim,!;(/(A))

(c) lims(/(A))

In Exercises 27-36. find the limit of the trigonometric function.

28. lim tan a27. lim sin

29. lim^ cos—

31. lim sec 2a

33. lim sin A
..-5-/6

30. lim sin
—

32. Inn cos 3a

34. lim cos a
v^5-/.l

35. lim tan|
— 36. Inn sec

In Exercises 37-40, use the information to evaluate the limits.

37. lim /(a) = 2 38. Wmfix) =
^

lim gix) = 3 lim gix) = T

(a) lim [5,q(A)] (a) lim [4f(A)]

(b) lim [fix) + :Aix)] lb) lim [,/IaI + ,!,'(a)]

(c) lim [/(A)t;(A)] (e) lim[/(A)t;(.v)]

(d. lim
^';'

.-. flix)

, ,,
fix)

(d) hm
, ,

,-c gix)

39. lim fix) = 4 40. lim fix) = 27

(a) Inn [fix)Y lal lim n';/(a)

(b) lim Jfix) (b) lim—
(c) lim [3/(a)] (CI lim [fix)]-

(d) lim[/(A)P'- (dl lim [/(a)]-'-'

In Exercises 41—14. use the graph to determine the limit \ isually

(if it exists). Write a simpler function that agrees uith the given

functi<m at all hut (me point.

41. gix) 42. /)(a) =

(a) lim gix)
I
— (1

(b) lim i;(a)

43. gix)
X -

1

44. fix

(a) lim Itix)

(b) lim /i(A)
-i-*n

.V

(a) lim gix)

(b) lim gix)

(a) lim /(a)

(b) lim /(a)
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rp In Exercises 45—IS, find llie limit of the lunction (if it exists).

Write a simpler fiinctioji that a<;rees Hitli the );i\en tiinctioii at

all but one point. I'se a yraphin"; utility to confirm vour result.

45. Inn
V- -

1

47. lim

,_ 1 A- + 1

-: V

46. lini
1— I

48. lini

A + 1

a' + I

V + I

In Exercises 49-62, llnd the limit (if it exists).

A- - 5
49. lim

51. lim
A- + A - 6

53. lim
.'a + 3 - ./5

55. lim

57. 11

v'a + 5

-4 A - 4

1/(3 + a)] - (1/3)

59. lim

61. lim

62. lim

2(a + Aa)

Aa

50. lini
—

52. lim

54. lim

56. lim

58. lim

60. lim
A.—

I

-V-
-

A- -

- 4

3a + 4

.V-
- 2a - 8

N — + A- - „/i

A

J.\ + 1-2

n/(

V — 3

V + 4)]
-- (1/4)

(a

A"

+ Aa)- - A-

Aa

(a + Aa)- - 2(a + Aa) + 1
- (a- - 2a + 1)

(a- + Aa)' - a'

rp Graphical, Niiineiicul, and Analytic Analysis In Exercises

79-82, use a graphing utility to graph the function and estimate

the limit. I'se a table to reinforce your conclusion. Then find the

limit bv analytic methods.

79. lim
sin 3/

81. Inn

41 /

sin A-

80. lim (I + cos2/()

82. lim ^^

I K- • «i «A - H I-
/1-v + Aa-)-/(x)

In e,xercises 83-86, tmd hm r ,

A.v— A.V

83. fix) = 2a + 3

85. /(a) = -

84. /(a) = v^v

86. /(a) = V- - 4a

/ V (iraphical. Siiniciical. and Analytic Analysis In Exercises

63-66. use a f;rapliing utility to graph the function and estimate

the limit. I se a table to reinforce your conclusion. Then tind the

limit by analytic methods.

In P^xercises 87 and 88, use the Squeeze Theorem to find

lini/(A).

87. c =

4 - A-- < /(a) < 4 + A-

88. r = a

h - \x - a\ < fix) < /) + |a - a\

rp In Exercises 89-94, use a graphinj; utility to graph the given

function and the equations y =
|
v| and y = - \x\ in the same

viewing v^indo". I'sing the graphs to visually observe the

Squeeze Theorem, find lim /(v).

63. Inn

65. Inn

/v + "> - /^

[1/(2 + a)] - (1/2)

64. Inn

66. lim

4 -- v^
T A" - 16

.v""
-- 32

89. /(a) = A cos A

91. fix) = |a| sin a

93. /(a1 -
\ sin -

A

9t». fix) = \x<mx\

92. fix) = \x\ cos A

94. hix) = X cos -

I

In Exercises 67-78, determine the limit of (he trigonometric

function (if it exists).

67. Inn

69. lim

71. lim

sin A"

3a

sin a( I
~ cos a)

73. lim
(I - cos/;)-

cos A
75. Inn

\^vr/l cot A

sin 3r
77. lim

78. lim^
.i-ji) sin 3a

3(1- cos a)
68. Hi

70.

72. lim

74. Inn it> see <{>

.1,-1,

cos

A"

Wtan

tan-

H

X

76. lim
1 - tan V

Hint: Find Inn

>— 7r/4 Sm V — COS A"

!sin2A \/ 3a

2a /\3 sin 3a

95. In the context ol finding liinils. discnss what is meant by

two riinctions that agree at all but one point.

96. Give an example of two functions that agree at all but one

point,

97. What IS meant b\ an indeterminate form?

98. In \oLir own words, explain the Squeeze Theorem.

' r 99. Wiitiiiji LIse a graphing utilitv to graph

fix) = .V, i,'(a) = sm I. and liix) =
v

111 the same xicwing window. Compare the magnitudes of fix)

and ,i;(a) when a is "close to" 0. Use the comparison to wi'ite a

short paragraph explaining why

Inn /((a) = I.
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fV 10(1. Wiiling Use a grapliini; Lililil\ to graph

/(.v) = A", ^£;(.v) = sin- A. and/Hv)

True or False? In Exercises 113-118. deterniiiu' whether the

statement is true or false. If it is false, explain \\li\ or jjive an

example that shows it is false.

in tlic saniL- \ic\\ing window. C'oniparc the magnitudes of fix)

and ,i,'(a) when a is "close to" 0. Use the companson to write a

short paragiaph explaining why

lim h{x) = 0.

Free-Falliiii; Object In Exercises 101 and 102. use the position

functions(0 = - 16r- + 10(10, which <;i\es the hei<>ht (in feetl of

an oh ject that has fallen for I seconds from a height of 1000 feet.

The \elocitx at time I = a seconds is "iven hv

113. lim ^ = 1

.-n A
114. lim A- =

lim
a - I

101. Ha construction worker drops a wrench Ironi a height ot KIIW)

feet, how last will the wrench he lalling after 5 seconds'

102. If a construction worker drops a wrench from a height of 10(10

feet, when will the wrench hit the ground' At what \elocit\

will the wrench impact the ground.'

Free-Fiilliiii; Object In Exercises 103 and 104. use the position

function s(r) = -4.9f- + 150. which f;i\es the height (in meters)

of an objecl that has fallen from a height of 150 meters. I he

^elocil\ at lime I = a seconds is given by

lim
sia) - sU)

a - t

103. Find the \elocit\ of the object when / = 3.

104. .\\ what \elocit\ will the ob|ect impact the ground'^

105. 1-ind two kinclions / and ,!,' such that lim /'(a) and lim g(.\) do

not exist, but lim [ /(a) + k[.\)] does exist.

106. Pro\e that if lim /(a) exists and lini [/(a) + ,t;(A)] does not

exist, then lim .s;(aI does not exist.

107. Pro\e Property 1 of Theorem 1.1.

108. Prove Property 3 of Theorem I.I. i^'oii may use Property 3 of

Theorem 1.2.)

109. Prove Property I ofXliemsni \-

110. Prove that if lim /(a) = 0. then linr |/(.v)| = 0.

111. Pnnc that if lim /(a) = and |,i;(.v)| < M for a tl.xed number

A/ and all a ^ c. then lim f{x)'^{x) = 0.

112. (a) Prove that if lim |,/(a)| = 0. then lim /(a) = 0.

{Note: This is the converse of Exercise 1 10.)

(b) Prove that if lim fix) = L. then lim [,/(a)| = \L\.

[Hint: Use the inequality ll/(-v)|
- \L\\ < \f{x) - L\.]

1 15. If /'(a) = i;(x) for all rc.il numbers other than \ = 0, and

lim fix) = L

then

lim s;(a) = L.

116. If lim /(a) = /.. then/(() = L.

I- V < 2

.1 > 2
117. Inn /(a) = 3. where /(a)

lis. If /(a) < ,i,'(a) lor all a =i
,(, then

lim /'(a) < lim ,i,'(a).

119. Think About It lind a function / to show lliat the con\erse

of Exercise 112(h) is not true \Hiui: Find a lunclioii / such

that lim |/'(a)| = \L\ but lim /(aI does not exist.
|

120. Pnne the second part of Theorem 1 .4 by proMiig that

lim = 0.

121. Let /(a)

and

_ |0. it A IS rational

1. it .V IS irrational

(). if \ IS r.itional

[v. il \ IS irration.ij.

Find (if possible) lim /l\) and lim i;(a).

f[^ 122. Grciphical Reasoiiini> Consider /'(.v) =
see A -

1

(a) Find the domain ol /.

(b) Use a graphing utiiitv to graph / Is the domain ol /

obvious from the graph ' If not. explain.

(c) Use the graph ol / to .ipproximate lim /(a).

(d) Confiim the answer in part (c) analytically.

123. Approximation

r,. , ,. 1 - COS.V
(a) Find lim ^ .

i~(l A-

(b) Use the result m part la) to derive the approximation

COS.V = 1 - 3.V- for A near (I.

(c) Use the result in part (h) to approximate cos(0.1 ).

(d) Use a calcuhUor to approximate coslO.l ) to four decimal

places. Compare the result with part (cl.

124. Think About It When using a graphing utility to generate a

table to approximate lim [(sin a)/.v]. a student concluded that

the limit was 0.0174.'i rather than I. Determine the probable

cause of the error.
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EXPLORATION J

Intoriiially. \ou might say that a

function is coniinuoiis on an open

interval if its graph can be drawn

w ith a pencil without lifting the

pencil from the paper. Use a graph-

ing calculator to graph each of the

following functions on the indicated

interval. From the graphs, which

functions would you say are continu-

ous on the interval? Do you think

you can trust the results you obtained

graphically' E.xplam your reasoning.

Fuiution Interval

a. V = .\- -1- 1 (-3,3)

b. y = 1

(-3,3)
.V - 2

c. V =
sin .V

X
(-tt.tt)

H , - X- - 4
i-'K ^\

X + 2

f2.v
- 4. .V <

e. ^ =
I

-f 1. .V >
(-3,3)

Conttniiity and One-Sided Limits

• Determine continuity at a point and continuity on an open intenal.

• Determine one-sided limits and continuity on a closed interval.

• Use properties of continuity.

• Understand and use the Intermediate Value Theorem.

Continuity at a Point and on an Open Interval

In mathematics, the term coiitiiutoiis has much the same meaning as it has in everyday

usage. To say that a lunclion / is continuous at v = c means that there is no intenup-

tion in the graph of / at r. That is, its graph is unbroken at ( and there are no holes,

jumps, or gaps. Figure 1.25 identifies three values of ,v at which the graph of /'is not

continuous. At all other points in the interval (<;. />). the graph of /is uninten'upted and

continuous.

lim/(.v)

docs not exist
\\mf(\)*f{c)

Three conditions exist for which the graph of / is not conliiuums at .v = c.

Figure 1.25

In Figure 1.25. it appears that contiiitiitx at v = c can be destroyed by any one of

the following conditions.

1. The function is not defined at .v = (

.

2. The limit of /(.v) does not e.xist at .v = r.

3. The limit of /(.v) exists at .v = c. but it is not ei|ual to /(t).

If none of the above three conditions is true, the function /is called continuous at c.

as indictited in the following important definition.

FOR FIRTIII R IMORMUIOS For

more information on the concept of

continuity, see the article "Leibniz and

the Spell of the Continuous" by Hardy

Grant in The Collcfic MalhcmaUcs

Journal. To view this article, go to the

website wnnjikitliartnlcsinni.

Definition of Continuity

C(niliiniily at a Pntnt: A function / is continuous at c if the follow inc three

conditions are met.

1. fie) is defined.

2. lim /(.v) exists.

'3. lim/(v) =/(().

Continuity on an Open Internil A function is continuous on an open interval

(a, b) if it is continuous at each point in the interxal. A Itinction that is continuous

on the entire real line ( -GO. 'CO is everywhere continuous.
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(a) RenK)\ahlc discoiunuiiiN

(b) Nonrcnii)\ahlc discon[iiuiil>

(c) Reminahic discontinuity

Figure 1.26

STUDY TIP Some people may refer to

the function in Example la as "discon-

tinuous." We have found that this termi-

nology can be confusing. Rather than

saying the function is discontinuous, we

prefer to say that it has a discontinuity

at .V = 0.

Consider an open interval / that contains a teal number c. If a function /'is deftned

on / (except possibly at ( ). and / is not continuous at c. then / is said to have a

discontinuity at c. Discoiitimiities fall into two categories: removable and non-

removable. A discontinuity at c is called retninable if / can he tnade continuous by

appropriately defining (or redefining) /(r). For instance, the functions shown in Figure

1.26(a) and (c) have retiiovable discontinuities at c and the tiinction sIiovmi in Figuie

1.26(b) has a nonremovable discontinuity at c.

Example 1 Continuity of a Function

Dtscuss the continuity ol each function

I . , . -v- - 1

a. /(.v) =
.V

b. gix)
X -

I

C. /)(.V) =
V + I. X <

V- +1. .\ >
d.

Solution

a. The domain of / is all nonzero real numbers. From Theoretn 1 .3. \ou can conclude

that / IS continuous at e\ery .v-\alue iti its domain. At .v = 0. / has a nonremovable

dtscontiniiitw as shown in Figure 1

,

27(a). Iti other words, there is no way to define

/(O) so as to make the function continuous at .v = 0.

b. The domain of y is all real numbeis except .\ = 1. From Theorem 1.3. you can

conclude that ,s; is coniiiuious at e\ei\ \-\aluc in its domain. At .\ = I. the function

has a removable discontinuity, as shown in Figure 1 .27(b). If ,'.,'( I ) is defined as 2.

the "newiv defined" function is continuous for all real numbers.

c. The domain of h is all real numbers. The function /; is contiiuious on (
~ c^. 0) and

(0. z/z). and. because lim //(,v) = I. /ms coiitmuoLis on the entire real line, as shown

in Figuie 1 .27(c).

d. The domain of y is all real numbers. From Theorem 1.6. you can conclude that the

function is continuous on its entire domain, ( — oo, oo), as shown in Figure 1.27(d).

(a) Nonreini)\ablL' discuntinuity at -v — (b) Removable disLuntinuil) at a = 1

1
-

/

r\
_v = sin A

1
/ \ •/

1

-1 - - '^

(c) Cuntinuou^ »>n entire real line

Figure 1.27

(d) CtintinuoLis on enure real Inie
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A approaches

c from the right.

(a) Limit from risiht

\ appmaches

(• from the left.

< > -V

*"

(b) Limit from left

Figure 1.28

fix) = V4-.V-

Thc limit of /( v) ;is v approaches - 2 Irom

the right is. 0.

Figure 1.29

One Sided Limits and Continuity on a Closed Interval

To understand continuity on u closed interval, you first need to look at a different type

of limit called a one-sided limit. Kor example, the limit from the right means that .v

approaches c from \alues greater than c |see Figure l.2K(a)|. This limit is denoted as

lim fix) = L. Limit Ironi the iitiht

Sitnilarly. the limit from the left means that v approaches c from values less than

[see Figure l.28(b)J. Thts limit is denoted as

lim /(.v) = L. Limit trom the left

One-sided limits are useful in taking limits of functions in\ohing radicals. For

instance, if/; is an even inteaer.

lim V-V = 0.

Example 2 \ One Sided Limit

Find the limit of /(.v) = J•^ - x- as .v approaches -2 from the right.

Solution As indicated in Figure 1 .29, the limit as .v approaches - 2 from the right is

74 0.

One-sided limits ctin be used to investigate the behtivior of step functions. One

common type of step function is the greatest integer function [.v], defined by

l.vl = greatest integer /; such that n < x.

For instance. 12.5} = 2 and

Greatest integer funetion

-^ h

/(v) = ll-vE

Greatest integer function

Figure 1.30

-H h

Example 3 The Greatest Integer Function

Find the limit of the greatest integer function fix) = [.v] as x approaches from the

left and fiom the right.

Solution As shown in Figure 1 .,i(l. the limit as v approaches i) fraiii iht left is gi\en by

lim H = -
I

.v^O

and the limit ;is .v approaches frDin the rii;hl is given by

lim fl.vi
= 0.

A—.0'

The greatest integer function has a discontinuity at because the left and right limits

at zero are different. By similar reasoning, you can see that the greatest integer

function has a discontinuity at any integer n.
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When the limit from the left is not equal to the limit from the right, the (two-

sided) limit does not exist. The next theorem makes this more explieit. The proof of

this theorem Follow s directly from the derinilmn of a one-sided limit.

THEOREM 1.10 The Existence of a Limit

Let/be a function and let c and L be real numbers. The limit of f(.v)

approaches c is L if and only if

as .V

lim fix) = L and lim /(.v) = L.

Coiitmiioiis I'liiK'tuin on a I'losed iiikival

Figure 1.31

The concept of a one-sided limit allows you to extend the definition of continu-

ity to closed intervals. Basically, a function is continuous on a closed interval if it is

continuous in the interior of the interval and possesses one-sided coniinuit\ at the

endpoints. We state this formally as follows.

Definition of Continuity on a Closed Interval

A function /is continuous on the closed interval [a. h] if it is continuous on

the open inter\al (</. /') and

lim /(.v) = /((/) and lim /(.v) = fih).
I—,r

"

1—/.

The function / is continuous from the right at a and continuous from the left

at b (see Ficure 1.31 ).

Similar definitions can be made to co\er continiiit\ on mterxals of the form ici. />]

and [ii. /») that arc neither open nor closed, or on mfmite intervals. For example, the

function

/(.v) = J^

is continuous on the infinite interval [0, cc). and the function

g(x) = JY^^x

is continuous on the infinite interx al (
— cc. 2].

/ is continuous on [- I.

Figure 1.32

Example 4 Continuity on a Closed Inler\'al

Discuss the continuity of fix) = V 1 ~ -V~.

Solution The domain of / is the closed interval [— 1, 1]. At all points in the open

interval (-1. I), the continuity of /'follows from Theorems 1.4 and l.-'i. Moreover,

because

lim ^/l — .V- = =/(— 1) Cunlinuous from ihe rigtil

and

lim yi - .v= = = /'(
1

)

Continuous trom the left

you can conclude that / is continuous on the closed interval [-1. l], as shown in

Fiaure 1.32.
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The next example shows how a one-sided limit can be used to determine the \'akie

of absolute zero on the Kelvin scale.

V = 0.082 1 37 +22,4334

(-273.1.^.(1)

i
-7-

.?no -:()o -KHi

The voliinu' of livdrogcn gas ilopciids on

its temper;)! inc.

Figure 1.33

In l')9.\ physicists Carl Wieiiian aiul

Eric Cornell of the llniversity of

Colorado at Boulder used lasers and

evaporation to produce a supeicold gas

in which atoms oveiiap. This gas is called

a Bose-Hinstcin condensate. "We get to

within a billionth of a degree of absolute

zero," reported Wienian. (Sdimc: Time

maguzine. April 10.2001))

Example S Charles's Law and Absolute Zero

On the Kelvin scale, absolute zero is the temperature K. Although temperatures of

approximately 0.0001 K have been produced in laboratories, absolute zero has never

been attained. In fact, evidence suggests that absolute zero cannot be attained. How
did scientists determine that K is the "lower liniil" of the tempeiature of matter?

What is absolute zero on the Celsius scale?

Solution The determination of absolute zero stems from the work of the French

physicist Jacques Charles ( 174(i-l<S2,i). Charles discovered that the volume of gas at

a constant pressure incieases linearly with the temperature of the gas. The table illus-

trates this relationship between volume and temperature. In the table, one mole ot

hydrogen is held at a constant pressure of one atmosphere. The \olimie \' is nieasured

in liters and the temperature 7' is measured iti degrees Celsius.

T -40 -20 20 40 60 80

V 19.1482 20.7908 22.4334 24.0760 25.7186 27.3612 29.0038

The points represented by the table are shown in Figure 1.33. Moreover, by using the

points in the table, you can determine that 7 and V are related by the linear ecjuation

V = 0.082137+ 22.4334 T
V - 22.4334

0.08213

By reasoning that the volume of the gas can approach (but never equal or go below 0)

you can determine that the "least possible temperature" is given by

\' - 22.4334

,'l!;i^=,'l!i;^ 0.08213

_ - 22.4334
^

s ,.,-,,
.J

Llse djrect sLibst([u[io)i.

= -273.LX

.So. absolute /eio on the Kelvin scale (0 K) is approximately - 273. l."!' on the Celsius

scale. .;5j

The following table shows the temperatures in Example 5. conveited to the

Fahrenheit scale. Try repeating the solution shown in Example .'i using these temperatures

a)id \oiumes. LIse the lesult to find the \alue of absolute zero on the Fahrenheit scale.

T -40 -4 32 68 104 140 176

V 19.1482 20.7908 22.4334 24.0760 25.7186 27.3612 29.0038

NOTE Charles's Law for gases (assuiii))ig constant pjcssuie) ea)i lie stated as

V = RT Charles's Law

where V is voUiine, R is constant, and T is teinperatuie. In the state)T)cnt of this law. what

property must the temperature scale have?
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Aicilstin-LoiisCaich\ (1784-1X57)

The concept of a continuous function uas

first introduced by Augustin-Louis C auchy in

1821. The definition given in his text Cmir.s

d'Amlyse stated that indefinite small changes

in I' were the result of indefinite small changes

in -v. " . . ./ (a) will be called a aiiiliiiiiiius

function if ... the numerical values of the

difference /(.v + a) - fix) decrease

indefinitelv with those of a ...
."

Properties of Continuity

In Section 1.3. you studied several properties of limits. Each of those properties yields

a conesponding property pertaining to the continuity of a function. For instance.

Theorem l.ll follows directlv from Theorem 1.2.

THEOREM 1.11 Properties of Continuity

If b is a real number and /'and ^? are continuous at .v = r. then the following

functions are also continuous at c.

1. Scalar multiple: />/ 2. Sum and difference: / ± t;

3. Product: fg 4. Quotient: -. li gU) ^

The following types of functions are continuous at every point m their domains

1. Polynomial functions: /)(.v) = ((„.v" + a,, _ |.v"^' + • • • + c(|.v + ciq

2. Rational functions: '(-v) = '-—
. ./(.v) ^

</(.v)

3. Radical functions: fix) =
il v

4. Trigonometric functions: sin .v. cos a. tan v. cot .v. sec v. esc v

By combining Theorem l.ll with this siimiiiary. you can conclude liial a wide

variety of elementary functions are continuous at every point in their domains.

/?»^ Example 6 Apphing Propert:ies of Continuity

By Theoiem 1.1 1. it follows that each of the following functions is continuous at eseiy

point in its domain.

.V- + 1

cos .V El]
fix) = .V + sin .V. fix) = 3 tan .v. /(.v)

The iie.M theorem, which is a consequence of Theorem 1.5. allows you to deter-

mine the continuity of coiiipcisllc functions such as

1

fix) = sin 3.V, fix) = J.x- + I, /(.v) = tan

THEOREM 1.12 Continuity of a Composite Function

If ,1^ is continuous at c and / is continuous at g(c). then the composite function

given by (/ = ^)(.v) = AmM) is continuous at c.

One consequence of Theorem 1.12 is that if/' and g satisfy the given conditions,

you can determine the limit of figM) as .v approaches c to be

lim/(,i,'(.v)) =,/(i'(c)).
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Example 7 Testing for Continuity

Describe the ititervalis) on which each function is cotitiiuious.

a. fix) = tan ,v b. ,i,'(.v)

fsinl. A- ^
.V

0. .V =

Solution

a. The tangent function /(.v) = tan v is undefined at

71

.\ = -^ + iiTT. 11 IS an inteiiei'.

.Asini. A- ^
c. /;(a) =

\
A-

0, A =

At all other points it is continuous. Si), fix) = tan a is continuous on the open

intervals

") " '>
I' \

")")/ \ ") 1 r
'

as shown in Figure l.,i4(a).

b. Because v = 1/a is continuous except at .v = and the sine function is continuous

for all real values of .v, it follows that y = sin ( 1/a) is continuous at all real values

except A = 0. At .v = 0. the limit of g(x) does not exist (see Example 5, Section

1.2). So, i,' is continuous on the intervals ( — co, 0) and (0, oo). as indicated in

Figure 1.34(b).

c. This function is similar to that in part (b) except that the oscillations are tlamped

by the factor a. Using the Squeeze Theorem, you obtain

|a| < A sin ^ < |a|
.V ^

and vou can conclude that

lini //(a) = 0.

So. /; is continuous on the entire real line, as indicated in Figure 1.34(c).

/(.v) = tan.v

(a) /"is continiums on cacli open imci\al in i

domain.

Figure 1.34

[O, -v =

(1)1 '.,' IS LiiniiiuioLis on ( - 3c. 0) and (0. yz}.

"^ II , , ,
-vsin -.-\*0

10, .v =

If) h IS conlinuons on llie enliiL* real line.
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/ is continuous on [«./']

[There exist three c's such tliat /(() = k.

Figure 1.35

/ is not continuous on [u. h].

[There are no r"s such tliat /(

(

Figure 1.36

L.\

f{x) = x' + 2x-l

/ iscontinuouson [0, 1] with /(()) < Oand

f{\) > 0.

Figure 1.37

The Intermediate Value Theorem

We conclude this section with an important theorem concerning the behavior of

functions that are continuous on a closed interval.

THEOREM 1.13 Intermediate Value Tlieorem

If/is continuous on the closed interval [a, b] and k is any number between /'(</)

and/(/7), then there is at least one number c in [a, b] such that/(c') = k.

NOTE The Intermediate Value Theorem tells you that at least one c exists, but it does not give

a method for finding c. Such theorems are called existence theorems.

By referring to a text on advanced calculus, you will find that a piool of this

theorem is based on a property of real numbers called compU'teness. The Intermediate

Value Theorem states that for a continuous function /', if .v takes on all values between

a and b. f{x) must take on all values between /(</) and /(/i).

As a simple example of this theorem, consider a person's height. Suppose that a

gill is 5 feet tall on her thirteenth birthday and 5 feet 7 inches tall on her fourteenth

birthday. Then, for any height /; between 5 feet and 5 feet 7 inches, there must have

been a time l when her height was exactly /;. This seems reasonable because human

growth IS contiiuuius and a person's height does not abruptly change from one value

to another.

The intermediate Value Theorem guarantees the existence of ((/ least niu' number

c in the closed interval [a. b]. There may, of course, be more than one number c such

that /(( )
= k. as shown in Figure 135. A function that is not continuous does not

necessarily possess the interniediate \alue property. For example, the graph of the

function shown in Figure 1.36 jumps over the horizontal line given by v = k. and for

this function there is no value of c in [a. b] such that /'(c) = k.

The Intermediate Value Theorem often can be used to locate the zeros of a func-

tion that is continuous on a closed interval. Specifically, if /is continuous on [((, /;] and

f(a} and f(b) differ in sign, the Intermediate Value Theorem guarantees the existence

of at least one zero of /in the closed interval [</, b].

Example 8 An Application of tlic Interniediate Value Theorem

Use the Intermediate Value Theorem to show that the polynomial function

fix) = .V-' + 2.V -
I

has a zero in the interval [(), l].

Solution Note that /is continuous on the closed interval [0. l]. Because

/(O) = i)' + 2((i) - 1 = -1

and

/(I) = 1-^ + 2(1) -
I = 2

it follows that /(()) < and /( I) > 0. You can therefore apply the Intermediate Value

Theorem to conclude that there must be some c in [O, I] such that

f{c) = / has a zero in the closed interval [0. I].

as shown in Fiuure 1.37. uZ^
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The bisection metliod for approximatinj: the reui zeros of a continuous function

is similar to the method used in Example 8. If you know that a zero exists in the closed

interval [</, /)], the zero must lie in the interval [a. {a + b)/2] or [{a + b)/2, b]. From

the sign of /'([« + b]/2), you can determine which interval contains the zero. By

repeatedly bisecting the interval, you can "close in" on the zero of the function.

TECHNOLOCV You can also use the zonni feature of a graphing utility to approx-

imate the real zeros of a continuous function. By repeatedly zooming in on the point

where the graph crosses the .v-axis. and adjusting the .v-axis scale, you can approx-

imate the zero of the function to any desired accuracy. The zero of .v' + 2.\ -
1 is

approximately 11.453. as shown in Figure 1.38.

001302

/

0.2
/

/
-02 -0012

Figure 1.38 Zooming iiuin the zero of /(.v) = .\' + 2.v -
I

EXERCISES FOR SECTION 1.4

In Exercises 1-6, use the graph to determine the limit, and

discuss the continuity of the function.

(a) lim/(.v) (b) lini /(a) (c) lim,/(.v)

1. -V 2.

3.

f-*.v

3-
(4.2)

1
- 1=4

-1- . 1 2 3 4 5 f.

1
(4.-2)

-3 (-1,0)

In Exercises 7-24, find the limit (if it exists). If It does not exist,

explain why.

7. liin
.^v .V- - 25

.V

8. lim
.V- - 4

9. lii

^ V -V- - 9

11. hm ^
,1^(1 .V

10. lini
^^^

. -4 A - 4

12. Ill

l.V lim
A. .11

14. lim

A + A.V .V

(a -I- Aa)- + .V + Aa - (.V- -I- .v)

15. Inn /(a), where fix) =

16. lim /(a), where /(a) =

17. lim fix). uhere/(.v) =

18. lim /(a), where fix)

19. llDI cot A

21. liml.^H - 5)

23. liiii(2 - I-.vl)

,v + 2

12 - 2v
> 3

A- - 4v +6. .\ < 2

-.V- + 4v - 2. .\ > 2

.V-' + \. A < 1

.V + 1. A > 1

.V. A < 1

1 - .V. .V > 1

20. lim sec .v

22. lim (2a - h

24. lim I
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In Exercises 25-28, discuss tlie continuity of eucli function.

25. ,/Xv)
1

A- - 4

27. fix) = kM + -v

26. ,/lv)
A- -

I

A + 1

48. fl\)

49. ./(A) =

- 4v + I , A > 2

^^'.
1-vl < I

Iv.

CSC —
5(1. /Iv) = 6

51. /(a) = CSC 2a

53. /(.v) = [a -
1

|a| > 1

l.v
- 31 < 2

l-v
- 31 > 2

52. fix) = tan ^
54. /(A) = 3 - [a-1

A. A < 1

28. /(a) =2. A =
I

2a - 1. A > 1

rp In Exercises 55 and 56, use a fjraphinK utility to >;r:i|)h the

function. From the };ra|)h, esliniate

lim fix) and lim /(a).

4
/

-^
-|-*-V +—->

In Exercises 29-32, discuss the continuity of the function on the

closed Interval.

29. ,?(a) -'25

30. /(?) = 3 - v'9 - t\ [-3.3]

f3 - .V. .V < ^

31. /(a) =
]

,

. -1.4
3 + \\. X > (1

32. i'(A)
A- - 4

[-1.2]

In Exercises 33-54, tind the .v-values (if any) at which/ Is not

continuous. W hich of the discontinuities are removahle?

33. ./Iv) - - Iv + 1 34. /(a)
A- + 1

35. /Iv) = 3a - cos v 36. ,/(a) = 77V
cos y

37. /(a)
A

38. ./Iv) = .V

-- — A A- - 1

39. /(a)
.V

40. /Iv) = .V - 3

- + ) v- - 9

41. /(a)
.

.V + 2
42. /(a) = A - 1

- - 3a - 10 .V- + A - 2

43. i\x) = _
A- + 2|

44. ./-(.v)
= l.v

- 3|

A + 2 A - 3

45. /(a) - A. .V < 1

A-, A > 1

46. /'(.v) = |-2a + 3. A < 1

[a-. a > 1

47. /(a) = iv+ 1. A<

3 - A, .V >

1

2

Is the function continuous on the entire real line? Explain.

55. ./Iv)

[v^ - 4[v

A + 2
56. /(a) =

|a- + 4a|(.v + 2)

.V + 4

In Exercises 57-60. lind the constants a and b such that the

function Is continuous on the entire real line.

57. /(a)
\\ V <

[<a-'.
58. ,i,'(a)

4 sm .V

.V

-, A <

:( - 2a. a >

2. V < -
1

59. /(a) = La + /), -1 < A < 3

-2. .V > 3

6(1. k(x)

X- — tr

X — u
X ^ a

In Exercises 61-64, discuss the continuity of the composite

function //(.v) =/(g(.v)).

61. fix) = X-

fiix) = A - 1

_1
,v - 6

,^(a) = A- + 5

63. /(a) =

62. fix) =~
VA

g(A) = A -
I

64. fix) = sni V

gix)=x-

rp In Exercises 65-68, use a graphing utility to graph the function.

Use the graph to determine any .v-vahies at "hich the function

is not continuous.

67. ,i,.(a)

65. fix) = W -A 66. hix) =

2x ~ 4, V < 3

I
A- - 2.V, A > 3

I

cos V -
1

68. /(A)J^^- *<"
5a, a >

1
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In Extrcises 69-72. describe the iiiterval(s) on which the

function is continuous.

69. fix) = —
V- + 1

7(). fix) = xjx + 3

71. fix) = sec
4̂

72. fix)
X + 1

rp Wrilinii In Exercises 73 and 74, use a );raphin<j utility to j;raph

the function on the inter\al [
— 4. 4]. Docs the fjraph of the func-

tion appear continuous on this interval? Is the function contin-

uous on [—4, 4]? Write a short paragraph about the importance

of examining a function unalvtically as «ell as graphically.

73. fix) 74. fix)

Wriliiii; In Exercises 75-78. explain «hy the function has a

zero in the specified inter\al.

75. fix) = i^.v^

76. fix) = X' +

77. ,/(.v) = A- -

78./(.v)= --

- .V-' + 3.

3a - 2.

2 — cos A'.

rv

[1.2]

[0. I]

[0. 77]

rp In Exercises 79-S2. use the Intermediate \alue Theorem and a

graphing utility to approximate the zero of the function in the

interval [0, 1 ]. Repeatedly "zocmi in" on the graph of the function

to approximate the zero accurate to two decimal places. I'se the

root-luiding capabilities of the graphing utility to approximate

the zero accurate to four decimal places.

79. fix) = A' + A - I

80. fix) = a' + 3a - 2

81. ,i^(/) = 2 cos / - 3r

82. liiH) = \ + H - } tan B

In Exercises 83-86, verify that the Intermediate Value Theorem
applies to the indicated interval and find the value of c guaran-

teed by the theorem.

83. fixl = A- -I- A - I.

84. fix) = A- - 6a + S.

85. fix) = X' - a' + X -

X- + X
86. fix)

1

[0. .;]. fie) = 1

1

[0. 3], fie) =

^ [11.-^]. ,/V) =

fie) = 6

87. State how cuntinuil_\ is destroyed at a = c for each of the

followina.

(a) v (b) .y

(C) A

88. Describe the difference between a discontinuity that is

removable and one that is nonremovable. In your explana-

tion, give examples of the following.

(a) A function with a nonremovable discontinuity at A = 2.

(b) A function with a remcnable discontinuity at a = — 2.

(c) A luncuon llial has bolh of the characteristics described

in parts (a) and (b).

89. Sketch the graph of any function / such that

hm /(() = 1 and lim fix) - 0.

Is the function coininuous at a = 3'' Explain.

9(1. If the functions/ and ,(, are continuous for all real v, is/' -I- g
always continuous for all real a? Is //,i,' always continuous

for all real a? If either is not continuous, give an e.\ample to

verify your conclusion.

91. Think About It Describe how the functions fix) = 3-1- [a]

andg(A) = 3 - [-.v] differ.
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92. Telephone Charges A dial-Uuecl lunj: distance call between

two cities costs $1.04 for the first 2 minutes and $0.36 for each

additional minute or fraction thereof LNe the greatest integer

function to write the cost C of a call in terms of the time t

(in minutes). Sketch a graph of this finiciion and discuss its

continuity,

93. Imentoi-y Management The ntnnher of units in inventory in

a small company is given by

't + 2
NU) 25

where t is the time in months. Sketch the graph of this function

and discuss its continuity. How often must this company replen-

ish its inventory?

94. Deja Vu At 8:00 a.m. on Saturday a man begins running up

the side of a mountain to his weekend campsite (see figure). On

Sunday morning at H:()0 \.M. he runs back down the mountain.

It takes him 20 minutes to run up. but only 10 minutes to run

down. At some point on the \\a\ down, he realizes that he

passed the same place at exactly the same time on Saturday.

Prove that he is correct. \Hiiil: Let .v(/) and ; (/) be the position

functions for the runs up and dow n. and apply the Intermediate

Value Theorem to the function /(/) - s(i) - r[i).\

,V,./,/;.nwlA. M,l/f

Saturday S;0() a m .Sunday S:0() .\ M

95. Vuhinie Use the Intermediate Value Theorem to show that for

all spheres with radii in the interval [I. 5]. there is one with a

\olume of 275 cubic centimeters.

96. Prove that if /'is continuous and has no zeros on [ii. /']. then either

/(.v) > for all ,v in [<i. /'] or /(.()< for all > in [u. h].

97. Show that the Dirichlet function

/(.v)
0. if -V is rational

1. if .V is irrational

is not continuous at any real number

98. Show that the function

_ JO- if -^ is rational

\kx. if -V is irrational

is continuous only at .v = 0. (Assume that k is any non/ero real

number.

)

99. The signuni function is defined by

f-l. .V <

sgn(.v) =
I

0. .V =

[l. .V > 0.

Sketch a graph of sgn(.v) and find the following (if possible).

True or False? In Exercises 1(10-103, determine whether the

statement is true or false. If it is false, explain why or "ive an

example that shows it is false.

100. If lim /(.v) = L and /"(c) = L, then / is continuous at c.

101. If /(.v) = ,?(.\) for.v ^ c and ,/(() * g[c). then either/or^? is

not continuous at c.

102. A rational function can have infinitely many .\-values at w hich

it is not continuous.

103. The function /(.v) = |.v - l|/(.v- I) is continuous on

(-CC.OG).

104. Modeling Data After an object falls for t seconds, the speed

5 (in feet per second) of the object is recorded in the table.

/ 5 10 15 20 25 30

s 48.2 53.5 55.2 55.9 56.2 56.3

(a) Create a line graph ot the data.

(b) Does there appear to he a limiting speed of the object' If

there is a limiting speed, identify a possible cause.

105. Creating Models .A swiiiiiiicr crosses a pool ol width /> by

swimming in a straight line Irom (0. 0) lo (2/>. />) (See figure.)

(a) Let / he a function defined as llic v-coordinalc of (lie point

on the long side of the pool that is nearest the swimmer at

any given time during the swimmer's path across the pool.

Determine the function / ami sketch its graph Is it

continuous? Explain.

(b) Let t; be the nuninium distance hctwcen the sw innner and

the long sides of the pool. Determine the function ,;,' and

sketch its graph. Is it continuous? Explain.

106. Prove that for any real number \ there exists v in {
- 7r/2. it/2)

such that tan \ = y.

107. Let /(.v) =
( ^ V + t - - c)/.\, < > 0. What is the domain of

/? How can you define / at .v = in order for./ to be contin-

uous there?

108. Prove that if lim fie + A.v) = /fc), then /' is continuous at r.

109. Discuss the continuity of the function /;(.v) = .v[.»[.

110. Let/|(.v) and/,(.v) be continuous on the closed interval [n. h].

If /i(fl) < /,((;) and /,(/)) > /,(/)). prove that there exists c

between a and /' such that /,(c) = /,(c).

(a) lim sgn(.v) (b) lim sgn(.v) (c) lim sgn(.v)



80 CHAPTER 1 Lmiits and Their Properties

Infiiiite Limits

Uclermine infmite limits from the left and from the right.

Find and slcetch the vertieal asymptotes of the graph of a function.

fix) increases and decreases wiliimil hoand

as V approaches 2.

Figure 1.39

Infinite Limits

Let /' be the fimetinn given by

3
,/(.v)

From Figure 1.3'-) and the table, you can see that /(.v) decreases withniit bound us x

approaches 2 from the left, and /(.v) increases withoiil hound as a approaches 2 from

the rieht. This behavior is denoted as

lim

and

lim

-co /(.\) decreiises ^vithoul bound as v approaches 2 Irom the left.

/(\l mcreases without bound as v approaches 2 Ironi the righl.

v approaches 2 from tlic Icll \ approaches 2 from the right.

X L5 1.9 1.99 1.999 2.001 2.01 2.1 2.5

fix) -6 -30 -300 -3000 ? 3000 300 30 6

/ Ia) ilecieases wiihoul bound /( v} increases w ithout bound.

A limit in which / ( \ ) increases or decreases without bound as v approtiches c is called

an intlnite limit.

Definition of Infinite Limits

Let / be a function that is dctlned at e\ery real number in some open interval

containing < (except possibly at c itself). The statement

lim /l\ ) = 30

means that for each M > there exists a S > such that fix) > M whene\er

< |.v - c
I

< 6 (see Figure 1.40). Similarly, the statement

lim /'(.\ ) = — oo

means that for each A' < there exists a (5 > (1 such that fix) < N whenever

< |.v - c| < iS. To define the infinite limit from the left, leplace

< |.v - c
I

< (^ by c - <5 < .V < c. To define the infinite limit from the

right, replace < |.v - c| < 5 by r < .v < c + §.

Infinite limits

Figure L4()

Be sure you sec that the equal sign in the statement lim /(.v) = oc does not mean

that the limit exists! On the contrary, it tells you how the WmAfaUs to exist by denot-

ing the unbounded behavior of /(.v) as x approaches c.
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:^ EXPLORATION 3;:;

Use a graphing utihty to graph each function. For each function, analytically find

the single real number c that is not in the domain. Then graphically fmd the limit

of /(.v) as .V approaches c from the left and from the right.

a. fix)

c. ,/lv)

.V - 4

(-V - 3)-

b. fix)

d. fix)

1

(.V + 2)=

(a)

V- 1

Example 1 Deternniiing Infinite Limits from a Graph

LIse Figure 1 .41 to dctciiiiiiic the limit of each tunctioii as .v approaches 1 Irom the left

and from the riaht.

(b)

.V- 1

(d)

Figure L41 Each graph luis an ;is\mplotc iit v = 1.

Solution

a. lim
1 — 1 .\

-
1

^c and lim
1

b. lim
«-^l (.V

- n-

.1

A-* r -V
—

1" ^,

1

1

v-l .V - 1

l-iniii Ironi each srIc is cc.

oo and lim —
A-. 1 .V

Limit from each siJe is - ^c.

Vertical Asymptotes

If it were possible to extend the graphs in Figure 1.41 toward positive and negative

infinity, you would .see that each graph becomes arbitrarily close to the vertical line

.V = \. This line is a vertical asymptote of the graph of /'. (You will study other types

of asymptotes in Sections 3.5 and 3.6.)

NOTE If a function / has a \ erlical

asymptote at ,v = c. then / is nai

continuous at c.

Definition of a Vertical AsiiTnptote

If/(.\

right

) approacl

or the left.

cs intinit> (or negati\e infinity)

then the line .v = c is a vertical

IS A" approai

asymptote

'hes c

of the

from the

graph of /'.
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THEOREM 1.15 Properties of Infinite Limits

Let ( ;ind L be tea numlieis atid let / atid t; be futictiotis such that

litii /(a) = oc atid litn ii(\) = L.

1. Sutii or clitTeretiee: litii [/(.v) ± ,i?(.v)] = cc

2. Proditet: litii [/(.v).i,'(.v)] = oc, Z. >

lini [,/Iv),!,'(a)] = -co, L <

3. Qitoiieiil: li,tf^''"'=0
>-. ./(A)

Simikir properties hold for one-sided limits and for t'ltiictions for which the

limit ot'./(.v) as .v approaches c is -oo.

Proof To show that the limit of /(\) 4 i,'(a) is itifmile, choose A/ > 0. You then tieed

to tltid 6 > such that

[fix) + k{x)] > M

whenever <
|
v — el < cS. For simplicity's sake, you can assume L is positive and

let M| = M + 1. Because the limit of /(a) is infinite, there exists S, such that

f(x) > M| whenever < |a - c| < 6,. Also, because the limit of ,i;(.v) is L, there

exists 5, such that J^i,'(a)
~ L\ < \ whenever < |a - c\ < 5-,. By letting 8 be the

smaller of S, and S,. you can conclude that < |a — c| < 5 implies f(x) > M + I

and |,i,'(a) - L\ < 1. The second of these two inequalities implies that i;{x) > L - 1,

and, adding this to the first inequality, you can write

,/lv) + ,i,'(a) > (M + ]) + (L - \) = M + L > M.

So, you can conclude that

lim [fix) + fiix)] = oo.

We leave the proofs of the remaining properties as exercises (see Exercise 73).

Example 5 Determining Limits

a. Because lim 1 = I and lim —
\ .11 A -.() .V

;. you can write

lim
I

I H ;
I

= CO. Pn.|ieity I.Thfoiem I 15

b. Because lim l.v' + I) = 2 and lim (cot ttx) = -co. you can write

.. -V- + I

0. Pinperly .^. Thcurem 1 15

1^1 cot TTX

c. Because lim 3 = ."^ and lim cot a = oc, you can write

lim 3 cot A = CO. Piopeil) 2, Thciircm LI5
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EXERCISES FOR SECTION 1.5

In Exercises 1-4. determine whether fix) approaches oc or

-oc as .V approaches -2 from the left and from the right.

1. fix)

6 —

-f4%̂û-l-^-

3. fix) = tan -

2. fix)
X + 2

I .,-

-

_Ll 1 (
i

. 1

V -3 J

4. fix) = sec-

I i :l

n n

17. fix) = tan 2a 18. fix) = sec 7TA

19. Til) ^ 1
- i 20.

1-

, ,
^a' - a^ - 4v

'^'^' =
3a^ - 6a - 24

21. fix)
X

X- + X - 2

/'(-v)

4x- + 4v - 24

A^ - 2a' - 9a- + ISv

23. ,dA)
_ A-' + 1

;,( .1 '" ^ "^

A + 1 -•• a' + 2a- -1- a -1- 2

25. fix)
v^ - 2x -\5

1,1,)
'' ~ -'

A^ - 5.v^ + A - 5 -^ t^ - 16

27. sil) 28.
sin f '-'-r

rp 111 Kxercises 29-32. determine whether the function has a verti-

cal asymptote or a removahle discontinuity at x = — I. Graph
the function using a graphing utility to confirm your answer.

29. fix) =

31. fix) =

1

A + 1

A- -I- 1

A -I- 1

30. /(a)

32. /Iv)

A- - 6a - 7

.V + 1

sinl.v -I- 1

)

.V -I- 1

ry Sunurical and Graphical Analysis In Exercises 5-8. determine

whether fix) approaches oc or — oc as x approaches -3 from

the left and from the right h\ completing (he tahle. I se a graph-

ing utility to graph the function and confirm your answer.

X -3.5 -3.1 -3.01 -3.001

m
X -2.999 -2.99 -2.9 -2.5

m
5. fix)

7. ,/(a)

6. fix)
I- - 9

fix) = sec—
n

In Exercises .13-48. find the limit.

33. Iini 34.
2 +

lull

35. lim
.V-

.v^l- 1 -A
A-

37. 1

! A- - 9

V- + 2A - 3

36. lini -T

im

39. lim 7-T

! .V- + .V - 6

,V- — .A

.-I (a- + \)ix - 1)

I

38. Iim

40. 1

1

4 A- + 16

6a- -F .V - 1

4v- - 4a - 3

41. lim 1 +

43. lim -

—

,--.n- sin .V

4?. Inn

47. lim .V sec —a
> — I;;

42. lim A

44. lim
1— (rr/2) ' cos A

46. lim
A +

48. lim A- tan ttx
.-1/2

In Exercises 9-28. find the vertical asymptotes (if any) of the

function.

9. .A.v)

11. hix)

13. fix)

ry In Exercises 49-52. use a graphing utility to graph the function

and determine the one-sided limit.

A- - 4

15. git) = -^T^^* /- -t- 1

. _/Iv) =
4

(a - 2)-'

. .?(-v) =
2 + X

A-( 1 - X)

. /(.v) = -4a

A- + 4

/,lvl
2.V - 3

49. ,/(a)
A- 4- A -I- 1

A' - 1

50. /lA
a' - 1

lim fix)

V- + .V + 1

lim ,/(.v)

51. fix
1

V- - 25

lim fix)

52. fix) = sec

lim fix)

s- - 25
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53. In your own words, describe tlie meaning ol an mtniite

limit. Is oc a real nnniber?

54. In your own words, describe wliat is meant by an asymp-

tote of a grapli.

55. Write a rational function with \ertical asymptotes at

.V = 6 and A = -2, and wuh a zero at .v = -^.

56. Does e\er\ rational liuiclion ha\e a \ertical asymptote?

Explain.

57. Use the graph of the fmiction / (see llgure) to sketch the

graph of vfv) = l//(.v) on the mter\al [-2. 3]. To print

an enlarged copy of the graph, go to the website

\\)\\\:iihilli:^niplis.ciiin.

4

-2 -1
-1 - - ' -^^

58. Hoyle's Law For a i|iiantil\ of gas at a constant temperature,

the prcsstire F is in\ersely proportional to the \(Mume \'. Fnid

the Imin of /' as V—>()
' ,

59. A gi\en simi .S' is inversely proportional to I ;. where <

/| < I . Find the limit of S as r^ I

".

60. Rate of Change A patrol car is parked 5() feet from a long

warehouse (see Figuiel The levohing light on top of the car

turns at a rate of 3 revolution per second. The rate at which the

light beam moves along the wall is

) = ,S{)7rsec- f» ft/sec.

(a) Find the rate ; when H is tt/6.

(h) Find the rate / when is it/?i.

(c) Find the limit of / as $—>{it/2]~ .

•-ssSfty^iiiii

61. Illegal l)nii;s The cost in inillioiis of dollars tor a govern-

ment. il asency to seize -x'-Zc of an illeiial drua is

C =
52S,v

100 - v'

(1 < .V < 100.

(a) Find the cost of seizing 25'-/c of the drug.

(b) Find the cost of seizing >iVA ot the drug.

(c) Find the cost of seizing 75% of the drug.

(d) Find the limit of C as .v—> 100 and interpret its meaning.

62. Relativity According to the theory of relativity, the mass /;; of

a particle depends on its velocity r. That is.

where iii„ is the mass when the particle is at rest and c is the

speed of light. Find the limit of the mass as v approaches r .

63. Rate of Change A 25-foot ladder is leaning against a house

(see figure). If the base of the ladder is pulled away from the

house at a rate of 2 feet per second, the top will move down the

wall at a rate of

: ft/sec

7625

where .v is the distance between the base of the ladder and the

house.

(a) Find the rate r when .v is 7 feet.

(b) Find the rale r when .v is 15 feet.

(c) Find the limit of r as .v^25" .

4
64. Average Speed On a trip of cl miles to another city, a truck

dri\'er's average speed was .v miles per hour. On the return trip

the a\'erage speed was y miles per hour. The average speed for

the round trip was 50 miles per hour

(a) Verifv that v

(b) Complete the table.

What IS the domain?

X 30 40 50 60

y

Are the values of y different than you expected'.' Explain.

(c) Find the limit of y as v—>25 " and inteipret its meaning.

rp 65. Numerical and Graphical Analysis Use a graphing utility to

complete the table for each function and graph each function to

estimate the limit. What is the value of the limit when the power

on .V in the denominator is greater than 3?

X 1 0.5 0,2 0.1 0.01 0.001 0.0001

fix)

(a) lim

(c) lim

(b) lim

(d) lim
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rp 66. Numerical and Graphical Analysis CdiiskJci the shaded

region outside the sector of a circle of radius 10 meters and

inside a right triangle (see figure).

(a) Write the area A = JiH) of the region as a function of 0.

Determine the domain of the function.

(b) Use a graphing utilitx to complete the table.

0.3 0.6 0.9 1,2 1.5

no)

(c) Use a graphing utility to graph the function o\er the appro-

priate domain.

(d) Find the limit of A as H-^(tt/2)-\

rp 67. Numerical and Graphical Reasoning A crossed belt connects

a 20-centimeter pulle\ ( lO-cm radius) on an electric motor with

a 40-centiiTietcr pulley (20-cm radius) on a saw arbor (see

figure). The electric motor runs at 1700 re\cilulions per minute.

(a) Determine the number of revolutions per minute of the saw.

(b) How does crossing the belt affect the saw in relation to the

motor'

(c) Let L be the total length of the belt. Write L as a function of

4>. where 4' is measured in radians. What is the domain ol

the function' (Hint: Add the lengths of the straight sections

of the belt and the length of the belt around each pulley.)

(d) LIse a graphing utility to complete the table.

^ 0.3 0.6 0.9 1.2 1.5

L

(f) Find Inn L.
.f—or/:)-

Use a geometric argument as the basis of a second method

of finding this limit.

(a) Find lim L.

20 cm

(e) Use a graphing utility to graph the function over the appro-

priate domain.

True or False? In Exercises 68-71, determine vvhetlier the

statement is true or false. If it is false, explain why or give an

example that shows it is false.

68. If /i(v) is a polynomial, then the function given by

.V - 1

has a vertical asympt<itc at v = 1

.

69. A rational t unction has at least one vertical asymptote.

70. Polynomial I unctions ha\e no \erlical asymptotes.

71. II / has a \erlical asymptote at v = 0. then / is undefined al

A = 0.

72. Find functions / and .,' such that

lull fix) = z/z and lim g{x) = zo

but Inn [/(>! - ,t;fv)] ^ 0.

73. Prove the leniaiiiiug properties of Theorem 1.15.

74. Pro\e that il lim fix) = cc then lim —- = 0.
, -, , ., fix)

75. Prove that it Inn - - then liiii /(.v) does not exist.

SECTION PROJECT

Recall from Theorem 1.9 that the limit of /(.v) = (sin.v)/.v as .v

approaches is 1

.

(a) Use a graphing utility to graph the function / on the interval

— 7T < < TV. E.xplain how this graph helps confirm that

sin.v
lim = 1.

.vwu .V

(b) Explain how you could use a table of values to conllrni the

value of this limit numerically.

(c) Graph g{x) = sin x by hand. Sketch a tangent line at the point

(0, 0) and visually estimate the slope of this tangent line.

(d) Let (.V, sin .v) be a point on the graph of 4' near (0. 0), and write

a formula for the slope of the secant line joining (.v. sin .v) and

(0, 0). Evaluate this formula for .v = 0.1 and .v = 0.01. Then

find the exact slope of the tangent line to t; at the point (0, 0).

(e) Sketch the graph of the cosine function hix) = cos .v. What is

the slope of the tangent line at the point (0. 1
)'.' Use limits to

find this slope analytically.

(f

)

Find the slope of the tangent line to kix) = tan .v at (0. 0).
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REVIEW EXERCISES FOR CHAPTER 1

19. lim
In Exercises 1 ;iiid 2. determine whether the pnihleni

can be solved usin;; preciilculus (ir iC calculus is required. If the

problem can besomed usinj; precalculus, solve it. If the problem

seems to require calculus, explain your reasonin;;. Lise a graph-

ical or numerical approach to estimate the solution.

1. Find llie distance between the pciinls (I.I) and (3. '>] along the

curve y = a-.

2. Find the distance between the points (1,1) and (3, ')} along the

line y = 4.v - 3.

rp BPMi In Exercises 3 and 4. complete the table and use the

residt to estimate the limit. Use a graphln;; utility to graph the

function to confirm vour result.

X -0.1 -0.01 -0.001 0.001 0.01 0.1

fix)

3. Inn
[4/(-V + 2)] 4(./TT^- 72)

21. lim

V-' + 12,S

s .V + 5

1 — cos v

20. Hi

II sni A

sm[(7r/h) + Av] - (1/2)

: a' + 8

4a
m
77/4 tan A

23. lun
A. -11 -i

24. Inn
A, -.1

[HinI: sin(H + ifj] = sin Hco^ 4> + i-"os ()sin (j)\

cos( - + Aa) + 1

LA

[Hint: cof.(H +</)) = cos Wcos <i>
~ "^in "'^in <b\

In Exercises 25 and 26, evaluate the limit given \\mf{x) = -|j

and lim ^(.v) = ^.

^

25. lnn[/(A),i,'(A)] 26. lim [fix) + 2,?(a)]

NumcrkaL Grapbiccil. and Analytic Analysis In Exercises 27

and 2X, consider

lim fix).

In Exercises 5 and 6, use the graph to determine each limit.

A- - li 3a
5. /((a) 6. .i,'(a

-I-- V

(a) Inn //(a) (b) lim //(a) (a) lim ,i;(a) (h) lini'.'lA)

In Exercises 7-1(1. I'md the limit L. Then use the e-fi detlnition

to prove that the limit is L.

7. lim (3 - a)

9. lim (a- - 3)

». Mm v'A

10. lim 9

II. Inn Jr + 2

In Exercises 11-24, tlnd the limit (if it exists).

12. lim 3jv -
1|

13. lim
/ +

;
/- - 4

14. lii

t- - 9

,-..1 I - 3

15. Inn

17. lim

.-4 A - 4

[1/(a + D] - 1

16. lim
./TT^

18. Hi
(i/vTt:^)- 1

(a) Complete the table to estimate the limit.

(b) I'se a graphing utility to graph the function and use the

graph to estimate the limit.

(c) Rati(malize the numerator to find the exact value of the

limit analvticallv.

X 1.1 1.01 1.001 1.0001

fix)

27. /(a)

2S. /(v)

J2x + 1
- ./3

A - 1

1-^
A - 1

[Hint: <(' - /;' = ici - />)(</- + «/> + /)-)]

Free-Fallina Ohjcct In Exercises 29 and 30, use the position

function

,v(/) = -4.9/= + 200

which gives the height (in meters) of an object that has fallen

from a height of 200 meters. The velocity at time t = a seconds

is given bv

lim
sia) - sit)

i-^c, a - t

29. Find the \el()cit\ ol the object u hen I = 4.

30. At v\hat \eloeity will the object impact the ground?
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In Exercises 31-36, find the limit (if it exists). If tiie

limit does not exist, explain wfiy.

31. lim A
v-3- A- - 3

33. lim /(a), where /(a) =

34. lim !,'(a). where gix) =

35. Iini li{i). where hir) =

36. lim /(.?), where /(.?)

32. lim [a - li

(a - 2)^ A < 2

2 - A, V > 2

/\ - A. A < 1

V + 1. A > I

f"- + I, / < 1

i(/ + I). / > 1

-s- - 4,s - 2, .s < -2

,s- + 4.V + 6. .? > -2

In Exercises 37-46, determine the intervals on which the func-

tion is continuous.

37. fix) = [a + 31

r3A- - A

3a-

39. /(a)

41. /(a)

43. fix)

A - 1

0,

V = 1

A = 1

3

A + I

7TA
45. /(a) = CSC ~T-

38. /(a)

40. /(a)

42. fix)

-••''-*'
2a + 2

46. fix) = tan 2a

A -
I

5 - A. A < 2

2a - 3. V > 2

V + I

A + I

47. Determine the value ot r such that ihe function is continuous on

the entire real line.

fix)
V + 3, A < 2

c.x + 6. A > 2

48. Determine the values of h and r such that the lunction is

continuous on the entire real line.

/(.v)
A + 1. I < A < 3

A- + hx + c. Ia - 21 > I

49. Use the Intermediate Value Theorem to show that / (a) =

2a ' - 3 has a zero in the interval [1.2].

rp 50. Cost of Overnight Delivery The cost of sending an dvernight

package from New York to Adanta is $9.80 for the first pound

and $2.50 for each additional pound. Use the greatest mteger

function to create a model for the cost C of overnight deliveiy

of a package weighing a pounds. Use a graphing utility to graph

the function and discuss its continuity.

V- - 4
51. Let fix) = -. -7. Find each limit (it possible).

I
A - 2

1

(a) lim /(a)

(b) lirn fix)

(c) lim/(.v)

52. Let /(a) = ./.v(a - I).

(a) Find the domain of/.

(b) Find lim fix).

(c) Find lim fix).

In Exercises 53-56, find Ihe vertical asymptotes (if

anv) of the function.

53. .vi.x) = 1

55. Jix) =

54. hix) = 4a

(a - 10)-

4 - .V-

56. /(a) = CSC 77A

In Exercises 57-68, find the one-sided limit

Iv- -I- .V + 1

^/. lim
A + 2

59. lim
1
-

1

A -1-
1

A' + 1

61. lim
1 — 1

V- -1- 2.V + 1

v -
1

63. lull
, .(1

('-?]

65. lim
1^11 *

sin 4a

5a

67, lim
CSC 2.V

58.
.V

lini
.-n,':r 2a -

1

60. ,
'" + 1

.J'-'; A^ -

1

62.
-v- - 2a + 1

im
.^

1 A + 1

64
I

,-^:- i/x- -4

66.
sec A

lim
^— II .V

6S. hm ——
.

.11 A .11 -V

69. Cost of Clean Air A utility company burns coal to generate

electricity. The cost C in dollars of remo\ing p'r of the air

pollutants in the stack emissions is

Find the cost of removing (a) 15'^. (b) ^O*^^; . and (c) ^OCr of

the pollutants, (d) Find the limit of C as /> ^ 100 .

70. The function /is defined as follows,

tan 2.V

fix) X 7t

... , ,
tan 2a .^.

.

(a) rind Inn (it it exists).

(h) Can the function / be dethied at a = such that it is

continuous at a = ()'.'
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P'S, 'Problem 'Solving

1. Let P(.\, y) be a point on the parabola v = .v- in the first quad-

rant. Consider the triangle APAO formed by P. A(0, 1), and the

origin 0(0. 0). and the triangle APBO formed by P. B(l. 0). and

the origin.

(SSS)-

3. (a) Find the area of a regular he.vigon inscribed in a circle of

radins 1 . How close is this area to that of tlie circle?

(b) Find the area A„ of an n-sided regular polygon inscribed in

a circle of radius 1 . Express your answer as a function of n.

(c) Complete the table.

;/ (1 12 24 48 96

A„

(d) What number does A„ approach as n gets larger and larger?

(a) E.xpress the perimeter of each triangle in terms of .v.

(b) Let ;"(.v) be the ratio of the perimeters of the two triangles,

_ Perimeter APAO
' ^* ~

Perimeter APBO'

Complete tlie table.

X 4
")

1 0.1 0.01

Perimeter APAO

Perimeter l\PBO

r(x)

(c) Calculate lim ;(.v).

2. Let P(x.y) be a point on the parabola \ = .v- in the first quad-

rant. Consider the triangle /\PAO formed by P. A(0. 1), and the

origin 0(0, 0), and the triangle APBO formed by P, B( 1, 0), and

the oricin.

(a) Express the area of each triangle in terms of .v.

(b) Let (((.v) he the ratio of the areas of the two triangles,

__ Area APgO
" ~ Area APAO'

Complete the table.

X 4 1
1 0.1 0.01

Area APAO

Area I\PBO

a(x)

Figure for 3 Figure for 4

4. Let P(3, 4) be a point on the circle .v- -I- v' = 25.

(a) What is the slope of the line joining P and 0(0, 0)?

(b) Find an equation of the tangent line to the circle at P.

(c) Let Q(x. y) be another point on the circle in the first quadrant.

Find the slope in^ of the line joining P and Q in terms of .v.

(d) Calculate lim m^.

How does this number relate to your answer in part (b)?

5. Let P(5. - 12) he a point on the circle .v- + y- = 169.

15-^
/ 5 --

.
\

'A
-5«.A 5 e/i5

(c) Calculate lim a(x).

(a) What is the slope of the line joining P and 0(0. 0)?

(b) Find an equation of the tangent line to the circle at P.

(c) Let Q{x. y) be another point on the circle in the fourth quad-

rant. Find the slope y», of the line joining P and Q in terms

of V.

(d) Calculate lim ;;/,.

How does this number relate to your answer in part (b)''

6. Find the values for the constants a and /) such that

Ja + bx - y3
lim 73.



P.S. Problem Solving 91

PS.

^ 7. Consider the function /'(.v)

V3 + -v'^^

A - 1

(a) Find tlie domain of /'.

(b) Use a graphing utility to graph the function.

(c) Calculate lim fix).

(d) Calculate lim f{.\).

8. Determine all values of the constant a such that the following

function is continuous lor all real utnnbers.

./(-v)
tan X

X >

X <

9. Consider the graphs of the four functions g,. g,, ",. and g^.

-+— .V

S3

3-
.^'4

2 -

1-

•

1 2 3

For the given condition of the function/, which of the graphs

could be the graph of /"?

(a) lini /(.v) = 3 (b) / is continuous at 2.

(c) lim f(x] = 3

10. Sketch the graph of the function /'(.\ )

(a) Evaluate/(i)./(3), and/(ll.

(b) Evaluate the limits lim fix), liin /(.v), lim fix), and

Urn /-(a).

'"' '"''

(c) Discuss the continuity of the function.

11. Sketch the graph of the function /(.v) = H + [-.v|.

(a) Evaluate /(I), /(0)./(5).and/(-2. 7).

(b) Evaluate the limits lim ^(a), lim /(a), and lim /(a).

(c) Discuss the continuity of the function.

12. To escape earth's gravitational field, a rocket must be launched

with an initial velocity called the escape velocity. A rocket

launched from the surface of earth has velocity i' (in miles per

second) given by

/iGM ^ 2GM / 192.000 .

48

where r,, is the initial velocity, r is the distance froin the rocket to

the center of earth. G is the gravitational constant. M is the mass

of earth, and R is the radius of earth (approximateh 4000 iniles).

(a) Find the value of v„ for which you obtain an infinite limit

for r as v tends to zero. This value of v^ is the escape veloc-

ity for earth.

(b) A rocket launched from the surface of the moon has

velocity v (in miles per second) given by

'1920
+ r,r - 2.17.

Find the escape velocity for the tiioon.

(c) A rocket launched Ironi the surface of a certain planet has

velocity r (in miles per second) given by

'10,600
+ r„- - 6.99.

Find the escape velocity for this planet. Is the mass of this

planet larger or smaller than that of earth? (Assume that the

mean density of this planet is the same as that of earth.)

13. For positive numbers n < Ik the pulse function is defined as

where Hi.\)
.V >

.

is the Heaviside function.
.V <

(a) Sketch the graph of the pulse function.

(b) Find the following limits:

(i) \\mP^,i,ix) (ii) lim f ,,,(a)

(iii) lim P,,,ix)

(c) Discuss the continuity of the pulse function,

1

(iv) lim P^,,i.\)

(d) WhyhUi.x) -P„,,(a) called the unit pulse function?

14. Let a be a nonzero constant. Prove that if

lim fix) = L

then

lim fiax) = L.
I— (V

Show by means of an example that a must be nonzero.



Gravity: Finding It Experimentally

The study of dynamics dates back to the sixteenth century. As the Daik

Ages ga\e way to the Renaissance. Galileo Galilei ( 1564-1642) was one

of the first to take steps toward understanding the motion of objects under

the iiitluence of gravity.

Up until Galileo's time, it was recognized that a falling object moved

faster and faster as it fell, but what mathematical law governed this accel-

erating motion v\as unknown. Free-falling objects move too fast to have

been measured with any of the equipment available at that time. Galileo

.solved this problem with a rather ingenious setup. He reasoned that gravity

could be ""diluted"" by rolling a ball down an inclined plane. He used a

water clock, which kept track of time by measuring the amount of water

that poured through a small opening at the bottom.

We now have relatively inexpensive instruments, stich as the Texas Instnimeius Cakitlator-Based

(CBL) System, that allow accurate position data to be gathered on a free-falling object. A CBL System

track the positions of a falling ball at time intervals of (1.02 second. The results are shown below.

Lnhomtoiy

was used to

Time
{see)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0. 1

S

0.20

0.22

Height
(meters)

0.290864

0.284279

0.274400

0.260131

0.241472

0.219520

0.189885

0.160250

0.126224

0.086711

0.045002

0.000000

Veloeity

(meters/see )

-0.16405

-0.32857

-0.49403

-0.71322

-0.93309

-1.09409

-
1 .47655

-1.47891

-
1 .69994

-1.96997

-2.07747

-2.25010

QUESTIONS

1. Use a graphing utility to sketch a scatter plot of the positions of the falling ball. What type of

model seems to be the best fit? Use the regression features of the graphing utility to find the

best-fitting model.

2. Repeat the procedure in Question 1 for the velocities of the falling ball. Describe any relation-

ships between the two models.

3. In theory, the position of a free-falling object in a vacuum is given by s = 2gt- + i',/ -I- .v„.

where g is the acceleration due to gravity (meters per second per second), t is the time

(seconds), r„ is the initial velocity (meters per second), and .v,, is the initial height (meters).

From this experiment, estimate the value of ^. Do you think your estimate is too great or too

small? Explain your reasoning.

Tlie eoinepts presented here will he exph^red fiirtlier in this ehapler For (in extension of lliis

applieation. see Lah ,i /;; the liih series that aeeompiniies this text at college. hnico.com.
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Excerpted from "Into the Stratosphere: Skysurfing Over Mission Bay"

from wildca.com

Who would dare JLimp out of a plane with a bulky.

75-pound IMAX camera strapped to their chest? The

answer turned out to be Joe Jennings, who is not only a

skysurfer but also an innovative aerial cinematographer

in his own right. Jenning.s designed a special harness to

hold the camera, as well as a massive wing-suit—with

fabric spanning from his knees to his wrists—to slow

his rate of descent.

The pitfalls were enormous. Explains Krenzien: (Mark

Krenzien, writer/producer) "One of the major problems

is how do you balance the fall-rate of a photographer

with the fall-rate of the surfer. Obviously, they have to

be at fairly close levels to one another in the sky. In this

case. Joe's winged suit and extraordinary skill made the

difference.""

The work of Joe Jennings, a renowned aerial cameraman, can be

seen in many films, television shows, and commercials.

93
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Differentiation

Isaac Newton (1642-1727)

In addition to liis work in calculus. Newton

made revolutionary contributions to physics,

including the Universal Law of Gravitation

and his three laws of motion.

Tangent line to a circle

Figure 2.1

The Derivative and the Tangent Line Problem

• Find the slope of the tangent line to a curve at a point.

• U.se the limit ciefinition to find the derivative of a function.

• Understand the relationship between differentiability and continuity.

The Tangent Line Problem

Calculus grew out of four major problems that European mathematicians were work-

ing on during the se\'enteenlh centin-y.

1. The tangent line problem (Section 1.1 and this section)

2. The velocity and acceleration problem (Sections 2.2 and 2..-^)

3. The minimum and ma.ximuiu problciu (Section ,i.l

)

4. The area problem (Sections 1.1 and 4.2)

Each problem involves the notion of a limit, and we could introduce calculus with any

of the four problems.

We gave a brief introduction to the tangent line problem in Section 1.1. Although

partial solutions to this pioblem were given by Pierre de Fermat (1601-1665).

Rene Descartes (1596-1650). Christian Huygens (1629-1695), and Isaac Barrow

(1630-1677), credit for the first general solution is usually given to Isaac Newton

(1642-1727) and Gottfried Leibniz (1646-1716). Newton's work on this problem

stemmed from his interest in optics and light refraction.

What does it mean to say that a line is tangent to a cur\c at a point? For a circle,

the tangent line at a point P is the line that is pcipendicular to the radial line at point

P, as shown in Figure 2.1.

For a general cur\e. however, the problem is more difficult. For exaiuple, how

would you define the tangent lines shown in Figure 2.2? You might say that a line is

tangent to a cur\e at a point P if it touches, but does not cross, the curve at point P.

This definition winild work for the first curve shown in Figure 2.2, but not for the

second. Or you might say that a line is tangent to a curve if the line touches or inter-

sects the curve at exactly one point. This definition would work for a circle but not for

more siencral curves, as the third curve in Fieure 2.2 shows.

.V =.f(.v)

V =/(.v)

FOR FURTHER INFORMATION For

more information on the crediting of

mathematical discoveries to the first

"discoverer." see the article

"Mathematical Firsts—Who Done It?""

by Richard H. Williams and Roy D.

Mazzagatti in Mathematics Teacher. To

view this article, go to the website

H-wtv. matharticles.com.

Tangent line to a curve at a point

Figure 2.2

EXPLORATION

Identifying a Tangent Line Use a graphing utility to sketch the graph of

fix) = 2-v' - 4.V- + 3.V — 5. On the same screen, sketch the graphs of

y = X — 5, y = 2x — 5, and y = 3.v — 5. Which of these lines, if any, appears

to be tangent to the graph of/' at the point (0, —5)? Explain your reasoning.
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The Tangent Line Problem

In 1637. malhematician Rene Descartes slated

this about the tangent line problem:

"And 1 dare say that this is not only the most

useful and general problem in geometry that 1

know, but even that I ever desire to know."

(r + A.v./(( + Aa))

/U + Aa)-/(i ) = Ay

The secant line through (c. /(el) and

(r + Av./(.' + Av))

Figure 2.3

Essentially, the problem of finding the tangent line at a point P hoils down to the

problem of finding the slope of the tangent line at point P. You can approximate this

slope using a secant line through the point of tangency and a second point on the

curve, as shown in Figure 13. If (c.fic)) is the point of tangency and

(f + A.v. /((' + A.v)) is a second point on the graph of /; the slope of the secant line

through the two points is given by substitution into the slope fornitila

/;; =
Vt - V,

tV + A.V) - ,/(()

(c + A.v) - c

f(c + A.v) - f{c)

A.v

Change in y

Ciianse in v

Slope ot secant line

The right-hand side of this equation is a difference quotient. The denominator Av is

the change in x. and the numerator A v = fie + A.v) -
/ (i) is the cliange in v.

The beauty of this procedure is that you can obtain more and more accurate

appro.ximations to the slope ol the tangent line by choosing points closer and closer to

the point of tangency. as shown in Figure 2.4.

Aa (c. fie) /

T^ (( ./111) /
/AV

A.v ->

Tangent line

Tangent line approximations

Figure 2.4

(l. /(( )l

,Av

Av

Ic. /Ull

A.v -^

;av

Av

(./(, 11 /;av

Aa

(f. /(t')l

T.iimcnt line

Definition of Tangent Line with Slope m

If/ IS defined on an open interval containing c. and if the limit

,. Av ,. /(r + A.v) -/(c-)
lull —^ = Inn

J
= m

Ai— 11 A.V Ai— A.V

exists, then the line passing through (c. /(c)) with slope /;; is the ttmgent line to

the graph of/ at the point (c, /(c)).

The slope of the tangent line to the graph of/ at the point (c. /(c)) is also called

the slope of the graph of/ at .v — c.

Tills use (if the word secant eniiies fmm rhe Latin secare. tiieuiiliig to eiit. ciiiil Is not u rcfereiiee

to the tri^oiioiiietrie ftinetioii of the same name.
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/

3- -
A.v =

/
2-

1
- -

A V = 2 /

111 = 2 /
/(2. 1)

1 / - 3

Exaiitple 1 The Slope of the Graph of a Linear Function

Find tlic slope of the grapli of

,/Xv) = 2.V - 3

at the point (2. 1).

Solution To find tlie slope of the graph of /'when c = 2. you can apply the defini-

tion of the slope ola tangent line, as follows.

/(2 + A.v) -/(2) _ ,. [2(2 + A.v) - 3] - [2(2) - 3]
Inn

A.v^l) A.V
lim

= lim
A.<^(l

2M-
= liin —

—

= lim 2
A.1^0

A.V

4 + 2A.V -3-4 + 3

A.v

The slope of / at (2. 1 ) is ni = 1.

Figure 2.5 The slope of / at d . /(c)) = (2. 1 ) is /;; = 2. as show n in Figure 2.3.

NOTE In Example I. ihe limit detlnitiun of Ihe slope of / agrees with the definition of the

slope of a line as discussed in .Section P.2,

The graph of a linear fiinetion has the same slope at an\ point. This is not true of

nonlinear funeti(tns. as can be seen in the following example.

The slope of / at an\ point ic. f(c)) is

Figure 2.6

Example 2 Tangent Li:nes to the Graph of a Nonlinear Function

Find the slopes of the tangent lines to the graph of

/(.v) = .V- + I

at the points ((I. 1 ) and (-1.2). as shown in Figure 2.6.

Solution Let (c, /(t)) represent an arbitrary point on the graph of /'. Then the slope

of the tangent line at ((,/(()) is given by

,. /(( + A.v) - f(c) ,. [ic + A.v)- + 1] - (<- + 1)

hm '
;

' = lim ;

A.v^O A.V A.v-^0 A.V

(- -r J.C
= lim

,. 2c-(A.v) + (A.v)
= hm ;

A . —II A.V

= lim (2c + A.v)
Ai— (I

(A.v) + (A.v)' + I
- (•- -

I

A.V

So, the slope at any point icfic)) on the graph off is m = 2c. At the point (0. 1 ). the

slope IS ni = 2(0) = 0. and at (- I. 2). the slope is /;; = 2( - 1 )
= -2.

NOTE In Example 2. note that < is held constant in the limit process (as A-\ ^0).
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The graph iil / has a \eiUcal tangent inie at

((./(()l.

Figure 2.7

The definition of a tangent line to a curve does not cover the possibility of a

vertical tangent line. For vertical tangent lines, you can use the following definition.

If /is continuous at c and

tic + A.v) -tic)

Av
lim
A.—

I

fic + A.v) - ,/(

A.v

the \ertical line v = < passing through (t . /(c)) is a vertical tangent line to the graph

of/. For example, the function shown in Figure 2.7 has a vertical tangent line at

((',/(()). If the domain of/ is the closed interval [</, /;], you can extend the definition

of a veilical tangent line to include the endpoints hy considering continuity and

limits from the right (for v = a) and from the left (for v = h).

The Derivative of a Function

You have now arrived at a crucial point in the studv ot calculus. The limit used to

define the slope of a tangent line is also usee! to detine one of the two lundamcntal

operations of calculus

—

dil't'erentiation.

Definition of (lie ncri\;)tiv(' of a Function

The derivative of / at a is given by

/Iv + A.v) - /(.v)

/ (v) = hm ;

A, -II A.v

provided the limit exists. For all .v for v\hicli this limit exists, /
' is ; function

of .v.

Be sure you see that the derivative of a fiinclion e)f .v is also a function ol v. This

"new" function gives the slope of the tangent line to the graph ol / at the point

(.V, /'(.v)), provided that the graph has a tangent line at this point.

The process of finding the derivative of a function is called differentiation. A
function is differentiable at v if its derivative exists ai v and differentiable on an

open interval («, h) if il is differentiable at everv point m the interval.

In addition to /'(.v), which is read as "/ prime of v," other notations are iisetl to

denote the derivative of y = ,/(-v). The most common are

/'(-v).

ci.\'

y'. -[/(.v)], A[y].
NnUilion tor deri\ati\es

The notation dx/dx is read as "the derivative o\ \ with rcspecl la .v." Using limit

notation, you can write

dx Av
-^ = lim —^
dx -Vi-ii A.v

: lim
A.i->l)

,/"(.v + A.v) - f(x)

A.v
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Exiuiiple 3 Finding the Dfrivativc by the Limit Process

STUnV TIP Tlic kc> 10 linding the

derivative of a function is to rewrite the

difference qnolient so that A.v does not

occur as a laclor of ihc denoniniiitor

Find the derivative of /(.v) = a"" + 2.v.

Solution

,,, , ,. /Xv + A.v) - fix)
f (a) = iim 7 ^

IX-hnilion i>l Jenvalive
Ai-,(1 Aa

Iim
A>— (I

litii

11m
A-v^ll

Iim
Ai— (1

(a + Aa)-' + 2(a + Aa) - (a- + 2a)

Aa

a' + 3a-Aa + 3a-(Aa)- + (Aa)' + 2a + 2Aa

Aa

3a-Aa + 3a(Aa-)- + (Aa-)-' + 2Aa

Aa

Aa[3a- + 3a-Aa + (Aa)- + 2]

Aa

= Iim [3a- + 3aAa + (Aa)- + 2]
A->— II

= 3a- + 2

Reiiiemhcr that tlie derivative of a function /is itself a Itinction, which can be used

to find the slope of the tangent line at the point (a,/(a)) on the graph o\' f.

Exaiiiplf 4 Using the Dirivalivf to Find the Slope iii .i Point

Find /'(a) for /(a) = Va. Then Find the slope of the graph of / at the points (I.I) and

(4, 2). Discuss the behavior of /' at (0. 0).

3- -

- (4.2)

2 -

(1, ii ^ 1

/;/ =
4

/ ^'/^ ni
-_ 1

/(A = \/^

(0,0) 1
1 3 4

The slope of /_at (v. /(>)). v > (Lis

Figure 2.8

Solution Use the procedure for rationali/ing numerators, as discussed in Section 1.3.

/'(v + Aa) - fix]
f [Xl = Iim ' :

'

neliiiilion nl Jenvalive
aa-ii A.v

Iim
A.> -II

= Iim
A.1 .11

= Iim

Jx + A.v - y/y

A.v

v'A + A.V - s'.V \ Jx + A.V + Va

A.v /\y.v + A.v + s/x

[x + A.V) - .V

.^1 •" A.vIVa -I- Aa -I- VA
A.v

A'-" A.v(v/v + A.v + Jx

lini
—

,
^

^1-" x/.v + Aa + V.v

1

2.^

At the point (I, I), the slope is /'(I) = \. At the point (4,2), the slope is /'(4) = j.

(See Figure 2.S.) At the point (0.0) the slope is uiidefined. Moreovet". because the

limit of /'(.v) as a^O from the right is infinite, the graph of/' has a vertical tangent

line at (0, 0).

^^P iiulicales thill in llic Intcracti\e 3.(1 CD-ROM iiiiil hiterncl 3.0 vcrsioiix of this Icxt

(aniilahle iit college.hnico,coin l you will fiiil an Open I£xpl<niilion. which fiirilicr explores this

i'xiiniplr ii.siiii; the eonipiitcr iili^ehni •.xMcnis Maple. Malhcad, Mathenialica. oiul Deri\e.
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In many applications, it is convenient to use a variable other than v as the inde-

pendent variable, as shown in Example ."i.

rt^-i Example !) Fmdmg the Derivative of a Fimttion

Find the derivative with respect to I for the function y = 2/t.

Solutidii Considering y = fit), you obtain the following.

Dehiiition dI Lleri\alive

Jy ,^ fit + A?) - fit)
-j- = lini

^

tit A(-(i A;

= -2/ + 4

At the point (1.2) tilt lint r = - 2r + 4 is

tangent to the graph of r = 2/ /.

Figure 2.9

t + ^t t

A/— II At

2t - lit + At)

tit + At)

A/— II At

-2At

Ai^ll Atit){t + At)

Af— II

1

t-

tit + At)

fil + A/) = 2/{i + A;l and/(n = 2/r

Combine tVaclions in numerator.

Di\ idc oul comniiin tacleir ot A/.

Simplit'v-

lEvaluale limn as A/ — (I

TECHNOLOGY A graphing utility can be used to reinforce the result given in

Example ."i. For instance, using the formula dv/dt = —2/t-. you know that the

slope of the graph of \' = 2/t at the point (1,2) is in = — 2. This implies that an

equation of the tangent line to the graph at ( 1 . 2) is \ - 2 = - 2(; —
I ) or

V = -2/ + 4, as shown in Figure 2,9.

Differentiability and Continuity

The following alternative limit form of the derivative is useful in investigating the

relationship between differentiahilitv and continuity. The derivative of / at c is

I >, /(Ml

fM-tU)

As X approaches c. the secant line approaches

the tangent line.

Figure 2.10

f\c) = lim
,/lv) ~f(c)

Allernalive lorm ot denvalive

provided this limit exists (see Figure 2.10). (A proof of the equivalence of this form

is given in Appendix B.) Note that the existence of the limit m this alternative form

requires that the one-sided limits

,. ,/(.v) - fie)
, ,.

fix) -fie)
hm and hm
V—

I

.V — C >— 1-
.V — c-

exist and are equal. These one-sided limits are called the derivatives from tlie left

and from the right, respectively. We say that / is differentiable on the clo.sed inter-

val [a, b] if it IS differentiable on (</, h) and if the derivative from the right at ii and the

derivative from the left at /) both exist.
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yt-v) = iaj

,1

The gri'attM intL'jitr fiiiiL'tKiii is not diflcrt'ii-

liable at .v = 0. beeaiise il is not KiiUiniKiiis

at .V = 0.

Figurt 2.11

If a function is not continuous at .v = c. it is also not diffcrentinble at x = c. For

instance, the greatest integer function

./(.v) = M
is not continuous at v = (I—hence, it is luit diffcrentiable at v = (see Figure 2.11).

You can \erify this hy obser\ ing that

,. ./ (v) - ./ (0) ,. M -
lini — = lini = oo
1—1) .V — I— I) -v

and

,. ./lv)-/(0) ,. H -
,,hm — = lim = 0.

V— < .V — 1— I)
• X

Derivative Irnm the lefl

Derivatne from the riiihi

Although it is true that differentiability implies continuity (as we will show in

Theorem 2. 1 ). the converse is not true. That is. it is possible for a function to be

continuous at .v = i and nm dirfcrentiable at .v = c. Examples 6 and 7 illustrate this

possibility.

ff^^ Exuniplc 6 A Graph with a Sharp riirn

/ is mit dilTereiiliable at v = 2. because the

derivatives Irnm the KTl and from the right

are nut equal.

ligurc 2.12

The function

/Iv) = |.v - 2

1

shown in Figure 2.12 is continuous at .v = 2. However, the one-sided limits

,„,, fM-tV-) _ ,„„ l-v
- 2| -

lim
A^2 .V

and

/(.v)^,A2) l-v
- 2] -

lim ^ T— = lim —— = 1

1 Deri\ alive from the left

Dcrivalne from Ihe riiih

are not equal. So. / is not dilteientiable at .\ - 2 and the graph oif does not have a

tangent line at the point (2. (1).

Example 7 A Graph with a Vertical Tangent Line

/ is not dilTereiUiable at V ^ I), because/

has a vertical tangent at v = 0.

Figure 2.13

The function

,/(.v) = .v'/'

is continuous at v = 0. as shown in Figure 2.1.^. However, because the limit

,. /(.v) - /'(O) ,. -v' ' -
hm ^ — = lim
1—11 .V - i-ii .V

= lim ^7:
1-1) .V-'-'

is infinite, you can conclude that the tangent line is vertical at .v = 0. So, / is not

dilTercnliable at v = 0. Lg

From Examples 6 and 7. you can see that a function is not diffcrentiable at a point

at which its graph has a shaip turn or a vertical tangent.
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f;
TECHNOLOGY Some graplinig ulil^

f ities, such as Derive. Maple, Mathcad,

i\ Matheinatica. and the Tl-89, perform

•
! symboHc differentiation. Others

j: perform numerical differentiation hy

! finding values of derivatives using the

formula

/'(v)
fix + A.v) - fix - ^x)

2A.V

i
where A.v is a small number such as

I-
0.001. Can you see any problems with

j;;
this defmition? For instance, using this

|;
definition, what is the value of the

L' derivative of /(.v) = |.v[ when v = 0".'

THEOREM 2. 1 Differentiability Implies Continuity

It / is tliffcrentiable at .v = c. then / is continuous at .v = c.

Proof You can prove that/ is continuous at .v = c by showing that /(.v) approaches

f(c) as x^>c. To do this, use the differentiability of / at .v = c and consider the

following limit.

iim[/(.v) -/(c)] = hm
/(.v) -fie)

X — c

''.. f{x)-f(c)
hmlim (-V — c)

= (0)[/'(c)]

=

Because the difference /(.v) —/(c) approaches zero as .v—>c. you can conclude that

lim fix) = fie). So./ is continuous at .v = c.

You can stniimarize the relationship between continuity and differentiability as

follows.

1. If a function is diffeientiable at .v = c. then it is continuous at .v = c. So. differen-

tiability implies continuity.

2. It is possible for a function to be continuous at .v = c and not be diffeientiable at

,v = c. So, continuity does not imply differentiability.

EXERCISES FOR SECTION 2.1

In Exercises 1 and 2. estimate the slope of the graph at the point

(.v.v).

1. (a)
-

2. (a)

In Exercises 3 and 4. use the graph shown in the Ilgurc. To

print an enlarged copy of the graph, go to the website

WW w. niatli!;raphs.ci)iii

.

2 14 5 6

3. Identify or sketch each of the quantities on the figure,

(a) /(I I and/(4) (b) /(4) - /(I I

(c,v = ^<^^,.v-l) + /fl,

4. Insert the proper inequalil> symbol (< or >) between the given

quantities.

/(4) -/(I) /(4) -/(3)

4-1 4-3(a)

(b)
/(4) - /( 1

)

4 - 1

/'(I)
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Dit'ferentiatioii

In Exercises 5-10. lliui the slope of the tangent line to the graph

of the function at the specified point.

5. /(a) = 3 - 2a. (-1.5)

6. gi.x) = iv+ 1. (-2.-2)

7. g(x) = A" - 4. (1, -.^)

8. ,.,'(a) = 5 - A^ (2. 1)

9. fii) = 3; - t-. in, 0)

10. hit) = I- + 3, (-2.7)

In Exercises 1 1-24. find the derivative by the limit process.

11. /(a = 3 12. gix) = -5

13. /(a = -5a 14. fix) = 3a- + 2

15. his = 3 + p 16. fix) = 9 - \x

17. /(A = 2x- + A - 1 18. fix) = 1
- A-

19. /(A = a' - 12a 20. fix) = A-' + A-

21. ,/(A
1

22. fix) =
^

24. fix) = ~
V - 1

23. /'(a- = Jx + 1

rp In lAercises 25-32, (a) find an equation of the tangent line to the

graph of/ at the indicated point, (hi use a graphing utility to

graph the function and its tangent line at the point, and (c) use the

derivatire feature of a graphing utility to confirm your results.

25. fix) = A- +1. (2.5)

26. /(a) = A- + 2a +1, (-3.4)

27. /(a)=a-'. (2,8)

28. fix) =.v' + I. (1.2)

29. /(a) = ^/a. (1,1)

30. / (v) = v'A^

31. ,/ (A-

32. fix

)
= x +

X + r

1. (5,2)

(4.5)

(0. I)

In Exercises .Vl-36, find an equation of the line that is tangent

to the graph off and parallel to the given line.

FiiucUiin

33. fix) = x^

34. fix) = A' + 2

35. fix) = ~

Line

36. fix)
1

^A - 1

3.V - y + I
=

3.V - y - 4 =

A + 2\ -6 =

A- + 2v + 7 =

37. Tlie tant;ent line to the grapli of y = i;(a) at the point (5,21

passes through the point (9, 0). Find ^(5) and t;'(5).

38. The tangent line to the graph of y = hix) at the point (-1,4)

passes through llie point (3, d). Find /i( - 1 ) and /;'(—! ).

In Exercises 39—12, the graph of/ is given. Select the graph
^

of/'.

39. y 40. '

3 - -
1
/

\
5- /

1 -

1
-

1
I t

y/ \
4-

3 -

//

Illy
3 -2 /
/ ^ -

_ 1 2 3

1 [

V^
\ 1

1 » V

/ -3 - -

1 1

-3 -2
1

-1
1 1 1

-^

.12 3

41. y 42. \'

.5- - 5--

4- - 4-1-

3- - \ •- ,/
2 -

1

-

]

^--^^ \
<<Y^..-1 _ 1 2 3 4 5 -3 -2 -1 - 1 2 3

(a) y (b)
\"

5- 4--

4- 3-L

3-

j _

/

'

;l^ I 1
1

1 1 1 > r
1 1

-3 -2
i

-1
1 1 1

*" -i

_ I 2 3

-1
—1

—

\—i—1—1— 1

_ 1 2 3 4 ,S

(c)

3-

(d)

A /
1 -

1 ^

1 1 j

./
1

-/-,.,
I

1
1 . r

1 1 1

-3-''
,

1 1
*^ *

,12 3 -3 -2

~v
1 1 1

•" -^

_ 1 2 3

_2-

-3 -

i
U-

43. Slvctch a giaph of a lunct on whose derivative is always

negative.

44. Sl<etch a graph ol a fund on whose derivative is always

positive.

45. Assume that /'(f) = 3. Find/'(-i) if (a)/ is an odd func-
|

tion and if (b) / is an even unction.

46. Determine whether the limit yields the i.lcri\ative of a

differentiable function/ E\ plain.

,. fix + 2A.V) - /(.

(a) Inn ^

,

)

^^ , fix + 2) - fix)
(h) lull ,

A. -II A,v

, , ,, /(a + A.V) -fix
(c) hill —

A. -II 2A.V

- \x)

,„ ,

/(A + A.V) -fix
(d) hill T

A,i^(i m-
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In Exercises 47 and 48, find equations of the two tangent lines

to the graph of/ that pass through the indicated point.

47. /(a) = 4_v - A- 48. fix) = X-

rp' Graphical Reasuning In Exercises 53 and 54, use a graphing

utihty to graph the functions/and g in the same viewing window
where

X+*.v

49. Graphical Reasoning The figure shows the graph of g

'

(a) gW =

(b) g\i) =

(c) What can you conclude about the graph of i; knowing that

g'(l)=-j'

(d) What can you conclude about the graph of ,!, knowing that

g'(-4) = ?'

(e) Is g(6) — g{4) positive or negative? Explain.

(f) Is ii possible to find g{2) from the graph? Explain.

r^ 50. Graphical Reasoning Use a graphing utility to graph each

function and its tangent lines when .v = -
1 . .v = 0. and a = 1

.

Based on the results, determine whether the slope of a tangent

line to the graph of a function is always distinct for different

values of a.

(a) /(a) = A= (b) ,£;(a) = a-'

^ Graphical, Nunierieat. and Analytic Analysis In Exercises 51

and 52. use a graphing utility to graph/ on the Interval [
— 2, 2].

Complete the table by graphically estimating the slopes of the

graph at the indicated points. Then evaluate the slopes analyti-

cally and compare your results with those obtained graphically.

X -2 -1.5 -1 -0.5 0.5 I 1.5 2

/w
fix)

51. fix) = \.x' 52. fix)

gU) = fix + O.tll) -fix)

0.01

Label the graphs and describe the relationship between them.

53. fix) = 2a - a' 54. fix) = 3v.v

In Exercises 55 and 56, evaluate /{2) and /2.1) and use the

results to approximate/'(2).

55. fix) = a(4 - a) 56. /(a) = ix-'

rp Graphical Reasoning In Exercises 57 and 58, use a graphing

utility to graph the function and its derivative in the same view-

ing window. Label the graphs and describe the relationship

between them.

57. fix) = 58. fix) = — - 3a
4

rp Writing In Exercises 59 and 60. consider the functions/ and

Si, where

/(2.^v)-/(2)
,^_^,^^.,^,_

(a) Use a graphing utility to graph / and S^, in the same

viewing window for Ax = I, 0.5, and O.I.

(b) Give a written description of the graphs of S for the differ-

ent values of A.i In part (a).

59. fix) = 4 - (a - 3)- 60. fix) = A +
1

In Exercises 61-70, use the alternative form of the derivative to

lind the derivative at .v = c (If It exists).

61. ,/(a) = A- - 1. c = 2 62. ,i,'(a) = .v(a - 1). t = 1

63. fix) = A-' -I- 2a- +1, c = -2

64. fix) = A-' -I- 2a. c = 1 65. ,i;(a) = V\x\. c =

66. /(.v) = 1/a. c = 3 67. fix) = ix - 6)-''-'. c = 6

68. ,^'Ia)
= (a + 3)'/-\ c = -3

69. /7(.v) =
I
A + 5|. f = -5

70. fix) = \x - 4|. c = 4

In Exercises 71-80, describe the .v-valucs at which/ Is differen-

tiable.

71. fix) = \x + 31 72. fix) = \x- - 9

1
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73. fix)
X + 1

75. fix) = {x - 3)-/-^

1 2 3 4 5 h

77. fix) = Jx - 1

12 3 4

79. yiv

74. /(a)
A -

I

5 -

4-

3 -;:k
-2-1

, 1 1 1 1

>

76. i\x)

78. /(a)

1

5 - _

:|

4^
:

/
3 -L

\J - ^
1

1
1 1_Jkl 1 ! ! >

-4 hL\ 3 4

1-

80. j{x)

III Kxercises 81-84, find the derivatives from the left and from

the right at x = 1 (if they exist). Is the function differentiable at

V =1?

81. /(a)

83. / (a)
X < 1

A > 1

82. /(a) = J\ - A-

84. /(a)
A,

A-.

A < 1

A > 1

In Kxercises 85 and 86, determine whether the function is

differentiable at a- = 2.

85. /(a)
|A- + 1.

l4v-3,

A < 2

A > 2
86. /(a)

iv+ 1. A- < 1

X > 2

vy S7. Graphical Reasoning A line with slope /;i passes ihrDiigli Ihe

poini (0. 4) and has llie equation y = ;);a + 4.

(a) Write the distanee d between the hne and ihe point (3. I las

a fuiietion of in.

(b) Use a graphing utility to graph the function J in part (a).

Based on (he graph, is the funclion differentiable at every

value of ;»' If not. w here is il not differentiable?

88. Conjecture Consider Ihe fuiiclions /(a) = a- and ,i;(a) = a'.

(a) Graph / and /
' on the same set of axes.

(b) Graph i; and ,:,' ' on the same sel of axes.

(c) Idenlify any pattern between the fiMiclions / and g and their

respective derivatives. Use the pattern to make a conjecture

about li'ix) if /((-\) = a", where n is an integer and /; > 2.

(d) Find / '(a) if /(a) = v"*. Compare the result with the conjec-

lure m p,iri (el. Is this a proof of your conjecture? Explain.

True or False? In Kxercises 89-92. determine whether the

statement is true or false. If it is false, explain why or give an

example that shows it is false.

89. The slope ol the tangent line to the diflerentiable function / at

Ihe poml (2, /(2)) is

fix + Aa) ~ fix)

A A

9(1. If a lunclioii is coniimious al a |ioinl. then it is ditferentiable at

Ihal poml,

91. If a funclion luis derivatives from both Ihe right and Ihe left al

a point, then it is difteieiuiable al thai poml.

92. If a funclion is differentiable al a poml. Ihen il is continuous at

thai poinl.

93. Let fix)

1 1

l-v sin - A =^ u , lA- sin X ^
A and c(a) =

I

3-

[O. A = (1 [(). A =

Show that / is continuous, hut nol diflerenliable. al a = 0.

.Show that g is differentiable al 0. and find i,' '(()).

/"V' 94. Writing Use a graphing ulilily lo graph Ihe Iwo functions

fix) = X- + 1 and "(a) = |.v| + 1 in the same viewing window.

Use Ihe zoimi and Inuc features to analyze the graphs near the

point (0.1). What do you observe? Which function is

differentiable at this point? Write a short paragraph describing

Ihe geometric significance of differentiability at a point.
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Basic Differentiation Rules and Rates of Change

• Find the derivative of a funclion using the Constant Rule.

• Find the derivatixe of a function using the Power Rule.

• Find the derivative of a function using the Constant Multiple Rule.

• Find the derivative of a function using the Sum and Difference Rules

• Find the derivative of the sine function and of the cosine function.

• Use derivatives to llnd rates of chance.

The .slope of a

liorizontal line

./(-V) = l

The (Jeru alive of;

constant function

isO.

The Constant Rule

Figure 2.14

NOTE In Figure 2.14. note that the

Constant Rule is equivalent to saying

that the slope of a horizontal line is 0.

This demonstrates the relationship

between slope and derivative.

The Constant Rule

In Section 2. 1 you used the limit definition to find derivatives. In this and the next two

sections you will be introduced to several ""differentiation rules" that allow voti to tnid

derivatives without the direct use of the limit definition.

THEOREM 2.2 The Constant Rule

The derivative of a constant function is 0. That is. if c is a real number, then

'/ r 1

ax

Proof Let /(.v) = c. Then, by the limit definition of the derivative,

d

d.\
[c-]=,n.v)

It 111

fix + Av) - fix)

Av

= lim —:
—

A.V— II Av

= 0. E

Example 1 Using the Constant Rule

FimcUon

a. v = 7

b. ,/(.v) =

c. s(i) = -3

d. V = kn". k is constant

Derivative

dy _

dx
~

fix) =

s'it) =

v' = u£]

EXPLORATION

Writing a Conjecture Use the definition of the derivative given in Secfion 2.1

to find the derivative of each of the following. What patterns do you see? Use

your results to write a conjecture about the derivative of /(.v) = .v".

a. /(.v)

d. fix)

b. fix

e.

fix) = .v3

fix) = .v'/2 f. fix)
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The Power Rule

Belore proving the next rule, we review the proceduie for expanding a binomial

(.V + A.v)- = .V- + IvAv + (Av)-

(.V + A.V)-' = A-' + 3.V-A.V + .\v(A.v)^ + (Av)'

The general binomial expansion lor a positi\'e integer /( is

11(11 - l).Y" -

U + Av)" =.v" + /a-"-' (Av) {\\)' + • + (Av

(A.v)- is a factor of these tcnns.

This binomial expansion is used in proving a special case of the Power Rule.

THKORKM^.l 'n.( Pow •r Kill

II' /; is a rational ninnbei . then the tunction/(A) = .v" is dilTerentiable and

— [x"\ = n.\" '.

cl.\

For /to be dift'erentiable at v = 0, /;

defined on an interval containing 0.

must be a iiiniber such that v"" is

Pnto!' II /( IS a positive integer greater than I. then the binomial expansion produces

the lollowins:.

lim
(v + Av)" - .v"

Av

A" + n.x" '(Av) + "'" ~ '''^"
' (Av)^ + • + (Av)" ~ a'"

lim
'

Ai—

lini iix"-' +
11(11 ~ Da"

Av

(Av) + • + (Av)"

;/A"-' +() + • + ()

The slope of the line 1
= x is I.

Figure 2.15

This proves the case for which /( is a positive integer greater than I . We leave it to you

to prove the case for // = 1 . Example 7 in Section 2.3 proves the case for which n is

a negative integer. In Exercise 63 in Section 2.,S you are asked to prove the case for

which II is rational. (In Section ,^.,^, the Power Rule will be extended to cover irrational

values of /;.)

When using the Power Rule, the case for which /; = I is best thought of as a

separate dilferentiation rule. That is.

f[.v]^..
rtA

Povsor Rule when n - 1

This rule is consistent with the fact that the slope of the line _v = a is I, as shown in

Fiuure 2.15.



SECTION Basic Differentiation Rules and Rales ol Change 1(»7

Exawph' 2 Using the Power Rule

FimcUon

a. ,/(.v) = A'

b. ,i,'(a) = i/x

Derivative

fix) = 3a =

,'(.v)^£Lv-]4a-.^

y-f[.v^]-(-2).v-^-^
(/a llx A"-

111 Example 2i:. note that hcfuiv dllTerciUialing. l/v' was lewrittcn as a -.

Rcwntmy is the fifst step in duiiiv diffcrentialioii ptoblcnis.

Given: Rewrite: DilTerentiate: Simplify:

y = A~-
dx

dy _ :

dx X

n^-l Exiiniph' 1 Finding till' Slope of a Graph

The slope of a ijraph at a point is tlie \aliie

of tlie ilerivatiw' at tliat point.

Figure 2.16

Find tile slope of the yraph of / (v) = A"* when

a. A = -I b. A = (1 c. A = I.

Solution The derivative of/ is /'(a) = 4a\

a. When v = - I. the slope is /'( -
I )
= 4( 1

)' = —4. Slope is neg.ilne.

b. When a = (I. the slope is /'(D) = 4((i)' = 0. Slope is ^ero

c. When \ = 1. the slope is /
'( ! ) = 4( 1

)' = 4. Slope is posiii\e

In Figure 2. Id. note that the slope of the graph is negative at the point (-1. I),

.slope is zero at the point (0. 0). and the slope is positive at the point (1, 1).

ff^y Exnmple 4 Finding an Equation of a Tangent Line

The line r = -4.v - 4 is tangent to the

graph of /'(a) = .v- at the point ( - 2. 4).

Figure 2.17

Find an ee|iiation of the tangent line to the graph of /(a) = a- when a = — 2.

Solution To tnid the puiiu on the graph of f. evaluate the original liinelion at

A = - 2.

(-2. /'(-2)) = (-2.4) Point on sr.,p!i

To Find the slapc of the graph when a = -2. evaluate the derivative, /'(a) = 2v, at

A = - 2.

/;; = /'(-2) = -4 Slope of gniph ai (-14)

Now. using the point-slope form of the ei|uation of a line. _\ou can write

\ — ^'| = ;);(.v — a,) Poini-slope lorni

\' — 4 = ~4[a —
(
— 2)] Subsuiule for V,. HI. and v,.

V = — 4.V — 4. Simplify.

(See Figure 2.17.) uZ
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DilTeiemiation

The Constant Multiple Rule

THEOREM 2.4 Tlie Constant Multiple Rule

It / is a ditTcientiahIc luiiction and c is a real number, then c/ is i iso ditferen-

lialilc and

^kfix)] = cf'ix).

Proof

— [<;/(a)J = Inn
t/.v Ai ^11 A.V

. /(.v + A.V)
--

./ (v)

-^.—11 ziv

lini
f(x + A.V)

--/(v)l

A.V

= cflx)

DeHnition ot"deri\ati\e

121

Int'(irmall\'. the Constant Multiple Rule states that constants can be factored out

of the differentiation process, even if the constants appear in the denominator.

clx clx r

L

ilx

fix)

Jx
fix)

(')|[v'-i=('K'

Example S Using the Constant Multiple Rule

Fuiicllon

a. \'

h. fit)

C. V

4/-

d. r
I

Derivative

clx clx </a

II = ->(-
I ).v-

/'(/)
,/;

4 ,

Tt-
-1

''f-f[2x'^]^2r,x'r.
clx clx \ 2

ciy

clx

_ d
'

clx

1 ,

2 ^ "

/I

cl ^

\ ~
clx

"2 *
"

-5/.1

3.v5/5

NOTE The Constant Multiple Rule and Ihc Power Rule can be conihincd into one rule. The

combination rule is Dj[c.v"] = ciix" '.
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Example 6 Using P.11 entht'ses When Differentiating

OiigiiHit Function Renriie Differentiate Simplify

y - ?(.>-) v' = ^(-3.v-')
'5

^-^ ,. = |,„-,
15

7 7/ n ' ^/o ^
, 14.V

''
3.V-

v = 3(.v-) y' = -(2.v) ^' - 3

d : ^
y = 63(.v-) y' = 63(2v) v'= 126.V^- ^ ,l,->-2

The Sum and Difference Rules

THEOREM 2 . 5 Hie Sum and Difference Rules

The sum (or difference of two different able functions is diff .'icntiable and is

the sum (or difference)

4f/(.v) +,d.v)] =

4f/w-,i/(-v)] =

of their derivativ

./'(-v) + ,t; Iv)

JS.

Sum i^iile

Dilleience Rule

Prm»f A proof of the Sum Rule follows from Theiirem 1.2. (The Difference Rule

can be proved in a similar way.)

— ./(.v) + ,i;(.v) = Inn
dx A, -d A.V

/(.v + A.V) + «(.v + A.V) - fix) - ,i,'(A)

= Inn \

^

A, .1. A,V

= lim
A. !!

/(.v + A.V) - ,/(.v) ^ ii(x + A.V) - ^i(x]

A.V A.V

/(v + A.Y) -
/ (.y)

, ,.
i^(x + A.V) - f^ix)

lim ^ : h Inn
A>— /Iv Ai^O A.V

,/"(-v) + g\x) 23

The Sum and Difference Rules can be extended to any finite number of functions.

For instance, if f(.v) = /(.v) + g(.v) - /;(.v), then F\x) = f\x) + g\x) - h\x).

Example 7 Using llie Sum and Difference Rules

Fuuition Derivative

a. fix) = x^ - 4x + 5 fix) = 3.V- - 4

b. gix) = -— + 3.V-' - Iv g'ix) = -Iv' + 9.V- - 2
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FOR FLKTHER LSFORMATION For the

oulline of a geometric proof of the deri\ -

atives of the sine and cosine functions,

sec the article "The Spider's Spacewalk

Derivation of sin ' and cos
'

"' by Tim

Hesterberg in The College Malhematics

Journal. To view this article, go to the

website www.matharticles.eom.

Derivatives of Sine and Cosine Functions

111 Section 1.3, you sttidied the following limits.

sin Av 1 - cos A.v
Inn —,— = I and lim ; =

Ai ^0 Av Av— II Av

These two limits can be used to prove differentiation rules for the sine and cosine

functions. (The deriyatives of the other four trigonometric functions are discussed in

Section 2.3.)

THEOREM 2.6 Derivatives of Sine and Cosine Functions

--[sin .vj = cos .V

a.v

— [cos .v] = —sin .

dx

Proof

v' =

\ incrcasine \' decreasing! v increasing!

v positive y negative y positive

\' = cos X

Tlif deri\ati\e of the sine function is the

cosini' liinclion.

Figure 2.18

[sin

.

sin(.v + A-v) — sin .v

Ai— 1) A.V

= lim
A I —11

sin .V COS A.V + COS -V sin A.V — sin .v

A.V

= lim
Ai— II

cos .V sin A.V - (sin.vKI ~ cos Aa:)

A.V

= lim
Ai-.il

r /sin A.
(cos.v)

\ A.V

v\ , . /I - cos A.V
(sin.v) ,

/ \ A.V

= COS v
,. sinA.v\
Inn
A. -11 A.V /

/ ,. 1
- cos A.V

sin.v Inn ,

\A^— II A.V

= (cos.v)(l) - (sm.v)(0)

= cos .V

This differentiation rule is shown graphically in Figure 2.18. Note that lor each v. the

slope of the sine curve is equal to the value of the cosine. The proof of the second rule

is left as an exercise (see Exercise 1 13). _;

Example 8 Derivatives Involving Sines and Cosines

Funetion Derivative

V = 2 sin X \ = - sin .v

^

—

-ik

^/
\ = - sin X

— [((sin v] = (/cos.v
i/.v

Figure 2.19

a. V = 2 sin .V

b. ^

c. y = -V + cos .v

V ; cos .V

y = - cos .V
=

v' = 1
— sin.v [ZJ

p; TECHNOLOGY A graphing utility can provide insight into the interpretation of a

derivative. For instance. Figure 2.19 shows the graphs of

\ = a sin .V

for a = 1, 1, ^, and 2. Estimate the slope of each graph at the point (0, 0). Then

verify your estimates analytically by evaluating the derivative of each function

when .V = 0.
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Rates of Change

You have seen how the deiivutiNe is used to deteriiiiiie slope. The dert\ati\e can also be

used to deteimine the rate of change of one variable with respect to another. Applications

involving rates of change occur in a wide variety of fields. A few examples are popula-

tion growth rates, production rates, water flow rates, velocity, and acceleration,

A common use of rate of change is to describe the motion of an object moving in

a straight line. In such problems, it is customary to use either a horizontal or a \ertical

line with a designated origin to represent the line of motion. On such lines, mmement
to the right (or upward) is considered to be in the positive direction, and movement to

the left (or downward) is considered to be in the negative direction.

The function ,v that gives the position (relative to the origin) of an object as a

function of time I is called a po.sition function. If. o\er a period of time Ar. the object

changes its position by the amount A.v = ,s(/ + Ar) — ,v(r). then, by the familiar

formula

distance
Rate =

time

the average velocity is

Change in distance _ A.y

Change in time A/
Average velocity

Time-lapse photograph of a free-falling

billiard ball

Example 9 Finding Average Velocity of a Falling Object

If a billiard ball is dropped from a height of 100 feet, its height ,v at time r is given by

the position function

S = ~ \6t~ + 100 Position function

where .v is measured in feet and / is measured in seconds. Find the average velocity

over each of the following time intervals.

a. [1.2] b. [1. 1.5] c. [I. I.I]

iolution

a. For the interval [1,2] the object falls from a height of ,v( I) = -16( I)- -^ 100 = 84

feet to a height of .v(2) = - 16(2)- -I- 100 = 36 feet. The average velocity is

Av _ 36 - 84 _ -48

Af
~

2 - 1 "
1

-48 feet per second.

b. For the interval [l, 1.5], the object falls from a height of 84 feet to a height of 64

feet. The average velocity is

Av _ 64 - 84

Af
~ 1.5-1

-20

0.5
= —40 feet per second.

c. For the interval [1, l.l], the object falls from a height of 84 feet to a height of 80.64

feet. The average velocity is

80.64 - 84 -3.36

A; 1.1-1 O.I
33.6 feet per second.

Note that the average velocities are iu'i;citi\c. indicating that the object is moving

downward. -^iij
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A^"-
/

Secant jf /
line / ^

P
"^^-^^^
^-

J^m^^^ Tangent

>
hne

', = > r-,

The average velocity between /, and ^ is

the slope of the secant Hne. and the

instantaneous velocity at r, is the slope of

the tangent line.

Kiyiirt' 2.20

Suppo.se that in Example 9 you wanted to find the iiistantimeoits velocity (or

.simply the velocity) ot the object when r = 1. Just as you can approximate the slope

of the tangent line by calculating the slope of the secant line, you can approximate the

velocity at r = I by calctilating the average velocity over a small interval [1.1+ A?]

(see Figure 2.20). By taking the limit as A/ approaches zero, you obtain the velocity

when ; = I. Try doing this—you will find that the velocity when t = 1 is —32 feet

per second.

In general, if .v = ,v(/) is the position function for an object moving along a

straight line, the velocity of the object at time ; is

v(/) lim
A(-^0

sit + Af) - sir)

Ar
s'(r). Velocity tunclion

In other words, the velocity function is the derivative of the position function. Velocity

can be negative, zero, or positive. The speed of an object is the absolute value of its

velocity. Speed cannot be negative.

The position of a free-falling object (neglecting air resistance) under the influence

of gravity can be represented by the equation

s{t) = :^gr- + vj + So Pusiiion fuiicuon

Velocity is positive when an object is rising,

and is negative when an object is falling.

Fi);ure 2.21

NOTE In Figure 2.21. mile thai ihe

diver moves upward for the first half-

second because the velocity is positive

for < ; < ^. When the velocity is 0.

the diver has reached the maximum

height of the dive.

where .v,, is the initial height of the object, i,, is the initial velocity of the object, and ,;;

is the acceleration due to gravity. On earth, the value of t; is approximately -.^2 feet

per second per second or —9.8 meters per second per second.

Exiimpli' 10 Llsiiig the Derivative to Find Velocity

At time t = 0. a diver jumps from a platform diving board that is 32 feet above the

water (see Figure 2.21 ). The position of the diver is given by

s{t) = - \bt- + \(m + ?il Pusitmn liinction

where .v is measured in feet and ; is measured in seconds.

a. When does the diver hit the water?

b. What is the diver's velocity at impact?

.Solution

a. To Find the time t when the diver hits the water, let .? = and solve for ;.

- 16r- + \tt + 32 = Sci poMlion lunclion equal loO.

-I6(/ + 1)(; - 2) = Factor

t = -
I or 2 Solve lor /.

Because / > (.). choose the positive value to conclude that the diver hits the water

at / = 2 seconds.

b. The velocity at time / is given by the derivative s\t) = —ill + 16. Therefore, the

velocity at time / = 2 is

32(:) 4- 16 = -48 feet per second. [ZI
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EXERCISES FOR SECTION 2.2

In KxiTcisL'S 1 and 2, use the iirapli lo estimate the sU)pe of the

lanyent line to v = .v" at the point (1, 1). \erify your answer

analytically. To print an enlarged copy ot the graph, go to the

«ehsitt www.iiiatligraphs.coiii.

1. (a) V = .v' (h) V = .v'

19. \ = - sin 6 - cos

21.

23. 1' 3 sin .V

20. ,!,'(') = 77 cos ;

22. y = 5 + sin .v

5
24.

(2.v)'

- + 2 cos .V

(c) V = .V-

11

2 -

/
1

-

/'",
y^/ 1 1

/ 1 2

2. (a) V = .V-

.

2 -

N
^\

( 111"^^
1 2 3

(C) V = .V"

(b) y = A--

(d) V

In Exercises 3-24. find the deri\ati\e of the fiuiction.

3. V = 8

5. V = a"

--^
9. fix) = i/^-

11. /(a) = a + 1

13. /(/) = -2;- + 3r - 6

15. ,i;(a) = A- + 4a-'

17. sii) = t-' - 2t + 4

4. /(A) = -2

6. ^• = a''

8. A = -^
A'

10. xIa) = i-A

12. ,(;(a) = 3a - 1

14. y = /- + 2; - 3

16. y = 8 - A-'

18. /(a) = 2a-' - A- + 3a

In Kxercises 25-30, complete the table, using Example 6 as a

model.

On^imil Function Rcw rile Diffeieiiliate Simplify

26.
-' - 3a^

27.
' =

(2a)

28.
' -

(3a)

29.
v'a

V =
,v

M\.
4

.Y -'

rp In Exercises 31-38, tlnd the slope of (he graph ol the function at

the indicated point. Ise the deiivatiye feature of a graphing

u(ilit\ to contirni M(ur results.

Function

31. /(a)
3

32. /(;) = 3
5t

a. /(A) = -\ + iv-'

34. y = 3a' - 6

35. .V = (2a + I)-

36. /(a) = 3(5 - a)"

37. lit)) = 4 sin « - H

38. ,u(/) = 2 + 3 cos ;

Point

(1.3)

(0.-I)

(2. 18)

((I. 1)

(5.0)

(0,0)

(77,-1)

In Exercises 39-52. Ilnd the deri>ati\e of the function.

39. fix) = a' + 5 - 3a--

4_

(-'

.V-' - 3a- + 4

41. k{i) = t-

40. /(a) = A- - 3a - 3v

42. fix) = X + —

43. /(a)

45. \ = xix- + 1

)

47. fix) = v^ - 6 ^v

49. /((,v) = s*'^ - s-'^

51. /(a) = 6vA + 5 cos A

44. /((a)

2a- - 3a + I

46. y = 3a(6a - 5a-)

48. ,/(a-) = y7x + iCx

50. Hi) = r-'-' - /"' -t- 4

2
52. fix) = -^ -I- 3 cos A
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rp In Exercises 53-56, (a) find an equation ol the tangent line to the

graph of/ at the indicated point, (b) use a graphing utility to

graph the function and its tangent line at the point, and (c) use the

(hriviilive feature of a graphing utilitx to confum Miur results.

Funclum Point

5X V = .v^ - 3.V- + -)
(1.0)

54. ^' = .v'- + A- (-1.-2)

55. /,.v, ^ ^ (1.2)

56. ^' = (a- + 2a)(a + 1) (1.6)

In Kxercises 57-62, determine the point(s) (if any) at which the

graph uf the function has a horizontal tangent line.

57.

59. 1' = —
8a- + 2 58. V = A ' + A

6(t. V = A - + I

61. V = A + sin A. < A < 27r

62. V = V 3v + 2 cos A. < A < 277

In Exercises 63-66, find A such that the line is tangent to the

graph of the function.

Fimcliou Line

63. /(a) = A- - tv y = 4a - 9

64. / (a) = /.- - A- V = -4a + 7

k
6?. /(a) = -

A"

--;-'
66. /(a) = kj^x y = A- + 4

j'"im''iX

-rrms S^-^r-r-^-rs--"^

1 67. Use the graph of / to answer each qtiestlon. To piint

I

an enlarged copy of the graph, go to the wehsile

i

nw'w.niinli'^rdpln.tnuL
j

(a) Between which two conseentne points is the average

rate of change ol the function gieatest'.'

(b) Is the average rate of change of the fnnciion between ,1

and B greater than or less than the nistanlaneons rate of

change at /?'

(c) Sketch a tangent line to the graph between C and D
such that the slope of the tangent line is the same as the

average rate of change of the function between C and D.

68. .Sketch the graph of a function / such that /' > for all a

and the rate of change of the Itnietion is decieasing.

In Exercises 69 and 70, the relationship between/ and g is

given. Give the relationship between/' and g'.

69, ,i;(a) = fix) + 6 70, ,i,'(a) = -5,nA)

In Exercises 71 and 72, the graphs of a function/ and its

derivative /' are shown on the same set of coordinate axes.

Label the graphs as / or /' and write a short paragraph

stating the criteria used in making the selection. To print

an enlarged copy of the graph, go to the website

www. matlr^iaplis. coin.

71.

73. Sketch the graphs of y = A-andy = -a- + 6a - ."i. and sketch

the two lines that are tangent to both giaphs. Find equations of

these hnes.

74. Show that the graphs of the two equations y = a and y = 1/a

ha\e tangent lines that are perpendicular to each other at their

point of intersection.

In Exercises 75 and 76, find an equation of the tangent line to

the graph of the function / through the point (.Vn.yn) not on the

graph. To find the point of tangency (v.y) on the graph of/,

solve the equation

/tv) = -^^-^,
A„ - -V

75, /(a) = v'A

(A„,y„) = (-4.0)

76. /(a) = -

(-v,,.v„) (5. 0)

rp 77. Linear Approximation Use a graphing utility (in square

mode) to zoom m on the graph of /(a) = 4 - ta' to approxi-

mate / '( I ). Use the deri\ati\e to find /'(
1 ).

rV 78. Linear Approximation LNc a graphing utility (in square

mode) to zoom in on the graph of/(a) = 4v'a -I- 1 to approx-

imate /'(4). Use the derivative to find/'(4).

rv 79. Linear Approximation Consider the function /(a) = x''-

with the solution point (4. <S).

(a) Use a graphing utility to obtain the graph of/. Use the zoom

feature to obtain successive magnifications of the graph in

the neighborhood of the point (4. 8). After zooming in a few

times, the graph should appear nearly linear. Use the uace

feature to determine the coordinates of a point "near" (4, 8).

Find an equation of the sectmt line S(x) through the two

points.
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(b) Find the equation ot the line

Tix) =/'(4)(.v - 4) + /(4)

tangent to the graph of/ passing through the given point.

Why are the hnear functions .V and /' nearly the same'.'

(e) Use a graphing utiHty to gra]ih / and I on the same set of

coordinate axes. Note that / is a "good" approximation of

/ when .V is "close to" 4. What happens to the accuracy of

the approximation as \nu mo\e farther away from the point

of tangency'.'

(d) Demonstrate the conclusion m part (O b\ completing the

table.

Ax -3 _ ~i -1 -0.5 -O.I

/(4 + Ax)

7'(4 + Ax)

A.V 0.1 0.5 1
T 3

/(4 + Ax)

T(4 + Ax)

T^ 80. Ijiiear Approximation Repeat Exercise 79 for the function

/ (.v) = \ ' where T[x) is the line tangent to the graph at the point

(I. I). Explain why the accuracy of the linear approximation

decreases more rapidly than in Exercise 79.

True or False'.' In Exercises 81-86. determine whether the

statement is true or false. If it Is tiilse, explain why or ghe an

example that shows It Is false.

SI. If/-(.v) = ,t;'(.v). then/(.vl = ,v(.v).

82. Il7(.v) = ,?(.v) + c. then /'(.vl = ,!,'( v).

83. If V = --. then (/vA/.v = 2ct.

84. If \' = x/n. then <A7</.v = I/tt.

85. If.vl.v) = 3/(.v). then,i,''(.v) = .^'(-v).

86. lf/(.v) = l/.v". then/'(.v) = l/(;i.v" ').

In Kxerclses 87-90. find the a\eraj;e rate of change of the func-

tion o\er the indicated lnter\al. Compare this a\era';e rate of

change with the instantaneous rates of change at the endpoinis

of the interval.

Fitucliiin

87. fU) = 2t + 1

88. /(/) = r- - 3

.V

hitcrval

[1.2]

89. f(x)

Vertical Motion In Exercises 91 and 92, use the position func-

tion v(r) = —\(tt- + v„l + V|| for free-falling objects.

91. A silver dollar is dropped from the top of a building that is I 362

feet tall.

(a) Determine the pnsilion and \elocity functions for the coin.

(b) Determine the average \clocii\ on the inlcr\al [1.2].

(c) Find the instantaneous velocities when / = I and ; = 2.

(d) Find the time requircil lor the coin to reach ground le\el.

le) Find the \elocit> of the com at impact.

92. A ball IS thrown straight down from the top of a 220-foot build-

ing w ith an initial \ elocity of - 22 feet per second. What is its

velocity after 3 seconds' What is its \elocit\ after falling IDS

fcef

Vertical Motion In Exercises 93 and 94, use the position func-

tion v(() = -4.9f- + v„l + \|| for fiTe-fallIng objects.

93. A proiectile is shot upwaixl Imni ihc surlace of earth wilh an

initial \elocity of 120 meters per second. What is its \elocit\

after 5 seconds? After 10 seconds'

94. To estimate the height of a building, a stone is dropped liom the

top of the building into a pool of water at ground level. How

high IS the building it the splash is seen 6.S seconds after the

stone IS dropped'

Think Ahont It In Exercises 95 and 96. the graph of a position

function is shown. It represents the distance in miles that a

person drives during a 10-mlmite trip to work. Make a sketch

of the corresponding \eloclty function.

95. _ > 96. _ s

(in. 6)

II- -

,s
-

(10.6)
h - - (6.5) ^
4 -

' x^lS. .s|

-'

n 1 1 1 1

(0. II) 2 4 (1 S 1(1

Time (in miinUcs)

(0. Oi : 4 (1 s III

Time (111 minulcs)

Think About It In P^xerclses 97 and 98. the graph of a \eloelty

function Is shown. It represents the velocity In miles per hour

during a lO-mlnute dri\e to work. Make a sketch of the corre-

sponding position function.

97. 98.

hO - - —
.SO - -

.VJ J -

21)-

111-

—1—

f

Ill-

-
4(1

>' 3U
'G 20--

I 10 +
>

2 4 (1 S HI

Time ( in minules)

M ill - '

2 4 (1 S HI

Time (in mmuies)

90. j\x) = sin X
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rp 99. Modeling Data The slopping disiance of an aiitoniohilc

traveling at a speed i' (kiloineteis per hour) is the distanee R

(meters) the car travels during the reaction time of the driver

plus the distance B (meters) the car travels after the brakes

are applied (see figure). The table shows the results of an

experniienl.

Reaction

time

Stopping

distance

t R t B g
Driver sees Driver applies Car

obstacle hrakes stops

V 20 40 60 80 100

R 3.3 6.7 10.0 13.3 16.7

B -)
-i^ 8.9 20.2 35.9 56.7

(a) Use the regression capabiHties of a graphing utilit\ to lind

a linear model for reaction lime,

(bl Use the regression capabilities of a graphing utilit\ to find

a quadratic model for braking time,

(cl Determine the polynomial gi\'ing the total stopping

distance I

.

(d) Use a graphing utility to graph the functions R. B. and T

in the same viewing window.

(e) Find the derivative of T and the rate of change of the total

stopping distance for r = 40. r = 80, and r = 100,

(fl Use the results of this exercise to draw conclusions about

the total stopping distance as speed increases,

100. \'el()city Verify that the average velocity over the time

interval [?„ - \t. t„ + A/] is the same as the instantaneous

velocity at / = t„ for the position function

s(t) = -\at- + c.
-

101. Area The area of a square with sides of length ,v is given by

A = S-. Find the rate of change of the area w ith respect to .v

when ,1 = 4 meters.

102. Volume The volume of a cube with sides of length ,? is given

b\ I' = .v\ Find the rate of change of the volume with respect

to .V when ,s
= 4 centimeters,

103. Imentoiy Manageiiienl The annual inventory cost C for a

ccilain nianulacturer is

C
1,008,000

Q
63Q

where Q is the order size when the inventory is replenished.

Find the change in annual cost when Q is increased from 350

to 351. and compare this w ith the instantaneous rate of change

when Q = 350,

104. Fiui Cost ;\ car is driven 15,000 miles a year and gets ,v

miles per gallon. Assume that the average fuel cost is $1,25

per gallon. Find the annual cost of fuel C as a function of ,v

and use this function to complete the table.

X 10 15 20 25 30 35 40

C

dC
dx

Who would benefit more from a 1-mile-per-gallon increase in

fuel efficiency—the driver of a car that gets 15 miles per gallon

or the driver of a car that gets 35 miles per gallon? Explain,

105. Writing The number of gallons W of regular unleaded gaso-

line sold by a gasoline station at a price of/) dollars per gallon

is given hy N = tip).

(a) Describe the meaning of /"(1,479),

(b) Is /'( 1,479) usually positive or negative? Explain,

106. Se^^•ton's Law of Cooling This law states that the rate of

change of the temperature of an object is proportional to the

difference between the object's temperature T and the

temperature T], of the surrounding medium. Write an equation

lor Ihis law,

107. Find an equation of the parabola v = ax- + h.\ + c that passes

through (0. 1) and is tangent to the line v = -\ - I at ( I. 0),

108. Let (((,/)) be an arbitrary point on the graph of y = I /.v.

.V > 0. Prove that the area of the triangle formed by the tan-

gent line through (<(. h) and the coordinate axes is 2.

109. Find the tangent line(s) to the curve y = .v"' - 9v through the

point ( I. -9).

110. Find the equation(s) of the tangent line(s) to the parabola

> = V- through the gi\en point.

(a) (0.1(1 (b) (</, II)

•Are there any restrictions on the constant <(?

111. Find 1/ and /' such that

fix)
ilX .

.V- -I- />.

.V < 2

-v > 2

is differentiable everywhere,

112. Where are the functions /'|(,v) = |sin.v| and /,(,v) = sin |.v|

diltcrentiable'

113. Pro\c that — [cos v] = -sinv,

FOR FiKTHER I\FORMAriO\ For a geometric interpretation of

the derivatives of trigonometric functions, see the article "Sines

and Cosines of the Times" by Victor J, Katz in Math Horizons.

To view this article, so to the website www.malliurlicles.coni.
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The Product and Quotient Rules and Higher-Order Derivatives

• Find the derivative of a function using tlie Product Rule.

• Find the derivative of a function u.sing the Quotient Rule.

• Find the derisative of a trigonoiiielrie function.

• Find a higher-order derivative of a function.

The Product Rule

In Section 2.2 you learned that the derivative of the sum of two functions is simply the

sum of their derivatives. The rules for the derivatives of the product anil quotient of

two functions are not as simple.

THEOKEM2.7 The Product Rule

The product of two differentiable functions/ and ,i? is itself differentiable.

Moreover, the derivative of fg is the fust function times the derivative of the

second, plus the second function times the derivative of the first.

[./(.v)i;(.v)] =/(.v)^i,''(.v) + ,i,'(.v)/'(.v)

Proof Some mathematical proofs, such as the proof of the Sum Rule, are straight-

forward. Others involve clever steps that may appear unmotivated to a reader. This

proof involves such a step—subtracting and adding the same (.|uaiitity—which is

shown in color.

-[/(-v),s.M

(.V + d.x){y + dr) - .VI'

from which he subtracted dx dy (as being

negligible) and obtained the dilTerential form

xdy + v(/.r. This derivation resulted in the

traditional form of the Product Rule. (Sonne:

The History of Mathematics hy David M.

Burton)

A version of the Product Rule that

some people prefer is

|[/(.v)g(-v)]=/'Wg(.v)+./(.v)g'(.v).

The advantage of this form is that it gener-

alizes easily to products involving three or

more factors.

v)] = lim

lim
Ai-.n

The Prodiict Rlle = lim

When Leibniz originally wrote a formula for

the Product Rule, he was motivated by the = lim
expression Ai— (1

,/"(.Y + ^x]fi(x + A.v) - /(.v)j,'(.v)

A.v

/•(.v + A.vl.gCv + A.v) /l-v - Av).,'(,v) + f\.\
- \x\'^(y] - f(x)g(x)

A.v

i,'(.v + A.v) - ,i..(.v) fix + A.v) -fix)
t(x + A.v) — + _ii{x)

—

,/lv + A.v

A.v

^

,.,'(.v + A.v) - ,i,'(.v)

A.v
+ lim

Ai~n
,1,'(.V)

A.v

fix + A.v) - fix)

A.v

,. ,, ^ , , ,. iiJy + A.v) - ,;.(.v) /(.v + A.v)-/(.v)
Itm fix + A.v) • lim : 1- lim i,'(.v) Imi
A>— 11

"

A.— A.V A>— II Av— 11 A.v

,/lv),i,''(.v) + ,S,'(.V)/'(.V)
[

The Product Rule can be extended to cover products involving more than two factors.

For example. \i f. y;. and /; are differentiable functions of v. then

[,/(.v)^?(.v)/;(.v)] = f'(x)g{x)lt(x) + f(x}f^'(x)h(x) + f(xiK(x)/i '(x).

For instance, the derivative of v = .v- sin .v cos .v is

dx
2x sin v cos .v -I- .v- cos .v cos x + x- sin .v( - sin .v)

2.V sin .V cos .V -I- .v-(cos-.v — sin-.v)
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rp 99. Modeling Data The -.lopping distance of an amoniobllc

traveling at a speed r (kilometers per hour) is the distance R

(meters) the car travels during the reaction time of the driver

plus the distance B (meters) the car travels after the brakes

are apphed (see tlgure). The table shows the rcsiihs of an

experiment.

Reaction

tune

Slopping

distance

'^^^^-

Dri\er sees Diner applies Car

obstacle brakes stops

V 20 40 60 SO 100

R 3.3 6.7 10.0 13.3 16.7

B -)
1^ 8.9 20.2 35.9 56.7

(a) Use the regression capabilities of a graphing utility to find

a linear model bir reaction time.

(b) Use the regression capabilities of a graphing utilit\ to find

a quadratic model for braking time,

(cl Determine the polynomial giving the total stopping

distance T.

(d) Use a graphing utility to graph the functions R. li. and T

in the same \ie\\ing window.

(e) Find the derixative of T and the rate of change of the total

stopping distance for r = 40. r = 80. and r = 100.

(f) Use the results of this e.xeicise to draw conclusions about

the total stopping distance as speed increases.

100. \elocity Verily that Ihe a\cragc \elocit\ over the time

rnterval [r,, - \l. t„ + A/] is the same as the instantaneous

velocity at I = l„ for the position function

sU) = -\iii- + c.

'

"

101. Area The area of a sipiarc with sides of length v is gixen by

A = ,(-. Find the rate of change of the area w ith respect to .s-

when .V = 4 meters.

102. Volume The \dUime of a cube with sides of length ,v is gi\en

b\ \' = s\ Find the rate of change of the \oliime with respect

to .V when v = 4 centimeters.

103. Imentoiy Maiiageoieiil The annual inxentory cost C lor a

certain manutacturer is

c = ^M' + 6..3e

where Q is the order size when the inventory is replenished.

Find the change in annual cost when Q is increased from 350

to 351, and compare this with the instantaneous rate of change

when Q = 350.

104. Fuel Cost A car is driven 15.000 miles a year and gets .v

miles per gallon. Assume that the average fuel cost is $1.25

per gallon. Find the annual cost of fuel C as a function of .v

and use this function to complete the table.

X 10 15 20 25 30 35 40

C

dC
dx

Who would benefit more from a l-mile-per-gallon increase in

fuel efficiency—the driver of a car that gets 1 5 miles per gallon

or the drixcr of a car that gets 35 miles per gallon? Explain.

105. Writing The number of gallons N of regular unleaded gaso-

line sold by a gasoline station at a price of /» dollars per gallon

is given by N = f{ />).

(a) Describe the meaning of /'( 1.479).

(b) Is /
'( 1 ,47'-)| usually positive or negati\c'.' Explain.

106. Mewton's Law of Cooling This law states that the rate of

change of the temperature of an object is proportional to the

difference between the object's temperature T and the

temperature T, of the sunounding medium. Write an equation

for this law.

107. Find an equation of the parabola y = ci.x- + h.\ + c that passes

through (0. I ) and is tangent to the line y = v - I at ( 1, 0).

108. Let ((/./)) be an arbitrary point on the graph of v = l/\.

\ > 0. Prove that the area of the triangle fomied by the tan-

gent line through {a. b) and the coordinate axes is 2.

109. Find the tangent line(s) to the curve v = .v' — 9.v through the

point (1. -9).

110. Find the equation(s) of the tangent line(s| to the parabola

y = -V- through the given point.

(a) (().</) (h) (</. 0)

Are there any restrictions on the constant al

1 11. Find 11 and /' such that

/l-v)

+ /'.

.V < 2

.V > 2

|sin .v| and /,(.v) = sin [.v|

is diffeientiabic cverywhei'e.

112. Where arc Ihc lunctions /|(.v)

difteienliablc'

11.^. Prove that --- [cos.v] = -sin .v.

i/.V

FOR FL'RTHFR INFORMATION For a geometric interpretation of

the derivatives of trigonometric functions, see the article "Sines

and Cosines of the Times" by Victor J. Kat/ in Math Horizons.

To view this article, so to the website www. inatliarliclcs.com.
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The Product and Quotient Rules and Higher-Order Derivatives

• Find the deri\ati\e of a function using the Product Rule.

• Find the derivati\e of a function using the Quotient Rule.

• Find the derivative of a trigonometric function.

• Find a higher-order deri\'ative of a function.

The Product Rule

In Section 2.2 you learned that the derivative of the sum of two functions is simply the

sum of their derivatives. The rules for the derivatives of the product and quotient of

two functions are not as simple.

THEOREM 2.7 The Product Rule

The product of two differentiable functions/ and t; is itself differentiahle.

Moreover, the derivative of fy is the first function times the derivative of the

second, plus the second function times the derivatixe of the first.

^[/(.v),t;(.v)] = f{x)gl\) + g(x)tl\]

= lim
A.-ll

= lim
A>— (1

The Prodi ct Rilf. = lim

When Leibniz originally wrale a formula for

the Product Rule, he was motivated by the

expression

= lim
Av^d

(v + rf.vX.v + dy) - xy

from which he subtracted dx dy (as being

negligible) and obtained the difTerenlial form

.V dy + y dx. This derivation resulted in the

traditional form of the Product Rule. (Source:

The History of Mathemalies hy David M.

Burton)

A version of the Product Rule that

some people prefer is

|[/U)g(x)]=/'(.v)g(,v)+/(.v),^tv).

The advantage of this form is that it gener-

alizes easily to products involving three or

more factors.

Prool' Some mathematical proofs, such as the proof of the Sum Rule, arc straight-

forward. Others involve clever steps that may appear unmotivated to a reader. This

proof involves such a step—subtracting and adding the same quantity—which is

shown in color.

,/(.v + A.v),^-(.v + A.v) - ,/(.v)j.-(.v)

A.v

fix + A.v),i;(.v + A.v) /li -- Av),i;(v) + /( v - Avl,t.-(v) - fix)g(.x)

A.v

gi.x + A.v) - g(.x) /(.v + A.v) -,/lv)
/(.v + A.v) + ,i;(-v) ^

A.v A.v

fix + ^x)
gix + A.v) - ,?(.v)

+ lim
Av -11

,1,H-V|

/lv + A.v) -,/(,v)

A.v

r .7 ^ V > I

.i;(-v + A.v) - g{x) Jlx + A.v) - f(x)
lim fix + A.v) lull

"
. h lim s;(.v) • lim

Ai— II Ai— II A.V A\—.11 Av—ll A.v

./lv),i,''(.v) + ,?(.v)/'(.v) m

The Product Rule can he extended to co\er products invoh iiig more than two factors.

For example, if/, g. and /; arc differentiable functions of v, then

4[/lv).?(.v)/H.v)] = /"(.v),i,'(.v)/i(.v) + /lv),?'(.v)/!(.v) + /lv),^.(.v)/; Iv).
ilx

For instance, the derivative of y = .v- sin x cos x is

dx

dx
2x sin .V cos x + x- cos .v cos .v + .v- sin .v( — sin .v)

Ix sin v cos .V + .v-{cos-.v — siir.v).
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The derivative of a product of two functions is not (in general) given by the prod-

uct of the derivatives of the two functions. To see this, try comparing the product of the

derivatives affix) = 3.v - 2.v- and g(x) = 5 + 4.\ with the derivative in Example 1.

Example 1 Using the Product Rule

Find the derivative of h{\) = (3.v - 2a-)(3 + 4x).

Solution

Derivative Derivative

First of second Second of first

/('(.v) = (3.V - 2.V-)— [5 + 4.v] + {5 + 4.v)--[3.V - 2.V-] Apply Product Rule.
d\ d\

= (3.V - 2.v--)(4) + (5 + 4.v)(3 - 4a-)

= (12a- - S.v') + (15 - 8a - I6.V-)

= - 24a-- + 4.V +15 I^

In Exat-iiple 1 . you ha\'e the option of finding the derivative with or without the

Product Rule. To find the derivative with<iut the Product Rule, you can write

DJ(3a - 2a-)(5 + 4a)] = /),[-8a-' + 2a- + 15.v]

= -24a- + 4a + 15.

In the next example, you must use the Ptoduct Rule.

Example 2 Using the Produrt Rule

Find the deri\ati\'e of y = a sin a.

Solution

dr. T (/ r . T <'
r 1— [a sin A J

= A — |sin A
J
T sin a

—
[aJ .Appiv Product Rule.

</.v dx dx

= A cos A + (sin a)( 1 )

= X cos .V -I- sin .V

Example 3 Using the Product Rule

Find the derivative of i' = 2.v cos .v - 2 sin x.

Solution

Product Rule Constant Multiple Rule

NOTE In Example 3, notice that you dy _ /^ J d
^ -|^ ^ / J '^

t~i l\ ~, '-^
\

use the Product Rule when both factors ..jt^-

of the product are variable, and you use

the Constant IMultipIc Rule when one of

the factors is a constant. = — 2.v sin .v

(2.v)(|[cos.v]) + (cosA)(|[2.v]) - ^|[^iii.v]

(2A)(-sinA) + (cosa)(2) - 2(cosa)
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The Quotient Rule

THEOREM 2.8 Tlie Quotient Rule

The quDticnt //,!,' of two differcntiablc functions / and ,t; is itself differentiable

at all values of .v for which ,i,'(.v) i^ 0. Moreover, the derivative of//,? is given

by the denominator times the derivative of the numerator minus the numerator

times the derivative of the denominator, all divided by the square of the

deniiminator.

dx

i\x)

L«(-v)J

,?(.v)/'(.v)-/(.v)>?'{.v)

[.?(.v)]-

TECHNOLOGY Graphing utilities

can be used to compare the graph of a

function with the graph of its deriva-

tive. For instance, in Figure 2.22. the

graph of the function in Example 4

appears to have two points that have

horizontal tangent lines. What are the

values of y' at these two points?

, -5.V- -I- 4.V -I- 5

Graphical cotiiparison of a function and its

derivative

Figure 2.22

Proof As with the proof of Theorem 2.7. the key to this proof is subtracting and

adding the same quantitv.

/Iv -K A.v) f(x)

d

dx

fix)

Lg(.v)J

= lim

= lim
Ai— (1

= lim
A.v^n

Definition ot derivative
,^'(-v + A.v) g(.v)

A.v

A'(-v)/lv + A.v) - f(x)g(x + A.v)

A.yi,'(.v),?(.v + A.v)

;^{x)f(x + A.v) - /(.v),q(.v) + /(v).i.-(.v) - f{x)g{x + A.v)

^xg{x)g{x + A.v)

,. ,d.v)[/lv + A.v) -fix]] ,. f{x)[g{x + A.v) - gix)]
lim :

^ lim ^"^

Av— II A.V Ai — II A.v

^lim^^ [g{x]g{x + A.v)]

g(-v) lim
A.nO

fix + Ax) -fix)

A.v
,/(-v: lim

A1-.I)

,i,'(.v + A.v) - .t;(.v)

A.v

lim [gix)gix + A.v)]
Ai— II

gix)f'ix) - fWg'jx)

Example 4 Using the Quotient Rule

Find the derivative of v
5.V

X- +

Solution

5.V

.V- + I

(.v^+ 1)4[-^-v-2]-(5.v-2)4[a-+ 1]
dx dx

(.V- + 1
)-

(.V- + 1)(5) - (5.V - 2)(2.v)

(.v=+ 1)
=

(5.V- + 5) - (lO.v- - 4.v)

(.v- + 1
)-

- .=i.v- + 4.V + 5

Apply Quulient Rule.

(.V- + D-
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:

Differentiation

Note the use of parentheses in Example 4. A hberal use of parentheses is recom-

mended for all types of differentiation problems. For instance, with the Quotient Rule,

it is a good idea to enclose all factors and derivatives in parentheses, and to pay special

attention to the siihtractioii required in the numerator.

When we introduced diffeicntiation rules in the preceding .section, we empha-

sized the need for rewriting Iwfore differentiating. The next example illustrates this

point with the Quotient Rule.

Example 5 Rewritinj* Before Differential ing

Find the derivative of v = 3 - (l/.v)

.V + 5

Solution Begin by rewriting the function.

3 - (l/.v)

.V + 5

1 1 \

(•' -
;)

\{x + .';)

3.V - 1

.V- + 5.V

cir (.V- -f 3.v)(3) - (3.V- l)(2.v-H5)

</.v [x- + 5.v)-

(3.V- + I5.v) - (6.V- + i3.v - 3)

(.x- + 5x)'

- 3.\- + 2.V + 5

Wrile original function.

Multiply numerator and denominator by .v.

Rewrite.

Quotient Rule

(.v= + 5.v)

.Simplify,

Not every quotient needs to be differentiated by the Quotient Rule. For example,

each quotient in the next example can be considered as the product of a constant times

a function of .\. In such cases it is more convenient to use the Constant Multiple Rule.

Example 6 Using tJie Constant Multiple Rule

Original Function Rewrite Differentiate Simplify

X- + 3.V

X = -(.v= + 3.v)

o
v' = j{2x + 3)

6

2.V + 3

b. V =

3(3.v - 2.V-)

7.V

^' = r
(3 - 2.v)

v' = -(4.V-1
O

^(-2)

d. V
5.V-

y = ^(.v-) y' = -(-2.v-n
5.r'

NOTE T(i see Ihc benefit of using the Constant Mtiltiple Rule for some quotients, try using

the Quotient Rule to differentiate the functions m Example 6—you should obtain the same

results, but with more work.
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111 Section 2.2. wc proxetl the Powci Rule onl\ lur the case wheie the expcment ((

is a positive integer gieater than I. The ne.xt example extends the pmol' to iiickide

negative integer e.xponents.

Example 7 Proof of llic I'ovvtT Riik' (Ncgalix c Integer Expoiifnts)

If II is a negative integer, there exists a positive integer k such thai /; = - k. So. by the

Quotient Rule, you can write

1

.v'(0) - (l)(fa* ')

- A-.v*
- I

Quoiicni RuK

= 'kx-'-'

= nx"-'.

So. the Powci Rule

/:>,M = /;.v"-'

H = -k

Pn«ci Rule

is valid for any integer. In Exercise 6,i in Section 2..'i. you are asked to pro\e the ca.se

for which /; is anv rational number.

Derivatives of Trigonometric Functions

Knowing the derivatixes of the sine and cosine lunctions. \ou can use the Quotient

Rule to tliul the derivatives of the fotir icmaininL' triiionometric lunctions.

THEOREM 2.9 Derivatives of Trigonometric Functions

[tan -v] = sec-.i ---[cot .vj = — csc-.v
ilx

—
I

sec -vJ = sec .V tan .V
—-Icsc vJ = — esc. v cot.

Ix Jx

Proof Considering tan .v = (sin .v)/(cos .v) and applying the Quotient Rtile. you

obtain

(/ ,- , (cos .v)(cos .v) - (sin .v)(-sin .v)—
I

tan .vJ = ; .AppK Oiiouonl Rule,
ilx cos-.Y

cos-.v + sin-.v

cos- .V

sec-.v.

The proofs of the other three parts of the theorem are left as an exercise (see

Exercise 81 ).
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n^-l E.Xiimple 8 Differentiating Trigonomelric Functions

NOTE Because of trigonometric iden-

tities, the deri\ ative of a trigon<imetiic

function can tai\C man\ lornis. Tliis pre-

sents a challenge when \ou arc Iryuig to

match your answers lo those gi\en in the

hack of the text.

Function Derivative

a. y = A — tun .v

b. 1' = A sec A

d.\
sec- A

y' = A(sec A tan a) + (sec a)( 1

= (sec a)(1 -f A tan a)

Example 9 Different Forms of a Derivative

_. ,. , 1 — cos A
Dittercnliale holli lonns ot y =

:
= esc v - cot v.

Solution

First form: v
I - cos A

sin A

(sinA)(sinA) — (1 — cosa)(cosa)

sin-
A"

sin- A" -I- cos- A — cos a"

sin- A

f — cos A

sin- A

Second form: y = esc a — cot a

>
' = — CSC A cot A -I- CSC- A

To show that tlie two derivatives are equal, you can wi-ite

1 — cos A 1 / I \ / cos A'

'

sin-

A

sin- A \sinA/\sinA
CSC- A — CSC A cot A.

.^

The following summary shows that much of the work in obtaining a simplified

form of a derivative occurs after differentiating. Note that two characteristics of a

simplified lorni arc the absence of negative exponents and the conibiniug of like

terms.

f'(x) After Differentiating f'(x) After Simplifying

Example I (3a - 2.\-)(4) + (3 + 4a)(3 - 4a) -24.V- + 4a + 15

Example 3 (2A)(-sinA) -1- (cosa)(2) - 2(cosa) — 2a sin A

Example 4
(x- + 1)(5) - (5a - 2)(2a) -5.V- + 4a -f 5

(x-+ D-(.V- + D-

Example 5
(.V- + 5a)(3) - (.Iv - 1)(2a + 5)

(a- + 5a)-

- 3.V- + 2.V + 5

(a- + 5a)-

Example 9
(sinA)(sinA) - (1 — cosa)(cosa) 1 - cos A

sin-

A

sin-

A
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Higher-Order Derivatives

Just as you can obtain a velocity function by differentiating a position function, you

can obtain an acceleration lunctioii by differentiating a velocity function. Another

way of looking at this is that \ou can obtain an acceleration function by differentiat-

ing a position function mice.

sin

vit) = sV)

ail] = v'il) = s"it)

Pnsiiion fLinchnn

Velticily functinn

Acceleratuin t'linction

The function given by <((/) is the second derivative of ,v(/) and is denoted by \"it).

The second i.lcri\ati\e is an example of a hislier-order derixativc. \bu can tlcfine

derivatives of any positive integer order. For instance, the third derivative is the deriv-

ative of the second derivative. Hitiher-order derivatives are denotetl as follows.

First derivative: y
',

Second derivative: y".

Third derivative: v ".

Foiirtli derivative: \'^',

fix).

/"(a).
cl-y

</a'''

,/-*v

d_

dx

d^

d\

~[/(-v)]
d\

[/(-v)].

dx~A
/(-v)].

The Moos

The moons mass IS 7.354 I

O" kilograms,

and earths mass is 5.979 , lO-"* kilograms.

The moon's radius is 1738 kilometers, and

earths radius is 6371 kilometers. Because the

gravitational force on the surface of a planet is

directly proportional to its mass and in\ersely

proportional to the square of its radius, the

ratio of the gra\ itational force on earth to the

gravitational force on the moon is

(5.979 IO--')/637l

(7.354 X 10--)/l738-
', = 6.05.

;(//( derivative: ,/-(-0- ~ £;[/<-v)]. A"[v]

Fv;inn)lr W Finding the Accclerail inn Hiip tf) Griivitv

Because the moon has no atmosphere, a falling object on the moon encounters no air

resistance. In 1971, astronaut David Scott demonstrated that a feather and a hammer

fall at the same rate on the moon. The position function for each of these falling

ob|ects is given by

s(/) = -O.Slr + 2

where sil) is the height in meters and / is the time in seconds. What is the lalio of

earth's gra\ national force to the moon's?

Solution To find the acceleration, differentiate the position function twice.

.v(;) = — O.Sl/- -I- 2 Position fuilLlioil

s'il] = —1.62/ Velocity fiiiuuon

.v"(/) = —1.62 Acceleration I iinclion

So, the acceleration due to gravity on the moon is -
1 .62 meters per second per

second. Because the acceleration due to gravity on earth is ~9.!S meters per second

per second, the ratio of earth's gravitational force to the moon's is

Earth's gravitational force -9.8 ^ „^
^ = = 6.05. r-^™Moon s gravitational force — 1 .62 UZj
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Differcnliation

EXERCISES FOR SECTION 2.3
U-

In Kxerciscs 1-6, use the Product Rule to diffcrentiiile the

function.

1. gU) = (a- + i)(v- - :a)

3. hit) = i'ld' + 4)

5. fix) = a' cos a

2. /(a) = (6a + 5)(a' - 2)

4. ,i,.(.v) = ^G{4 - .V-)

6. ,i;(a) = v/a sin a

In Exercises 7-12, use the Quotient Rule to differentiate the

function.

7. fix)

9. /)(a)

11. i'(.v)

A^ + I

a' + 1

sin A

8. ,(,'(')

It - 7

(1. his)
s

v^ - 1

2. fii)
COS /

t'

In Exercises 13-18, find/lv) and/'U).

Function Value ofc

13. fix) = ix' - X )(2.
- + 3v + 5) < = n

14. fix) = (a- - 2. + 1 )(a
-

1) c = 1

i5./,A,.-:3^ c = 1

If '( )
' + '

A - 1

17. /(\l = A cos A
IT

18. /(A)

In Exercises 19-24. complete the tahle without usinn the

Quotient Rule (see Example 6 1.

Rcwrilc Dijlcrcnluitc Snnplify

27. fix) = A 1

+ 3
28. fix) = A-" I

29. fix)
2x + 5

31. //(,v) = is' - 2)-

A + I ,

30. ,/( v) = ^( VA + 3)

32. /Ha) = (a- - D-

I

33. /(a)
3

34. gix) = A-
1

A A- + 1 /

35. fix) = (3a' + 4a)(v - ,S)(a + I)

36. fix) = (a- - a)(a- + I )(a- + a + I)

A- + (
37. /(-v

X- — (-
< is a constant

38. fix
c- - A-

c is a constantT T
(- + A

In Exercises 39-54. find the derivative of the trigonometric

function.

39. lit) -- I- sin /

41. /(,) =^
43. fix) = - V + tan v

45. ,!,(/) = ^/? + 8 sec t

M I
- sin a)

47. V = -
2̂ cos A

49. V = - CSC A - sin a'

51. fix) = A- tan A

53. A = 2a sin V + A- cos a

40. /( 0) = iH + I ) cos H

42. fix) = "^
A

44. » = V + cot A

1

46. his)

48.

1 CSC .s

50. y = A sin a + cos a

52. fix) = sin A cos a

54. hiO) = 5(^sec + «tan ft

1 uncrnm

U 1.
A- + 2a

3

n ,
5a- - 3

4

7
'• V ~

3a'

2. V = 4

3a-

3. 1- =
4v-"-

4 1
^ X\-'^ ~ 5

rp In Exercises 55-58. use a computer algehra system to differen-

tiate the function.

55.,(a) = (^)(2a-?)

56. fix) =
(

''
T

' 7
"^

l(-v- -t- A -f 1)

57. KiH) =

A- -I- I

H

I
- sin rt

58. fi6)
sin

1 - cos e

Fv In Exercises 59-62, evaluate the derivative of the function at the

indicated point. Use a graphing utility to verify your result.

Fiinctuiii Poun

1

In Exercises 25-38. find the derivative of the algehraic function.

3 - 2a - A- \'' + 3a 4- 2

59. , = i±£5££
1 - CSC A"

60. fix) = tan A cot a

sec /

6'

(1, I)

61. //(/) =
t

25. ,/(a)
A- - 1

26. fix)
A- - I

62. fix) = sinA(sinA -I- cos a)
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^ In Exercises 63-68, (a) find an equation (if the tanjjent line to

the graph of/ at the Indicated point, (b) use a };raphin<> utiMtv

to f;raph the function and its tan{;ent line at the point, and (c)

use the derivative feature of a graphing utility to confirm your

results.

Function

63. ,/(.v) = (.r' - 3.V + l)(.v + 2)

64. ,/lv) = (.V - IXa- - 2)

.V

65. /(v)

66. fix)

X - 1

(a- - I )

(a- + I )

67. /(a) = tan a

68. /(a )
= sec A

Point

(1.-3)

(0.2)

(2.2)

-. 1

In Kxercises 69 and 7(1. determine the pointtsl at which the

graph of the function has a horizontal tangent.

69. /(v)
.V - 1

70. /(.v)
+ 1

In Exercises 71 and 72. verify that/ '(.v) = ,sj '(.i ), and explain the

relationship between / and g.

71. /(a)
3a

dA)
?.v + 4

.V + 2

73. /(a) = A" sin A 74. /(.v)
cos .V

75. Area The lengtli of a rectangle is given hy It + 1 and its

height is J~t, where / is time in seconds and the dimensions are

in centimeters. Find the rate ot change of the area with respect

to time.

76. Volume The radius of a right circular cylinder is given by

v'' + 2 and its height is 3v'''. where t is time in seconds and

the dimensions are in inches. Find the rate of change of llie

volume with respect to time.

77. Inventory Replenishment The ordering and transportation

cost C for the components used in manulacturing a certain

product is

C = 1001
200

.V + 30
.V > 1

where C is measured in thousands of dollars and .v is the order

size in hundreds. Find the rate of change of C with respect to a

when (a) .v = 10. (b) .v = 15, and (c) .v = 20. What do these

rates of change imply about increasing order size?

78. litiyle's Law This law states that if the tenipciature of a gas

remains constant, its pressure is inversely proportional to its vol-

tinie. Use the derivative to show that the rate of change of the

pressure is inversely proportional to the S(.|nai"e ot the volume.

79. Population Growth A population of ,^00 bacteria is introduced

into a culture and glows in mimher according to the equation

P(l) = 500 I +
4r

50 + ;-

^

where t is measured in hours. Find the rate at which the popu-

lation is growing when r = 2.

80. Rate of Chaiit>e Determine whether there exist any \alues of

.V in the interval [(). 2 7r) such that the rate of change of

/(a) = sec .V and the rate of change of gix) = esc a are equal.

81. Pro\e the follouing differentiation rules.

''r T
(a) — Isec.vJ = sec A tan A

i/v

( h )
— [esc .v] = - CSC A cot A
</v

</r -,

Icl ^, Icot 1 I

= -csc^v
i/v

82. Modeling Data The table shov\ s tlie number of motor homes n

(in thousands) in the L'nited Stales and the retail \alue i (in mil-

lions of dollars) ol these iriotor homes for the years 1W2 through

1007 The year is represented by t. with / = 2 conesponding to

1992. (Source: Recreation Vcliicic Industry Association}

,
,

sin ,v - 3a
, ,

sin a +
72. / ( v) = . g(x) =

In Exercises 73 and 74, find the derivative of the function / lor

n = 1, 2, 3, and 4. Use the result to write a general rule for/ (.v)

in terms of /(.

Year 1 992 1993 1994 1995 1996 1997

n 226.3 243.8 306.7 281.0 274.6 239.3

V $6963 $7544 $9897 $9768 $9788 $9139

(a) Use a graphing utility to find quadratic models for the

number of motor homes n(l] and the total retail \alue it/)

of the motor honres.

(b) Find ,-\ = r(r)//i(?). What does this function represent?

(c) Find A'{t). liuerprel the derivative m the context of these

data.

In Exercises 83-88, find the second derivative of (he function.

83. /(a) = 4.vV^

85. /(A) = —

^

A - I

87. f(x) = 3sin.v

84. /(a) = .V -I- 32a--

A- -I- 2.V - 1

86. /(A) =
X

88. f(x) = sec A

In Exercises 89-92, find the higher-order derivative.

Given Find

89. /'(.v) = A- /"(.v)

90. / "(a) = 2 - -
f"'(x)

91. ,/"'(.v) = 2v^ /'-"(.v)

92. /-'-"(a) = 2a -I- I
/i"'(.v)
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93. Sketch Ihe graph nl a dilTcrciiliable liiiu'tioii / such that

/'(2) = 0, /' < for -DO < v < 2. and /' > for

2 < A < 3C.

94. Sketch the graph of a differcntiable function / such that

/ > and /' < for all real numbers .v.

In Exercises 95-98, find/ (2) given the following.

,(,.(2) = 3 and s'(2) = -2

/;(2) = -1 and /)'(2) = 4

96. fix) = 4 - /;(.v)95. fix) = 2g{x) + /((a)

,?(a-)

97. fix) =
/;(a)

98. fix) = ,i,'(a)/i(a-)

In Exercises 99 and 100, the graphs of /, /
', and/ "are shown

on the same set of coordinate axes. Which is which? To

print an enlarged copy of the graph, go to the website

HHif.inalli^niplis.coin.

100. V

103. Acceleration An automobile's velocity starting from rest is

lOOr
vU)

ll + 15

where v is measured in feet per second. Find the acceleration

at each of the following times.

(a) 5 seconds (b) 10 seconds (c) 20 seconds

104. Findiiifi a Pattern Develop a general rule for /'"'(a) if

(a) fix) = A" and (b) fix) = -.

X

105. Fiudinii a Pattern Consider the function /(a )
- ,i,>(a)/!(a).

(al fisc the prodiLcl rtile to generate rules for finding /"(.a),

/'"IaI. and/'^'(A).

(b) Use the results in part (a) to write a general rule for /''"'(a).

106. Finding a Pattern Develop a general rule for [a /(a)]'"'

where / is a differcntiable function of a.

rV Linear and Quadratic Appniximations Ihe linear and quadratic

approximations of a function/' at x = a are

P^^x) =f'ia){x -a) + fia) and

P,{x) = ;,/•"(« )(.v - n)- +f{a){x - a) + fia).

In Exercises 107 and 108, (a) find the specified linear and

quadratic approximations of/, (h) use a graphing utility to

graph / and the approximations, (c) determine w hethcr /*, or P,

is the better approximation, and (d) state how the accuracy

changes as you move farther from v = a.

107. fix) 108. fix) = sin.v

101. Acceleration The velocity of an object in meters per second is

vit) = 36 - r-, < / < 6.

Find the \elocity and acceleration of the ohject when r = 3.

What can be said about the speed of the object when the

velocity and acceleration have opposite signs'?

102. Stopping Distance A car is tia\cliiig at a rate ot 66 feet per

second (45 miles per hour) when the brakes are applied. The

position function for the car is

sit) '8.25r- + 66f

where .s is measured in feet and / is measured in seconds. Use

this function to complete the table, and llnd the average

velocitv durins; each time mter\al.

t 1
1 3 4

s{l)

v(t)

a(t)

3

True or False? In Exercises 109-114, determine whether the

statement is true or false. If it is false, explain why or give an

example that shows it is false.

109. If y = /(a),^'(a). then d\/dx = fixV^i'ix).

110. If v = ix + \)ix + 2)(a + 3)(v + 41. then ,/-S-/</a'' = 0.

111. If/'(<) and g V) are zero and Mx) = fix)gix). then /( V) = 0.

112. lf/(.v) is an /;th-degree polynomial, then /''" * "(a) = 0.

113. The second derivative represents the rate of change of the first

deri\ative.

1 14. If the velocity of an object is constant, then its acceleration is

zero.

115. F'md the derivative of,/(A) = a|.v|. Does/"(()) exist'.'

116. Think About It Let / and g be functions whose first and

.second derivatives exist on an inter\al /. Which of the follow-

ing formulas is (are) true'?

(:x) fg"-f"g = (,/;?' -.A')'

[h] fg" + f"g = ifg)"
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The Chain Rule

• Find the derivalive of a composite function using the Chain Rule.

• Find tlie deri\ati\ e of a function using the General Power Rule.

• Simplify the derivative of a function using algebra.

• Find the deri\'ative of a trigonometric function using the Cham Rule.

The Chain Rule

We have yet to discuss one of the most powerful differentiation rules—the Chain

Rule. This rule deals with composite functions and adds a surprising versatility to the

rules disctisscd in the two previous sections. For example, compare the following

functions. Those on the left can be differentiated w ithout the Chain Rule, and those on

the right arc best done with the Chain Rule.

Witlioiil the Clhiin Hiilc Wirh the Chciiit Riik'

y = A- + 1 y = Jx- + 1

y = sin -V y = sin 6.V

r = 3.V + 2 V = (3.V + 2)-'^

\' = .V + tan .V y = X + tan v-

Basically, the Cham Rule states that if v changes ih/dii times as fast as //, and ;/

changes dii/dx times as fast as .v, then y changes (dy/dti)(du /dx) times as fast as .v.

Gear I

Axle 1: 1 revolutions per minute

Axle 2: // revolutions per minute

Axle 3: ,v revolutions per minute

Figure 2.23

Example 1 The Derivative of a Composite Function

A set of gears is constructed, as shown in Figure 2.23. such that the second and thiitl

gears are on the same axle. As the first a.xle revoKes. it drives the second axle, which in

turn drives the thiixl a.xle. Let y, it. and .v represent the numbers of revolutions per minute

of the first, second, and third axles. Find dv/dii. iltt/dx. and dy/dx. and show that

dx

dv

dii

du

dx

Solution Because the circumference of the second gear is three limes that of the first,

the first axle must make three rexolutions to turn the second axle once. Similarly, the

seconti axle must make two revolutions to turn the third axle once, and voti can write

Ir ,///
^= 1 and

III dx

Conibmmg these two results, you know that the first axle must make six revolutions

to turn the third axle once. So, vou can write

d\ Rate of ctiange of first axle

; ~ with respect to second axle

dy dti

dii dx
= 3-2

Rate of change of second axli

with respect to third axle

Rate of change of first axle

~ with respect to third axle

In Other words, the rate of change of y with respect to .v is the product of the rate of

change of v with respect to /( and the rate of change of it with respect to .v.
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.

Ditferentlation

S^i^S EXPLORATION!^^
Using the Chain Rule Each of the

following funclioiis can he differenti-

ated using rules that you studied in

Sections 2.2 and 2.3. For each func-

tion, find the derivative using those

rules. Then find the derivative using

the Chain Rule. Compare your

results. Which method is sinipler'!"

a.
3.V -I- 1

b. (.V + 2)

c. sm 2.V

Example 1 illustrates a simple case of the Chain Rule. The general rule is stated

below.

THEOREM 2.10 The Chain Rule

If V = /(//) is a differentiable func

function of .v. then y =
f(g(.\]) is

tion of //

I differeii

and II
=

liable fui

.!;(.v) is a

ction of

different

.V and

able

ciy cly dii

dx dll dx

or. equi\alently.

tU'(k(x))] = f'(g(x))g'(x].
ax

Proof Let /;(.v) = /(i,'(.v)). Then, using the alternative form of the derivative, you

need to show that, for .v = c.

An important consideration in this proof is the behavior of t; as .v approaches c. A
problem occtus if there are values of v, other than c. such that g(x) = gic). In

Appendix B we show how to use the differentiability of /' and g to overcome this

problem. For now. assume that ,i,'(.v) i= g(i-) for values of .v other than c. In the proofs

of the Product Rule and the Quotient Rule, we added and stiblracted the same quantity

to obtain the desired form. This proof uses a similar technique—multiplying and

dividing by the same (non/ero) quantity. Note that because g is differentiable, it is also

continuous, and it follows that ,!,'(.v) ^,t;(() as.v^r.

hV-)
fig( v)) ~Ag(c))

.V
-- c

\figi v)) - figU-))

g (.v) - gu-)

m V)) 'f(gU-)f
lim

,i,'(.v)

r(g(c))g'(c)

g(c)

gi\) ~ gic)

X - c

im
'((•)

gU) ^ gic)

m
When applying the Chain Rule, it is helpful to think of the composite function

/° g as having two parts—an inner part and an outer part.

Outer tunclion

/ \
v = figiy)) = /(")

\ /

The derivative of v = /'(;/) is the derivative of the outer function (at the inner function

/() tiiiuw the derivative of the inner function.

y '=/'(») • II

'
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Example 2 Decomposition of a Compos! (e I'nnction

y =/(,?(.v)) u = g(x) V =,/'(")

1

11 = X + 1

/( = 2a-

T /( = 3a- - - a- +

u = tan A

1

A- + 1

b. y = sin 2a

11

y = sin ((

c. y = V3x- - A +

d. y = tan -A

1 X = Jit

y = ir

Example 3 Usinj* the Chain Rule

Find JvA/a for V = (x- + 1)\

STUDY TIP YcHi cciiild also sohc llie

problem in Example 3 without iisini; the

Chain Rule by observing that

y = a" + 3a-' + 3a-- + 1

and

y' = h.v' ^ 12a' + 6a.

Verify thai this is the same as the deri\'a-

tive in Example 3. Which method woukl

you use to I'md

d

</.v

(a- + 1 r"-^

Solutittn For this Itinelioii. \ou can consider the inside ttinction to he // = .v- + 1.

Bv the Chain Rule. \oii oht.iin

d\
3(a- + 1)-(2a) = 6.v(a= + 1)'

dii ,/i

The General Power Rule

The tuiictioii III l-Aample 3 is an example ot one of the most common types of

composite ttiiiclions. \ = [(((.v)]". The rule for differentiating such tunclioiis is ctilled

the (ieneral Power Rule, and it is a special case of the Chain Rule.

THEOREM 2.1 1 ITie General Power Rule

If V = [iiix]]". where 11 is a differentiahle runclion ol . \ and /; is a rational

number, then

~ = ,i[„{x)]"
'

ax

du

dx

or. equixalenlly.

''
r „-[ „- 1 11

'.

Proof Because v = //". you apply the Chain Rule to obtain

dv _ (Miclu

dx
"

\diil\dx

d
r

-, (III

^d^y^iK-

By the (Simple) Power Rule in Section 2.2. \oii ha\e /)„[»"] = ini"' '. and it follows

thatrfyM- = n[ii(x}]" '{dii/dx).
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Example 4 Applying the General Power Rule

Find the derivative of fix) = (3.v - lv-)-\

Solution Let /( = 3.v - 2.v-. Tlien

,/^(.v) = (3.V - 2.V-)' = if'

and. bv the General Power Ride, ihe deri\'ali\'e is

I

f'tx) = 3(3.v - 2a-)- — [3.V - 2a-] Apply General Power Rule,
il.\

3(3a - 2a-)-(3 - 4a). Dilfeienliate .rv - 2-v-.

/(-v)= V(-V-- ll-

/•'(.v) =

The derivative of / is (I at v = ami is

Linderined al v = + I.

Figure 2.24

Example 5 Differentiating Functions Involving Radicals

Find all points on the giaph of /(a) = V^(x- — 1)- for whieh /'(a) = and those tor

which /
'( v) does not exisl.

Solution Begin hy rew riting the ftnietion as

/(a-) = (A- - ])~/\

Then, applying the General Power Rule (with ;/ = a- -
I ) produces

II 11 I!

fix) = =(A- - l)-'/M2v)

4.V

?<i/x- -
1

Apply General Power Rule.

Write in radical tVuni,

So. fix) = when v = and fix) does not exist when v = ±1, as indicated in

Ficure 2.24.

Example 6 Differentiating Quolicnls witli Constant .Numerators

-7
Differentiate ;^(t]

(It - 3)-'

NOTE Try dilfcrcnliatmg the limctuin

in E.xaniple 6 using the Quotient Rule.

You should obtain the same result, hut

using the Quotient Rule is less ctTicicnt

than using the General Power Rule.

Solution Begin hy rewriting the lunction as

g(i) = -Kit - 3)--.

Then, applying the Gencrtd Power Rule produces

/; (/

'it) = (-7)(-2)(2/ - 3) "-'(2) Apply General Power Rule.

Constant

Multiple Rule

= 28(2r - 3)--'

28

(2t - W

Siniplity.

Write with positive exponent.
iZ]
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Simplifying Derivatives

The next three examples illustrate some techniques for simplifying the "raw deriva-

tives" of functions involving products, quotients, and composites.

Example 7 Simplifying by Factoring Out the Least Powers

,flv)

,/-'(-v)

x\/\ -,v-

v--[(l -.V-)'-] + (1 - x-)"-^[x-]
d\

-i\ - x'-)-"'-(~2x) + (1 -.\-)"'-(lv)

-A- -'(I - .v-)-'/- + 2a-(I - A-)'^

A-(l - A^)-l/-[-A"(l) + 2(1 - A-^)]

.v(2 - 3a-)

'1 - X-

Original tunclion

Rewrite.

ProdLicl Rule

Geneial Pmve Rul

Simplify-

Factor.

SimpHfy.

Example 8 Simplif>ing the Derivative of a Quotienf

TECHNOLOG\ Symbolic differ-

entiation utilities are capable of

differentiating very complicated

functions. Often, however the result

is given in unsimplitied form. If you

have access to such a utihty. use it to

find the derivatives of the functions

given in Examples 7, 8. and 9. Then

compare the results with those gi\en

on this page.

fix)

f'(x)

X

i'x' + 4

.V

(a- + 4)1/-'

U^ + 4)i/-'(l) - .v(1/3)(a- + 4)-=/-'(lv)

-(a- + 4)-^/-'

A- + 12

3(.v- + 4)-'/-'

(,2 + 4):/.^

"

3(a- + 4) - (2a-)(1)

(a- + 4)=/-'

Orisinal function

Rewiile,

Oiioiienl Rule

Faclor.

Suiiplify.

f^^ Example 9 Siniplifying the Derivative of a Power

3a - I y-

X- + 3
Original function

3a ~ \\ il

X- + 31 clx

3x - 1

A- -f 3

2(,3a- 1)

A" + 3

(a^ + 3)(3) - (3a - 1)(2a)

(a- + 3)-

2(3a - l)(.3v- + 9 - 6a- + 2a)

(a= + 3)-'

2(3a - 1)(-3a- + 2a + 9)

(a- + 3)-'

General Power Rule

Quotient Ruh

Multiply

Simplify.

12]
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Trigonometric Functions and the Chain Rule

The "Chain Rule versions" of the derivatives of the six trigonometric functions are as

follows.

— [sin/(] = (cos(()"' —[cos;/] = —(sin ;();/'

cl.\ a.\

— [lan;/] = (sec-;;);/' —[cot//] = -(esc-;;);;'
Ia ;/a

-—[sec ;;] = (sec ;; tan ;;)
;;

' -—[esc ;;] = — (esc ;; cot ;/) ;;

'

tl.\ d.\

Example 10 Applying the Chain Rule to Trigonometric Functions

a. \' = sm i.v V = cos i.v v] = (cos lv)(2)>> = l,-,w -IvUlt = 1 ,-.^<: 1,

</.V

1). V = cos(a - 1) v' = -sin(.v - 1)

c. y = tan 3a y
'
= 3 sec - 3a- i2Z!

Be sure thai \oii luidersland the niatheniatical conventions regarding parentheses

and trigonoiiielric tiiiiclions. For instance, in Example 10a. sin 2a" is written to mean

sin(2A).

Example 1 1 Parentheses and Trigonometric Functions

a. r = cos 3a-- = cos(3a--) y' = (
— sin 3a-)(6a-) = —6a sin 3a-

b. r = (cos 3)a- y' = (cos 3)(2a) = 2a cos 3

c. V = cos (3a)- = cos(Qa-) y
' = (-sin 9a-)( 18a) = - 18a sin 9.\-

d. y = cos-A = (cosa)- y' = 2(cos A)(-sin a) = -2cosAsii-iA

/ i/T / '
I

1 sin A
e. V = veosA = (cosa)"- \' = -(cosa) ' -(-su-ia) =

1' - ' - ' T

To find the derivative of a function of the form k{\) = /(,t;(/;( v))). you need to

apply die Chain Rule twice, as shown in Example 12.
,

Example 12 Repeated Application of the Chain Rule

fit) = sinM/ Ongiiliil luncliiin

= (sin 4/)'' Rl-\miic.

/''(/) = 3(sni 4/)- — [sM-| 4/] Apply Chiiin Rule once.
(//

= 3(sin 4;)-(cos 4/) y[4;] Appiv Cliam Rule a veeoiul Iniie.

= 3(sin4/)-(cos4/)(4)

= 12 sin- 4; cos 4^ Snnpliry
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We conclude this section with a sumniury ot the dit't'eientiation rules studied so

tar. To become skilled al ditt'erentiation. vou should menton/e each rule.

Summary of Differentiation Rules

General Differentiation Rules Let/, g. and (/ be differcntiable functions of .v.

f/.V

[/{„)]= f'(u)i<'

Consruiir Multiple Rule: Sum oi Difference Rule:

|t.'I ^ " i^[f±g]=r±g'

Product Rule: Quotient Rule:

ilM-fs' + gf
d

dx

gf'-fg'
g-

Derivatives ofAlgebraic Constant Rule: [Simple) Power Rule:

Functions

|h - ^M^.v" .. £m^,

Derivatives of

Trigonometric Functions
— [sin .vj = cos .V

dx

'/ r n 1 <' r— Itan.vJ = secvv "tL^'-'c
dx dx

-[cos.v] = - sin .V --Icot.vJ = -csc-.v "tIcsc
d\ dx

Chain Rule Chain Rule: Generc 1 Power Rule:

v] = —CSC -V col .V

d_

dx
[«"] = nil" ' ;/

'

STUDY TIP As an aid to meiiiorization. note that the cofunctions (cosine, cotan-

gent, and cosecant) require a negative sign as part ol then' derivatives.

EXERCISES FOR SECTION 2.4

111 Kxcicist's 1-6. complftc the tabic using Example 2 as a model.

.V =/(,i,'(-v)) u = !-[x) y = ,/•(»)

1.

2. y

= (6.V

1

5)-*

Vx + 1

3. y = y.v- - 1

4. y = 3 tanlTT.v-)

5. y = CSC ^v

ft
^-^

n. \
= cos —

In Exercises 7-34, find the derivative ol the I'unction.

7. V = Cv - 7)' 8. y = (Iv' + 1)-

9. ^i.(.v) = 3(4 - g.xV

1 1. fix) = (9 - .v-)-/3

13. f(t) = v'l - t

10. y = 3(4 - .v-)-^

12. /(;) = (9r + 2)-'-'

14. a'(a) = V 5 - 3.V

15. y = ^9.x- + 4

17. y = 2 i/4 - X-

1

19. V =

21. /(;)

23. \' =

I

; - 3

I

y.v + 2

5. /(,v) = .v^i.v - 2)-'

27. y = xjl - X

29. V

31. ,<,'(.v)

33. /(i

Jx- + 1

.V + 5 \-

.V- + 2

1 - 2i-

1 + V

16. ;^{x) = V.v- - 2.V + 1

18. fix) = ~ii/2 - 9.V

I

20. sit)
t- + 3; -

1

22. y = 5

it + 3)'

24. .^it)
/ 1

V,^-2
26. fix) = .v(3.v - 9)'

28. iv-v/l6 - X-

30. .V =
X

y.v^ + 4

32. /)(')

/ ,^

Y
\t^ + 2l

34. g(x)
Ilx- - ly
\ Ix + 3 /
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rp In Exercises 35-44. use a computer algebra system to find the

derivative of tlie function. Tlien use tlie utility to jiraph the

function and its derivative on the same set of coordinate axes.

Describe the behav lor of the function that corresponds to any

zeros of the graph of the derivative.

rp In Exercises 67-74, evaluate the derivative of the function at the

indicated point. Use a graphing utility to verify your result.

Function Point

67. s(t) = Jt- + 2t +

35. \'

37. ,!,.(;)

39. \ =

41. s(i) =

V -V + 1

.V- + 1

3r-

/r- + 2/ - 1

36. \ = ^ ,

A + 1

38. ,/(.v) = 7^(2 - .v)=

V + 1

68. y = ^\x^ + 4.V

69. i\x) = -^
X - 4

70. fix) = -

'

40. y = (r- - 9)V> + 2
3.v)^

2(2 - riyiT"

43. 1'

cos 77.V + 1

42. ,i,'(.v) = Jx -
1 + Jx + 1

44. \ = A- Ian

1\. t(t)

72. /(a)

3r + 2

t - I

A- + 1

In Exercises 45 and 46, find the slope of the tangent line to the

sine function at the origin. Compare this value with the number

of complete cycles in the interval [0, 2tt\. What can you conclude

about the slope of the sine function sin ax at the origin?

45. (a) -' (b) ->

2a- ~ 3

73. y = 37 - sec'(2A)

74. A' = —h JcOi X
X

(2.4)

(2.2)

1,

J_
16

(0.-2

(2.3)

(0. 36)

E 1
2' TT

rp In Exercises 75-78, (a) find an equation of the tangent line to

the graph off at the indicated point, (b) use a graphing utility

to graph the function and its tangent line at the point, and (c)

use the derivative feature of a graphing utility to confirm your

results.

46. (a)

V = sin 3.V

n K 3ff 2k

In Exercises 47-66. lind the derivative of the function.

48. \ = sin—

A

50. /((a) = sec A-

47. y = cos 3a'

49. gix) = 3 tan 4v

51. y = sin(7TA)-

53. /((a) = sin 2a- cos 2a

55. fix) =
ŝin A

57. y = 4 sec- a

59. fiti) = \ sm-2H

61. /(/) = 3sec-(7r/ - 1)

63. y = Jx + J sin(2A)-

65. V = sin(cos a)

?i. \ cos( 1

54. ,i;(«) = sec(5W)tan(^H)

56. xiy)
cos I'

CSC V

58. \ = 2 tan' v

60. ,l,'(f) = 5 cos- TTt

62. hit) = 2cot-(-n-r -I- 2)

64. y = 3a - 5 cos('n-A)-

66. V = sin i/x + ^/sirTv

Function

IS. fix) = 73a- -

76. fix) 'vvVa-

77. ,/(a) = sin 2a

78. fix) = tan - v

Poiut

(3.5)

(2.2)

(77.0)

, 1

In Exercises 79-82. tind the second derivative of the function.

1

79. fix) = 2(a- - I)-'

81. fix) = sniA-

80. /(a)

82. fix) = sec-77A

In Exercises 83-86. the graphs of a luuctiim/ and its deriv-

ative/are shown. Label the graphs as / or /'and write a

short paragraph stating the criteria used in making the

selection. To print an enlarged copy of the graph, go to the

website www.matligraphs.enw.
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85. 86.

4

^^^ ^ yy\_ ':

Vlll/l ^ -4-L

In KxtTcises 87 and 88, the relationship between / and 4' is

given. State the relationship hetween/' andg'.

87. ,v(a) = fiXx) 88. gix) == /(A-)

89. Given that i,'(5)=-3. !;'(5) = 6 , h{5) = 3, and

/;'(5) = -2. nnd/'(5) (if possible) for each of the follov\-

ing. If it IS not possible, state what additional information
|

IS required.

(a) /(.v) = ^i,'(.v)/!(.v) (b) /(.r) == ,d/((.v))

(e) fix) = f-\ (d) fix) == k(-v)]-'

90. (a) Find the derivative of the function ,i;(.v) = sin'.v + cos- v

in two ways.

(b) For/'(.v) = sec-.vandg(.v) = tan -.v. show that /'(.v) = fi'ix).

91. Doppler Effect The frequency F of a tire truck suen heard by

a stationary observer is

132.401)

33 1 ± V

where ±\' represents the velocity of the acceleratinLi fne truck

in meters per second (see tlgure). Find the rate of change of F
with respect to v when

(a) the tire truck is approachnig at a velocity of 311 meters per

second (use - 1).

(b) the tire truck is mo\ ing away at a velocity of 30 meters per

second (use +r).

f = 132.411(1

331 +r
f = 132.400

331 -!

92, Harmonic Motion The displacement from equilibrium ot an

object in harmonic motion on the end of a spring is

y =
J cos 12/ —

4 sin 12;

where y is measured in feet and r is the time in seconds.

Determine the position and velocity of the object when I = 7t/8.

93, Pendnlum .\ 15-centimeter pendulum moves according to

the equation

e = 0.2 cos 8f

where O is the angular displacement from the vertical in radians

and / IS the time in seconds. Determine the maximum angular

displacement and the rate of change of W when 1 = 3 seconds.

94, Ware Motion A buo\ oscillates in simple harmonic motion

y = .4 cos u)t

as waves move past it. The buoy moves a total of 3.5 feet

(vertically) from its low poinl to its high point. It rclurns to its

high point every 10 seconds.

(a) Write an equation describing the motion of the buoy if it is

at its high point at t = 0.

(b) Determine the velocity of the buoy as a function of /.

95, Circulator)' System The speed S of hlood thai is r ccnlmicters

from the center of an artery is

5 = CIR- - r-]

w here C is a constant. R is the radius of the artery, and 5 is mea-

sured in centimeters per second. Suppose a drug is administered

and the artery begins to dilate at a rate of JR/dt. At a constant

distance r. tlnd the rate at which S changes with respect to ; for

C= 1.76 • 10\ft= 1.2 10 -.and ,«/<//= nr\

rp 96, Modeling Data The normal daily maximum temperature

7" (in degrees Fahrenheit) for Denver. Colorado, is shown in

the table. (Sniin-e: Nuliinicil Occiinic ami Atmaspheric

Administratiim)

Month Jan Feb Mar Apr May Jun

Temperature 43.2 46.6 52.2 61.8 70.8 81.4

Month Jul Aug Sep Oct Nov Dec

Temperature 88.2 85.8 76.9 66.3 52.5 44.5

(a) Use a graphing utilily to plot ihe data and tlnd a model for

the data of the form

TU) = a + /)sin(-o'6 - c)

where T is the temperature and I is the time in months, with

t = 1 coiTcspondmg In January.

(b) Use a graphing ulilily In graph the model. Flow well does

the model fit the data.'

(c) Find T' and use a graphing utility to graph the derivative.

(d) Based on the graph of the derivative, during what times

does the temperature change most rapidly? Most slowly?

Do your answers agree with your observations of the

temperature changes? Explain.
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rp 97. Modeliiifi Data The cost ot piodiicins; a units ot a product Is

C = 60.V + 1350. For one week management determined the

number of units produced at tlie end of / hours during an

8-hour shift. The average values of .v for the week arc shown

in the table.

t 1 3 4 5 6 7 8

X 16 60 130 205 271 336 384 392

(a) Use a graphing utility to fit a cubic model to the data.

(b) Use the Cham Rule to fuid ,IC/i/t.

(c) Explain why the cost function is not increasing at a con-

stant rate during the 8-hour shift.

yS. Think About It The table shows some values of the deriva-

tive of an unknown function /. Complete the table by finding

(if possible) the derivative of each transformation of/.

(a) glx) =/(.v) - 2 (b) /;(.v) = 2,/-(.v)

(c) /iv) =/(-3.v) (d) s(.v) =/(.v + 2)

X _ 1 -1
1

~)

3

f'(x) 4 2 1

3

-1 T -4

g'ix)

h'(x)

r'{x)

s'W

102. Show that the derivative of an odd function is even. That is. if

/(-.v) = -/(.v). then/'(-.v) =/'(.v).

1(13. The geometric mean of .v and .v + n is g = Jx(x + n). and

the arilhiuetic mean is n = [,v -I- (.v + ii)]/2. Show that

dg _ a

104. Let /( be a differentiable liinclion of .v. Use the fact that

[;(| = x''i/' to prove thai

99. Finding a Pattern Consider the function fix) = sin fix.

where /3 Is a constant.

(a) Find the first-, second-, third-, and loiirth-order derivatives

of the function.

(hi Verif>' that the I unction and its second dcri\ati\e satisfy

the equation /"(v) + fi- f(x) = 0.

(c) Use the results In part (a) to write general rules for the

even- and odd-order derivatives

/'-"(.v)and/'-'-"(-v).

I

Hini: (
-

1
)' is positive if k is even and negative If A is odd.

|

100. Conjecture Let / he a differentiable function of period /).

(a) Is the function /' periodic' Verify your answer.

(b) Consider the function ,i;(.v) = /(2.v). Is the function g'ix)

periodic? Verify your answer.

101. Tliink About It Let lix) = /(.i,'(\)) and .v(.v) = ,i,'(/(.v)) where

/ and g are shown in the figure. Find (a) (-'(11 and (hi s '(4).

In Exercises 1()5-I0S. use the result of Exercise 104 to find the

derivative of tlie function.

105. gix) = |2.v - 3|

106. ,/(.v) = |.v- - 4|

107. hix) = \x\ cos.v

108. ,/(.() = |sin.v|

n^ Linear and Quadratic Approximations Tlie linear and quad-

ratic approximalions of a function / at .v = a are

/',(.v) =/'(«)(.v -a) -H/(«)and

/',(.v| = ;/"(fl)(.v - «)- +f'ia)ix - a) +f{a).

In Exercises 109 and 110. (a) fmd the specified linear and

(juadratic approximations of /. (h) use a yraphiu); utility to

j;raph / and the approximations, (c) determine whether /*, or

f, is the better approximation, and (d) state how the accuracy

changes as vou move farther from .v = a.

109. fix 110. fix) = secZv

a = 1

77

6

True in- False'.' In Exercises 111-114. determine whether the

statement is true or false. If it is false, explain why or give an

example that shows it is false.

111. lfy = (l - .v)'-. then v' = ^(1 -.v)'"-.

112. If /(.v) = sin-(2.v). then n.v) = 2(sin 2.v)(cos 2.v). '

113. If V is a differentiable function of /(. ii is a differentiable func-

tion of r. and r is a differentiable function of .v, then

dy _ dy dii dv

dx dii dv dx

114. >'ou would first apply the General Power Rule to tuid the

dernatneol i = .\ sin'.v.

1 2 .'i 4 5 h 7
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Implicit Differentiation

DislingLiisii between Rmetiotis wfitteii iti iiiiplieit fonii and e\plieil lorin.

Use iinplieit difl'eivnliation lo fitid the deri\ alive ofa runciioii.

r EXPLORATION
Graphing an Implicit Equation How
could you use a graphing utility to

sketch the graph of the equation

.V- - 2y3 + 4v = 2?

Here are two possible approaches.

a. Solve the equation for .v. Sw itch

the roles of v and v and graph

the two resulting equations. The

combined graphs v\ill show a

90° rotation of the graph of the

original equation.

b. Set the graphing utility to

parametric mode and graph the

equations

.V = - V2r-' ~ 4t + 2

Implicit and Explicit Functions

Up to this point in the text, most functions have been expressed in explicit form. For

exuiiiple. in the eqtiatioii

y = 3.V- — 5 Explicil lorni

the variable \ is explicitly written as a function of .v. Some functions. howe\ei, are

only implied by an equation. For instance, the function y = l/.v is defined iniplicitly

by the equation .vi = 1. Suppose you were asked to find il\/dx for this eciuation. For

this equation, you could begin b\ writing \ explicitK as a function of \ and then

diffeienliatiiii;.

Implh II l-'iirm E.xplicu hiirni

.V

Dt n\'uli\'c

d\

This sti-ategy works well whenever you can solve for the function explicitly. You can-

not, however, use this procedure when \ou are unable to solve for y as a function of

.V. For instance, how wotild vou find il\/cl.\ for the equation

.V- - 2v' + 4v = 2

and

V2t' - 4r + 2

From either of these two approaches,

can you decide whether the graph

has a tangent line at the point (0. 1 )?

Explain your reasoning.

where it is very difficult to express y as a ftiiiction of .v explicitly'.' To do this, you can

use implicit dit'terentiation.

To understand how to find dy/dx implicitly, you must reali/c that ihc dillcrciUia-

tion IS taking place witli respect to .v. This means that when you differentiate terms

involving .v alone, you can differentiate as usual. However, when you differentiate

terms involv ing \. you must apply the Chain Rule, because you are .issLimmg that v is

defined implicitly as a differentiable function of .v.

Example 1 Uifli-iTiitiating with RcspciT to .v

a. -[,v'] ^ 3.v: \jiiahles aL;iCC. use Simple Power Rule.

V'aiuihles agree

(/" lUl'' ' //

'

Variables Jisauree

Variables Jisa^^ree: use Chain Rule.

c.f[.v + ..v]=l+3f
ax dx

d '/ r .1 ^ '/
I

2.vv'? + v^
' dx

Chain Rule: — [.1\] = .iv'

d. ^[-VV-l = .V— [v^l + V---[.v] ProduLi Rule
dx ' dx ' dx

v(2y^j + y-(l) ClwinRule

Siniplity,
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:

Dil'ferL'iUiation

Implicit Differentiation

Guidelines for Implicit Differentiation

1. Dit'terentiatc both sides of the equation ir;7/; ivspect to .v.

2. Collect all terms involving dy/dx on the left side of the eqtiation and move

all other terms to the right side of the equation.

3. Factor dy/dx out of the left side of the equation.

4. Soke for dy/dx by dividing both sides of the equation by the left-hand factor

that does not contain dr/dx.

Example 2 Implicit Differentiation

Find dy/dx given that y' + y- — 5y — .v-^

NOTE hi l-!\;iniplL- 2. note that implicit

differentiation can produce an expression

for dy/dx that contains both .v and y.

I'liim

on Graph

Slope

ofGniph

(2.(1)
4

5

(1.-3)
1

8

A =

(1.1) I ndclnied

Till' inipliiil L't iiaUon

,.1 + ,2 - 5)' - A- = -

has the derivative

ik 2.V

ilx iv = + 2i' - 5'

Figure 2.25

Solution

1. Differentiate both sides of the equation with respect to x.

[v--- + Sv-.v^] = 4[-4]
/.\-

d r .^ '/ r 1

dx dx

, .dx , dx3y~ + 2y-
dx dx

Ix dx dx

dx

dx

2. Collect the dx/dx terms on the left side of the equation.

, .dx , dx ^ilx
3v-- + 2v- - 5- = 2.V

dx dx ilx

3. Factor dx/dx out of the left side of the equation.

dx

dx
(3v- + 2v

4. Solve for</v/i/.v by dividing by (3v= + 2v - ?).

2.Vdx

dx 3v- + 2v

To see how you can use an iijipluit dciivalivc. consider the graph shown in Figure

225. From the graph, you can see that \ is not a function of .v. Even so. the derivative

found in E.xample 2 gives a tornuila lor the slope of the tangent line at a point on this

graph. The slopes at several points on the graph are sliown below the graph.

, TECHNULOG\ With most graphing utilities, it is easy to sketch the graph of

an equation that explicitly represents y as a function of .v. Sketching graphs of

other equations, however, can require some ingenuity. For instance, to sketch

the graph of the equation given in Example 2, try using a graphing utility, set in

parametric mode, to sketch the graphs given by .v = Jl-^ + t~ - 5t + 4. y = /. and

.V = — Jt^ + t- — 5t + 4. y = /. for —5<r<5. How does the result compare

with the graph shown in Figure 2.2??
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A- + V- =
(0.0)

(-1,01

(hi

Some gr;ipli segments can he repre-

sented hv ditTerentiable functions.

Figure 2.26

A
X- + 4v- = 4

-2\
("'•"^)

Slope of tangent line is s.

Figure 2.27

It IS meaningless to soke lor ily/i!^ in an eqtiatioii tliat has no sokitioii point.s,

(For e.xample. .v- + v" = -4 has no sokition points.) It', however, a segment of a

graph ean be represented by a differentiable function. Jy/ilx will have meaning as the

slope at eacli point on tlic segment. Recall tliat a fniiction is not (.lilleicntiable at ( I

)

points with vertical tangents and (2) points at which the function is not continuous.

Exaiiiple 3 Representing a Graph by Differentiable Functions

If possible, represent v as a differentiable function of .v (see Figure 2.26).

a. .V- + V- = b. .V- + V- = I c. .V + v- = I

Solution

a. The graph of this equation is a single point. Therefore, it does not define > as a

differentiable function of ,\

.

b. The graph of this equation is tlie unit circle, centered at (0, 01, The upper semicircle

is niven by the differeiiliablc function

y = V I ^ v-^, - I < .\ < 1

and the lower semicircle is given by llic ditTerentiable function

y = — x' 1 - -V-. - I < .V < I.

At the points (- 1.0) and ( I. 0). the slope of the graph is Lindefined.

c. The upper half of this parabola is given bv the (.lilleientiabic liinction

y = VI - .V. .V < I

and the lower half ol this parabola is given bv the dillerentiable lunction

y = — V 1
- -V. .V < 1.

At the point ( I . ()). the slope of the graph is undefined.

/r»y Example 4 I-'indinji the Slope of a Graph Implicitly

Determine the slope of the tangent line to the graph of

.V- + 4v" = 4

at the point ( ^ 2. - l/\ 2 ). (See Figure 2.27.)

Solution

x'- + 4v- = 4

2.V + 8v^ =
i/.V

dv

d.\ 8v 4\' ih

Write onginal equation.

DiITerenli.ite with respect to .v.

So. at ( ../2, - 1/72 ). the slope is

civ _ -72 ^ j_

dx
~ -4/72 ~ 2'

Evaluate -p when \ = ^/2 and v

\A :

NOTE To see the benefit of iiiipiicit differcntiatnm. try doing Example 4 using the explicit

function y = —"74 - .v-.
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3(v- + y-)-= IOOat

Lemiiiscate

Figure 2.28

Example S Finding tlie Slope of a Grapli Implicitly

Determine the slope of the graph of 3(a-^ + x^)~ = 100.v\' at the point (3. I ).

Solution

(/a dx

M2){.x- + x-](2.x + 2v^] = 100 A-^ + v(l)

12v(a- + \-)^ - 100a4^ = lOOv - 12a-(a-- + \-)
(/A dx

[12v(a-- + y-) - IOOa]^ = lOOv - 12v(a- + 1-)
(7A'

dy _ lOOy - 12a(a-- + ^'-)

d.\
~

-100a- + 12y(A- + y~)

^ 25y - 3Aiv- + y-)~
-2.Sv + 3v(a^ + y-)

At the point (3. 1 ), the slope of the graph is

Jv _ 2:^(1) - ?.{?<)(?<- + 1-) _ 25 - 90

dx
~ -25(3) + 3(1)(3- + \')~

-65 13

-75 + 30 -45 9

as shown in Figure 2.2iS. This grapli rs called a lemniscate.

Tlie ik'ri\atiM' is
-

'/-V sH^^'
liyiiie 2.29

Example 6 Determining a Differentiable Function

Find dy/dx implicitly for the equation sin v = a. Then find the largest interval of the

form — (I < y < <7 such that y is a differentiable function of a (see Figure 2.29).

Solution

-[s,nv] =
^ £[>1

dx
cos \' -r =

dx
=

1

dy 1

dx cos 1'

The largest interval about the origin tor which \' is a differentiable function of a is

- 7r/2 < X < tt/2. To see this, note that cos x is positive for all y in this interval and

is O at the endpoints. If you restrict y to the interval - tt/2 < y < tt/2. you should be

able to write dy/dx explicitly as a function of y. To do this, you can use

./T

/r

and conclude that

dx

dx '1 - x'-
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l,su( B(RR0W (1630-l()77)

The graph in Example S is called ihe kappa

curve because it resembles the Greek letter

kappa. K. The general solution for the tangent

line to this cur\e was discoiered b\ the

English mathematician Isaac Barrow. Newton

was Barrow s student and they corresponded

frequently regarding their work in the early

development of calculus.

With implicit dift'crentiaiiiiti. the form of the defivative ofteti can tie simplified (as

ill Example 6) by an appi'opiiate use of the (iri(;iiuil equation. A similar technique can

lx> used to find and simplify higher-otder dcii\atives obtained implicitly.

Example 7 Finding the Second Derivative Implicitly

Gi\en .V- + ^- = 25. find —r-
d.\-

Solution Differentiating each term w ith respect to .v produces

2.V + 2.4 =

" dx

(Jx _ j^^a; _ _x
(Ix

~
2y ~ y

'

Differentiating a second time w ith respect to .v yields

cTx _ (y)(l) - (.v)(</vA/.\)

dx- }
-

IJuiiUcnl Kule

y - (x)(-

y-

x/x)
Sutisiuulc- --v.'v tor -y

V- + .V-

Siiiiphl).

.v'

25
SutisUlulc 25 for .V- +

Example 8 Finding a Tangent Line to a Graph

Find the tangent line to the graph gi\en by .v-(.v- + y-) = y- at the point

(n/2/2, v/2/2). as shown in Figure 2.30.

The kappa curve

Figure 2.30

v-(.v- + v-) = v-

Solution By rewriting and differentiating implicitly, you obtain

.v-* + .v-v- - y- =

4v^ + .v^(2v^] + 2.vv^- 2.4 =
dx/

'

' dx

2v(.v- - I)
dl

dx
2.v(2.v- + V-)

dx _ v(2.v- + y-)

dx
~

x{\ - X-)

At the point ( v^/2. ^2/2). the slope is

dx ^ (v/2/2)[2(l/2) + (1/2)] _ 3/2 _ ^

clx (y2/2)[l -(1/2)] 1/2 -

and the equation of the taimcnt line at this point is

X = 3.V z
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EXERCISES FOR SECTION 2.5

In Exercises 1-16. nnd rfv/rf.v by implicit differentiation.

1. .V- + V- = 3ti

3. -v''- + v''- = 9

5. .r' - .\y + y- = 4

7. .y'v' - y = .V

9. ,v' - 3.v-^• + 2.n- =

1 1. Mil ,v + 2 COS 2y = 1

13. sm A = .v(l + tan y)

15. V sln(.v\)

2. A- - 1- = 16

4. A-' + y-' = 8

6. A-y + y-A = -2

8. ^ AT = A- - 2\-

10. 2 sin A cos y = 1

12. (sm -V + cos Try)- = 2

14. cot y = A — y

16. A = sec -

17. A- + y- = 16

19. 4a- + 16v- = 144

18. A- -I- y- - 4a + 6y -F 9 =

20. 9v- - A- = 9

In Exercises 21-28. find dy/dx by implicit differentiation and

evaluate the derivative at the indicated point.

Eqimtion Point

21. vy = 4 (-4. -1)

22. A^ - y^ = (1. 1)

23.
, A- - 4

^" =
A^ + 4

(2.0)

24. (a -1- y)-' = X'' + y-' (-1.1)

25. A-/' + y-'-^ = 5 (S. 1)

26. a' + y' = 4A-y + 1 (2. I)

27. tan(A + v) = V (0. 0)

28. A cos »• = 1 "
3

In F'xercises 29-32, find the slope of the tangent line to the

yraph at the indicated point.

29. Witch ot Agnes

(a- + 4)1- = 8

Point: (2. 1)

30. Cissoid:

(4 - x)y- = a'

Point: (2.2)

A

31. Bifolinni:

(a- + I'-)- = 4v-y

Point: (I, 1)

32. Folium of Descartes:

a' + v' - 6at =

Point: (if)

SSrZ

In Exercises 17-20, (a) find two explicit functions by solvlnj; the

equation Cory in terms of .v, (b) sketch the graph of the equation

and label the parts oiven by the corresponding explicit

functions, (c) differentiate the explicit functions, and (d) find

d\\dx implicitly and show that the result is equivalent to that of

part (c).

f*-v

In Exercises 33 and 34. find dyldx implicitly and find the largest

interval of the form —a < y < a such that y is a differentiable

function of x. Then express dyldx as a function of x.

ii. tan 34. cos !

In Exercises 35—10, find d-y/dx- in terms of .v and y.

35. A- + y- = 36 36. a-\- - 2a = 3

37. A- - y- = 16 38. 1
- at' = a - y

39. y- = A-' 40. y- = 4a

rp In Exercises 41 and 42, use a graphing utility to graph the equa-

tion. Find an equation of the tangent line to the graph at the

indicated point and sketch its graph.

41. v^ -)- v^ = 4, (9. 1) 42.
-

I

+ r

^^

rp' In Exercises 43 and 44, find equations for the tangent line and

normal line to the circle at the indicated points. (The normal

Hue at a point is perpendicular to the tangent line at the point.)

Use a graphing utility to graph the equation, tangent line, and

normal line.

43. A- -I- y- = 23

(4, 3). (-3. 4)

44. A- -I- y- = 9

(0.3). (2. ./5)

45. Show that the normal line at any point on the circle

A- -I- )'- = r- passes through the origin.

46. Two circles of radius 4 are tangent to the graph of y- = 4a at

llie point (1.2)- Find equations of these two circles.

In Exercises 47 and 48, find the points at which the graph of the

equation has a vertical or horizontal tangent line.

47. 2,\v- -t- 16y- + 200a - 160y + 400 =

48. 4a- -I- V- - 8a -H 4\' -I- 4 =
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rp Orthogonal Trajectories In Exercises 49-52, use a graphinj;

utility to sl<etcli the intersecting; graphs of the equations and

show that they are orthogonal. [T«o graphs are ortliogonal if at

their point(s) of intersection their tangent lines are perpendicu-

lar to each other.]

49. 2a- + V- = 6

y- = 4.V

51. A + y = (I

A = sin ^•

50. y- = V'

2a' + 3y- = 5

52. A-' = 3(y - I)

a(3\' - 29) = 3

^ Orthogonal Trajectories In Exercises 53 and 54. \erifj that the

two families of curves are orthogonal where C and A' are real

numbers. Use a graphing utility to graph the two families for

two values of C and two values of A'.

53. C

K

54. A- + y- = C-

^' = Kx

In Exercises 55-58. differentiate (a) w ith respect to x ( y is a func-

tion of .V) and (b) with respect to t (.x- andy are functions of r).

55. 2\- - 3a-' =

57. cos 77V — 3 sin tta

56. A- - 3at- + y' =

58. 4 sin A cos \' = 1

10

' V 61. Consider the eqnation a^ = 4(4a- — y-).

(a) Use a graphing utihty to graph the equation.

(h) Find and graph the four tangent hnes to the curve for y ~ 3.

(c) Find the exact eoordniates of the point of intersection of the

two tangent hnes in the first quadrant.

62. Orthogonal Trajectories The figure below gives the topo-

graphic map eaiTied by a group of hikers. The hikers aie in a

wooded area on top of the hill shown on the map and they

decide to follow a path of steepest descent (orthogonal trajec-

tories to the eonlours on the map). Draw their routes if they

start from point A and if they start from point B. If their goal is

to reach the road along the top of the map. which starting point

should they use? To print an enlarged copy of the graph, go to

the website )v\v\\'.nuillii;nii>lis ( oiii.

59. Describe the difference between the explicit form of a func-

tion and an implicit equation. Give an example of each.

60. In your own words, state the guidelines for implicit differ-

entiation.

63. Pro\e (Theorem 2.3) that

'/r ...

A" = JIX"
,/.V

'

tor the case in which ii is a rationLiI number tHini: Write

y ~ .v'"'' in the form \"' ^ .v'' and dillerentiate implicitly.

Assume that p and (/ are integers, where </ > 0.)

64. Let L be any tangent line to the curve s/x + v^ = y7'. Show

that the sum o! the \- and v-inteicepts of L is c.

SECTION PROJECT

In each graph below, an optical illusion is created by having

lines intersect a family of curves. In each case, the lines appear

to be curved. Find the value of dy/clx for the indicated values

of .V and v.

(a) Circles: .V- + y- = C- (b) Hyperbolas: .vy = C

X = 3, V = 4. C = 5 A = I. V = 4, C = 4

(c) Lines: av = hy

X = 73. y = 3,

u = 73. 6 = 1

(d) Cosine curves: y = Ccos a

77

FOR FURTHER INFORMATION For more information on the

mathematics of optical illusions, see the article "Descriptive

Models for Perception of Optical Illusions" by David A. Smith

in The UMAP Journal. To view this article, go to the website

wMw.muthanicles.com.
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Related Rates

• I'liid a ivlalcd rale.

• Use related rates to solve real-life problems.

Finding Related Rates

You have seen how the Chain Rule can be used to find dy/dx implicitly. Another

important use ol the Chain Rule is to find the rates of change of two or more related

variables that are changing with respect to time.

For example, when water is drained out of a conical tank (see Figure 2.31 ). the

volume V, the radius r, and the height /; of the water level are all functions of time t.

Knowing that these variables are related by the equation

V = - i-h Oi'iginal cquaiui

you can differentiate implicitly with respect to / to obtain the related-rate equation

dt dl \ 3

dV _ TT

dt
~

3

77/ ,dh

, dh ,
/ , dr

dl \ dl
DiiTcienlKile vvuh respect In /.

From this equation you can see that the rate of change of V is related to the rates of

change of both /( and ;.

^^MS^sMSili^^s ': EXPLORATION Sm^

Voliimo IS rc'hiled tci radius and height.

Fifjure 2.31

FOR FVRTHICR ISFORMMIOi; To

learn more about the hisloi^ of related-

rate problems, see the article "The

Lengthening Shadow: The .Story of

Related Rates" by Bill Austin. Don

Barry, and David Berman in Matlicnuiliis

Magazine. To view this article, go to the

website www.mathanicles.com.

Finding a Related Rate In the conical tank shown in Figure 2.31. suppose that

the height is changing at a rate of —0.2 foot per minute and the radius is chang-

ing at a rate of —0.1 foot per minute. What is the rate of change in the volume

when the radius is / = 1 foot and the height is /? = 2 feet? Does the rate of

change in the volume depend on the values of ; and hi Explain.

Example I Two Rates That Arc Related

Suppo.se .V and y are both differentiable functions of / and are related by the equation

y = X- + 3. Find dy/dt when .v = I. given that dx/dt = 2 when .\ = 1.

Solution Using the Cham Rule, you can differentiate both sides of the equation with

respect to I.

\ = .V- + 3

d r -I
d r ^ ,n

dx dx

dt
'"*

dt

When .V = 1 and dx/dt = 2. you have

Wiiie original ciiualiim.

DilTerentiale wiih ruspect to t.

Chain Rule

(//

= 2(1)(2)
[Z]
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t^5S^^^1
^^^i
^v')

Pl^'"'

Total area incri'asfs as the oiilcr radius

increases.

Figure 2.32

Problem Solving with Related Rates

In Example I. )'ou were ^wai an equation lli.it related the variables a and v and were

asked to find the rate of ehange of v when v = I.

Equation: V = .V" + 3

Given rate: — = 2 when \ = 1

clt

Find: — when A = 1

In eaeh of the remaining examples in this section. \ou mnst civnte a mathematical

model Irom a \erbal description.

Example 2 Ripples in a Pond

A pebhic is dropped into a calm pond, causing ripples in the form of concenlric

circles, as shown in Figure 2.32. The radius / of the outer ripple is increasing at a

constant rate of I foot per second. When the radius is 4 feet, at what rate is the total

area ,4 of llie disturbed water changing?

Solution The variables ; and A are related by A = iri-. The rate of change of the

radius r is dr/dt = I.

liqiiatian: A — tti'-

Given rale: —- — 1

dt

Find: —- when r = 4
(//

With this inforniation. you can proceed as in Hxaniple 1.

DiUfrcnlMlc Willi ivspeci u> /.|["1
- 1["--1

dA

dt

dA

dt

dt
Ciuim Rule

2tt(4)(I) = Stt .Suhstllulc 4 Uu- I and I (nnli/ill

When the radius is 4 feet, the area is changing at a rate of Stt si|uare feet per second.

NOTE When using these guidelines, be

sure you perform Step 3 before Step 4.

Substituting the known values of the

variables before differentiating will

produce an inappropriate deri\ative.

Guidelines For Solving Related Rate Problems

1. Identify all given quantities and quantities to he determined. Make a sketch

and label the quantities.

2. Write an equation involving the variables whose rates of change either are

given or are to be determined.

3. Using the Chain Rule, implicitly differentiate both sides of the equation with

respect to time t.

4. A/rer completing Step 3, substitute into the resulting equation all known

values for the variables and their rates of change. Then solve for the required

I'ate of chanae.



146 CHAPTER 2 DitlL-ienliation

The following table lists examples of niatlieiiiatieal models involving rates of

change. For instance, the rate of change in the fust example is the velocity of a car

Verbal Statement Mathematical Model

The velocity of a car after traveling for 1 hour

is 50 miles per hour.

.V = distance traveled

^ = 50 when / = 1

dt

Water is being pumped into a swimming pool

at a rate of 10 cubic meters per hour

V = viilunie of water in pool

^ = lOmVhi-
dt

A gear is revolving at a rate of 25 revolutions

per minute ( 1 revolution = 27Trad).

6 = angle of revolution

^ = 25(277) rad/min
dr

liillaliiii! a balloon

!• iguri- 2.33

Example 3 An Inflating Balloon

Air is being pumped into a spherical balloon (see Figure 2. .^3) at a rate of 4.5 cubic

feet per minute. Fiiul the rate of change of the radius when the radius is 2 feet.

Solution Let \' be the volume of the balloon and let ; be its radius. Because the

volume is increasing at a rate i)f 4.5 cubic feet per minute, you know that at time t the

rate ot change of the volume is d\'/dt = ,. So, the problem can be stated as follows.

dV 9
Given rate: —- = - (constant rate)

(// 2

Find: vvncn /

To find the rate of change of the radius, voii must find an equation that relates the

radius ; to the vokmie V.

,_ 4
Eiinaliiin: \ — 'Z ul'' Vulunie of a ^phere

Implicit differentiation with respect to / produces

Diltcrenliale wuh respect lo /.

dV
,

, dr— = 47rr--—
dl dt

dr dV
Solve tor Jr/ili.

dt 4Trr~\dt.

Fmallv. when r = 2. the rate of chaniic of the radius is

dr _ J_/9
dl

"
I67r\2

(J.Oy ft)Ot per minute.

In Example 3. note that the volume is increasing at a constant rate but the radius

is increasing at a vdrinhlc rate. Just because two rates arc related does not mean that

they are proportional. In this particular case, the radius is growing more and more

slowly as t increases. Do you see why?
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n^i Example 4 llie Speed of an Airplane Tracked by Radar

ii*^

All airplane is tl\ing at an altitude of 6

miles, s miles from the statmn.

Figure 2.34

An airplane is flying on a flight path that will take it directly over a radar tracking

station, as shown in Figure 2. .^4. It.v is decreasing at a rate of 400 miles per hour when

.? = 10 iniles. what is the speetl ot the plane?

Solution Let v be the hon/ontal distance from the station, as shown in Figure 2.34.

Notice that v\hen .v = 10. .v = ^ 10- - 36 = 8.

(iivcn rale: ils/cit = -400 when s= 10

I'ind: dx/dt when .v = 10 and .v = 8

^'ou can tlnd the velocity of the plane as follows.

luiucitiou: .\- + 6- = ,s-

dx ds

dt " dt

d.\ _ s Ids

~dt
~

~x\dt

dx 10— = —(-400)
</r 8

Pytliagorc.in Theorem

Dift'erenti.ile witli respcel to t.

Sol\e lor dx/dt.

Suhsliliilc lor ,v. .V. and ds/di.

Siniplily,= -.S()0 miles per hour

Because the \elocit\ is -500 miles per hour, the speed is .500 miles per hour

Kxiimplc V \ Clianjiing Anjile of Klevalion

Find the rate of change in the angle of ele\ation of the camera shown in Figure 2.3.5

at 10 seconds after lift-off.

2000

^- 2000 ft

A television camera at ground le\el is filming

the lift-off of a space shuttle that is rising

vertically according to the position equation

.V = 50f-. where 5 is measured in feet and I is

measured in seconds. The camera is 2000 feet

from the launch pad.

Figure 2.35

Solution Let W he the angle of ele\ation, as shown m Figure 2.35. When /
-^ 10. the

height .V of the rocket is s = 50;- = 50( li)- = -''OOO feet.

Given rate: ds/dt = 100? = velocity of rocket

Find: dO/dr when / = 10 and s = 5000

Using Figure 2.35. you can relate .v and (I hy the ecjuation tan 6 = a/2000.

Equation: tan H
2000

isec'H)
IH _ 1 /ds

dl
"

2000 L//

dH , 100;

;/7
= """'looo

2000

See Fiiiure 2.35.

Differenliale wuh respeel lo /.

Subshlute 100/ for ,/,s/i//.

100/

.js- + iom-i 2000

When / = 10 and ,v = 5(.)00. you have

de 2000(100)(10) 2— = ; T = — radian per second.
dt 3000= + 2000= 29

'

So. when t = 10. H is changing at a rate of 5; radian per second.

cosfl = 2000/ V.V- + 2000 =

LZl
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Example 6 The Velocity of a Piston

Law of t'oslnes:

h- = ir + (- - 2(/ccos 6

Fi};ure 2.37

In the engine shown in Figure 2.36. a 7-inch connecting rod is fastened to a crani<

of radius ,3 inches. The crankshaft rotates counterclockwi.se at a constant rate of 200

re\(ikitions per minute. Find the velocity of the piston when = 7r/3.

The vek)city of a prsloii is rckitcd to ihc angk' of tht crankshaft.

Figure 2.36

Solution Label the distances as shown in Figure 2.36. Because a complete revolution

coiTesponds to 2 77 radians, it follows that (7^/ c/r = 200(27t) = 40077 radians per minute.

Ctiven rate: —- = 401)77 (constant rate)
(/;

l/.V 77

Find: — when H = —
(It 3

You can use the Law of Cosines (Figure 2.37) to fmd an equation that relates .v and 0.

Equation: 7- = 3- + .v- - 2(3)(.v) cos H

, dx I do dx
= 2.V 6 -.v sin H-- + cos ^—

dt \ dl lit

. </.v do
(6 cos e - 2a)— = 6.V sni H —

dt dt

dx _ 6.Ysin6) UW
dt

"
6 cos e - 2x\dt

When H = 77/3, you can solve for .v as follows.

7- = 3- +.V- - 2(3)(.v)cos^

/ 1 \

49 = 9 + .V- - 6.\

= .V- - 3.V - 40

= (.V - 8)(.v + 5)

X = 8 Choose [ntsnive solution.

So. when .v = 8 and = 77/3. the velocity of the piston is

^ _ 6(8)(v/3/2)

dt 6(1/2) - 16

_ 960077^3

- 13

(40077)

-4018 inches per minute.

NOTE Note that the velocity in E.\ample 6 is negative because .v represents a distance that is

decreasins.
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EXERCISES FOR SECTION 2.6

In Exercises 1-4, assume that x and v are both differentiable

functions off and find the required vahies nH dyjdt and dxjdt.

Ei/iiati/m Find

1. V

2. V = 2(.v- - 3.v)

3. AT = 4

4. .V- + V- = 25

(a) -;- vvhenv = 4
dt

(b) — when A = 25
dt

(a) ~- when A = 3
di

(b) -- when A = 1

(//

(a) -;- when A = K
(//

(b) -- when V =
1

(//

(a) ~ when A = 3, v = 4
dt

(b) - whenA = 4, ^• = 3
dt

Given

d\
<

dt

d\

dt

dx
T

dt

dr
1

dt

dx _
in

dt

dv

dt

dx _
s

dt

</v

dt

In Exercises 5-8, a point is nio\ ing along the graph of the func-

tion such that dx/dt is 2 centimeters per second. Eind dyjdl for

the specified values of .v.

Fnnction Values ofx

5, V = A- + 1

6.
I

^'

1 + A^

7. ! = tan A

(a) A = -
1 (b) A = (c) ,v = 1

(a) A = -2 (b) A = (c) A = 2

(a) A = -- (b) A (c) A =

s. 1" = sin X (a) A (b)
77 TT-

(C, A=-

In Exercises *) and It), using the graph of /, (a) determine

whether d\/dt is positive or negative gi\en that dxjdl is

negative, and (h) determine whether dxjdt is positive or

negative given that dy/dt is positive.

10. y

12 3 4

11. Consider the linear fimctuin y = ((a + /'. If a changes at a

constant rate, does y change at a constant rate? If so. does it

change at the same rate as a? Explain.

12. In your own words, state the guidelines for soh ing related rate

problems.

13. Find the rate of change of the distance between the origin

and a men ing point on the graph of y = a- + 1 if dx/dt = 2

centimeters per second.

14. FukI the rate of change of the distance between the origin

and a moving point on the graph of y = sin a if dx/dt = 2

centmieters per second.

15. Area The radius / of a circle is increasing at a rate of 3 cen-

tniielers per muuitc Fmd Ihc rate of change of the area when

(a) (=6 centimeters and (b) / = 24 centimeters.

16. Area Let A be the area of a circle of radius r that is changing

with respect to time. If dr/tlt is constant, is dA/dt constant?

Explain.

17. Area The included angle ol the twn sides of constant et|ual

length ,v of an isosceles triangle is H.

(a) Show that the area of the triangle is given by A = yv- sin 0.

(b) II H IS incicaMug at the rate of 3 radian per minute, find the

rate of change of the area w hen H = tr/b and H = 7t/3.

(c) Explain why the rate of change of the area of the triangle is

not constant even though dd/dl is constant.

18. Volume The radius ; ol a sphere is increasing at a rate of 2

inches per minute.

(a) Find the rale of change of the xiilume when / ^ 6 inches

and ( = 24 inches.

_ (b) Explain why the rate of change of the \oluuic ol the sphere

is not constant even though dr/dt is constant.

19. Volume A spherical balloon is inllated with gas at the rate of

800 cubic centimeters per minute. How last is the radius of the

balkion increasing at the instant the i;ulius is (a) 3(1 centimeters

and (h) 60 centimeters?

20. Volume .All edges of a cube are expanding at a rate of 3 cen-

timeters per second. How fast is the volume changing when

each edge is (a) 1 centimeter and (b) 10 centimeters?

21. Surface Area The coiulilions are the same as in Exercise 20.

Determine how fast the surface area is changing when each

edge IS (al I centimeter and (b) 10 centimeters

22. Volume The formula for the volume ol a cone is V = jirr- li.

Find the rate of change of the \'olumc if ilr/dt is 2 inches

per minute and /) = 3/- when (al r = 6 inches and (b) r = 24

inches.

23. Volume At a sand and gravel plant, sand is tailing off a con-

\cyor and onto a conical pile at a rate of 10 cubic feet per

minute. The diameter of the base of the cone is approximately

three tunes the altitude. At what rate is the height of the pile

changing when the pile is 15 feet high'

24. Depth A conical tank (with vertex down) is 10 feet across the

top and 12 feet deep. If water is flowing into the tank at a rate

of 10 cubic feet per minute, find the rate of change of the depth

of the water when the water is 8 feet deep.
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25. Depth A swininiing pool is 12 mclers long, 6 meters wide.

I meter deep at the shallow end. and 3 meters deep at the deep

end (see figure). Water is being pumped into the pool at ^ cubic

meter per minute, and there is 1 meter of water at the deep end.

(a) What percent ot the pool is filled'.'

(h) At what rate is the water le\el rising''

4 mill

3 m
12 m

Figure for 25 Figure for 26

26. Depth A trough is 1 2 feet long and 3 feet across the top (see

figure). Its ends are isosceles triangles with altitudes of 3 feet.

(a) If water is being pumped into the trough at 2 cubic feet per

minute, how fast is the water level rising when it is 1 foot

deep''

(b) If the water is lising at a rate of ^ inch per minute when

/( = 2. determine the rate at which water is being pumped

into Ihc trnugli,

27. Mdviiig Ladder A ladder 2.'i feet long is leaning against the

wall ol a house (see figure). The base of the ladder is pulled

away from the « all at a rate of 2 feet per .second.

(a) How last is the top moving down the wall when the base of

the ladder is 7 feet. 15 feet, aiul 24 leet from the wall'.'

(b) Consider the triangle formed by the side of the house, the

ladder, and the ground. Find the rate at which the area ol

the triangle is changing when the base of the ladder is 7 feet

from the wall,

(c) Find the rate at v\liich Ihc angle between the ladder and the

wall of the house is changing u hen the base ol the ladder is

7 feet from the wall.

.^

X 0.1.\-S;

X ^^^3 111

Figure for 27 Figure for 28

FOR FiRTHKR I.XFORMATION For more miormatinn on the

mathematics of moving ladders, see the article "The Falling

Ladder Parado.x" by Paul Scholten and Andrew Simoson in

The College Mathemalics Jounnil. To view this article, go to

the website wwiv.nuithanicles.com.

28. Coiistnietion A construction worker pulls a .'S-mcter plank up

the side of a building under construction by means of a rope

tied to one end of the plank (see figure). Assume the opposite

end of the plank follows a path perpendicular to the wall of the

building and the worker pulls the rope at a rate of 0.1.S meter

per second. How fast is the end of the plank sliding along the

ground when it is 2.5 meters from the wall of the building'?

29. Coiistnietion A winch at the top of a 12-meter building pulls

a pipe of the same length to a vertical position, as shown in the

figure. The winch pulls in rope at a rate of —0.2 meter per

second. Find the rate of vertical change and the rate of horizon-

tal change at the end of the pipe when y = 6.

^.^-.U„^i-_6_

Figure for 29 Figure for 3(1

30. liiiatiii)^ A boat is pulled into a dock by means of a winch 12

feet abo\c the deck of the boat (see figure).

(a) The winch pulls in rope at a rate of 4 feet per second.

Determine the speed of the boat when there is 13 feet of

rope out. What happens to the speed of the boat as it gets

closer to the dock .'

(b) Suppose the boat is moving at a constant rate of 4 feet per

second. Determine the speed at which the winch pulls in

rope when there is a total of 13 feet of rope out. What

happens to the speed at which the w inch pulls in rope as the

boat gets closer to the dock'

31. Air Trajfie Control An air traffic controller spots two planes

at the same altitude converging on a point as they fly at right

angles to each other (see figure). One plane is 150 miles from

the point moving at 450 miles per hour. The other plane is 200

miles from the point moving at 600 miles per hour

(a) At what rate is the distance between the planes decreasing'?

(b) How much time does the air traffic controller ha\'e to get

one of the planes on a different flight path?

Kill "^2(50

Disianco (in miles)

Figure for 31 Figure for 32

32. Air Trafjie Control An airplane is flying at an altitude of 5

miles and passes directly over a radar antenna (see figure).

When the plane is 10 miles away (s = 10). the radar detects

that the distance .v is changing at a rate of 240 miles per hour.

What is the speed of the plane?
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a. Baseball A basehal! diamond has the shape ol a square u ilh

sides 90 feet long (see figure). A player running from seeond

base to third base at a speed of 28 feet per seeond is 30 feel

from third base. At what rale is the player's distanee .v from

home plate changing?

Home

Figure for 33 and 34 Figure for 35

34. Baseball For llie baseball diamond in Exercise 33. suppose

the player is running from first to second at a speed of 28 feet

per seeond. Eind the rate at v\ hich the distance from home plate

is changing when the player is 30 feet Irom second base.

35. Shadow Length A man 6 feet tall walks at a rate of 5 feet per

second away from a light that is 15 feet above the ground (see

figure). When he is 10 feet from the base of the light.

(a) at what rate is the tip of his shadow moving^

(b) at what rate is the length of his shadow changing?

36. Shadow Length Repeat Exercise 3.^ lor a man h lect tall

walking at a rate of 5 feet per second inward a light that is 20

feet above the croimd (see fmure).

4 _8 12 16 20

Figure for 36 Figure for 37

37. Machine Design The endpoints of a movable rod of length

1 meter ha\e coordinates (v, 0) and (0. y) (see figure). The

position of the end on the .v-axis is

x(i) = -sin —
2 n

where ; is the time in seconds.

(a) Find the time of one complete cycle of the rod.

(b) What is the lowest point reached hy the end of the rod on

the y-axis?

(c) Find the speed of the y-axis endpoint uhen the .v-axis

endpoint is (j, O).

38. Machine Design Repeat Exercise 37 for a position lunction

of .v(f) = ^ sin TTt. Use the point (jjj. o) for part (c).

39. Evaporation As a spherical raindrop tails, it reaches a layer

of dry air and begins to evaporate at a rate that is proportional

to its surface area (5 = 477T-). Show that the radius of the rain-

drop decreases at a constant rate.

40. Electricity The combined electrical resistance /? of A', and/?,,

connected m parallel, is given by

i _ ± _L
/?
~

«, ^ «,

uhcre R. /?,. and R, are measured m ohms. W, and R, are

increasing at rates of I and 1 .5 ohms per second, respectively. At

what rate is R changing when R, = 50 ohms and R, = 75 ohms?

41. Adiabatic Expansion When a certain polyatomic gas

undergoes adiabatic expansion, its pressure /' and Milume V

satisfy the equation

/)Vi ' = k

where k is a constant. Find the rel.itionship belween the related

rates dp/dt and dV/dt-

42. Roadway Design Cars on a certain roadway tiaxel on a

circular arc of radius /'. In order not to rely on friction alone to

o\ercome the centrifugal force, the road is banked at an angle

of magnitude f) from the hori/onlal (see llgure) The hanking

angle must satisfy the equation

ri; tan H = v-

w here r is the velocity of the cars and i,'
= 32 feet per second

per second is the acceleration due to gravity. Find the relation-

ship between the related rates dv/di and dH/di.

43. Angle ofElevation A balloon rises at a rate of 3 meters per sec-

ond from a point on the ground 30 meters from an observer. Find

the rate of change of the angle of elevation of the balloon from

the observer when the balloon is 30 meters above the ground.

44. Angle of Elevation A fish is reeled in at a rate of 1 foot per

second from a point 10 feet above the water (see figure). At

what rate is the angle between the line and the water changing

when there is a total of 25 feet of line out?
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45. Aiiiile of Elevalion An airplane flies at an altittide of 5 miles

toward a point directly over an observer (see figure). The speed

of the plane is 600 miles per hour. Find the rate at which the

angle of elevation 9 is changing when the angle is (a) H = 30°.

(b) e = 60°. and (c) 6 = 7,^ .

.
,.'-' l.'i mi

f-''^» r _

46. I.inear vs. Angular Speed A patrol car is parketl 50 feet from

a long warehouse (see figure). The revoh ing light on top of the

car turns at a rate of .M) revolutions per minute. How fast is the

light beam mo\ ing along the wall when the beam makes angles

of (a) (I = 30°. (b) e = 60°. and (c) (^ = 70° with the line per-

pendicular from the light to the wall'

(f). W)

«.'^. itvljj *#.^A

50. Think About It Describe the relationship between the rate of

change of y and the rate of change of .v in each of the follow-

ing. Assume all variables and derivatives are positi\e.

(a)

(b)

dt

tlx

dt

= 3-
.
d.\

dt

ML - x) < .V < L

Aceelercition In Kxerci.st's 51 :iiid 52, find the acceleration of

the specified object. {Hint: Recall that if a variable is changing

at a constant rate, its acceleration is zero.)

51. Find the acceleration of the lop of the ladder described in

Exercise 27 when the base of the ladder is 7 feet from the wall.

52. Find the acceleration of the boat in E.xercise 30(a) when there

is a total of 13 feet of rope out.

ip 53. Modelinfi Data The table shows Ihe numbers (in millions) of

single wdiiien .v and inanied women »; in the civilian work

force in the United States for the years 1990 through 1998.

(Soiirci': U.S. Biinini nf Lidyr .Stmi.slic:)

Figure for 46 Figure for 47

rr 47. Linear vs. Angular Speed .\ wheel of radius 30 centimeters

revolves at a rate of 10 revolutions per second. A dot is painted

at a point P on the rim of the wheel (see figure).

(a) Find i/.v/i/; as a function of 0.

(b) Use a graphing utility to graph the function in part (a).

(c) When is the absolute value of the rate of change of .v

greatest' When is it least?

(d) Find d.\/dt when 6 = 30° and H = 60",

48. Flight Control An airplane is flying in siill an with an air-

speed of 240 miles per hour. If it is climbing at an angle of 22°,

find the rate at which it is gaming altitude.

49. Seeurity Camera ,\ security camera is centered .50 feet above

a 100-foot hallway (see figure). It is easiest to design the cam-

era with a constant angular rate of rotation, but this results in a

variable rate at which the images of the surveillance area are

recorded. Therefore, it is desirable to design a system with a

variable rate of rotation anil a constant rate of movement of the

scanning beam along the hallway. Find a model for the variable

rate of rotation if \d.\/dt\ = 2 feet per second.

54,

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998

s 14.6 14.7 14.9 15.0 15.3 15.5 15.8 16.5 17.1

in 30.9 31.1 31.7 32.0 32.9 33.4 33.6 33.8 33.9

(a) Use the regression capabilities of a graphing utility to find

a model of the form »/(.vl = ((.v- -I- /).v + c for the data,

where t is the time m years, with / = coiTesponding

to 1990.

(b) Find
dm

dt'

(e ) Use the model to estimate dm/dt for ; = 5 if it is predicted

that the number of single women in the work force will

increase at the rate of 1 .2 million per year.

A ball IS dropped from a height of 20 meters, 12 meters away

from the top of a 20-meter lamppost (see figure). The ball's

shadow, caused by the light at the top of the lamppost, is

moving along the level ground. How fast is the shadow mo\'ing

1 sectind after the ball is released;' {Sidvintldl b\ Dennis

Giltini^er. St. Philips College. Sini .Anlcnio. TXl

ion ft-



REVIEW EXERCISES

REVIEW EXERCISES FOR CHAPTER 2

In Exercises 1—t. find the derivative oitlie function by

using the definition of the derivative.

1. ,/(.v) = A-- - 2.V + 3

3. ,/(.v) = s/^ + 1

2. Ax)

4. /(a)

A + 1

A - 1

In Exercises 5 and 6, describe the a- values at v\hich J is

differentiable.

5. fix) = (a- + 1

)-"
6. fix)

4v

A + 3

i— -V

7. Sketch the graph of /Ia) = 4 - |a - 2|.

(a) Is / continuous at a = 2?

(h) Is /' difterentiable at a = 2'^ Explain.

\x- + 4a + 2,

1
- 4a - A-.

(a) Is / continuous at A = -2'

(h) Is / difterentiahle at a = - 2' Explain.

8. Sketch the graph of fix)
A < -_:

A > ^2.

In f^xcrcises 9 and 10, lind the slope of the tan<;ent line to the

graph of the function at the specified point.

9. i;ix) =

10. hix) =

- I.

r In Exercises II and 12. (a) find an equation of the tangent line

to the graph of/ at the indicated point, (b) use a graphing utility

to graph the function and its tangent line at the point, and (c)

use the derivative feature of the graphing utility to confirm your

results.

11. fix) = A' - 1. (-1.

12. fix) = ^r^. (0. 2.)

2)

x + 1

In Exercises 13 and 14, use the alternative form of the derivative

to find the derivative at x = c (if it exists).

1). c13. gix) = A-(A -

14. fix) = ^^.

Writini; In Exercises 15 and 16, the figure shows the graphs of

a function and its derivative. Label the graphs as / or/' and

write a short paragraph staling the criteria used in making the

selection. To print an enlarged copy of the graph, go to the

website WHw.inathgiaphs.com.

15. 16.

t

In Exercises 17-32, find the derivative of the function.

17. y = 25

19. fix) = A«

21. //(f) = 3f^

23. fix) = A- - 3a-

25. hix) = 6-^/x + 3</x

18. » = - 12

20. ,vix) = x'-

22. /(/) = -X/"

24. d.v) = 4s^ - 5,?-

26. fix) = a'/- - X-"-

27. gii)
M-

28. /,(a)

(3a)-

29. liH) = 20 - ^ sin f)

sjn H

4

30. i,'(a) = 4 cos a + 6

31. /IH) = 3 cos H 32. gin)
.s sin a

ii. Vibrating String When a guitar string is plucked, it vibrates

with a frequency off = 200^ T. where F is measured m \ibra-

tions per second and the tension T is measured in pounds l-ind

the rate of change of F when (a) 'f = 4 and (b) 7 = 4,

34. Vertical Motion A ball is dropped from a height of 100 feet.

One second kiter. another ball is dropped from a height of 75

feet. Which ball hits the ground t"irst'.'

35. Vertical Motion To estimate the height of a building, a weight

IS dropped from the top of the building into a pool at ground

level. How high is the building if the splash is seen 9.2 seconds

after the weight is dropped"'

36. Vertical Motion A bomb is dropped from an airplane at an

altitude of 14.400 feet. How long will it take for the bomb to

reach the ground? (Because of the motion of the plane, the fall

will not be vertical, but the time will be the same as that for a

vertical fall.) The plane is moving at 600 miles per hour. How

far will the bomb move horizontally after it is released from the

plane''
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37. Projectile Motion A hall llimun folknvs a palh described by

V = A - 0.02.V-.

(a) Sketch a graph o\ the path,

(b) Find the total hori/ontal drstanee the ball was thrown.

(c) At what \-\altie does the ball reach its nia\iinuni heighr.'

(Use the symnictry of the path.)

(d) Find an equation that gi\es the instantaneous rate ot change

of tlie height of the ball with respect to the horizontal

change. E\alnate the equation at .v = 0, 10. 25. 30. and ."iO.

(e) What is the instantaneous rate of change of the height when

the ball reaches its maxiniuni height.'

rp" 38. I'rojcctile Motion The path of a projectile thrown at an angle

of 4.^ with le\el ground is

V = -V - — (.V-)

r,|-

where the niUial \elocit\ is i„ feet per second.

(a) Find the v-coordinate ol the ponil where the projectile

strikes the ground. L'se the synniietry ot the patii of the

projectile to locale the .v-coordinate of the ponil whcic

the projectile reaches its maximum height.

(b) What is the instantaneous rate of change of the height when

the pi"o|ectile is al lis ina\iniuni lieighl'.'

(c) .Show that doubling the initial velocity of the projectile

multiplies both the maximum height and the range by a

factor of 4.

(d) Find the niaMnium height and range of a projectile thrown

with an iniii.il \elocit\ of 71) feel per second. Use a graph-

ing utility to sketch ihe palh of ihe projectile,

39. Horizontal Motion Ihe position function of a particle

mo\ iiig along the .v-axis is

.v(/) = r- - 3/ + 2

for — cc < / < c^.

(a) Find the \elocity of the p.irlicle.

lb) find ihe open ^inter\al(s) in which ihe panicle is moving

to the left

(c) Find the position of the particle when the velocity is 0.

idl land the speed of the particle when the posiiion is I),

rp 40. Modelini; Data The speed of a ear in miles per hour and Ihe

stopping distance in feet are recorded in the table.

Speed (a) 20 30 40 50 60

Stopping Distance (y) 25 55 105 188 300

(a) Use the regression capabilities of a graphing utilit\ to find

a quadratic model for the data.

(b) Use a graphing utiliU to plot the d.ita and graph the model.

(c) Use a graphing utility to graph dy/d.\-

(d) Use the model to approximate the stopping distance at a

speed of 65 miles per hour.

(e) Use the graphs in parts (b) and (c) to explain the change in

stopping distance as the speed increases.

In Exercises 41-57, find tlie derivative of the function.

41. /(.v) = (3.V- + 7)(.v- - 2.V -I- 3)

42. ,^'(.v) = fv-' - 3.v)(.v + 2)

43. h(\] = v/a- sin .v 44. f(t) = r' cos t

-v' -
1 ., . , .V + 1

45. /(a) =

v-^ -I- .V - I

.V- - 1

4 - 3.V

47. /(a)

49. /(a)

51. V = ^
cos .V

53. > = 3-\ - see .a

55. V = - A tan a

57. y = X cos .V — sin .v

.V - 1

6.\ - 5

A- -1-
1

9

46. f(x)

48. /(.v)

50. /(a)
.i.v- — ^.v

52. V = 5HH
Y-

54. y = 2.V - .A- tan

.

1 -I- sin .V

56
1
- sin .V

58. Acceleration The \elocity of an object in meters per second

IS vit) = 36 -?-.()</< 6. Find the \elocity and accelera-

tion of the object when / = 4.

In Kxercises 59-62. find the second derivative of the function.

59. :^{t) = !•'' - 3r + 2 60. /(a) = 12;;/^

61. am = 3 tan H 62. Iiir) = 4 sin / - .i cos /

In Kxercises 63 and 64, show that the function satisfies the

equation.

Function Ec/iiation

63. y = 2 sin a -I- 3 cos .v y" -I- v =

10 - cos.v
64. .tA- + Y = Sin .V

In Kxercises 65-80, find the derivative of the function.

65. /(.v) = V 1 - .V

67. h(.\) = ' "
'

66. ,/(.v) = .y.v- - 1

>.v- + 1

69. /(.v) = is- - 1)-'' ^fv'' + 5) 70. hiH)

68. fix) = |.v- -I-
-

71. V = 3cos(3.v + 1)

73. y

75. \'

e

( 1
- H)''

72. y = 1
- cos 2a + 2 eos-.v

74. \- = esc 3.V + cot 3.v

.V sin 2.V

2
4~ 76. 1-

sec^.v sec-''.v

3.V

77. V = = sin-''^.v - ~ sin^Z-.v 78. /(.v) = —^
3 7 V.v- + 1

79.
.V + 2

80. 1

cosfv - 1)

.V - 1



REVIEW EXERCISES 155

rp In Exercises 81-88, use ii computer alfjehni s\stem to find the

deri\ative of the function. I se the utilitj to j;raph the function

and its derivati\e on the same set of coordinate axes. Describe

the beha\ ior of the function that corresponds to any zeros of the

graph of the derivative.

81. /(/) = t-ii - !)'

2.V

(.v)

s/.V + 1

85. /(;) = 7; + 1 ^i + I

87. \' = tan v''l - -V

82. fix) = [(.V- 2)(.v + 4)]-

84. sIa) = .v^ -v- + I

86. ^ = jY\{x + 2)-'

In Exercises 8*^-92. find the second deri\ali\e of the function.

89. y = 2v- + sin 2v

91. fix) = cot.v

90. y

92. 1

rp" In Exercises 93-96, use a computer algchra s>steni to find the

second derivative of the function.

93. fit)
(1 - t)-

95. g{H) = (an 3H -

94. .dv)
6.V

A- + 1

sMH - 1) 96. /((a) = Ax A- -
I

97. Refrigeration The leniperaturc T ot tond piil in a lice/er is

VOO

4f 10

where / is the lime m hours. Find lire rate nf change (it / with

respect to / at each of the tollou my times

(al / = I (b) / = 3 (c) t = 5 (d) / = 10

98. Fluid Flow Tlie emergent \ eloeily r of a liquid flowing from

a hole in the hotiom ol a tank is gi\en hy i = ^ 2,i,'/). where !,'

is the acceleration dne to gra\ity i?:! feet per second per

second I and li is the depth of the liquid in the tank. Find the rate

of change of r with respect to h when (a) /; = 9 and (bl /; = 4.

(Note that ,? = +32 feet per second per second. The sign of,?

depends on liow a problem is modeled, in this case, letting ,;> be

negati\e would produce an imaginary \alue for \.

)

In Exercises 99-104. use implicit differentiation to find

dyfdx.

99. X- + 3at + y' = 10

101. y^C\ - x^^- = 16

103. A sin V = V cos .v

100. A- + 9y- - 4v + 3i =

102. y- = (a - y)(A- + y)

104. cosIa + \) = X

ff^ In Exercises 105 and 106. find the equations of the tan<;ent line

and the normal line to the graph of (he eipiation at the indicated

point. I se a graphing utilitv to graph tlie e(|uation. the tangent

line, and the normal line.

107. .A point mo\es along the cur\e \- = s A' in such a \va\ (hat the

y-vakie is increasing at a rate of 2 units per second. At what

rate is a chancina for each of the followina values?

(a) A = (b) =
1 (c) A = 4

108. Surface Area The edges of a cube are expanding a( a ra(e of

?> centimeters per second. How last is the surface area chang-

ing when each edge is 4.? centimeters'

109. Changing Depth The cross section of a 5-meter trough is an

isosceles trapezoid w ith a 2-meter lower base, a 3-meter upper

base, and an altitude of 2 meters. Water is running into the

trough at a rate of I cubic meter per minute. How last is the

water le\el rising when the water is 1 meter deep'

111). Linear and Angular Velocity A rotating beacon is locatBd I

kilomeler off a straight shoreline (see figure). If the beacon

rotates at a rate of 3 revolutions per minute, how fast (in kilo-

meters per hour) does the beam ol light appear to he moving

to a \ lewer w ho is ^ kilometer dow n the shoreline'

I km ^w mm

-^ km

111. Moving Shadow A sandbag is dropped from .i balloon at a

height of 60 meters when the angle of elevation to the sun is

30° (see figure). Find the rate at which the shadow of (he sand-

bag is traveling along the ground when the sandbag is at a

height of 35 meters. [Hint: The position of the sandbag is

given by .v(f) = 60 - 4.9/-.]

Rays

Position:

,v(n = 60-4.9/

Shadow's path

105. A- + v- 20. (2.4) 106. A- - v" = 16. (5.3)
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t^-Froble^m 'Solving

rp 1. ConsidL'i' the grapli of the parabola y = .v-.

(a) Find the radius ; of the largest possible circle centered on the

v-axis that is tangent to the parabola at the origin, as

indicated in the figure. This circle is called the circle of

curvature (see Section 1 1.5). Use a graphing utility to graph

the circle and parabola in the same viewing window.

(h) Find the center (0. h) of the circle of radius 1 centered on the

\-axis that is tangent to the parabola at two points, as

indicated in the figure. Use a graphing utility to graph the

circle and parabt)la in the same viewing window.

Figure for 1(a)

2. Graph the two parabolas v = .v- and y = — .v- + 2-V — 5 in the

same coordinate plane. Find equations of the two lines simulta-

neously tangent to both parabolas.

3. (a) Find the polynomial P,{.\) = iVf, + ((|.v whose value and

slope agree with the value and slope of /(.v) = cos x at the

point -V = 0.

(b) Find the polynomial Pif.v) = Oy + a|.v + a,-^" whose value

and first two derivatives agree with the value and first two

derivatives of fix) = cos x at the point v = 0. This polyno-

mial is called the second-degree Taylor polynomial of

fix) = cos .V at .V = 0.

(c) Complete the table comparing the values of/ and P,. What

do you observe?

X -1.0 -0.1 -0.001 0.001 0.1 1.0

cosx

P2M

(d) Find the third-degree Taylor polynomial of fix) = sin .v at

X = 0.

4. la) Find an equaUon of the tangent line to the parabola y = .v- at

the point (2, 4).

(b) Find an equation of the normal line to y = .v- at the point

(2. 4). (The normal line is perpendicular to the tangent line.)

Where does this line intersect the parabola a second time?

(c) Find equations of the tangent line and normal line to y = x-

at the point (0. 0).

(d) Prove that for any point ia.h) ¥= (0,0) on the parabola

y = ,v-, the normal line intersects the graph a second time.

5. Find a third-degree polynomial /)(-v) that is tangent to the line

y = 14.V — 13 at the point (1. 1). and tangent to the line

y = -2.V - 5 at the point (-1, -3).

6. Find a function of the fomi fix) = a + b cos ex that is tangent

to the line \' = 1 at the point (0, 1 ), and tangent to the line

3 77

v = .v + ---

TT 3

4" 2
at the point I

rp" 7. The graph of the eight curve,

x-* = a-ix- - y-), a ¥= 0,

is shown below.

y

(a) Explain how you could use a graphing utility to obtain the

graph of this curve.

(b) Use a graphing utility to graph the curve for various values

of the constant a. Describe how a affects the shape of the

curve.

(c) Determine the points on the curve where the tangent line is

horizontal.

rp 8. The graph of the pear-siiaped quartic,

b-y- = x''{a — .v), a. b > 0.

is shown below.

(a) Explain how you could use a graphing utility to obtain the

graph of this curve.

(b) Use a graphing utility to graph the curve for various values

of the constants a and b. Describe how (/ and b affect the

shape of the curve.

(c) Determine the points on the curve where the tangent line is

horizontal.
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?^SS5F" W
9. A man 6 feet tall walks at a rate of 5 feet per second toward a rp 13. The fundamental limit

street light that is 30 feet high. The man's 3-foot-tall child

follows at the same speed, but 10 feet behind the man. At times,

the shadow behind the child is caused by the man, and at other

times, by the child.

Cb

3(1 11

lOft—

H

Not ilriiwn to scale

(a) Suppose the man is 90 feet from the street light. Show that

the man's shadow extends beyond the child's shadow.

(b) Suppose the man is 60 feet from the street light. Show that

the child's shadow extends beyond the man's shadow.

(c) Determine the distance d from the man to the street light at

which the tips of the two shadows are exactly the same dis-

tance from the street light.

(d) Determine how fast the tip of the shadow is moving as a

function of .v, the distance between the man and the street

light. Discuss the continuity of this shadow speed function.

10. A particle is moving along the graph of y = sAv. When .v = 8.

the y-component of its position is increasing at the rate of 1

centimeter per second.

(a) How fast is the .v-component changing at this moment?

(b) How fast is the distance from the origin changing at this

moment?

(c) How fast is the angle of inclination changing at this

moment?

Let L be a differentiable function for all .v. Prove that if

LUi + b) = Lia) + LW for all n and i. then L'(.v) = L'(0)for

all X. What does the graph of L look like?

12. Let E be a function satisfying £(0) = £'(0) = I. Prove that if

E(a + b) = E{a)E{b) for all a and b. then £ is differentiable

and £'(a) = E(x) for all .v. Find an example of a function satis-

fying E{a + b) = E(a)E(b).

11

assuines that .v is measured in radians. What happens if we

assume that .v is measured in degrees instead of radians?

(a) Set your calculator to degree mode and complete the table.

Z (in degrees) 0.1 0.01 0.1)001

sin 2

(b) Use the table to estimate

sin:
hni
;->o :

for: in degrees. What is the exact xalue of this limit' {Hint:

ISO" = IT radians!

(c) Use the limit definition of the deri\ati\e to find

d .

for ; in degrees.

(d) Define the new functions S(r) = sin(ii:) and C(;) = cos(t;).

where c = tt/ISO. Find S{^0) and CI 180). Use the Chain

Rule to calculate

-5(;)

(e) Explain why calculus is made easier by using radians

instead of degrees.

14. .'^n astronaut standing on the moon throws a rock into the aii.

The heisht of the rock is

27

-To^
-r- + lit + b

where .v is measured in feet and ; is measured in seconds.

(a) Find expressions for the velocity and acceleration of the

rock.

(b) Find the time when the rock is at its highest point by find-

ing the time when the velocity is zero. What is its height at

this time?

(c) How does the acceleration of the rock compare with the

acceleration due to gravity on earth?

15. If (/ is the acceleration of an object, the jerk j is defined by

j = ay).

(a) Use this definition to give a physical inteipretation ofj.

(b) Find / for the slowing vehicle in Exercise 102 in Section 2.3

and inteipret the result.



Packaging: The Optimal Form

Maiiv pciiple are involved in deciding how to package

the pioducts you see in grocery stores. Pacl<aging engi-

neers select materials and package shapes to adequately

protect the product through shipping at a reasonable

cost.

A container's shape, as well as its material, is inipoi-

tant in detenniniiiiz its streneth. From an enizineerina

perspective, the sphere is the strongest form, followed

by the circtilar cylinder. The rectangular box comes in a

poor third. From a cost perspective, it is preferable to use

the smallest amount of material possible.

The table gives the approximate measurements in

inches of several common items packed in cylindiical

containers.

Fiiidiict

Coffee creamer

Cleanser

Coffee

Pineapple juice

Frosting

Soup

Tomato puree

Baking powder

Radius (in.)

1..S0

1.45

1 .9,S

2.10

1.63

1 ..^0

1.45

1.25

An infinite number of dimensions can be used to

construct a right circular container of a given volume.

The graph at the right shows the relationship between

the radius and surface area for containers that have a

volume of 48.4 cubic inches.

Height (in.)

6.85

7.5(1

5.20

6.70

3.60

3.80

4.40

3.65

Voliiiiu' (in.

48.42

44.54

62.12

92.82

30.05

20.18

52.56

17.92

\.2 1,4 I h l.N 2.0 2.2 2.4 2.6 2.8 3.0

Radius (in inches)

QUESTIONS

1. Create a table of values for the dimensions of a cylinder with a volume of 49. .54 cubic inches.

Does it appear that the cleanser container minimizes surface area?

2. Suppose you are designing a coffee creamer container that has a volume of 48.42 cubic inches.

Use the equations for the surface aiea of a cylinder and the \olume of a cylinder to develop an

equation relating the radius r and surface area 5.

S = 271/"- -I- IttiIi

V = Trr-h

Surta^c .uca ol a righl circular cyhndcr

V<">lLi!nc of a n'jh! circular cvhnder

3. Repeat Question 2 for each of the other containers in the table. Use a graphing utility to plot

each equation. Determine whether the radius of each container is larger than, smaller than, or

equal to the "optimal" radius.

4. Suppose, in order to fit more writing on the cylinder, you want to maximize the surface area of a

cylinder that holds 49. .5 cubic inches. Can you do this? Explain.

The concepts presented here uill he e.xphiredfurther in this chapter For an e.xteiision of tliis

application, see Lah 5 in the lab series that accompanies this te.xl at college.hmco.com.
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By the time packaging engineers begin work on a container, design specialists

have already done their work. Designers use color, shape, and words to create

an image that they think will appeal to their targeted market. Many designers

believe that the package is at least as important as the product inside.

In addition to strength, engineers

must consider not only how a pack-

age will t"it into a shipping container

but also how it will be displayed on

a store shelf. The sphere may be the

strongest form, but it would surely

be impractical to use for product

packaging.

Successful designer Primo Angeli feels

so strongly about the importance of

packaging that he has designed entire

lines of packaged product ideas in

realistic packages so that consumer

response to these ideas can be mea-

sured before massive investments are

made in product de\elopment.
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Extrema on an Interval

• Understand the definition of extrema of a ftnietion on an interval.

• Understand the definition of relative extrema of a function on an open interval.

• Find extrema on a closed interval.

Ma\innini

(a) / IS conlinLiOLis. [- 1. 2j is closed-

No iiiaxiniuin

f(.v) = .v-+ I

(0, I)
~ Minimum

(b) / IS continuous, (- 1. 2) is open.

Maximum

V- + I . .V *

, .V =

No minimum

(c) ^ IS nol Lonlinuous. [- 1.2] is closed.

Extrema can occur at inlcnor points or

endpoints of an interval, f'xtrema that occur

at the endpoints are called endpoint extrtma.

Fij;urc 3.1

Extrema of a Function

In calculus, much effort is devoted to determining the behavior of a function/ on an

interval /. Does/ have a maximum value on /? Does it have a minimum value? Where

is the function increasing? Where is it decreasing? In this chapter you will learn how

derivatives can be used to answer these c]uestions. You will also see whv these

c|ueslions are important in real-life applications.

Definition of Extrema

Let / be defined on an interval / containing c.

1. /((-) is the minimiini of/ on / if/(c) < /'(.v) for all .v in /.

2. /(() is the mavimum of/ on / if/(c) > /(.v) for all .v in /.

The minimtuii and maximum of a function on an interval are the extreme

values, or extrema, of the function on the intersal. The minimum and

maximum of a function on an interval are also called the ab.solute minimum
and absolute maximum on the interval.

A ttinction need nol have a imninuun or a maximum on an interval. For instance,

in Figure .^.l(a) and (b). you can see that the tunction /(.v) = x- + I has both a

minimum and a maximum on the closed interval [—1,2], but does not have a maxi-

mum on the open interval (~1,2). Moreover, in Figure 3.1(c). you can see that

continuity (or the lack of it) can affect the existence of an extremum on the interval.

This suggests the following theorem. (Although the Extreme Value Theorem is

intuitively plausible, a proof of this theorem is not within the scope of this text.)

THEOREM 3.1 Tlie Extreme Value Theorem

If/ is continuous on a closed interval [</, />]. then /' has both a niininuim and a

maximum on the interval.

r EXPLORATION

Finding Minimum and Maximum Values The Extreme Value Theorem (like the

Intemiediate Value Theorem) is an existence theorem because it tells of the existence

of minimum and maximum values but does not show how to find these values. Use

the extreme-value capability of a graphing utility to find the minimum and maximum
values of each of the following. In each case, do you think the .v-values are exact or

approximate? Explain your reasoning.

a. /(.v) = -V- — 4.V -I- 5 on the closed interval [—1,3]

b. /(.v) = x^ — 2x- — 3.1: - 2 on the closed interval [-1,3]
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/ has a relative maxnmim al (0. 0) and a

relative minimum at (2. - 4).

Figure 3.2

9(A--3)

(a) r(3) =

(0,0)

(b) /'(()) does not cxiM.

/(.v) = sin .V

(5 i\ Relative

(c.
/{f

) = 0: r{^) =

Figure 3.3

Relative Extrema and Critical Numbers

111 Figure 3.2, the graph nf /(.v) = .v' - 3.v- has a relative niaximuni at the |ioiiit

(0, 0) and a relative minimum at the point (2. -4). liil'ornially. you can think of a

I'elative maximum as occurring on a "hill" on the graph, and a relative minimum as

occuixing in a "valley"" on the graph. Such a hill and valley can occur in two ways. If

the hill (or valley) is smooth and rounded, the graph has a horizontal tangent line at

the high point (or low point). If the hill (or valley) is shatp and peaked, the graph

represents a ftinction that is not ditferentiahlc al the high point (or low point).

Definition of Relative Extrema

1. If there is an open inlcrval containing i on whic h /'(< ) is a maximum then /(<)

is called ; relative maximum of f.

2. If there is an open interval ci)iilaining on uhiL h/(< ) is; minimtini then /(<•)

is called ; relative minimum of /.

The plural o ' relative maximum is relativ e maxim a. and the plural of relative

minimum is relative minima.

Example I examines the derivatives of functions at i;iyen relative extrema. (Much

more is said aboul finding the relative extrema of a function in Section 3.3.)

Exiimple I The Value of the Derivative at Relative Kvtrenia

Find the \aliie of the deri\ali\e at each ol the relali\c extrema show n in Figure 3.3.

Solution

Ti I
. ( ft ^

9(-v- - 3)
.

a. I he derivative of /(.v) = ; is

.V

,/'(-v)

v'dS.v) - (9){.v- - 3)(3.v-)

9(9 - .V-)

Dillcrcnii.ite using Quuuent Rule.

Simplify.

At the point (3, 2), the value of the derivative is /'(3) = (see Figure 3.3a).

b. At .V = 0. the derivative of /(.v) =
|

v| docs nut exist because the following one-

sided limits differ (see Figure 3.3b).

,. fix) - /([)) ,. |.v|

lim ^ = hm — = — 1 Liniil lioni Ihe lell

-v-^ii .V — I—" .V

Iim = Inn = 1 Lmm Irom Ihe nalll

v^ir .V — >—" .V

c. The derivative of /(.v) = sin .v is

fix) = COS.Y.

At the point ( tt/2. 1 ). the value of the derivative is /
'( tt/2) = cos( tt/2) = 0. At the

point (37r/2. - 1), the value of the derivative is / '(377/2) = cos(37r/2) = (see

Figure 3.3c).
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Note in Example 1 that at the relative extrema, the derivative is either zero or does

not exist. The .v-values at these special points are called critical numbers. Figure 3.4

illtistiates the two types of critical luiiiibers.

Definition of a Critical Number

Let / be detlned at c. If /'(i) = or if / is not differentiable at < , then ( is a

critical number of /!

/ '({ ) Joes niil exist

( is a cntital mimber of /'.

Fisiiire 3.4

THEOREM 3.2 Relativt E.xtrema Occur Only at Critical \ imbers

If/ has a relative niininuini jr relative niaxiiiiuni at .v = c, then c IS a critical

inimber of/.

Pierre de Fermat (1601-1665)

For Ferniat. who was trained as a lawyer,

matheniatics was more of a hobby than a

profession. Nevertheless. Fermat made many

contributions to analytic geometry, number

theory, calculus, and probability In letters to

friends, he wrote of many of the I'lmdamental

ideas of calculus, long before Newton or

Leibniz. For instance, the theorem at the right

is sometimes attributed to Fermat.

Proof

Cfl.vf /; If/' is not differentiable at .v = c. then, hy definition, c is a critical number of

/and the theorem is valid.

Case 2: If / is differentiable at ,v = e. then /'(i) must be positive, negative, or 0.

.Suppose /'(< ) is positive. Then

f'ic) lim ^ >

which implies that there exists an interval (ii. h) containing c such that

/(-v) -fie)
> 0. for all -V r ( in in. />). (See Exercise 58. Section

Because this quotient is positive, the signs of the denominator and numerator must

agree. This produces the following inequalities for .v-values in the interval (</, />).

Left oj c: A < ( and /(.v) < /(i)

Rifihtofe: \ > i and fix) > f(c)

/'(() IS not a relative minimum

/(( ) is not a relative maximum

So. the assumption that / '(c) > contradicts the hypothesis that f(c) is a relative

extremuni. Assuming that f'ic) < produces a similar contradiction, you are left with

only one possibility—namely, /'(<) = 0. So. by definition, < is a critical number of
/'

and the theorem is valid.
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Finding Extrema on a Closed Interval

Theorem 3.2 state.s thai the relative extrema of a tunctidii can occur only at the critical

numbers of the function. Knowing this, you can use the following guidelines to find

extrema on a closed interval.

Guidelmes for Findiiig Extrema on a Closed Interval

To find the extrema of a continuous function/ on a closed interval [il h]. use the

following steps.

1. Find the critical numbers of/ in ici. b).

2. Evaluate / at each critical number in (((. h).

3. Evaluate/ at each endpoint of [<;. /?].

4. The least of these values is the minimum. The greatest is the maximum.

The next three examples show how to apply these guidelines. Be sure you see that

finding the critical numbers of the function is only part of the procedure. Evaluating

the function at the critical nunibers miil the endpoints is the other part.

Example 2 Finding Extrema on a Closed Interval

Find the extrema of/(.v) = 3.v^ - 4.v' on the interxal [- 1, 2].

Solution Bemn bv differcntiatiiii; the function.

16- (2,16).

Ma.ximum /

12-
/

"1
8-

/

\

V'^ (0,0) /

-1
(1,-1)

-

-4- Minimum

Av) = 3.v-'-4.v'

On the closed interval [- 1.2]./ has a

minimum at (I. - 1 ) and a ma.Miiiinii

at (2. 16).

Figure 3.5

fix) = S.v-* - 4.V'

/'(.v) = llv-' - 12.V-

Vv'i'ite tii'igiiKil funclion.

Differentiale

To find the critical numbers of/', you must find all ,v-values for which /'(.v) = and

all .V-values for which /'(.v) does not exist.

fix) = I2.V-' - I2.V- =

12.\-(.v - I) =

.V = 0.

Set /'(-v) equal tu (I.

Factor

Critical numbers

Because/ ' is defined for all .v. you can conclude that these are the only critical num-

bers of/'. By evaluating / at these two critical numbers and at the endpoints of [- 1 , 2],

you can determine that the maximum is /'(2) = 16 ttiid the minimum is /( I )
= - I. as

indicated in the ttihle. The graph of / is shown in Figure 3.5.

Left

Endpoint

,/(- 7

Critical

Number

/(O) =

Critical

Number
Right

Endpoint

/( I )
= - I

Minimum

/'(2) = 16

Maximum

In Figure 3.5, note that the critical number .v = does not yield a relative

minimum or a relative maximum. This tells you that the converse of Theorem 3.2 is

not true. In other words, the critical numbers of a function need not produce relative

extrema.
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./(.v)

On tho closed inlerval [- I . }]. I has a

mininnini at (
- 1. - >) and a maxinuim

at (0. II).

Figure 3.6

(
^. 3l Maximum

/< A) = 2sin A - cos 2.V

It-')
/

\
'

-
\ 1 1 ,

/
V \ (2;r,-li

10. -1) \,,/*\»/
_T -

1
6-

-i\ im _3|
2) 1

6' 2I

-3- -
Minima

On the closed interval [ll. 1-]./ has

two minima at (7-/6. - 3/2) and

( 1 1 n/b. - }/2) and a maximum at

(77/2.3).

Figure 3.7

Example 3 Finding Extrema on a Closed Interval

Find the extrema affix) = 2.v — 3.Y-''' on the interval [— 1, 3].

Solution Differentiating produees the folkiwina

/(a)

/'(-v)

3a-/-' Write ongina] function.

Dillerenliale.

From this deri\ati\e. you can see that the function has two critical numbers in the

interval [- I. 3]. The number 1 is a critical number because /'(I) = 0. and the

number is a critical number because /"(()) does not exist. By evaluating /at these two

numbers and at the endpoints of the interxal. you can conclude that the minimum is

/'( - 1) = —3 and the ma.ximum is /(O) = 0. as indicated in the table. The graph of/

is shown in Fiaure 3.6.

Left

Endpoint

Critical

Number
Critical

Number
Right

Endpoint

/(-I) = -5

Minimum

./(O) =

Maximum

,/( 1 )
= - 1 ./(3) == 6 - 3 ^9 = -0.24

Example 4 Finding Extrema on a Closed Intcr\'al

Find the extrema of/(.v) = 2 sin .v - cos 2.\ on the interval [0. 2 7j-].

Soliitidn This function is differentiable for all real ,v. so you can find all critical

numbers by differentiating the function and .setting /'(.v) equal to zero, as follows.

f{-\)
= 2 sin .V - cos 2.V

/'(.v) = 2 cos.v + 2 sin 2.\ =

2 cos X + 4 cos .v sin .\
= I)

2(cos.v)(l + 2 sin.v) =

W'lile oriLinlal lunclion

.Sel /(.>! cqiLiI 10

. cos \ snl \

hklo

In the interval [O. 2-]. the factor cos.v is zero when .v = -/2 and when .v = 3t7/2.

The factor (1+2 sin .v) is zero when .v = 7/t/6 and when .v = II —/6. By evaluating

/at these four critical numbers and at the endpoints of the interval, you can conclude

that the maximum is ({tt/I) = 3 and the minimum occurs at iwo points.

filTT/b) = -3/2 and /(I 177/6) = -3/2. as indicated in the table. The graph is

shown in Fiuure 3.7.

Left

Endpoint

Critical

Number
Critical

Number
Critical

Number
Critical

Number
Right

Endpoint

,/'(0) = -

1

'(!) = -'

Maximum
^U / 2

Minimum
\ - /

.p 1 T7\ 3

n 6 /
"

2

Minimum

/(277) = - 1

LiJ

4^5^ indicates that in the Intciacti\e 3.0 CI) ROM lUid Internet 3.0 versions (if this text

{arailahle at college.hmco.com) yoii will find an Open Exploration, wliieh further explores this

example using the computer algebra systems Maple. Mathcad. Mathematica. ami Deri\e.
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EXERCISES FOR SECTION 3.1

In Exercises 1-6, find the value of the derivative (if it exists) at

each indicated extrenium.

1. fix) = -T
V- + 4

2./(.v) = cos^

2- -

/
(0. 1)

/
-1 -

I2.-I1

_T _ -

3. fix) = X +
27

4. /(.v) = -3.vy.v+ !

6'~

5-

4-

3-

H h

>4 ^^ -^

(3.?)

-1 12 3 4 5

5. fix) = (.V + 2)-'^

-+^.v

6. fix) = 4 -
j.vl

In Exercises 7-10, approximate the critical numbers of the

function shown in the graph. Determine whether the function

has a relative maximum, relative minimum, absolute maximum,

absolute minimum, or none of these at each critical number on

the interval shown.

12 3 4

10.

In Exercises 1 1-16, find any critical numbers of the function.

11. fix) = x-ix - 3) 12. gix) = A--(A- - 41

13. gii) = tj4 - r. I < :

15. Iii.\) = sin^ -V + cos V

< A < 277

14. fix) = 4x

X- + 1

16. /(«) = 2 sec + tan $

< H < 2tt

In Exercises 17-32. locate the absolute extrema of the function

on the closed interval.

]1±1 [O.S]n. fix) = 2(3 V- a), [-J.2J 18. fix) =

19. fix) = -X- + 3a-. [0. 3] 20. /(Al = A- + 2a - 4. [-1.1]
'3 "—

21. fix) '^x' :- \x\ [-1,2] 22. fix) = A-' - I2a. [O. 4]

23. V = 3a-''' - 2a. [-1. l]' - 24. i;(a)

25. git)

27. /,(,v) =

r + 3

1

,v

[-1.1]

[0.1]

= i/x. [-1.1]

3-|r-3l, [-1,5]

29. fix) = cos TTX. (I.

31. V = i + tan(^i. [1.2J

26.

28. /((;) = —^. [3.5
? - 2

30. gix) = sec A
7T TT

6' 7

32. .V- - 2 - cos.v, [-1,3]

In Exercises 33-36, locate the absolute extrema of the function

(if auN exist) over the indicated interxals.

33. fix) = 2a - 3

(a) [0.2] (b) [0.2)

(c) (0.2] (d) (0.2)

34. fix) = 5 - A

(a) [1.4] (b) [1.4)

(c) (1.4] (d) (1.4)

1 1 1 h— .v

l 2 3 4
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35. f(x) = A- - 2.V

(a) [-1.2] (b) (1.3]

(c) (0,2) (d) [1.4)

36. fix) = 74 - .v=

(a) [-2.2] (b) [-2.0)

(c) (-2.2) (d) [1.2)

Py III Exercises 37-40, use a fjraphing utility to jjrapii the function.

Locate tlie absolute extrenia of the function on the closed

interval.

Function

f2v + 2. < A < 1

{Ax\ 1 < a- < 3

2 - A-. 1 < A < 3

2 - 3a. 3 < A < ."^

3

37. ,/(.v) =

38. fix) =

39. /Xv) =

40. /(a) =

V - 1

Interval

[0. 3]

[1.5]

(1.41

[0.2)

rp In Exercises 41 and 42, (a) use a computer algebra system to

graph the function and approximate any absolute extrenia on

the indicated interval, (b) l!se the utility to tind any critical

numbers, and use them to tind any absolute extrenia not locat-

ed at the endpoints. Compare the results with those in part (a).

Function

41. /(a) = 3.2a^ + -"iA' - 3.5.V

4
42. fix) = -xji

Interval

[0.1]

[0. 3]

^ In Exercises 43 and 44, use a computer algebra system to find

the maximum value of |/"(-v)| on the closed interval. (This

value is used in the error estimate for the Trapezoidal Kule, as

discussed in .Section 4.6.)

Function lutenal

43. fix) = J\ + x'

1

[0.

44. fix)
X- + 1

/v In Exercises 45 and 46, use a computer algebra system to find

the niaxiniuni value of [/*(-»)
| on the closed interval. (This

value is used in the error estimate for Simpson's Rule, as

discussed in Section 4.6.)

Function Inteii'al

45. fix) = (a + 1)-''-' [0.2]

46. fix) = ^^ [-1-1]
A- + 1

47. Explain why Ihc function fix) = tan a has a niaxiimiin on

[0. 7r/4] but not on [O. n].

48. Writing Write a short paragraph explaining why a continuous

function on an open interval may not have a maximum or

minimum. Illustrate your explanation with a sketch of the graph

of a function.

In Exercises 49 and 50, graph a function on the interval

[—2, 5] having the given characteristics.

: 49. Absolute maximum at a = - 2

Absolute minimum at a =
1

Relative maximum at a = 3

;
50. Relative minimum at a = -

1

Critical number at a = 0. but no extrenia

Absolute maxinuini at a = 2

Absolute mininiuni ,il v = .s

In Exercises 51-54, determine from the graph whether/

has a minimum in the open interval {a, b).

i

51. (a)

52. (a)

53. (a)

54. (a)

(h)

(b)

lb)

(b)
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55. Power The formula fur the power oiilpnt /' of a battery is

P = VI - Rl~ where \' is the electromotive force in volts,

R is the resistance, and / is the current. Find the current (mea-

sured in amperes) that corresponds to a ma\inuini \ahic of /' ui

a battery for which V = 12 volts and A' == 0.5 ohm. Assume

that a 15-ampere fu.se bounds the output in the interval

< / < 15. Could the power output be increased by replacing

the 15-ampere fuse with a 2()-anipere fuse? Explani.

56. Lawn Sprinkler A lawn sprnikler is constructed m such a

way that dO/dt is constant, where H ranges between 45" and

135° (see figure). The distance the water travels horizontally is

I- sin 2Q

32
45° < e < 135°

where r is the speed of the water. Find d\/di and explain why

this lawn sprinkler does not water evenly. What part of the law n

receives the most water?

wy- '' e =15°

i::

e = 133"
''

/

,

\

1 ^
-
' I

" -^
^

.' \y , ^.

i}~ 32 64

i-

64 32

Water sprmkler^ 45" < 6 <
1

35°

FOR FURTHER INFORMATION For moic niforniation on llic

"calculus of lawn sprinklers," see the article "Design ol an

Oscillating Sprinkler" by Bart Braden in Muthciiuilns M(ii;ti:iih'.

To view this article, go to the website www.iiHitluirticli's.coni.

57. Honeycomb The surface area of a cell in a honeycomb is

3s- /y3 - cos e\
6hs

sin f)

where /; and .< are positive constants and 6 is the angle at which

the upper faces meet the altitude of the cell. Find the angle

$ (7r/6 < $ < -/2) that niinuni/es the surtace area S.

FOR FURTHER INFORMATION For more information on the

geometric structure of a honeycomb cell, see the article "The

Design of Honeycombs" by Anthony L. Peressini in UMAP
Module 502, published by COMAP, Inc., Suite 210, 57 Bedford

Street, Le.xington, MA. To view this article, go to the website

wwu.nhirhcirticlt's.coni.

58. Inventory Cost A retailer has determined that the cost C of

ordering and storing v units of a certain product is

300.000
C = 2.V 1 < .V < 300.

The delivery truck can bruig at most 300 units per order Find the

order size that will minimize cost. Could the cost be decreased if

the truck were replaced with one that could bring at most 400

units? Explain.

59. Highway Design In order to build a highway it is necessary to

fill a section of a valley where the grades (slopes) of the sides

are97f and6'7r (see figure). The top of the tilled region will have

the shape of a parabolic arc that is tangent to the two slopes at

the points A and B. The horizontal distance between the points

A and Sis 1000 feet.

(a) Find a quadratic function y = a.\- + lx\ + c. -500 <

.V < 500, that describes the top of the filled region.

(b) Complete the table giving the depths d of the fill at the

specified values of .v.

X -500 -400 -300 -200 -100

d

X 100 200 300 400 500

d

(c) What will be the lowest point on the completed highway?

Will it be directly over the point where the two hillsides

come together?

IHI *

10(11) ft

-

Hi'jhwavai^

Nor drawn lo scale

60. Find all critical numbers of the greatest integer function

fM = M.

True or False? In Kxerci.ses 61-64, determine whether the

statement is true or false. If it is false, explain why or give an

example that shows it is false.

61. The maximum of a function that is continuous on a closed

interval can occur at two different values in the interval.

62. It a function is continuous on a closed interval, iheii it must

ha\e a minimum on the interval.

63. If .V = c is a critical number of the function /, then it is also a

critical number of the function ,i;(.v) = fix) + k. where k is a

constant.

64. If ,v = c is a critical number of the lunctioii /. then it is also a

critical number of the function ,!,'(.v) = /(.\ - k). where k is a

constant.
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Rolle's Theorem and the Mean Value Theorem

I'iklciMaiKl ami use Rolle's riicorcin.

Understand and use the Mean Value Theorem.

RolleMheorem

French mathematician Michel Rollc first

published the theorem thai bears his name in

1691. Before this time, however Rolle was one

of the most vocal critics of calculus, stating

that the subject gave erroneous results and was

based on unsound reasoning. Later in life,

Rolle came to see the usefulness of calculus.

Rolle's Theorem

The Extreme Value Theorem (Seetion _r 1 ) stales that a continuous function on a

closed inter\al [a. h] mtisl have both a minimum and a maximum on the interval. Both

of these values, however, can occur at the endpoints. Rolle's Theorem, named after

the French mathematician Michel Rolle ( 1632-1719). gives conditions that guarantee

the existence of an extreme value in the interior ol a closed interval.

EXPLORATION

Extreme Values in a Closed Inlenal Sketch a rectangular coordinate plane on a

piece of paper Label the points (1.3) and (5. 3). Using a pencil or pen. draw the

graph of a differentiable function / that starts at ( 1, 3) and ends at (?. 3). Is there at

least one point on the graph for which the derivative is zero? Would it be possible

to draw the graph so that there isii 't a point for which the derivative is zero? Explain

vour reasonina.

la) / IS continuous on [a. h] and ditfercnliable

on {ti. /'}.

THEOREM 3.3 RoUe's Theorem

Let / be continuous on the closed interv il \u. )] and differentiablc on the open

interval {a />). If

fUi) == ./(/')

then there is at least one numher i in ((/. /)) su .h that f'U) = 0.

(b) / is conlinuoLis on [u. h].

Figure 3.8

Proof Lel,/((/) = d = f(h).

Case I: If /(.v) = </ for all a in [(/. /)]. / is constant on the interval and. by Theorem

2.2. /tv) = for all A in (<;./»).

Case 2: Suppose /'(.v) > d for some .v in (<;. />). By the Extreme Value Theorem, you

know that /' has a maximum at some c in the interval. Moreover, because /(c) > d,

this maximum does not occur at either endpoint. So. / has a maximum in the open

interval (</. /»). This implies that /(t) is a relative maximum and. by Theorem 3.2. e is

ti critical number of j'. Finallv. because / is differentiable at c. you can conclude that

/'(c) = (1.

Case .?; If /(.v) < </ for some a in in. h). you can use an argument similar to that in

Case 2. but involv ing the minimum instead of the maximum. .^^

From Rolle's Theorem, you can see that if a function / is continuous on [</. li] and

differentiable on {a. /;). and if/((/) = /(/?). there must be at least one .v-value between

(/ and l^ at which the graph of / has a horizontal tangent, as shown in Figure 3.8(a).

If the differentiability requirement is dropped from Rolle's Theorem. / will still have

a critical number in {a. h). but it may not yield a horizontal tangent. Such a case is

shown in Fiauie 3.8(b).
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Example 1 Illustrating Rolle's Theorem

The x-vakie for which /'(.v) = Ois between

the two .v-intercepts.

Figure 3.9

Find the two .v-inteicepts of

fix) = X- - 3.V + 2

and show that /'(a) = at some point between the two intercepts.

Solution Note that /' is differentiahle un the entire leal Hue. Setting /(.v) equal to

produces

-Y- - 3.V + 2 = Set/(vl equal to U.

(.V - 1)(.Y - 2) = 0. Factor

So, / ( 1 ) = /'(2) = 0. and from Rolle's Theorem you know that there exists at least one

c in the interval (1.2) such that /"(i ) = U. To fiiul such a c. you can solve the equation

fix) = 2.V -3 = Set /'(-vl equal to U

and determine thai fix) = when .v = i Note that the v-value lies in the open inter-

val (1, 2), as shown in Figure 3.9. 1

Rolle's Theorem states that if/' satisfies the conditions of the theorem, there must

be cir least one point between a and h at which the derivative is 0. There may of course

be more than one such point, as illustraled in the ne.xt e.\ample.

Example 2 Illustrating RolIc"s Tlu'orem

/'(-1) = _,-^ /'(1) =

/'(-v) = for more than one .v-valiie in the

interval (-2,2).

Figure 3.10

/ \

Let /(.v) = .v* - 2.V-. Find all values of c in the interval (-2. 2) such that /'(c) = 0.

Solution To begin, note that the function satisfies the conditions of Rolle's

Theorem. That is,/ is continuous on the interval [-2,2] and differentiahle on the

interval (-2. 2). Moreover, because /(-2) = 8 = /'(2), you can conclude that there

exists at least one e in (
— 2, 2) such that /'(( )

= 0. Setting the derivative equal to

produces

f\x) = 4.V-' - 4.V =

4Aiv- - 1 ) =

.V = 0, 1. -1.

Set /TO equal to 0.

Factor.

.v-values for which f'[x] —

So, in the interval (-2,2), the derivative is zero at three different values of .v, as shown

in Figure 3.10.

TECHNOLOGY PITFALL A graphing utility can be used to indicate whether the

points on the graphs in Examples 1 and 2 are relative minima or relative maxima of

the functions. When using a graphing utility, however, you should keep in nund that

it can give misleading pictures of graphs. For example, try using a graphing utility

:- to graph

/(.v)= 1 -(.V- 1)2
i()oo(.v - 1)'/' + r

Figure 3.11

With most viewing windows, it appears that the function has a maximum of 1 when

.V = 1 (see Figure 3.1 1 ). By evaluating the function at .v = 1, however, you can see

that /(I) = 0. To determine the behavior of this function near .v = 1, you need to

examine the graph analytically to get the complete picture.
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^ Slope ol tangent line =f\c}

Fijiiire 3.12

JdSKl'H-LiH IS L«,l(iM,i. (1736-1813)

The Mean Value Theorem was first proved

by the famous mathematicitin Joseph-Louis

Lagrange. Born in Italy, Lagrange held a

position in tiie court of Frederick the Great

in Berlin for 20 years. Afterward, he moved

to France, where he met emperor Napoleon

Bonaparte, who is quoted as saying.

"Lagrange is the ioft\ pyramid of the mathe-

matical sciences."

The Mean Value Theorem

Rolle's Tlieoicm can be used to prine another llieoiein—the Mean Value Theorem.

THEOREM 3.4 ITie Mean Value Theorem

If/ is continuou.s on the closed interval [u h] tind differentiable on the open

interval ((/. b). then there e.xists a number i in [a /') such that

."-^ fUi)

a

Proof Refer to Figure .3.12. The equation of the secant line containing the points

(«./(«)) and (/>./(/')) is

./(/') -./'(")
(.V - a) + /((().

b - a

Let ,t;(.v) be the difference between /(.v) and v. Then

i'(.v) = ,/ (.V) - y

./(.v)
- fib)-f{a)

b - a
(.V - il) -fill).

By evaluating t^ at a and /'. you can see that i^ia) = = ,i,'(/'). Fuitherniore. because

/ is difletentiable. ^t; is also differentiable. and \ou can apply Rolle's Theoieni to the

ftinction 1,'. .So. there exists a number c in d/. />) such that ,(,''(() = 0. which implies that

= i''(t)

= ,/'(()
fib] ~fUi)

b - a

Therefore, there exists a number c in {a. b) such that

/'(') =
/; - a

NOTE The "mean" in the Mean Vtiliic Theorcni ivlcrs to tiic mean lor average) rate of change

of / in the interval [ci. h\.

Although the Mean Value Theorem can be used directly in problem solving, it is

used more often to prove other theorems. In fact, some people consider this to be the

most important theorem in calculus— it is closely related to the Fundamental Theorem

of Calculus discus.sed in Chapter 4. For now. you can get an idea of the versatility of

this theorem by looking at the results stated in E.xerci.ses 57-62 in this section.

The Mean Value Theorem has implications for both basic interpretations of the

derivative. Geometricallv. the theorem guarantees the existence of a tangent line that

is parttllel to the secant line through the points ((/./(<()) and [b.fib)). as shown in

Figure 3.12. Example 3 illustrates this geometric interpretation of the Mean Value

Theorem. In terms of rates of change, the Mean Value Theoiem implies that there

must be a point in the open interval [a. b) at which the instantaneous rate of change is

equal to the a\er;ige rate of change over the interval [a. b]. This is illustrated in

Example 4.
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Tangent line

4 - -

^-^^^M
3- - X y Secant line

2 - - ^

/

y
/

/
/ /' /(-v) = 5-4

-f( 1 . I

)

/ \

12 3 4

The tangent line at (2. 3) is parallel lo the

secant hne through (1.11 and (4.4).

Figure 3.13

Example 3 Finding a Tangent Line

Given /(.v) = 5 - (4/.v). find all values cit' c in thtMipen interval (1. 4) such that

./'(4) -/(I)
fV

4

Solution The .slope of the secant line through ( l,/( 1 )) and (4. /(4)) is

/(4) -/(I) 4-1
4-1 4-1 = 1.

Because /' satisfies the conditions of the Mean Value Theorem, there exists at least one

number ( in ( 1. 4) such that /'(t) = I . Sohing the equation /'(.v) =
1 \ iclds

fix) = 4 = 1

which implies that .v = ±2. So. in the interval (1.4), you ctiii conclude that c = 2. as

shown in Fieurc 3. 13.

Example 4 Finding an Instantaneous Rate of Change

4?

«
- 5 miles

m
r-

/ = 4 minutes
Not drmvn lo scale

; =

At some time (. the instantaneous velocity is

equal to the average velocitv over four minutes.

Figure 3.14

Two stationary patrol cars equipped with radar arc 5 miles apart on a highway, as

shown in Figure 3.14. As a truck passes the first patrol car. its speed is clocked at ?5

miles per hour. Four minutes later, when the truck passes the second patrol car, its

speed is clocked at 50 miles per hour. Prove that the truck must have exceeded the

speed limit (of 55 miles per hour) at some tmie during the foin- minutes.

'>liitl<Hi Let I = be the time (in hours) when the truck passes the first patrol car.

The time when the truck passes the second patrol car is

4
hour.

B\ letting \{t) represent the distance (in miles) traveled by the trtick, you have

siO) = and .s(j^) = 5. So, the average velocity of the truck over the 5-mile stietch

of highway is

Averase velocitv
.v(l/15) - .v(0)

(1/15) -

T7f^
= 73 niph.

Assuming that the position function is differentiable. you can apply the Mean Value

Theorem to conclude that the truck must have been traveling at a rate of 75 miles

per hour sometime during the four minutes.

A useful alteniativ e form of the Mean Value Theorem is as follows: Iff is continu-

ous on [((. h] and differentiable on (<;. h). then there exists a number c in («, /') such that

f(b) =f(a} + (/;-fl)/'(c). Alternative form ol Mean Value Tlieorem

NOTE When working the exercises for this section, keep in mind that polynomial functions,

rational functions, and trigonometric functions are differentiable at all points in their domains.
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EXERCISES FOR SECTION 3.2

111 K\t'rtises I and 2. explain why Rolle's Theorem does not

appl\ to the luiKtioii e\eii thoiijjh there exist a and h such that

1. fix) = 1 - A- 1

In Exercises 3-6. find the t«o .v-intercepts of the function/ and

show that/'(.v) = (I at some point belv\een the t«o intercepts.

3. f(x) = .V- - A-
~

5. /(a) = A .'A + 4

4. /(a) = a(a - 3)

6. ,/(a) 3a Va + 1

In Exercises 7-2(1. determine whether Rolle's Theorem can be

applied to/ on the closed interval [a, />]. If Rolle's Theorem can

be applied, tlnd all values oft in the open inter\al («./>) such

that /'((•) = (I.

7. / (A )
= A- - 2a. [0, 2] 8. /(a) = A- - 5a + 4, [l . 4]

9. /(A) = (a - 1)(A - 2)(A - 3). [1,3]

10. /(a) = (a - 3)(a + 1)-. [-1.3]

II. fix) = A-/-' - 1, [-«. S] 12. fix) = 3 - |a - 3|. [0. 6]

' ~ ^ ,v- - 1

13. fix)

' - 2a - .i

A + 2
"

15. fix) = sillA, [0, 2tt]

6v
17. fix) = 4 sin- A,

7T

19. fix) = lanA. [0. n]

1.3] 14. fix)- 1.1

16. fix) = cos A, [0, 277]

IS. fix) = cos 2.

20. fix) = sec A,

12' 6

4 4

rp In Exercises 21-24. use a graphing utility to graph the function

on the closed interval [a.h]. Determine v\hether Rolle's

Theorem can be applied to / cm the inter\al and, if so, find all

values of ( in the open interval ia.b) such that/'(c) = 0.

21. /(a)= JaI
- 1,[-1, 1]

23. ./(a) = 4a - tan -7A.[-U]

22. fix) = A - a'/-', [0, I]

24. fix) 1,0]

25. Vertical Motimi Tlie height of a ball ; seconds after it is

thrown upward from a height of 32 feel and with an initial

velocity of 48 feet per second is/(() = - 16r- + 48r + 32.

(a) Verify that/(l) = /(2).

(b) According lo Rolle's Theorem, vvhal must be the velocity at

some time in the interval ( I. 2)
' find that tune.

26. Reorder Costs The ordering and transportation cost C of com-

ponents used in a manufacturing process is approximated by

1

Cix) = )0\- +
+ 3

where C is measured in thousands of dollars and a is the order

size in hundreds.

(a) Verify that 0(3) = 06).

(h) Accordmg to Rolle's Theorem, the late of change of cost

must be for some order size in the interval (3, 6). Find

that order si/e.

In Exercises 27 and 28. copy the graph and sketch the secant

line to the graph through the points iii.fia)) and ih.fih)). Then

sketch any tangent lines to the graph for each value of c guar-

anteed by the Mean \alue Theorem. To print an enlarged copy

of the graph, go to the website www.niathgraphs.com.

In Exercises 29 and 30, explain why the Mean Value Theorem

does not apply to the function on the interval [0, 6].

1

29. /(a)
3

30. /(.v) = [v - 3

1

In Exercises 31-38. determine whether the Mean Value

Theorem can be applied to/ on the closed interval [a. h]. If the

Mean Value Theorem can be applied, find all values of c in the

open interval (a,b) such that

31. fix)

32. /(A)

f(h)-f(a)

xix- 2), [-1,1]

33. fix) = x-'\ [0, 1]

35. fix) = ^2 - .V, [-7,2]

37. / (.v) = sm A, [0, tt\

38. fix) = 2 sin A + sin 2a.

34. fix)

36. fix)

+ I

[0,1]

if In Exercises 39-42, use a graphing utility to (a) graph the func-

tion / on the indicated interval, (b) find and graph the secant

line through points on the graph of/ at the endpoints of the

indicated interval, and (c) find and graph any tangent lines to

the graph of/ that are parallel to the secant line.

39. fix)
X + \

' -

41. /(A) = vA, [1,9]

42. fix) = -x" + 4a-'

l\ 40. ,/ (.v) = A - 2 sin a, [- w, ttJ

8a- + 5. [0, .^]
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43. Vertical Motion The height of an object ; seet)nds after ii is

dropped from a height of 500 meters is s{t) = — 4.9r- + 500.

(a) Find the average \elocit\ of the object during the tlrst

3 seconds.

(b) Use the Mean Value Theorem to verify that al some time

during the first 3 seconds of fall the instantaneous \elocily

equals the average \elocity. Find that time.

44. Sales A company introduces a new product for uhich the

number of units sold 5 is

2 + /

S{t) = 200 5

w here t is the time in months,

(a) Find the average value of S(t) during the first year.

(b) During what montli does S'[t) equal the average \aluc

durmt! the first \ear'.'

(a) E.xpiam why / must ha\e at least one zero in [- 10. 4].

(b) Explain why /' must also ha\e at least one zero in the

interval [— 10. 4]. What are these zeros called'

(c) Make a possible sketch of the function with one zero of/'

on the inter\al [- 10. 4].

(d) Make a possible sketch of the function w ith Iwo zeros of /'

on the interval [— 10. 4].

(e) Were the conditions of continuity of / and /
' necessary to

do parts (a) through (d)',' E.\plain.

^55((. Consider the tuiiclion /(.v) 3cW(^

(a) Use a graphing utility to graph / and /
'.

(b) Is / a continuous function? Is /
' a conlinuons lunction?

(c) Does Rolle's Theorem apply on the inlcrval [-1. I]'.' Does

it apply on the interval [l. 2j.' Explain

(d) E\aluate, if possible, lini /'(.viand lim /'(.vl.

45. Let / be continuous on [a. b] and differentiable on (a. h). If

there exists c in {ci.h] such that /'(i) = 0. does it follow

that /'(£() = /'(/')? Explain.

46. Let / be conlinuotis on the closed interval [ii. h] and differ-

entiable on the open interval [a. b). Also, suppose that

f(a) = f(h) and that c is a real number in the interval such

that /'(i) ~ 0. Find an interval for the function s> over

which Rolle's Theorem can be applied, and find the

con'csponding critical number of :j. (k is a constant),

(a) x'U) = /(.v) + k (b) .i;U) = /(.v - k)

(c) ,dv) = f(k\)

47. .A plane begins its takeoff at 2:00 P..\l. on a 2500-niile llight

The plane arrives at its destination at 7:30 p.m. E.vplain why

there were at least two times during the flight when the

speed of the plane was 400 miles per hour.

48. When an object is removed from a furnace and placed in an

env ironment with a constant temperature of 90'F. its core

temperature is 1500°F. Five hours later the core tempera-

ture is 390'F. Explain why there must exist a time in the

interval when the temperature is decreasing at a rate of

222°F per hour.

49. (irapliical Reasoning The figure gives two parts ol the graph

of a continuous differentiable function /on [-10, 4]. The deriv-

ative / ' is also continuous. To print an enlarged copy of the

graph, go to the website wwiwinalhgniphsKmi

£-+H~f-
-8 -4 t\.-*

-^—!— .V

Think Ahinit It In Exercises 51 and 52. sketch the jjraph of an

arbitrary function/ that satisfies the {jiven condition but does

not satisfy the conditions of the Mean \alue Theorem on Ihe

interval [
— 5, 5].

51. / is continuous on [
— 5, 5].

52. / is not continuous on [
— 5. 5].

True or False? In Exercises 53-56. determine whether the

statement is true or false. If it is lalse. explain why or ijive an

example that shows it is false.

53. The .Mean Value Theorem can be apjilicd lo j(\) = l/.v on the

interval [- I. l].

54. It the graph of a function has three \-intercepts. Ihen it must

have at least Iwo points .il which Us langcnl line is horizontal.

55. If the graph of a polynomial function has three .v-inlercepts.

Ihen it must have at least two points at which its tangent line is

horizontal.

56. If f'{\) = for all a in the domain of f. then /' is a constant

tiinclion.

57. Prove that if </ > and ii is any positive integer. Ihen the

polynomial function /'(.v) = .v-""* ' + cix + h cannot have Iwo

real roots.

58. Prove that if /''(-v) = lor all \ in an interval (o. />). then/ is

constant on in. h).

59. Let /)(.v) = Av- -I- fi.v + C. Prove that for any interval [o, 6],

the value c guaranteed by the Me;in Value Theorem is the

midpoint of the interval.

611. Prove that if/ is differentiable on {--yi.-yz) and/'(,v) < I for

all real numbers, then / has at nuKt one fixed point. A fixed

point of a function / is a real number < such that /(c) = c

61. LNe the result of Exercise 60 to show that /(.v) = 3 cos .v has at

most one fixed point.

62. Prove that |cos.v - cos y| < |.v - v| for all v and y.
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Increasmg and Decreasing Functions and the First

Derivative Test

• Determine intervals on wliicli a function is increasing or decreasing.

Apply the Fust Derivative Test lo find relative exlrenia of a frinction.

Increasing and Decreasing Functions

In this section you will learn how derivatives can be tised to chissify relative extrema

as either relative minima or relative maxima. Wc begin by defining increasing and

dccrcasins functions.

/'(.vXO /'(.V) = () /'(Y)>0

1 he tk'ri\ati\i' h related td the slope of a

funetuHi.

Figure 3.15

Definitions of Increasing and Decreasing Functions

A function/ is increasing on an interval if for any two numbers .v, and v, in

the interval. .V| < .v, implies /(.v, ) < /(v,).

A function / is decreasing on an inierval if for any two numbers .v, and .Vt in

the interval, .v, < .v, implies /(.v, I > /(.v,).

A function is increasing if. as .v moves to the right, its graph moves up. and is

decreasing if its graph moves down. For example, the function in Figure 3.1.5 is

decreasing on the interval (-co. a), is constant on the interval [a. b). and is increas-

ing on the interval (/». oc). As shown in Theorem 3.5 below, a positive derivative

implies that the function is increasing; a negative derivative implies thai the function

is decreasing; and a zero derivative on an entire interval implies that the fimction is

constant on that interval.

THEOREM 3.5 Test for Increasing and Decreasing Functions

Let,/ be 1 function that is continuous on the closed interva 1 [a. 1
1 and differen-

liable on the open nterval (ii . /')

1. Ifftv > for all A in ((( /'). then / is increasing on [a bl

2. If /'(.v < for all A- in ((/ h). then / is decreasing on [a.bl

3. If/'(.v = for all .V in (<( /'). then / is constant on [n. 1 I

Proof To prove the first case, assume that /'(.v) > for all .v in the interval («. b) and

let .Y, < .V, be any two points in the interval. By the Mean Value Theorem, you know

that there exists a ntmiber c such that .v, < c < .v,. anel

f'ic)

,/(.v,)-,/(.v,)

Because /'(c) > and .v,

fix.) -fix.) >

.V| > 0. you know that

which implies that /(.v,) < /(.v,). So, / is increasing on the interval. The second case

has a similar proof (see Exercise 77). and the third case was given as Exercise 58 in

Section 3.2. ,<
"

NOTE The conclusions in the first two cases of Theorem -V.s are valid even if/'(.v) = at a

finite number of \-values In (</. h).
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1 /(.v)=A-'-4.v-

Figurt 3.16

(a) StriLtlv inonoionic tunction

Constant
H !

-V-. A <

/(.v) = iu, 0<A<l

(A- II-. A> 1

(b) Not strictly monotonic

Figure 3.17

Example 1 Intervals on Which/ is Increasing or Decreasing

Find the iipen intervals on which fix) = .\^ — y\~ '^ increasing tir decfeasing.

Solution Note that / is continuoits on the entire teal hne. To determine the ciitical

ntimbers of/. set/'(.v) eqnal to zero.

fix) = .v' — -y- Write original tunc

fix) = Ix- - 3.V =

3(.v)(.v -
I ) =

.V = 0. I

Dittereniialc and scl /'(li equal to 0.

Factor

Critical luiintiers

Because theie are no points for which/' does not exist, you can conckide that .v =

and .V = I are the only critical numbers. The table summarizes the testing of the three

intervals determmed bv these two critical ntimbers.

Interval -GO < .V < < .V < 1 1 < .V < CO

Test Value .V = - 1 v = i .V = 2

Sign of /'W /'(-I) = 6 > m = -^ < /'(2) = 6 >

Conclusion Increasing Decreasing Increasing

So. / is increasing on the intervals ( — cc. 0) and ( I . co ) and decreasing on the interval

(0. I), as shown in Figure 3.16.

Example I gives you one example of htn\ to fiiul inlervals on which a ftinclion is

increasing or decreasing. The guidelines below stimman/e the steps lollowcrl m the

exatnple.

Guidelines for Finding Intervals on Which a Function Is Increasing or

Decreasing

Let/ be continuous on the interval {a. h). To find the open intervals on which /

is increasing or decreasing, use the following steps.

1. Locate the critical numbers of/ in (<;. />). and tise these numbers to determine

test intervals.

2. Determine the sign of / "(.v) at one test value in each of the intervals.

3. Use Theorem 3.5 to determine whether/ is increasing or decreasing on each

interval.

These guidelines are also valid if the interval ((/, /;) is replaced by an interval of

the form {-co, b). {a. oo), or (-co, co).

A function is strictly monotonic on an interval if it is either increasing on the

entire interval or decreasing on the entire interval. For instance, the function /(.v) = .v'

is strictly monotonic on the entire real line beeau.se it is increasing on the entire real

line, as shown in Figure 3.17(a). The function shown in Figure 3.17(b) is not strictly

monotonic on the entire real line because it is constant on the interval [(). l].
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Rflatnt'i'Mri'iiia of /

Fi<;iiif3.1S

The First Derivative Test

After you have dcteniiincd the intervals on whieh a lunetion is inereasing or deeieas-

ing, it is not dillleuit to locate tlie relative extreiiia of the function. For instance, in

Figure 3.18 (from Example 1 ). the function

./Iv) = .v-^ - |.v^

has a relative maximum at the point (0, 0) because/ is increasing immediately to the

left of .V = and decreasing immediately to the right of .v = 0. Similarly. / has a

relative minimum at the point ( 1. -t) because/ is decreasing immediately to the left

of A = 1 and increasing immediately to the right of .v = I. The following theorem,

called the First Derivative Test, makes this more explicit.

THEOREM 3.6 The Fiisl Derivative Test

Let r be a critical number of a lunetion/ that is contintiou s on an open interval

/ containing c. If / is differentiable on the interval, except possibly at c. then |

/(<) can be classified as follows.

1. If / '(-v) changes from negative to positive at < . then /(r) is a relative miiuiimm

of/;

2. If /'(.\) changes from positive to negative at c. then /(< )

ol /

s a ivlalivc iihi\iiiniin

3. If/ '(.v) does not change sign at c. then / (t ) is neither a re lative minimum nor a

relative niaxinuim.

>^ <+>^^._-^^^^'~'

P^^^^::-^---^^:; .^^^
1

^^
/'(.>)<()

:
/'(.vixi

;

1

,/(-!-) >o : /'(-vxo ;

(1 c b

Relatne niimmuni

a (

Relali\e niaMimiiii

/)

( + ) / ^^ \^^^
ll-i^^..^ ,

--.
<"•

'-/ /'(A)>(l
1

/'(,\)>(l ',

!
/'(-H<U /'(DcdN^

a c b CI I /'

Neither relative niinimum nor relative maximum

Proof Assume that / '(.v) changes from negative to positive at t. Then there exfst a

and /) in / such that

fix) < for all .V in iu.c)

and

fix) > I) for all v in ((./').

By Theorem 3.5,/ is decreasing on {a. c) and increasing on (c, /'). So./(t) is a mini-

mum of/ on the open interval {a. b) and, consequently, a relative minimum of/ This

proves the first case of the theorem. The second case can be proved in a similar way

(.see Exercise 78). LZ!
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Exaiiiplc 2 Applying the First Derivative Test

Find the relative cMreiiia o( the ttinctimi /(.v) = i.v - sin a in the interval (0. 277).

Solution Note that / is continuous on the niter\al (0. 277). To determine the critical

numbers ol / in this interxal. set /'(.v) et|ual to 0.

fix) =
2 — cos .V = Sti / I > i equal i(> I)

I

cos .V = 1

77 577

3" 3
C'iiiil;iI iiLinibers

Because there are no ponits for which /' docs not exist, you can conclude that .v = 77/3

and .V = 577/3 are the only critical numbers. The table summari/es the testing of the

three intervals determined by these two critical numbers.

y

4-

/(A) =lv-- sin

.

Relalne

niaxinuini

3- -

/
f

2-

1-

.: /
/

/

Relative
n 4;r

3

5n 2n
3

minimum

A relative miniiiium occurs where / changes

from decreasing to increasing, and a relative

maximum occurs where / changes from

increasing to decreasing.

Figure 3.19

Interval < .V < ^
77 577- < .V < y

577— < .V < 277

Test Value
77

.V = 77

777

Sign of/'(x)
Kt) < « /'(77) > ^m <

Conclusion Decreasing Increasing Decreasing

By applying the First Derivative Test, you can conclude that / has a relative mini-

mum at

and a relati\e maximum at

577

as shown in Fiiiurc 3.19.

.\-valuc ol ii:laii\c niiiiiiiium

,\-\alLii.- ol iclativc iiiaMiiuini

EXPLORATION .,,--

Comparing Graphical and Analytical Approaches In Section 3.2. we pointed

out that, by itself, a graphing utility can give misleading information about the

relative extrema of a graph. Used in conjunction with an analytical approach,

however, a graphing utility can provide a good way to reinforce your conclusions.

Try using a graphing utility to graph the function in Example 2. Then use the

zoom and trace features to estimate the relative extreina. How clo.se are your

graphical approximations?

Note that in Examples 1 and 2 the given functions are differentiable on the entire

real line. For such functions, the only critical numbers are those for which /'(.v) = 0.

Example 3 concerns a function that has two types of critical numbers—those for

which /'(.v) = and those for which / is not differentiable.
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Example 3 Applying the First Derivative Test

\

(2.0)

Relative

minimum

\oii can apply the First Derivative Test to

find relative extrema.

Figure 3.20

Find the relative extrema of

,/iv) = (x- - Ay-'\

Solution Begin by noting that /is continuous on the entire real line. The derivative

of/

f'(x) =|(.v- -4)-"'-H2.v)

- 4,Y

"
3(.v- - 4)'/-'

General Power Rule

Simplify.

is when .v = and does not e.xist when .v = ±2. So. the critical numbers are

.V = — 2. .V = 0. and .v = 2. The table summarizes the testing of the four intervals

determined bv these three critical numbers.

Interval — GO < .V < — 2 -2 < .V < < .V < 2 2 < .V < oo

Test Value .V = - 3 .V = - 1 .V = 1 .v= 3

Sign of f'(x) /'(-3) < /'(^!) > ,/ '( 1 ) < /'(3) >

Conclusion Decreasing Increasing Decreasing Increasing

By applying the First Derivative Test, you can conclude that/ has a relative minimum

at the point (-2. 0). a relative maximum at the point (O, v' 16 ), and another relative

minimum at the point (2, 0). as shown in Figure 3.20. ,_ ^

:i TECHNOLOGY PITFALL When usuig a graphing utility to graph a function

': involving radicals or rational exponents, be stne you understand the way the utility

\\ evaluates radical expressions. For instance, even though

i\x) = [x~ - 4)=/-'

:
I and

\\
i?(.v) = [(.v^ - 4)^]'/^

:,:'; are the same algebraically, many graphing utilities distinguish between these two

;' functions. Which of the graphs shown in Figure 3.21 is incorrect!' Why did the

; graphing utility produce an incorrect graph?

fix) = ix- -4l- g(.v)= [(V--4)-

\

\
1 /

/ V-k.
j

'
Which graph is incorrect?

. Figure 3.21
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When using the Fiist Derivative Test, he stne to consider tiie domain of the Itinc-

tion. For instance, in the next example, the t'tniction

-V-

is not dellned v\hcn v = 0. This .v-value must be used with the critical numbers to

determine the test intervals.

itm^ Example 4 /\ppl\1iig llie First Derivativf Test

Find the relative cxtrenia ol /(a)
.v-' +

Solution

fix) = .V- + .v-
=

fix) = 2.V - 2.V--'

Rewrite original function.

Dilfeicntiate.

Siniplil'v.

.fCv)-^

2(.v- + 1 )(.v - 1 )(.v + 1

)

Hjcin

So, /'(.v) is zero at .v = ±1. Moreover, because x = is not in the domain off. you

should u,se this .v-value along with the critical numbers to determine the test intervals.

-v-values that art imt ni tlu' domain of /.

as well as critical inimiicrs. (.Ictermiiic test

intervals for /'.

Figiirt' 3.22

.V = ± I

v =

Critical niimhers. /'(±l) =

IS nitl 111 the domain ol /.

The table summari/es the testing of the four intervals determined bv these three

.v-values.

Interval — OO < .V < — 1 - 1 < .V < < .V < 1 1 < v < oc

Test Value .V = -2 1

-V = —
2

1

-V = 1 x = 2

Sign offix) /'(-2) < fi-{) > fi\) < /'(2) >

Conclusion Decreasing Increasing Decreasing Increa.sing

Bv appKing the First Derivative Test. \ou can conclude that / has one relative

minimum at the point (- 1.2) and another at the point ( I. 2), as shown in Figure .V22.

TECHNOLOGY The most difficult step in appK ing the First Derivative Test is find-

ing the values for which the derivative is equal to (1. For inst.ince. the values of .v for

which the derivative of

fi-y)

.Y-' + 1

X- + 1

is equal to zero are and ± y/ v 2 ^ I. If you have access to technology that can

perform symbolic differentiation and solve equations, try using it to apply the First

Derivative Test to this function.
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Example S The Path of a Projectile

If a projectile Is propelled from ground

le\el and air lesistance is neglected, tlu

object will travel farthest with an initial

angle of 45". If. however, the projectile is

propelled from a point above ground lew'l.

the angle that yields a maximum hori/oii

tal distance is not 45 (see Example 5)

Neglecting air resistance, the path of a projectile that is propelled at an angle is

_ g sec-
-A- + (tan 6}x + h. \) < H <

wliLie r is the height, .v is the hori/Aintal distance, g is the acceleration due to gravity,

r,, IS ihe initial velocity, and /; is the initial height. (This equation is derived in Section

MM Let g = ^ 32 feet per second per second, r,, = 24 feet per second, and h = 9

; What x'aliic of ^Mvill produce a maximum horizontal distance?

Solution To find the distance the projectile traxels. let r = 0. and use the quadratic

loriiHila to solve for v.

g sec"

2v,r

32 sec- H

-^(24^)

sec-

36

.V- + (tan H).\ + h =

v- + (tan t)}x + ^> =

.V- + (tan Oh 4-9 =

.V

^ tan 6* ± vAan- + sec-

-sec- e/18

.V = 18 cos 6i(sin + Jsin- + I ). .v >

At this |> 'int. you need to tind the value of 61 that produces a ma.ximuin value of .v.

ApplyiM': the First Derivative Test by hand would be very tedious. Using technology

(o bolvr 'he equation dx/d0 = 0. however, eliminates most of the messy computa-

tions 111 ' result is that the maximum x'alue of .v occurs when

i) I) 61348 radians, or 35.3°.

This coiKhision is reinforced by sketching the path of the projectile for different

values of 0. as shown in Figure 3.23. Of the three paths shown, note that the distance

iiavcled is greatest for = 35°.

9=^^°

The path of ;i projectile with initial angle H

Ficurc ^2^

NOIT. ,\ 'diMpulL-r siimilalion of this example is given in llie liucnicnve CD-ROM version of

(Ills lexl (av.iilable at collcgc.hmco.com). Using that simulation, you can experimentally

di-iovei that llie maximum value of .v occurs when d — 35.3".
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EXERCISES FOR SECTION 3.3

In Exercises 1-10. identify the open intervals on vvhicli the func-

tion is increasing or decreasin)».

1. ,/lv) = .V- - 6.V + 8 2. V = - (.V + 1 )-

rK In Exercises 33-36, consider the function on the interval ((I. 2n).

Find the open intervals on which the function is increasing or

decreasing and locate all relative cxtrema. Use a graphing utility

to conHrni vour results.

i V

4. A.v) = A-* - 2a-

1

3-

1 ^

1
-

/J \^^\j^-

6. 1

1^/16

A + I

8. /((a) = 27a

4
10. \- = A + -

11. /Iv) = A^ - 6a

13. fix) = -2a- + 4a + 3

15. fix) = 2a-' + 3a- - 12a

17. fix) = A-(3 - a)

v' - Sv
19. fix) = -^

21. fix) = a'' + 1

23. fix) = ix - I)-'-'

25. fix) = 5 - |a - 5

1

27. fix) ^ X + -
X

29. ,/(a) = -r^

31. fix) =

12. Aa) = a- + 8a -I- 10

14. fix) = -(a- + 8a -f 12)

16. fix) = a' - 6a- + 15

1«. fix) = ix + 2)-(a - 1)

20. fix) 32a + 4

2a -f 1

v -I- !

22. fix) = A- ' - 4

24. fix) = (a- U'
"

26. fix) = |a -1- 3|
-

1

28. fix) ^.^j

A + 3

A-

IT /(
I

^'" ~ ^"^ ~ 4
32. /(a) -

33. fix) = ^ -t- cos A

35. fix) sin- A + sin V

34. / (a) = sin A cos a

36. fix) =
1 -I- cos- A

rr In Exercises 37-40. (a) use a computer algehra system to

ditl'erentiate the function, (h) sketch the graphs of/ and / 'on the

same set of coordinate axes over the indicated interval, (c) find

the critical numhers of /' in the open interval, and (d) tlnd the

inleryal(s) on which/ ' is positive and the intervalisi on which it

is negative. Compare the hehavior of/ and the sign of/ '.

37. fix) = IxJ'^) - A-, [-3. 3J

38. fix) = in(? - V

K In F^xercises 11-32. find the critical mmihers of/ (if anyl. Finf)

the open intervals on which the function is increasing or

decreasing and locate all relative extrema. Use a graphing

utilitv to confirm vour results.

T- - 3a +16). [0.5]

39. fit) = r-sni ;.[(). 277] 40. fix) -t- cos - 0,477

In F^xercises 41 and 42. use symmetry, extrema, and zeros to

sketch the graph of/. How do the functions/ and f; differ?

Explain.

' - 4v' -I- 3a
41. fix)

42. fit) = cos- r

1

.Vix) = xix- 3)

(-2.2)

I'hiiik About It In E.xercises 43—18, the graph of / is

shown in the figure. Sketch a graph of the deriyative of /. To

print an enlarged copy of the graph, go to the wehsite

MMw.iiialhgiaphs.coiii.

43. 44.

4 -

1
-

_T -1 2

45. 46.

47.

1 t M • -v



182 CHAPTER 3 Applications of Differentiation

In Exercises 49-54, assume that/ is differenliable for all .v.

The sign of/ ' is as follows.

fix) > Oon (-0O, -4)

fix) < Oon (-4. 6)

f'(x) > Oon (6, oo)

Supply the appropriate inequality for the indicated value off.

Fiiuction

49. glx) = fix) + 5

50. .d.v) = 3/'(.v) - 3

51. ,d.v) = -/(.v)

52. »(.v) = -,/lv)

53. ,?(.v) =/(.v- 10)

54. "(.v) = /(.v - 10)

Sign ofg'ic)

g'(Q) (

k'(-^) (

o'{-b} (

g'(0) (

,;''(0) (

,i;'(8) {

rp 59. Numerical, Graphical, and Analytic Analysis Consider the

functions /(.v) = x and g(x) = sin .v on the interval (0, tt).

(a) Complete the table and make a conjecttire about which is

the greater function on the interval (0. tt).

55. Sketch the graph of an arbitrary function /' such that

56. A differentiable function/ has one critical number at .v = 5.

Identify the relative extrema of/ at the critical number if

/'(4) = -2.5and/'(6) = 3.

57. Think About It The fiuiclion / is differentiable on the inter-

val [- 1 . I ]. The tabic shows the values off for selected values

of .V. Sketch the graph of/ approximate the critical numbers,

and identify the relative extrema.

X -1 -0.75 -0.50 - 0.25

fix) -10 -3.2 -0.5 0.8

.V 0.25 0.50 0.75 1

f'(x) 5.6 3.6 -0.2 -6.7 -20.1

X 0.5 1 1.5 2 2.5 3

fix)

gix)

^ 60.

58. Rolling a Ball Bearing A ball bearing is placed on an

inclined plane and begins to roll. The angle of elevation of the

plane IS H. The distance (in meters) the ball bearing rolls in /

seconds is

s(t) = 4.9(sin H)r".

(a) Determine the speed of the ball bearing after / seconds.

(b) What value of H will produce the nia.ximuin speed at a

particular time?

(b) Use a graphing utility to graph the functions and use the

graphs to make a conjecture about which is the greater

function on the interval (0. tt).

(c) Prove that fix) > gix) on the interval (0, tt). [Hint: Show

that /( '(.v) > where /i = /
- g.]

Numerical, Graphical, and Analytic Analysis The concen-

tration C of a chemical in the bloodstream t hours after injection

into muscle tissue is

Cd)
27 + t-

t > 0.

(a) Complete the table and use the table to appro.ximate the

time when the concentration is greatest.

t 0.5 1 1.5 2 2.5 3

m
(b) Use a graphing utility to graph the concentration function

and use the graph to approximate the time when the con-

centration is greatest.

(c) Use calculus to determine analytically the time when the

concentration is greatest.

61. Trachea Contraction Cotighing forces the trachea (wind-

pipe) to contract, which affects the velocity \' of the air passing

through the trachea. Suppose the velocity of the air during

coughing is

V = kiR - r)r-. < r < R

where k is constant. R is the normal radius of the trachea, and r

is the radius during coughing. What radius will produce the

maximum air velocity'^

Profit The profit P (in dollars) made by a fast-food restaurant

sellini; .v hamburcers is

62.

P = 2.44.V
20,000

- 5000. < .V < 35,000.

Find the open intervals on which P is increasing or decreasing.

63. Power The electric power P in watts in a direct-cuiTcnt circuit

with two resistors /?, and R, connected in series is

iR,R,
P =

iR, + no-

where V is the voltage. If i' and fi, are held constant, what resis-

tance K, produces maximum power?
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^64. Electrical Resistance The resistance R of a certain type of

resistor is

R = v'O.onir^ - 47"- inn

t 65.

where R is measured in ohms and the temperature T is

measured m degrees Celsuis.

(a) Use a computer algebra system to find dR/dT and the

critical number of the function. Determine the minimum
resistance for this type of resistor.

(b) Use a graphing utility to graph the function R and use the

graph to approximate the minimum resistance for this tNpc

of resistor.

Modeling Data The number of bankruptcies (m thousands)

for the years I'-INl through 199S are as follows.

1981: 360.3; iyS2: 367.9; 1983: 374.7; 1984: 344.3;

1985: 364.5; 1986: 477.9; 1987: 561.3; 1988: 594.6;

1989: 643.0; 1990: 725.5; 1991: 880.4; 1992: 972.5;

1993: 918.7; 1994: 845.3; 1995: 858. 1: IWd: 1(142,1;

1997: 1317.0; 1998: 1411.4

{Sinircc: Adiiiinistniurc Office of ilic U.S. Ciniris)

(a) Use the regression capabilities of a graphing utilit\ to find

a model of the form

B = ill* + hi' CI- + til +

V 66.

for the data. (Let i = 1 represent I9M,)

(b) Use a graphing utility to plot the data and graph the model

(c) .Analytically find the miniinum of the model and compare

the result with the actual data,

U.se a graphing utility to graph /'(.v) = 2 sin 3-V + 4 cos 3-V.

Find the maximum value of /; How could you use calculus to

estimate the ma.ximum'

rp Cieatiii!> Polyn<inii(d Functions In Exerti.ses 67-70, find a

polynomial function

/(.v) = n„.v" + fl„_|A-""' + • • • + rt,.x-- + fli.v + rt||

that has only the specified extrenia. (a) Determine the minimum
dejjree of the function and );ive the criteria you used in

determinini; the decree, (bl I sing the fad tliat the coordinates

of the cxtrema are solution points of the function, and that the

-V-coordinales are critical numbers, determine a system of linear

equations whose solution yields the coefficients of the required

function, (c) Use a f;raphinf> utility to solve the system of equa-

tions and determine the function, (d) Use a sjraphini; utility to

confirm your result <;raphicall\.

67. Rclalne ininimuin: 10.0); Relati\e ma\imum: 12.2)

68. Relative minimum: (0. 01; Relatixc ma\imuin: (4, 1000)

69. Relative minima: (0.0), (4.0)

RcLkuc maviinum: (2. 4)

70. ReUi(i\e minimum: (I. 21

Relalne maxima: (-1.4). (3, 4)

True or False'.' In Kxerciscs 71-76. determine whether the

statenienl is true or false. If it is false, explain why or (jive an

example that shows it is false.

71. The sum of l«o increasing funclions is increasing.

72. The pnidiicl of (uo increasing functions is increasing

73. Fvcry /i(h-ilcgrcc poKnomui! has (/i - 1) crilical nuinhers.

74. .An /(ih-degrec polynomial has at most 0; -
1 I cndcal numbers.

75. There is a reladve maximum or minimum at each critical

number,

76. The relative maxima of the function / arc /( 1 )
= 4 and /(3) =

10, Therefore. / has al least one mniimum for some \ m (he

in(er\al ( I. 31.

77. Fnne (he second case of Theorem 3.5.

78. Pro\e the second case of Theorem 3.6.

79. Let .V > and « > 1 be real numbers. Prove (hat (1 + ,v)" >

1 + u\.

SECTION PROJECT

Rainbows are fomied when light strikes raindrops and is reflect-

ed and refracted, as shown in the figure. (This figure shows a

cross section of a spherical raindrop.) The Law of Refraction

states that (sin a)/(sin j3) = k. where k ~ 1.33 (for water). The

angle of deflection is given by D = tt + 2q: — 4/3.

(a) Sketch the graph of D for

< a < it/2. Use a graph-

ing utilitv with

D + 2a — 4 sin

Water

(b) Prove that the minimum anale of deflection occurs when

/k- - 1

V 3

For water, what is the minimum angle of deflection. O,,,,,,?

(The angle it - D„,„, is called the rainbow angle.) What value

of a produces this minimum angle? (A ray of sunlight that

strikes a raindrop at this angle, a. is called a rainbow ray.)

FOR FLRTHER ISFORMATION For more infomiation about the

mathematics of rainbows, see the article "Somewhere Within the

Rainbow" by Steven Janke in The UMAP .loiinial. To view (his

article, eo to the website www.nicilluirliclcs.ioin.
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Concavity and the Second Derivative Test

• DclL-nnmc inlcr\als on which a tuncUoii is concave upward or conca\'e downward.

" Fhid any points of inflection of the graph of a function.

• Apply the Second Derivative Test lo find relative extrema of a ftmction.

Concavity

^'oii ha\e ah"cad\ seen that locating the intervals in which a lunction / increases or

decreases helps to describe its graph. In this section, yoti will see how locating the

intervals in which /' increases or decreases can be used to determine where the graph

of /' is ciii'\-iiiii iipwdiil or (7(n'/;(,t; ilnwiiwiiiil.

Definition of Concavity

Let/ be differeniiable on an open intersal /. The graph of /' is concave upward

on / if/' is increasing on the interval and concave downward on / if/' i.s

decreasing on the interval.

/i..=fv'-.v
:

Concave ni = i)

dovvnwar
Concave

upward

/'(.v) = A-- 1

/' is decreasing

(l).-l)

/ is increasing!

The cnncavity of / is related to the slope of

the derivative.

Figure 3.25

The following graphical interpretation of concavity is useful. (.See Appendix B

for a proof of these results.)

1. Let / be ddferentiable on an open interval /. If the graph ol / is concave iipwunl

on /. then the graph of/ lies ahmc all of its tangent lines cmi /. (See Figure .•i.24a.)

2. Let/ be diffeientiable on an open interval /. If the graph of/ is concave clownwdnl

on /. then the graph of/ lie.s below all of its tangent line.s on /. (See Figure 3.24b.)

(ill 7~he graph of / lies abo\e ils langenl lines.

Figure 3.24

(hi Tlie graph ot / lies below iis tangent lines.

To ftnd the open intervals on which the graph of a function/ is concave upward

or downward, you need to find the intervals on which/' is increasing or decreasing.

For instance, the graph of

fix) = iv^ - v

IS concave downward on the open interval ( — cc.O) because /'(.v) = .v- — I is

decreasing there. (See Figure 3.25.) Siiuilarly. the graph of/ is concave upward on the

interval (0, oo) because /' is increasing on (0. cc).
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The tollowiny tlieoreni shows how to use the secomi derivative of a Itinclion / to

determine intervals on which the graph of / is concave npward or downward. A proof

of this theorem follows directly from Theorem 3.5 and the definition of concavity.

THEOREM 1.7 Test for Conca\ity

Let / he ; liiiiction whose second derivative exists on ai open interval /.

1. If,/"(.v > for all .V in /, then the graph oif IS cone i\e upward iii /.

2. If,/'lv < for all .V in /. then the graph of / is cone i\e downward in /.

NOTE A third case of Theorem 3.7 could be that if /"(.v) = for all .v in /. then f is linear.

Note, however, that concavity is not defined for a line. In other words, a straight line is neither

concave upward nor concave downward.

To apply Theorem 3.7. locate the .v-vakies at which /"(v) = (1 or / "does not exist.

Second, use these .v-values to determine test intervals. Finally, test the sign of / "(.v) in

each of the test intervals.

/"(»-!>

Concave

upward

From the sign of / "you can determine the

concavit) of the graph of /'.

Figure 3.26

Example 1 Determining Concavity

Determine the open intervals on which the graph of

is concave upward or downward.

Solution Begin by observing that / is continuous on the entire real line. Next, find

the second derivative of /'.

/(.v) = 6(.v- + 3)-'

,/'(.v) = (-6)(.v- + 3) ^I2.v)

-12.Y

fix)

(.v= + 3)=

(.V- + 3)"(- 12) - (- 12.v)(2)(.v- + 3)(2.v)

(.v^ + 3)

36(.Y- - 1)

(.V- + 3)-'

Rl'wiiIc oitLinKil luiKlion

Dillcreniiaie

litsi deii\.iii\c

riillcivnliaic

ScconiUlfii\aii\c

Because /"(.v) = when .v = ± I and /"is defined on the entire real line, you should

lest /"in the intervals (-co. -
1 ).

( - 1 . 1 ). and (1. zc). The results are shown in the

table and in Figure 3.26.

Interval — CO < .V < - 1 -
1 < .V < 1 1 < .Y < CO

Test value x= -2 .v = .Y = 2

Sign of/"(x) /"(-2) > /"(O) < /"(2) >

Conclusion Concave upward Concave downward Concave upward

m
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The funclioii given in Exaniplc I is ceintiniuuis on the entire real line. If there are

A-valiies at which the function is not continuous, these values should be used along

with the points at which /'"(.vl = or points at which/ is not differentiable to form

the test intervals.

Example 2 Dctcrminijig Concavity

.V- + I

Deicnninc the open intervals in which the graph ot /(.v) = ^ r is concave upward

or downward.

Conea\e

upvvurd

Conc;i\'e

upward

^^-v

Figure 3.27

Solution Differentiating twice produces the following.

.V- + I

,/(-v)

fix)

.V- - 4

U- - 4)(2.v) - (.V- + l)(2.v)

ix'- - 4)-

lO.v

(.V- - 4)=

(a- - 4)^(-10) - (- ll).vK2K.v- - 4)(lv)

(-V- - 4)-

l()(3.v- + 4)

(-V- - 4)'

Write original equation.

Differentiate.

First deri\ative

Differentiate-

Second derivative

There are no poiius al which / "(v) = 0. but at v = ±2 the fuiictivMi / is not conliiui-

ous, so you lest tor concavity in the intervals {-zc. -2). (-2. 2). and (2. cc), as

shown in the table. The graph of / is shown in Figure 3.27.

Interval — GO < v < - 2 - 2 < .V < 2 2 < .V < cc

Test value .V = -3 .V = .V = 3

Sign otf'ix) /"(-3) >0 /"(O) < /"(3) >

Conclusion Concave upward Concave downward Concave upward

NOTE: 'I'lic dermitiiin t)( pmiii of

inflection given in this book requires that

the tangent line exists at the point of

inflection. .Some books do not require

this. For instance. \\c do not consider the

function

./(.v)

V- + 2.V

.V <

.V >

to have a |ioiiU of intlection at the

origin. c\cn though the conca\ its of the

graph changes from conca\c downward

to concave upward.

Points of Inflection

The graph in Figure 3.26 has two points at which the concavity changes. If the tangent

line to the graph exists at such a point, that point is a point of inflection. Three types

of points of inflection are shown in Figure 3.28. Note that a graph crosses its tangent

line at a point of inflection.

I / Conca\'e

downward

The concavity of /'changes at a point of inflection.

Figure 3.28
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To locate pn.ssihlc points of inflection. _\oii need only determine the values ot .v

for which /"(.v) = Oor for which / is not differentiahlc. This is similar to the proce-

dure for locating relative extrema of/!

THEOREM 3.8 Points of Indrrtint.

If (c. /(()) is a point of mllection of the graph of/, then either f"(c) = or / is

not differentiable at .v = c.

/(.v) == .v-'-4a'
1

\ ""
-

V'-

Points of

inflection

-1
• /

-9- \
/

-is- \J

Example 3 Finciinj; Points nf Inflection

-27 -

Conca\e CoiKa\e C^'nc.nc

iipwarLl downWLird iip^varLJ

Points of inllection can occur where

/"(,v) = or /"does not exist.

Figure 3.29

Detcrniine the points of inflection and discuss the concavity of the graph of

fix) = A--* - 4.v-\

Solution Differentiating twice produces the following.

fix) = .V^ — 4.\
'

\\ iiic ciriiiina! Iimclion.

/'(a) = 4a' — 12a- Find fiisi den\ali\e

fix) = 12a- - 24v = I2v(v - 2) Fmd second de^^atl^t^

Setting /"(a) = 0. you can determine that the possible points of inflection occur at

A = and .v = 2. By testing the intervals determined by these A-values, you can con-

clude that they both yield points of inflection. A summary of this testing is shown m
the table, and the graph of/ is shown in Figtire 3.29.

/"(()) = 0. but (0.0) is not a ponil of

inllection.

Fijiure 3.30

Interval — CO < .V < < .V < 2 2 < .V < CXD

Test value .V = - 1 .V = 1 A = 3

Sign off"(x) ,/ "( - 1 ) > ./
"(

1 ) < ./"(3) >

Conclusion Concave upward Concave downward Concave upward

The converse of Theorem 3.8 is not generally true. That is, it is possible for the

second derivative to be at a point that is not a point of inflection. For instance, the

graph of /(.v) = a"* is shown m Figure 3.30. The second derivative is when .v = 0.

but the point (0. 0) is not a point of inflection becatise the graph of / is concave

upward in both intervals ~ y:. < .v < and < .v < sc.

EXPLORATION

Consider a general ctibic function of the form

fix) = ax' + hx- + ex + d.

You know that the value of d has a bearing on the location of the graph but has

no bearing on the value of the first derivative at given values of a. Graphically,

this is true because changes in the value of d shift the graph up or down but do

not change its basic shape. Use a graphing utility to graph several cubics with

different values of i . Then give a graphical explanation of why changes in c do

not affect the values of the second derivative.
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ir /'((•) = and /"(() > 0. /(clisa

relative minimum.

' f'ic) < n

lf/'(d = Oandr'(() < n. /(disa

relative maximum.

Figure 3.31

The Second Derivative Test

In addition to testing for concavity, the second derivative can be used to peiform a

simple test for relative maxima and minima. The test is based on the fact that if the

graph of a function /' is concave upward on an open interval containing r. and

/'(r) = 0. /'(r)must be a relative minimum of/'. Similarly, if the graph of a function /'

is concave downward on an open intersal containing c, and/'(() = 0. /(c) must be a

relative maximum of /'(see Figure 3.31 ).

THEOKEM 3 . 9 Second Derivative Test

Let/ be a function such that /'(() = and the second derivative of/ exists on

an open nter\al containing i

1. If/"(( ) > 0. then/(r) is iI relati\e minimum.

2. Ify"(( ) < 0, thcn/d) is;1 relative maximum.

If,/"(r) == 0, the test fails. In such cases, you can use the First Deiivative Test.

Proof If /'(c) = and /"((.') > I), there exists an open interval / containing c for

which

/'(.v) - /'((•) _ ,/'(.v)

>0

for all .V ^ (' in /. If .v < c. then .v - c' < and /'(.v) < 0. Also, if .v > c. then

.v - r > and /'(.v) > 0. So. /'(.\ ) changes from negative to positive at r. and the First

Derivative Test miplies that /(c) is a relative minnnum. A proof of the second case is

left to you.

ll^i I'.xamiilc 4 llsinji the Second Derivative Test

Find the relatise extrema for /(.v) = — 3.v'' + 5.v\

/(.v) = -3.V-' + 5.V-'

Relati\e

inaxiimini

II. 2)

(0. n) is neither a relative minimum nor a

relative maximum.

Figure 3.32

Solution Begin by finding the critical numbers of/.

/'(.v) = - IS.V-' + IXv- = 15.V-(1 - .V-) = .Sei /Ivl equal in 0.

.V = — 1, 0. 1 Cnlical niimheiA

LIsing

/"(.v) = -60.v' + 30.V = 30(-2.v' + v).

you can apply the Second Dcn\ ati\e Test as follows.

Point (-I.-2) (1.2) (0,0)

Sign of/"(x) /"(-I) >0 /"(I) <0 /"(O) =

Conclusion Relative minimum Relative maximum Test fails

Because the Second Derivative Test fails at (0, 0), you can use the First Derivative Test

and observe that/ increases to the left and right of .v = 0. So. (0. (1) is neither a relative

minimum nor a relative maximum (even though the graph has a hori/onlal tangent line

at this point). The graph of/ is shown in Figure 3.32.
;
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EXERCISES FOR SECTION 3.4

In Exercises 1-10, determine the open intervals on vvhicli the

graph is concave upward or concave downward.

1. V

3. fix)
24

+ 12

3i

^.
- . . .

-1

-2

-
. -3

1 : .^ '

jcm-niU'il In Derive

5. fix)
+ 1

Gi'iicniKcl In Dfi

7. gix) = 3.V- - .V-'

9. \' = 2.V - tan .v,

-.v-' + 3a

4. fix)

GciH-nileil h\ DtTiye

-3.v^ + 40.V' + 135.V

270

CniwruUil hy DfJ:

7T TT

1 ' T

8. hix) = x^ - 5x +

10. ^ -V H

—

:
. i- TT. tt)

sin X

11. fix) = A-' - 6a-- + 12a

13. fix) = \x^ - 2a-

15. fix) = xix - 4)'

12. fix) = 2a' - 3a- - 12a + 5

14. fix) = 2a-' - 8a- + 3

16. fix) = x'ix - 4)

17. fix) = A7a -I- 3

19. /,A, =^
18. fix) = aVa -I- 1

V -I- I

20. fix) = —^

l\. fix) = sm -. [0. 47t] 22. fix)
3a

(0. 27t)

23. fix) = sec A - -
. 10,477)

24. /(a) = sin A + cos A. [0. 27r]

25. /(a) = 2 sin A + sin 2a, [0,2 7r]

26. /(a) = A + 2 cos A, [0, 27t]

In Exercises 27—tO. tlnd all relative extrema. I'se the Second

Derivative Test where applicable.

27. ./(A) = x' - 4v' + -)

29. ,/Xv) = ix
" 5)-

31. fix = a' -- 3a- + 3

33. 'iix)
= A-(6 — A ^

35. fix = A"-'' - 3

37. fix) =
A- +

4

28. fix) = A- -1- 3.V - 8

30. fix) = - (a - 5 )-

32. fix) = A-
- 9v- + 27a

34. .Vix

fix)

—

N

iu + ..)-(a- 4)

36. A- + 1

38. fix)

39. /(A'f = cos A - A-, [0. 47r]

40. fix) = 2 sin A + cos 2a. [O, 2 7t]

rp In Exercises 41—14, use a computer algebra system to analyze

the function over the indicated interval, (a) Find the llrst and

second derivatives of the function, (b) Find any relative extrema

and points of inflection, (cl Graph/,/', and/"on the same set

of coordinate axes and state the relationship between the behav-

ior of/ and the signs of/and /
".

41. fix) = 0.2.v-(a- 3)\ [-1,4]

42. fix) = .vVe -.V-, [" v-'e. -./6]

43. fix) = sin A -
I sin 3a + ^ sin ?a, [O, tt]

44. fix) = ^/Yxsinx. [0, 2 7t]

In Exercises 1 1-26. find the points of inflection and discuss the_

concavity of the graph of the function.

45. Consider a function / such that /' is increasing. Sketch

1
graphs off for (a) f < and (b) /' > 0.

I

i 46. Consider a function / such that /' is decreasuig. Sivctch

!
graphs off for (a) /" < and (h) /' > 0,

47. Sketch the graph of a function / thai docs itni ha\e a point

of inflection at ic.fic)) even though /"(c) ~ 0.

48. S represents weekly sales of a product. What can he said of

S' and 5" for each of the following?

(a) The rate of change of sales is increasing.

(h) Sales are increasing at a slower rate.

(c) The rate of change of sales is constant.

(d) Sales are steady.

(e) Sales are declining, but at a slower rate.

(f ) Sales have bottomed out and have started to rise.
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In Exercises 49-52, graph /. /', and /" on the same set of ^ ^'*- Conjecture Consider the lunction,/ (.v) (.V

coordinate axes. To print an enlarged copy of the graph, go to

the website HHw.matligiaplis.coin.

Think Ahinit It In Kxercises 53-56, sketeii the graph of a func-

tion/ ha\ing the indicated characteristics.

53. /I2I = /(4) =

/(3) IS defined.

/'(a) < Oif.v < 3

/''(3) does not exist,

/'(.v) > if .V > 3

f"(x) < 0. X i= 3

55. /"(2) = /(4) =

fix) > if .V < 3

/'(3) does not exist.

fix) < if.v > 3

fix) > 0. .V * 3

54. /((I) =/(2) =

fix) > Oif.v < 1

./'(
1 ) =

fix) < Oif.v > 1

fix) <

56. /(()) =/(2) =

fix) < if V < 1

/'(I) =

fix) > if V > 1

/"(v) >

57. Think About It The figure shows tiie graph of /". Sketch a

graph of /^ (The answer is not unique.)

Figure for 57 Figure for 58

58. Think About It Water is running into the vase shown in the

figure at a constant rate.

(a) Graph the depth tl of water m the vase as a lunction of time.

(b) Does the function have any extrenia? Explain.

(c) Interpret the inflection points of the graph of rf.

(a) Use a graphing utihty to graph /' for n = 1,2. 3. and 4. Use

the graphs to make a conjecture about the relationship

between ii and any inflection points of the graph of/

(b) Verify your conjecture in part (a).

60, (a) Graph /(.v) = v^.v and identify the inflection point,

(b) Does/"(.v) exist at the inflection point? Explain.

In Exercises 61 and 62. find a, h, c, and d such that the cubic

fix) = fl.r' + />.v- + ex + d satisfies the indicated conditions.

61. Relative niaximiini; (3. 3)

Relative mininiiun: (.^. 1

)

Inflection point: (4. 2)

62. Relative maximum; (2, 4)

Relati\e minimiuii: (4. 2)

Inflection point: (3. 3)

63. Aircraft Glide Path A small aircraft starts its descent from an

altitude of I mile. 4 miles west of the runway (see figure).

(a) Find ihc cubic /'(.v) = ax' + /).v- + c.v + </ on the interxal

[-4, 0] that describes a smooth glide path for the landing.

(b) The function in part (a) models the glide path of the plane.

When would Ihc plane be descending at the most rapid rate''

FOR FURTHER INFORMATION For more information on this type

of modeling, see the article "How Not to Land at Lake Tahoe!" by

Richard Barshinger in The American Mathenialical Monihlw To

view this article, go to the website www.malharlicles.cant.

' r 64. HigliMay Design A section of highwav connecting two

hillsides with grades of 6% and 4'/f is to be built between two

points that are separated by a horizontal distance of 2000 feet

(see figure). At the point where the two hillsides come together,

there is a ,S0-foot difference in elevation.

(a) Design a section of highway connecting the hillsides

modeled by the function fix) = ax' + hx' + ex + d

(- 1000 < \ < 1000). At the points A and B. the slope of

the model must nialch the grade of the hillside.

(b) Use a graphing utility to graph the model,

(c) Use a graphing utility to graph the derivative ol the model.

(d) Determine the grade al the slccpesl pari of the tiansUional

section of the hit;h\vav.

Hiizhwav

> /A(-l()()(), 6U)

ek-*-

Not drawn lo scale

lit 1(100.411) _, ,

•^^ P^tB

)50 ft
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65. Beam Deflection Tlie deflection D ol a particular heani ol

Icnyth L is

D = 2.V-' - 5Lv' + 3L-.V-

where v is tlie distance from one end of the beam. Find the

value ot'.v that yields the niaximum deflection

^ 66. Specifle Gravity .\ model lor the specific gra\ it\ ol water .V is

5.75? ,

f = ^—^^ 7"

'

S.52 I

10"
T-

6.540 ,

10^
-T + 0.499X7. < 7" < 25

where T is the water temperature m degrees Celsius.

(a) Use a computer algebra system to llnd the coorduiates of

the maximum value of the function.

(b) Sketch a graph of the function o\cr tlie speciUcd domain.

(Use a .setting in which 0.996 < S < 1.001.

1

(c) Estimate the specific gra\ity of water when 7" = 20".

67. .-Irfragf Cost A manufacturer has delermmed that the total

cost C of operating a factory is

C = 0.5 V- + 15v + 5000

where .v is the number of units produced. .-\l what lc\el ol

production will the average cost per unit be mmimi/cd.' (The

a\erage cost per unit is C/.v.

)

6S. Inventory Cost The total cost C for ordering and storing .\

units is

rp Linear and Quadratic .Xpproxiinaliiins 111 Kxercises 71-74, u,se

a graphiiifj utility to yraph the liiiutioii. Tluii };raph the linear

and quadratic approximations

/•,(.v) =/(fl) +/'(n)(.v -a)

and

P,(.v) =/(fl) +f'(a)(x - a) + \f"{a)(x - a)-

In the same viewin;; window. Compare the values of/, P,, and

P-. and their first derivatives at .v = a. How do the approxima-

tions change as you mo\e farther away from x = al

Value tif a

C 2.V +
300.000

What order si/e will produce a minimum cost'.'

69. Sales (innvtii The annual sales S of a new product is gi\en by

5000;-
^ "

8 + r-

where I is time in years Find the time when sales are increas-

ing at the greatest rate.

P 70. Modeling Data The a\erage typing speed S of a t\ping

student after / weeks of lessons is shown m the table.

/ 5 10 15 20 25 30

s 38 56 79 90 93 94

A model for the data is S
lOOr-

( > 0.

Function

71. /(.v) = 2(sin.v + cos.v)

72. /(.v) = 2(sin.v + cos.v)

73. ,/lv)

74. /(.v)

.^1

4

s V

- 1

rp 75. Use a graphing utility to graph y = .\ sin(l/.v). Show that the

graph is concave downward to the right of .v = I/tt.

76. Show that the point of inllection of /(.v) = .v(.v - 6)- lies

midway between the relative extiema of /!

77. Prove that e\'ery cubic function w ith three distinct real zeros has

a point of intlcclion whose i-coordinate is the average ol the

three zeros.

78. Show that the cubic polynomial />{(! ha" + /»v- + c.v + d

has exactly one point ol mllection (.v,,, \',|). where

-b
3«

and V,

2/>-

27(r

hc
+ d.

65 + r-

(a) Use a graphing utility to plot the data and graph the model.

(b) Use the second derivative to determine the concavity of S.

Compare the result with the graph in part (a).

(c) What is the sign of the first deri\ ati\e for / > 0'.' Combining

this information with the concavity of the model, what infer-

ences can be made about the tvping speed as t increases?

Use this formula to find the point ol mllection of />( vl =

.V-' - 3.V- + 2.

True or False? In Exercises 79-84. determine whether the

statement is true or false. If it is false, explain why or give an

example that shows it is false.

79. The graph of every cubic poKnomial has precisely one point of

inflection.

80. The graph of /(.v) =
I /.v is concave downward for v < and

concave upward for .\ > 0. and thus it has a point of inflection

at V = 0.

81. The maximum value of y = 3sin .v + 2cos .v is 5.

82. The maximum slope of the graph of y = sin(/i\) is /).

83. M i"(c) > 0. then / is concave upward at .v = <

.

84. If /"(2) = 0, then the graph of/ must have a point of inflection



192 CHAPTER 3 Applications of Differentiation

Limits at Infinity

Detenninc (finite) limits at inllnity.

Determine the horizontal asymptotes, if any. of the graph of a function.

Determine infinite limits at infinity.

Till' hmil of /( \l as I apiimacht's - cc or

-yi IS .V

Fifjure 3.33

Limits at Infinity

This section discusses the "end behavior" of a function on an iiijhiilc inlerval.

Consider the graph of

,/(.v)

.V- +

as shown in Figure 3.33. Graphically, you can see that the values of /(.v) appear to

approach 3 as .v increases without bound or ticcreases vvithiuit botind. You can come

to the same concltisions mimerically. as shown iii the table.

V decreases wilhout biuind A increases without bound.

X -CC! <— -100 -10 -1
1 10 100 —>oo

/w 3^ 2.9997 2.97 1.5 1.3 2.97 2.9997 ->3

/ ( v) approaches ; / ( v) approaches :

NOTE By writing litn f(x) = L or

lim fix) = L. we mean that the limit

e.xists aihl the hmit is equal to L.

The table suggests that the value of fix) approaches 3 as v increases without boinid

(.V -^ ^/z). .Siiiiilarlv. /{\) approaches 3 as .v decreases without bouttd (.v
—>-gc).

These limits at infinity ate denoted by

lim fix) lainu .11 iiei:ali\'e infmitv

and

Mm fix) = 3. I. mill al positive inllnitv

To say that a statement is true as v increases withmit houiul means that for some

(large) real nttniber M. the statetnent is true for nil x in the interval |.v: x > M\. The

following deftnition uses this concept.

lim/(A) = Z.

fix) is viithin f units of /, as.v—)oo.

P'igurt 3.34

Definition of Li mits at Infinity

Let L be a real nutnbet

1. The siateiiient lim fix) = L meatis that for :ach I; > there exists an M >

stich that \fix - L < E whenever .V > M.

2. The statement litn ,/(-\) = I. meatis that foi each E > there exists an N <

sitch that |/(.v -L < E whenever X < N.

The defimtioii of a limit at infinity is illustrated in Figure 3.34. In this figure, note

that for a given positive number s there exists a positive number M such that, for

-V > M. the graph of/ will lie between the horizontal lines given by y = L + e and

V = L - E.

^



1; EXPLORATION
Use a graphing utility to sketch the

graph of

/(.v)
2.V- + 4.V - 6

3.V- + 2.V - 16'

Describe all the important features of

the graph. Can you find a single

viewing window that shows all of

these features clearly? Explain your

reasoning.

What are the horizontal asymp-

totes of the graph? How far to the

right do you have to move on the

graph so that the graph is w ithin

0.001 unit of its horizontal asymp-

tote? Explain your reasoning.
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Horizontal Asymptotes

In Figure 3.34, the graph of / approaches the line y = L as .v increases without hound.

We call the line \ = L a horizontal asymptote of the graph of/.

Definition of a Horizontal Asymptote

The line y = L is a horizontal asymptote of the gi aph of/ if

lim
.V—*-cc

,/(-v) = L or lim f(.\)
= L.

.V—>30

Note that from this definition, it follows that the graph of n fiiiwiion of x can have

at most two horizontal asymptotes—one to the right and one to the left.

Limits at infmity have many of the sarne properties of limits discussed in Section

1.3. For example, if lim fix] and lim g(.\) both exist, then

lim [fix] + ,?(.v)] = lim fix) + lim g(x)

and

Inn [/(.v),!,'(.v)] =
[

liin /(.v)][ \m g{x)j

Similar properties hold for limits at — oo.

When evakiating limits at infinity, the following theorem is helpful. (A proof of

this theorem ts given in Appendix B.)

THEOREM 3.10 limits ;it Infinity

If ;• is a positive rational number and c is any real number then

lim — = 0.
t-.-j: x'

Furthermore, if .v' is defined when .v < 0, then

lim — = 0.

Exiimple 1 EvaluatiJiga I
'—"' '

-^- '•

Find the limit: lim [5 ; |.

Solution Using Theorem 3,10, you can write the following,

lim 5 —-; = lim 5 — litn ^ Pmnenv of lnmls
v^cc \ X-/ I—

^

V—c<;.v-

5 -

5
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Example 2 Evaluating a Limit at Iiitiiiity

2.V - 1

Find the litiiit: lim .

v-^^^ .V + 1

Solution Note that both the iiutiicfatof and the denotninator apptoach infitiity as .v

approaches inftnitN.

/
6-

/
5- '

-y
/ 4-

3-
fix

Iv-l

---

.v+l

-5 -4
—1—

-3

—

i

1

"\

/r 2 3

1=2 IS ii lidri/iiiital asymptoti'.

Fifliire 3.35

NOTE When you encounter an indeter-

minate form such as the one in Example

2. we suggest dividing the numerator and

denominator hy the highest power ol .\ in

the lU'iii'iniiuifiir.

Um

lim (2.V - 1)

lim (x + \] —> oo
.V—>co

This results in — , an indeterminate form. To resolve this prohleni. \i)u can divide

both the numerator and the detiommator hy v. After di\ iding. the limit may be evalu-

ated as follows.

h- -
I

litn
>-"--- .V -I-

UllJ
—-^ A- + 1

lim
—*cc

V

2-1
A

. 1

1
-1-

lim 2 - lim -
.\—*tC <-»:k a

lim 1
-1-

-V— ^
litii

-
>
— :'- A

2-0
1 -t-

Divide numerator and denominator by v.

Take limits of numeralor and denominator.

Appl\' Tlieorem .VIO.

So, the line \ = 2 is a horizontal asymptote to the right, B\ taking the limit as

A—> — cc. you can see that v = 2 is also a horizontal asymptote lo the left. The graph

of the ftinction is show n in Figure -!.3.'^. ^^

As A increases, the graph of / moves closer

and closer lo the line r = 2.

Figure 3.36

TECHNOLO(iN Yoti can test the reasonableness of the limit found in Fxample 2 by

evaluating /'(.v) for a few large positive values of a. For instance.

/(KM)) =^ l.U7().\ /(KKIO) = I.W7(). and /( lll.OOD) = I .W47.

Another way to test the reasonableness of the limit is to use a graphing utility. For

instance, in Figure ,1.36. the graph of

is shown with the horizontal line > = 2. Note that as a increases, the graph of/

moves closer and closer to its horizontal asymptote.
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Maria Agnesi(17I8-17W|

Agnesi was one of a handful of women to

receive credit for significant contributions to

mathematics before the twentieth century. In

her early twenties, she wrote the first text thai

included both dilTerential and integral calcu-

lus. By age 30. she was an honorary member

of the faculty at the University of Bologna.

Example 3 A Comparison ofTlucc Rational Functions

Find each of the limits.

,
Iv + 5

II. Inn —

;

A^^- 3.V- + 1

b. lim
Iv- + 5

-.^- 3.V- + 1

c. lini

3.V- + I

Solution In each ctise. attempting to e\altiate the limit pi(K.ltices the incleteniiintite

form oc/oc.

a. Di\ icie holh the ntimerator and the denominator by .v-^.

Iv + ?
lim

,. (2/.V) + (3/.\-| + ,^

lim —:
. . , ,,

— = ^ = - =
V---C 3.V- + 1 .--X 3 + (I/.V-) 3 +

b. Di\ idc holh the nnmeratoi and the denominator h\ .v-

Iv- + 3
lim

2 + (?/.v-) 2+0
.----^ 3.\- + I .----- 3 + (1/.V-) 3 + 3

t. Di\ ide both the numerator and the denoniiiuitor by .\
-

lim
iv' + .>

lim
2.V + (5/.V-) ex;.

---- 3.V- +1 ,-rx 3 + (1/.V-) 3

Yon can conclnde that the limit ilocy noi exist bectitise the luinicralor increases

wilhoiil bound while the denominator appiotiches 3. 2E1

Guidelines for Finding Limits at Infinity of Rational Functions

1. If the degree of the nnmeiator is less than the degree oi the denominator,

then the limit of the rational function is 0.

2. If the degree of the nnmeiator is cciual to the degree of the denominator,

then the limit of the rational function is the ratio of the leading coefficients.

3. If the degree of the numerator is oreatcr than the degree of the denominator,

then the limit of the rational function does not exist.

/(.v) =

.V- + 1

Inn /Iv) =

/ has a horizontal asymptote at J = 0.

Fijiure 3.37

fOff FURTHER INFORMATION For

more information on the contributions of

women to mathematics, see the article

"Why Women Succeed in Mathematics"

by Mona Fabricant. Sylvia Svitak, and

Patricia Clark Kenschaft in Mathematics

Teacher. To view this article, go to the

website wwnjiiatliartieles.coiii.

Use these guidelines to check the results in Example 3. These limits seem reasonable

when you consider that for large values of a, the highest-power term of the rational

lunction IS the most "intluentiar' in determining the limit. For instance, the limit as .v

approaches inllnilv of the function

./(-v)

1

.v= + 1

is (1 because the denominator oveipowers the numerator tis .\ increases or decreases

without bound, as shown in Figure 3.37.

The function shown in Figure 3.37 is a special ease of a type of curve studied by

the Italian mathematician Maria Gaetana Asnesi. The general form of this function is

./(-v)

Ha'

.V" + 4t/-
Wuch of .Aenesi

and. through a mistranslation of the ItaHan word vcftcfc. the curve has come to be

known as the Witch of Agnesi. Agnesi's work w ith this curve first appeared in a

comprehensive le\l on calculus that was published in 174S.
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In Figiiie 3.37, you can see that the function /'(.v) = 1/(a- + 1) approaches the

same horizontal asymptote to the right and to the left. This is always true of rational

functions. Functions that are not rational, however, may approach different horizontal

asymptotes to the right and to the left. This is demonstrated in E.xample 4.

Example 4 A Funttion v\'ith Tvvo Horizontal Asymptotes

Determine each of the limits.

3.V - 2 ^ ^

a. lim
/2.\'- + 1

b. lim
'Iv- + I

Solution

a. For A > 0. you can write .v = ^ v-. So. di\idmg both the numerator and the

denominator by v produces

V2.V- + I

1(1 Ihe left

Fuiicliiins iIkiI arc ikiI ralimial iiia\ liavedil

ftTfiU riglu ami lel'l iKin/nnlal asMiipliilcs.

Figure 3.38

/2.V- + 1 y2.Y- + 1 /jx- +
2 +

and you can take the limit as follows.

3.V - 2
lim —

,
= lim

y^~^- yiv- + 1 '--

1

3 - -
.V 3 -

2 +
1 72 +

b. For .V < (I. you can write .v = - v^. So, dividing both the numerator and the

deiioiiiinator b\ \ produces

V2a-- + 1 V2.V- +
2 +

and vou can take the limit as follows.

3 -

lim
J2x^- + I

lim — r
=

1

" V^ +
.V-

3-0
72 +

The graph of /(.v) = (3.v - 2)/JlPTl is shown in Figure 3.38.

\ /'

Till' hdri/oiiUil as\mpl(ilL' appears to be tlu'

liner =
I hut is actual!) llic line r = 2.

Figure 3.39

TECHNOLOGY PITFML If you use a graphing utility to help estimate a limit, be

sure that you also confirm the estimate anahtically—the pictures shown by a

graphing utility can be misleading. For instance. Figure 3.39 shows one view of the

graph of

_ 2.v' + 1000.V- + -V

•^' ~
.v' + lOOO.v- + .V + 1000'

From this \'ievv. one could be convinced that the graph has y = 1 as a horizontal

asymptote. An analytical approach shows that the horizontal asymptote is actually

y = 2. Contirm this by enlarging the viewing window on the graphing utility.
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III Section 1.3 (Example 9), you saw how the Squeeze Theorem can be used to

evaluate limits involving trigonometric functions. This theorem is also valid for

limits at infinity.

Example 5 Limits Involving Trigonometiic Functions

Determine each of the limits.

a. Imi sm .v b. Iim ^

—

-

V— :c .V

1 <

1
-v4

fu , _ sin Y

V -^^-Si- *T^"".

7l\„^^—

lim ^'" ^
=

-1 -

" .=4

As X increases wilhuut bound, /(.v)

approaches 0.

Figure 3.40

Solution

a. As .V approaches infinity, the sine function oscillates between 1 and — 1. So. this

limit does not exist.

b. Because -
1 < siii.v < I. it follows that for .v > 0,

1 sin .v 1— < < -
-V .V .V

where lim (- l/.v) = and lim (l/.v) = 0. Therefore, bv the Squeeze Theorem,

you can obtain

sin .V

lim =
-V—^ .V

as indicated in Ficure 3.40.

Example 6 Oxygen Level in a Pond

Suppose that /(r) measures the level of o.xygen in a pond, where /(?) = 1 is the normal

(unpolluted) level and the time / is measured in weeks. When t = 0. organic waste is

dumped into the pond, and as the waste material oxidizes, the level of oxygen in the

pond is

tit)

I- - t +

I- + 1

What percent of the normal level of oxygen exists in the pond after 1 week? After 2

weeks? After 10 weeks'' What is the limit as t approaches infinity?

1 (2,0.6) (.] 0,0.9)

"-J

li

g 0.50-

6
0.25-

\ V^
(1,0.5)

m = t'-t+\

r+ 1

1 1 1 1 \-^
4 (1 8 10

Weeks

The level of oxygen in a pond approaches the

normal level of 1 as t approaches cc.

Figure 3.41

Solution When t = 1.2. and iO. the le\els of oxygen are as follows.

I- - 1 + 1

,/(!) =

}V-) =

,/'(10)

1- + 1

2- - 2 + 1 _ 3

^
5

= - = 50%

2- + 1

10- -10+1
10- + I

60%

91

1 week

2 weeks

^90.1%' 10 weeks

To take the limit as t approaches inthiity. divide the numerator and the denominator

by t- to obtain

,. r- - r+ i 1
- (lA) + (\/r-) I - +

lim —;
-.
— = hill ,. , ,. = — — = 1 = 100%'.

t- + 1

(See Figure 3.41.)

1 + (1/r-) 1 +
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NOTE Determining whether a lunction

has an infinite limit at infinity is useful

in analyzing the "end behavior" of its

graph. You will see examples of this in

Section 3,6 on curve skctchinu.

Infinite Limits at Infinity

Many functions do not approach a finite limit as a increases (or decreases) without

bound. For instance, no polynotiiial function has a finite limit at infinity. To describe the

behavior of polynomial and other functions at infinity, we use the following definition.

Definition of Infinite Limits at Infinity

Let /' be a function defined on the interval {a. co).

1. The slatenient lim / (.vl = y- means that for eac 1 positive number M there is

a corresponding number A' > such that /(.v) > M whenever v > N

2. The statement lim fix) = -co means that for c ich negative ntimher M. there

is a conesponding number A' > such that/(.v) < M whenever .v > N.

Similar statements can be made about the notations lim fix) = oo and
V—> - ^'^

lim fix) = -CO.

Example 7 Finding Infinite Limits at Infinity

Figure 3.42

Find each hmit.

a. lim -v' b. lim .v'

Solution

a. As v increases withotit boLiiid, v' also increases without hound. So. you can write

lim .v' = oo.
\
—'^'

b. As v decreases wilhotit bound. .\
' also decreases w ithout bound. So, you can write

lim .v' = -CO.

The graph of fix) = .v' in Figure }A2 illustrates these two results. These lesults agree

with the Leading Coefficient Test for pol\ noiiual functions as described in Section P.3.

Figure 3.43

Example 8 Finding Infinite Limits at Infinity

Find each limit.

a. lim
4.V

v + 1

b. lim
,

—
>- -^ .V + I

Solution One way to evaluate these limits is to tise long division to rewrite the

improper rational function as the sum of a polynomial aiul a rational function.

, 2.V- - 4.V .. L , 6
a. lim — = lull 2.V - 6 H

I
= oo

.V + 1 .V +

.. ,. 2.V- - 4.V ,. /, ,
6

b. hm :— = lim Iv - 6 H r I

= — oo
.V + I V- =cV .V +

The above statements can be inteipreted as saying that as .v approaches +co, the func-

tion /'(.v) = (Iv- — 4.v)/(.v + 1) behaves like the function i;{x) = 2.v - 6. In Section

3.6, you will .see that this is graphically described by saying that the line y = 2.v — 6

is a slant asv mptote of the graph of f. as shovsn in Figure 3.43. i^;^'
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EXERCISES FOR SECTION 3.5

III Kxeriises 1-6, match the liiiKtion with oiif of the <;ra|)hs |(:i),

(b). (I), (d». (e). ()r (l)J ushig horizontal asymptotes as an aid.

(a) V

H h
-2 -I

H— A-

(d)

3- -

2 -

1
-

,

-1 - 1 : 3

_">

,

-

-3. -

In Exercises 13 and 14, find lim //(x). if possible.
.r—-oc

13. /(a) = 5a' - 3a- + 10

(a) /((a) =

(c) hix) =

fM

/(a)

(b) h{\)
/(-v)

14. fix) = 5x- - 3a- + 7

(a) hix) = (h) hix]
fix)

(c) hix)
,/lv)

In Exercises 15-18, find each of the limits, if possible.

3 - 2aV- + 2
15. (a) lim -^

. — :k a ' - 1

16. (a) lim

,,
^

,. A- + 2 coefC'C-"-
(b) hm ^r

.-=CA- - 1

(c) lim

17. (a) lim

-^=c A - 1

5-2 v-'/-

—-.: 3a-- - 1

^ - 2v
lb) lim

>-v- 3a -
I

3 - 2 a-

.'";- 3a - I

5a-V^

(h) lim

-^--c 3a- - 4

5 - 2a-'/-

(c) hm

18. (a) lim

(c) lim

"":
3x^'- - 4

5 - 2a-'''-

(h) lull

,^yz 3a - 4
(c) lull

4a- -I- 1

:i 4v'/- + 1

5aV=

^»4Va + 1

1. /(aI

3. ,/(a)

5. fix)

A- + 2

A

A- + 2

4 sin A

A-- + 1

2. ,/(a)

. A^ + 2

A-
4. /,A) = 2 + ^^^

- - 3a + 5
6. /(a)

A- + 1

'V .\'uinfiiciil (iiitl (iriipliictil Analysis In Exercises 7-12, use a

fjraphinj; utility to complete the table and estimate the limit as

A approaches inllnitv. Then use a graphin<; utility to uraph the

function and estimate the limit i>raphically.

X 10" 10' 10= 10-' 10-" UP uy-'

fix)

7. ,/lv) 4^ " '

9. fix)

II. fix) = 5

:a - 1

-6a

y4A= + 5

1

2a-'

A -1-
1

8a

./a= - 3

3

A= + 1

8. fix)

10. fix)

12. fix) = 4 + ^r^_

In Exercises 19-32, find the limit.

Ix - 1

19. lim

21. lim

3a -I- 2

.---^ A= - 1

23. l,n.
'^"'

i!':^^- A + 3

1^
A

'--=-^ s/x- - X

27.
2x + 1

'----= s/x- - X

29.
,. sin 2a

. — -J-- X

31. lull
2a -I- sin A

20. lim
3a' + 2

-i 9a^ - 2a= + 7

3\
22. lim 4 +

24. lim -A ^
I— -^ \2 A-

26.
,, X

'--=-- Va^ -1-
1

28.
-3a + 1

'^-^ Va^ + X

30.
A - cos A

lim
i-,oc A

32. lim cos -
A— ii A

rp In Exercises 33 and 34, use a graphing utility to graph the func-

tion and verify that it has two horizontal asymptotes.

33, fix)
l-v|

A + 1

34. fix)
3a
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In Exercises 35 and 36, find the limit. iHiiil: I>et .v = ijt and

find the limit as ?^0+.)

35. iim v sin - 36. Iim \ tan

-

.1— s: .V

'r In Kxereises 37—tO, find the limit. {Hiiil: Treat the expression

as a traction whose denominator is I, and rationalize the

numerator.) I'se a graphing utility to verify your result.

m mmftraitiffim'irii

48. It / is a continuous function such that Iim fix) = 5. find,

if possible. Iim /(a) for each specified condition.

(a) The graph of/ is symmetric to the v-axis.

(b) The giapli of/ is symmetric to the origin.

37. Iim (a + Va- + 3
I

39. Iim (a - A^ + a)

38. Iim (2a - ^ 4a- + I

40. Iim (-3a + v/9a- - a)

'k In Exercises 49-66, sketch the graph of the equation. Look for

exlrenia, intercepts, symmetry, and asymptotes as necessary.

Use a graphing utility to verify your result.

/r Numerical, (inipliical. and Analylic Aiitilywin In Exercises 41—14.

use a graphing utility to complete the lahle and estimate the limit

as A approaches infinit\. Then use a graphing utility to graph the

function and estimate the limit graphically. Finally, find the limit

analytically and compare your results with the estimates.

2 + A

X 10" 10' 10- 10' 1(H HP 1,0''

fix)

41. ,/(a) = A - s/dT"

43. /(a) = Asin —
42. fix)

44. fix]

X- - aVaIa

A + 1

45. The graph of a function / is shown below. To print

an enlarged copy ol Ihc graph, go to the website

(a) .Sketch/',

(b) Use the graphs to estimate Iim /l\)aiKl Iim fix).

(c) Explain the answers you gave in part (h),

46. .Sketch a graph of a diffcrentiable function / that satisfies

the following conditions and has a = 2 as its only critical

number.

fix) < for A < 2

fix) > for A > 2

Iim fix) = Iim fix) = 6

47. Is it possible to sketch a graph of a function that satisfies the

conditions of Exercise 46 and has no points of inflection?

Explain.

'
1 - A

51.
-V

^' A^-4

53,
A-

' A^ + 9

-1,-

55,
A- - 4

57, A-y- = 4

Zt\
2.V

50,
X - 3

=
.V - 2

52,
2a

9 - A-

54.
A-

A^ - 9

C^ 2a-

1 - A

A- + 4

58. A-^' = 4

60, 1
=

61, V

63, \' = 3

65, ^

v'^^^4

1 - A-

62, ^• = 1 + -
A

64. y = 4il - —,

66. » =
,

;'

/"K In Exercises 67-76, use a computer algebra system to analyze

the graph of the function. Label any extrema and/or asymptotes

that exist.

67. fix) = 5

68. fix) = -

69. fix) = -
X

70. fix) = -
X

71. /(a I
= -

.V

72. fix)

73. fix)

74. "(a)

v= - 4a -I- 3

X + 1

V- + A + 1

3a

s/4x- + 1

2a

y3.v- -I-

1

75. !j(a) = sin —'—
-, 3 < .v < cxd

76. fix)



SECTION 3.5 Limits at Infinity 201

rp In Exercises 77 and 78, (a) use a graphing utility to graph/ and

g in the same viewing window, (b) verify algebraically that/

and g represent the same function, and (c) zoom out sufficiently

far so that the graph appears as a line. What equation does this

line appear to have? (Note that the points at which the function

is not continuous are not readily seen when you zoom out.)

77. fix)
3a- + 2

.v(.v - 3)

g(.v) = -V +

78. /(a)
2a- + 2

A(A- - 3)
t;(.v) = --A+ I

79. Average Cost A business has a cost of C = 0.5a + 500 for

producing .v units. Tlie average cost per unit is

C
C

Find the liiiiil of C as a approaeties infinity.

8(1. Engine Efficiency The efficiency of an iiueinai combustion

Efficiency {%) = 100
(r, /,-,)

where i|/i'-, is the ratio of the uncompressed gas to the

compressed gas and c is a positive constant dependent on the

engine design. Find tlie limit of the efficiency as the compres-

sion ratio approaches infinity.

IJ^ 81. A line with slope iii passes through the point (0. 4).

(a) Write the distance cl between the line and the point (3. I ) as

a function of (».

(b) Use a graphing utility to graph the equation in part (a).

(c) Find lim dini] and lim clini). Inteqiret the results

geometrically.

r^ 82. Modeling Data The table shows the wurld record times for

running one mile, where t represents the year w ith r = corre-

sponding to 1900. and y is the time in minutes and seconds.

t 23 33 45 54

y 4:10.4 4:07.6 4:01.3 3:59.4

t 58 66 79 85 99

y 3:54.5 3:51.3 3:48.9 3:46.3 3:43.1

A model for the data is

3.351r- + 42.461r - 543.730
y

t-

where the seconds have been changed to a decimal part of a

minute.

(a) Use a graphing utility to plot the data and graph the model.

(b) Does there appear to be a limiting time for running one

mile? Explain.

ff^ 83. Modeling Data A heal probe is attached to the heat exchanger

of a heating system. The temperattire T (degrees Celsius) is

recorded r seconds after the furnace is started. The results for the

first 2 minutes are recorded in the table.

/ 15 30 45 60

T 25.2° 36.9° 45.5° 51.4° 56.0°

t 75 90 105 120

T 59.6° 62.0° 64.0° 65.2°

7,

(a) Use the regression capabilities of a graphing utility to find

a model of the form T, = at- + bt + c for the data.

(b) Use a graphing utility to graph T,.

(c) A rational model for the data is

1451 -^ 86f

58 -I- r

Use a graphing utility to graph the model.

(d) Find 7'|(0) and 7\(0).

(e) Find Inn J\.

{ t} Inlerpret the result in part (e) in the context of the problem.

Is It possible to do this type of analysis using 7,? Explain.

rt^_ 84. Modeling Data The average typing speed S of a typing

student after t weeks of lessons is shown in the table.

t 5 10 15 20 25 30

s 28 56 79 90 93 94

A model for the data is 5 = lOOf-
/ > 0.

65 + t-

(a) Use a graphing utility to plot the data and graph the model.

(b) Does there appear to be a limiting typing speed? Explain.

85. In your own words, state the guidelines tor finding the limit of

a rational function. Give examples.

86. Prove that '\i p[.\) = </„a" + - - + (;,.v + ti^, and

(/(a) = /),„A"' -t- ^ + />,.v + /)„(<(„ * 0. /)„, ^ 0), then

0, II < III

hm -—
v-.^ q(.x}

True or False? In Exercises 87 and 88, determine whether the

statement is true or false. If it is false, explain why or give an

example that shows it is false.

87. If fix) > for all real numbers .v, then / increases without

bound.

88. If /"(a) < for all real numbers a. then /' decreases without

bound.
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Fi" irt 3.44

A Summary of Curve Sketching

• .Analyze and sketch the graph of a lunction.

Analyzing the Graph of a Function

It would be ditlicLilt to overstate the importance of using graphs in mathematics.

De.scaites's introduction of analytic geometry contributed significantly to the rapid

advances in calculus that began during the mid-seventeenth century. In the words of

Lagrange, "As long as algebra and geometry traveled separate paths their advance was

slow and their applications limited. But when these two sciences joined company, they

drew from each othei fresh \ italily and thenceforth marched on at a rapid pace toward

perfection."

So fa)-, you have studied .several concepts that are useful in analy/ing the graph of

a function.

• .\-intercepls and \-inlciccpts (Section P. I)

• Symmetry (Section P. 1)

• Domain and range (Section P.3)

• Continuity (Section 1.4)

• Vertical asymptotes (Section 1.3)

• Differentiability (Section 2.1)

• Relati\'e extrema (Section .^. 1

)

• Concavity (Section }A)

• Points of inflection (Section 3.4)

• Horizontal asymptotes (Section .^..'i)

• hilinitc limits at infinity (Section .i. ,3)

When you are sketching the graph of a function, either b\ hand or with a graph-

ing utility, remember that normally you cannot show the ciitiir graph. The decision as

to which part of the graph you choose to show is often crucial. For instance, which of

the viewing windows in Figure 3.44 better represents the graph of

.v' - 25.t-fix) 74.\ 20'

By seeing both \ lews. it is clear that the second \ iew iiig w indow gi\es a more com-

plete representation of the graph. But would a third \icwing window reveal other

interesting portions of the graph? To answer this, you need to use calculus to interpret

the first and second derivatives. Here arc some guidelines for determining a good

viewing window for the graph of a function.

Guidelines for AnalyzinjJ the Graph of a Function

1. Determine the domain and range of the function.

2. Determine the intercepts, asymptotes, and symmetry of the graph.

3. Locate the .v-values for which fix) and /'"(.\
) are either zero or do not exist.

U.se the results to determine relatixe extrema and points of inflection.

NOTL In these guidelines, note llie importance ot cili^chni (as well as caleiilusl for soKing the

equations / (.v) = 0, fix] = 0. and / "(.v) = 0.
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Example 1 Analyzing and Sketching the Graph of a Rational Function

Aiialyi^e and sketch tin: graph of / (a )

2(a- - 9)

Solution

/(-v)^
2(A-- - 9)

A- - 4

O >' II
'

t

> a <]

Relalive

Hiin/iiiiial \

as\ niploie:
| ^

Using calculus, you can be certain tlnit you

have detcrmineii all characteristics of the

graph of /,

Figure 3.45

Firsl di'iivtilivc: f (a )

Secdiid derivulive: f"(.\)

20v

(a- - 4)-

-20(3a-- + 4)

(x- - 4)-^

x-iiucrcepts: (-3.0). (3.0)

y-iiUcrcept: ((). i)

Vi'itiail nsyniploles: v = — 2. A" = 2

Horiziinlal asyiiiptole: V = 2

( rilkiil iiiinihcr: A =

I'ossihtc puiiils i)f iiiflccliDii: None

Domain: All real nunihers except v = ±2

Symiiu'lry: With respect to \-a\is

Test inlcnals: (
- ^. - 2). (

- 2. 0). (0. 2). (2. oo)

The table shows how the test nitervals are used to determine several characteristics of

the graph. The graph o\' f is shown in Figure 3.4.S.

FOR FURTHER l\FORMATIO.\ For

more iiitomialion on the use of technol-

ogy to graph rational functions, see the

article "Graphs of Rational Functions for

Computer Assisted Calculus" by Stan

B\rd and Ten") Walters in The CoZ/cvc

Mcilheiualics Journal. To \ iew this article.

20 to the website ww'w'jmilluirlick's.coni.

fix) fix) fix) Characteristic of Graph

- CO < .V < — 2 - - Decreasing, concave downward

A = -2 Undef. Undef. Undef. Vertical asymptote

-2 < A < - + Decreasing, concave upward

.V =
I)

+ Relative minimum

< .V < 2 + + Increasing, concave upward

.V = 2 Undef. Undef. Undef. Vertical asymptote

2 < A < CO + - Incieasing. concave downward

V.

\ 1 i'

By not using calculus you may overlook

important characteristics of the graph of <;.

Figure 3.46

Be sure you understand all of the implications of creating a table such as that

shown in Example I . Because of the use of calculus, you can he .sure thtil the graph has

no relative extrema or points of inflection other than those indicated in Figure 3.4?.

TF.(;HN()L()(;Y PITFAI.I, Without using the type of analysis outhned in Fxaniplc I,

it is easy to obtain an incomplete view of a graph's basic characteristics. For

instance. Figure 3.46 shows a view of the graph of

g{x) = 2(.v^ - 9)(A - 20)

(.v= - 4)(A- 21)'

From this view, it appears that the graph of ,i,' is about the same as the graph of /'

shown in Figure 3.45. The graphs of these two functions, however, differ signifi-

cantly. Try enlarging the viewing window to see the differences.
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Example 2 Analyzing and Sketching the Graph of a Rational Function

2.V + 4

H h

(0.-2)

6+5.,

I (4.b)

4f _2;Rolatne

o mmiimnn
C i

'. 4 6

^Relative

iii.ixImLiin

/(A)
.V- - 2.V + 4

v(.v - 4)

(a- - 2)-

8

(a- - 2)-^

Figure 3.47

AiKilyzc and sketch the giuph of /'(a )
=

Solution

First derivative: fix) -

Secoiiil derivative: / "(a )

'

x-iiitercepts: None

y-intervept: (0, —2)

Vertieal asymptote: A = 2

Horizontal asymptotes: None

End behavior: lim /(a)

Critieal numbers: A = 0, A = 4

Possible points of in/lection: None

Domain: All teal numbers except a = 2

Ti'.vf intervals: (
- cc. 0). (0. 2). (2. 4). (4, co)

The analysis ol the graph of / is shown in the table, and the graph is shown in

Fi'iiire 3.47.

lini fix) = oo

-i h H H

/(.v)
. .V- - 2.V + 4

fix) f'(x) fix) Characteristic of Graph

- OO < .V < + - Increasing, concave downward

A = — 2 Relative maximum

< A < 2 - Decreasing, concave downward

A = 2 Undef, Undef. Undef. Vertical asymptote

2 < .V < 4 - + Decreasing, concave upward

A = 4 6 + Relative minimum

4 < A < oo + + Increasing, concave upward

Uii

Although the graph of the function in Example 2 has no horizontal asymptote, it

does have a slant asymptote. The graph of a rational function (having no common
factors) has a .slant asymptote if the degree of the numerator exceeds the degree of

the denominator by I. To find the slant asymptote, use long di\'isioii to rewrite the

rational function as the sum of a first-degree polynomial and another rational function.

- 2.V + 4
,/(a)

= X +

Rl'wtiIc Lisiiiii it)n<! division.

\' - .V IS a slant asympliUe.

A slain asuiiptote

Figure 3.48

In Figure .3.48, note that the graph of / approaches the slant asymptote y = a as a

approaches — oo or oo.
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Example 3 Analyzing and Sketching the Grapii of a Radical Function

Analy/c and sketch the graiih ol /(a)

'.V- +

Horizontal

Solution

/'(.v)
(.Y- + 2)-''-

./"(.v)

6a

(a- + 2)5/2

The giaph has oiil\ one iiitciccpt. (II, (I). It has no \crtical asymptotes, but it has two

horizontal asymptotes: y = I I to the right) and y = -
I (to the left). The tunction has

no critical numbers and one possible point of inflection (at .\ = 0). The domain of the

liinctioii IS all real nunibeis. and the graph is symmetric with respect to the inigin. The

analxsis ot the graph of/ is shown in the table, aiul the graph is shown m Figure .V4Q.

Figure 3.49

fix) f'(x) fix) Characteristic of Graph

- OC < A < + + Increasing, concave upward

.\ =
1

72
Point of inflection

G < .V < cc + - Increasing, concave downward

Example 4 Analyzing and Sketching the Graph of a Radical Function

Analyze and sketch the graph of /(a) = 2a'/' - Sa-'^I

1 Rclatnc /U ) = Iv"-' - .S.v-"'

(8.-16)

Relative inininuini

Solution

/'(a) 2) fix)
20(a'/' - I)

c|,:/-'

The function has two intercepts: II). 0) and ( |;
. ()). There are no hoii/oiual or verti-

cal asymptotes. The function has twa) critical numbers (.\ = I) and .\
"- S) and two

piissible points of inflection (a = and a = I ). The domain is all real numbers. The

analysis of the graph of / is shown in the table, and the graph is shown in Figure 3.50.

Figure 3.50

fix) fix) fix) Characteristic of Graph

— OO < .V < + - Increasing, concave downward

A = Undef. Relative maximum

< A < 1
- - Decreasing, concave downward

X = 1 -3 - Point of inflection

1 < A < 8 - + Decreasing, concave upward

x = 8 -16 + Relative minimum

8 < A < oo + + Increasing, concave upward
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nmj Example 9 Analyzing and Sketching the Graph of a Polynomial Function

Analyze and sketch the graph of /(.v) = .v* - 12.v' + 48.Y- 64.V.

/(.v) = -V'- llv-' + 48.v'-64.v

V.
/ 4 5

/ (4.0)

/ Pdiiiliit

/ inlleclu n

(2.-16)

l*iMnt of

inllccnon

Relalne mininiiini

(a)

(t))

A poljiiomia! Ilinctuin of o\(.'ii dogri'i' must

have at least one relative exlremtim.

Fijjiirt' 3.51

Solution Begin by factoring to obtain

/(.v) = .v-* - 1 :.v' + 48.\- - 64.V

= .v(.v - 4)\

Then, using the factored form of /'(.v), you can perform the following analysis.

First (lerivatire: /'(.v) = 4(.v -
1 )(.v - 4)-

Secoiid derirative: fix) = 12(.v - 4)(.v - 2)

x-iiihnepls: (0, 0), (4. 0)

y-intenept: (0. 0)

Vertical asymptotes: None

Horizontal asymptotes: None

End behavior: litll /'(.v) = oo, lini /(.v) = oo

Critical numbers: .V = 1 , .V = 4

Possible points of inflection: A = 2. .v = 4

Domain: All teal numbers

Test intervals: (
- oo. 1 ). ( 1 . 2). (2. 4). (4. oc)

The analysis of the graph of / is shown in the table, and the graph is shov\ n in Figure

3.3 1(a). Using a computer algebra system such as Derive (see Figure 3.31b) can help

you verify your analysis.

fix) f'M f"(x) Characteristic of Graph

— oo < .V < 1

- + Decreasing. conca\ e upward

A = 1 -27 + Relative minimum

1 < .Y < 2 + + Increasing, concave upward

.V = 2 -16 + Point of inflection

2 < .V < 4 + - Increasing, concave downward

X = 4 Point of inflection

4 < .V < CO + + Increasing, concave upward

The lomth-degree polynomial function in Example .3 has one relatise minimum
anti no relative maxitiia. In general, a polynomial function ol degree /; can have iil

luosi 11 - 1 relative extrema. and at most n - 2 points of inflection. Moreover, poly-

nomial functions of even degree must have at least one relative extremum.

Remember from the leading eoeftlcient test described in Section P.3 that the "end

behavior" of the graph of a polynomial function is determined by its leading coeffi-

cient and its degree. For instance, becau.se the polynomial in Example 5 has a positive

leading coefficient, the graph rises to the right. Moreover, because the degree is even,

the graph also rises to the left.
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Example 6 Analyzing and Sketching fJic Graph of a Trigonomctiic Function

Analyze and sketch the graph ot /(.\

)

+ sin .V

I + sin .V

(b)

Fii;ure 3.52

Solution Because the function has a period of 277. you can restrict the analysis of

the graph to the interxal (- 77/2. 377/2).

1

1 + sin .V

cos .V

I + sin .v)-

77 377

First (li'iitative: fix)

Second derivative: / "(.v)

Period: 2 —

x-intercept: I
—

.

y-intercepl: (0. 1

)

Vertical asymptotes: x = -

Horizontal asymptotes: None

Critical numbers: None

Possible points of inflection: \ = —

Domain: All real nunihers e\cepl a

/ 77 77W 77 3 77

rest intervals: - -. ~ . - —

The analysis of the graph of / on the interval (
- 77/2. 377/2) is shown in the table, and

the graph is shown in Figure 3..'>2(a). Compare this with the graph generated by the

computer algebra system Derive in Figme 3.52(b).

3 + An

fix) fix) fix) Characteristic of Graph

77

•'" "2 Undef. Undef. Undef. Veilical asymptote

77 77

"2 ^ ' "^
2

- + Decreasing, concaxe upv\ard

77 1

Point of intfection

77 377

2 < v < y - - Decreasing, concave downward

377
Undef. Undef. Undef. Vertical asymptote

NOTE The work ln\iil\ed m skclching the graph of a trigonomelric function can be lessened

sometimes by usmg trigonometric identities. For instance, the function in l:\aniple fi can be

rewritten as

/(.v)
cos .V / -V 77

:

— = cot - + -
1 + sm.v \2 4

In this form, you can recognize the familiar cotangent graph shown in Figure 3.52.
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EXERCISES FOR SECTION 3.6

In Kxertises 1-4. match the fjraph of/ in the left column with

that of lis (leii\ alive in tlie rij;lil column.

Graph off

3.

Grapli off

lb)

(c)

(d)

H—I—

h

f— -V

Figure for 5 Figure for 6

6. Graphical Reasoning Identify the leal numbers v,,. v,. v,. .v,.

and Aj in llie figure sucli that each of the following is true.

(a) /'(a) = (h) /"(a) =

(c) /'(a) does not exist. (d) / has a relatixe nia.vinuini.

(e) / has a point of inneetion,

rp In F^xercises 7-38. analyze and sketch a graph of the function.

Label any intercepts, relative extrema, points of inflection, and

asymptotes. Use a graphing utility to verify your results.

7. >
= .V-

A-"+3

9. y
= 1

A - 2

-)v

11. \ =

13. ,1,.(a) = A

15. ,/(a) =

17. v =
-^'

V- + 1

V- + 1

.V

6a + 12

8. ^' -
x- + 1

X- + 1

> x^-9

1 T /( 1

'^-
X

14. fix) = X +
'—

.V"

16. Ji.x)
="

18.
5a + 5

19. y = xj4 -
.

21. h{x) = X JV
20. ,?(.v) = A./9"

22. V = aV16 - A-

3a-"

3a- -I- 3

24. y = 3(a- 1)-/' - (a- D-

26. y = -{(a' - 3a -I- 2)

28. /(a) = {(a - \? + 2

.1)

5. Graphical Keasoniiif; The graph of / is given in the figure.

(a) Hor which \alucs ol .v is fix) zero? Positive? Negative?

(b) l-or which \ahics ol a is /"(a) zero? Positive'.' Negative?

(c) On what interval is /' an increasing function?

(d) For which value of a is /'(a) niiniinum? For this \'aluc of \.

how docs the rate ol change ot / compare with the laic ol

change ol / loi oihci \alues of a' FAplain,

23.

25.
.

27. y = 2 - A - A'

29. /(a) = 3a' - 9a -I- 1

30. ./(a) = (a -I- IKa - 2)(a

31. y = ix-' + 4a"

33. fix) - A-* - 4a' -I- KiA

34. /(a) = A-* - 8a' + 18a- - 16a + 5

35. y = A^ - 5a 36. y = (a -
1

)'

37. y^ - |2a - 3| 38. y = |.v- - 6a + 5

32. V = 3a-' - 6a-
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V In Exercises 39-46, sketch a graph of the function over the indi-

cated interval. Use a graphing utility to verify your graph.

Function Inien-al

39. y = sin A -

40. \' = cos A

j^ sin 3x

41. y = 2a - tan V

42. \ = 2(a - 2) + cot A

43. V = 2(csc A + sec a)

44. \ = sec-
!S

45. g(x) = A tan A

46. g(.x) = A cot A

< A < 277

< A < 277

77 77

"2 ^ ' ^ 2

< A < 7T

< A < ^

- 3 < A < 3

377 377y < A < y
2 77 < A- < 2 77

T^ In Exercises 47-5(1. use a computer algebra system to analyze

and graph the function. Identify any relative extrenia. points of

intlection, and asymptotes.

47. fix) =

49. /(a) =

2Q

A- + 1

A

v'a~ + 7

48. /(a) = 5

50. fix

1

A - 4

4a

Vx- + 15

+ 2

In Exercises 51 and 52. the graphs of/./', and / "are shown

on the same set of coordinate axes. Which is which? To

print an enlarged copy of the graph, go to the website

www.mathgraphs.ciiin.

51.

In Exercises 53-56, use the graph of/' to sketch a graph of

/ and the graph of /
". To print an enlarged copy of the

graph, go to the website www.mathgraplis.com.

55. 56.

^

-I— -v

(Submitted by Bill Fox. Mobciiy Area Coninnmity College,

Mobeiiy. MO)
j

1

57. Suppose /'(;) < for all t in the inter\al (2.8). Explain
;

why/(3) >/(5).
I

58. Suppose /(O) = 3 and 2 < f'(x) < 4 for all a in the interval i

[-5. 5], Determine the areatest and least possible values of !

/(2). ^ I

In Exercises 59 and 60, use a graphing utility to graph the

function. I'se the graph to determine whether it is possible for

the graph of a function to cross its horizontal asymptote. Do \ou

think it is possible for the graph of a function to cross its vertical

asymptote? \\ hy or why not?

59. /(a) = 4(a -
1 r-

i- - 4v + .'

60. ,d.v)

3a-' - 5.V + 3

A-" + 1

rp Writing In Exercises 61 and 62, use a graphing utility to graph

the function. Explain why there is no vertical asymptote when a

superficial examination of the function may indicate that there

should be one.

61. hix) =
3

62. gix)
.X-. + -V-

I

Writing In Exercises 63 and 64, use a graphing utility to graph

the function and determine the slant asymptote of the graph.

Zoom out repeatedly and describe how the graph on the display

appears to change. W h\ does this occur?

63. fix)
3a I

64. i'(A)
=

Tv- \5

rp 65. Graphical ReuMiiiiiig Consider the liuict

/(vl
y.v- + 1

< A < 4.

(a) Use a computer algebra system to graph the function and

use the graph It) visually approximate the critical numbers.

(b) Use a computer algebra system to find /' and approximate

the critical numbers. Are the results the same as the visual

approximation in part (a) ' Explain.
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fy 66. Grapliical Kensonin^ Consider llic lunclion

fix) = tan(siii 77-v).

(a) Use a graphing iililil\ to graph llie liincUon.

(b) IdenlilX an_\ s_\ninielr\ ol Ihe graph.

(e) Is tlie Innelion [leiiodie' It so. what is the period?

(dl Identit) an\ extrenia on I— I. II

(e) Use a graphing iitilit\ to determine the eonca\ity ol the

graph on (0. I ).

Think Ahaiit It In Exercises 67-7(1. create a function whose

yrapli lias tlie indicated characteristics. (There is more than

one correct answer. I

67. Vertical asymptote: v = 5

Horizontal asymptote: 1 =

68. Vertical asymptote: v = — 3

Hori/oiital asy mptote: None

69. Vertical asymptote: -V = 5

.Slant asymptote: y = .\v + 2

70. Vertical asymptote: v =

Slant as\ niptote: y = — .v

rp 71. (inipluail Rciisdiunti Consider the fiinelion

(.V - /il-

ia) Determine the el'teet on the graph ol / iT /) ^ and a is

\aried. Consider eases where 11 is positi\e and a is negative.

(h) Deternime the elTeet on the graph ol / \\ n * and /) is

varied

Consider the Innelion

/(.v) = \Ul\)- - iax). a * 0.

It 1
1 3 4 5

M
N

Table for 73(e)

74. Iincstis^iitidii Let /^l v„. v,,! be an arbitrary pomi on the graph

ot / sueh that fix,,) i= 0, as indicated in the figure. Verity each

ol the followini;.

(a) The .v-intereept ol' the tangent line is .v,.

,/'(.v„)-

(h) The \-inlereept of the tangent line is (0./(.v,,) - .v,, /'(.v,,)).

(e) The .v-inteicept ol Ihe normal line is (.v,, + /( V|,)/'(.V|,). 0).

Id) The i-inteivept of the normal line is I 0. y,, + ' "
1.

/(-v„)
le) \BC\ =

If) \PC\ =

n.v,,)

(g) \AB\ = |/(.v„)/'(.v„)|

./(v ,)x/l + [./'(A„)?

./Xv, )

(h) |.4P| = |/(.v„)|.I +[/'(.v„)]-

^72. TT' 75. Modeliiif; Data The data in the table show the number N of

hactei"ia m a cultuie at lime 1. where 1 is measured in da\s.

la) Deteririine the changes |if any) in the intercepts. cMiema.

and concaxity of the graph of / when a is varied.

lb) In the same \ ievving w indow. use a graphing utility to graph

the function for four different values of d.

rp 73. Investigation Consider the function

fix)

t I

)
3 4

N 2.=i 200 804 1756

t 5 6 7 8

N 2296 2434 2467 2473

.v^ + I

for nonnegative integer values of it

(a) [Discuss the relationship between the value of n and the

symmetry ol the graph.

(b) For which values of ;i will the .v-a.xis be the horizontal

asymptote'

(c) For which \alue ol « will \- = 3 be the horizontal asymptote'.'

(d) What is the asyinptote of the graph when u = 5?

(e) Use a graphing utility to graph / for the indicated values of

;( in the table. Use the graph to determine the number of

extrema A7 and the nuniber of inflection points N of the

graph.

A model for this data is gi\en by

., 24.670 - 3.S.l.i3/ + 13.250/-
N = ^

. 1 < f < 8
100 - y)t + lt-

(a) Use a graphing utility to plot the data and graph the model.

lb) Use the model to estimate Ihe number of bacteria when

t = 10.

(e) Approximate the day when the nuniber of bacteria was

greatest.

(dl Use a computer algebra system to determine the time when

the rate of increase in the number of bacteria was greatest.

(e) Find lim /V(/).
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Optunization Problems

• Solve applied niiiilmuni and nia\imiini prohlenis.

Applied Minimum and Maximum Problems

One of the most cuminoii applications of ealculiis imohes the determination ol

minimum and maximum values. Consider how frequently you hear or read terms such

as greatest profit, least cost, least time, greatest voltage, optimum size, least size,

greatest strength, and greatest distance. Before oiithning a general problem-solving

strategy for such problems, let's look at an example.

Open box with square base:

S = .V- + 4.\7i = 108

Fifjure ,^.53

Example 1 Findinj; .Vla.viiiiuni Volume

A manutacttirer w.iius to design an open box having a s(.|uaie base and a suilace area

of lOS square inches, as shown in Figure 3. S3. What dimensions will produce a box

VK'ith maximum xoliime'

.Solution Because the box has a square base, its volume is

V = .X'll. l^iim.iix etiLMlinn

(This equation is called the primary equation becatise it gi\es a formtila for the quan-

tity to be optimized.) The surface area of the box is

(area of base) + (area of four sides)

.v2 -f 4.v// = 108. -Scciindarv ecjualion

Because V is to be maximized. \ou want to express V as a function of just one vari-

able. To do this, \i)ii can sohe the e(.|iiation v' + 4\7; = lOS for /; in terms of i to

obtain /i =
( lOS — .v')/(4.v). .Substituting into the primaiA ciitialion produces

V = x-h

108

4.1

Function of iwo varuibles

SubvliUiIc lor h.

27.V 4'
Funclion nl'one varialile

I
TECHNOLOGY You can \erify your

I
answer by using a graphing utility to

f-
graph the x'olume

f'
Use a viewing window in which

I'
< .V < yT08 == 10.4 and

I
< y < 120. and the inice feature to

I determine the maximum \akie of I'.

Before finding which .v-value will yield a maximum value of \'. you should determine

the fecisihle dciiuiiu. That is. what values of .v make sense in this problem,' ^ou know

that \' > 0. \\w also know that .v must be nonnegatne and that the area of the base

(A = X') is at most lOS. So. the feasible dom.uii is

< .V < ViOS. bcasihle domain

To maximize V. vou can find the critical numbers of the volume function.

Set Jen\auve equal to U.

Critieal numbers

So. the critical numbers are x = ±6. You do not need to consider -6 because it is

outside the domain. Evaluating V at the critical number .v = 6 and at the endpoints of

the domain produces V(0) = 0, V(6) = 108. and V( yTOS) = 0. Thus, V is maximum

when .V = 6 and the dimensions of the box are 6 6 . 3 inches.

IV

dx
'= 27 -

-T-'
3.V- =108

.V = ±6
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In Example 1. you should realize that there are infinitely many open boxes hav-

ing 108 square inches of surface area. To begin solving the problem, you might ask

yourself which basic shape would seem to yield a maximum volume. Should the box

be tall, squat, or nearly cubical?

You might e\en try calculating a few volumes, as shown in Figure ,^.54. to see if

you can get a better feeling for what the optimum dimensions should be. Remember

that you are not ready to begin sohiiig a problem until you have clearly identified

what the problem is.

mm

Volume = 92 Volume = 103i

5 X 5 X 4 5j;

3 X .3 X 8 i

Volume = 108

6x6x3

Which box has the greatest volume?

Figure 3.54

!x 1
=

Example I illustrates the following guidelines for solving applied minimum and

maximum problems.

NOTE When performing Step 5. recall

that to determine the maximum or

niininuim value of a continuous lunction

/ on a closed interval, you should

compare the values of / at its critical

numbers with the values of /' at the

endpoints of the interval.

Guidelines for Solvdng Applied Minimum and Maximum Problems

1. Identify all t;iveii quantities and quantities lo he tlelcniiiiwil. When feasible,

make a sketch.

2. Write a primary equation for the quantity that is to be maximized (or mini-

mized). (A review of several useful formulas from geometry is presented

inside the front cover.)

3. Reduce the primary equation to one having a single independent variable.

This may involve the use of secondary equations relating the independent

variables of the primary equation.

4. Determine the feasible domain of the primary equation. That is. determine the

values for which the stated problem makes sense.

5. Determine the desired maximum or minimum value by the calculus techniques

discussed in Sections .^.1 through 3.4.
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n^i Example 2 Finding Minimum Distance

The quantity to be minimized is distance:

,/ = v^(v - OF + (.)— 2)-.

Figuri' 3.55

Which pciints on the graph of v = 4 - .v- are closest to the point (d. 2)?

Solution Figure 3 55 indicates that there are two points at a niinimiini distance Ironi

the point (0, 2) The 'Itstmre betvveen the point (0. 2) and a point l.\. \] on the graph

of V = 4 - v^ IS giN'en by

~iV-d = V(a' — 0)- + (y - 2)-. PniiKiry equiUH.ii

llsing the sp-op<|:(ry equation \' ~ 4 - v-, you can rewrite the primary equation as

d = J\- + (4 - .v= n- v/.v-* - 3.Y- + 4.

Because d is smallest when the expression inside the radical is smallest. v(ui need only

find the critical numbers of /(a) - v' - 3a- + 4. Note thai Ihe donnain of / is the

entire real line. Moreover, setting /'(a) equal to yields

/'(a) = 4.v' - 6v 3) =

V = 0,

The First Derivative Test verifies that x = yields a relative maximum, whereas both

A -= \ V- ^ind * ~ ~ -,''3/2 yield a minimum distance. Hence, the closest points are

(v/372.5/2)and(-./372. 5/2).

Example 3 Finding Minimum Area

A rectangular page is to contain 24 square inches of print. The margins at the top and

bottom of the page are to be Is inches, and the margins on the left and righl are to be

I inch (see Figure 3.56). What should the dimensions of the page be so that the least

amouni ot paper is used'

1 he qiiantitx to he minimized is area:

A = (.V + 3)(.r + 2).

Figure 3.56

Solution Let A be the area to be minimized

-4 = (a + 3)(\' + 2) Primary eciiiaiion

The printed area inside the margins is gi\en by

24 = XX. Sccontlars equalirin

Solving this equation for y produces y = 24/.v. Substitution into Ihe primary et|ualion

produces

U + ?,){- + 2 30 + 2a +
72

FrilKlliMl I it I tiK'

Because a must be positive, you are interested only in values of A for a > 0. To llnd

the critical numbers, differentiate with respect to .v.

^ = 2-^ =
ax .v^

36

So. the critical numbers are v = ±6. You do not have to consider —6 because it is

outside the domain. The First Derivative Test confirms that /i is a minimum when

.V = 6. Therefore, x = "^ = 4 and the dimensions of the page should be a + 3 = 9

inches bv \' + 2 = 6 inches. ^
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Example 4 Finding Minimum Length

30 - A

The t|ii;nilit\ to he minimized is length.

From the ditigram. \oti can see that a varies

between Oand 30,

Fijiure 3.57

You can confirm the mnnmum value ol II

with a graphing utilitv.

Figure 3.5S

Two posts, one 12 feet high and the other 28 feet high, stand 30 feet apart. They are

to be stayed by two wires, attached to a single slake, running from ground level to the

top of each post. Where should the stake be placed to use the least wire?

Solution Let W be the v\ ire length to be minimized. Using Figure 3.57, you can write

W = y -^ Z. Prim;ir\' equation

In this problem, rather than sol\ ing for v in terms of - (or vice versa), you can solve

for both V and c in terms of a third variable .v. as shown in Figure 3.57. From the

Pythagorean Theorem, you obtain

.V- +12'= y-

(30 - .v)" + 28- = :-

which implies that

V = V.v- + 144

; = V.v- - 60.V + 1684.

Thus, W is given by

W = Y + z

= ^/x- + 144 + vA- - 60.V + 1684,

Differentiating W with respect to v yields

.V v - 30

< .V < 30.

dW
dx V + 144 Jx- - 60.V + 1684

By letting dW/dx = 0, you obtain

/x- + 144 y.v- - 60.V + 1684

xjx- - 60.V + 1684 = (30 - .vlV.v- + 144

.v-(.v- - 60.V +'1684) = (30 - .v)-(.v" + 144)

.v-* - 60.v' + 1684.V- = .v-* - 60.v' + 1044.V- - 864Qv + 129.600

640.V- + 8640.V - 129,600 =

320(.v - 9)(2.v + 45) =

.v = 9, -22.5.

Because .v = - 22.5 is not in the domain and

U'(0) == 53.04, IF(9) = 50, and m30) = 60.31

yoti can coiicliule that the wire should be staked at 9 feet from the 12-foot pole.

TFXHNOLOGV From Example 4, you can see that applied optimization problems

can involve a lot of algebra. If you have access to a graphing utility, you can con-

firm that .V = 9 yields a minimum value of W by sketching the graph of

W = Jx- + 144 + Jx^

as shown in Fimire 3.58.

60.V + 1684
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In each of the first four examples, the extreme value occurs at a critical niinibcr,

Ahhough this happens often, rememher that an cxlrenie value can also occur at an

endpoint of an inter\al. as shown in Example 5.

Area: v"

Penmeter: 4\

4 feet

CircLimferenee: Ijir

The quantity to be maximized is area:

A = V- + 77/-'.

Figure 3.59

Example S An Endpoint Maximum

Four feet of wire is to be used to form a square and a circle. How much of the wire

should be used for the square and how much should be used for the ciiclc to enclose

the maximum total area'.'

Solution The total area (sec Figure .3..'^9) is given by

A = (area of square) + (area of circle)

A — X' + 77/'". Pnnurs eijiiiition

Because the total amount of wire is 4 feet, you obtain

4 = (perimeter of square) + (ciiciimfercnce of circle)

4 = 4.V + 271/-.

So. ;• = 2( 1
— .v)/77. and b\ substituting into the primary equation you have

, [ 2(1 -.V) :

A = .V- + 7T
ii

, ,
4( 1

- .v)-
= .V- H

-[(71 + 4).\- - 8.V + 4].

EXPLORATION

What would the answer be if Example

5 asked for the dimensions needed to

enclose the iniiiimuiii total area?

The feasible domain is < .v < 1 restricted by the si|uare's perimeter. Because

(JA _ 2(7r+ 4).v - 8

d\ 77

the only critical numhei m (0. 1 ) is .v = 4/( 77 + 4) = 0..'i6. Therefore, tising

A(0) = 1.27,1. 4(0.,%) = 0.36. and /Ad) =
1

you can conclude that the maximum area occurs when .v = 0. That is. ((// the wire is

used for the circle. ^^

Let's re\ iew the primary equations developed in the first five examples. As appli-

cations go, these five examples are fairly simple, and \et the resulting primary equa-

tions are quite complicated.

V = 21

X

4

d= Jx^ - 3.V- + 4

72
/A = 30 -f 2.V + —

W = Jx- + 144 + Jx- - 60.V + 16S4

A = -[(tt + 4).v- - 8.V + 4]
77

You must expect that real-life applications often involve equations that are tit least as

coiitplicated as these five. Remember that one of the main goals of this course is to

leam to use calculus to analyze equations that initially seem formidable.
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EXERCISES FOR SECTION 3.7

rp 1. Numerical, Graphical, and Analytic Analysis Find two

positive numbers whose sum is 110 and whose product is a

maximum

(a) Analytically complete six rows ot a lable such as the one

below. (The first two rows are shown.)

First

Number x

Second

Number Product P

10 no - 10 10(110 - 10) = 1000

20 no - 20 20(110 - 20) = 1800

(b) Use a graphiny uIiIun Io gcncralc addilional rows of the

table I'se the lable to estimate the solution [Hint: Use the

liihic feature of ilie graphing utility.)

(c) Wrilc the product F as a function of v.

(d) Use a graphing utility to graph the function in part (c) and

estimate the solution from the graph

(e) Use calculus to find the critical number of the function in

part (c). Then find the two numbers.

In Exercises 2-6. (Ind tHii positive numbers that satisfy (lie

Kiven requirements.

2. The sum is .V anil llic produci is a maximum.

3. The product is l')2 and the sum is ,i minimum

4. The product is l')2 and the sum of ihc first plus ihrec times the

seconil IS a minimum.

5. The second number is the reciprocal ol ihe first and the sum is

a miniimim.

6. The sum of the first and tw ice Ihe second is 100 and the product

IS a maximum.

15. Chemical Reaction In an autocatalytic chemical reaction, the

product formed is a catalyst for the reaction. If Qi i;^ the amount

of the original substance and .v is the amount of catahst formed,

the rate of chemical reaction is

dQ
</.v

tvlQ,

For what value of v will the rate of chemical reaction be

greatest?

16. Traffic Control On a given day. the flow rate F (ears per

hour) on a comiested roadway is

F =
0.02i-

where r is the speed of the traffic in miles per hour. What speed

will niaximi/e the flow rate on the road '

17. Area A farmer plans to fence a rectangular pasture adjacent

to .1 ri\er The pasture must contain IHO.OOG square meters

in order to provide enough grass for the herd. What dimen-

sions would require the least amount of fencing if no fencing is

needed along the ri\er''

18. Area A rancher has 200 feet of fencing with which to enclose

two adjacent rectangular corrals (see figure). What dimensions

should be used so that the enclosed area will be a maximum?

risT"'

In Exercises 7 and 8. find the len<;tli and width of a rectangle

that has Ihe f;iven perimeter and a maxinumi area.

7. Perimelcr: 100 meters

8. Perimeter: P units

In Exercises 9 and 10, find Ihe lenglh and width of a rectangle

that has the );iven area and a minimum perimeler.

9. Area: 64 square feet

10. .Area: .\ square centimeters

In Exercises 1 1-14, find the poin! on Ihe graph of the function

that is closest Io Ihe given point.

Fuiictiiiii I'm 11/ Function Point

1. f(x) = v^ (4.0)

3. fix] = .V- (2.i)

(l2. fix) = J7^% (2. 0)

14. /(v) = (.V + I)- {^.^)

19. Volume

(a) Verify that each of the rectangular solids shown in the

figure has a surface area of 150 square inches.

(b) Find the volume of each.

(c) Determine the dimensions of a rectangular solid (with a

square base) of ma.ximum volume if its surface area is 150

square inches.

3 ,_ .^

M

,^—6^^,^ 3.25
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"r 20. Numerical, Graphical, and Analytic Analyxis An open box

of maximum volume is to be made from a square piece of mate-

rial, 24 inches on a side, by cutting equal squares from the cor-

ners and tinning up the sides (see figure).

(a) Analytically complete six rows of a table such as the one

belov\'. (The first two rows are shown.) Use the table to

auess the maximum volume.

Height

Length and

Width Volume

1 24-2(1) 1[24 - 2(1)]- = 484

2 24 - 2(2) 2[24 - 2(2)]= = 800

(b) Write the \olume I' as a function of .v.

(c) Use calculus to find the critical number of the function in

part (b) and find the maximum value.

(d) Use a graphing utility to graph the function in part (h) and

verify the maximum volume from the graph.

^

Length x Width >• Area

10 -(100 - 10)
77

(lO)-(IOO - 10) =
77

573

20 -(100 - 20)
77

(20)-(IOO - 20) = 1019

23. Area A Norman window is constructed by adjoining a semi-

circle to the top of an ordinary rectangular window (see figure).

Find the dimensions of a Norman window of maximum area if

the total perimeter is 16 leet.

24. Area A rectangle is bounded by the ,v- and \-axes and the

graph of y = (6 - .v)/2 (see figure). What length and width

should the rectangle have so that its area is a maximum'

Figure for 24

I : .<

Figure for 25

^25

2L (a) Solve Exercise 20 given that the square piece of material

is ,v meters on a side.

(b) If the dimensions of the square piece of material are dou-

bled, how does the volume change'

22. Numerical, Graphical, and Analytic Analysis A physical

fitness room consists of a rectangle with a semicircle on each

end. A 200-meter running track runs around the outside ol

the room.

(a) Draw a figure to represent ihc problem. Let v and i repre-

sent the length and width of the rectangle.

(b) Analytically complete six rows of a table such as the one

below. (The first two rows are shown.) Use the table to

guess the maximum area of the rectancular region.

Length A right Inaiiglc is lormcd in the tnst qiiadranl by the

,v- and y-axes and a line through the point (1,2) (see figure).

(a) Write the length L of the hypotenuse as a function of v.

(b) Use a graphing utility to graphically approximate v such

that the length of the hypotenuse is a minimum

(c) Find the vertices of the triangle such thai Us area is a

minimum.

26. Area Find the area of the largest isosceles triangle dial can be

inscribed in a circle of radius 4 (see figure).

(a) Solve by writing the area as a function of h.

(b) Solve by writing the area as a function of a.

(c) Identify the type of triangle of maximum area.

(c) Write the area A as a function of .v.

(d) Use calculus to tnid the critical number of the function in

part (c) and find the maximum value,

(e) Use a graphing utility to graph the functK)n in part (c) and

verify the maximum area from the graph.

27. Area A rectangle is bounded by the .v-axis and the semicircle

» = v25 - .v= (see figure). What length and width should the

rectangle have so that its area is a maximum','
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28. Area 1-Hul the dimensions of llic largest rectangle that can he

inscribed in a semiciicle of radius r (see Exercise 27).

29. Area A rectangular page is to contain 30 square inches of

print. The margins on each side are 1 inch. Find the dimensions

of the page such that the least amount of paper is used.

M). Area A rectangular page is to contain 36 square inches of print.

The margins on each side are to be !-, inches. Find the dimen-

sions of the page such that the least amount of paper is used.

ip 31. \iimerical. Graphieal. and Analytic Analysis A right circu-

lar cylinder is to be designed to hold 22 cubic inches of a soft

drink (appro.ximately 12 tluid ounces).

(a) .Anahtically complete six rows of a table such as ihe one

below. (The first two rows are shown.)

Radius r Height

77(0.:

0.4
tt(OA)-

Surface Area

;-(02) 0.2 +
7(0.2)

= 220.3

277(0.4) 0.4 +
77(0.4)-

111.1

(b) Use a graphing utility to generate adtlitional rows of the

table. Use the table lo estimate the mininiuni surface area.

{Him: Use the lahlv realiire of the graphing utility.)

(c) Write the surface area 5 as a funclion of /

.

(d) Use a graphing utility lo graph the funclion m pari Ic) and

estimate the minimum surlace area from Ihe graph.

(e) U.se calculus to find the critical number of the function in

part (c) and find dimensions that will yield the minimum
surface area.

32. Surface Area Use calculus to find the required dimensions

!i>r the cylinder in Exercise 31 if its volume is \{| cubic units.

33. \iilume ,\ rectangular package to be sent by a poslal service

can ha\e a maximum combined lenglh and girth (perimeter of

a cross section) of 108 inches (see figure). Find the dimensions

of the package of niaxinium \olume that can be sent. (Assume

the cross section is square.)

t
'

Flgiire lor 33 Figure for 35

34. Vdluinc Rework Exercise 33 for a c>lindncal package. (The

cross section is circular.)

35. \iiliiine Find the Milume of ihe largest right circular cone that

can be inscribed in a sphere of radius ; (see figure).

36. Volume Find the volume of the largest right circular cylinder

thai can be inscribed in a sphere of radius r.

37. The perimeter of a rectangle is 20 feet. Of all possible

dimensions, the maximum area is 25 square feet when its

length and width are both .S feet. Are there dimensions that

yield a minimum area? Explain.

38. .A plastic shampoo bottle is a right circular cvlinder.

Because the surface area of the bottle does noi change when

it is squeezed, is it Irue that the volume remains the same?

Explain.

39. Surface Area \ solid is lornied bj adjoining two hemi-

spheres to the ends of a righl circular cylinder. The total volume

of the solid is 12 cubic centimeters. Find the radius of the

cylinder that produces the minimum suiface area.

40. Cdsl An industrial tank of the shape described in E.xerei.se 34

must ha\ e a volume of 3(300 cubic feet. The hemispherical ends

cost twice as much per square foot of surface area as the sides.

Find the dimensions that will minimize cost.

41. Area The sum of the perimeters of an equilateral triangle and

a si|uare is 10. Find the dimensions of (he triangle and the

square that produce a minimum total area.

42. Area Twenty feet of wire is to be used to form two figures. In

each of the follow ing cases, how much should be used for each

figure so that the total enclosed area is maximum?

(a) Fquilaleral triangle and square

(b) Square and regular pentagon

(c) Regular pentagon and regular hexagon

(d) Regular hexagon and circle

What can you conclude from this pattern? [Hinl: The area

of a regular polygon with n sides of length v is /I =

(H/4)[cOt(77//()].V-.
1

43. Beam Strength A wooden beam has a rectangular cross

seciion of height h and v\idth ir (see figure). The strength Sof

the beam is directly proporlional to the width and the square of

the height. What are the dimensions of the strongest beam that

can be cut from a round log of diameter 24 inches? {Hint:

S = A/rii. where k is ihe proportionality constant.)

(0, It)

Figure for 43

(-.V. 0) [ (.V, 0)

Figure for 44

44. Minimum Length Two factories are located at the coordinates

(--V. 01 and (v, 0) with their power supply located at the point

(0. /)) (see figure). Find v such that the total amount of power

line from the power stippK lo the factories is a minimum.
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45. Projectile Range The range R of a proicculc liicd with an

niilial \clocity v,, at an angle Wwith the hdii/untal is

\',,- sin 2d
R =

o

where " is the aeceleration due lo gravity. Find the angle H siieh

that the range is a nia\iimini.

T* 46- Conjecture Consider the funetions /(a) = ,.v- and

g{.\) = j^.v^ - ^.v" on the domain [0, 4].

(a) Use a graphing iililils lo graph the riinetioiis on the speei-

fied domain.

(b) Write the \ertieal distanee ./ between the lunetions as a

function of .v and use ealeiihis lo I'lnd the \akie ol ,\ for

which (/ is maximum.

(e) Find the equations of the tangent hnes to the graphs of /'

and g at the critical number found in part (h). Graph the

tangent lines. What is the relationship between the lines
'

(d) Make a eonjectine about the relationship between tangent

lines to the graphs of twn lunetions at the \aliie ol v at

which the \ertical distance between tlie Ifinctions is great-

est, and prove your conjecture.

47. lUiiininatiou A light source is localcil o\er the center of a

circular table of diameter 4 feet (see figure). Find tlie height /;

of the light source such that the illumination / at tlie perimeter

of the table is maximum if/ = A'(sin a)/.s-, where \ is the slant

height, a is the angle at which the liglil strikes liie table, ani.1 k

is a constant.

48. Uliimination The illumination from a light source is directly

proportional to the strength of the source and in\eisely propor-

tional to the square of the distance from the source. Two light

sources of intensities /, and /, are </ units apart. What point on the

line segment joining the two sources has the least illumination?

Fijjiire for 47 Fi<!UiT lor 4M

49. Minimiuii Time A man is in a boat 2 miles troni the nearest

point on the coast. He is to go to a point Q. located .^ miles

down the coast and I mile inland (see figure). If he can row at

2 miles per hour and walk at 4 miles per hour, toward what

point on the coast should he row in order to reach |ioint O in the

least time?

50. Minimum Time Consider Exercise 44 il the pomi (J is on the

shoreline rather than 1 mile inland.

(a) Write the travel time T as li ftinction of a.

(b) Use the result of part (a) to find the minimtim lime to

reach Q.

(c) Suppose the man can row at r, miles per hour anil walk at

IS miles per hour. Write the time 7' .is a liinetion of o. Show

that the critical number of '/" dcpciuK onl\ on r, and is and

not the distances Fxplain liow tins lesiilt would be more

beneficial to the man than the result ot Exercise 49.

(d) Describe how to apply Ihe lesult of part (c) to minimizing

the cost of constructing a power tiansniission cable that

costs c, dollars per mile under water ami ( , ilollars per mile

o\er land.

51. Minimum Time The conditions are the same as in Exercise

49 except that the man can row at r, miles per hour and walk at

1 , miles per hour. If H, and (', are the magnitudes of the angles,

show that the man will reach point O in the least time when

sin ti. sin H,

Minimum Time When light waxes. ira\ cling in .i transparent

medium, strike the surface of ,i second iranspaienl medium.

the\ change directions. This change of direction is called

refnuiion and is defined b\ Siii'li's Law of Rerraction,

sin H, sin H-.

where H, and W, are the magniliides ol llie angles shown in the

figure and c, and i'-, are the \elocilies ol light in the two media.

Show that this problem is einin.ilent lo thai ol Facicisc .*> I . and

that light waves ti'avehng Irom /' to (J lollow the path of iinni-

nium time.

p

^^
1

Mcdmin 1

''.

"1 - V

Med uni 2 s.

1

'/:

fy 53. Sketch the graph of / (v) = 2-2 sin v on the interval [0. tt/Z].

la) Find the distance from the origin to the y-intercept and the

distance fiom the origin to the .\-inteicept.

(b) Express the distance <l from the origin to a point on the

graph of/ as a function of .v. Use your graphing utility to

graph d and find the minimum distance.

(c) Use calculus and the root finding capabilities of a graphing

utility to find the value of \ that niinmii/es ihe lunction d

on the interval [d, 7r/2], What is the mininuini ilistancc"'

(Subnulted hy Tim Chiipvll. Pciiii \'idlcv C'liiiimiinity

Cidli'ge. Kansas Cit\. MO.

)

54. Minimum Cost .An offshore oil well is 2 kilometers off the

coast. The refinei\ is 4 kilometers down the coast. If laying

pipe in the ocean is twice as expensive as on land, what path

should the pipe follow in order to minimize the cost .'
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Minimum Force A mniponciil is tlcsigncd to slide a block ot

steel with weight W across a table and into a chute (see

figure.) The motion of the block is resisted by a frictional force

proportional to its apparent weight. (Let k be the constant of

proportionality.) Find the minimum force F needed to slide the

block, and find the corresponding value ol f). {Him: Fcos ti is

the force in the direction of motion, and F sin H is the amount

of force tending to lift the block. Therefore, the apparent weight

of the block is W ~ Fsin H^

56. Volume A sector with central angle is cut from a circle of

radius 12 inches (see figure), and the edges of the sector are

brought together to form a cone. Find the magnitude of H such

that the volume of the cone is a maximum.

_ I- S 11
—

Figure for 56 Figure for 57

rp 57. Numerical, Graphical, and Analytic Analysis The cross

sections of an irrigation canal are isosceles trapezoids of which

three sides are H feet long (see figure). Determine the angle of

elevation H of the sides such that the area of the cross section is

a maximum by completing the following.

(a) Analytically complete six rows of a table such as the one

below. (The first two rows are shown.)

Base 1 Basel Altitude Area

8 8 + 16 cos 10° 8 sin 10° = 22.1

8 8 + 16 cos 20° 8 sin. 20° = 42.5

(b) Use a graphing utility to generate additional rows of the

table and estimate the maximum cross-sectional area.

{Him: Use the uiltle feature of the graphing utility.)

(c) Write the cross-sectional area A as a function of B.

(d) Use calculus to find the critical number of the function in

part (c) and find the angle that will yield the maximum
cross-.sectional area.

(e) U.se a graphing utility to graph the function in part (c) and

verify the maximum cross-sectional area.

0=^59,

58. Maximum Projil Assume that the amount of money deposited

in a bank is proportional to the square of the interest rate the bank

pays on this money. Furthermore, the bank can reinvest this

money at 12%. Find the interest rate the bank should pay to

maximize profit. (Use the simple interest foniiula.)

Minimum Cost The ordering and transportation cost C of the

components used m manufacturing a certain product is

C loof^ .
+ 30

> 1

where C is measured in thousands of dollars and v is the order

size in hundreds. Find the order size that minimizes the cost.

Ulinr: Use the mot feature of a graphing utility.)

60. Diminishing Returns The profit P (in thousands of dollars)

for a company spending an amount s (in thousands of dollars)

on advertising is

P = -jTi.v' -I- 6.V- -I- 400.

(a) Find the amount of money the company should spend on

advertising in order to yield a maximum profit.

(b) The point of diminishing returns is the point at which the

rate of growth of the profit function begins to decline. Find

the point of diminishing returns.

Minimum Distance In Kxercises 61-63, consider a fuel distri-

bution center located at the origin of the rectangular coordinate

system (units in miles: see figures). The center supplies three

factories with coordinates (4, I). (5, 6), and (10, 3). A trunk line

will run from the distribution center along the line v = nix, and

feeder lines will run to the three factories. The objective is to

find ;// such that the lengths of the feeder lines are minimized.

61. Minimize the sum of the squares of the lengths of vertical

feeder lines given by

5, = (4;» - M- + I5iii - (i)^ + (10)/; - 3)'.

Find the equation for the trunk line by this method and then

determine the sum of the lengths cif the feeder lines.

It 62. Minimize the sum of the absolute values of the lengths of

vertical feeder lines given by

5, = |4m - l| + \5m - 6j -I- |10))i - 3|.

Find the equation for the trunk line by this method and then

determine the sum of the lengths of the feeder lines. {Hint: Use

a graphing utility to graph the function S, and approximate the

required critical number.)

8^ (10, IOhi)

6-
(-"i. ^* \ y = ni.\

4- (.s. 5m) \^

2^
(4, 4m)

i"'^'^ (10. .^)

^^-'^. 1)

2 4 6 8 10

Figure for 61 and 62
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"p 63. Minimize the sum ot the peipendicular distances (see Exer-

cises 83-88 in Section P.2) from the trunk hne to the factories

given hy

5= = [4»; -
1

1

\5m -
6| |I0>» -

3|

Jiir + 1 Jnr + I Jm- + 1

'

Find the equation for the trunk luie by this method and then

determine the sum of the lengths of the feeder hnes. (Him: Use

a graphing utihty to graph the function S, and approximate the

required critical number )

8- -

6-
(5.6) \' = ni.x

4-
\ ^

T _

^^--^^4, 1)

( 10. M

2 4 6 8 10

- ~

64. Area Consider a symmetric cross inscribed in a circle of

radius r (see figure).

(a) Write the area A of the cross as a function of v and find the

value of A that maximizes the area.

(b) Write the area .\ of the cross as a function of (* and (Ind the

value of 6* that maximizes the area.

(c) Show that the critical numbers of parts (a) and lb) yield the

same maxiiiiuni area. What is that area?

SJECnOJV PROJECT

Whenever the Connecticut River reaches a level of 105 feet

above sea level, two Northampton. Massachusetts flood control

station operators begin a round-the-clock river watch. Every two

hours, they check the height of the river, using a scale marked

off in tenths of a foot, and record the data in a log book. In the

spring of 1996. the flood watch lasted from April 4, when the

river reached 105 feet and was rising at 0.2 foot per hour, until

April 25, when the level subsided again to 105 feet. Between

those dates, their log shows that the river rose and fell several

times, at one point coming close to the 1 15-foot mark. If the

river had reached 1 15 feet, the city would have closed down

Mount Tom Road (Route 5, south of Northampton).

The graph below shows the rate of change of the level of

the river during one portion of the flood watch. Use the graph to

answer the following questions.

Day (0<-^ 12:01.^ M April 14)

(a) On what date was the river rising most rapidly? How do you

know?

(b) On what date was the river falling most rapidly? How do

you know?

(c) There were two dates in a row on which the river rose, then

fell, then rose again during the course of the day. On which

days did this occur, and how do you know?

(d) At one minute past midnight. April 14. the river level was

1 I 1.0 feet. Estimate its height 24 hours later and 48 hours

later. Explain how you made your estimates.

(e) The river crested at 1 14.4 feet. On what date do you think

this occurred?

(Submitted by Man- Murphy. Smith College,

Northampton. MA

)
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(hi

The A-intercepl of the langt'Lil lint approxi-

mates the zero of /.

Fijiure 3.60

Newton's MeiBfiod

• Approximate a zero ol a funcliDii using Newtdn's Method.

Newton's Method

111 this section you will study a technique for approximating the real zeros of a func-

tion. The technique is called Newton's Method, and it uses tangent lines to approxi-

mate the graph of the function near its v-intercepts.

To see how Newton's Method works, consider a function / that is continuous on

the interval [a. b] and differentiable on the interval (((. h). Uf{a) and /'(/)) differ in sign,

then, by the Intermediate Value Theorem. / must have at least one zero in the interval

ill. h). Suppose you estimate this zero to occur at

.V = .Y| l-iisl eMiiiKilc

as shown in Figure 3.60(a). Newton's Method is based on the assumption that the

graph of/ and the tangent line at (.v,, /'(.v, )) both cross the .v-axis at about the same

point. Because you can easily calculate the v-intercept for this tangent line, you can

use it as a second (and. usually, better) estimate for the zero of /. The tangent line

passes through the point (.V|./(.V|)) with a slope of /'(.v,). In point-slope form, the

equation of the tangent line is therefore

V -/(.V,) =/lv,)(.V - .V|)

y =,n.v,)(.v - A-|) -H /lv|).

Letting y = and solving for .v produces

,/lv,)

•So, from the initial estimate .v, you obtain a new estimate

,/lv,)

,/'(.v,)'

Second esumale (see Fiiiure 3 60b)

You can improve on .v^ and calculate yet a ihnd csiiniate

./(.v.)

./'(as)'

Thud cvtiiiiate

Repeated application of this process is called Newton's Method.

Newton's Method

Isaac Newton first described the method for

approximating the real zeros of a function in

his text Mcthudiif Fluxions. Although the

book was written in 1671, it was not pub-

lished until \lMt. Meanwhile, in 1690, Joseph

Raphson (164S -I715)publisheda paper

describing a method for approximating the

real zeros of a function that was very similar

to Newton's. For this reason, the method is

often referred to as the Newton-Raphson

method.

Ncwioii's Method for Approximating the Zeros of H Function

Let,/(r) == 0, where/ is differentiable on an open interval containing < . Then.

to approximate l\ use the following steps.

1. Make an initial estimate .v, that is "close to" c. (A graph is helpful.)

2. Determine a new approximation

,Y,

./'(A,,)

3. If l.v„
-- .v„

. ,
is within the desired accuracy, let .v, ^ 1

serve as the final

appro

>

imation. Otherwise, return to Step 2 and ca culate a new app oxima-

tion.

Each successive application of this procedure is calle J an iteration.
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NOTE Eor many lundioiis. |iist a tew

Iterations of Newton's Method will pro-

duce approximations having very small

enors. as shown in Example 1.

The first iteration of Newton's Method

Figure 3.61

Example 1 Using Newton's Method

Calculate three iterations of Newton's Metliod to approximate a zero of /'(.v)
=

-v- - 2. Use A, = I as the initial gtiess.

Solution Because /(a) = a- - 2. you have/'(v) = 2 v. and the iteratixe process is

given by the formula

A„ .v„

/<-V„) A„
-V„ -

'""' " /'(.v„) lx„

The calculations for three iterations are shown m the table.

n x,, /(^J fix,.)
fix.)

fix,,) " fix.,)

1 1.000000 - 1 .000000 2.000000 -0.500000 1.500000

2 1 .500000 0.250000 3.000000 0.083333 1.416667

3 1.416667 0.006945 2.833334 0.002451 1.414216

4 1.414216

Of course, in this case you know that the two zeros of the function are ± ^'2. To six

decimal places, ^ 2 = 1.414214. So, after only three iterations of Newton's Method,

you have obtained an approximation that is within 0.000002 of an actual root. The first

Iteration of this process is shown in Figure 3.61.

f(X) = lK^+X--X+ 1

ffm-/ V\:iwph' 7 Trsinif\'cv\lon's Method

.^Iter three iterations of Newton's Method,

the zero of / is approximated to the desired

accuracy

Figure 3.62

Use Newton's Method to approximate the zeros of

f(.\)
= 2.V-' + .V- -

.\ + I

.

Continue the iterations until two successive approximations differ by less than O.UOOl

.

Solution Begin by sketching a graph of /. as shown in Figure 3.62. From the graph,

you can observe that the ftmction has only one zero, which occurs near x = — 1.2.

Next, differentiate / and form the iterative formula

V,M
1

./<-V„) Ix.:' + .v., .v„ +
" fix,,) '

"
6.v„- + 2.v„

The calculations arc shown in the table.

n x„ fi^n) fix„)
fix,:) fix,,)

" fix,,)

1 -1.20000 0.18400 5.24000 0.03511 -1.23511

-1 ^-1.23511 -0.00771 5.68276 -0.00136 -1.23375

3 -
1 .23375 0.00001 5.66533 0.00000 -1.23375

4 - 1 .23375

Because two successive approximations differ by less than the required 0.0001. you

can estimate the zero of/ to be — 1.23375. j_.
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When, as m Examples 1 and 2. the appioximations approach a hniit. the sequence

V|..v,. v, _v„. ... is said to converge. Moreover, if the limit is r. it can be

shown that c must be a zero of/.

Newton's Method does not always yield a convergent sequence. One way this can

happen is shown in Figure .3.63. Because Newton's Method involves division by /''(.v„).

it is clear that the method will fail if the derivative is zero for any .v„ in the sequence.

When you encounter this problem, you can usually overcome it by choosing a

different value for v, . Another way Newton's Method can fail is illustrated in the next

example.

Newton's Method fails to converge if / '(.v„) = 0.

Figure 3.63

Example 3 An Example in Wliich Newton's Method Fails

Using .v, = 0.1. show that Newton's Method fails to converge for /'(.v) = .v'^'.

the iterative lormuia isSolution Because /'(.v) = 3.V"

,/(-V„)

.v„ - 3.v„

The calculations are shown in the table. This table and Figure 3.64 indicate that .v„

continues to increase in magnitude as /; -^ so. and thus the limit of the .sequence does

not exist.

Newton's Method fails to converge for every

.r-value other than the actual zero of /'.

Figure 3.64

« ^,, /(-v„) /'U'„)

/(•v„)

/'UJ

1 0.10000 0.46416 1.54720 0.30000 -0.20000

2 -0.20000 -0.58480 0.97467 -0.60000 0.40000

3 0.40000 0.73681 0.61401 1.20000 -0.80000

4 -0.80000 -0.92832 0.38680 - 2.40000 1 .60000

NOTE In Example 3. the Initial estimate .v,
- (1. 1 fails to produce a convergent .sequence.

Try showing that Newton's Method also tails for every other choice of v, (other than the

actual /erol
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^m^'

NrELS Henrik Abel (1802-1829)

EvARisTE Galois (1811-1832)

Although the lives of both Abel and Galois

were brief, their work in the fields of analysis

and abstract alaebra was far-reaching.

It can be shown that a coiiditioti sufficient to produce convergence of Newton's

Method to a zero of / is that

/(-v)/"(-v)

[f'ixW

condition for con\ereence

on an open interval containing the zero. For instance, in Example 1 this test wotild

yield /'(.v) = .v- - 2../'(.v) = Iv. /'"(.v) = 2. and

/lv)/"(.v)|

imv-
(.V- - 2)(21

4.\-

J^ _ _l_

2 .v=

t:\amiilc i

On the interval (1. 3). this quantity is less than 1 aiul therefore the con\ergeiice of

Newton's Method is guaranteed. On the other hand, in Example 3. you ha\e

fix) = x"\f'{x) = ^x^'\f"{x) = -iv-^'\ and

fix) fix)

[f'MY

.v'/'l- 2/9)^-5/-^)

(l/9)(.v -*/-')
Lsaniple ?>

which is not less than 1 for any value of .v. so you cannot conclude that Newton's

Method will converge.

Algebraic Solutions of Polynomial Equations

The zeros of some functions, such as

,/lv) = .V-' - 2.V- - .V + 2

can be found by simple algebraic techniques, such as fictoring. The zeros of other

functions, such as

fix) = .V-' - .V + 1

cannot be foiuid h\ I'lciihiirarx algebraic methods. This particular function has only

one real zero, and by tising more ad\anced algebraic tcclinR|iics \ou can determine the

zero to be

/3 - 72373 / 3 + v/2373

"=-V 6 V 6

Because the exacl solution is written in terms of square roots and cube roots, it is

called a solution by radicals.

NOTE Try approximating the real zero of /(.v) = .v' — .v + 1 and compare your rosull uiih

the exact solution show n above.

The determination of radical solutions of a pol\ nomial equation is one ot the I iin-

damental problems of algebra. The earliest such result is the Quadratic Formula,

which dates back at least to Babylonian times. The general formula for the zeros of a

cubic function was developed much later. In the sixteenth century an Italian mathe-

matician, Jerome Cardan, published a method for finding radical solutions to cubic

and quartic equations. Then, for 300 years, the problem of finding a general quintic

formula remained open. Finally, in the nineteenth century, the problem was answered

independently by two young mathematicians. Niels Henrik Abel, a Norwegian math-

ematician, and Esaiiste Galois, a French mathematician, proved that it is not possible

to solve a general fifth- (or higher-) degree polynomial equation by radicals. Of

course, you can solve particular fifth-degree equations such as .v'' — 1 = 0. but Abel

and Galois were able to show that no eeneral radical solution exists.



226 CHAPTER 3 Applications ol' Differentiation

EXERCISES FOR SECTION 3.8

In Exercises 1-4. complete t«o ilerations of Newton's Method

tor the I'linction usin<: the hulicated initial <;uess.

1. /(.v) = A- - 3. A, = 1.7 2. fix) = 2a-^ - 3. A, = 1

3. fix) = sin A. A, = 3 4. fix) = tan a, a, = 0.1

rp In Exercises 5-14, approximate the zerots) of the function. Use

Newton's Method and continue the process until two successive

approximations differ b\ less than (l.(f(ll. Then find the zero(s)

using a graphing utility and compare the results.

5. fix) = .V' + .V - I 6. /(a) = .V-' + A -
1

8. /Iv) = A - 2 s/a + 1

10. ,/(a) = 1
- 2a'

7. fix) = 3v'.v -
1
- .V

9. fix) = .V- + 3

11. fix) = x'' - 3.9a- + 4.79a - l.SSl

12. fix) = \x^ - 3a - 3

13. fix) = X + sin(A +1) 14. fix) = a' - cos a

In Exercises 15-18. apply Newton's Method to approximate the

A-value of the indicated point(s) of intersection of the two

graphs. Continue the process until two successive approxima-

tions differ hy less than (l.(M)l. [////;/. let /;(.v) = fix) -
ii,'(.v).l

15. fix) = 2x + 1

.vIa) = .A + 4

16. fix) = 3 - .V

Kix) = 1/(a- + 1)

17. fix) = X

,i;(a) = tan .v

18. fix) = x'-

g{x) = cos A

6 - -
i;

!| ,

4- y^
1 -

- y 1 :/ ,/ !

y
2 / 2

In Exercises 19 and 20. use Newton's Method to obtain a

general rule for approximating the required radical.

19. A - ^ II \Hiiii: Consider /(a) = a-

20. A = < (/ [Him: Consider/(.v) = .v"

In Exercises 21-24. use the results of Exercises 19 and 20 to

approximate the indicated radical to three decimal places.

21. y? 22. Js

23. <'/6 24. yB

In Exercises 25 and 26. approximate tt to three decimal places

using Newton's Method and the given function.

25. fix) = 1 + cos.v 26. /(a) = tan A

In Exercises 27-.30. apply Newton's Method using the indicated

initial guess, and explain why the method fails.

27. \ = 2.v' - 6.\' + (1.V - 1. .v, = 1

28. V = 4a' - 12a- -I- 12a - 3. a, = ^

Figure for 27 Figure for 28

29. fix) = -x' + 6a- - lO.v + 6. A, = 2

30. fix) = 2sinA + cos2.v, a
_ 3-

.V, A,
3

Figure for 29 Figure for 30

31. In yottr own words and nsing a sketch, desciihe Newton's

Method for approximating the zeros of a function.

32. Under what conditions will Newton's Method fail'.'

Fixed Point In P'xercises 33 and 34, approximate the fixed

point of the function to two decimal places. [.\ fixed point .v,, of

a function/ is a value of a such that /(a,,) = a,,.]

33. fix) = cos A 34. fix) = cot A. < A < 77

«.]
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F 35. Writing Consider the function /(a ) = a' - 3a- + 3.

(a) Use a grapliing utility (o obtain the graph of /.

(b) Use Newton's Metiiod with a, = 1 as an uiitial guess.

(e) Repeat part (b) using a, = 4 as an initial guess and obseixe

that the result is different.

(dl To tindcrsiand wh\ the resiihs m parts (b) and (c) are difler-

ent, sketch the tangent hues to the graph of / at the points

(l./(I)) and (j./lj)). Find the A-intereept of each tangent

Hue and compare the intercepts with the first iteration ol

Newton's Method using the respective initial guesses.

(e) Write a short paragraph siiiiiniari/ing how Newton's

Method works. Use the results of this e.\ercise to describe

why it is important to select the initial guess carefullv.

36. \\ritiiii> Repeal ilic steps in E.xercise 35 for the fiinclion

/(a) = sin V with initial guesses of a, = 1.<S and a, = 3.

37. Use Newton's Method to show that the equation

-v„.i = -v„(2 - <a„)

can be used to appro\iinate \/a if a, is an initial guess of the

reciprocal of «. Note that this method of approximating recipro-

cals uses only the operations of multiplication and subtraction.

[Hull: Consider /(a) = (1/a) - a.]

3S. Use the result of Exercise 37 to approximate the inihcated

reciprocal to ihive decimal places.

(a) ^ (b) n

In Exercises 39 and 40. approximate the critical niinihir ol / on

the interval (0, tt). Sl<etch the t^rapli of/, labeling an\ extrenia.

39. /(a) = .1 cos A 40. /Ia) = A sm I

In Kxercises 41—14. Me revic" some l\pical problems from the

previons sections of this chapter In each case, use Ne«ton's

Method to approximate the solution.

41. Minimum Distance ' Find the point on the graph of fix) =

4 - A- that IS closest to the point ( I. 01.

42. Minimum Distance Find the point on the graph of /(a) = a-

thal IS closest to the point (4. -3).

43. Minimum Time You are 111 a boat 2 miles limn the ncaicsi

point on the coast (see figure). You are to go to a point (J. which

is 3 miles down the coast and 1 mile inland. You can row at 3

miles per hour and walk at 4 miles per hour. Toward what poml

on the coast should you row in order to reach Q in the least imie'

44. Medicine The concentration C of a certain chemical in the

bloodstream r hours after inicciion into muscle tissue is given by

C = (3r- + /-l/l.SO + ;"'l When is the concentration greatest?

45. Advertising Costs .A compans ihat produces portable cassette

players estimates that the profit tor selling .1 particular model is

P = -76.v' + 4S30a- - 320.0(10. < a < (lO

where P is the profit in dollars and .\ is the advertising expense

in 10,000s of dollars (see figure). According to this model, find

the smaller ol two ad\ertising aniounls llial \ield a profit P of

$2,500,000.

10 :ii .lO 4n _s() (1(1

Advertising expense

(in tens oi thtuisaiids uliliillars)

hngine speed

(111 iIhuis.iikIs ol rpni)

Hyure for 45 I'ijjure lor 46

46. Eniiinc Power The ton,|UC produced b\ a compact automobile

engine is approximated b\ the model

T = 0.S08.V-'' - 17.974V- + 71.24S.V + I IO,S43, 1 < a < 5

where T is the torque in fool-pouiuls anil \ is the engine speed

111 (housands ol revoliilions pci iiiiiuile isce figure). Approxi-

mate the two engine speeds ihal \iekl a loiAiiie 7' of 170 foot-

pounds.

True or False? In P2xerciscs 47-50. determine whether the

statement is true or false. If it is false, explain why or give an

example that shows it is false.

47. The zeros of /(v) = /)(,v)/i/Ia) coincide with the zeros of /)(a).

4iS. II (he coetlicieiits ot a polvnomial lunctioii are all positive, then

the polynomial has no pusiiive zeros.

49. If /Ia) is a cubic polynomial such that /'(i) is never zero, then

any initial guess will force Newton's Method lo comeige to the

zero of /.

50. The roots of Jf(x] = coincide with the roots ol /(a) = 0.

rp In Exercises 51 and 52, write a computer program or use a

spreadsheet to find the zeros of a limclion iisinj; Newton's

Method. Approximate the zeros of the function accurate to

three decimal places. The output should be a table with the

followin" headings.

7V-',,'- ' '''•
fix,,)

51. fix) -\"- 3.x~ + jv - 2

52. /(a) = v'T^ A- sin(A - 2)
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EXPLORATION

Tangent Line Approximation

Use a graphing utility to sketch the

graph of

fix) = x\

In the same viewing window, sketch

the graph of the tangent hne to the

graph off at the point (1 . 1 ). Zoom in

twice on the point of tangency. Does

your graphing utility distinguish

between the two graphs? Use the

trace feature to compare the two

graphs. As the a-values get closer to I.

what can vou sav about the ^'-values?

Differentials

• Understand the concept of a tangent line approximation.

• Compare the value of the differential, dv. with the actual change in v. A v.

• Estimate a propagated error using a differential.

• Find the differential of a function using differentiation formulas.

Linear Approximations

Newton's Method (Section 3.8) is an example of the use of a tangent line to a graph

to approximate the graph. In this section, you will study other situations in which the

graph of a function can be approximated by a straight line.

To begin, consider a function / that is differeiitiable at c. The equation for the

tangent line at the point (c.f(c)) is given liy

V -/(() =,/"(r)(A- - c)

V =/(r) +/'(c-)(.v - c).

Because c is a constant, y is a linear function of .v. Moreover, by restricting the values

of .V to be sufficiently close to c. the values of y can be used as approximations (to any

desired accuracy) of the values of the function /! In other words, as .v —> c, the limit of

y is /(.).

ff^^ Example 1 Using a Tangent Line Approximation

Taiment line

The tangent line approvimalion of / at the

point (d. I)

Figure 3.65

Find the tangent line approximation of

/(a) =
1 + sin A

at the point (I). I ). Then use a table to compare the y-values of the linear function with

those of /(a ) in an open inter\al containing a = 0.

Solution The deri\ative oif is

fix) = cos A. First dernatitt-

So. the equation of the tangent line to the graph of / at the point (0. 1 ) is

y - /(O) = /'(())(a - 0)

V - 1 = ( 1 )(A - 0)

A' = 1 + .V. Tanyeiii line apprnxiniallon

The table compares the values of y given by this linear approximation with the values

of /'(a) near a = 0. Notice that the closer a is to 0, the better the approximation is. This

conclusion is reinforced by the graph shown in Figure .i.65.

X -0.5 -0.1 -0.01 0,01 0.1 0.5

/(x)= 1 +sin.v 0.521 0.9002 0.9900002 1 1 .0099998 1.0998 1,479

.V = 1 + X 0.5 0.9 0,99 1 1.01 1.1 1.5

.a

NOTE Be sure you see that this linear appio.\iniation of /(a) = I + sin v depends on ihc

point of tangency. At a dillerenl point on the graph of /. you would obtain a different tangent

line approximation.
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>/U+ Av)

Wlien A.v is small. Ar = f{c + Av) - /(<

)

isappnixinialed h\ / 'dOAv.

Fij;ure 3.66

Differentials

When the tatigeiit line to the graph of / at the point (c. /(t))

y =/(<) + /'(<)(. \ - () raii'jfnMineat (>. Ht II

is used as an approxniiation to the graph of /, the quantity v - c is called the change

in .V, and is denoted by A.v, as shown in Figure .-^.dd. When A.v is small, the change in

y (denoted by A\) can be appro.ximated as follows.

Ay = /(< + A.v) - /(

= /'(<)A.»

.AclLiai change in v

.yppii»\imate change in \

For such an a|ipro\iniation. the ciuantit\ A.v is tiadilionally denoted by (/.v. and is

called the differential (»f .v. The expression /'(.v)i/.\ is denoted by i/y, and is called the

differential of v.

Definition of Differentials

Let y = /(.v) represent a function that is differentia :ile in an open inter\al

containing .v. The differential of .v (denoted b\ (L\ IS am nonzero real luimhcr.

The differential ofy (denoted by (A ) is

cly = fl\)d.\.

In many types ol applications, the differential ol y can be used as an appro,\imatioii ol

the change in v. That is.

Ay = cly or A\ = /'(.vW.v.

Example 2 Conipariuj; Av and dy

The change in r. Ar. is approximated h) the

ditTerential of i , dy.

Figure 3.67

Let \' = .V". Find (/\ when v = 1 and i/.v = Ol Compare this value with A\ for v = 1

and A.v = 0.01.

Solution Because y = /(.v) = .v-, you have /'(.v) = 2.v, and the dillcicntial il\ is

given by

dy =fl\)d.\ = /'(I )(().()!) = 2(0.01) = 0.02. Ditterenti,il of v

Now. using A.v = 0.01. the change in v is

Av = /(.v + Av) - /(.v) = /(l.Ol) - /(I) = (1.01)^' - L' = 0.0201.

Figure 3.67 shows the geometric comparison of dy and A v. Try comparing other

values of dy and A\. You will see that the values become closer to each other as d.\

(or A.v) approaches 0. IS

In Example 2, the tangent line to the graph of /(.v) = .v- at .v = 1 is

V = 2.V ~
1 or .l,'(.v) = 2.V — 1. I'angcm hneuuhegraphof/ ai> = I

For .v-values near 1. this line is close to the giaph of f. as shown in Figure 3.67. For

instance,

/(l.Ol) = 1.01- = 1.0201 and ,i,'(l.()l) = 2(1.01) - 1 = 1.02.

We say that the line \ = 2.v -
1 is the linear approximation or tangent line approx-

imation to the graph of fix) = .\- at .v = 1.
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Error Propagation

Physicists and engineers tend to make liberal use ol tlie approximation of Av by i/v.

One way this occurs in practice is in the estimation of errors propagated by physical

measuring devices. For example, if you let .v represent the measured value of a vari-

able and let a + A.v represent the exact value, then A.v is the error in measurement.

Finally, if the measured value .v is used to compute another value /(.v). the difference

between y (a + Aa) and /(a) is the propagated error.

Mejsuivment Propagated

ciTOr crior

fix + Aa) - fix) = Ay

Exact Measured

value value

Example 3 Estimation of Error

L n -•r-"jjjmmmJLiQ

Ball bearing with measured radius that i

correct to within 0.01 inch

Figure 3.68

The radius of a hall bearing is measured to be (1,7 inch, as shown in Figure .^(^(S. If the

measurement is correct to within II. (II inch, estimate the propagated eiTor in the

volume V of the ball bearing.

Solution The formula for the volume of a sphere is V = ^tt;''. where r is the radius

of the sphere. So. you can write

and

0.7

0.01 < Ar < 0.01.

Measured radius

Ptissihie error

To approximate the propagated error in the \olimie. differentiate V to obtain

(.IV/dr = 477-;'- and write

AV ~ ilV Approximate A\' tiy </V,

= 4-r-</r

= 4/7(0. 7)-(±0.01 ) Subsiiluie lor / and Ji

= ±0.06L'^.Sin\

So the volume has a propagated error of about 0.06 cubic inch. [21

Would you say that the propagated error in Fxample .•! is large or small.' The

answer is best given in rchitivc terms by comparing dV with \'. The ratio

dV 47Tr~dr
Ralio o\ JV to \

V j-rrr^

r
Simplify

==^^(±0.01) SLihstiliilc lor (//

^ ±0.0429

is called the relative error. The corresponding percent error is approximately

4.29%.
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Calculating Differentials

Each of the differentiation rules that you studied in Chapter 2 can be written ni

differential form. For example, suppose /; and v are differentiable functions of a. By
the definition of differentials, you have

(/;/ = ;/'(/.v and dv = v' ilx.

Therefore, vou can write the differential form of the Product Rule as follows.

d[iiv] = -rUiv] dx
dx

Ditleic:nci.il ui ;n

= [;(!'+ 17/'] (/.V Ph.UiKiRule

= liv' dx + Vll' ilx

= U dv + V dll

Differential Formulas

Let II and v be differentiable functions of .v.

Constant multiple: d[cii] = c dll

Sum or difference- d[ii ± r] = dll ± dv

Product: (/[/(!'] = // dv + V dll

Quotient: d
;; V (/;/ — (( dv

L 1 J >

Gottfried Wilhelm Leibniz (1646-1716)

Both Leibniz and Newton are credited with

creating calculus. It was Leibniz, however,

who tried to broaden calculus by developing

rules and formal notation. He often spent days

choosing an appropriate notation for a new

concept.

YjXillwh' A Fi Mill' no Oi ffcri'nti:;) v;

hiiiuliiiii

a. y = .V-

b. V = 2 sin .V

c. V = X cos .V

Dfiivunve Diffe rentia!

dx
dy = 2.V dx

-— = 2 cos -Y

dx
dv = 2 cos .V dx

dv
-i- = — X sm .V

dx
+ cos X dy = (-.vsin.v + co&x) d\

dy _ 1

dx X-
dy =

dx

X- zrA. V

The notation in E.xample 4 is called the Leibniz notation for deiivatives and

differentials, named after the German mathematician Gottfried Wilhelm Leibniz. The

beauty of this notation is that it provides an easy way to remember several important

calculus formulas by making it seem as though the formulas were derived from

algebraic manipulations of differentials. For instance, in Leibniz notation, the Chain

Rule

d\- _ dy dll

dx dll dx

would appear to be true because the dii's cancel. Even though this reasoning is

incorrect, the notation does help one remember the Chain Rule.
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Example 5 Finding the Differential of a Composite Function

V =/(.v) = sin Av

fix) = 3 cos 3.V

dy = f'l\) il.\ = 3 cos 3.V il.\

Original funcUon

Apply Chain Rule.

Differential forni

Example 6 Finding the Differential of a Composite Function

V =/(.v) = (a- + 1)'/-

1

fix] =-(.v- + 1) ''^(2^)

'a- +

cly = fix) dx
'a- +

: dx

OrtiZinal function

Ap[)ly Cham Rule.

Ditterential tomi

Differentials can be used to appro.ximate function \alues. To do this for the func-

tion given by y = f(x). you use the formula

f(x + A.v) «/(a) + dx =f(x) +/'{.v) dx

which is deiived Ironi the approximation Ay = fix + Aa) -./'(a) = dy. The key to

using this formula is to choose a \akie for a that makes the calculations easier, as

shown in Example 7.

Exuiiiple 7 Approximating Function Values

6-

4-
g(.v)=i.v + 2

(1(1, 4|

2 -

X fix) = VJ

4 8 12 16 21)

_i - -

Figure 3.69

Use differentials to approximate ^16. 5.

Solution Using /(a) = ^. you can write

,/(a + Aa) == /(a) +/'(a)(/a = ^/x + —t=(/a.

_ V -V

Now, choosing .v = 16 and d\ = 0.5. vou obtain the following approximation.

_/(a + A.v) = JK5 = yT6 + = (0.5) =4 + (i)(i| = 4.0625

The tangent line appro.ximution to fix) = v a at a = 16 is the line

gix) = ^x + 2. For .v-values near 16. the graphs of /' and ,t; are close tiigether. as

shown in Figure 3.6'-). For instance.

1

./(16.5) = v/16.5 = 4,0620 and i'(l6.5) = -(16.5) + 2 = 4.0625.
8

In fact, if you use a graphing utility to zoom in near the point of tangency (16, 4). you

will see that the two graphs appear to coincide. Notice also that as you move farther

away from the point of tangency, the linear approximation is less accurate.
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EXERCISES FOR SECTION 3.9

In Exercises 1-6, find the equation of the tangent line 7' to the

Seraph of/ at the indicated point. Use this linear approximation

to complete the table.

23. 24.

X 1.9 1.99
)

2.U1 2.1

f(x)

T(x)

Function Point

1. ,n.v) = .V- (2.4)

2. /(.v) = A
.V- (M)

3. ./(.v) = .v' (2.32)

4. fix) = JTx (2.v2)

5. f(\) = sin.v (2. sin 2)

6. f{\] = csc.v (2. CSC 2)

In Exercises 7-10, use the information to evaluate and compare

Av and dy.

7. y = i.v-' j = 2 A.v = d.x = 0.1

8. V = 1 - 2.V- .V = A.\ = cl\ = -0.1

9. V = .v-* + I .V = -
1 Ai = </.v = 0.01

1((. \ = 2.V + 1 .V = 2 Av = tiA = 0.01

In Exercises 11-2(1, find the differential tly of the f;iven function.

II. y = 3.v^ - 4

.V + 1

12.

13
Ix -

I

15. V = .Vv' 1 - .V-

17. V = 2.V

„ 1 /6-.V -
1

Iv. V = - COS

14. V = 79^^

16. y = vx +

18. y = .V sin.v

sec-.v
20. v =

.V- + 1

In Exercises 21-24, use differentials and the yraph of / to

approximate (a) /(1.9) and (b) /(2.04). To print an enlars;ed

copy of the graph, go to the \\ebsite wiyw.nuithfiiuphs.com.

11. >

5
-

1

4-

V
3- - \

2 - \

1-1 - (2,l\^___

1:34?

f^-l-
.3 4 5 I 2 .3 4 5

In Exercises 25-28, use differentials and the graph of i; to

approximate (al ^(2.93) and (hi ,!;(3.1 1 given that i^O) = 8.

25. .>

f-^.v
12 3 4 5

27. 28.

4- -

3 - -

2 - -

1

-

(3.U)
.i/.^

1 J^3 4 5

^,.^5.
5

- .^
4-

K

3- -

2-

1

-

2 5 4 5

29. Area The measurement ot the side ot a '.qiiaic is luiind 10 be

12 inches, with a possible error ot ^ inch. L'se dillerentials to

approximate the possible propagated error in compiitinL! the

area of the square.

30. Area The measurements of the base and altitude of a triangle

are found to he 36 and 50 centimeters. The possible error in

each measurement is 0.25 centimeter Use ditlerentials to

appro.ximate the possible propagated error in computing the

area of the triangle.

31. Area The measurement ol the radius ol the end of a log is

found to be 14 inches, with a possible error ol j inch. Use

ditlerentials to approMmate the possible propagated error in

computing the area of the end of the log.

32. Volume and Surface Area The measurement ol the edge of a

cube is found to be 12 inches, with a possible error of 0.03 inch.

Use differentials to approximate the maximum possible propa-

gated eiTor in computing

(a) the volume of the cube.

(b) the surface area of the cube.
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33. Area The iiicasincment of a side ol a square is lound to be 15

eentinieters. The possible error n^ measuring the side is (1.05

centimeter

(a) Approximate the percent eiror in compnlni!; the area ol the

square.

(b) Estimate the maxmiuni allow able pei'cent eiTor in measur-

ing the side if the error in eompuling the area cannot e.xcoed

2 y,

.

34. Circumfercuce The nieasurenicnt of the circunilerenee of a

circle is lound to be .56 centiniclcrs. The possible error in

measuring the circimiferencc is 1,2 centimeters.

(a) .-\ppro\iniale the percent error in conipuling the area ol the

circle.

(b) Estimate the ma.viinum allowable percent error in mea-

suring the circumference if the error m conrpiiting the

area cannot exceed Yi .

35. \oliiiiie and Surfiite Area The radius of a sphere is measured

to be 6 inches, with a possible error of (1.02 inch. Use diflcren-

tials to approximate the maximum possible enor in calculating

lal the \olnme of the sphere, (b) the surface area of the sphere,

and (c) the relative errors in parts (a) and (b).

3(). I'rofil 'file profit /' lor a compan\ is gi\en by

P = (500.V - .V-) - (3.V- - 77 .V -I- 3000).

Approximate the change and percent change in prollt as

production changes from .\ =115 to .v = 120 units.

In Exercises 37 and 3.S. the thickness of the shell is (1.2 centime-

ter. Use differentials to approximate the Milunie of the shell.

37. A cylindrical shell w ilh height 40 centimeters and radius 5 cen-

timeters

3S. A spherical shell ol radius 100 centimeters

0.2 cm

5 cm '-^lOIIci

Figure f(ir 37 l< i<;ure lor 3S

39. I'eiuliiluiii I he period ol a pendulum is gi\en by

r= 2-,

where L is the length of the pendulum in feet. ,1,' is the acceler-

ation due to gravity, and 7' is the time in seconds. Suppose thai

the pendulum has been subjected to an increase in temperature

such that the length has increased by f/(.

(a) Find the approximate percent ch.inge in the period.

(hi I'sing the result in part (a), find the approximate error in

this pendulum clock in one day.

40. Ohm's Imw A current of / amperes passes through a resistor

of R ohms. Ohm's Law states that the voltage E applied to the

resistor is

E = IR.

If the Miltage is constant, show that the magnitude of the rela-

tive error in R caused by a change in / is equal in magnitude to

the relative error in /.

41. Triaiii;le Measurements The measurement of one side of a

right triangle is found to be 4.5 inches, and the angle opposite

that side is 26"'45' with a possible error of 15'.

(a) Approximate the percent error in computing the length of

the hypotenuse.

(b) Estimale the maximum allowable percent error in measur-

ing the angle if the error in computing the length of the

hypotenuse cannot exceed 2''i

.

42. Area Approximate the percent error in computing the area of

the triangle in Exercise 41.

43. I'rojeetile Motion The range R of a pio|ectile is

R = ^(sin29)

where r,, is the initial velocity in feet per second and H is the

angle of elevation. If r,, = 2200 feet per second and H is

changed from 10° to I I
'. use differentials to approximate the

change in the range.

44. Surveying A surveyor standing 50 feet from the base of a large

tree measures the angle of elevation to the top of the tree as

7 1 .5 ". How accurately must the angle be measured if the percent

error in estimating the height of the tree is to he less than 6%'

In Exercises 45—tS, use differentials to approximate the value of

the expression. Compare vour answer "ith that of a calculator.

45. ^'99.4 46. i/26 47. ^''"624 48. (2.99)'

Wriliiif; In Exercises 49 and 50. give a short explanation of

\thv the appriixiination is valid.

49. , 4.02 = 2 + 5(0.02) 50. tan 0.05 = + 1(0.05)

51. Descri he the change in accuracy of dy as an i pproximation

for Ai whei A-V IS (.iecreased.

52. When using differentia s. whal is meat t by tl e terms prop-

agated error relative error, and percent error'.

True or False? In Exerci.ses 53-5h, determine whether the

statement is true or false. If it is false, explain why or gi>e an

example that shows it is false.

53. Il'y = A + c, then dy = dx.

54. If V = ((.V + /), then A\'/A.v = clv/d.x.

55. II \' IS dillcrcntiable. then lim (A^' - dy) = 0.
A.— 11

56. II \ = / (.v), / is increasing and differentiable. and Av > 0, then

Av > </v.
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REVIEW EXERCISES FOR CHAPTER 3

1. Give the definition of a critical number, and graph a function /

showing the different types of critical numbers.

2. Consider the odd function/ that is continuous, dilfcrcnliablc.

and has the functional values shown in the tabic.

X -5 -4 -I T 3 6

f(x) 1 3 2 -I -4

(a) Determine / (4).

(h) Determine /(-3).

(c) Plot the poults and make a possible sketch of the graph ol /

on the interval [-6.6]. What is the smallest uimibcr of

critical points in the interval? E.xplaui.

(d) Does there exist at least one real number c in the uiler\al

(-6. 61 where fit) = -]"! Explain.

(c) Is It possible that lim /(.v) does not exist'.' Explain,

(f) Is it necessary that f'(x) exists at v = 2' Explain.

^ In Exercises 3 and 4, I'lnd the absolute extreiiia iil the luuction

(in the closed Interval. Use a graphing utility to graph the lune-

tiou over llie indicated interval to confirm vour results.

/v

3. ,i,'(aI - li f .scos.v. [U. 2-] 4. /(.i)

./.v- + 1

[I).

In Exercises 5 and 6. determine whether Rolle's

Theorem can be applied to / on the closed interval [«./']. If

Rolle's Theorem can be applied, find all values of c in the open

interval ia.h) such that /'(t) = 0.

5. /(.v) = (.V - 2|(.v + 3)'. [-3.2]

6. fix) = |.v - 2| - 2. [0.4]

7. Consider the ruiiclion /(.v) = 3 - [v - 4|.

(a) Graph ihc fuiiclioii and verifv' that /( 1 ) =/(7).

(b) Note that /'(.v) is not equal to zero for any v in [1.7].

Explain why this does not contradict Rolle's Theorem.

8. Can the Mean Value Theorem be applied to the liiuclion

,/'(.v) = l/.v- on the interval [-2. 1]'' Explain.

In Exercises I5-1S. find the critical numbers (if any)

and the open intervals on which the function is increasing or

decreasing.

15. /(.v) = (.V - l)-(.v - 3)

16. .i,.(.v) = (.V + D'

17. /,(-v) = v/^(.v - 3). .V >

18. /(.v) = sin.v + cos.v. [0. 2 7r]

n Exercises 19 and 2(1, use the First Derivative lest to find any

relative extrema of the function. Use a graphing utility to verify

your results.

19. hit) = ~i' - Sf

20. ,i;(.v) = ^sm[^- l). [(1.4]

21. Harmonic Motion The height of an object attached to a spring

is gi\en by the haniiomc equation

y = ^ cos 12/ -
J sin 12/

where \' is mcasurctl in inches aiKl / is mcasuietl in secoiuls.

(a) Calculate the height ami \e!ncil\ nl the ob|cc( wlieii

/ = it/8 second.

(b) Show that the inaxiimini dis|ilaccmciil of the object is j^

inch.

(c) Find the period P of v. Also, find the liei|uency / (number

of oscillations pel" second) if / = \/P.

22. Writing The general equation giving the height of an oscillat-

ing object attached to a spring is

V = A sm ^ / —I + B cos . — I

V III V III

where k is the spring constant and in is the mass of the object.

(a) Show that the maximum displacement of the object is

s .4- + «-.

(b) Show that the object oscillates with a rieqiicncy of

1 A-

In Exercises 9-12, find the point(s) guaranteed by the Mean

Value Theorem for the closed interval [a, h].

9. /(.vl=.v-\ [1.8]

II. /(.v) = .V - cos.v.

1

10. f(x) = -. [1.4]
.V

12. /Xv) = .A- - 2.V. [0. 4]

13. For the function /(.v) = Ax- + Bx + C. determine the value of c

guaranteed by the Mean Value Theorem on the interval [.v,. .v-,].

14. Demonstrate the result of E.xercise 13for/(-v) = 2.v- - ix + 1

on the interval [0. 4].

In Exercises 23 and 24, delermine the points of

inlleetion of the function.

23. fix) = X + cos V. [0. 2-] 24. f(x] = ix + 2)-(.v - 4)

In Exercises 25 and 26. use the Second Derivative Test to find all

relative extrema.

25. ,!,'(.v) = 2.v-( 1
- .V- 26. /)(/) = / - 4v/ + 1
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Think About It In Exercises 27 and 28, sketch the graph of a

function/ having the indicated characteristics.

27. /(()) =/(6) =

/'(3) =/'(5) =

/'(a ) > (1 if .V < 3

/"(.v) > if 3 < A < 5

/"(a) < if A > .^

/"(a) < U if A < 3 and A > 4

/"(a) > 1). 3 < A < 4

28. /(()) = 4. /(6) =

/'(a) < if A < 2 and \ > 4

/'(2) does not exist.

./'(4) =

/'(a) > (1 if 2 < A < 4

/"( v) < 0, A- * 2

29. Writing A newspaper headline states that "The rate of growth

of the national deficit is decreasing." What does this mean? What

does it imply about the graph of the deficit as a function of time*'

30. Inventory Cost The cost of inventory depends on the ordering

and storage costs according to the inventory model

rp 32. Modeling Data The manager of a store recorded the annual

sales 5 (in thousands of dollars) of a product over a period of

7 years, as shown in the table, where i is the time in years, with

; = 1 coiTesponding to 1441.

C =
•v +

/ 5 10 15 20

D 90.4 103.1 1.55.1 279.0 328.3

t 25 26 27 28 29

D 309.9 302.7 309.8 310.3 .320.2

(a) Use the regression capabilities of a graphing utility to lit a

model of the form D = ai^ + ht^ + ct- + dt + c to the

data.

(b) Use a graphing utility to plot the data and graph the model.

(c) For the years shown in the table, when docs the model

indicate that the outlay for national defense is at a maxi-

mum ' When is it at a minimum .'

(d) For the years shown in the table, when does the model

indicate that the outlay for national defense is increasing at

the tireatest rate?

/ 1 3 4 5 6 7

s 5.4 6.9 11.5 15.5 19.0 22.0 23.6

(a) Use the regression capabilities of a graphing utility to find

a model of the form S = c;r' + /'f- + ct + d for the data.

(b) Use a graphing utility to plot the data and graph the model.

(c) Use calculus to find the time / when sales were increasing

at the greatest rate.

(d) Do you think the model would he accurate for predicting

future sales' Explain.

In Exercises 33-36, find the limit.

1, -

33. lim

.35. lim

2a-

..-.zr. 3a- + 5

5 cos A

34. hm
I—.;c

36. Inn

3v- + 5

3.V

rp In Exercises 37—It), find any vertical and horizontal asymptotes

of the graph of the function. Use a graphing utility to yerify

vour results.

Determine the order size that will minimize the cost, assuming

that sales occur at a constant rate, Q is the number of units sold

per year. / is the cost i.it storing one unit for 1 year, .v is the cost

of placing an order, and a is the number of units per order

rp 31. Modeling Data Outlays for national defense /) ( in billions of

dollars) for selected years from 1970 through 1999 are shown

in the table, where t is time in years, with / = corresponding

to 1970. (5((/(;r('.- U.S. Office of Maiuigeiiiciit oiul Biidi^cl)

}7. Iil\

-39. /(A)

2a + 3

.V - 4

3
I— 2
.V

38. g(.v)

40. /(a)

5.V-

.V- + 2

3.V

rp In Exercises 41—14. use a graphinjj utility to graph the function.

Use the graph to approximate any relative extrenia or

asymptotes.

41. ,/(a) = A-' +

A - 1

243
42. fM 3a- + 2aI

43. /(a)
1 + 3a-

44. ^(.v) = — 4 cos A + cos 2a

In Exercises 45-62, analyze and sketch the graph of the

function.

45. /(a) = 4a - A- 46. fix) = 4.v' - .v-*

48. /(a) = (a- - 4)-47. /(a) = Ayi6 - .V-

49. /(a) = (a - l)-"(.v - 3)- 50. /(a) = (a - 3)(a + 2)-'

51. /(a) = .\-"H.\ + 3)-/-'

A + 1

52. /(a) = (a - 2) '/'(a + 1)-/-

53. ./(A) —
A - 1

54. fix)
_ 2.V
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55. fix) =

56. fix) =

57. fix)

1 + .Y=

X-

I + .v-»

.V' + A- +

58. f(x) = A-

59. fix) = \x- - 9

1

60. /(a) = |a- - I| + \x - 3

1

61. f(x) = A + COS A'. < X < 2lT

62. /'(a) = — (2 sin tta - sin 2 7ta).
IT

1 < A < 1

72. Minimum Distance Rewiirk Exercise 7 I , given corridors of

widtiis a meters and /) meters.

73. Minimum Distance A hallway of width 6 feet meets a

hallway of width 9 feet at right angles. Find the length of the

longest pipe that can be earned level around this corner. [Hiin:

If L is the length of the pipe, show that

6 esc e + 9 CSC - - H

where 9 is the angle between the pipe and the wall of the

narrower hallway.]

74. Minimum Distance Rework Exercise 73, given that one

hallway is of width ci meters and the other is of width h meters.

Show that the result is the same as in Exercise 72.

63. Find the maxmium and minmium points on the graph of

V- + 4v- 16v +13 =

(a) without using calculus.

(b) using calculus.

64. Consider the function /(a) = a" for positive integer values of ;i.

(a) For what values of n does the function have a relative

minimum at the origin'

(b) For what values of ;; does the function have a point of

inflection at the origin?

65. Minimum Distance At noon, ship ,4 is KM) kilometers due

east of ship B. Ship ,4 is sailing west at 12 kilometers per hour,

and ship B is sailing south at 10 kilometers per hour. At what

time will the ships be nearest to each other, and what will this

distance be?

66. Maximum Area Find the dimensions of the rectangle of

maximum area, with sides parallel to the coordinate axes, that

can be inscribed in the ellip.se given by

144

y-

76
I.

Minimum Cost In Kxercises 75 and 76, find the speed v, in

miles per hour, thai will minimize costs on a IlO-mllt' delivery

trip. The cost per hour for fuel is C dollars, and the driver is

paid W dollars per hour. (Assume there are no costs other than

wages and fuel.)

75. Fuel cost: C
600

Driver: W = $5

76. Fuel cost: C

Driver: W = %1 .%)

V-

500

fyf BfcKB In Exercises 77 and 78. use Newton's Method to

approximate any real zeros of the function accurate to three

decimal places. I'se the root-llndin;; capabilities of a ]:;raphing

utility to verify your results.

77. f(x) = A-' - 3a - I

78. f(x) = A-' + 2a + 1

\y In Exercises 79 and 80, use Newton's Method to approximate, to

three decimal places, the .v-value of the points of intersection of

the equations. Use a graphing utility to verify your results.

67. Minimum Length A right triangle in the first quadrant has

the coordinate axes as sides, and the hypotenuse passes through

the point (1.8). Find the vertices of the triangle such that the

length of the hypotenuse is minimum.

68. Minimum Lengtii The wall of a building is to be braced by a

beam that nitist pass over a parallel fence 5 feet high and 4 feet

from the building. Find the length of the shortest beam that can

he used.

69. Maximum Area Three sides of a trapezoid have the same

length s. Of all such possible trapezoids, show that the one of

maximum area has a fourth side of length 2.s.

70. Maximum Area Show that the greatest area of any rectangle

inscribed in a triangle is one half that of the triangle.

71. Minimum Distance Find the length of the longest pipe that

can be carried level around a right-angle corner at the intersec-

tion of two corridors of widths 4 feet and 6 feet. (Do not use

trigonometry.)

79. y

y

1

X + 3

80. y = sm 77

A

V = 1 - V

In Exercises 81 and 82, find the differential dy.

81. y = x{ I
- cos a)

82. y = 736 - A-

83. Suiface Area and Volume The diameter of a sphere is

measured to be 18 centimeters, with a maximum possible enor

of 0.05 centimeter. Use differentials to approximate the possible

propagated error and percent error in calculating the surface area

and the volume of the sphere.

84. Demand Function A company finds that the demand for its

commodity is p = 15 — ja. If a changes from 7 to 8. find and

compare the values of Ap and dp.
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P'S, 'Problem Solving

1. Prove Darhoiix's Theorem: Let / be differentiable on tiie closed

interval [«, b\ such that f'{a) = v, and f'(b) = v,. If d lies

between v, and y,, then there exists c in (a. b) such that/'(i.) = d.

2. (a) Let V = .v\ Find dV and AV. Show that for small values of

A, the difference Al-' - dV is very small in the sense that

there exists e such thai AV - dV = eAv. where e—>0 as

A.v^O.

(b) Generalize this result by showing that if y = fix) is a differ-

entiable function, then Ay - dy = eA.v. where e—>0 as

A.v->n.

3. (a) Graph the fointh-degree polynomial /i(.v) = ti.\^ - 6.v- for

a = —3, —2, — 1, 0, 1. 2. and 3. For what values of the con-

stant a does p have a relative minimum or relative maximum'

(b) Show that /> has a relative maximum for all values of the

constant a.

(c) Determine analytically the values of a for which p has a

relative minimum.

(d) Let (.V, y) = (.v. p{y:)) be a relative extremum of p. Show that

(.X. y) lies on the graph of y = — 3.V-. Verify this result graph-

ically by graphing y = - 3.v- together with the .seven curves

from part (a).

4. Let / and ,i; be continuous functions on [a. h] and differentiable

on [a. b). Prove that if/In) = g(a) and .i,''(.v) > /'(.v) for all .v in

(a, b). then g{h) > f(h).

5. Graph the fourth-degree polynomial /)(.v) = .v* -I- a.\- + I for

various values of the constant n.

(a) Determine the values of a for which p has exactly one

relative minimum.

(b) Determine the values of a for which /; has exactly one

relative maximum.

(c) Determine the values of ti for which p has exactly two

relative minima.

(d) Show that the graph of/; cannot have exactly two relative

exlrema,

6. (a) Let /'(.v) = o.v- -I- bx + c. a =^ be a quadratic polynomial.

How many points of inflection does the graph of / have?

(b) Let fix) = fl.v' -I- bx- + ex + <l. a i^ he a cubic polyno-

mial. How many points of inflection does the graph of /
have?

(c) Suppose the function y = / (.v) satisfies the equation

dv

dx
kyiL — y), where k and L are posilixe constants.

Show that the graph of / has a point of inflection at the point

L
where y = -. (This equation is called the logistics differen-

tial equation.)

8. The amount of illumination of a surface is proportional to the

intensity of the light source, inversely proportional to the

square of the distance from the light source, and proportional to

sin H. where is the angle at which the light strikes the surface.

A rectangular room measures 10 feet by 24 feet, with a 10-foot

ceiling. Determine the height at which the light should be

placed to allow the corners of the floor to receive as much light

as possible.

9. Prove the following Extended Mean Value Theorem. If/ and

/' are continuous on the closed interval [u. b]. and if/"exists in

the open interval (it, b), then there exists a number c in (a. b)

such that

fib) = f(a) + f'ia)ib - a) + \f"ic)(b ~ a)\

10. The line joining P and Q crosses the two parallel lines, as

shown in the figure. The point R is d units from P. How far

from Q should the point 5 be chosen so that the sum of the

areas of the two shaded triangles is a minimum ' So that the

sum is a maximum?

11. The efficiency £ of a screw with square threads is

_ tan 0(1 — yti tan <i)
E —

;

/x + tan 4> ..
. ,

where /j, is the coefficient of sliding friction and is the angle

of inclination of the threads to a plane perpendicular to the axis

of the screw. Find the angle ih that yields maximum efficiency

when fjL
= 0.1.

7. Let fix) = —h -V-. Determine all values of the constant c such
-V

that/' has a relative minimum, but no relative maximum.
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12. (a) Prove that lim v- = oo.

(b) Prove that hm — 0.

(c) Let L be a real number. Prove that if lim /(.v) = L. then
v—>oc

'^'
L.lim /'

. — i-i \ A-

13.

14. Consider a room in the shape of a cube. 4 meters on each side.

A bug at point P wants to walk to point Q at the opposite

comer, as indicated in the figure. Use calculus to determine the

shortest path. Can you solve the problem without calculus'?

4 m

15. The figures show a rectangle, a circle, and a semicircle

inscribed in a triangle bounded by the coordinate axes and the

first quadrant portion of the line with intercepts (3, 0) and

(0, 4). Find the dimensions of each inscribed figure such that its

area is maximum. State whether calculus was helpful in finding

the required dimensions. Explain your reasoning.

1 I > I

'

12 3 4

P-5.

^ 16.

n the engine shown in the tigure, a connecting rod 18 centime-

ters long is fastened to a crank of radius 6 centimeters at point

P. The crankshaft rotates counterclockwise at a constant rate of

200 revolutions per minute. The horizontal velocity (cin/min) of

point P is

V = -2400iTsin e

where 8 is the central angle of the crankshaft. What values of H

produce a maximum horizontal velocity?

The police department must determine the speed limit on a

bridge such that the flow rate of cars is maximum per unit time.

The greater the speed limit, the farther apart the cars must be in

order to keep a safe stopping distance. Experimental data on the

stopping distance (/ (in meters) for various velocities v (in kilo-

meters per hour) are shown in the table.

V 20 40 60 <S() 100

d 5.1 13.7 27.2 44.2 66.4

(a) Convert the speeds \' in the table to the speeds .? in meters

per second. Use the regression capabilities of a graphing

utility to find a model of the form d(s) = as- + bs + c for

the data.

(b) Consider two consecutive vehicles of average length 5.5

meters, traveling at a safe speed on the bridge. Let T be the

difference between the times (in seconds) when the front

bumpers of the vehicles pass a given point on the bridge.

Verify that this difference in times is given by

T
d(s)

s

5.5

(c) Use a graphing utility to graph the function T and estimate

the speed i that minimizes the time between vehicles.

(d) Use calculus to determine the speed that minimizes T. What

is the minimuin value of 7? Convert the required speed to

kilometers per hour.

(e) Find the optimal distance between vehicles for the posted

speed limit determined in part (d).

1

17. Find the point on the graph of v — where the tangent
1 + .V-

line has the greatest slope, and the point where the tangent line

has the least slope.

rp 18. (a) Let .V be a positi\c number. Use the rnWf feature of a graph-

ing utility to verify that V

1

(b) Use the Mean Value Theorem to prove that

^

-I- X < ix + I

.

Mean Value Theorem to prove

3.V + 1 for all positive real numbers .v.yi -I- .V

19. ( a) Let .t be a positive number. Use the table feature of a graph-

ing utility to verify that sin x < x.

(b) Use the Mean Value Theorem to prove that sin x < x for all

positive real numbers x.



The Wankel Rotary Engine and Area

Named tor Felix Wankel, who developed its basic prin-

ciples ni ilic l^)5()s, ihc Wankel rotary engine presents

an alternative to the piston engine commonly used in

automobiles. Many auto makers, including Mercedes-

Benz. Citroen, and Ford, have experimented with

rotary engines. By far the greatest number ofWankel-

powered vehicles have been put on the road by Mazda,

whose cunent rotary engine design is the RX-7.

The Wankel rotary engine has several advantages

over the piston engine. A rotary engine is approximately

halt the si/e and weight ot a piston engine of equivalent

power. Compared with about 97 major moving parts in

a V-8 engine, the typical two-rotor rotary engine has

only three major moving parts. As a result, the Wankel

engine has lower labt)r and material costs and less inter-

nal energy waste.

Although many different designs are possible for

the rotary engine, the most common configuration is

a two-lobed housing containing a three-sided rotor.

The size of the rotor in comparison with the size of the

housing cavity is critical in determining the compression

ratio and thus the combustion efficiency.

fix) = -2V^+ yi6-(A-2)-

H h12 3 4

QUESTIONS

1. The region shown in the figure on the right above is bounded above by the graph of

,/iv) = -273 4- yi6 - U - 2)-

and helow by the .v-axis. Describe different ways in which you might approximate the area of

the region. Then choose one of the ways and use it to obtain an approximation. What type of

accuracy do you think your approximation has'.'

2. Now that you have found one approximation for the area of the region, describe a way that you

can improve your approximation. Does your strategy allow you to obtain an approximation that

is arbitrarily close to the actual area? Explain.

3. Use your approximation to estimate the area of the ""bulged triangle" shown in the figure on the

left above.

Tlw Cdihc'pls presi'iUcd hor will he explored further In this chapter. For iiii cxteiisioi! of this

iippliriiiioii. see Ltih 6 /// the hih series tlhii m eoinpanies this text at college.hniCD.com,

240



Integration

In 2001, Mazda Motor Corporation

unveiled the new RX-8 concept car

at the North American International

Auto Show in Detroit. The RX-8 is

pow ered by an iteration of the

Wankel rotary engine. Although the

last mass-produced car equipped

with a rotaiy engine sold worldwide

was the RX-7, whose shipment to

the United States ended in 1995. the

Mazda Corporation intends to

reestablish an interest in rotary-

powered cars through nev\ designs

hke the RX-8.

A sweeps out

exhaust. B begins

compression, and C
is nearly finished

w ith expansion.

A moves back to allow

intake while IS continues

compression. C begins to

push out exhaust.

Ignitit>n takes place in

B. A continues intake,

and C continues

exhaust.

Intake is nearly complete

in A. B expands following

ignition, and C is nearly

finished with exhaust.

241
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EXPLORATION

Finding Antiderivatives For each of

the following derixatives. dehcribe the

original function F.

a. F'{x) = 2a

b. F\x) = X

c. F'(x) = X-

d. /"(a) = \
X-

e. Fix) = 4
a'

f. F'(a) = cos A

What strategy did you use to find F7

Antiderivatives and Indefinite Integration

• Write the general solution of u differential equation.

• Use indefinite integral notation for antiderivatives.

• Use basic integration rules to find antiderivatives.

• Find a particular solution of a differential equation.

Antiderivatives

Suppose you were a.sked to find a function F whose derivative is /(.v) = 3.v". From

vour knowledge of derivatives, you would probably say that

Fix) = .v' because 4 [-V-] = 3.v-.

ilx

The function F is an iinli(lfri\citivc of f.

Definition of an Antiderivative

A function F is an antiderivative of / on an inter\al / if F'(x) = fix) for all x in /.

Note that F is called an antiderivative o( f. rather than llic antiderivative of /'. To

see why, obserxe that

Fix) = x-\ /-M.y) 5. and F,(a) = a- + 97

are all antiderivatives of /(.v) = 3.v-. In fact, for any constant C the function given by

Fix) = x^ + C is an antiderivative of f.

THEOREM 4.1 Representation of Antiderivatives

If F is an antiderivative of / on an interval /. then G is an antiderivative of /' on

the interval / if and only if G is of the form

Gix) = Fix) + C. for all a in /

where C is a constant.

Proof The proof of one direction is straightforward. That is. if Gix) = Fix) + C.

F'(.v) = fix), and C is a constant, then

G'ix) = ^[/•(v) + d = /"'(-v) + = fix).
ilx

To pio\e the other direction, you can define a function H such that

Hix) = Gix) - F(a).

If H is not constant on the interval /. there must exist a and /' ia < h) in the interval

such that Hid) =^ Hih). Moreoxer. because H is differentiable on (<;. /'). you can apply

the Mean Value Theorem to conclude that there exists some c in ia. h) such that

HV Hih) - Hid)

h - a

Because //(/)) ^ W((;). it follows that //'(<) i= 0. However, because GV') = F'((). you

know that H'ic) = G'ic) - F'ic) = 0. which contradicts the fact that H'it) i= 0.

Consequently, you can conclude that //(.v) is a constant. G. Therefore. G(a) - Fix) = C
and it follows that C(.v) = Fix) + C.
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Fuikiionsor thi' liinii v = 2v + f

Fi(;urt 4.1

Using Theorem 4.1, you can represent the entire taniily of antideri\ati\es of a

function b\ adding a constant to a known antideri\'ati\'c. For example. knowniL' that

D, [.v"] = 2.V, you can represent the family oi all antiderivatives of /(.v) = 2\ by

G(.v) = .v" + C F,imil\ (il ,ill jiiliilci-n.ilueMil /(ii :i

where C is a consiant. The constant C is called the constant of integration. The

family of functions represented by G is the general antiderivative of /. and

G(.v) = .V- + C is the general solution of the diffcrcnl'uil ci/iinlinn

G'(.v) = Iv. I.lllk-lclill.il ci|U,

A differential equation in .v and \' is an equation thai mvolves .v. \. and

derivatives of y. For instance, y' = 3.v and y' = .v" + 1 are examples of differential

equations.

Example 1 Sohing a Differential Equation

Find the general solution of the differential equation y
' = 2.

Solution To begin, you need lo find a function whose deri\alive is 2. One such

function is

A' = 2.V. 2\ IS (//? ;inliJeri\aIi\c 111 2

Now. you can use Theorem 4. 1 to conclude that the general solution of the ddferential

equation is

V = 2.V + C. Genera! soUition

The graphs of several functions of the form \- = 2.v + Care shown in Figmv 4.1.

Notation for Antiderivatives

When soK ing a differential equation of the form

Jx
fix)

it is convenient to write il in the equixalent differential form

ily =/(.v)(/.v.

The operation of finding all solutions of this equation is called antidifferentiation (or

indefinite integration) and is denoted by an integral sign J. The general solution is

denoted bv

Variable M
intei^ratiiin

Constant of

inleeralion

f(.x) dx = F(.x) + C.

Intenrand

NOTE In this text, whenever we write

J fix) dx = Fix) + C. we mean that F
is an antiderivative off on an inten-id.

The expression J /(.v)</.v is read as the anlulcri\i(li\c cf t ""/i iv\pecl u> \. ,So. the

differential dx serves to identify .v as the variable of integration. The term indefinite

integral is a synonym for antiderivative.
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Basic Integration Rules

The inverse nature tif integration and differentiation can be verified hy substituting

F'(,v) for /(a) in the indefinite intecration definition to obtain

Fl\)d\- = Fix) + C. Inteiiiiition is (lie "'inverse" of liirterenlialion.

Moreover, if / f{.\) dx = F(\) + C. then

d_

dx
f{x) dx — fyx). Differentialiun is the '"inverse" oi' iiitegi'ulion.

These two equations allow you to obtain integration formulas directly from differ-

entiation formulas, as shown in the following summary.

Basic Integration Rules

Differentiation Fornnila Intc'griition FniiuuUi

d_

dx

d_

dx

d_

dx

d_

dx

d^

dx

d_

dx

d_

dx

d_

dx

d_

dx

d

[C] =

[tv] = k

[kf(x)] = kf\x)

[/'(.v) ±,?(.v)] =/'(.v) + ,?'(a")

[.V"] = nx"-'

[sin a] = cos A"

[cos A"] = — sin .V

[tan a] = sec-.v

[sec .v] = sec a tan x

[cot .vl = — CSC- x

dx = C

k dx = kx + C

" r "1--
I
CSC x\ = — CSC -Y cot .V

dx

kf(x)dx = k\f{x)dx

[fix) ± f;{x)]dx = \f{x}dx± L{x)dx

v" dx = „ -f I
+ C. /; T^ — 1 Power Rule

cos .V dx = sin .v + C

sin A (/a = — cos.Y + C

sec- A dx = tan x + C

sec X tan x dx = sec .v + C

CSC- X dx = ~ cot X + C

CSC .V cot A dx = — esc V + C

NOTE Note thai ihe Power Rule tor integration has the restriction that ;) ^ -1. The

evaluation of /l/\</v must wail until Ihc introduction of the natural logarithm function in

Chapter .;.
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Example 2 Apphing tlic Basic Integration Rules

Describe the antiderivatives of 3.v.

Solution 3.V il\ = 3 v </ Conslanf Multiple Rule

3 v' (/a Rcuiue (v = .v').

3| ~] + C Power Rule in = \)

= -.V- + C Simplil)

When indefinite integrals are evaluated, a strict application of the basic integration

rules tends to produce complicated constants ot' integration. For instance, in Example 2.

we could have written

3.V ,/.v .V </.v

31 - + C

= - .V- + 3C.

However, becau.se C represents miy constant, it is both cnmbcisomc and unnecessary

to write ?iC as the constant of integration, and we choose the simpler form, iv- + C.

In Example 2. note that the general pattern of integration is similar to that of

differentiation.

Original integral Rewrite ^^ Integrate cz:. Simplify

TECHNOLOGY Some software

programs, such as Derive, Maple.

Mathcad. Mathematica. and the TI-S9.

are capable of pertorming integration

symbolically. If you have access to

such a symbolic integration utility, try

using it to evaluate the indefinite

integrals in Example .^,

Example 3 Rewriting Before Integrating

Original Integral Rewrite

a. |-;</.v

b. V -V </.v

c. 2 sin .V i/.v

v-\/.v

v' -</.v

Integrate

-V2

+ C

+ c

-in.vi/.v 2( — cos.v) + C

Siniplifi'

I

+ C

|v-V- + C

2 cos .V + C

Remember that you can check your answer to an antidifferentiation problem by

differentiating. For instance, in Example 3b, you can check that v^
''" + C is the

correct antiderivative by differentiating the answer to obtain

D.
y

+ c
2\/3

3/\2
LNe dilTerenlialion lo cheek anlKleri\aIi\e.

^^p iiidieates that in the Interactive .10 CD-ROM and Internet 3.0 versions, of tins text

(available at college.hmco.com l van \iill find an Open E.xploniium. wliieli fiirrlier e\pliin's this

example iisinti the enniputer al\;ehra systems Maple. Mathcad. Mathematica. a)}il Derive.
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The basic integration rules listed earlier in this section allow you to integrate any

polynomial function, as demonstrated in Example 4.

Example 4 Integrating Polynomial Functions

a.
I

(l.\ =
1 </.v

= .V + C

b.
I
(v + 2)t/.v = |a,/.v + I 2(/v

Integrand is understood to be

Intesrate.

+ C| + 2.V + C,

+ 2.V + C

Integrate.

C = C, + C,

The second line m the solution is usually omitted.

C.
I

(.rv-* - .\V- + .v) d\ = 3l
^J

- 5r^] + ^ + C Integrate.

3 . 5 , 1 , ^= -.V- - -.V- + -.V- + C Simplify.

Example 5 RcwTiting Before Integrating

"^'' = 1(7=.^^.)''

U'/- + x-"-)dx

-V2
+ T7^ + ^

T-r'/- + 2.v'/- + C

Rewrite as two fractions.

Rewrite vvitti fractional

exponents.

Inteerate.

Simplify.

NOTE When integrating cjiiotients. do not intcgialc the numerator and denominator

separately. This is no more \alid in integration than it is in differentiation. For instance, in

Example 5, be snre you understand that

V + 1
,
fix + 1 ) </.v

I.X 7=

y.v JvA-rfv

Example 6 Rewriting Before Integrating

1 \/sin.v

cos .V / \ cos .V

sec .V tan .v clx

sec .V + C

Rewrite as a product.

Rewrite using trigonometric

identities.

Intel; rate. [21
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(2.4)

f(.,) = .\'-.v + C

The partictilar solution that satisfies

the iiiitiaUondition f(2) = 4 is

Fix) = .V-'
- .V - 2.

Figure 4.2

The particular solution that satisfies

the initial condition F(\) = is

Fix) = -d/.v) + l,.v > 0.

Figure 4.3

Initial Conditions and Particular Solutions

You have already seen that the equation \' = f fix)d\ has many solutions (each

differing from the others by a constant). This means that the graphs of any two

antiderivatives of / are vertical translations of each other. For example. Figure 4.2

shows the graphs of several antiderivatives of the form

(,\v= - \)dx = .v' - X + C General solution

for various integer values of C'. Each of these antiderivatives is a solution of the

differential ci|iialion

dx
1.

In many applications of integration, you are given emuigh mlormalion to

determine a particular solution. To do this, you need only know ihc value of

y = Fix) for one value of .\. (This information is called an initial condition.) For

example, in Figure 4.2, only one curve passes throtigh the point (2, 4). To find this

cur\e. \(iu can use the following information.

Fix) = x' - X + C General solution

Fil) = 4 Inilia! condition

By using the initial condituni in the general solution, you can determine that

Fil) = 8 — 2 + C = 4, which implies that C = -2. So, you obtain

Fix) = X' ~ X - 2. Particular solution

Example 7 Finding a Particular Solution

Find the general solution of

F'ix) = \. X >
v-

and find the particular solution that satisfies the initial ccnidition F{ 1

1

Solution To find the general solution, inteurate to obtain

= 0.

Fix) dx

x-'dx

+ C

+ C, .V > 0.

Fix} = !F'{x)dx

Rewrite as a power.

Integrate.

General solution

Using the initial condition Fil) = 0. you can solve for C as follows.

Fil -- + C = C = I

So, the particular solution, as shown in Figure 4.3, is

1-- +
X

Fix) X > 0. Particular solution
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So far iti this section we have been using v as the variable of integration. In

applications, it is often convenient to use a different variable. For instance, in the

following example in\'ol\ ing lime, the variable of integration is ;.

Example 8 Solving a Vertical Motion Problem

.!(/) = -16f- + 64r + 80

]M) - . 1 = 2

1411 - -
,'* ^

1.511
- / -, / = .^

::ii - ' I = 1 >

1 Hi- 4

ll II 1

- *

Lid - -,'
'

Nil H
/ = ()

'.
' = ^

711- - '

h(l - -

\

."in - - t

41)- - '

M)- -
\

2(1 - - 1

111-

1 1

1 = 5 \

1 1

1 2 4 5

Tunc (in sect niKi

He 'An of a ball at time;

Fi. 11 rt' 4.4

NOTE In Example S. noic that the

posiliiin tunction has the lorni

.v(/) = Jlil- + y„l + -Si-

where g = — .'?2, I'u is the initial velocily,

and ,vi, is the initial height, as presented

(n .Section 2.2.

A ball is thrown upward with an initial velocity of 64 feet per second from an initial

height of 80 feet. See Figure 4.4.

a. Find the position function giving the height .v as a function of the time /.

b. When does the ball hit the grotiiid?

Solution

a. Let I = represent the initial time. The two given initial conditions can be written

as follows.

,s(0) = 80 IiiUial height is SO feel.

s'iO) = 64 Initial \elocity IS fi4 teet per second.

Using ^.^2 feet per second per second as the acceleration due to gravity, you can

write

.v"(/) = -32

sV) = \s"{t)ilt = -32(11 = -32f + Ci.

Using the initial velocity, you obtain .v'(0) = 64 = -32(0) + C,. which implies

that C[ = 64. Next, by integrating s'it), you obtain

s(t) = At)Ji = (-32; + M)ili = - I6r + 64; + G.

Using the initial height, you obtain

siO) = 80 = -16(0-) + 64(0) + C:

which imphcs that C: = 80. Therefore, the position function is

s(i} = -16r + 64; -H 80.

b. LIsing the position function found in part (a), you can find the time that the ball hits

the ground by solving the equation s(r) = 0.

.s(;) = - 16;- + 64; + 80 =

-16(f + \)(t - 5) =

; = -1,5

Because ; must be positive, you can conclude that the ball hits the ground 3

.seconds after it was thrown. _;__

Example 8 shows how to use calculus to analyze vertical motion problems in

which the acceleration is determined by a gravitational force. You can use a similar

strategy to analyze other linear motion problems (vertical or hoi-i/.ontal) in which the

acceleration (or deceleration) is the result of some other force, as you can see in

Exercises 77-88.
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Before you begin the exercise set. be sure you realize that one of the most

important steps in integration is rewriting the integrand \n a form that fits the basic

integration rules. To further illustrate this point, here are some additional examples.

Orifiiihil Iiilci^riil Rewrite

v/^
d\

(t~ + l)-<//

a'- + 3
;— ilx

(?"+ 2/-+ \)Ji

(.v+ 3.v--)(/.v

v(.v - 4)i/.v (V-' ' - 4.v' ')(/.v

jiilci^nitt'

^'9-

^%i-^^
^ + 3(^| + C

Siiiiplily

4x"- + C

1

">

-.v-'''-'(.v - 7) + C

EXERCISES FOR SECTION 4.1

In Exercises 1

—

^. verity the statement by showing tliat the

derivalive of the right side equals the inte};rand of the left side.

1.

/(-P)
+ C

2. I 4.r' - -\c!.x = .x-'+ - + C

3. (.V - 2)(.v + 2)</v 4.V + C

2fv- + 3)

3vA
+ C

In P^xercises 5-8. tind the general solution of the differential

equation and cheek the result by differentiation.

Jt

ilx

M-

'1^-^"

clH

dx

In Exercises 9-14. complete the table using Example .1 and the

examples at the top of this page as a model.

Origiiuil Integral Re»rne Inlegnite Siiiiplify

9. iG dx

10. - </.v

11
1

dx

12. I v(v- + ijdx

13. |^</.v

1

14. \^—,dx
13.V)-

In Exercises 15-34, find the indefinite integral and check the

result \i\ differentiation.

15. Ii + 3)</v

17. (2.V - 3.v-)</.v

19. Mv"- + 2)J.v

21. kv'^ + 2.V + \)dx

23.
I
^7~dx

dx

16. (5 - x)dx

18. (4.v' + 6.V- - l)</i

20. h.v' - 4v + 2)dx

22. n..v + ^j</.v

24. \(i/x^ + \]dx

-> Ji

27.
V- + .V + 1

- dx

29. (v + l)(3.v - 2)(/.v

31. v-^yrfy

33. ,/,v

26. J^'/v

28.
".v= + 2.V - 3

J .v^

30. (2/- - 1)-,/;

32. (1 + ^i\i\li

34. 3,//

In Exercises 35-42. find the indefinite integral and check the

result hv differentiation.

35. (2 sin .v + 3 cos .v) dx 36. (;- - sni /I di

37. I 1
- CSC t col t) dt 38. \{H- + sec- 0) dH

39. (sec- d - sin 0) dO 40. | sec \(tan v - sec \) dy

41. (tan-v + l),/v 42. I^^^^^V.^-
I
- cos- .V
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In Exercises 43 and 44, sketch the j;raphs of the function

sj(.v) =/(.v) + C for C = -l.C = (I, and C = 3 on the same set

of coordinate axes.

43. /(a) 44. fix)

In Exercises 45—18. the yraph of the derivative of a func-

tion is gi>en. Sketch the graphs of nio functions that ha\e tlie

fjiven derivative. (There is more than one correct answer.) To

print an enlarged copy of the graph, go to tlie website

WW w. iiuithi^idphs.coiii .

45.

47.

Pp SVH/jf Fields In Exercises 53 and 54, a differential equation, a

point, and a slope field are given. A sUipefield (or direction field)

consists of line segments with slopes given by the differential

etjuation. These line segments give a visual perspective of the

slopes of the solutions of the differential equation, (a) Sketch

two approximate solutions of the differential equation on the

slope field, one of which passes through the indicated point.

(To print an enlarged copy of the graph, go to the website

M»M:iiuitlif;ia/>lis.C()iii.) (b) l^se integration to find the particular

solution of the differential equation and use a graphing utility

to graph the solution. Compare the result with the sketches in

part (a).

In Exercises 49-52, find the equation for v, gi\en the deri\ati\e

and the indicated point on the curve.

49. ^ = 2.V - 1 50.

(1.1)

51. -;- = cos v

ll.X

52.
,/\

>

"--^+

53.

\ \ \ \ \'^.-

\ \ \ \ \\
\ \ \ \ \\-
\ \ \ \ \\
\ \ \ \ \\-
\ \ \ \ \\
\ \ \ \ \\'
\ \ \ \ \ \
\ \ \ \ \\-
\ \ \ \ W

_T \ \ s ^ \
v \ \ \ \ \
\ \ \ s \ \
\ \ \ \ \ \

\ \ \ \ \ \

\ \ \ \ - H-

A- 1. (4.2)

^ y / / /
~.~~-^^ y / / /

^ / / /
-"' y / / /

-^ y / / /

54.
Jv

-.— -^^ / /
-^ y / / /

-—— ^/ / / /—-^ y / /

t\l.v V'- '^' l- I h-'!

-''-
!

'

—^/ / / /

--x / / /
~ ^^ ^ y / /

-- ^ / / /
---X / / /

I / / / » 3 ^

I / / /-x
I / / / -•

/ ; / /-N
I ; / /-\-
/ ; / /-v
\ \ \

.'
\

--

-3 ; / /--^
( ; / /-N-
/ / / /-x
I ( / /-N-
I / / /-N
I / / /—3-

I. (-1,3)

x-/ / I

;

N-/ / I /

^-/ ; I

/

\-/ / ; (

\-/ / /

/

-
f / I

> -V

\-/ / I 3v-/
; I

(

\-/ ; I

(

---/
; I I

^-/ I I I

N-/ ; I I

In Exercises 55-62. solve the differential equation.

.55. /'(,v) = 4v./(()) = (^

56. kIx) = 6.v-.,i;(0) = -1

.=;7. /)'(;) = Sf- + 5.li{\) = -4

58. !'{.'.) = 6.V - 8,v\/(2) = 3

59. fix) = 2. f'(2) = .S, /(2) =10

60. /"(.v) = .V-. /'(O) = (1. /(ID = 3

61. /"(.v) = .V
- -. /'(4) = 2. /(()) = (1

62. fix) = sin V. /'(()) = I. /(O) = 6

63. Tree Growth An evergreen nnrscr\ u^ualK sells a certain

shrub after 6 years of growtli and shaping. The growth rate

during those 6 years is approxnnalcd hy

dh

dt

whei"e I is the time in years and // is the lieiglit in centimeters.

The seedhngs are 12 centimeters tall when planted (r = 0).

(a) Find the height alter / \ears.

(b) How tall are the slirubs when they ate sold'.'

64. Population Growth The rate ol grow Ih dP/dl of a population

of bacteria is proportional to the square root ol';, where P is the

population size and I is the time in days (0 < f < 10). That is,

dl

The initial size of the population is 500. After I day the popu-

lation has grown to 600. Estimate the population after 7 days.

1.5/ + 5
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65. L'sc the graph of /
' in the ligiirc in answer the follow nig.

given that /(O) = -4.

(a) Approximate the slope of / at .v = 4. Explain.

(h) Is it possible that /(2) = -I ''Explain.

(c) Is /(?) - /(4) > ().' Explani.

(d) Approximate the \ahic of a where / is maximnm.

Explain.

(el Approximate an\ inlervaN ni which the graph of / is

concave upward and any intervals in v\hich it is

concave downward. Approximate the v-coordinates of
\

any points of inflection

(f) Approxmiate the .v-coordinate of the miniinum of /"(.v).

(g) Sketch an approximate graph of /. To print an enlargetl

copy of the graph, go to the wchsilc www.iiuiili-

graphs.com.

Figure for 66

66. The graphs of /' and /
' each pass through the origin. Use the

graph of /"shown in the figuic lo sketch the graphs of /

and /'. To print an enlarged cop\ of the graph, go to the

website wwiv.maihgniphs.cimi.

\cilictil Motion In Extrcisis 67-70. ust a{t) = -}1 fill per

second per second as the accelenilioii due (o i;rii\il\. (Nenlect

air resistance.)

67. A hall IS throw II \crlicall\ upward from a height of h feet with

an initial velocity of dO feet per second. How high will the

hall go?

68. Show that the height above the ground of an object thrown

upward from a point ,\,| feet above the ground with an initial

velocity of r,, feet per second is given by the function

f(i) = -I6r-+ r„f + .v„.

69. With what initial velocity must an object be thrown upward

(from ground level) to reach the top of the Washington

Monument (approximately S.'iO feet)'

70. A balloon, rising vertically with a velocity of 16 feet per

second, releases a sandbag at the instant it is 64 feet above the

ground.

(a) How many seconds after its release will the bag strike the

ground?

(b) .At what velocitv will it hit the 'ground?

\citicul Motion In Kxereises 71-74. use a{t) = -y.S nielers

per second per second as Hie acceleration due lo gravilv.

(Neglecl air resistance.)

71. Show that the height above the ground of an ob|cct Ihrown

upward from a point .v,, meters above the ground w ith an iniiial

velocity of i',, meters per second is given by the function

/(') -4.9r + !„/ + .V,,.

72. The Grand Canyon is 1600 meters deep at its deepest point. A
rock IS dropped Ironi the iini above this point. Express the

height of the rock as a tiinclion of the time / in seconds. How
long will It take the rock lo hit the canyon tloor'.'

73. .A baseball is ihrown upward Irom a height of 2 meters with a

velocity of 10 meters |ici second. Determine its maximum
height.

74. With what initial velocity must an obiect be thrown upward

(Irom a height ot 2 meters) lo reach a maximum height ol 200

meters'

75. I.iiiiar Giavit)' On the moon, the acceleration due to gravity

IS -
1 .6 meters per second per second. A stone is dropped Irom

a cliff on the moon and hits the surface of the moon 20 seconds

later. How far did it lall.' What was its velocity at impact.'

76. Escape Velocity The minimum velocity required for an obfcct

to escape earth's grav itational pull is obtained from the solulion

of the equation

;/r = - GM - il\r (

where r is the velocity of the object projected from earth, v is

the distance from the center of earth. G is the gravitational

constant, and M is the mass of earth. Show that r .md \ are

related bv the eqiuition

= ,,;+2GA/|--^

where r„ is ihc initi.il vclocilv ot the oh|cct and A' is the radius

of earth.

Rcctilinetir Motion In Exercises 77-80. consider a particle

niovint; aloni; llie v-axis wliere .v(/l is the position o( llie particle

at time t.x'(l) is its velocitv, and .v"(/) is its acceleration.

77. .v(;l = r - 6/- + '-)!- 2. < r < 5

(al Find the velocity and acceleration of the particle,

(h) Find the open Mnlervals on whicli the particle is moving to

the right.

(c) Find the velocity of the particle when the acceleration is 0.

78. Repeat Exercise 77 for the position function

.v(/) = (/ - 1)(; - 3)'. < / < 5.

79. .A particle moves along the .v-axis at a velocity of i(r) = \l -fu

t > (J. At time / = I . its position is .v = 4. Find the acceleration

and position functions lor the particle.
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80. A particle, initially at rest, moves along the v-axis such that its

acceleration at time r > is given hy ci{/) = cos t. At the time

t = 0. its position is a = 3.

(a) Find the \elocity and position functions tor the particle,

(h) Find the \alues of t for which the particle is at rest.

81. Acceleration The maker of a certain automobile advertises

that it lakes 13 seconds to accelerate from 2,'i kiloineters per

hour to SO kilometers per hour Assuining constant acceleration,

compute the follow ing.

(a) The acceleration in meters per second per second

(h) The distance the car traxels durmg the 13 seconds

82. Deceleration A car lra\eling at 4,'i miles per hour is brought

to a stop, at constant deceleration. 132 feet from where the

brakes are applied.

(a) How far has the car mo\ ed w hen its speed has been reduced

to 30 miles per hour.'

(b) How far has the car mo\ed when its speed has been reduced

to l.'i miles per hour.'

(c) Draw the real number line from to 1 32. and plot the points

found in parts (a) and (b). What can you conchide'

83. Acceleration \\ the instant the traffic light turns green, a car

that has been waiting at an intersection starts with a constant

acceleration of 6 feet per second per second. At the same

instant, a truck traveling with a constant velocity of 30 feet per

second passes the car

(a) How far beyond its starting point will the car pass the truck?

(b) How fast will the car be traveling when it passes the truck?

84. Think Ahont It Iwo cars starting from rest accelerate to

65 miles per hour m 30 seconds. The velocity of each car is

.shown in the figure. Are the cars side by side at the end of the

30-second lime interval'' Explain.

V

rp 86. Data Analysis A \ chicle slows to a stop from 4.i miles per hour

in 6 seconds. The table shows the velocities in feet per .second.

in 211 v>

Time (111 seconds)

rp 85. Data Analysis The table shows the velocities (in miles per

hour) of two cars on the entrance ramp of an inlcrsiate highway.

The time / is in seconds.

/ 5 10 \5 20 25 30

•'l
2..'^ 7 16 24 45 65

V, 21 38 51 60 64 65

(a) Rewrite the table converting miles per hour to feet per

second.

(b) Use the regression capabilities of a graphing utility to lit

quadratic models to the data in part (a).

(c) Approximate the distance traveled by each car during the

30 seconds. Explain the difference in distances.

t 1

-)

3 4 5 6

V 66.0 61,1 4S,9 33,0 17,1 4,8

(a) Use the regression capabilities of a graphing utility to fit a

cubic model to the data,

(b) Approximate the distance traveled by the car during the 6

seconds.

87. Acceleration Assume that a fully loaded plane starting from

rest has a constant acceleration while moving down a runway.

The plane requires 0,7 mile of ninway and a speed of 160 miles

per hour in order to lift off. What is the plane's acceleration?

rp S8. Aii-plane Separation Two aiiplanes are in a straight-line land-

ing pattern and, according to FAA regulations, must keep at least

a 3-mile separation. Airplane A is 10 miles from touchdown and

is gradually slowing its speed from 1 50 miles per hour to a land-

ing speed of 100 miles per hour. Airplane B is 17 miles from

touchdown and is gradually slowing its speed from 250 miles per

hour to a landing speed of 1 15 miles per hour,

(a) Assuming the deceleration of each airplane is constant, find

the position functions s^ and ,?, for Airplane A and .Airplane

B, Let / = represent the times when the aiiplanes are 10

and 1 7 miles from the airport,

(b) Use a graphing utility to graph the position functions,

(c) Find a formula for the magnitude of the distance d between

the twi) airplanes as a function of /, Use a graphing utility

to graph (/, Is [/ < 3 for some time prior to the landing of

Airplane A?If so, tind that time.

True or False? In Exercises 89-94. determine whether the

statement is true or false. If it is false, explain why or gi^e an

example that sho«s it is false.

89. Each antiderivative of an /ith-degree polMiomial function is an

(i; + 1 Ith-degree polynomial function.

90. If /)|vl IS a polynomial function, then /' has exactly one

antideri\ati\e whose graph contains the origin,

91. If F(.v) and GIv) arc antiderivatixes of fix), then f(,v) =

G(.v) + C,

92. If /"(.v) = .i,'(.v), then /.efvii/.v = fix) + C.

93. J/lv),i,.(.v),/.v = .f / (.v)</.v j;!;(.v);/,v

94. The anlidcri\ati\e of fix) is unique,

f I, < .V < 2
95. If r(v) =

.
/' is continuous, and fd) = 3.

[3,v, 2 < .V < 5

find /. Is / differentiable at .v = 2?

96. Let six) and c(.v) be two functions satisfying s'ix) = c(.v) and

c'(,v) = -s(x) for all .v. If ,v(()) = OanddO) = 1. prove that

[,v(,v)]- + [cix)f =1,
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s«tai^

• Use signia notation to write and evaluate a sum.

• Understand the concept of area.

• .'Vppro.ximate the area of a plane region.

• Find the area of a plane region using limits.

Sigma Notation

In the preceding section, you studied aiitiditlerentiation. In this section, yoti will look

ftuthcr into a problem introduced in Section 1.1—that of finding the area of a region

ni the plane. At first glance, these two ideas may seem unrelated, but you will discover

in Section 4.4 that they are closely related b\ an extremely important theorem called

the Fundamental Theorem of Calculus.

We begin this section by introducing a concise notation for sums. This notation is

called signia notation because it uses the uppercase Greek letter sigma. written as ^.

Sigma Notation

The sum of ;; terms a., a,. (7,

1". (I , + (N + (( 5 +

. (7„ IS written as

where / is the index of summation, </, is the /tli tt'rm of the sum. and the

upper and lower bounds of summation ai e /; and 1

.

NOTE The upper and lower bounds must be constant with respect to the index of simimation.

However, the lower boinid doesn't have to be 1. Any integer less than or equal to the upper

hound 1-. Ie>;itiniate.

Example 1 Kxaniplcs of Sijjma Notation

a. V , = I + 2 + 3 + 4 + _S + 6
/= I

b. ^(/ + 1) = 1 + 2 + .-^ + 4 + 5 + 6
/
= 11

c. V /- = 3- + 4- + 5- + 6- + 7-

FOR FURTHER L\FORMATIOi\ For a

geometric interpretation of summation

formulas, see the article. "Looking at

2 k and V k- Geometrically" by Eric

i = I II

Hegblom in MallicDtaiics Teacliei: To

\ iew this article, go to the website

»»»: imilliarlicle.s. com.

d.2--(^-^ + ;i- + 1) (2- + 1) + + -(/r +
n

e. V/(.v,)A.v =/(.v,)A.v +./-(.v,)A.v + • • • +/(.v„)A.v
;=

I

From parts (a) and (b). notice that the same sum can be represented in different ways

usins: sicma notation. '^

Although any variable can be used as the index of summation ;'.
/. and k are often

used. Notice in Example 1 that the index of summation does not appear in the terms

of the expanded sum.
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The Slm of the First 100 Integers

Carl Friedrich Gauss's (1777 -1855) teacher

asked him to add all the integers from 1 to 100.

When Gauss returned with the correct answer

after only a few moments, the teacher could

only look at him in astounded silence. This is

w hat Gauss did;

1 + 2 + 3 +

100 + 99 + 98 +

+ 100

+ 1

101 + 101 + 101 +

™4^^5050
101

This is generalized by Theorem 4.2. where

The following properties of summation can be derived using the associative and

commutative properties of addition and the distributive property of addition over

multiplication. (In the first propeily. k is a constant.)

1. Ska, = k^a,
I-- \ 1=1

2. V(„ ± /, )
= V„ ± V/,

I
-=

I /
-

I 1=1

The next theorem lists some useful formukis for sums of powers. A proof of this

theorem is given in Appendix B.

THEOREM 4.2 Summation Formulas

1-2'

3. V,=
n{n + l)(2/( + I)

2- 2' =

1= I

4. 2''

;;(); + 1

-)

n- [n + II-

Example 2 Evaluating a Sum

^i +
Evaluate ^ ^ for /; = 10. 100. 1000. and 10.000,

Solution Applying Theorem 4.2. you can write

n
^i + \ 11 + 3

.-^ "- -"

10 0,65000

100 O.Sl.'iOO

1.000 0.501,50

10.000 0,50015

v' +

:^,S,"*"
Factor constant \/ii

_^^ ;;-

=
iiri:) Wnie as two sums.

=
~i?-

~n(ii +11

L 2
^" Apply Theorem 4.2

=
11-

R- + ?<n^
Simplify,

T

n -f 3
(;;,,nn].t\.

Now you can evaluate the sum by substituting the appropriate values of ;;, as shown

in the table at the left. '^':

In the table, note that the sum appears to approach a limit as ;( increases. Although

the discussion of limits at infinity in Section 3. .5 applies to a variable .v. where .v can

he any real number, many of the same results hold true for limits involving the

variable ;;. where ;; is restricted to positive integer values. So, to find the limit of

(;; + 3)/2» as ii approaches infinity, you ctm write

II + 3
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Ri'L'tangle: -1 = hh

Figure 4.5

Triangle: .1 = ^hli

Fiiiure 4.6

Area

In Euclidean geometry, the simplest type of plane region is a rectangle. Although

people often say that the foniuihi for the area of a rectangle is /i = /)/;, as shown in

Figure 4.5. it is actually more proper to say that this is the definition o'i the area of a

rectangle.

FroiH this definition. \c)u can de\elop formulas for the areas of many other plane

regions. For example, to determine the area of a triangle, you can tVirm a rectangle

whose area is twice that of the triangle, as shown in Figure 4.6. Once you know

how to find the area of a triangle, you can determine the area of any polygon by

suKli\ iding the polygon into triangular regions, as shown in Figure 4.7.

Parallelogram

Figure 4.7

Hexagon Polygon

Archimedes (287-2 12 b.c.)

Archimedes used the method of exhaustion to

derive formulas for the areas of ellipses,

parabolic segments, and sectors of a spiral.

He is considered to have been the greatest

applied mathematician of antiquity.

FOR FVRTHER ISFdRMATlOX For an

alternative development of tlie formula for

the area of a circle, see the article "Proof

Without Words: Area of a Disk is ttR-"

by Russell Jay Hendel in Mathematics

Magazine. To view this article, go to the

website \\w\\:iiuitliarlicle\A(>iij.

Finding the areas of regions other than polygons is more difficult. The ancient

Greeks were able to determine formulas for the areas of some general regions

(principallx those bounded hy conies) by the exiuiiistion method. The clearest

description of this method was given by Archimedes. Essentially, the method is a

limiting process in which the area is squeezed between two polygons—one inscribed

in the region and one circumscribed about the region.

For instance, in Figure 4.8 the area of a circular region is approximated by an

//-sided inscribed polxgon and an //-sided circumscribed polygon. For each value of//

the area of the inscribed polygon is less than the area of the circle, and the area of the

circumscribed polygon is greater than the area of the circle. Moreoxer. as // increases,

the areas of both polygons become better and better approximations o'i the area of

the circle.

The exhaustion method for finding the area of a circular region

Figure 4.8

In the remaining examples in this section, we u.se a process that is similar to that

used bx Archimedes to determine the area of a plane region.
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(a) The area of the parabolic region is greater

Ihaii the area ol the rectangles.

-> n

^

4-
/(.v)

'

3 - \
2 -

1
- \

1

ib) riie area ot the parabolic region is less

than the area of the rectangles.

Figure 4.9

The Area of a Plane Region

Recall from Section 1.1 that the origins of calculus are connected to two classic

problems: the tangent line problem and the area problem. We begin the investigation

of the area problem with an example.

Example 3 Approximating the Area of a Plane Region

Use the tl\e rectangles in Figure 4.9(a) and (b) to find two approximations of the area

of the region lying between the graph of

ylv) = -.V- + 5

and the .v-a\is between .v

Solution

ft and .V

a. The right cndpoints of the five intervals are ^/, where / = 1.2. 3. 4. ?. The width of

each rectangle is ^. and the height of each rectangle can be obtained by c\;iluating

/ at the right endpoint of each interval.

ft.

-

5

2 4 4 6 6 S 8 1ft"

5'
.'i ."i" .'S .s' ,s 5' S

I I t

E\akiate f at the right endpoints ol these intervals.

The sum of the areas of the five rectangles is

Heiaht Width

V'- + 5
162

25
6.48.

Becau.se each of the fi\e rectangles lies inside the parabolic region, you can

conclude that the area of the parabolic region is greater than 6.48.

b. 'file left endpoints of the five intervals are t('
^

I ). where / = 1.2. .3. 4. 5. The

width of each rectangle is ^. and the height of each rectangle can be obtained by

evaluating / at the left endpoint of each inlerval.

Hei-.:lil WMtli

If + 5
202

2.5
8.08.

Because the paitibolic region lies within Ihc union of the five recttingular regions,

you can conclinlc ihal the area of the parabolic region is less than 8.(18.

By combining the results in parts (al ;ind (b). you can conclude that

6.48 < (Areaofrecion) < 8.08. 'Zl

NOTE By increasing the luimher of rectangles used in E.xaniple .^. you ctm obtain closer and

closer appro,\imations of the area of the region. For instance, using 2.'i rectangles of width ^
each, you can conclude that

7.17 < (Area of region) < 7.49.
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The region under a curve

Figure 4.10

f(mj<

The interval [a. h] k divided into ;;

/) - (/

siihintervalsot widlhA.v =
;;

Figure 4.11

Upper and Lower Sums

The procedure used in Example 3 can he generalized as follows. Consider a plane

region bounded above by the graph of a nonnegatixe. continuous function \' = fix), as

shown in Figure 4. 10. The region is bounded below by the v-axis. and tlie left and right

boundaries of the region are the vertical lines .v = ci and v = h.

To approximate the area of the region, begin by subdividing the interval [a. b] into

II subintervals. each of width A.v = (b — a)/n, as shown in Figure 4.11. The end-

points of the intervals are as follows.

U = .V,, .V, A^ -V„ - h

a + O(A.v) < a + l(A.v) < a + 2(A.v) < < (/ + /((A.v)

Because / is continuous, the Extreme Value Theorem guarantees the existence of a

minimum and a maximum value of /'(.v) in ecich subinterval.

/(;»,) = Minimum value affix) in /th subinterval

/W,) = Maximum value of f(.v) in ;th subintcr\al

Next, define an inscribed rectangle lying IiimiIc the /th subrcgion antl a

circumscribed rectangle extending outside the ;th subregion. The height of the /th

mscribed rectangle is /(»;,) and the height of the fth circumscribed rectangle is /(/V/, ).

For each i. the area of the inscribed rectangle is less than or equal to the area of the

circumscribed rectangle.

/Area of inscribed \ ,,
, , .,.,>. /Area of circumscribed

)

= /(/»,) A.v < /(A/,)A.v =
rectancle rectangle

The sum of the areas of the inscribed rectangles is called a lower sum. and the sum

of the areas of the circumscribed rectangles is called an upper sum.

Lower sum = ,v(/;) = V /'(/;;) A.v Area of ln^crlbed recunsiles

;= I

Upper sum = Sin) = '^
/"(A'/, ) A.v Area ufcircumvcribed rectangles

,
-

I

From Figure 4. 1 2. you can see that the lower sum ,v(/;) is less than or equal to the upper

sum Sin). Moreover, the actual area of the region lies between these two sums.

.v((() < (Area of region) < S(ii)

.v=/(-v)
\ v=/(.v)

Area of inscribed rectangles

is less than area of region.

Figure 4.12

Area of region Area of circumscribed

rectangles is greater than

area of region.
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Inscribed rectangles

(

4- r-l

/
/ii = '"

3- -

/

2 -

1
-

^
7

/

-1
1

y 3

Circuniscnbeil reclanyle:

Fi<;iiit4.13

Example 4 Finding Upper and Lower Sums lor a Region

Find the upper and lower sums for the region boiuided hy the graph of fix) = a - and

the .v-axis between .v = and .v = 2.

Solution To begin, partition the inter\al [0, 2] into ;; subinter\als. each of w idth

h - u _ 2 - U _ 2

/; n
A V =

Figure 4.13 shows the endpoints of the subinterxals and se\eral inscribed and

circumscribed rectangles. Because / is increasing on the interval [(). 2], the minimum

value on each subinterval occurs at the left endpoint. and the maximum value occurs

at the light ciidpoint.

Left Endpoints

111, = + (/ - 1

)

2(/ - 1)

Right Endpoints

M. = + /

Using the lelf endpoints. the lower sum is

21/ - 1)
v(/() = V f{in)\A = V

/

/
--

1 /I n

(/ - 1)

sbr --' + >»

y,^ - 2y, + vi

.S
\
iAn + l)(2» + 1) _ ^

lAn + 1)

+ "

(2;/' - 'hti- + ;()

8 4 J_ Lmver sum

Using the right eiidpomis. the upper sum is

SUi) = V /u/)A.v = y /(-](-

15
/;(/; + 1)(2/) + 1)

ill

{III-' + ill- + n)

8 4 4
- + - + r

3 II 3/r
lipper sum \X
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EXPLORATION
For the region given in Example 4,

evaluate the lower sum

sin)
_ 8

~
3

4
+ 4

3n-

and the upper Mini

Sin)
_ 8
~

3

4
H h

n

4

3/;-

for II = 10. 100, and 1000. Use your

results to determine the area of the

region.

Example 4 illtistrates some important things about lower and upper sums. First,

notice that for any value of;;, the lower sum is less than (or equal to) the upper sum.

,
8 4 4 8 4 4

sill) = --- + —-^ <- + - + —-, = S(ii)
3 /; in- 3 ;; 5ir

Second. the difference between these two sums lessens as /; increases. In fact, if you

take the limit as ;;—>cc. both the upper sum and the lower sum approach ^.

8
lim s{ji) = hm h :^^

/8 4 4
lim S(ii) = lim t + - + :r^
n— y-- i,~-jL \.i /; .i;r

Lower sum limit

Upper sum limit

The next theorem shows ihtit the equivalence of the limits (;is ;; ^>oc) of the upper

;ind lower sums is not mere coincidence. It is true for all functions that are continuous

and nonnegative on the closed interval [a. h\. The proof of this theorem is bcsl lefl to

a course in advanced calculus.

THEOREM 4.3 Ltmit of the Lower and Upper Sums

Let / be continuous and nonncgatnc on the intcrxal ["./']. The limits as /( ^. CO

of both the lower anil tipper sums exist md are eqti; 1 to eac li.ithcr That IS.

lim ,v( //)
= lim V /(/,; )A.v

lim V /(A/,)A.v

lim S(n)

where A.v == [b
- u)/n and ,/('",) and ./'(W, ) are the minimum and maxinnim

values of / on Iht subinterval.

/U',)

The width of the ;th subiiiierval is

A.v = .V,
- .v,_ |.

Figure 4.14

Because the same limit is attained for bolh the minimuni \alue /(»;,) and the

maximum value f(M,). it follows from the Squeeze Theorem (Theorem 1.8) that the

choice of .V in the /th subinterval does not affect the limit. This means that you are free

to choose an ayhitnivy .v-value in the ;lh subinterxal. as m the following ilcfiiutioii of

the Liiva of CI ivgiaii in the plunc.

Definition of the Area of a Region in the Plane

Let /' be continuous and nonnegative on the interval [a. /']. The area of the

region hounded by the graph of/ the .v-axis. and the vertical lines .v
~ ii and

.V = b is

n

Area = lim V /'(c, )A.v, .\'
,
< r < .v,

where A.v = (/) — (/)/;( (see Figure 4.14).
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r

(1.1)

/
(0,0)

1

The area of the ret

of /. the A'-a,\is. a

Figure 4.15

ion hoiiiuleii hy the graph

= (I. and V =
I IS 4.

Example 5 Finding Area by the Limit Definition

Find the area of the region bounded by the graph /(.v) = .v\ the .v-a.\is, and the vertical

lines .V = and v = 1. as shown in Figure 4.15.

Solution Begin by noting that / is continuous and nonnegative on the interval [0, I].

Next, partition the inter\al [0. 1] into ;; subintervals. each of width A.v = \/ii.

According to the defniition of area, you can choose any .v-valuc in the /th subinterval.

For this example, the right cndpoiiits c, = i/n are comenient.

Area = _hm Y/U-,)A.v = ^Hm2:i-)l-
/\Vi Riglil endpoinls: c,

lim —rV

1 /; (/) + D"
,1^-^- 1]-' 4

lim -
,r—-j: \4

+
1 1

2;;
^ 4ir

The area of the region is 4.

/?»^ Example 6 Finding Area by Ihc Limit Definition

Find the area of the region bounded h\ the graph of / (.v) = 4 — .v-^. the .v-axis, and the

\ertical lines .v = 1 and a = 2. as shown in Figure 4.16.

4-
^^\ /(v) = 4- .V-

3-
- \

7--

1
-

\

\
1

-}

The area of the reuioii hounded h\ the graph

of /. the .v-axis. .V = i.andv = 2isj.

Figure 4.16

Solution The function / is coiitinuoirs and nonnegative on the interval [l. 2]. and so

you begin bv partitioning the inter\al into ;; subintervals. each of width A.v = \/ii.

Choosing the right endpoint.

c, = a + /A.v = 1 + -

of each subinterval. you obtain the follow in>;.

Area = lim V/((,)A.v= lim V 4 1 +

Ritilil ciuipoinls

lim y I
3 - - -

A\ ,; n-i\n

lim l-t? --.y^i--\r

lim

3 -
I

1 1 1

- + + :

3 2n 6n-

The area of the region is j.
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The last example in this section looks at a region that is bounded by the v-axis

(rather than by the .v-axis).

Example 7 A Region Bounded by the v Axis

The iireii of the reguin hinindeil b> the graph

of / and the i-axis tor < ] < 1 is j.

Figure 4.17

Find the area of the region bounded by the graph of /'( y) = y- and the y-axis for

< y < 1, as shown in Figure 4.17.

Solution When / is a continuous, nonnegative function of y, you still can use the

same basic procedure illustrated in Examples 5 and 6. Begin by partitioning the

interval [0. l] into ;; subintervals, each of width Ay = \/n. Then, using the upper

endpoints f, = //;;. you obtain the follow ing.

Area = lim V/-(r)Av= lim v(-V(- Llpper endpoinls

lim ^V /-

tim —
i— y- ir

iiiii + \n2ii + 1)

hin - + — + —

:

,3 2/1 6/;-

The area of the region is j.
m

EXERCISES FOR SECTION 4.2

T^ In Exerci.ses 1-6, find the sum. Use the summation capabilities

of a graphing utility to verify your result.

1. 2'-' + "
/ = 1

1

3. y,TT
k- + 1

2. Vi(/.- - 2)

^•1)

6. 2[(' - l)= + (/+ IM

In Exercises 7-14, use sigma notation to write the sum.

1, 1
I I

7. H 1 h

3(1) 3(2) 3(3)
+

3(9)

8.

9.

10.

11.

=i *; s
\ h +

1+1 1+2 1+3

n^'^-^

1 + 15

;r

+ #^ 3 + f
\8/

3

+
-(i)1

+ +
-1-

1
-t

1

- + • • • + (-)
-'_2,

(-)
JV"/ _V " / ;; J \"/

12.

/I \2"

(A ^ r. /2» ,V1 /:
1 - -] + - + 1 1

-
1

— -
1

-

11 \iii
1

' " / \l

13.
T + - (-)- + 2(,+^y (-)

(-)

111 J \nl \ /(

/

\nl

A- («r +

.

/|\ [7 In- 1

\;;/ V \i] 1 \nl \ \ ;;

rp In Exercises 15-20, use the properties of summation and

Theorem 4.2 to evaluate the sum. llse the summation capabili-

ties of a graphing utility to verify your result.

15. |;2,

17. fu-\r-

19. f^id ' \)~

16. V(2; - 3)

18. V(,- - 1)

;=
I

20. ^(((- + 1)

rp In Exercises 21 and 22, use the summation capabilities of a

graphing utility to evaluate the sum. Then use the properties of

summation and Theorem 4.2 to verifv the sum.

21. 2('' + -^) 22. 2('' - 2/)
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In Exercises 23-26, bound the area of the shaded region by

approximating; the upper and lower sums. Use rectangles of

width I.

25. v

5

4

3

-l-^A-
12 3 4 5

2 3 4 5

In Exercises 27-3(1, use upper and lower sums to approximate

the area of the region using the indicated number of subintervals

(of equal width).

27. A' 28. v = ,, A + 2

f^-v

29. 30. V = yi - .V-

In Exercises 31-34, find the limit o{ s{ii) as n ^oo.

31. ,v(/()

32. ,v(/()

33. sin)

81

64

18

n-(n + \y-'

4

n{ii + 11(2/ ( + n]

6

ll(ll + I)

34. .v(/;)

ii(ii + 1)

In Exercises 35-38, use the summation formulas to rewrite the

expression without the summation notation. Use the result to

find the sum for ii = 10, 100, 1000, and 10,000.

, 4j + 3
35. V^",-

37 ^6«i_^l)

36. y

In Exercises 39-44, find a formula for the sum of;/ terms. Use

the formula to find the limit as ;; ^ oo.

39. l,m V ^ 40}^m)\j^
41. lim y — (, - 1)^

43. lim y ( 1 + -

42. lim y 1 +

44. Imi y 1 +

II I \n I

2iVl2\

45. Numerical Reasoning Consider a triangle of area 2 bounded

by the graphs of v = v. \' = 0. and a = 2.

(a) Sketch the region.

(b) Divide the interval [0. 2] into /; subintervals of equal width

and show that the endpoints are

< ll
'

1 < < {i: - \)[-] < II

(c) Show that s{n) = V

(d) Show thatS(;;) = V

(e) Cimiplelc the tiibie.

(/ - 1)(-)
\ll/

_

\ii-\ (-]
[\nh [„)

11 5 10 50 100

i(«)

Sin)

(fl Show that Hm s{ii) = lim Sin) = 2.

46. Numerical Reasoning Consider a trapezoid of area 4 bounded

by the graphs of y = a, y = ().>= 1, and a = 3.

(a) Sketch the region.

(b) Di\ ide the inter\al [I. .i] uito /; subinter\als of equal width

and show that the endpoints are

1 < 1 + l(-] <

(c) Show that.v()() = V

(d) Show that S(;i) = y

(e) Complete the table.

< 1 + (;i - 1) - < 1 + /I

1 + (/ - 1)1

1 + ;

n 5 10 50 100

s(n)

S(«)

(t) Siunv that lim ,s(/() ^ hm S{n) = 4.
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In Exercises 47-56, use the limit process to find the area of the

region between the graph of the function and the v-a\is over the

indicated interval. Sketch the region.

Function Inten'al Fuuclion Inlcn'iil

47. V = - 2a + 3 [0.1] 48. y = 3a - 4 [2.5]

49. ^' = A- + 2 [0. 1] 50. \- = A- + 1 [0. 3]

51. 1 = 16 - A- [1.-^] 52. \ =
\
- X- [-1.1]

53. V = 64 - A' [1.4] 54. \ = 2.x - a' [". 1]

55. \- = A- - A-' [-1-1] 56. y = A- - a' [~i.o]

In Exercises 57-62, use the limit process to find the area of the

region between the graph of the function and the v-a\is over the

indicated v-interval. Sketch the region.

57. fix) = 3v. < y < 2 58. ,!,'(yl = 31. 2 < x < 4

59. /(\) = y-, < y < 3 60. /(\ )
= 4^ - 1-. 1 < \ < 2

61. gly) = 4y" - y\ 1 < y < 3

62. hiy) = y-' + 1. I < y < 2

In Exercises 63-66 use the Midpoint Rule

Area=|;/(^:-^kv

with H = 4 to approximate the area of the region bounded

by the graph of the function and the A-a\is over the indicated

interval.

Function Intenal

63. /(a) = A- + 3 [0. 2]

64. f(x) = A- + 4v [0. 4]

65. fix) = tan a 0. -^

66. /'(a) = sin A

^ Write a program for a graphing utility to approximate areas b)

using the Midpoint Rule. Assume that (be function is positive

over the indicated interval and the subintervals are of equal

width. In Exercises 67-70, use the program to approximate the

area of the region between the graph of the function and the

A-axis over the indicated interval, and complete the table.

« 4 8 12 16 20

Approximate area

Function

67. f(x) = v-'a-

69. /(a) = tan

Intei'vol

[0.4]

[1.3]

Function

68. /( v)

8

Inten'al

[2.6]
A- + 1

70. fix) = cos v'a [0, 2]

71. In >our own words and usnig appropriate figures, descnbc

the methods of upper sums and lower sums in approximat-

ing the area of a region.

|72. Give the definition of the area of a region m the plane.

rp 73. Graphical Reasoning Consider the region hounded by the

graphs of

,/'(A)

8a

A- + r

A = t). A = 4, and y = 0, as shown in the figure. To

print an enlarged copy of the graph, go to the v\ebsite

www.mathgraphs.coin.

(a) Redraw the figure, and complete and shade the rectangles

representing the lower sum when )i = 4. Find this lower sum.

(b) Redraw the figure, and complete and shade the rectangles

representing the upper sum when ;; = 4 land this upper sum.

(c) Redraw the figure, and complete and shade the rectangles

whose heights are determined by the functional values at

the midpoint of each subinter\al when n - 4. l-'ind this sum

using the Midpoint Rule.

(d) Verify the following formulas for approximating the area of

the region using ;( subinter\als ol equal width.

Lower sum: sin) = '^
/

Upper sum: Sin) = V
/

Midpoint Rule: Mini = V
/

( -

1

(e) Use a graphing utilit\ and the fonnulas in part (d) to complete

the table.

((
- 1,^

II

4
(')

;i \nl

1\4

n 4 8 20 100 200

s{n)

Sin)

M(n]

( f ) Explain why sin) increases and Sin) decreases for increasing

values of », as shown in the table in part (e).
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fy 74. Use a graphing utility to eomplclc the table for approximations

of the area of the region bounded by the graphs of /(a )
= ^ v,

.V = 0. .V = 8. and v = 0.

n 10 20 50 100 200

s(")

SM
M(n)

Approximation In Kxercist's 75 and 76, dcleriiiiiie «liich \aliif

best approximates the area of the re<;ion between the

.v-axis and the graph ()(' the function over the indicated interval.

(Make your selection on the basis of a sketch of the region and

not by performing calculations.)

75. /(a) = 4 - A^. [0,2]

lal -2 lb) (1 (c) 10 (d) 3 (e) <S

76. ,/(a) = sin— [0.4]

(a) (h) I (c) -: (d) S (e) h

True or False? In Exercises 77 and 78. determine whether the

statement is true or false. If it is false, explain why or give an

example that shows it is false.

77. The sum of the first /; positive integers is niii + I )/2.

78. It / is continuous and nonnegative on [a. />]. then the Imiits as

»—>oo of its lower sum sin) and upper simi ,S'(;/I both c\ist anil

are equal.

79. Monte Carlo Method The following computer program

approximates the area of the region under the graph of a monol-

onic function and above the A-a\is between a = ii and a = h.

Run the program for a = and h = tt/2 for several values of

N2. Explain why the Monte Carlo Method works. [AiUiptatioji

of Monte Carlo Mcthoil proiinim from James M. Scimyers.

"Appro.xinunioii of Area Ihulcr a Curve." MATHEMATICS
TEACHER 77. no. 2 lEehriiary IW4). Copyright O IW4 h\

the Naliiinal Council of Teachers ojMaihenialics. Reprintal

with permission.
]

10 DEFFNF(Xl=SIN(X)

:il A=(l

Ml B=l sTDTWi

40 PRINT liipiil Number of Random Poiiils"

50 INPUT N2

60 N1=0

70 ]FFNF(A)>FNF(B)THENYMAX=FNF(A) ELSE
YMAX=FNF(B)

SO FOR 1=1 TO N2
40 X=A+(B-A)*RND(I)

100 ^=YMAX'RND(1)
1 10 1FY>=FNF(X)THEN GOTO 130

120 NI=N] + 1

130 NEXT I

140 AREA=(N1/N2)*(B-A)*YMAX
150 PRINT "Approximate Area:"; AREA
160 END

80. Graphical Reasoning Consider an ;7-sided regular polygon

inscribed in a circle of radius /'. Join the vertices of the poK gon to the

center of the circle, foniiing // congnient tri;mgles (see figure ).

(a) Determine the central angle H in terms of n.

(b) Show that the area of each triangle is ^r- sin 0.

(c) Let /\„ be the sum of the areas of the n triangles. Find

lim A,,.

.j^ .^.. n.„v -Vf- -^fr- -V

^ir ic ic ^i%if -^k

Figure for 8(1 Figure for 81

81. Writing LIse the fignre to v\rite a short paragraph explaining

why the tVirmula

I + 2 + • + ;; = \u(n + 1)

is valid for all positive integers n.

82. Pio\e each of the loniiulas by mathematical inductit)n. (You

may need to review the method of proof b\ uidiietion from a

precalculus text.)

lal V2( = nin + 1)

- I

n-{n + I)-
(b) V,

iV 8.3. .Modeling Data The table lists the measurements of a lot

bounded by a stream and two straight roads that tiieet at right

antiles, where .v and v are measured in feet (see fisure).

X 50 1(50 150 200 250 300

y 450 362 305 26cS 245 156

(a) Use the regression capabilities of a graphing utility to tmd

a model of the form

y = a.\' + h-\'- + c-\ + d.

(b) Use a graphing utility to plot the data and graph the model.

(c) Use the model in part (a) to estimate the area of the lot.

.-Ro iJ

451) -^
.160 • \^

Slrcam

271)- -
V^^

IKII- - ^\

QO-

h--+-—

1

1

1

^\ Road

.sii Kill i.sii :nii ;.sii ino
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.'' /(.v) = V^

The siihiiitervals do not have equal widths

Figure 4.18

Riemann Sums and Definite Integrals

• Understand the definition of a Riemann sum.

• Evaluate a definite integral using limits.

• Evaluate a definite integral using properties of definite integrals.

Riemann Siims

In the definition of area given in Section 4.2. the partitions have subintervals of cc/iial

width. This was done only for computational convenience. We begin this section with

an example that shows that it is not necessary to have subintervals of equal width.

Example 1 A Partition with Subuitervals of Unequal Widtlis

Consider the region bounded by the graph of /Xv) = ^ and the .v-axis for < .v < 1,

as shown in Figure 4.18. Evaluate the limit

lim V,/(c-)A.v,

where l\ is the right endpoint of the partition given by r, = /-/;;- and A.v, is the width

of the /th interval.

Solution The width ot the ;th interval is given by

A.v,
n- II-

i- - I- + 2/

ir

li -
1

So. the limit is

lim f /(c,)A.i

= lim -1 V (2r

(1. 1)

(0,0)

The area of the region bounded by

the graph of .r = r- and the r-axis for

< r < I is i

'

Figure 4.19

lim ^ ^Inin + \)(2n + \)\

['[ 6 1

,. 4/r' + 3;!= - n
hm

,n^zxi (,11

1

3 LZl

From Example 7 in Section 4.2, you know that the region shown in Figure 4. 1

9

has an area of 3. Because the square bounded by < v < I and < v < I has an

area of 1, you can conclude that the area of the region shown in Figure 4.18 has an

area of?. This agrees with the limit found in Example I. even though that example

used a partition having subintervals of unequal widths. The reason this particular

partition gave the proper area is that as ;; increases, the width of the largest subinter-

nd tippiviiches zero. This is a key feature of the development of definite integrals.
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Georc Frtedrich Bfrmhrii Kii \u\n

(I82()-lSh6)

German malhcmatician Rieniann did his iiiosi

famous work in the areas of non-Euclidean

geometry, differential equations, and number

theory. It was Riemanns results in physics and

mathematics that formed the structure on

which Einstein's theor\ of general relativity

is ba.sed.

Ill the preceding seclioti. the limit of ;i sum was used to define the area of a region

in the plane. Finding area by this means is only one of iiiaiiy applications involving

the limit oi' a sum. A similar approach can be used to determine quantities as diverse

as arc length, average value, centroids. volumes, work, and surface areas. The follow-

ing detniition is named after Georg Friedrich Bernliard Riemann. Although the

definite integral had been defined and used long before the time of Riemann. he

generalized the concept to cover a broader category of functions.

In the following definition of a Riemann sum, note that the function / has no

restrictions other than being defined on the interval [ci. h]. (In the preceding section,

the function / was assumed to he continuous and iionnegative because we weie

dealing with the area under a curve.)

Definition of a Rieniann Sum

Let / be defined

given by

on the closed inter\a 1 [(/, /)_ . and Ic Abe a p.iilition ot ["./']

(I = .V„ < .V < .Vi < < -v„ -
1

< \,
= b

where A.v, is the

interval, then the

width of the

sum

th suhinter\al . If c, is iiiiy pi lint in the /th sub-

/=
1

-V,
,

< C, < .V,

is called a Riemann sum of / for the pattition A.

NOTE The Slims in .Section 4.2 are examples ot Rieiiiaiiii sums, but there arc more general

Riemann sums than those eo\ered there.

The w idtli of the largest suhinterxal of a partition A is the norm of the partition

and is denoted by |1A||. If every subinterval is of equal width, the partition is regular

and the norm is denoted by

A.v Regular parlilion

For a general partition, the norm is related to the number oi subintervals of [<(, /'] in

the fiillowiiiii way.

h - a
< n General parlilion

l> / i 1
/ S 4

;; ^> cc does not imph that
|j
A

I|
^ 0.

H{;urt' 4.2(1

So, the number of subinlervals in a partition approaches infinity as the norm of the

partition approaches 0. That is. ||A|| —> implies that /; —> z^.

The converse of this statement is not true. For example, let A,, he the partition of

the interval [0, l] given by

< ^ < ^;7^ < '
' ' 1

As shown in Figure 4.2(1. for any positive value of/;, the norm of the pai'tition A„ is 3.

So, letting /; approach infinity does not force ||A|| to approach 0. In a regular partition,

however, the statements |[A|| —> and /( —> oc are equivalent.
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Definite Integrals

To define the definite intecral. consider the following hniit.

lim y f{c)\x, = L

To say that this hniit exists means that for f > (I ihere exists a 6 > such that lor

every partition with ||A|| < <S it follows that

L- V/(r,)A-

(This must be trae for any choice of c, in the /th subinter\al of A.

)

FOR FURTHER INFORMATION For

insight into the history of the definite

integral, see the article "The Evolution

of Integration" by A. Shenitzer and J.

Steprans in The American Mathcmiitical

Monthly. To view this article, go to the

website www.matharticles.coiii.

Definition of a Definite Integral

If/ is defined on the closed intcr\al ((. /)] and the limit

lim y /(c) A.v,

exists (as described abo\e , then / is integrable on [</. />] and the limit is

denoted by

Imi y /(c.lA.v, = /'(.v) dx.

The limit is called the defi nite iiiteg ral of /' from ( to /'. The luimber a is the

lower limit of integration. and the luiniber h is the uppei limit ol integ "ation.

It is not a coincidence thai the notation for definite mlegrals is similar to that used

for indefinite integrals. You will see \\h\ m the next section when we discuss the

Fundamental Theorem of Calculus. For now it is important to see that definite inte-

grals and indetlnite integrals are different identities. A definite integral is a iiuiiihcr.

whereas an indefinite integral is a /i;/»/7v offunctions.

A sufficient condition for a function / to be integrable on [ci. I>] is that it is

continuous on [a. /']. A proof of this theorem is beyond the scope of this text.

THEOREM 4.4 Continuity Implies IntegrabUity

If a function /' is c ontintious on the cl ised interval [((. h]. then /' is integi able on

EXPLORATION

The Converse of Theorem 4.4 Is the converse of Theorem 4.4 true? That is, if a

function is integrable, does it have to be continuous? Explain your reasoning and

give examples.

Describe the relationships among continuity, differentiability, and integrabil-

ity. Which is the strongest condition :" Which is the weakest? Which conditions

imply other conditions?
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Because the definite integral is negative, it

does not represent the area of the region.

Figure 4.21

Example 2 Evaluating a Definite Integral as a Limit

f
Evaluate the dclinitc integral 2-\ </.v.

Solution The function /(.v) = 2.v is integrable on the interval [—2. 1] because it is

continuous on [- 2. I]. Moreover, the definition of integrability implies that any par-

tition whose norm approaches can be used to determine the limit. For computational

convenience, define A by subdividing [—2. I] into // subintervals of equal width

A.V, = A.V
/) - a

Choosing c, as the right endpomt of each stibinterval produces

M
c, = (/ + /(A.v) = -2 + —

.

;;

Sc). the definite integral is given by

!.v d\ lim Yf{c,)^

}™ !]/(',) A.'

hm - >

lim -
i
- 2//

;( /\ii

II

iidi + 1)

lim 12 + 9 +

CFi

You can nsc a definite nitegral to find the

area of the region bounded by the graph of

f. the -v-axis. .v = a. and .v = h.

Figure 4.22

Because the definite integral in Example 2 is negative, it does not repre.sent the

area of the region shown in Figure 4.21. Definite integrals can be positive, negative,

or zero. For a definite integral to be interpreted as an area (as defined in Section 4.2).

the function / must be continuous and nonnegative on [a. b]. as stated in the follow-

ing theorem. (The proof of this theorem is straightforward—you simply use the defi-

nition of area uivcn in Section 4.2.)

I'HEOKEM 4. 5 Tlie Ucfmite Integral as Uic ^\rca of a Region

If/ is continuous and nonnegative on the closed interval [a. b], then the area of

the region bounded by the graph of/ the .v-a.\is. and the vertical lines .v = a

and -V = /' Is gi\en by

Area = /(.v) </.v.

(See Fiszure 4.22.)
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/(.v) = 4.V - .V-

Area = (4.v - a-) i/.v

Jo

Figure 4.23

As an example of Theorem 4.5. consider the region bounded by the graph of

./(.v) = 4.V - .V-

and the .v-axis. as shown in Figure 4.2,V Because / is continuous and nonncgati\e on

the closed interval [(). 4], the area of the region is

Area = (4.v - .v-)(/.v.

A straightforward technique for evaluating a definite integral such as this will be

discussed in Section 4.4. For now. however, you can evaluate a definite integral in two

ways—you can use the limit definition or you can check to see whether the definite

integral represents the area of a common geometric region such as a rectangle, triangle,

or semicircle.

Example 3 Areas of Common Geometric Figures

Sketch the region coiTesponding to each definite integral. Then evaluate each integri

usinti a geometric formula.

a. 4,/.v (.V + 2) dx c. V '4 - .V- d\

Solution A sketch of each region is shown in Figure 4.24.

a. This reiiion is a rectangle of hcitrhl 4 and w idth 2.

NOTE The variable of integration in

a definite integral is sometimes called

a dummy vaiiabie because it can be

replaced by any other variable without

changing the value of the integral. For

instance, the definite inteurals

and

(.V + 2) dx

It + 2)dt

have the same \'alue.

4 (/a = (Area of rectaniile) = 4(2) = 8

b. This region is a trapezoid vMth an altitude of 3 and parallel bases of lengths 2 and

5. The formula lor the area of a trapezoid is i/H/', + /n'-

1 21
(.V + 2) dx = (Area of trapezoid) = -(,^)(2 + 5) = -^^

c. This region is a semicircle of radius 2. The formula for the area of a semicircle is

JA - X- dx = (Area of semicircle) = --(2-) = Itt

\

\

/(.v) = 4

4-

3-

2 --

I
-

H-*-v

/(.v) = .V + 2

5- y
4- /
3- /
2-^
1
-

12 3 4 5

/(.v) = 74 -.V-

(a)

Figure 4.24

(b) (c)

lZ]
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Properties of Definite Integrals

The dcniiitKiii o\' the dennile integral of / on the iiUei"\ul [a. h] specifies that ci < h.

Now, however, it is convenient to extend the definition to cover cases in which a = b

or a > h. Geometrically, the following two definitions seem reasonable. For instance,

it makes sense to define the area of a recion of zero width and fmite height to be 0.

Definition of Two Special Definite Integrals

1. If/ is defined at v = </. then /(.v) i/.v = 0.

2. If/' is integrable on [n. h]. then /(.v) ilx = -

Jh

h

fix) clx.

Ji.1

tlm-i Example 4 Evalnating Definite Integrals

a. Because the sine function is defined at .v = 77. and the upper and lower limits of

integration are equal, you can write

sin .V dx = 0.

b. The integral J"(.v + 2) dx is the same as that given in Example 3b except that the

upper and lower limits arc interchanged. Because the integral in Example .^b has a

value of V. yon can write

V + l)dx = - (.V + 2)</.v = --

P\\) dx
111 Figure 4.25. the larger region can be di\ ided at .v = c into two subregions whose

intersection is a line segment. Because the line segment has zero area, it follows that

the area of the larger region is equal to the sum of the areas of the two smaller regions.

\'fi\)J\ + \\t\\)il\

Figure 4.25

THEOREM 4.6 Additive Interval Property

If/ is integrable on the three closed intervals determined by (/. /' and c then

/( v) dx = fix) dx + fix) dx.

Example S Using the Additive Interval Property

.vj </.v v dx + X dx riicorem 4 6

I I

- + -
1 ~i

Area ot a [nan'jle
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Because the dcllnite imegial is defined as the hunt ot a sum. it inherits the piop-

ei'ties of summation given at the top of page 254.

THEOREM 4.7 Properties of Definite Integral \

If/ and g are integrahle on [ii. />] and k is 1 constant then the ftinetions of kf

and /'± g are inte grable on [(/. h]. and

1. kfiA-) cl.\
= k fix) clx

2. [ / (.v) ± Hi v)] </.v = /fv)
Ju

ilx ±
Jii

,1,'(.V) d\.

Note that Property 2 of Theorem 4.7 can be e.Mcnded to cover any finite number of

functions. For example.

L/(,v) + g(x) + Mx)] dx = fix) Jx + gix) Jx + iHx) clx.

Example 6 Evaluation of a Definite Integral

Evaluate (
— .v- + 4.v — 3) ilx usiiiii each of the follow in>i values.

.v-\/.v = —

.

I
xclx = 4,

I
clx = ">

Solution

n n n
.v= + 4.V - 3l,/.v =

I
i-.\-)clx+ 4xclx+ (-3)</.v

A- </.v + 4 A </.v - 3 </.v

26
+ 4(4) - 3(2)

/(v)(/v < ,U(.V)(/.V

Figure 4.26

If / and g are continuous on the closed interval [i;. h] and

< ,/(.v) < gi.y)

for CI < X < h. the lollovving properties are true. First, the area of the region bounded

by the graph of/ and the .v-axis (between a and h) must be nonnegative. Second, this

area must be less than or equal to the area of the region bounded by the graph of g and

the .v-axis (between a and /'). as shown in Figure 4.26. These two results are generali/cd

in Theorem 4.8. (A proof of this theorem is given in Appendix B.)
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THEOREM 4.8 Preservation of Inequality

1. If,/- is intL\

<

:iablc

/(a

and nonnegative on the closed

</.v.

interval [a. b\ then

2. If./ and L,' I re mtegrable on the closed interval [u /)]and/(.v) <
A'(-v) for every

A in U<. hi

-h

then

) d.\< g{\) d.\.

EXERCISES FOR SECTION 4.3

In ExiTcises I and 2, use Exaniplc I as a model to evaluate the

limit

Mm V/(i-)A.v^
" '^

/ =

I

over the rejjion hounded by the j;raphs of the equations.

1. f{\) = J\. V = 0. A =0, A = 3

(Hint: Let c, = 3/7"'-)

2. fix) = ^-A-. y = 0. A = 0, A = I

(Hint: Letf, = / V"')

In Kvercises 3-<S, evaluate the definite integral by the limit def-

inition.

4. aJa-

6. 3a- (/v

8. (\\'~ + 2) Ja

6 </a

a', /a

7.
I

(a- + 1 ) </a'j;

In Exercises 9-12, express the limit as a definite integral on the

interval [w, />], where f, is any point in the /th subinterval.

Liitiit Inlcntil

9. lim y (ic, + 10) Aa, [-1.5]

10. lim 21 ^'.f'* - 'J-'^v, [0,4]

11. lim y Jc-- + 4Aa- [0,3]

[1.3]12. hm y — Aa-

In Exercises 13-22, set up a definite integral that yields the area

of the region. (Do not evaluate the integral.)

13. fix) = 3

y

5--

4--

1 -

2-

1
-

-4—

A

I : .1 4 5

15. fix) = 4

17. fix) = 4 - .v^

-: -I 12

16. fix) = A-

18. fix)
A- + I

1-^A-

4- -

/
3 -

/
2 -

1
-

y
/

-1 2 ^

-i A-
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19. /(.v) = sin A- 20. f(x) = tan x

K n

21. t;(v) = V-' 22. f(y) =
(
y - 2)^

In Exercises 23-32, sketch the refjion "hose area is given by the

definite integral. Then use a geometric formula to evaiuate the

integral (« > 0. r > 0).

23. 4J.V

25. -vJ.v

27. (2.V + 5)dx
Jo

29.
I

(1 - l\\)dx

3f.
I J9 - X- ilx

24. 4dx

26.
I
-dx

28. (8 - x)dx

30.
I

((/ - \x\)dx

32.
I Vr- - X- dx

In Exercises 33-40. evaluate the integral using the following

values.

x'dx = 60. .V dx = 6.

33. ^xdx

35. 4a(/a

37. (a - 8)(iA

39. i-.x' - 3a + 2) </a

dx = 2

34. I AMa

36. 15 dx

38. ix' + 4) dx

40. (6 + 2a - x-')dx

41. Given ["'/(a) dx = 10 and j\f{x] dx = 3. find

(a) f{x)dx. (b) /(a)</a.

(c)

I

f(x)dx. (d)

J
3/(a)c/a.

42. Gi\en j\f(x) dx = 4 and j" f(x] dx = - 1. find

(a)
I

f{x)dx. (b) f{x}dx^

(d)
I

-5f{x)dx.

Hid

(c) /(a)</a.

43. Given ["/'(a) </a = 10 and [" ,(,'(a) dx = - 2. fii

(a) [/(a) + s;(a)]</a. (b) [,!;(a)
- /(a)] </a.

(c) 2!;(a)(/a. (d) 3/(a)</a.

44. Given (

'

fix) dx = and f fix) dx = 5. find

(a) /(a)</a. (b) ./(a)</a - ;(a)</a.

(c) 3/(aI</a. (d) }f{x)dx.

45. Think Abaiit It The graph of/ consists of line segments and

a semicircle, as shown in the figure. Evaluate each definite

intearal bv using geometric formulas.

46. Think About It Consider the function /' that is continuous on

the interval [-5. 5] and for which

fix) dx = 4.

Evaluate each integral.

(a) [fix] + 2]</A (b)
I

/(a + 2)rfA

(e) /(a)(/a (,/ iseven.) (d) /(a) (/a (,/ is odd.)
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In Exercises 47-50, use the figure to fill in tlie hlank «itli

the symbol <, >, or =.

rp Write a projjrani for your graphinj; utihty to approximate a

detinile integral using the Rieniann sum

where the suhintervals are of equal width. The output should

fjive three approximalions of the integral where c, is the left-

hand endpoini lAii). midpoint A/(h), and right-hand endpoint

R{ii) of each subinterval. In Exercises 57-60, use the program

to approximate the defmite integral and complete the table.

f--v

47. The interxal [ I .
-i] is partitioned into ;; siihinlei"\als ol equal

width Aa. and v, is the lett endpoint ol the (th siibintei'\al.

2] ,/<>,
>
-^^ ./(-V),/,V

48. The nitei"\al [I. 5] is parlitioneil into /; sLihinler\ais ol ei|iial

uidlh A V. and v, is the right end|ionit ol the /111 sLiliinler\'ai.

2/(a,)Aa ,/(,v)</.v

49. The niler\'ai [I. 5| is partitioneil into /; subiiilervals of equal

width Av. and v, is the niidpoml ol llie dh siibinter\'al.

V/|,,)A,v /III, /a

50. Let T be the axerage of the results of Exereises 47 and 4S.

T /(a),/a

51. Determine whether the function /Iv) =
is intestable

A - 4

on the inter\al [3. ?|. Explain.

52. Give an example of a function that is integiable on the

interval [- 1. 1], but not continuous on [-1. 1],

In Kxercises 5.^-56, determine which value best approximates

the definite integral. Make your selection on the basis of a

sketch.

5.^. .'a(/a-

(a) 5 (b) -3 (c) 10 (d) 2 le) S

54. 4 cos TT\ dx

(a) 4 (b) i (c) lb (d) 2tt lei -fi

f
5r>. 2 sin -v il.\

la) 6 (b) \ (c) 4 (d)
5

56. (1 + Jx)dx

(a) -3 (b) 9 (e) 27 (d) 3

n 4 8 12 16 20

Un)

M{n)

RM

57. A. 3 - a</a

59. sin- A (/a

</v58.
In V- +

60. A sin A (/a

Tnw (ir False'.' In Exercises 61-66, determine whether the

statement is true or false. If it is false, explain why or give an

example that shows it is false.

i

61. [/(a) + ,!,'(a)](/a = /(aI</a+ .,.(a)</a

62. /lAl,dA)</A /(a I d\ ,e(A) d\

63. If the norm of a partition approaches zero, then the ntimber of

subintervals appiAiaches infinity.

64. If / IS increasing on [n. />], then the iiiininium value of f{\) on

[(/./>! IS /!</).

65. The \'alue of /(a) d\ iiiusi be positive.

66. II /(a) dx > I), then / is nonnegtitive for all a in [a. h].

67. Find the Riemann sum for fix) = x- + 3.v over the interval

[0. 8], where v,, = 0. a
,

= I, .\, - 3. a, = 7, and x^ = 8. and

where r, = 1. ts = 2. c, = 5, and (_, = 8.

68. Find the Riemann sum for /'(a) = sin a over the inteival [(), 2tt].

where .v„ = 0, a, = 7r/4. a, = 77/3. .v, = tt. and Vj = 2 7J', and

where c, = 77/6. c, = -/3. c, = 27r/3. and Cj = 37r/2.

69. Think About It Determine whether the Dirichlet function

fix)
I

1. .1 is rational

[(). \ IS irrational

is mtcgrable on the inter\al [0. l]. Explain.

70. Evaluate, if possible, the integral l-v]| </-v.

71. Determine hm — [1- + 2- + 3' + + »-] b\ using an

approprialc Rieniann sum.



SECTION 4.4 The iLiiKhmicntal Theorem ol Calculus 275

The Fimdamental Theorem of Calculus

EXPLORATION
Integration and Antidifferentiation

Throughout this chapter, we ha\e been

using the integral sign to denote an

antiderivative (a family of functions)

and a definite integral (a number).

Antidifferentiation: f(\) '/-v

Detniite inleL'ration: fix) ,/v

The use of this same symbol for both

operations makes it appear tlial ihcy

are related. In the early work u ilh

calculus, however, it was not know n

that the two operations were related.

Do you think the symbol / was fnst

applied to antidifferentiation or to

definite uuegration? Explain your

reasoning. (Hint: The symbol was

first used by Leibniz and was derived

from the letter S.

)

• E\alLiatc a definite inicgial tising the Fundamental Theoiem of Calculus.

• Understand and use the Mean Value Theorem for Integrals.

• Find the average value of a function over a closed interval.

• Understand and use the Second Fundamental Theorem of Calculus.

The Fundamental Theorem of Calculus

You have now been introduced to the two iiiajor branches of calculus: differential cal-

culus (introduced with the tangent line problem) and integral calculus (inttodticcd

with the area problem). At this point, these two problems might seem unrelated—but

there is a very close connection. The connection was discovered independently by

I.saac Newton and Gottfried Leibniz and is stated in a theorem that is appropriately

called the Fundamental Theorem of Calculus.

Informall\, the theoiem states that differentiation and (delinilc) uuegration are

inverse operations, m the s.imc sense that tinision and mulliphcalioii arc inverse

opcratiiins. To see how Newton and Leibniz might have anticipated this relationship,

consider the appro.xiniations shown in Figure 4.27. When we defined the slope of the

tangent line, we used the quoticiil Av/A,\ (the slope of the secant line). Similarly,

when we defined the area of a region under a curve, we used the product AvA.v (the

aiea of a rectangle). So, at least in the primitive appro.ximation stage, the operations

of differentiation and definite integration appear to have an inverse relationship in the

same sense that division and multiplication arc inverse operations. The Fundamental

Theorem of Calculus states that the limit processes (used to define the derivative and

definite integral) preserve this inverse relationship.

^ _

Area = A vA v

(a) Ditfcrentialion (b) Definile inu-iir.iliiin

DilTerenliation and definite integration have an"inverse"relationship.

Figure 4.27

Area = AvAv

THEOREM 4.9 The Fundamental Theorem of Calculus

If a function/ is continuous on the closed interval [(/. />] anil F is an antideriva-

tive of / on the interval [a. h\ then

/(.v)(/.v = F(h] - Fin).
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Proof The key to the proof is in writing the dit'ferenee F{h) - F(a) in u eonvenient

form. Let A be the following partition oi[a. h].

a = .v„ < A, < A-, < • < A„_| < A„ = b

By pairwise subtraction and addition of hke terms, vou can write

- Fix,) + f(A,) - f(.v„)

= J^lFtx,)- Fix, __,)].

By the Mean Vahie Theorem, you know that there exists a number r, in the /th subin-

ter\al such that

F(h) - Fiu) = F(x„) - F(a„__|) + Ha,,^,)

F'ic) =
Fix) - F(x,_,)

Because F'{l\ )
= /(c, ). you can let A.v, = .v, - .v, _ ,

and obtain

Fib) - Fia) = ^/(tJA.v,,
1= I

This important equation tells you that by applying the Mean Value Theorem you can

always find a collection of f,'s such that the constcnu F(b) — F(a) is a Riemann sum
of /' on [ii. b\. Taking the limit (as ||Aj| —> 0) produces

F(h) - F(a) = f(x)ilx. _^

The following gtudelines can help you understand the use of the Fundamental

Theorem of Calculus.

Guidelines for Using the Fundamental Theorem of Calculus

1. Provided you can find an autiderivative of /I you now have a way to evaluate

a definite integral without having to use the limit of a sum.

2. When applying the Fundamental Theorem of Calculus, the following nota-

tion is convenient.

f(x) dx = F(x)

= F(b) - Fia)

For instance, to evaluate J,'
.\ ' dx. you can write

x^dx^-
\' 81

4 4
20.

3. It is not necessary to include a constant of integration C in the autiderivative

because

,/(a) dx Fix) + C

[Fib] + C] - [Fia] + C]

Fib) - Fia).
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n^^ Exnniple 1 Evaluating a Definite Integral

Evaluate each definite integral.

a. (a-^ - 3),/.v b.
I

3v-v</a

Solution

a. (v- - 3)(/.v - 3v
8
3^"

f. j see- A (l.x

JO

3-^i-3

b. 3^'a-(/a = 3 A''"rfA- = 3
3/2

= 2(4)'- - 2(1)''- = 14

sec- A tlx = tan a 1-0=1

v=|2v-l|

t -v

v = -(lv-l) y=Zv-l

The derinito integral of i on [II. 2] is i.

Figure 4.28

Exmnple 2 A ncfinltc Integral Involving Absolute Value

Evaluate |2a - l| ilx.

Sokition Using Figure 4. 28 and the detlnition (ilabMiUite \alue. ycti can rewrite the

inteerand as follows.

|2a- II

-(2a- I), A <
^

2v - 1. A > '

From this, yon can rewrite the integral in two parts.

I

2a -
1 1 (/a =1 -(2a - I) </a +

I

(2a - I) (/a

n Jo J 1/2

A- + .V

-Ui)-(0 + ()) + (4-2)-Q-^

V = 2v- - 3.V + 2

4-
/

.1
- /

T -

1
-

1 2 i 4

The area of the region honnded liy the graph

of I . the .v-axis. .v = 0. and .v = 2 is j

.

Figure 4.29

Example 3 Using the Fundamental Theorem to Find Area

Find the area of the region bounded by the graph of y = 2a- - 3a -I- 2. the A-axis. and

the vertical lines .v = and a = 2. as shown in Fisure 4.29.

Solution Note that y > on the interval [O. 2]

Area = (2a= - 3a + 2) </a

2a-' 3a=

Inteyuiie bLiween v = O.md \ ~ 2.

3 2

16

+ 2.\ Find aniiderivati\e.

m
3

6 + 4-(0-0-f0) Apply Fiind.imental Theorer

Siniplily W.
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Moan value rectangle:

/(()(/i - i() =
I

/lv),/.v

Fiaiiri- 4.30

The Mean Value Theorem for Integrals

In Section 4.2. you saw that the area of a region under a curve is greater than the area

of an inscribed rectangle and less than the area of a circumscribed rectangle. The

Mean Value Theorem for Integrals states that somewhere "between" the inscribed and

circumscribed rectangles there is a rectangle whose area is precisely equal to the area

of the recion untlcr the curve, as shown in Figure 4..^0.

THEOREM 4.10 Mean Value Theorem for Integrals

If/ is continuous on the closed interval [a. h]. then there exists a number c in

the closed interval [</. /»] such that

/(.v)(/.v =/(.)(/> - a).

Jil

Proof

Case 1: If / is constant on the interval [(/. h\. the thetircni is clearly valid becau.se c

can be any point in [<;. /'].

Case 2: If/ is not constant on [«, h\ then, by the Extreme Value Theorem, you can

choose /(;;() and /(/W) to be the minimum and maximum values of/ on [a. h\. Because

/(/;;) < /(.v) < f(M) for all .v in [ii. />]. you can apply Theorem 4.8 to write the

following.

ri, r,

f(lll)(l.\< f{.\)il.\ < f(M]dx See Figure 4.1 1.

/(;)()(/' - <() < f(\]dx < f{M){h - a]

fiiii) <
h

,/(.v)</v < /(A/)

From the thuti uiequality. you can apply the Intermediate Value Theorem to conclude

that there exists some c in [<;. h] such that

IV)
1

h - CI

/(.v),/.v or ficHh - a} = /(.v) J.v

/("I)

Inserilieil rectangle

(less than actual area)

/(/Hl(/v = /(»;)(/! - u)

Figure 4.31

Mean value rectangle

(equal to actual area)

/(Aii/v

}fW)

Circumscrihed rectangle

(greater than actual area)

/(.U)rf,v = /(,!/)(/> - u)

CZ

NOTE Notice that Theorem 4.10 does not specify how to determine c. It merely guarantees

the existence of at least one number c in the interval.



SECTION 4.4 The Fundamental Theorem of Calculus 279

Average value

Average value = l(x)dx
h — a

Figure 4.32

Average Value of a Function

The value ot'/'(c') given in the Mean Value Theorem for hitegraN is called the average

value of / on the interval [a. h\

Definition of the Average Value of a Function on an Interval

If /' is integrahlc on the closed imer\ al [a. /']. then the average value of / on

the interval is

1

b - a
fix) clx.

NOTE Notice ui figure 4.32 that the area of the region under the graph ot / is ei.|ual to the

area of the rectangle whose height is the average value.

To see why the average value of/ is defined in this way. suppose that \(ui parti-

tion [ci. b] into ;/ subintervals of equal width A.v = (b — ii)/ii. If c, is any point m the

/th subinterval. the arithmetic average (or mean) o\' the function \alues at the i/s is

given by

((„ = -[/(<,) +/((S) + • • +/((„)]. .Average ol /(.,!. ./(,„!

By niultiplMiig and dividing by (/' - ;;). \ou can write the average as

;; ,", \b - 111 b - a ^^ \ n

'' ^ " f^\

Finally, taking the hniit as n^t-ji. produces the average value '.^'i j on the interval

[(/. /']. as given in the definition above.

This development of the average value of w function on tin interval is only one

of nianv pitictical uses ^'I'i definite integrals to represent sumnialion processes. In

Chapter 6. you will study other applications, such as volume, tire length, centers of

mass, and work.

40- -
14.401

30- ft.v) = 3.V- - 2v /

20- - ^
10-

(1. h
1y

^
Average

value = 1

6

.3 4

Exatiiple I Finding the Average Vahie of a Function

Find the a\ erage value of /(.v) = 3.v- - 2.v on the interval [1.4].

Solution The average value is given by

fix) dx (.\v- - 2.v)</,v

|[64 - 16 - (1 - D] = =^ = 16.
j ,1

Figure 4..^3 (See Ficure 43?>. W:
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Example S The Speed of Soimd

The first person to n\ at a speed greater

than the speed of sound was Charles

Yeager On October 14. 1947, flying in an

A-/ rocket plane at an altitude of 12.8

kilometers. Yeager was clocked at 299..

^

meters per second. If Yeager had been

llyuig at an altitude under Ulil^ kilome-

ters, his speed of 299. .S meters per second

would not have""broken the sound

barrier," The photo above shows the ,\-/

and lis B-]'> mother plane.

At different altitudes in earth'.s atmosphere, sound travels at different speeds. The

speed of sound .^(.v) (in meters per second) can be modeled by

'-4.V + 341. < .V < 11.5

295, 11.5 < .V < 22

j.v + 278.5. 22 < .V < .32

Iv + 254.5. 32 < .V < 50

^-|v + 404.5. 50 < .V < 80

where v Is the altitude in kilometers (sec Figure 4.34). What is the average speed of

sound over the intci\al fo. 80]?

Solution Begin by integrating .\(.v) over the interval [(). 80]. To do this, you can break

the integral into fl\e parts.

2y.i.v

.stv)</.v =
I

(-4.V + 34l)(/.v =

s{.\)J.\ =
I

(295)i/.v

Ji I
."^

,n(.v)</.v = (j.v + 278.5) (/.v
=

.v(.v)(/.v = {i\ + 254.5) (/.v
=

.v(v)</.v = (-^.v + 404.5) ,/,v

-2.v= + ,341.v

= 3097.5

3657

J2

^.v- + 278..5V

iv- + 254.5.V

-Ix- + 404.5.V

= 2987.5

= 5688

8(1

9210

By adding the values of the five integrals, you have

.si.v) (/.v = 24.640.

Therefore, the average speed o\ sound from an altitude of kilometers to an altitude

of SO kilometers is

1 r" 24.640
Average speed = — .v(.v) i/.v = ——— = 308 meters per second.

80 I,, o(J

Speed of sound depends on altitude.

Fij;ure 4.34 Z



SECTION 4.4 The huiidaniL-nlal Theorem ol Calcukis 2S1

The Second Fimdamental Theorem of Calculus

When we defined the definite integral off on the interval [(/. />]. we used the constant

b as the upper limit of integration and v as the \ ariable of integration. We now look at

a slightly diffeient situation in which the variable .v is used as the upper limit of inte-

gration. To a\oid the confusion of using .v in two different ways, we tempoiarily

switch to using t as the variable of integration. (Reniember that tlic definite integral is

nor a function of its variable of intearation.

)

The Dcfniilc Integral as a Number

Consiam

The Definite Integral a.\ a Fnnetnm of x

1- IS a fuiKtion I

fix) clx

Consianl

/ IS a

funciion ot \.

Fix) = fU)cli

/ I IS J

CiMiMani luiKlioii ut /

EXPLORATION

Use a graphing utility to graph

the function

Fix) = cos t lit

for < -v < 77. Do you recognize

this graph? Explain.

Example 6 The Definite Inlegral as a Fimction

Evaluate the function

Fix) = cos t ill

Jii

at .V = 0. 7r/6. 7t/4, tt/?- ^nd tt/2.

SolutioTi You could e\ahiate fi\e different definite integrals, one for each of the

gi\en upper limits. However, it is much simpler to f]\ x (as a constant ) lemporanK anti

appK the Fundamental Theorem once, to obtain

cos t lit = sin t = sin .v — sin = sin .v.

Now. using Fix) = sin.v, yoti can obtain the results shown in Figure 4.35.

/•(()) =

x =

IK\ 1

f( v) =
I

COS I ill is the area under the curve fit) = cos ; from to x.

Figure 4.35

//Tl V2 IKX V^

You can think of the function Fix) as aciiiiniilutiiiii the area under the curve

fir) = cos / from r = to ; = .v. For.v = 0. the area is and f(()) = 0. For.v = -/2.

Fiir/l) =
1 gives the accumulated area under the cosine curve on the entire interval

[0. tt/2\. This interpretation of an integral as an accumulation function is used often

in applications of integration.
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111 Example 6, note that the derivative of F is the original integrand (with only the

variable chaniied). That is.

(/ r T '/ r . H '/

-[f(.v)] = --[sinA-] = -
clx ilx ax

. ! dt

We generalize this result in the following theorem, called the Second Fundamental

Theorem of Calculus.

THEOREM 4.11 The Second Fundamental Theorem of Calculus

If/ is conlinuons on an open iiiter\al / containing n. then, for every .v in the

interval.

/(/)(/? fix).

/(')

/(\K

.V A + A.v

fix) A.v = /(/) (/;

Figure 4.36

Proof Begin bv defming F as

Fix) =
I in ill.

Then. b\ the defniition of the derivative, yon can write

Fix + Aa) - F(x)
h (a) - lim

Av

]

-. A. -
I

-,

= lim ^
Ai-ll A.V

fU)ilt - tU)dl

(-V + A.I •u

= lim -—
A.\— 11 A.V

f(l) dt + f(i)dr

1

-1 . A,

= lim -—
A,-.(i Aa

fit)dt
J \

From the Mean Value Theorem lor Integrals lassiimmg Av > 0). von know there

exists a nnmber ( in the interval [v. .v + Av] such that the integral in the expression

above is equal to /(c) Aa. Moreover, because v < c < .v + A.v. it follows that c—>.v

as A.v—>0. So, you obtain

F'ix) = lim
Ai- -11 A.V

fie) A.v

= lim /(<)
Ai— II

= ./(a-).

A similar argument can be made for A.v < 0. i^'

NOTE Using the area model lor dcrinitc integrals, you can v icvv ihc approximation

./(a)A.v= f(t}dt

as saying that the area of the rectangle of height fix) and width A.v is approximately equal to

the area of the region lying between the graph ol / and the .v-axis on the interval [.v, .v + A.v],

as shown in Fi£iure A-.Mi.
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Note that the Second FimdaiiieiUal Theorem ol Calcuhis tells yon that if a tune-

tion is continuous. \ihi can be sure that it has an antRlcri\ative. This antiderivative

need not. howexef. be an elenientan tiuiction. (Recall the discussion of elementary

functions in Section P.3.)

Example 7 Using the Second Fundamentnl Theorem of Calculus

Evaluate
d\

JF+] dt

Solution Note that /(/) = ^ '"' + 1 is continuiuis on the entire real line. So. using

the Second Fundamental Theorem of Calculus, mui can wrUe

V>- + 1 cit '.V- +

The differentiation shown in Example 7 is a straightforward application ol the

Second Fundamental Theorem of Calculus. The next example shows how this theo-

rem can be combined with the Chain Rule to find the derivative of a function.

Example 8 Using the Second Fundamental Theorem of Calculus

Find the dernative of /(a) = cos ; </?

Solution Using /( = .\ \ yoti can apply the Second FiiiKlamental Theorem of Calculus

with the Chain Rule as lollovvs.

F'ix)
clFdu

dli dx

f[^lv)]f
(/;( dx

d_

du

d_

du

(cos/()(.\v-)

(cos.v-')(3.v-)

idi
du

dx

cos t dl

Cham Rule

DeFiniliiin nt -—

Subslilute e(is ; ill fur F[.\).

Subslitiile II Idi a'

Apply Second Fundamental Ttieorem ttf Calculus.

Rewrite as tuncllon of .v. L-^..

Because the integrand in Example 8 is easily integrated, you can verily the deriv-

ative as follows.

Fix) cos r dt = sin r sin.v' - sin— = (sin .v'') — I

In this form, you can apply the Power Rule to \erif\ that the derivatne is the same as

that obtained in Example 8.

F'(x) = (cos.vM(.\v-)
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EXERCISES FOR SECTION 4.4

rp Graphical Reasoning In Exercises 1-4, use a graphing utility

to graph the integrand. Use the graph to determine whether the

definite integral is positive, negative, or zero.

4
-dx

X- + 1

3. I vv'.v- + 1 d.\

2.
I

cos v (/a

4.
I aV2 - A d.\

rp In Exercises 5-26. evaluate the definite integral of the algebraic

function. I'se a graphing utility to verif) your result.

Iv ,/v

7. (a - 2)dx

9. {h - 2)d!

11. [2i - \]'~di

Jii

n. \
{-,- \\dx

3 dv

8. I (-3r + 4)</r

10. (3a' + 5a - 4)i/a

12. (r - m) dr

14. II - ^ ] dtl
II-

15. ^dii
Jl n"

17. f
0/'', - 2) di

V - v'a
19 dx

21. (f'/^ - t'''')dt

23.
I
2a - Mdx

16. v''-\lv

18. ^/-</a
Jl V A

2(1.
I

(2 - /)v7</r

24^

24.
I

(3 - Ia - 31) (/a

25. W - \\dx
I

</v 26. [a- - 4v + 31 dx

rp In Exercises 27-32, evaluate the definite integral of the trigono-

metric function. Use a graphing utility to verify your result.

27.
I

(I + sin a) (/a

29. sec-Ai/v

31.
I

4 sec «tan «</«

>r/3

28.

30.

32.

1
- sin- ^

cos-

9

dd

(2 - cscvv) dx

(It + cos r) ill

33. Depreciation A company purchases a new machine for which

the rate of depreciation is dV/dt = in.00n(/ - 6), < f < 3,

where V is the value of the machine after / years. Set up and

evaluate the definite integral that yields the total loss of value

of the machine over the first 3 years.

34. Buffon 's Needle Experiment A horizontal plane is ruled with

parallel lines 2 inches apart. If a 2-inch needle is tossed randomly

onto the plane, the prohahility that the needle will touch a line is

P = -
sin H dft

where is the acute angle between the needle and any one of

the parallel lines. Find this probability.

In Exercises 35—10, determine the area of the indicated region.

35. r = A - A- 36. \ = I - A-*

37. V = (3 - a)v/v

r A
-1 I

38. V ^ 1
A-

40. 1' = A -I- sin A

4 +
3

In Exercises 41-44, find the area of the region bounded by the

graphs of the equations.

41. y = 3.V- -1- 1. A = 0. A = 2, y =

42. y =
1 -t- ^• A = 0. A = 8. y =

43. y = a' + X. A = 2. y =

44. y = -X- + 3a, y =
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In Exercises 45—J8. tiiid the value(s) of c guaranteed by the

Mean Value Theorem for Integrals for the function over the

indicated Interval.

Fiiiiiluni liiwniil

45. /(a) = A- - 2v'.v [0,

9
46. fix)

47. fix) = 2 sec-

A

48. / (a) = cos A-

[1.3]

[-7r/4. 7r/4]

[-rr/XTT/i]

In Exercises 49-52. find the average \alue of the fuiRtion over

the interval and all values of a in the interval for v\hlcli the func-

tion equals its average value.

Function Inhrval

49. fix) = 4 - A- [-2.2]

5(1.

A-
[l.V]

51. fix) = sin A- ['>. rr]

52. /'(a) = cos A" [0. 77/2]

53. Stale Ihc I iindaniental Theorem of Calculus.

54. The graph of / is given In llie figure.

(a) Evaluate f(\)dx.

(b) Determine the average \alue of / on the intei"\al [1.7].

(c) Determine the ansv\ers to parts (al and (hi il the graph

is translated two units upward.

4-

3--

H h^J1:34
Figure for 54

2 3 4 5 b

Figure for 55-6(1

61. Force The force F (in newtons) of a hydraulic cylinder in a

press is proportional to the square of sec a. wheie a is the

distance (in meters) that the cylinder is e.Mended in its cycle.

The domain of F is [(I. ir/y]. and flO) = %){).

(a) Find F as a funclion of .v.

(b) Find the averaae hirce exerted by the press over the interval

[0. 7T/3],

62. Blood Flow The velocity v of the How ol blood at a distance r

from the central axis of an arterv of radius R is

k(R' /-)

where k is the constant of proportionality. Find the average rate

of flow of blood along a radius of the artery. ( LLse ( ) and R as the

limits of integration.)

63. Respiratory Cycle The volume \' in liters ol air m the lungs

during a 5-second respiratory cycle is approximated b\ the

model

V = 0.1729/ + 0.1522/- - 0.0374/'

where / is the time m seconds. Approximate the average volume

of air in the lungs during one cycle.

64. Averai^e Profit A company introduces a new product, and the

prolli 111 thousands of dollars over the tlrsi (1 months is approx-

mialcd hv the model

P ?(x / + .^^0) 1.2. 3.4.5,6.

(a) Use the model to complete the table and use the entries (o

calculate (arithmetically) the average profit over the first

6 months.

< I 2 3 4 5 6

P

In Exercises 55-60, use the graph of/ shown in the figure.

The shaded region A has an area of 1.5. and J,^ fix) dx = 3.5.

Use this information to fill in the hianks.

55.
I

/(.v) </.v
=

57.
I

|/(a)| dx =

59.
I [2 + fix)] dx

56.

58.

fix) dx =

-2Jlxldx

60. The average value of / over the interval [0, 6] is

(h) Find the average value of the prolil funclion by integration

and compare the result with that in part (a) (Integrate over

the interval [0.5, fi,5].l

(c) What, if any. is the advantage of using the approximation of

the average given by the definite integral? (Note that the

integral approximation utilizes all real values of / in the

interval rather than just integers.)

rp 65. Average Sales A company fit a model to the monthly sales

data of a seasonal product. The model is

Sil) = ^ + Lis + 0.5 sin(—
4 \ 6

< / < 24

where S is sales (in Ihousands) and / is time in months.

(a) Use a graphing utility to graph /(/) = 0.5 sin( 7r//6) for

< / < 24. Use tlie graph to explain why the average value

of /(/) is over the interval.

(b) Use a graphing utility to graph Sit) and the line

git) = //4 + l.S in the same viewing window. Use the

graph and the result of part (a) to explain why g is called

the trend line.
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rp 66. Modeling Data In the inanufacturing process of a product,

there is a repetitive heating cycle of 4 minutes. During a

re\ievv of the process, the flow R (cubic feet per minute) of

natural gas was measured in 1 -minute intervals and the results

were recorded in the table.

t 1
T 3 4

R 62 76 38

(a) Use a graphing utility to lind a model of the torm

R = <(?"* + hi'' + 1
1- + ill + c for the data.

(b) Use a graphing utilit\ to plot the data and graph the model.

(e) Use the i-'iuidamental Theorem of Calctilus to approximate

the niunbcr of cubic Icct of natural gas used m one heating

c_\cle.

67. Modeling Data A radio-controlled experimental vehicle is

tested on a straight track. It starts from rest, and its velocity i'

(meters per second) is recorded in the table every 10 seconds

for 1 iriinute.

t in 20 30 40 50 60

V 5 21 40 62 78 83

(a) Use a graphing utility to lind a model of the form

V = at^ + hi- + (7 + i/ for the data.

(b) Use a graphmg utihiy to plot the data and graph the model.

(c) Use the Fundamental Theorem of Calculus to approximate

the distance traxelcd by the vehicle during the test.

("1=^ 68. Modeling Data A department store manager wants to

estimate the number of custoiriers that enter the store from noon

until closing at 9 p..vi. The table shows the number of customers

N entering the store during a randomly selected mmute each

hour from / — I to r, with / = coiresponding to noon.

t 1

*)

3 4 5 6 7 8 9

N 6 7 9 12 15 14 11 7 2

(a) Draw a histogram of the data.

(b) Estimate the total number of customers entering the store

between noon and 9 p.m.

(c) U.se the regression capabilities of a graphing utility to lind

a model of the form

.'V(/) = «/' + hi- + ft + d

for the data.

(d) Use a graphing utility to plot the data and graph the model.

(e) U.se a graphing utility to evaluate illN(i)dl. and use the

result to estimate the number of customers entering the

store between noon and 9 p.m. Compare this with your

answer in part (b).

(f) Estimate the a\erage number of customers entering the

store per minute between 3 p.m. and 7 p.m.

In Exercises 69-74, find F as a function of .v and evaluate it at

A- = 2, .V = 5, and .v = 8.

69. F[\) = (' - -"i)'/'

71. F(.v) = -"^Ji

73. F(x) =
I cos HdO

70. F(.v) = (;' + 2/ - 2) <//

72. f(.v) =
I
-^J/

74. f(A) = sm HdH

In Exercises 75-80. (a) integrate to find F as a function of .v and

(b) demonstrate the Second Fundamental Theorem of Calculus

by differentiating the result in part (a).

75. F[\) =
I

(; + 2),/;

77. F(x) =
j

1^1 di

76. F(\) -
I

;(;- + \) dt

78. F{\) =1 ^ I di

79. F\\) =
I

^ec-tdt
7r/4

80. Fix) = sec I tan / di

In Exercises 81-86, use the Second Fundamental Theorem of

Calculus to find F'(x).

81. Fix) =

83. Fix) =

{I- - 2/) di

vA-* + 1 dt

85. F[x} =
I

t cos I dt

82. F(x) =

84. Fix) =

I- + 1

.: r dt

-dt

86. Fix) =
I

sec'/J;

In Exercises 87-92, find Fix).

87. Fix) = (4/ + Ddi 88. Fix) =
\ r'di

89. Fix) = ^^t dl

Jo

91. Fix) = smi-dl 92. Fix) =
I ^m H- dH

90. Fix) =1 X^dt

93. Graphical Analysis Approximate the graph of i; on the

interval ()<v<4 where :^ix) =
},] fit) di. Identify the

v-cooidinate of an extremum of g. To print an enlarged copy of

the graph, go to the website www.niathgniphs.coin.
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94. Use the function /' in the figure and the function ,i,' defined hy

Jii

(a) Complete the tahle.

X 1
1 3 4 5 6 7 8 9 10

g(x)

(h) Plot the points from the tahle in part (a) and graph g.

(c) Where does g ha\e Us minuiiuni' E\plain.

(d) Where does t; have a maximum' Explain.

(e) On what interval does i; increase at the greatest rate?

Explain.

(f) Identify the zeros of g.

~i ! h H ! i—

'

95. Cost The total cost of purchasing and mamtaming a piece of

equipment for .v years is

C(.v) = 5000(25 + 3 /'*(/?].

(a) Perform the integration to write C as a function of .v.

(b) Fmd C(l). 05). and C(10).

96. Area The area A between the graph of the function "(/)

4 - 4/r- and the r-axis over the inter\al [1. .v] is

A(x) 4-^),/r.

(a) Find the horizontal asymptote of the graph of.;;.

(b) Integrate to find ,4 as a function of .v. Does the graph of A

ha\e a horizontal asymptote' Explain.

True or False? In Exercises 97-99, determine whether the

statement is true or false. If it is false, explain why or give an

example that shows it is false.

97. If /(.v) = G'(.v) on the interval [a.h]. then Flh) - Fia) =

Gih) - G(<().

98. If/ is continuous on [ci. h]. then /' is mtegrable on [«. />].

99. ,v - </.v
=

100. Prove; H')dt

= (-1) - 1

/(r(.v))r'(.v) - /((/(.v))»'(.v).

101. Show that the function

'

1

fix) it +
I' + I

lis. where ntiiuious for all

r- + I

is constant for v > 0.

102. Let G(a) = J firkli

real /. Find

(a) G(0). (b) G'(0).

(c) G"(.v). (d) G"(0).

Rectilinear Motion In Exercises 103-105. ctmsider a particle

m()\ ing along the .v-axis where .v(/) is the position of the particle

at time (. .v '(/) is its velocity, and /,'' |.v'(/) |rf/ is the distance the

particle travels in the interval of time.

103. The position function is

A(/l = r' - bf- + 9/ - 2. < ; < 5.

Find the total distance the particle travels in 5 units of time.

104. Repeat Exercise 103 for the position function given by

\{)) = it - l)(; - 3)-. < r < 5.

105. A particle moves along the .v-axis with velocity r(;) = \/ ^'i.

t > 0. At time / = I. its position is .v = 4. Find the total

distance traveled by the particle on the interval I < r < 4.

SECTION PROJECT

Use a graphing utility to graph the function y, = sin-r on the

interval < f < 77. Let Fix] be the following function of-v.

Fix) = sin- 1 dt

Jo

(a) Complete the table and explain why the values of F are

increasing.

X 77/6 ,7/3 77/2 277/3 577/6 77

Fix)
L.._ .

(b) Use the integration capabilities of a graphing utility to

graph F.

(c) Use the differentiation capabilities of a graphing utility to

graph F'(.v). How is this graph related to the graph in part (b)?

(d) Verify that the derivative of y = (l/2)r - (sin 2t)/4 is sin-f.

Graph y and write a short paragraph about how this graph is

related to those in parts (b) and (c).
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Integration by Substitution

• Use pattern recognitum tn e\aluate an indefinite integi"al.

• Use a change of variables to evaluate an indefinite integral.

• Use the General Power Rnle for Integration to evaluate an indefinite integral.

• Lise a change of variables to evaluate a definite integral.

• Evaluate a definite inlecral invoivini; an even or odd function.

P.'ittcrn Rerognition

In this section you will study techniques for integrating composite functions. The

discussion is split into two parts

—

pattern recoiiiiition and <hciiii;e of variables. Both

techniques involve a (/-substitution. With pattern recognition you perform the substi-

tution mentally, and with change of variables you write the substitution steps.

The role of substitution in integration is comparable to the role of the Chain Rule

in differentiation. Recall that for differentiable functions given by v = F{ii) and

// = ,i,'(.v). the Cham Rule states that

^[Fi^lx))] = F'(,i,.(.v))A''(-v).

From the definition of an antiderivati\e, it follows that

F'(,i;(.v))x''(-\)(/-v = Fifiix)) + C

= Fitt) + C.

These results are summari/ed in the lollowinc theorem.

NOTE The statement of Theorem 4. 1

2

doesn't tell how to distinguish between

/(,1,'fv)) and ,i,''(.v) in the integrand. As yon

become more experienced at integration,

your skill in doing this will increase. Of

course, part of the key is familiarity with

derivatives.

THEOREM 4.12 Aiitidifferentiation of a Composite Fimcfion

Let i; be ; function whose range is an interval / and let /' be a function that is

continuou s on /. If t; is different table on its domain and F is an anlidcrivative |

of / on /, then

./li.' v)),i,''(.v)(/a = Figix)) + r.

If ;( = .al. ). then (/;( = ,i;'(.vN/.v md

fill (/;( = Fill ) + r.

STUDY TIP There are several tech-

niques for applying siibstitiition, each

differing slightly from the others.

However, you should remember that the

goal is the same with every technique

—

you are irviim in fhnl an (imideriviitive

of the intennind.

^^^^ftfAssfi-'iZ^x^ssmm^i^s^sssssSiVs^sssti^iss.': pvpT ORATION

Recognizing Patterns The integrand in each of the following integrals fits the

pattern /(^i;(.v))^?'(.v). Identify the pattern and use the result to evaluate the integral.

;.v(.v- + I
)-* d.\ 3x~J.\^ + 1 d\ c. ,sec-.Y(tan.v + 3) J.v

The next three integrals are similar to the first three. Show how you can multiply

and divide by a constant to evaluate these integrals.

d. .vU= + \)-'dx ,vV.v-' + 1 d.x ./. sec- .v(tan .v + 3) dx
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Examples 1 and 2 slmw how to apply Thcoicin 4.12 iliivitlw by iccoiini/ing llic

presence of /'(^?(.v)) and ,t;'(A"). Note that the composite Innciioii in the integrand has an

initside function f and an inside fiinclion i;. Moreover, the deri\ati\e ,i,''(.\) is present as

a factor of the inteurand.

Outside function

n;^ix))gl\) dx = FiiiU)) + C

Inside function Denv;tti\e of

inside lunciion

Exiuuple 1 Recognizing tlie/(5(.v))^(.v) Padi'iii

Find (v- + n-(2.v),/.v.

TECH^OI.O(,^ Try using a com-

puter algebra system, saeh as Maple.

Derive. Miillieiiuilieii. Miillieiul. or the

T!-S9. to solve the integrals given in

E.xainples 1 and 2. Do you obtain the

same antiderivatives that are listed in

the examples .'

Solution Letting .i,'(a) = .v- + 1. you obtain

,!,''(-V) = 2.V

and

./(,t;(-v)) =/(.v- + 1) = i\- + \)~.

From this, you can recognize that the integrand lollou s the /(,t,' (.v )),!,''(.v) pattern. LKing

the Power Rule for integration and Tlieoreni 4.12. voti can write

(.V- + 1 )-(2.v) d.x = \ ix- + 1)^ + C.

Trv using the Chain Rule to check that the dei native of ^(.v- + 1)' + C is the inie-

izrand of the original intemal.

Example 2 Recognizing \\\e f(g(x))g'(x) Pattern

Find 5 cos ?.v dx.

Solution Letting g(.v) = 5.v. you obtain

S'(.v) = 5

and

f(g(.x)) =/(5.v) = cos5.v.

From this, you can recognize that the integrand follows the /(^l.vDi^'l.v) pattern. LIsing

the Cosine Rule for integration and Theorem 4, 12. yon can write

— .r^-

(cos5.v)(3)f/.v = sin5.v + C.

You can check this by differentiating sin 5.v + C to obtain the original integrand.
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The integrands in Examples 1 and 2 fit the /(i,'(a)),i;'(a) pattern exactly—yon only

had to recogni/e the pattern. You can extend this teehniiiue considerably with the

Constant Multiple Rule

kf{x]d\ = k\f{x)ck

Many integrands contain the essential part (the variable part) ot\i;'(A) but are missing

a constant multiple. In such cases, you can multiply and divide by the necessary con-

stant multiple, as demonstiated in Example 3.

Example 3 MultiplyinjJ and Dividing by a Constant

Find .v(.v- + I)-, /v.

Solution This is smiiiar to the mtegral yi\cn in Example I . except thai the integrand

is missing a factor of 2. Recognizing thai 2.v is the deri\ali\e of \- + i. \(hi can let

,s,'(.v) = -V-^ + I and supply lite 2v as follows.

v(.V- + l)-(/v= M.v' + I
)' - (2.v) (/.V Miillipfv .inj divide by :

/kM.vll ?'(v)

1 f'T'^,
'"

= - (.V- + I )- (2.v) (l.\ Ciinsuinl Multiple Rule

(.V- + I

)-'

3
+ C Inteiiiate.

(.V- + 1
)-' + C

In practice, most people wotild not write as main steps as are shown in Example

3. F"or instance. \ou could evaluate the integral by simply writing

.v(.v- + I
)- </.v = - (.\ - + I

)- 2.\ d\

3
C

fv- + I)' + C.

NOTE Be sure yon see that the Coustaul Multiple Rule applies only to constants. You cannot

multiply and divide by a variable and then move the variable outside the integral sign. For

mslance.

U- + W-ih i- ]^ (.V- + l)-(2.v)</.v.

Attci all. It il wore legiliniate to nioxe variable tiiiaiitilics oiilslUe the inlcgral sign. \ini could

move the entire inlegrand out ami simplilv Ihe whole process. But the result would be incorrect.
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Change of Variables

With a foi"nial change of variables, you completely rewrite the integral in terms of /;

and ciu (or any other conxenicnt variable). Although this procedure can involve more

written steps than the pattern recognition illustrated in Examples 1 to 3. it is useful for

complicated integrands. The change of variable technique uses the Leibniz notation

for the differential. That is. if ii = g{.\). then Jii = ,i,''(.\) t/.v, and the integral in

Theorem 4.12 takes the form

f(g{.x))glx) dx = /(;/)(/;/ = Fin) + C.

Example 4 Change of Variables

Find V2.V - 1 dx.

Solution First, let // be the inner function. (/ = 2.v - 1. Then calculate the differen-

tial dit to be (/(/ = 2 dx. Now. using Jlx — 1 = V» and dx = du/1. substitute to

obtain the followinij.

STUDY TIP Because integration is

usually more difficult than differentiation,

you should always check your answer to

an integration problem by differentiating.

For instance, in Example 4 you should

differentiate jdv - I
)-'''- + C to verify

that you obtain the original integrand.

'2x -
I dx

dii

ii'''~dii

2 1 3/2

^ u^'- + C

^(2.v - 1)'- + C

Inleyral in terms ot ii

Anliderualivc in leriiis iil n

.Anfideruatne in terms ot v

/?»y E.YaiiipIc S Change of Variables

Find vVlv -
1 dx.

Solution As in the previous example, let ii = 2.v - 1 and obtain dx = dii/2.

Because the integrand contains a factor of .v, you tnust also solve for .v in terms of u.

as follows.

;/ = 2x — 1 \^.:- x = in + 1 )/2 Sol\e lor. i- m terms ot »

Now, usina substitution, vou obtain the followins.

,\Vlv - 1 dx
II + 1

1/2
lll\

(((-'/- + //'-'-) (///

10
(2.V - 1)5/- + -(2.V - \}^'- + C
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STUDY TIP When making a change

of \anables. be Mire that your answer is

vvritlen using the same \ariables as in

the origuial integrand. For mstancc. in

Example 6, you should not lea\e your

answer as

but rather, rephiee ii by sin ,\v.

To CDiiiplete the change of vaiiables in Exatiiple 5. we solved for v in terms of ti.

Sometinies tliis is vefy difficult. Fortuntttely it is not alw ays necessary, as siiown in tite

next example.

Example 6 Change of Variables

Find sin- .Tv cos ?.v i/.v.

LSolution Because sin- 3.v = (sin 3.v)-. yoti can let ii = sin .rv. Then

(/(( = (cos 3.v)(3) </.v.

Now. because cos 3.v il.\ is part of the gi\eti integral. \on can write

— = cos 3.V (/.v.

Substituting (/ and i/(//3 in the gi\cn mtegral yields the follownig.

- 1 2 1 I ^
''"

sin- 3-V cos .yv il.\ = \ ir
—-

= T "" '/"

= - sin' 3.V + C

You can check this by differentiating.

sin' 3.V ^)(3)(sin3.v)-(cos3.v)(3)

sin- 3.\ cos 3.V

Because differentiation produces the original integrand, you know that you have

obtained the correct antiderivative.

We summarize the steps used tor integration by substitution in the following

cuidelines.

Guidelines for Making a Chanj^e of Variables

1. Choose a substitution ;( = ,!,'(.v). Usually, it is best to choose the inner part of

a composite function, such as a quantity raised to a power.

2. Compute ctu = g'(.\) i/.v.

3. Rewrite the integral in terms of the variable /(.

4. Find the resulting integral in terms of ;/.

5. Replace u by i,'(.v) ti) obtain an antiderivative in terms of .v.

6. Check vour answer by differentiatinsi.
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The General Power Rule for Integration

One of the most common ((-substitutions involves quantities in the integiund that are

raised to a power. Because of the importance of this type of substitution, it is given a

special name—the General Power Rule for integration. A proof of this rule follows

directly from the (simple) Power Rule for integration, together with Theorem 4.12.

THEOREM 4.13 The General Power Rule for Integration

If,;; is a differentiable function of V, then

[,«(-v)]\i?'U)<
II + 1

- + C, (1 =^ --1.

Equivalently, if ((
= g(.\). then

1

""

'

~.C. II ^ -1.
J " +

Example 7 Substitution and flic General Power Rule

H-' J,

I

/I-V5

a.
I

3(3.v - 1)^ ,/.v =
I

(3.V - I)-'(3) d\ = ''^'^

T
'*

+ C

It' J,i lr/2

b.
I
(Iv + 1 )(.v- + .v),/.v = I (.V- + .v)' (Iv + 1 ) </.v =

*'^"

t
'^^'

+ C

ii"- dii »"7(3/2)

c. Xx-Jx^^ldx = (.v' - 2)'/-(3.v=)rfv = ''

^^^' + C = ^(.v' - 2?'- + C

EXPLORATION

Suppose you were asked to find one

of the following integrals. Which one

would you choose? Explain your

reasoning.

a.
I

^x^ + 1 dx or

.vV.v-' + 1 dx

b.
I
tan(3.v) sec-(3-v) dx or

]dxtan(3x)

d.
I

^^2y_
dx = |(1 - Iv-) -(-4.V)</A + c

((-73

I
- • (

I ( r( • w (cos v)-''

e. cos- .V sin .v dx = — (cos x)-[ — sm .v) dx =
:;

h C

Some integrals whose integrands involve a quantity raised to a power cannot be

found by the General Power Rule. Consider the two integrals

x(x- + \)-dx and (.v- + 1)-J.v

The substitution (( = x- + 1 works in the first integral but not in the second. (In the

second, the substitution fails because the integrand lacks the factor .v needed for dii.)

Fortunately, for this particular integral, you can expand the integrand as

(.V- -I- 1)- = .v"* + 2.V- -I- 1 and use the (simple) Power Rule to integrate each term.
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Change of Variables for Definite Integrals

When using (/-substitutiini with a definite integial, it is often convenient to determine

the hmits of integration tor the variable u rather than to convert the antiderivative back

to the variable v and evaluate at the original limits. This change of variables is stated

explicitly in the next theorem. The proof follows from Theorem 4.12 combined with

the Fundamental Theorem of Calculus.

THEOREM 4. 1 4 Change of Variables for Definite Integrals

If the function u = g{x) has a continuous derivative on the closed inlerv; 1 [a. h]

and / is continuous on the range of ,i,', then

./(,i;(.v))t,''(.v)</.v = fiinJii.

Example 8 Change of Variables

E\aluate .\iv- + U^/.v.

Solution To evaluate this integral, let ;/ = a- + 1. Then, you obtain

// = \"- + 1 ^=> dii = 1\ dx.

Before substituting, determine the new upper and lower limits of integration,

Linvcr Limit Upper Liiiiir

When.v = 0, » = ()-+! = 1. When .v = I, ;/ = 1- + I = 2.

Now, vou can substnute to obtain

v(.V- + W (Ix = -
I

(.V- + 1)'(2a)(/.V InleiiiMduii limils to

/(' (/;/ lmci:r,ilion limits tor u

3(-i
- 11

8

Try converting the antiderivative ,((/"'/4) back to the variable .v and e\aluale the defi-

nite integral at the original limits of integration, as follows.

2\ 4/ 8

Notice tliat you obtain the same result. z;
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Example 9 Oiange of Variables

Evaluate A
'2x - 1

5-

4--

3--

(1. 1)

H h -l-^-V

The region before suhstitiition hus an area

ol y.

Figure 4.37

Solution To evaluate this integral, let u = s'2.v - 1. Then, you obtain

u- = Iv - 1

;/-+!= 2.V

ir + 1

U dlt = dx. Diffeienliale bolli sides

Before substituting, determine the new upper and lower litnits of integration.

Lower Limit Upper Limit

When.v = 1. ;( = J2 - 1 = 1. When .v = 5, it = VlO - 1 = 3.

Now, substitute to obtain

, dx =1 - ;
I

(( (//(

{ir + \)dii

+ II

3

'

"'
/(") =^

(1.1),

H \ h

The re^ion after substitution has an area
,. Ih '

ol T-

Figure 4.38

Geometrically, you can inteipret the equation

.V I It- + 1

: ilx = ; (/((

/2v -
1

to mean that the two different regions shown in Figures 4.37 and 4.3S ha\c the .same

area.

When evaluating definite integrals by substitution, it is possible for the upper

limit of integration of the H-variable form to be smaller than the lower limit. If this

happens, don't rearrange the limits. Simply evflluate as usual. For example, after

substituting // = v^l ^ -V in the inteyral

.v-(l - xV'-dx

you obtain it = Vl — 1 = when .v = 1 . and ;/ — Vl — = 1 when .v = 0. So.

the correct k-variable form of this integral is

( 1
— ii-)-ii- dii.
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Even function

Odd lunction

Figure 4.39

i— ->

Integration of Even and Odd Functions

E\en v\ith a change of \ariablcs. integration can be diirienlt. Occasionally, you can

simplify the evaluation of a definite integial (over an interval that is symmetric about

the y-axis or about the origin) by recognizing the integrand to be an even or odd

function (see Finure 4..-<9).

THEOREM 4.15 Integration of Even and Odd Functions

Let / be integrable on the closed interval [
— a. ci].

1. If/ is an c\-L'ii function, then /(.v) ilx = 2 fix) i/.v.

2. If/' is an ()(/(/ function, then /(v) clx =

Proot Because / is even, you know that /( \ ) = /( -a). Using Theorem 4. 1 2 with the

substitution/; ~ —,\ produces

,/(.v)</,v= /(-/()(-</(()=- t{u)ilii=
I
j[u)dii=

I
/(a)(/.v.

Finally, using Theorem 4.6. you obtain

fix) d\ =
I

/Iv) </v + /(a) ilx

f{-\)d\ + f{\)J.\ = 2 I ,/(a),/a.

This prcnes the lirst property. The proof of the second property is left to you (see

Exercise I 16). [^

V = sin' -v cos .\ + sui .v cos Jc

Because/ is an odd lunction.

-rr/:

/(.v) ,/.v = 0.

Figure 4.40

Example 10 Integration of an Odd Function

7T/2

Evaluate | (sin\v cos .\ + sin .v cos a) i/a.

-/:

Solution Letting /(a) = sin'.vcosA + sin a cos .v produces

/'(— .v) = sinH -.v) cos(-.v) + sin( -a) cos(-a)

= — sin'.V cos A — sin A cos .V = —fix).

So. / is an odd function, and because / is symmetric about the origin over

[— n/2. tt/2]. you can apply Theorem 4.1.^ to conclude that

I
(sin' X cos .V + sin x cos .v) dx = 0.

7T/1

NOTE From Figure 4.40 you can sec that the tv\o regions on either side ol ihe i-axis ha\c the

same area. However, because one lies hclou the >-axis and one lies abo\c il. integration pro-

duces a cancellation effect. (We will say more about this in Section 6.1.)
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In Exercises 1-6, complete the table bj identifying ;/ and dii for

the integral.

f(g(x])g'(x) dx II = g{x) dii=glx)dx

In Exercises 35-38. solve the differential equation.

dv
,

4.V

1. (5.V- + 1)-(I0a)(/a-

''j. = 4a- + —
yi6 - X-

36. fd\
10a-

VI + a'

,. '/v A + 1

2. aVa-' + \d.\-

3.

38.

dx

dx (a- + 2a - 3)-

(/v _ A - 4

dx Jx~ - 8a + 1

7a- + I

4. I sec 2a tan 2a dx

5. tan- A sec- a </a

6. I . ^ dx

In Exercises 7-34, find the indefinite integral and check the

result bv differentiation.

7. (I + 2a)-'(2)</a

rp Slope Fields In Exercises 39 and 40, a differential equation, a

point, and a slope field are given. A slope field consists of line seg-

ments with slopes given by the differential equation. These line

segments give a visual perspective of the directions of the solu-

tions of the differential equation, (a) Sketch two approximate

solutions of the differential equation on the slope field, one of

which passes through the indicated point. (To print an enlarged

copy of the graph, go to the website www.matbgrapbs.eom.) (b)

Use integration to find the particular solution of the differential

equation and use a graphing utility to graph the solution.

Compare the result with the sketches in part (a).

8. (a- - ^)Y{lx)dx

9. J9 ~ x-(-2x)dx

11. A '(A"" -1- i}-dx

13. v-(a' -
1 )^ dx

10. i'ii - 2a-)(-4a)Ja

12. a-(a' + 5)^dx

14. a(4a- + 3)-'</a

15. \t^/t- + 2dt

17. 5a VI - a-(/a

16. /\V' + 5dr

18. //- J11^ + 2 dii

19.
(1 -A-h'

dx

21-
i^rTT)^''-^-

23. : dx

25. Mi+^n^i.^

27.

29.

1

dx
2a

+ 3a + 7

31. \i-\r - -\dt

2(1.

22.

24.

26.

28.

30.

32.

A

( I + A-^)

A^

(16 - A-')-

dx

^./A-

J\ + A-*

1

A- +
(3a)-

1

dx

t + 2t'
y— d\

33. (9 - v)VyJy 34. 2 7Tv(8 - v-''-)(/v

39.
dx

ij4-x\ (2.2) 40. ^ = ACOSA-, (0, 1)
dx

- \ \ 3 - - / / / -
- \ \ \ - / / / -
- \ \ \ - - / / / •-

- \ \ \ - / / / -
- \ \ \ - - / / / -

\ \ \ - / /

-2
\ \ \ - / / / 2

- \ \ -1
-" - / / /

-

I
'

I ' I
'

! t '
I I

• -V

In Exercises 41-54, find the indefinite integral.

41. 7T sin TTX dx

43. sni 2v dx

45. I

- cos - dH
' H- H

47. sni 2a' cos 2a dx

49. tan"" v sec- a dx

42. 4a-' sni A-^ dx

44. cos 6a dx

46. A sin A- dx

48. scc( 1
- a) tan( 1

- a) dx

50. Vtan A sec- a dx

-1 CSC-

A

?1. —dx
cot-\v

53. cot- A dx

52. |^^./A

54. lcsc-^K/-v



298 CHAPTER 4 Ime-ialioii

In Exercises 55 and 56, find an equation for tlie function/ that

has the indicated derivative and whose fjraph passes through

the uivcn point.

79. \ = 2 sin A + sill 2.V 80. \' = sin A + cos 2a

Dcrivauve

55. f\\) = cos -

56. / '(a) = 77 sec 77A tan -\

Point

(0,3)

(il)

In pAcrcises 57-64, find the indefinite iiitefjral liv the method

shov\n in Kxaniple 5.

58. \ X 2a + I </a

4 2 4

57. Wa" + 2(/a-

59. v\/l - a</a

61.

' " ' '

,/v

1 s 2a -
1

6^
-A

81. sec- - (/a

7,/4

82. I esc 2a cot 2a (/a

60. (a + I ) 72 - A- clx

62. |^^^<Zv
Va + 4

(A- + 1 ) - v'a- + 1

64. t i'r - 4 ,//

4 3 4
Ih S 16 4

rp In Kxercises 65-76, evaluate the definite intej;ral. Use a graph-

ing utihtv to verifv vour result.

65. a(a- + l)'</( 66. a-(a' -t- S)-,/a

rp In Kxercises 83-8S, use a graphing utility to evaluate the

integral. (Jraph the region whose area is given In the definite

integral.

67.
I
2a-\ a' + 1 (/a

1

68. A s 1
- A- dx

69.

71.

.'2v + I

1

dx 70,

/a 1 + Va)-
c/a

J I + 2a-

72.
I

A ^"4 + A- d.x

73. (a - nv2 - A, /a

75. cos(^1i/a

74. : ,/a

s'2v -
I

76.
I

(a + cos a) (/a

rp In Kxercises 77-82, find the area of the region. Use a graphing

utility to verify your result.

77. A ^/a -I- 1 </a 78. s"a + 2</a

2 4 6 S

83.
V2a + 1

: d.X

85. Av^A - 3 (/a

84.

86.

' Jx + 2 dx

87.
I

[H + cm--\de

- s A -
1 </a

88.
I

sin 2a </a

Wriliiig In Kxercises 89 and 90, find the indefinite integral in

two ways. Kxplain any difference in the forms of the answers.

89. I2v - \)' dx 90. sin dx

In Kxercises 91-94, evaluate the integral using the properties of

even and odd functions as an aid.

92.
I

sin- A cos a dx
nil

91. a-(a- + \)dx

93. a(a- + I
)' dx 4. sin

.

J--/2
94.

I
sin A cos a dx

-II

95. Use Jij A- </a = T to evaluate the dctlnilc integrals w ithout using

tlie Fundaiiicntal Theorem ot Calculus.

(a)
I

A- i/a

(c)
I

-a-(/a

(h) a-(/a

(d) \x-dx
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96. Use lliL- s\niinetrv of the yiaphs ol ilic sine and cosine tiinc-

tions as an aid in e\aliialini; each of the intearals.

(a)

(c)

sin \ il\

cos -v d\

(hi cos A dx

( d I I
sin A cos A' d.x

111 Kxercises 97 und 98. «ritc llic iiiknial as the sum of the

iiite<;ral of an odd function and the hitcfjral of an even function.

Use this simplification to evaluate the integral.

97. (a' + 6a- - 2a - :>) i/a 98. (sni 3a + cos 3a) ,/a

99. In yom- own words, slate the ;juidelincs lot inakini; a

chan'jc of \ariables when inlcL'talmi;.

100. Describe why /a(5 - .v-)' i/a -
f ii' tin wiiere

,< = 5 - A=.

101. Without integratnig. explain wli> J1,.v(a- + I)- d.x = 0.

rp 106. llir(/tT Supply A niodel lor the Ikm rate of water at a ptiiiip-

int: station on a aiven day is

R{r) = 53 + 7sin|y + 3.6
j
+ ycos(^ + 8.y

wlierc I) < / < 24. A' is llie flow rale in tliousands ol' gallons

per hour, and r is the time in hours,

(a) Use a graphing utility to graph the rate function and approx-

imate tlie maximum How rate at the pumping station.

(b) Approximate llie total \ohinie ol water pumped in I day.

107. Electricity The oscillaling curienl in an electrical ciieuil is

/ = 2 sin(6(l77;l t cosi I2l)77fl

where / is measured in amperes and ; is measured iii seconds.

Find the average current lor each time inter\al.

(a) < f <
sfi

(b) i) < ' < 5^1 IL') I) < I < Y,

rp' 108. Graphical Analysis Consider the functions / and 4'. where

102. Cash I'low The rate of disbursement dQ/dl of a 2 million

dollar federal grant is proportional to the square of 1(10 —
/.

Time / is measured in days (()</< l()()|, and Q is the

amount that remains to be disbursed. Find the amount that

remains to be disbursed after 50 days. Assume that all the

money will be disbursed 111 100 days.

10.^. Depreciation The rate of depreciation dV/di of a machine is

iinersely proportional to the square of I + \. where \ is the

value of the machine t years after it was purchased. If the initial

value of the machine was Si500.000. and its value decreased

$100,000 in the first \ear. estimate its \alne after 4 years.

104. Rainfall The normal monthly rainfall at the Seattle-TaconiLi

airport can be approximated by the niodel

/? = 3.121 + 2.34^) sin(().524f + 1.377)

where R is measurcil 111 inches ami / is the time in months,

with/ = I corresponding to .lanuary. iSmircc: U.S. Ndlioiiul

Oii'iiitic iind Almnsphcnc .XilinmisticiUnii}

(a) Detemiine the extrema ol ihe kinction o\er a l-year period.

(b) Use integration to approximate the normal annual rainlall.

[Hiiit: Integrate o\er the inter\al [0. 12].)

(c) Approximate the average monthly rainfall during the

months of October, November, and December.

105. Sales The sales of a seasonal product are given by the model

5 = 74.50 + 43.75 sin
—
6

where 5 is measured in thousands of units and t is the time in

months, with t = I conesponding to January. Find the aver-

age sales for the follow ing periods.

(a) The first quarter (0 < ; < 3)

(b) The second quarter (3 < r < 6)

(c) The entire year (0 < f < 12)

/'(a) = 6 sin A cos- A and ,t,'l/l = /(.v)(/a.

(a) Use a graphing utility to graph / and ; in Ihe same

viewing window

(b) Explain why 1; is nonnegatixe.

(c) Identify the points on the graph of i; that correspond to the

extrema of /,

(d) Does each of the zeros ol / correspond to an extrcmiini ol

g? Explain.

(e) Consider the function //(;) = \'_ , /(a) </a. Use a graphing

utility to grajih //. W'h.it is the relationship between .i,' and

h'l Verify your conjeclure.

True or False'.' In Kxercises I0')-I14. determine whether Ihe

statement is true or false. If it is false, explain why or fjive an

example that shows it is false.

I((9. (2a + \)~dx = \(2x + I)-' + C

111. (((a' + /).v- + ex + d) </a = 2
I

(/>.v- + d) dx

112. sin V dx = sin i ilx

113. 4
I
sin v cos A dx = - cos 2.v + C

1 14.
I
sin- 2a cos 2a dx = { sin' 2a -I- C

1 15. Show that if / is continuous on the entire real line, then

fix + h)dx = /(a)</a.

116. Complete the proof of Theorem 4.15.
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Numerical Integration

AppniMinate a dcnnile integral using the Trapezoidal Rule.

Approximate a defiiiile integral using Simpson's Rule.

.Analyze the approximate eiTor in the Trapezoidal Rule and in .Simpson's Rule.

The art-a of the region can be approxnnuled

using four trapezoids.

Figure 4.41

/(.v„i

/(->,)

b-ii

The area of the first trapezoid is

./•(.V(.) + /(-V|)

-)

Figure 4.42

/) - u

The Trapezoidal Rule

Some elenientury functions simply do not ha\e antiderivatives that are elementary

tunctions. For example, there is no elementary function that has an\ of the follow ing

functions as its derivative.

/.vVl - -V, yr^7

If you need to evaluate a definite integral involving a function whose antideri\ative

cannot be found, the Funelamental Theorem of Calcukis canniit be applied, and you

must resort to an approximation technique. Two such techniques are described in this

section.

One way to approximate a definite integral is to use ;; trapezoids, as shown in

Figure 4.41. In the development of this method, asstime that / is continuous and

positive on the interval [</. /']. So, the definite integral

.fly) </.v

represents the area of the region bounded by the graph of/ and the x-axis. from

.V = (/ to .V = b. First, partition the inter\al [ii. h] into ;; subintervals. each of width

ilv = (/) — (/)//(. such that

(( = .v., < .V| < .\s < < v„ = h.

Then form a trapezoid for each stibinter\al. as shown in Figure 4.42. The area of the

/th trapezoid is

Area of /th trapezoid =
,/lv, ,) +/U) h - CI

This implies that the sum of the areas of the ii trapezoids is

Area
h - a /(.v„) +/(.v,) /(V»-|) +,/'(-V„)

(^^)[/(.Vn) + /(.V,) + fix,) +f{x,) + +/(.V„ ,) +/(.V„)]

[/(.v„) + 2/(.v,) + 2/(.v,) + • • + 2/(.v„_,l +/(.v„)].

Letting A.v = (/' - a)/ii. you can take the limit as n ^ oc to obtain

lim C^JL/lv,,) + 2/(.v,) + • • + 2/lv„_,) +/U,,)]

= lini
n —• tc

[/(<;) - f(b)] Xx
y,/(.v,)A.v

11m Ifia) 'f(b)](b- a)
+ lim y /(.vlA.v

(1 + I l\x)d\.

The result is summarized in the follovvini: theorem.
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THEOREM 4.16 The Trapezoidal Rule

Let/ be continuous on [a. /']. The Trapc/oidal Rule for approximating

X''/(.v) d\ is given by

flx)dx ==
^^-f-^ [ /'(.v,,) + 2/(a-,) + 2/lv,) + + 2/(.v„ ,) +/(.v„)].

Moreover, as /!—>oo, the right-hand side approaches
J,', f{-\) d.\.

NOTE Observe that the eoetTicients m the Trape/didal Rule ha\e the lolKiw ing patlern-

1 2 2 2 ... 2 2 1

Fi>ur Mihinter\als

K n ^n n 5n ^ iK K
8 4 8:84

EJehl sLibinter\als

Trapezoiilal appruMmations

Figure 4.43

Example 1 Approximation with the Trapezoidal Rule

Use the Trapezoidal Rule to approximate

sni .V i/.v.

Coiiipaiv the residts ior ;;
^ 4 and ;; = X. as show n in Figure 4.4.v

Solution When /( = 4. A.v = 7t/4. and you obtain

Sin .V (/.v = — sin + 2 sin — + 2 sin — + 2 sin ——I- sin tt

+ v/2 + 2 + v-^ + O)
7T 1 + J2

1 .896.

When /( = S. A-V = tt/S. and you obtain

TT I . IT TT .,.3 77 TT

Sin A <a = — sin (1 + 2 sin "7 + 2 sin — + 2 sin
——I- 2 sin

—
16 \ 8 4 S 2

-.Stt ,.37r . . 1 TT

+ 2 sin ——h 2 sin --—I- 2 sin H sni tt)

8 4 8

—
( 2 + 2 v"^ + 4 sin - + 4 sin—

16\ 8 8
1 .974.

For this particular inlegral, vou could ha\c lound an antiderivalive and determined that

the exact area ot the leeion is 2. ...-

TKCHNOLOd^ Most graphing utilities and computer algebra systems have built-in

programs that can be used to approximate the value of a definite integi"al. Try using

such a program to approximate the integral in Example 1 . How close is your approx-

imation?

When you use such a program, you need to be aware of its limitations. Often,

you are given no indication of the degree of accuracy of the approximation. Other

times, you may be given an approximation that is completely wrong. ¥ox instance.

: try using a biiilt-m numerical integration program to evaluate

%

1

dx

Your calculator should give an enor message. Does yours?
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It is interesting to compare the Trapezoidal Rule u ith the Midpoint Rule given in

Section 4.2 (Exercises 63-66). For the Trapezoidal Rule, you average the function

\alues at the endpoints of the subintervals. but for the Midpoint Rule you take the

function values of the stihinterval midpoints.

,/-(.v) cIa - V f
V, + .V,

A.v

/(.v).v^x r^'---'V'--''U .v

Midpoint Rule

Trape/oidal Rule

NOTE There are two iniporlant points that should be tiiade concerning the Trapezoidal Rule

(or the Midpoint Rule). First, the uppro.xiiiiation tends to become more accurate as ii increases.

For instance, in Example 1. if ;i = Id. the Trapezoidal Rule yields an approximation of 1.994.

Second, although you could have used the Fundamental Theorem to evaluate the integral in

Example 1 . this theorem cannot be used to evaluate an integral as simple as Jifsin .t- dx becau.se

sin -V- has no cleiiicnlaiy aniiderivative. ^'el. the Trapezoidal Rule can be applied easily to this

integral.

Simpson's Rule

One way to view the trapezoidal approximation of a definite integral is to say that on

each subinterval you approximate /' by a/;ra?-degree polynomial. In Simpson's Rule,

named after the English mathematician Thomas Simpson ( 1710-1761 ), you take this

procedure one step ftiither and appro.ximate /' by .yecY)/u/-degree polynomials.

Before presenting Simpson's Rule, we list a theorem for evaluating integrals of

polynomials of degree 2 (or less).

THEOREM 4. 1 7 Integral of j^(.v) = A.v^ + B.\ + C

If/)(.v) = Av- + fi.v + C. then

(a + h\
/'((/) + 4/) —^— + p{b)

Proof

/)(.v) d\ = {Ax- + B\ + C) d\

/l.v' Bx~ ^- + ^ + C.v

Mb' - cr) Bib- - cP)
H h Cib - ii)

3

/- - a
[2A(a- + cib + b-) + ?<B(b + a) + 6C]

By expansion and collection of terms, the expression inside the brackets becomes

lb + a'''
{All- + ft; + CI + 4 Bi'^).C

pin)

and vou can write

pix) </-V
=

+ h

+ {Ab- + Bb + C)

pih)

h - a
p{o) +4H^^-^I +/.(/')



SECTION 4.6 NiimcriLal Imeiiiiitioii 303

p{x)il\ ==
I

/(v),/v

Figure 4.44

To develop Simpson's Rule for appioxiinuting a detlnite inlegial. you again

partition the interval [a, b] into n subintervals. each of width A.v = (/> - a)/ii. This

time, however, ;; is required to be even, and the subinler\als are groupctl m pairs sLich

that

cl = .V|| < .V| < .v, < .V, < .V4 < < .V , < .v„_
I

< .V = /).

[-v„. v,l [v,. [->„-:.>„]

On each (double) subinterval [.v, i, .v,], you can appro.xmiatc / by a polynomial /> of"

degree less than or equal to 2. (See Exerci.se 46.) For example, on the subniter\al

[.v,,. .\\], choose the polynomial of least degree passing through the points

(.v,,, y,,). (.V|, y, ), and (.xs, V;)- ^i*^ shown in Figure 4.44. Now. using /» as an approxima-

tion of f on this suhinterval, vou have, by Theorem 4.17,

/(.v),/.v = /)(.v)</.v /.(.v„) + 4/>(-^i4^j + /,(.vj

2[(h - i,}/n]
[/H.v„) + 4/.(.v,) +/<(.v,)]

3/)
/(v„) + 4/(.v,) + /(.v,)].

Repeating this procedure on the entire interval [1;. /'J produces the lollov\ ing theorem.

NOTE Observe that the coefficients

in Simpson's Rule have the following

pattern.

142424.4241

THEORE.M 4. 1 8 Simpson's Rule (;; is even)

Let / be continuotis on [a. h]. Simpson's Rtile for approximating /; / (a ) J.\ is

/(.v)</.v = ^^[/(.v„) + 4/(.v,) + 2/(.vJ + 4/(.v,) +

+ 4/(.v„ 1) +/(.v„)].

Moreover, as n -^ 00, the right-hand side approaches /_'' /'(.\ ) cL\.

In Example 1 . ihc Trapezoidal Rule was used to estimate J,;' sin .v iL\. In the next

example. Simpson's Rule is applied to the same integral.

ff^/ Example 2 Approximation with Simpson's Rule

NOTE In Example 1, the Trapezoidal

Rule v\ ith n = % approximated

/if sin \ dx as 1.974. In Example 2,

Simpson's Rule with h = 8 gave an

approximation of 2.()(K).^. The antideriva-

tive would produce ihe true \aliie ul 2.

Use Simpson's Rule to approximate

sin .V dx.

Compare the results for n — \ and ;; = 8.

Solution When /; = 4, you have

sin .V dx ~ —T sin -t- 4 sin — + 2 sin — + 4 sin —

-

12 \ 4 2 4

= 2.005.

When /) = S, yoti have sin .v dx = 2.000.3.

\.il.\
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Error Analysis

If you must use ;in approximation tCL-linique. it is important to know how accurate you

can expect the approximation to be. The following theorem, which we list without

proof, gives the formulas for estimating the errors involved in the use of Simpson's

Rtilc and the Trapezoidal Rule.

THEOREM 4.19 Errors in tlic Trapezoidal Rule and Simpson's Rule

If/ has a continuous second derivative on [a. h]. then the error E in approxi-

mating J,',f{\) (/.v by the Trapezoidal Rule is

E <
12/r

[max \f"(x) a < .V < h. Trapezoidal Rule

Moreover, if/ has a continuous fourth derivative on [</, /)]. then the error E in

approximating /„'/(-v) cl.\ by Simpson's Rule is

E <
m)ii^

[max t/'^'(.v)|], (( < .V < /). Simpson's Rule

TECHNOLOGY If you have access

to a computer algebra system, try

using it to evaluate the defmite

iiUegral in Example 3. You should

obtain a value of

'1 + .v-i/.v= i[v/2 + ln(l +s/

=
I I477M

("In" represents the natural loganth-

nile function, which you will study in

.Section .^.1.)

V = \/l +.T-

„ = i

H ->

1.144 < yi + .v-(/-v < 1.164

Jii

Figure 4.45

Theorem 4.19 states that the errors generated by the Trapezoidal Rule and

Simpson's Rule have upper bounds dependent on the extreme values of /"(.v) and

/'^'(.v) in the interval [ci. h]. Furthermore, these enors can be made arbitrarily small by

iiicri'iisiiii; n. provided that /"and /'^' are continuous and therefore bounded in [ci. h].

Example 3 The Approximate Error in the Trapezoidal Rule

Determine a value of » such that the Trapezoidal Rule will approximate the value of

Jii yi + .V- </.v with an error that is less than 0.01.

Solution Begin by letting /(.v) = VI + .v- and finding the .second derivative of /.

fix) = x{\ + X-]-"- and f"(x) = (I + .v-)-'/
=

The maximum value of |/"(.v)| on the interval [O. 1] is [/"(0)| = 1. So. by Theorem

4, 1'-*, vou can write

llir
!1)

1

12/;-.

To obtain an error /; that is less than 0.111. you must choose /; such that

l/(12yr) < 1/100.

100 < 12;r /; > ^71-2.89

Therefore, you can choose ii = .3 (because n must be greater than or equal to 2.89)

and apply the Trapezoidal Rule, as shown in Figure 4.45, to obtain

./TTx'./.v == ^[v'TTlP + 2V1 + (jY + 2^1 + (j)' + Vi + 1-]

= 1.154.

So. with an error no larger than 0.01, you know that

1.144 < yi + x'dx < 1.164.



SECTION 4.6 Numerical Integration

EXERCISES FOR SECTION 4.6

In Exercises 1-10, use the Trapezoidal Rule and Simpson's Rule

to approximate the value of the definite integral lor the indi-

cated value of;;. Round vour answer to lour decimal places and

compare the results with the exact value of the definite integral.

In Kxercises 25 and 26. use the error formulas in Theorem 4.19

to find ;; such that the error in the approximation of the definite

integral is less than 0.00(1(11 using (a) the Trapezoidal Rule and

(h) Simpson's Rule.

.\- clx. « = 4

a' d\. (1 = 4

5. A ' d\. /; = 8

7. I V-V dx. /I = 8

1

9.
(a- + 1

)

- d\. /I = 4

6.

8.

10.

— + 1 dx. 11 = 4
I

</a- 26.
1

1 + A-

- Ja-

— </a. » = 4
A'-

N A" dx. II = S

14 - v-)</a-. )j = 4

\ s A^ + I dx. /) = 4

rp In

rV In Exercises 11-20. approximate the definite integral using the

Trapezoidal Rule and Simpson's Rule uith ;; = 4. Compare

these results with the approximation of the integral using a

graphing utilitv

11. I Jl + .\\lx

13. J^X v/1 - A dx
Jl)

15. cos A- dx

17.

19.

1
> ,/v

I v^l +A-'

14. ^ V sin V dx

r. -/^

16. tan A- dx

Cr, 2

sin A-(/v

A tan A </v

20. f{x)dx. fix)

18.

A >

A =

n'1 + cos-Arfv

Exercises 27-30, use a computer algebra system and the

error formulas to find ;; such that the error in the approxima-

tion of the definite integral is less than 0.00001 using (a) the

Trapezoidal Rule and (h) Simpson's Rule.

27. ^\ + X dx

29. tanv-i/A

28.
I

(a + 1
)- ' dx

30.
I

sin A- dx

31. Pn>\c that Sinipson's Rule is exact when ap]ir(i\imalin!j the

inleyial of a cubic polMniniial tiinction. and ilemonstrate the

result tor

t"' dx. 11 = 2.

Lp 32. Write a program for a graphnii; uliht) to approximate a definite

integral using the Trapezoidal Rule and Simpson's Rule. Start

with the program written in Section 4.3. Exercises 57-60, and

note that the Trapezoidal Rule can be written as

Tin} = -.[Lin] + Riii)]

and Simpson's Rule can be written as

SUi) = {[Till/2} + 2M{ii/2}l

[Recall that Hii). Miii). and Riii) represent the Riemann sums

using the left-hand endpoint. midpoint, and right-hand endpoint

of subinter\'als of equal « iiltli
|

In Kxercises 33-36. use the program in l^xercise 32 to approxi-

mate the definite integral and complete the table.

21, If the function / is concave upward (ni the interval [<(, b].

will the Trapezoidal Rule yield a result greater than or less

than /„',/(a) i/a? Explain.

22. The Trapezoidal Rule and Simpson's Rule yield approxi-
,

mations of a definite integral I'fM dx based on polyno-

mial approximations of /. What degree polynomial is used

for each? i

In Exercises 23 and 24. use the error formulas in Theorem 4.19

to estimate the error in approximating the integral, «ith ;; = 4,

using (a) the Trapezoidal Rule and (b) Simpson's Rule.

n L(n) M(n) R(n) Tin) S{n)

4

8

10

12

16

20

23. .v\/.v 24.
A + 1

-rrix

i}.

35.

+ 3a- </a

sin V -V dx

34.

36.

1 - A- dx
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37. Area Use SinipM'iis Rule uith /) = 14 tn approximate the

area of the region bounded h\ the graphs ol v = v .v eos v.

\' = 0. v = (1, and .v = -/2,

38. C'iiriiiiifen'inc The elliptic integral

Sv'3 ^1 -
t sin- OiW

gives the circuniterenee of an eUipse. Use Simpson's Rule with

» = 8 to ap|irn\imate the enximilerence.

39. Work To determine the size of tlie motor required to operate

a press, a company must know the amount of wdrk done when

the press moves an object hnearly 5 feet. The \ariable force In

move the object is

F{\) = lOO.v^'i:? - .V'

where F is gi\cn m pounds anti \ gi\es the position ol the iiiiil

in feet. Use Simpson's Rule wilh ii = 12 lo approxuiiatc ihc

v\ork VV (in foot-pounds) done through one cycle if

W Ffv) (/.v.

rp' 40. Ihc table hsis several measurements gathered in an experimeiu

lo appro\uiiale an unknown continuous fiuiction y = /'(.il.

(a) Approximate the integral J,; /'(.v) </> usnig the Trapc/oidal

Rule and Simpson's Rule.

X 0.(10 0.25 0.50 0.75 1 .00

y 4.32 4.36 4.5H 5.79 6.14

X 1.25 1.50 1.75 2.00

y 7.2.5 7.64 X.08 8.14

Area In FIxtrcises 43 and 44. use the Trapezoidal Rule to

estimate the numher of square meters of land in a lot where x

and V are measured in meters, as shown in the tlfjures. The land

is hounded by a stream and two straight roads that meet at right

angles.

43.

44.

20 4(1 Ml wi mil i:ii

(b) Use a graphing utility to find a model of the loini

y = (/.\ ' + /u' + c.v + (/ for the data. Integrate the result-

ing polynomial o\'er |0. 2| and compare Ihc resiill with

part (a).

Ai>i>nixiiiialiiiii iij I'i In Exercises 41 and 42, use Simpson's ,

RulewithH = 6 to approximate - using the <;i\en equation. (In iP 45. Use Simpson's Rule with /; = 10 and a computer algebra

* y

125

100 125

200 120

300 112

400 90

500 90

600 95

700 88

800 75

900 35

1000

X y

75

10 81

20 84

30 76

40 67

50 68

60 69

70 72

80 68

90 56

100 42

110 23

120

l.sll- - Road

Stream

100-
\

^"^^^X
50-

1 1

? i
ViR.iad

:iiii 4011 (lOii ,s(«i iiinii

R .ad

SI) -^^ Stream

60-

^"^X
40- \
20- : \"
MM II II M V

Section 5.9, you will be able to e\ahiale the integral using

inverse trigonometric functions. )

41.

system to approximate / m the integral equation

sin v'-V i/.v = 2.

42.
1 + .V

~ d\

46. Pro\e that \oii can find ,i polynomial /)(-v) = Ax- + Bx + C
ihal passes through any three points (.Vi.y,), (.Vi.y,), and

(-V,. V,). where the .v, are distinct.
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REVIEW EXERCISES FOR CHAPTER 4

In Exercises I and 2. use the Hinph of /
' to sketch a

"iraph of/. To print an enlarged copy of the graph, go to the

wehslte www.mathgraphs.c<im.

1. 2.

In Exercises 3-8, Cind the indelinite integral.

3. (2.V- + v - l),/.v

5. |^^</v

,.
,^i^iii±I.,.

'/7. (4.V - 3 sin a) </.v

8. 15 cos.v - 2 sec- a) iL\

It)

II

9. Eind the particular solution of the differential equation

/'(a) = - 2a whose graph passes through the pouii I
-

1 . 11

Eind the particular solution ol the differential equation

/"(a) = 6(a - I) whose graph passes through the point (2. I)

and is tangent to the line 3a - y - 5 = at that point.

Velocity and Acceleration An aiiplane taking off from a

runway travels 36(1(1 leet before lifting off. If it starts from rest,

moves with constant acceleration, and iirakes the run in .lO

seconds, with what speed does it lilt off.'

12. Velocity ami Acceleration The speed of a car traveling in a

straight line is reduced from 4.s to M) miles per hour in a

distance of 264 feet. Eind the distance in w hich the car can he

brought to rest from 311 miles per hour, assuming the same

constant deceleration

13. Velocity and Acceleration .A ball is thrown verticalK upward

from ground level with an initial velocity of 96 feet per second.

(a) How long will it take the ball to rise to its maximum height'

(b) What is the nia\imum height '

(e) When is the velocity of the ball onediaU the initial

velocity'

(d) What Is the height of the ball when its velocity is one-half

the initial \elocit_\ '.'

14. Velocity and Acceleration Repeat E.xercise 13 for an initial

velocity of 40 meters per second.

15. Write in sigma notation (a) the sum of the fust ten positive odd

integers, ibl the sum of the cubes of the lirst /; positne integers,

and (c) 6 + 10 + 14 + IX + + 42.

16. Hxaluate each sum for a, = 2. a, = - I. .v, = 5. .Vj = 3, and

.V, = 7.

I. 1

(c) V(2.v, - A,-) (d) V(.v, -.V, ,)

/ = 1 /
- 2

In F.xercises 17 and IS, use upper and lower sums to approxi-

mate the area of the region using the indicated nuniher of suhln-

tervals of equal w idtli.

17. V = 10

A- + 1

18. y = 9 - \.\-

(' T \

I 2

In Exercises 19-22, use the limit process to llnd the area of the

region het"een the graph of the lunction and the.v-a\ls o\er the

Indicated Interval. Sketch the region.

Iiiiiclion hilcrval

19. = 6 - .V [0.4]

20. • = .A- + 3 [0. 2]

21. = 5 - A- [-:.!]

22.
1 1= JA- [2.4]

23. L se the limit process to find the area ol the region bounded b>

A = .Sy — V-. A = 0, y = 2. and y = 3.

24. Consider the region bounded by y = m\. y = 0. .v = 0. and

A = /).

(a) Eind the upper and lower sums to approximate the area of

the region when Aa = /)/4.

(b) Find the upper and lower sums to approximate the area ot

the region when Aa = h/ii.

(c) Find the area of the region by letting /; approach infinity in

both sums in part (b). Show that in each case you obtain the

formula lor the area oFa triannle.
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In P^xercises 25 and 26, exprtss the limit as a definite

integral on the interval [a, />], where c, is any point in the ;th

siibinterval.

Limit ItllfI'VllI

25. lim y (2c- - i)lx, [4. 6]

26. lim y 3r(9 - fv)AA- [1.3]
J -11 .^, '

In Kxereises 27 and 28. sketeh the refjlon whose area is given by

the definite integral. I'hen use a geometric formula to evaluate

the integral.

27. (? - Iv - .^i )</a- 28. yi6 - v-rfv

In Exercises 29 and 30, use the given values to evaluate each

definite integral.

29. If /(aI</.v= 10 and ,!,'(a) i/.v = 3. find

(a) [/(a) + ,i,'(a)]</a. (b) [ /(a) - ,i;(a)] t/v.

(c) [2 /(a) - 3,(,'(.v)] </a-. (d) 5/(a)</a.

3(1. ir fix) d\- = 4 and /(a) </v = - 1. find

(al /(a), /a. (b) /(a)</a.

(c) /(a)</a. (d) -IO/(a)</a-.

In Exercises 31 and 32, select the correct value of the

definite integral.

32. I ^dx31. (^v + |)</a

(a) T lb) IT

(c) T <J> l¥

(a) ^ (b) -f
(c) -g (d) y

In Exercises 33—tO, use the Eundamental Theorem of Calculus

to evaluate the definite integral.

33. (2 + aI</a

35. (4;= - 2/),//

34. ir- + 2)dt

36. (A-t + 2a- - 5) ,lx

37.
I
a^A(/a

39. I suiflclH

38.
I ^^-i,)</.v

/-ir/4

40. sec- ; clt

J--/4

In Exercises 41-46, sketch the graph of the region whose area is

given by the integral, and find the area.

41. 12a - 1I</a

43. (a- - 9) ,/a

45. (a- - A-') </a

42. (a + 4) Ja

44. (-A- + X + 2)dx

46. ^G ( 1 - a) dx

In Exercises 47 and 48, sketch the region bounded by the graphs

of the equations, and determine its area.

47. V = 0. A = 1. A = 9

48. \- = sec- A. \- = 0. A = 0. A

In Exercises 49 and 50, find the average value of the function

over the interval. Find the values of v at which the function

assumes its average value, and graph the function.

Functinu

49. fix)
1

50. fix) = X'

Inlernd

[4.9]

[(). 2]

In Exercises 51-54, use the Second Fundamental Theorem of

Calculus to find F'(x).

51. Fix) =
I ;-v 1 + t' dt 52. Fix) =

\
- dt

S2:. Fix) = (/- + 3f + 2),// 54. Fi.\ idt

In Exercises 55-68. find the indefinite integral.

55. (a- + 1)''</a 56.
I I

A + -
I J.V

57. dx
X- + 3

59. v( 1
- ix-f dx

61. sin 'a cos A dx

J X ' 1
- cos

65. Ian" .v sec- .v dx. ;; 9^ - 1

66. sec 2.\ tan 2.v </x

67. 11+ sec TT x)- secTTA laiiTrv dx

68. cut' a CSC" a da

58.
I
v-^ a' + 3</.v

A + 3
60

(.V- + 6.V - 5)

62. I A sin 3a- </.

7 dx

64. |^;^^,/v
V sin A
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^ In Exercises 69-76, evaluale the deiinite integral. Use a graph-

ing utility to verify your result.

69.

71.

.v(.v- - 4}dx

'„ s/TT^

70.

72.

,v-(a' + 1

)'
,/.v

73. 27t\ (v + 1)v 1
- V(/v

75.

79. Suppose that gas<iline is increasing in price according to the

equation

p = 1.20 + 0.04?

where p is the dollar price per gallon and / is the time in years,

with t = representing 1990. If an autoniohile is dri\cn l.^.OOO

miles a year and gets M miles per gallon, the annual lucl cost is

cos - ilx

74. 2n\ .vV.v + 1 dx

76.
I sin 2.V i/.v

C

5. sin 2.V (/.

j-7r/4

15.000

M P di.

Probability In Exercises 77 and 78. the function

/(.v) = Aa'MI - .v)'". (I < .V < 1

where n > 0, m > 0, and k is a constant, can be used to repre-

sent various probability distributions. If A is chosen such that

fix] dx = I

the probability that .v «ill fall between a and b [0 < a < h < I) is

lU =
I

fix) dx.

11. The probability that a person will remember between a'^c and

b'^/c of material learned in a certain experiment is

Estimate the annual fuel cost tor the year (a) 2000 and Iht 2I)0.S.

80. Respiratnry Cycle After exercising for a lew ininules. a

person has a lespiratory cycle lor which the rate of air intake is

1' = l.7_i sin —

.

Find the \olunie. in liters, of an inhaled during one cycle by

integrating the function over the interval [O, 2].

fy^f K&9 I" Exercises 81-84, use the Trape/.oidal Rule and

Simpson's Rule with h = 4, and use the integration capabilities

of a graphing utility, to approximate the dellnitc integral.

Compare the results.

81. : ,/.v

15
.v^/1 - .vrfv

82.

84.

</.v

~y 1 -I- sin- .V dx

where v represents the percent remembered. (See figure.)

(a) For a randomly chosen individual, what is the probability

that he or she will recall between 5()'7r and 757r of the

malerial?

(b) What is the median percent recall.' That is, lor what \aluc

of /' is it true that the prohabihty Irom to h is 0.5?

H h— -V

" ''(IS 1.0 l.-i

Figure for 77

I + ,v'

83.
I

y.v COS .V i/.v

85. Let

/ =
I

/(v),/>

where / is shown in the figure. l,et Lint and A'(//) represent the

Riemann sums using the left-hand endpoint and right-hand

endpoint of ii subintervals of equal width. ( Assuine ii is even.)

Let Till) and .S'(/i) be the corresponding values of the

Trapezoidal Rule and Simpson's Rule.

(a) For any /), list Liu). Rin). /'(/;), and / in increasing order.

(h) Approximate .S'(4I.

(7 h

Figure for 78

78. The probability that ore samples taken from a certain region

contain between a9r and b9c iron is

P..>,
1155

32
,v'( 1

- xV- dx

where .v represents the percent of iron. (See figure.) What is the

probability that a sample will contain between

(a) 0% and 259?- iron'

(b) 50% and 100% iron?
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P'S, 'Problem "Solv/ng

f^ I. Let L(.v) lit. X > 0.

(a) FindL(l).

(b) Find L'(.v) and L'{\).

(c) Use a graphing utility to approximate tlie value ot .v (to three

decimal places) for which Lixj = 1.

(d) Prove that Z.(_V|A_,) = LIa,) + L(a,) for all positive values of

A I and A,.

rp 2. Let /-(a) = sin;-(/r.

(a) Use a graphing utility to complete the table.

X 1.0 1.5 1.9 2.0

FM
X 2.1 2..S 3.0 4.0 5.0

Fix)

(b) Let G(.v) F(.v) sin I- til. L'se a graph-
.V -J. A -

ing utility to complete the table and estimate lini G(a).

X 1.9 1 .95 1.99 2.01 2.1

G(x)

(c) LFse the dcfmilion of the derivatixe to find the e.xact value of

the limit lim G(.i').

3. The Fresnel function S is defined bv the intecral

on the interval [0, 3].

S(.v) = sin^ </;.

(a) Graph the function \ = sin

(b) LIse the graph in part la) to sketch the graph of 5 on the

interval [0. 3].

(c) Locate all relative extrema of 5 on the interval (0, 3).

(d) Locate all points of inllection of 5 on the interval (0, 3).

4. Galileo Galilei (1564-1642) stated the following proposition

concerning falling objects:

The lime in whieli any spaee i.s traversed by a uniformly

accelerating body is ecjual to the time in which thai same

space would be traversed by the same body movin.t; at a

uniform speed whose value is the mean of the hi.qhcst

speed of the accelerating body and the speed just before

aeceleralion began.

Use the techniques of this section to verify this proposition.

5. The graph of the function /consists of the three line segments

joining the points (0, 0). (2. -2), (6. 2). and (8. 3). The function

F is defined by the integral

F(x) = /(/) dl.

Jo

(a) Sketch the graph of/.

(b) Complete the table of values.

X 1
1 3 4 5 6 7 8

Fix)

(c) Find the extrema of F on the interval [0. 8].

(d) Determine all points on inflection of inflection of F on the

interval (0, 8).

6. A car is traveling in a straight line for one hour. Its velocity v in

miles per hour at six-minute intervals is shown in the table.

/ (hours) 0.1 0.2 0.3 0.4 0.5

V (mi/hr) 10 20 40 60 50

t (hours) 0.6 0.7 0.8 0.9 1.0

>' (mi/hr) 40 35 40 50 65

(a) Produce a reasonable graph of the velocity function \' by

graphing these points and connecting them with a smooth

curve.

(b) Find the open intervals over which the acceleration a is

positive.

(c) Find the average acceleration of the car (in miles per hour

squared) over the interval [0, 0.4].

(d) What does the integral f„v{t) di signify? Approximate this

integral using the Trapezoidal Rule with five subintervals.

(e) Approximate the acceleration at ; = 0.8.

7. The THO-Point Gaussian Quadrature Approximation for/ is

,/ (.v) dx = /
I

J3
+ f

(t^

(a) Use this formula to approximate

cos A dx.

Find the enor of the approximation.

(b) Use this formula to approximate

1 + X-

(c) Prove that the Two-Point Gaussian Quadrature Approxi-

mation is exact for all polynomials of degree 3 or less.
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8. Prove
|

f{r){.x - t) dt = I II /(,) </r
) </r

9. Prove I f{.x)f'ix)dx = k[f{h}]- - [f(a)]-).

10. Use an appropriate Riemann sum to evaluate the limit

lim
i,-V2

11. Use an appropriate Riemann sum to evaluate the limit

,. V + 2= + 3' + + /P
lim ,

.

12. Archimedes showed that the area of a parabolic arch is equal to

5 the product of the base and the height, as indicated in the figure.

-/)-

13.

(a) Graph the parabolic arch bounded by v = 9 - .v- and the

v-axis. Use an appropriate integral to find the area A.

(b) Find the base and height of the arch and verify Archimedes'

formula.

(c) Prove Archimedes' formula for a general parabola.

Suppose that /' is integrable on [a. b] and < in < f{x) < M
for all X in the interval \_a. /?]. Pro\e that

14.

m(a - h) <
I

/(.v)-(7.v < M(b - a).

Use this result to estimate ( Vl + .v"" dx.
Jo

"Verify that

n(n + \)(2ii + 1)

15.

1=1

by showing the following.

(a) (1 + 0' - /' = 3/- + 3/ + I

(b) (/! + \? = |](3r + 3/ + 1) + 1

<=>
I/"

=
6

Prove that if/ is a continuous function on a closed interval

[a, b\ then

J
f(x)dx <

I

\f{x)\dx.

16. The temperature in degrees Fahrenheit is

7r(; - 8)
T = 12 + 12 sm

12

where t is time in hours, with t = representing midnight.

Suppose the hourly cost of cooling a house is $0. 1 per degree.

(a) Find the cost C of cooling the house if its thermostat is set

at 72°F bv e\'aluatin2 the intctiral

C = 0.1 72+ 12 sm^^^- 72 dt. (See figure.)

0. 84

^ 78 - -

2 66

g 60

H
Thermostat seuing: 72°i

-\
i i

1 1 1 1 1
i

1 h
2 4 6 S III 12 14 1(1 IS 2(1 22 24

Time (ill hour.si

(b) Find the savings from resetting the thermostat to 7S''F by

evaluating the integral

C = 0,

1

72+12sm^^^-78 dt. (See figure.)

2 4 6 8 1(1 12 14 Ih IS 211

Time (in hours)

17. .A manufacturer of fertilizer finds that natinnal sales of fertill/er

follow the seasonal pattern

27t(/ - 60)"
F = 100,000 1 + sin

36.'i

where F is measured in pounds and t is time in days, with t = I

representing January I. The manufacturer wants to set up a

schedule to produce a uniform amount of fertilizer each day.

What should this amount be'

18. Let / be continuous on the interval [0. /']. Show that

,/'(.v)

dx
b

I

,
yiv) + f\b - .v)

Use this result to evaluate

sin -V

'ii
sin( 1 - .v) + sin.v



Plastics and Cooling

What do Corvette fendei's. panty hose, and garbage

hags ha\'e in eoiiiiiion? They are all made of plastic.

The Greek word plaslika.s. meaning "able to be

shaped." was modified to name the most versatile

lamily of materials ever created. Since Bakelite was

introduced in 1909. the plastics industry has steadily

expanded to the point where today, plastics are u.sed

in nearly every aspect of our daily lives.

Several methods are used to shape plastic

products, one of the most common being to pour

hot. syrupy plastic ivsiii into a mold or cast. The

Icniperature of the molten resin is over .^00°F. The

mold IS then cooled in a chiller system that is kept

at .'S8°F before the part is ejected from the mold.

To minimize the cost, it helps to eject the parts quickly,

allowing the mold to be reused as soon as possible.

Yet ejecting the part when it is too hot can cause

warping or punctures. The rate at which objects cool

is therefore of great interest.

To illustrate the rate of cooling, the Texas Instni-

iiH'iils CalciilalDi-Bascd Lahonitoiy (CBL) System

was used to measure the temperature of a cup of water

over a 40-second period. The room temperature was

measured at 69.55°F, and the water temperature at time

/ = was measured at 165.58°F. The results are

shown in the following scatter plot.

I

I70--

160 --

150

140 --

130

120

110

100--

40 - -

^̂
Efe

Id 2\) 24

Time (in seconds)

QUESTIONS

1. Describe the pattern ol the temperatuie points i)\er time. Does the rate at which the tcnipcra-

ture changes seem to increase, decrease, or reiuain constant'

2. Imagine a curve running through the data points. How would you e-xpect the curve to behave

as the value of t increases? Would you e.xpecl the curve to intersect the line T = 69.33?

Explain your reasoning.

3. Would the derivative of a function modeling the data points be increasing, decreasing, or

constant'.' Explain your reasoning.

4. The data in the scatter plot can be modeled using a function of the form

T = a h' + c.

Find values oft/. /). and r that prodticc a reasonable model.

77k" concepts presented here will he explorcil tiirllicr in llus clinpter Far an extension of this

iipplicalion. see Liih 7 in the Uih series tlun ucconipcinies this text en ciillcgchnico.coni.
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Exponential^ and Other

Transcendental Functions

Plastic resin is produced in very

small pieces that are easy to heat

to a liquid state. The resin can

then go through the injection

molding process described on the

facing page.

Leo Hendrik Baekeland attempted

to create a shellac by combining

phenol and formaldehyde. The

experiment "'failed" in that it did

not result in shellac, but it did

form the first completely synthetic

plastic resin. Bakelite is still used

today in the automotive and elec-

tronics industries.

In 1953. Chevrolet introduced the Coivctte.

the first mass-produced automobile with a

plastic body.
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The Natural Logariihiiiic Function: Differentiation

• Dew'lop and use properties of the natural logarilhinie function.

• Understand the definition of the number c.

• Find derivatives of functions involvint; the natural iocarithniic function.

o
.c
H

JoHN Napier (1550-1617)

Logarithms were invented b\ the Scottish

mathematician John Napier Although he did

not introduce the nutiinil logarithmic function.

it is sometniies called the h'upicriuii logarithm.

The Natiual Logarithmic Function

Recall that the General Power Rule

.v"

V" ,/.v

;; + 1

+ C. II ^ -\ General Powei" Rule

has an important disclaimer— it doesn't apply when ii = — 1. Consequently, we have

not yet found an antiderivative for the function /(.v) = l/.v. In this .section, we will use

the Second Fundamental Theorem of Calculus to define such a function. This

antideri\ati\e is a function that we have not encountered previously in the text. It is

neither algebraic nor trigonometric, but falls into a new class of functions called

loiidiitliiiiic I'imclions. This partictilar function is the natural logarithmic function.

Dt'finilion of the Natural Logarithmic Function

The natural logarithmic function is defined by

In .V ,//. A > 0.

The domain of the natural logarithmic function is the set of all positi\e real

numbers.

From the dermilion. you can see that In .v is positive for .v > I and negati\e for

< .V < 1. as shown in Figure 5. 1 . Moreover. In( 11 = 0. because the upper and lower

limits of integration are equal when .v = 1

.

3t

2 -

\ It-V> l,|' \j!>0.

1
-

\ 2 ;
-^

4

If .V > 1, then In.v > 0.

Figure 5.1

IfA< l.|" l,//<0.

< .V < l,then In.v < 0.

EXPLORATION

Graphing the Natural Logarithmic Function Using only the definition of

the natural logarithmic function, sketch a graph of the function. E.xplain your

reasoniim.
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,_ 1

Each small line si-gmt'iit has a slope of

Figure 5.2

NOTE Slope fields can he helpful

in getting a visual perspective of the

directions of the solutions of a differen-

tia] equation.

To sketch the graph of \' = In v. yoti can think of the nattiral logarithmic Itnictioii

as an (mliderivdiirc given fiy the differential eqtiation

(^ _ J_

Figtire 5.2 is a computer-generated graph, called a .s/c/'c for direction) fu'ld. showing

small line segments of slope I /.v. The graph of \- = In v is the solution that passes

through the point ( I. 0). For a complete discussion of slope fields, see Appendix A.

The following theorem lists some basic properties of the natural logarithmic

function.

THEOREM 5 . 1 Properties of the Natural Logarithmic Function

The natural logarithmic function has the follow ing properties.

1. The domain is ((). cc) and the range is (— oo. ^.
2. The function is contiiuious. increasing, anti one-to-one.

3. The graph is concave downward.

v' = 4

The natural logarithmic ftiiictioii is increas-

ing, anil Its graph is concave do« nuard.

Figure 5.3

Proof The domain of /(.v) = In v is (0. zc) by definition. Moreover, the function is

continuous because it is dilferentiable. It is incieasinL; because its derivative

fix) = 1

hiisl deii\ jli\e

is positive for v > 0, as shown in Figure ,~i..-i. Il is concave downward because

1

./"(.v) .SeconJ i.leri\Liti\e

is negative for v > 0. We leave the proof that / is one-to-one as an exercise (see

Exercise 104). The following limits impiv that its range is the entire real Imc.

im In v = zcInn In x = -cc and

Verification of these two limits is given in Appendix B.

Using the definition of the natural logarithmic iLinction. you can prove several

important properties involving operations with natural logarithms. If you are alretidy

familiar with logarithms, you will recognize that these properties arc characteristic of

all logarithms.

Logarithms

Napier coined the term logarithm, from the

two Greek words In^os (or ratio) and ahtlmws

(or number), to describe the theory that he

spent 20 years developing and that first

appeared in the book Miyifni Logarillimmum

canimis ilescripiii) (A Description of the

Marvelous Rule of Logarithms).

THEOREM S.2 Logarithmic Properties

If (( and /) are positive numbers and ii is rationa . then the following properties

are true.

1. In(l) = (1

2. ln((//)) = In (( + In /;

3. Inin") = /) In (/

4. In 7 = In (; - In h
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Proof We lia\ e already discussed the first property. The proof of the second propetly

follows frotn the fact that two aiitiderivatives of the same function differ at most by a

constant. From the Second Fundamental Theorem of Calculus and the definition of the

natural logarithmic function, you know that

clx
[In.v]

/ .V

So. consider the two derivatives

:[in(<
tl.\ .V

and

^[\nu + In.v] = + - = -
(/.V .V .V

Because \n((i\) and (In <; + In.v) are both antiderivatives of l/.v. they must differ at

most by a constant.

ln((;.v) = In a + In .v + C

By letting .v = 1. you can see that C = 0. The thirtl property can be pro\ed similarly

by comparing the derivatives of ln(.v") and ii In.v. Finally, using the second and third

properties, you can prove the fourth propert).

Inl^J = hiiiih-']] = In,/ + ln(/; M = In ti - In /)

Example 1 shows how logarithmic properties can be used to expand logarithmic

expressions.

Example I Expanding Logarithmic Expressions

/(v> = ln V-

""""X -•

i

i;(.v) = 2 1n.v

a. In— = In 10 - In 9
9

b. Inv3.v + 2 = ln(3.v + 2)''-

=
^ ln(3.v + 2)

c. In— = ln(6.v) - In 5

= In 6 + In v - In ?

(-V- + 3)"

Priiperty 4

Row rue with raliunal exponent.

Property 3

Property 4

Properly 2

d. In

.v,y.v- + 1

Figure 5.4

ln(.v= + 3)- - Inj.vyx^ + I
)

= 2 ln(.v- + 3) - [In.v + InU- + 1)''-"']

= 2 1n(.v- + 3) - in.v - ln(.v^ + 1)'/'

= 2 1n(.v- + 3) - In.v - -InU-' + 1)

When using the properties of logarithms to rewrite logarithmic functions, you must

check to see whether the domain of the rewritten function is the same as the domain of

the original. For instance, the doinain of /(.v) = In.v- is all real numbers except x = 0,

and the domain of !,'(.v) = 2 In ,v is all positive real numbei's. (See Figure 5.4.)
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e = 2,72

( is the base for ihc natural logarillim

because In c = 1.

Figure 5.5

The Number e

It is likely that you have sttidied logarithms in an algebra course. There, without the

benefit of calculus, logarithms would have been defined in terms of a ha.se number.

For example, common logarithms have a base of 10 because log,, ,10 = I. (We will

.say more about this in Section 5.5.)

To define the ba.se for the natural logarithm, we use the fact that the natural

logarithmic function is continuous, is one-to-one, and has a range of ( — cc, cc).

Hence, there must be a unique real number .v such that hi .v = 1, as shown in Figure

5.5. This number is denoted by the letter e. It can be shown that c is irrational and has

the following decimal approximation.

e « 2.71828182846

Definition of e

The letter c denotes the posili\e lea number such that

lnc= -</;=].
Ji '

If -v = ('". then In .v = ii.

Figure 5.6

lOH I IRTHER I\FORMAriO\ To Icam more about the luinibcr c. see the article -L'ne.xpected

Occurrences of the Number c" by Harris S. Shultz and Bill Leonard ui XUnln-mniii s Mai^iKure.

To view this article, go to the website www.inmhariuies.coiii.

Once you know that In e = \. you can use logarithmic properties to evaluate the

natural logarithms of several other numbers. For example, by using the property

ln(c") = /( In (

= /;(1)

= n

you can evaluate Inic") for various powers of ((. as shown in the table and in Figure 5.6.

X —^ = 0.050 \ == 0.135
L'-

- == 0.368
e

e" = 1 e == 2.718 ('- = 7.389

\nx -3 — 2 -1 1 2

The logarithms given in the table above are convenient because the .v-values are

integer powers of c. Most logarithmic expressions are. however, best evaluated with a

calculator.

Example 2 Evaluating Natural Logarithmic Expressions

a. In 0.693

b. In 32 = 3.466

c. In 0.1 = -2.303
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The Derivative of the Natural Logarithmic Function

The derivative of the natural logarithmic function is given in Theorem 5.3. The first

part of the theorem follows from the definition of the natural logarithmic function as

an antiderivativc. The second part of the theorem is simply the Chain Rule version of

the first part.

THEOREM 5.3 Derivative of the Natural Loga ithmic Function

Let II be 1 diffcrentiahlc function of v.

• io" '1 = - V > 2. ^[ln.] = -

clx 1

dii

~i clx

ii'

II

11 >

rt^^ Example 3 Differentiation of Logarithmic Functions

EXPLORATION

Use a graphing utility to graph

1

>'i

and

y, = -f[ln.v]
i/.V

in the same viewing window, in

which 0.1 < .V < 5 and -2 < y < 8.

Explain why the graphs appear to be

identical.

(L\ II J.v .V

b.fhiU^+l)]^'^'^^
d\ II .V- + 1

c.£[,vln.v]^v(£[lnv]).„n.v,(£M]

.vl-j + (In.vXl)

1 + In .V

II = .V- + 1

Product Rule

C'ham Ruled. -f[*ln*''] = -Mill V)- '/-[In.v]
(7.V l/.V

3(ln .v)

Napier u.sed logarithmic properties to simplify vuUiiUitioiis involving products,

quotients, and powers. Of course, given the availability of calculators, there is now little

need for this particular application of logarithms. Ho\ve\ er, there is great value in using

logarithmic properties to simplify cliffcrciitiiiuoii involving products, quotients, and

powers.

Example 4 Logarithmic Properties as Aids to Differentiation

Differentiate /'(.v) = hivA' + 1.

Solution Because

fix) = In y.v + 1 = ln(.v + 1)'/-

you can write tlie following.

ln(.v + 1) Rewrite lietbre dilTerentKiung.

1

2\x + 1/ 2(.v + I)

DilTerentiate.

^^P iiu/icdics thai in the Interactive 3.0 CD-ROM and Internet 3.0 versions of this text

(available at college.hmco.com) yn/( willfind an Open Exploration, nliieh fiirther explores this

example iisiniJ the computer algebra systems Maple, Mathcad, Mathematica. and Derive.
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Example 5 Logarilhrnic Properties as Aids to Differentiation

Differentiate /(a ) = In
v(.v^ +

Solution

/(-v) = In
.v(.v- +

./i^^^-r

1

111 A + 2 ln(A- + I) - :^ln(2A' - 1)

n-v) = ^ + 2(^^) - i(^^
'

A Vv- + \l 2\2a' -
I

1 4v 3a-

Write original function.

Rewrite before differentiating

+ I 2a'

Dillcrentiale.

.Siniplify. ca

NOTE In E.xamplL's 4 and ?. be sure that you see the henelit of applying logarithmic proper-

ties before differenliatinj;. Considci. for instance, the tlifliciiltN of direct differentiation of the

function gi\en m Hxaniple .5.

On occasion, it is convenient to use logarithms as aids in differentiating

nonloganihuuc functions. This procedure is called logarithmic differentiation.

Example 6 I-oj<arillunlt Differentiation

Find the deri\ati\e of v
(a - 2)-

Jx- + 1

. X ^ 2.

Solution Note that \- > for all .v ^ 2 and hence that \\\\ is defined. Begin by

taking the natural logarithms of both sides of the equation. Then apply logarithmic

properties and differentiate implicitly. Finally, solve for y'.

(-V - 2)- ^,

In y = In

X- + 1

(-v-2)^

y.v- + I

I

Inv = 2ln(A - 2) - -!n(A- + I)

I / 2.V \\'

= ">

1
1 \

V \x - 2/

=
T

A - 2

=
y

/ 1

\.v
_ T

1V
--D-

">

Iv^ + 1./

.V

V- + 1

.V

.V- +

.Y- + 2 a + 2

J.v-_
->

)(a- + 1)Jfx^^\

(a- - 2) (a- + Iv + 2)

Write original equation.

Take natural log of both sides.

Logarithmic properties

Diilerentiate.

(A-2+ \?r-

Simplily.

Solve lor \'

Substitute for v.

Simplify.
LZi
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Because the iiutuiai logarithm is undefined for negative numbers, you will often

encounter expressions of the form ln|»|. The following theorem states that you can

differentiate functions of the form y = ln|/(| as if the absolute value sign were not

present.

THEOREM 5.4 Derivative lnvoI\'ing Absolute Value

If ;( is a differentiable function of .v such that // ^ 0, then

y[lnH] = -

Proof If // > 0. then |;(| = ii. and the result follows from Theorem 5.3. If ii < 0.

then \ii\ = —II. and vou have

|^[ln|.|] = ^.[ln(-»)]

- II

-II

II

u

= ln(.v- + 2.\ + 3)

i-l. In Jl

Relalnc ininmiuni

The derivative of r changes from negative to

positive at v = - 1.

Figure 5.7

Example 7 Derivative Involving Absolute Value

Find the derivative of

/(.v) = ln|cos.v|.

Solution Using Theorem 5 A. let ;; = cos .v and write

£[lnlcos.v|] =
^ £[,„H]^^

— sin X

cos .V

- tan v.

/( - cos .V

Siniplifv

Example 8 Finding Relative Extrema

Locate the relative extrema of

y = ln(.v- + 2.V + 3).

Solution Differentiatina v, you obtain

2.V + 2clx

dx X- + 2.V + 3

Because d\/dx = when .v = - I, you can apply the First Derivative Test and

conclude that the point (- 1. In 2) is a relative minimum. Because there are no other

critical points, it follows that this is the only relative extremum (see Figure 5.7).
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EXERCISES FOR SECTION 5.1

T^ 1. Complete the table below. Use a graphing utility and Simpson's

Rule with /; = lU to approximate the integral

t

X 0.5 1.5 T 2.5 3 3.5 4

1
(1/0*

In Exercises 17 and 18, use the properties o! logarithms to

approximate the indicated logarithms, given that In 2 = 0.6931

and In 3 = 1.0986.

17. (a) in 6 (b) In; (c) In 81 (d) In ~Jl>

18. (a) ln().25 (b) In 24 (c)lnC^ (dllnyj

In Exercises 19-28. use the properties of logarithms to expand

the logarithmic expression.

y 2. (a) Plot the points generated in Exercise 1 and connect them

with a smooth cin"\e. Compare the result with the graph of

y = In .V,

(b) Use a graphing utility to graph \' = /,'( l/r) Jr for

0.2 < .V < 4. Compare the result with the graph of

y = In.v.

Y In Exercises 3-6. use a graphing utility to evaluate the logarithm

by (a) using the natural logarithm key. and (b) using the

integration capabilities to evaluate the integral

-dt.

19. In?

21. In-

20. ln^/2^

22. \\-\(x\:)

23. In Ua- + 1

27. ln,-(.- - Il-

ia. \nja - 1

26. ln(3e-)

28. In
-

3. In 45

5. In 0.8

4. In S.3

6. In 0.6

In Exercises 7-10. match the function with its graph. [The

graphs are labeled (a), (b). (c). and (d).|

In Exercises 29-34. write the expression as a logarithm of a

single quantity.

29. In(v - 2) - Inlv + 2)

30. 3 In.v + 2 In V - 4 In :

31. 5[2 ln(.v + 3) + In a - ln(i- I )]

32. 2[ln.v - ln(.v + 11 - Inlv - I)]

33. 2 In 3 - 3ln(.v' + I)

34. ^[In(.v- + 1) - Inl.v + 1) - lu(.v - 1)]

rp In Exercises 35 and 36. show that / = g by using a graphing

utility to graph/ and s; in the same viewing window.

35. /(.v) = In ^. .V > 0. .sjl.v) = 2 In a - In 4

36. /(a) = Inv'vlA- + 1). .?(a) = ^[In.v + IuIa- + 1)]

In Exercises 37—tO, find the limit.

37. lull ln(A - 3) 38. Inn ln(6 - a)

39. lim ln[A-(3 - a)] 40. lim In

-

v/7

In Exercises 41-44. find the slope of the tangent line to the

graph of the logarithmic function at the point (1,0).

7. /( v) = In A + 2

9. /(.v) = ln(A- 1)

8. f(x) = -In

A

10. /(a) = -ln(-A|

41. V = In.v' 42. 1' = In.v-''-

In Exercises 11-16, sketch the graph of the function and state its

domain.

11. /(A) = 3 In A 12. /(a) = -2 In A

13. /Ivl = In 2a
—

'

14. /(a) = InJAJ

15. /(a) = ln(A -
1) 16. g(A) = 2 + In A

i—H^-v f^-v
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43. V = In v- 44. \' = In.v"'^

4- /

3- / ^^''"""^

-) _ I jy^
1- " Xl.O)

-1 - -/l 2 3 4 5 6

_i -l\

vy In Exercises 77-S2, locate any relative extrenia and inflection

points. Use a graphing utility to confirm your results.

77. , _ „. _
In v 78. y = A - In v

79. = v In .\ 80. v =
'"-^

A

81.
In.v

82. V - x'^'Xw-

In Kxercises 45-70. lind the deri\ative ol' the function.

45. ,;,'(v) = In.v'

47. V = (In.v)^

49. 1^ = ln(A-v/\- - 1

V

46. /((v) = ln(2A-- + I)

48. \' = A- In V

^1. /(a) = In —
V- + 1

50. y = InVA- - 4

52. /(a) = Ini

+ 3

53. ,v(?)

!n

54. //(/)

hw

\V Liiiecir and Oiiadialic Approximations In Exercises 83 and 84,

use a graphing utility to graph the function. Then graph

P,{x) =/(l) +/'(1)U - 1)

and

PM) =/(i) +/-(i)(A - 1) + i/"(i)(A- - n-

in the same viewing window. Compare the values of/, P^, and

P, and their first deri\atives at x = 1.

5. \ = hidn A-)

V + 1

V - 1

4 + .

V

56. V = Indn i) 83. /(aI = In A 84. /(a) = A hi A

57. ^ = in

59. /IaI = In

58. ^ = In
V -

1

A- + 1

60. /(a) = ln(v + V4 + A--)

61. > =
"^'' * '

+ ln(A + .,/^^T^

)

rr In Exercises 85 and 86, use Newton's Method to approximate, to

three decimal places, the A-coordinate of the point of intersec-

tion of the graplis ol the two equations. I se a graphing utility to

verify your result.

62.
Jx'- + 4 I

,
/2 + Jx- + 4—:r^ r 111

85. ^ = In a

\' = —A

86. V = In A

! = 3 -

63. V = In sm a|

65. 1 = In
cos A

cos A - 1

64. V = ln|csc a|

66. \- = In
I

sec V + tan a|

67. \ = In
I + sin A

68. V = \nj\ + sin-

A

70. ,v(a)
= (I- + 3) dt

In Exercises 87-92, find dyjdx using logarithmic differentiation.

87. V = AvA- -
I 88. ! = J(x - 1)(a- - 2)(a - 3)

v\/3v - 2

'

90. V =

2 + sin A

69. /(a) ^ sni 2a Ira'

In Exercises 71 and 72, (a) fhid an equation of the tangent line to

the graph ol/ at the indicated point, (h) use a graphing utility to

graph the function and its tangent line at the point, and (cl use the

derivative feature of a graphing utility to confuin your results,

limclidi}

89,

91. V

'x- - 1

(a- 1)^

A(A- 1)'/^

./^ I

92.

V A- + 1

(A + I)(a- + 21

(a- 1)(a-2)

P,>iiu

71. /(a) = 3a- - In A (1,3)

72. /(v) = 4 - A- - \n(\x + l) (0.4)

In Exercises 73 and 74, use implicit differentiation to find dyjdx.

73. A- - 3 111 \' -I- V- = 10 74, Inw + 5a = 30

In Exercises 75 and 76, show thai the liinctioii is a solution of

the differential equation.

Fiinclinii

IS. V = 2 In A + 3

76, \' = A In A - 4a

Differential Equatinn

A-y"-hy'=

A + \ - AV' =

93. In your own words, slate the properties ol the natural

logarithmic function.

94. Deluic the base for tlie n.iuiral logaritlimic rimetuni.

95. Explain why In c" = v.

96. Let / be a function tliat is positixe and dirierentiable on the

entire real line. Let "(a) = In /(.v).

(a) If I,' is increasing, must/ be increasing? Explain.

(b) 11 the graph of /' is concave upward, must the graph of

^i; he conca\e upward.' Explain.

97. Consider the function /(.\) = a - 2 In a on [I. 3].

(a) Explain why Rolle's Theorem (Section 3.2) does not

apply.

(b) Do vou think the conclusion of Rolle's Theorem is true

for / '.' Explain.
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n=^ 98. Home Mortgage The term / (in years) of a S12(),(XX) home
mortgage at lO'/r interest can he approximated by

5.315

f^

-6.7%8 + In.v'
.V > lOOO

/3=10 1og,„(^).

Use the properties of logarithms to write the formula in

simpler form, and determine the number of decibels of a

sound with an uitensity of 10"'" watts per square centimeter.

r 100. Modeling Data The table shows the temperature T (°F) at

which water boils at selected pressures /) (pounds per square

inch). (Source: Stamlnnl Huiidbook of Meclunncal Eui>'nicers)

p 5 10 14.696(1 atm) 20

T 162.24° 193.21° 212.00° 227.96°

P 30 40 60 SO 100

T 250.33° 267.25° 292.71° 312.03° 327.81°

A model that approximates the data is

T= 87.97 + 34.96 In/) + 7.9 U/p.

(a) U,se a graphing utility to plot the data and graph the

model.

(b) Find the rate of change of T with respect to /) when

/) = 10 and/) = 70.

(c) Use a graphing utility to graph T'. Find

lini T'ip)

and interpret the result in the context of the problem.

101. Modeling Data The atinospheric pressure decreases with

increasing altitude. At sea level, the average air pressure is one

atmosphere (1.033227 kilograms per square centimeter). The

table shows the pressure /) (in atmospheres) at a given altitude

// (111 kilometers).

where .v is the nionthl> pauiient in dollars.

(a) Use a graphing utility to graph the model.

(b) Use the model to approximate the term of a home niorl-

gage for which the monthly payment is $1 167.41. What is

the total amount paid''

(c) Use the model to approximate the term of a home mort-

gage for which the monthly payment is $1068.45. What is

the total amount paid?

(d) Find the instantaneous rate of change of / with respect to

.V when v = 1167.41 and .v = 1068.45.

(e) Write a short paragraph describing the benellt of the

higher inonthh payment.

99. Sound Intensity The relationship between the nuniher of

decibels /3 and the intensity of a sound / in watts per

centimeter squared is

h 5 10 15 20 25

P 1 0.55 0.25 0.12 0.06 0.02

(a) Use a graphing utility to find a model of the form

p = a + h In /( for the data. Explain why the result is an

error message.

(b) Use a graphing utility to find the loganlhniic model

h = a + h In /) for the data.

(c) Use a graphing utility to plot the data and graph the loga-

rithmic model,

(d) Use the model to estimate the altitude at which the

pressure is 0.75 atmosphere.

(e) L'se the model to estimate the pressure at an altitude of 13

kilometers.

(f) Find the rate of change of pressure when /; = 5 and

/; = 20. Interpret the results in the context of the problem.

rj^ 102. Tractrix A person walking along a dock driigs a boat by a

iO-meter rope. The boat travels along a [lalli known as a nut-

ti-ix (see figure). The equation of this path is

v=u.in(
'"^-f'^^)-yiocr^.

(a) Use a graphing utility to graph the tunction.

(b) What is the slope of this path when a = 5 and v = 9?

(c) What does the slope of the path approach as .v^> 10?

Tractrix

rp 1(13. Conjecture Use a graphing utility to graph/ and g in the

same viewing window and determine which is increasing at

the faster rate fiir "large" values of .v. What can you conclude

about the rate of growth of die natural logarithmic function?

(a) fix) = In.v. .i;(.v) = s/'.v

(b) fix) = In.v. gix) = i/^

104. Prove that the natural logarithmic function is one-to-one.

True or False? In Exercises 105 and 106, determine whetlier

the statement is true or false. If it is false, explain why or give

an example that shows it is false.

105. In(.v + 251 = In.v + In 25

106. If V = In - then v' = i/n.
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The Natural Logarithmic Function: Integration

• Use the Log Rule for liitegralion to integrate a rational t'nnetion.

• Integiate trigonometric functions.

EXPLORATION
Iiili'gmliiii; Rational Fniictiiins

Earl) rn Chapter 4, you learned rules

that allowed you to integrate tinx

polynomial function. The Log Rule

presented in this section goes a long

way toward enabling you to integrate

rational functions. For instance, each

of the following functions can be

integrated with the Loa Rule.

Example 1

E.\aniple 2

E.xample 3

Example 4a

Example 4c

Example 4d

Example 5

E,\ample 6

4.V -
1

.V- + 1

3x 2 + 1

A-- + .V

.V + 1

.V- + 2.V

1

3.V + 2

.V- + .V + 1

V- + 1

2.V

(-V+ 1)
=

There are still some rational functions

that cannot be integrated using the

Log Rule. Give examples of these

functions, and explain your reasoning.

Log Rule for Integration

The differentiation rules

f[ln|.v|]=' and f fln|H] = "
</.V V clx It

that \(Hi studied in the pieceding section prodtice the following integration rule

THEOREM 5.S Log Rule for Integration

Let (/ be a differentia ihle function of .V.

1. - </.v = ln|.\i + C 2.
"l
- (/(( = lnl;/|

J"
+ C

Because dii = it ' iL\. the second formula can also be written as

dx = \n\it\ + C. Alteniiitive lorm of Loi; Rule

Example 1 Using the Log Rule for Integration

^,/v^: -,/..

2ln|.v| + C

In(.v^) + C

Lo^ Rule Itii liueyralHin

Propcrh' (il luyarillims

Because .v- cannot be negative, the absolute value is tninecessary in the final form of

the antiderivative.

ExmiipJe 2 Using tlie Log Rule uifli a Change of Variables

Find
4.V -

1

(/.v.

Solution If you let // = 4.v - 1. then ilit = 4 i/.v.

cl.x = T I I

''.

r M 'Ia Multiply and divide bv 4.

4.V - 1 4J V4.V -
I

4j,t

I

cht

\n\it\ f C

SubsliUile: /; = 4\ - 1.

Apply Log Rule.

= - ln|4.V - 1| + C Back-subsliiuu
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Example 3 uses the alternative form of the Log Rule. To apply this rule, look for

quotients iti which the numerator is the derivative of the denominator.

Example 3 Finding Area with the Log Rule

Find the area of the region bounded by the graph of

.V

the .v-axis, and the line .v = 3.

\ ^.v

The area of the region bounded by the graph

of r. the .v-axis, and .v = 3 is j In 10.

Figure 5.8

Solution From Figure 5.8, you can see that the area of the region is given by the

definite integral

(Ix.

.V- + 1

If you let /( = .V- + 1, then ii' = 2.v. To apply the Log Rule, multiply and divide by 2

as follows.

.v= + !

.V 1 ' 2.V ^

dx = - ^ dx
v-^ +

ln(.v- + 1)

(In 10 - In 1)

In 10
2

1,151

Miilliply and divide by 2.

->/.i = In (( + C

In 1 =

Example 4 Recognizing Quotient Forms of tlic Log Rule

a.
I

^^^^ dx = ln|.v-^ + .v| + C « = .v-' + .v

SCC~ V
b.

I

^ dx = Inltan.vl + C » = tcin.v

tan .V

+ 1 1 2.V + 2^ dx = - —^ ^ dx
+ 2.V 2 J .V- + 2.V

= ^\nW + 2.v| + C

H = -V- + J.V

3.V +2 3 3.V + 2

= -ln|3.v + 2| + C

II = }\ + 2

'ji21_

With antiderivatives involving logarithms, it is easy to obtain forms that look

quite different but are still equivalent. For instance, which of the following are equiv-

alent to the antiderivative listed in Example 4d'?

ln|(3.v + 2)'/-'| + C, :^ln|.v + ||
+ C, ln|3.v + 2|'/' + C
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Integrals [o which the Log Rule can be applied iitten appear in disguised form.

For instance, if a rational function has a luimerator of degree greater than or equal to

that of the denominator, division may reveal a form to which you can apply the Log

Rule. This is illustrated in Example ."i.

Example 5 Using Long Division Before Integrating

Find
I

'

r^—,— (/.v.

A- + 1

Solution Begin hy using long division to rewrite the integrand.

1

.Y- + .V +

A- + I

cz;> .V- + I ) .V- + .V + 1

.V- + 1

1 +
.V- + 1

Now, you can integrate to obtain

'.V- + .V + I

.V- +
dA 1 +

A- + 1

d.\

=
I </v + z -7=^— dx

2 A- + I

Rewrile usiiiii lony duisKHi

Rewrite lis t\\x"> inleerals.

= A + - ln(A"- + 1 ) + C. Inleiirate

Check this result by dilfeieiitiating to obtain the original integrand. [^

The next example gives another instance in which the use of the Log Rule is

disguised. In this case, a change of variables helps you recognize the Log Rule.

TECHNOLOGY If you have access

to a computer algebra system, try

using it to find the indefinite integrals

in Examples ."i and 6. How does the

form of the antiderivative that it gives

you compare with that given in

Examples .s and 6?

Examph' 6 Change of Variables with the Log Rule

Find
J.v

^ dx.
_ (a + I

)^

Solution If you let u = x + 1 . then ilii = dx and x = u -
I

.

(a + I

)

T dx dii
i(~

'.III

I

2 III - ,//(

II
'\

\n\ii\ + - + C

:in A + li + c

Substitute.

Rewrite as twn Iractmns.

Rewrite as two inteijials.

Integrate.

Simplify.

iack-subslitute.
.V + 1

Check this result bv differentiatini: to obtain the original intei;rand. [Zi
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As you study the methods shown in Examples 5 and 6. be aware that both

methods involve rewriting a disguised integrand so that it fits one or more of the basic

integration formulas. Throughout the remaining sections of Chapter 5 and in Chapter

7 we will devote much time to integration techniques. To master these techniques, you

must recognize the "form-fitting" nature of integration. In this sense, integration is not

nearly as straightforward as differentiation. Differentiation takes the form

"Hcif is the tjiie.stioii: wlial is the answer'.'"

Integration is more like

"Here is the miswer: what is the i/iiestiini?"

We suggest the following guidelines for integration.

STUDY TIP Keep in mind that yon

can check your answer to an integration

problem by differentiating the answer.

For instance, in Example 7. the derivative

ofy = ln|ln.v| + Cis.v' = l/l.vln.vl.

Guidelines for Integration

1. Learn a basic list of integration formulas. (Including those given in this

section, you now have 12 formulas: the Power Rule, the Log Rule, and ten

trigonometric rules. By the end of Section 5.9, this list will have expanded to

20 basic rules.)

2. Find an integration formula that reseinbles all or part of the integrand, and,

by trial and error, find a choice of u that will make the integrand conform to

the formula.

3. If you cannot find a ((-substitution that works, try altering the integrand. You

might try a trigonometric identity, multiplication and division by the same

quantity, or addition and subtraction of the same quantity. Be creative.

4. If you have access to computer software that will find antiderivatives

symbolically, use it.

Example 7 H-Substitution and the Log Rule

Solve the differential equation
^v

t/.v .v In .V

Solution The solution can be written as an indefinite integral.

1

.V In .V

il.X

Because the integrand is a quotient whose denominator is raised to the first power, you

should try the Log Rule. There are three basic choices for (/. The choices /( = .v and

;/ = .V In .V fail to fit the n'/ii form of the Log Rule. However, the third choice does tit.

Letting (( = In a produces //' = l/.v. and you obtain the following.

I

v In A
ilx

In.v'
;/.v Divide numerator and denommalor by .

-d.x

= \n\ii\ + C

= hi|lnA| + C

So, the solution is v = InllnAl + C.

Substitute: u = In a-.

Apply Log Rule.

Baci^-substitute.

LZi.
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Integrals of Trigonometric Functions

In Section 4.1, you kHikcd at six trigonometric integiation lulcs—the six that corre-

spond directly to differentiation rules. With the Log Rule, you can now complete the

set of basic triaonometric integration formulas.

Example 8 Using a Trigonoiiietric Identity

Find Jtan v il\.

Solution This integral does not seem to fit any formulas on our basic list. However,

by using a trigonometric identity, you obtain the following.

fsin.v
tan A </a = (/.v

J cos .V

Knowing that D, [cos .v] = — sin .v, you can let // = cos x and write

I
si" * ,

tan .V cL\ — —
I

</.V TrisoiKimeuic idenlity
COS .V

/''
,— (/.V Siibslitiite: ii - cos .v.

u

= -ln|;/| + C Apply Log Rule.

= — ln|cos.v| + C. Back-Mibslituic 2]

Example 8 uses a trigonometric itlcnlity to derive an integration rtde for the

tangent finiction. in the next example, we take a rather iMUistial step (multiplying and

dividing by the same cjuantity) to derive an integration rule for the secant lunction.

Exawple 9 Derivation of the Sceant Forniula

Find Jsec v i/v.

Solution Consider the following procedure.

/stxA_+tan_v\
sec .V i/.v =

I
sec .v ilx

\ sec .V + tan .v /

sec- .V + sec .v tan .v
,

dx
sec X + tan .v

Letting ii be the denominator of this quotient proiluces

(( = sec .V + tan .V »' = sec .v tan .v + sec-.v.

Therefore, you can conclude that

.sec- .V + sec v tan .v

sec .V ilx =
I

ax Rewrite inteaiand.
sec .V -1- tan .v

/''
,— dx Suhstilute: /( - sec .v + Ian v,

II

\n\u\ + C Apply Log Rule.

Inlsec.V + tan .vl -I- C. Baek-substitule.
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With the I'esuhs of Examples 8 and 9, you now have integration forniulas for

sin V, cos A, tan v, and sec .v. All six trigonometric rules are summarized below.

NOTE Using trigonometric identities

and properties of logarithms, you could

rewrite these six integration rules in

other forms. For instance, you could

write

Jcsc // du = ln|csc II — cot ii\ + C.

(See Exercises 51--'i4.)

Integrals of the Six Basic Trigonometric Functions

sin // (/(/ = —cos 11 + C

Urn II ilii = -ln|cos;(| + C

sec i{ till = Inisec;/ + tan //I + C

cos II du = sin ii + C

cot ;/ (/;/ = Injsin ;/[ + C

:sc (( (/(( = — Injcsc /( + cot //| + C

Exiiiiiple 10 Integrating Trigonometric Functions

Evaluate v'' 1 + tan^ .V (/.v.

Solution Using 1 + tan-.v = sec-.v, vou can write

1 + tati- .V (/.v
= v^sec- .V d.\

sec .V dx

In sec .V + tan .v

-/4

= ln(y2 + l) - In 1

= 0.8814.

sec ,v > for (I < A <

Example 11 Finding an Average Value

Find the average \alue of /(.v) = tan a on the interval [(). 77/4].

Solution

1

Average value
(-/4) -

4
("-'-•

tan A (/a

^J(

tan .V dx

-[-ln|cosA|J„

_4
7T

_4
7T

0.441

In Ind

Average value =
/ ( v) dx

h — (I I

Siiiipiily.

Inle^rate.

Figure 5.9 The averai^e value is about 0.441. as indicated in Fissure 5.9.
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EXERCISES FOR SECTION S.2

In Exercises 1-24, tliid the indefinite inte)>ral.

1.

4.

7.

9.

11.

13.

15.

17.

19.

21.

23.

In E

27.

In E

29

31

33

- </v

,v

I

10

V - .S

V- + 1

V- - 4

dx

ilx

3 - 2.V

V- + 2.V + 3

V' + 3.V- + 9.V

V- - 3.V

- J.v

</.v

A- + 1

V-' - 3v- + 5

V-' + .V - 4

+ 2

(In.v)-

v + I

(A - n-

</a 6.

8.

10.

12.

14.

16.

18.

20.

22.

24.

_l

3v + 2'

3 - A-

'

rp Slope Fields In Exercises 41 and 42, a differential eijuation. a

point, and a slope Held are i>i\en. (a) Sl<etcli two approximate

solutions of the differential equation on the slope Held, one of

which passes through the indicated point, (h) I'se intejjration to

llnd the particular solution of the differential equation and use a

(jraphini; utility to f;raph the solution. Compare the result with

the sketches in part (al. To print an enlarjjed copy of the graph,

<;o to the wehsite www.muthiiraphs.com.

dx 41.
d\ 1

v'9 - V

a(a + 2)

A
' + 3a- - 4

:v- + 7a- - 3

A- - 2

v"' - 6a - 20

</a a- + 2'
(0. I

)

42. ^ = 'il^,
(I. -2)

dx X

dx

dx

dx
X + 5

- 3a- -I- 4v - 9

,/a-

I / ^

I / ^

'
/ / y
I / y
I / y
I / y

- K - h ' P - h A- ~+ '
'f Y - Y- k

A InlA')

1

v-'-'(l + a'")

v(a - 2)

777 </a-

(a -
I

)-'
dx

xercises 25-28. llnd the indefinite integral b\ //-substitution.

Let // be the denominator of the integrand. I

I -I-

26.

28.

_l

I + v'3v

V A—
(

sA- ~ 1

xercises 29-36, llnd the indeilnite integral.

cox W

sin it

CSC 2a ,/a

CI IS /

1 + sin /

sec A tan v

sec A —
I

30. lan ?(/</«

32.

34. 1^^,//
cot /

...
» + '

./« 50. (csc2H - cot2«)-tW
« - sin « J„ I

xercises 51-54. show that the two formulas are equivalent.

Ian \ d\ = - ln|cos .v| + C

tan .V d\ = in|sec a| + C

36. (sec / -f tan /) dt

I V In Exercises 37-40. sol\e the differential e(|uation. I se a graph-

ing utility to graph three solutions, one of which passes through

the indicated point.

37. -. (1. 01 38. . (0. 4)

39. -- = tan 2«. (0.2)
dB

dx .V- - 9

40. ^- = ^5£11^. (..4)
,// tan / + 1

\v +
-,/A

(1 + In.v)-

.V

A + 1

'''

1

- cos a

dx 46.

48.

A In A

A - 1

- ,/.v

,/.v

TJ^ In Exercises 43-50, evaluate the definite integral. Use a graph-

ing utility to verify your result.

43.

45.

47.

49.

InE

51.

52.

53.

54.

col A" ,/\ = ln|sni a| -I- C

.1)1 .\ ,/a - - ln|csc -v| + C

sec .V ,/.v = ln|secA + tan.v| + C

A,/a = —In [see A — tan a| -I- C

,/a = — InlcscA -I- eot.vl -I- C

-.c X dx = ln|cscA - coIaI + C
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V In Exercises 55-60. use a computer algebra system to find or

evaluate the integral.

In Exercises 77-80, find the average value of the function over

the interval.

^^.
1

d\
1 + VA

57. cos( 1
- a) ,/a

59. (esc A - sin vl iLx

In Exercises 61-64, find f '(.v)

56.

60.

- (/a

1 + VA

Function Imen' // Fiinclioii Inlenul

8 4( V + 1)

77. fix) = — [2.4] 78. fix) = , [2.4]
tan- 2a-

,
A- A-

sec ^A
79. /(A) = ^ 80. fix) = sec^ll.H [0. 2]

sin- A - cos-

A

X 6

61. F(a)

63. Fix)

ill

-cit

62. Fix) =

64. Fix) =

tan / ill

/

-Jl

Approximation In Exercises 65 and 66. determine uhich \ahie

best approximates the area of the region between the.v-axis and

the graph of the function over the gi\en inter\al. (Make \our

selection on the basis of a sketch of the region and not by

performing any calculations.)

81. Population Growth ,\ population of bacteria is changing at a

rate of

(IP _ 3000

til
~

1 + 0.251

where t is the time in days. The initial population (when ; = 0)

is 1000. Write an equation that gives the population at any lime

I. and fnid the population when ; = 3 days.

82. Heat Transfer Fmd the time required for an object to cool

Ironi 300 'F to 2.50^ b\' evaluatmi;

t

10 1

cIT

65. fix) = sec A. [0. 1]

(a) 6 (b) -6 (c) {

66. fix) = ^^. [0. 4]
.V- + 1

(a) 3 (b) 7 (c) -2

V Are

(d) I 2.5 (e) 3

(d) 5 (e) 1

r Area In Exercises 67-70. find the area of the region bounded

by the graphs of the equations. Use a graphing utility to graph

the region and verify your result.

67.

68. ^•

.V
- - 4

A

A -1- 4

=
I . .V = 4. > =

1. A = 4. V =

69. y

70. V = 2a - tan(0.3A). a = 1. a = 4. y =

: sec -—. X = 0. .V = 2. ^ =
6

In Exercises 71-74, state the integration formula vou would

use to perform the integratior . Uo not integrate.

71. 4^ dx 72.
.V

(a- + 4)
dx

73. L' dx 74.
sec- A

tan A

75. What is the tlrst

_ A + 1

step when mtegrating

76. Make a list of the integration formulas studied fa - in the

text.

ln2j-,„, T - 100

where t is Iniic m minutes.

83. Average Price The demand equation tor a product is

_ 90.000
'' " 400 + 3a

'

Find the ci\'crcii;c price /) on the interval 40 < a < .50.

84. Sales The rate of change in sales .S" is inversely proportional

to time I ii > 1 ) measured in weeks. Find S as a function of /

if sales after 2 and 4 weeks are 200 units and 300 units.

rp' 85. Orthogonal Trajectory

(a) Use a graphing utility to graph the equation 2a- — y- = 8.

(b) Evaluate the integral to find y- in terms of \.

For a particular value of the constant of integration, graph

the result on the same screen used in part (a).

(c) Verify that the tangents to the graphs of pails (a) and (b) are

peipendicular at the points of intersection.

86. Graph the funclitm

- 1

A-U-)
=

fori = 1. 0.5. and 0.1 on [0. 10], Find lim /:(a).
;,_» '

True or False? In Exercises 87-90, determine whether the

statement is true or false. If it is false, explain why or give an

example that shows it is false.

87. (In a)' - = idn a)

89. |-</a = ln|cA|. c i=0

1

88. Jlnxdx = (1/a) + C

90.
.V

dx = In A In 2 - In 1 = In 2
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Inverse Fimctions

Vcnl\ lliat one luiictioii is the inverse function of another function.

Determine whether a function has an inverse function.

Find the deri\ati\e of an inverse function.

Domain of/= range of /
'

Domain of f'
' = range of/

Fi<juii' 5.1(1

Inverse Fimctions

Recall from Section P.3 that a function can be represented by a set of ordered pairs.

For instance, the function /(.v) = .v + 3 and A =
j I. 2. 3. 4| to B = |4. 3. 6. 7| can

be written as

/: 1(1.4). (2.3), (3. 6), (4. 7)1.

By intcrchaniiini; the first and second coordinates of each ordered pair, you can form

the inversf funt'tion of/. This function is denoted by / '. It is a function from B to

A. and can be w ruien as

/ ': 1(4. I). (.3.2). (h. 3). (7.4)1.

Note that the domain of /' is equal to the range of/"', and vice versa, as shown in

Figure 5.10. The functions / and /"' have the effect of "undoing" each other. That is,

when you form the composition of / with /
' or the composition of/"' with/ you

obtain the identity function.

/(/-'(-v) and /-'(/(-v)) =.v

EXPLORATIOM
Findiiii; Iinersc Functions F.xplain

hott to "undo" each of the follovs ing

functions. Then use your explanation

to write the inverse function of/.

a. fix) = .V - 5

b. ,/-(.v) = 6,v

c. ./(.v) =
j

d. fix) = 3.V + 2

e. fix) = .V-'

f. fix) = 4(.v - 2)

Use a graphing utility to graph each

function and its inverse function in

the same "square" viewing window.

What observation can you rnake

about each pair of graphs?

Definition of Inverse Function

A function g is the inverse function of th c ftmction /' if

./'(.'.'(-v))
== .V for each V in the doni.lin of,-.'

and

gifi.^)) = .V foi- each A in the dom ain of/.

The function 5 is denoted by/-' ( read ;/ inverse").

NOTE .-\lthough the notation used to denote an inverse function resembles cxponcnnal

nolalid)!. It IS a dillcrenl use of -
I as a superscript. Tliat is. in general. /' '(v) * l//(-v).

Here arc some important observations about inverse functions.

1. If,!,' is the in\erse function of/ then/ is the inverse function of ,1,'.

2. The domain of /"' is equal to the range of /. and the range of / ' is equal to the

domain of/

3. A function need not ha\e an inxerse function, but if it does, the iinersc function is

unique (see Exercise 99).

You can think of/ ' as undoing what has been done hyf. For example, subtrac-

tion can be used to undo addition, and division can be used to undo multiplication.

Use the definition of an inverse function to check the following.

fix) = X + ( and

fix) = ex and

/' '(.v) = .V — f are iinersc functions of each other.

/"'(.v) = -, c i^ 0, are inverse functions of each other.
c



SECTION 5.3 ln\LTsc Functions 333

1 Example 1 Verifying Inverse Functions

Show that tlic I'linctioiis aic iiiNcrsc functions of each other.

,/(.v) = 2.v' -
1 and g(.x) =

^v + 1

i
v

/ ;ind i; are iii\erse functions of each other

Figure 5.1

1

Solution Because the domains and ranges of both / and g consist of

numbers, you can conclude that both composite functions exist for all

composite of/ with ,;' is given by

all real

.V. The

./(i'(-v)) = 2
,
/-v + 1 V

= 21^^1-1

= .V + I
-

1

= -V.

The composite of i; with / is given by

A'(./-(.v)) = V,

,,/(2.v' - 1) + I

Because /(,t;(.v)) = .v and ,!,'(/ (.x)) = .v. you can conclude that / and ,i,' art

functions of each other (see Fiizure 5.11).

inverse

[-471

STUDY TIP In E.\aniple 1. try comparing the fimctions / and 1,' \crbally.

For /: First cube .v. then multipK by 2. then subtract I.

For,!,': Fust add 1. then di\ide b\ 2. then take the cube root.

Do \(Hi see the "imdomg pattern"?

.

y = .V

v=/(\l /

u,mJy
I /

/'' -"—
-T^r''''^ .v=/-'(.v)

,-'
/

The graph of/ ' is a rellection of the gr,

of / in the line r = .v.

Figure 5.12

In Figure 5.1 1, the graphs of / and ,1;
= /"' appear to be mirror images of each

other with respect to the line y = x. The graph of /^'
is a reflection <il the graph of /

in the line \' = .v. This idea is generalized in the followint; theorem.

THEOREM 5.6 Reflective Property of Inverse Functions

The graph of/ contains the point (((, /)) if and only if the graph of/ ' contains

the point [b. a).

Proof If (((. /)) is on the graph of/, then /(i/l = b and you can write

/-'(/>) =/-'(/((/)) = a.

So. (/),(() is m-\ the graph of/'"', as shown in Figure 5.12. A similar argument wil

prove the theorem in the other direction. i2



334 CHAPTER 5 Logarithmic, Exponential, and Other Transcendental 1-unclions

! =/(A)

If a horizontal line intersects the graph of /'

twice, then / is not one-to-one.

Figure 5.13

Existence of an Inverse Function

Not every function has an inverse, and Theorem 5.6 suggests a graphical test for those

that do—the horizontal line test for an inverse function. This test states that a function

/ has an inserse function if and only if every horizontal line intersects the graph of/ at

most once (see Figure 5.13). The following theorem formally states why the horizon-

tal line test is valid. (Recall from Section 3.3 that a function is stricllr monotonic if it

is either increasing on its entire domain or decreasing on its entire domain.)

THEOREM S.7 The Existence of an Inverse Function

1. A function has an in\ersc function if and only if it is one-to-one.

2. If / is strictly monotonic on its entire dom tin. then it IS one to one and

therefore has ai inverse function.

Proof Ti) prove the second part of the theorem, recall from Section P.3 that / is one-

to-one if for .V| and .\ , in its domain

/(.V,) =/(.Vj : .V, =Xy

The iiiinnipo.siiiw of this implication is logical!) cc|ui\alent and states that

.V, ^.x._ __: fix,) i^fi.x,).

Now. choose .v, and .v, in the domain of /. If .v, i= .v,. then, because /' is strictly mono-

tonic, it follows that either

/(.vi) </(.vJ or fix,) > fix,).

In either case. /(.V| ) ^ /(.v, ). So. / is one-to-one on the inter\al. The pi"oof t)f the first

part of the theorem is left as an exercise (see Exercise 100). i^J

Example 2 the Existence of an Inverse Function

(a) BeLuuse / is increasing over its entire

doiiKiin. It has an iinersc function

Which of the functions has an inverse function?

a. /(.\) = .v' + -X - 1 b. fix) = .v' - .\ + 1

(b) Because / is not one-lo-one. it does not

have un inverse function.

Kinuri' 5.14

Solution

a. From the graph off given in Figure 5.14a. it appears that/ is increasing over its

entire domain. To verify this, note that the derivati\c./'(.v) = 3.Y- -I- 1. is positive

for all real values of .v. Therefore. / is strictly monotonic and it must have an

inverse function.

b. From the graph in Figure 5. i4b. you can see that the function does not pass the hor-

izontal line lest. In other words, it is not one-to-one. For instance. / has the same

\alue when .v = — 1. 0. and 1.

./(-I) =/(!) =/(0) == 1 No, unc-to-one

Therefore, by Theorem 5.7./ does not have an inverse function. f^j

NOTE Often it is easier to prove that a function has an inverse function than to find the

inverse function. For instance, it would be difficult algebraically to find the inverse function of

Ihc liinction in I-Aample 2a.
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The following guidelines suggest a procedure tor llnding an inverse function.

Guidelines for Finding an Inverse Function

1. U.se Theorem 5.7 to determine whether the function given by v =,/(.v) has an

inverse function.

2. Solve for .V as a function of y: .v = g(y) = /'"'(y).

3. Interchange .v and y. The resulting equation is y =/"'(.v).

4. Define the domain of / ' to be the range of/

5. Verify that/( / '(.v)) = .v and/-'(/(.v)) = .v.

4-

/-'u) = i^ 1

7' /
-

3- - /
/

y = X

2 -
(1,2) /

C. 1)

1
- /(A)- Vlv -3

,'
1

^
.1 4

The domain of / '. [0. cc ), is the range

of /.

Figure 5.15

Example 3 Finding an Inverse Function

Find the inverse function of /(.v) = v2-v - 3.

Soliilion The function has an inverse function because it is increasing on its entire

domain (see Figure 5. 1 5 ). To find an equation for the inverse function, let y = / (.v) and

solve for.v in terms of v.

2.V
-- 3 = y Let! = / 1 1

)

2.V
-- 3 = V-

V- + 3

Square bulli sides

-'- Solve tor \

.V- + 3

/-'(-v)

.\- + 3

Inlerciiaiiiie \ aiKl \\

Replace \ liy / '(v).

The domain of / ' is the range of /. which is [(), yz). You can verify this rcstilt as

follows.

/(,r'(.v))
V- + 3

3 = J.\- = .V. .V >

.r'(.^u))^ '-^^--V'""^ -^^^f^-.v. .v.^

NOTE Renieinher that any letter can be used to represent the independent \ariable. So.

V- + 3

f-'(y) = —^
.r'(.v)

.V- + 3

f-'is)
s- + 3

all represent the same kinclion.
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Theot'ein 5.7 is uset'iil in the lollow ing type of pioblem. Suppose you afe given a

function that is not one-to-one on its domain. By restricting the domain to an interval

on which the function is strictly monotonic. you can conclude that the new function

is one-to-one on the restricted domain.

;(f.|)
1 1

-

\ ; /1^\
-\

! /

H-')l
"'"

1 fix) = sin .V

f is one-to-one on the inlerv;i

[-77/2. 77/ 2J.

Figure 5.16

ff^^ Exiiitiple 4 Testing Wlieflicr a Fuiulion Is One to-Oni'

Show that the sine function

/(.v) = sin.v

is not one-to-one on the entire real line. Then show that [-17/2. 77/2] is the largest

interval, centered at the origin, for which/ is strictly monotonic.

Solution It is clear that /' is not one-to-one. because many different .v-values yield

the same y-value. For instance,

smlD) = = sin(;7).

V

Moreover. / is increasing on the open iiiler\al ( — 77/2. 77/2). because its derivative

/ Iv) = cos .V

is positive there. Finally, because the left and right endpoints correspond to relative

extrema of the sine function, you can conclude that / is increasing on the closed

interval [- 77/2. 77/2] nihl that in any larger interxal the function is not strictly

monotonic (see Fiuure 5.16). [^

Derivative of an Inverse Function

The next two theorems discuss the deri\ali\e of an inverse function. The reasonable-

ness of Theorem 5.8 follows from the reflective property of inverse functions as

shown in Figure 5.12. Proofs of the two theorems are given in Appendix B.

EXPLORATION
Graph the inverse functions

I'M = -v'

and

six) = .v'/-\

Calculate the slope of/ at ( 1 . I ).

(2, 8), and (3. 27), and the slope of ,i,'

at (I, 1), (8, 2), and (27. 3). What do

you observe? What happens at (0. 0)?

THEOREM 5.8 Continuity and Differentiability of Inverse Fujutions

Let / be 1 function w hose domain s an interval /. if / has an inver.se function.

ih en the ollowing statements are true.

1. If./ is continuous on its domain then /
''

is continuous on its domain.

2. If/ is increasin I on its domain. then/ ' is increasing on its domain.

3. If/ is decreasing on its domain then /
' is decreasing on its domain.

4. If/ is differenli ihle at c and/'(( ) ^ 0. then/ ' is differentiable at /((.).

THEOREM S .9 The Derivative of an Inverse Function

Let /" be a function that is differentiable on an interval /. If/ has an inverse

function x'. then ,1; is differentiable at any .v for which //i,'(.v)) * 0. Moreover.

g'M
1

fif^MV
/Id-v)) ^ 0.
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Example S Evaluating the Derivative of an Inverse Function

1 m = 4 ,

3- ' (2

7
i

;„=i

2-

1
- /

•

(3.:)

/X /—

^

:^f V^ -H ^-v

-2 /-I

The graphs of the unerse funclions / and
/'"' have reciprocal slopes at points in. h)

and ill. a).

Figure 5.17

Let /(a) =
i\-- + A - 1.

a. What is the value ot / '(a) when a = 3?

b. What is the \alue of ( / ')'(a) when a = 3?

Solution Notice that / is one-to-otie and henee has an inverse fiiiictioii.

a. Becaiise/Xv) = 3 when a = 2. you know that / '(3) = 2.

b. Because the function / is differentiable and has an inverse function, you can apply

Theorem 5.9 (with ,s,' =,/ ') ti> write

Moreover, using /'(a) = ja- + 1. you can conclude that

1 1 1

(.r')'(3)
fV-) ^(2-) +1 4-

In Example ,5. note that at the point (2. 3) the slcipe of the graph of / is 4 and at

the point (3. 2) the slope of the graph of /
' is ^ (see Figure 3.17). This reciprocal

relationship (which follows from Theorem 3.9) is sometimes written as

dv

d.x dx/cly'

m = (i 1-1. y)

fix) = .V-

f~'(.x)=vri

4-
(2,4)/

f
III = 4 '"4

2 -
/ (4.2) __-•—"^(9, 3)

f^ \
\

]

2 4 6 8 10

At (0. 0). the derivative of /' is 0. and the

derivative of / ' does not exist.

Figure 5.18

Example 6 Graplis of Inverse Functions Have Reciprocal Slopes

Let /(a) = A- (for.v > 0) and let/"'(A) = v a. .Show thai the slopes ol the graphs of

/ and / ' are reciprocals at each of the following points.

a. 12. 4) and (4,2)

1). (3. 9) and (9.3)

Solution The deri\ati\es of/ and /^' are given by

/'(a) = 2a and (

/-'
)'(a) = —^.

2 Jx

a. At (2. 4). the slope of the graph of/ is /'(2) = 2(2) = 4. At (4. 2). the slope of the

graph of /'"'
is

(r')'(4)
1 1

2v/4

b. At (3. 9). the slope of the graph of/ is/'(.^) = 2(3) = 6. At (9. 3). the slope of the

graph of / "' is

(/-')'( 9)
1

2v^ 2(3) 6'

So. in both cases, the slopes are reciprocals, as shown in Figure .5.18,
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EXERCISES FOR SECTION 5.3

In Exercises 1-S, show that / and i> are inverse functions la)

analytically and (h) ijraphieaily.

1. ,/l-v) = .\v + I.

2. ./(.v) = 3 - 4a.

3. /(a) = A-\

4. fix) = I
- A\

5. /(a) = s/a- - 4,

6. /(a) = 16 - A-. A > 0,

7. /(a) = 1/a.

I

8. /-(a)

1 + A
. A > 0.

gM = (a - 1 )/5

nM = (3 - A)/4

g(.v) = y^

gM = ^1 - A

i'(-v) = A- + 4, A >

gU) = yi6 - A

gM = 1/a

In Exercises 13-16, use the horizontal line test to determine

whether the lunction is one-to-one on its entire domain and

therefore has an inverse function. To print an enlarged copy of

the graph, go to the website www.mathgrcipbs.cum.

13. /(a) 14. /(a) = 5a - 3

In Exercises 9-12, match the graph of the function with the

graph of its inverse function.
| fhe graphs of the inverse func-

tions are labeled (a), (b), (cl. and (d).|

(a)

2 -I 1 I 2

(C)

11.

(b)

15. /(H) = sin e 16. fix)
X- + 4

(d)

-3--

10.

12.

4 —
3-

rj^ In Exercises 17-22. use a graphing utility to graph the function.

Determine whether the function is one-to-one on its entire

domain.

1

17. his] = - 3
,v
— 2

19. ,/(a) = hiA

21. »(a) = (a + 5)-'

1

18. Kit) =
X r + 1

20. fix) = 5xjx -
1

22. hix) = \x + 41 - Ia - 4|

In Exercises 23-28, use the derivative to determine whether the

function is strictly monotonic on its entire domain and therefore

has an inverse function.

23. fix) = (a + a)-' + h

25. fix)

24. fix) = cos
3a

27. fix)

26. fix) = a' - 6a- + 12a

28. fix) = ln(A - 3)

In Exercises 29-36. lind the inverse function of/. Graph (by

hand)/ and/"'. Describe the relationship between the graphs.

29. ,/(a) = 2a - 3

31. fix) = a'

33. fix) = ^/^

35. fix) = JA - A-. A >

36. /(a) = Jx- - 4, A > 2

30. /(a I
= 3a

32. lix) = a' -
1

34. fix) = A-. A >
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T^ In Exercises 37—12, find the inverse t'unction of/. Use a graph-

ing utility to graph / and /"' in the same viewing window.

Describe the relationship between the graphs.

37. fix) = ."a- -
1

39. /(.v) = .\-~'\ A- >

41. fix)
Vx" + 1

38. /(a) = }.l'lx- 1

40. /(a) = A-V5

V + 2
42. fix) =

rp In P^xerclses 53 and 54, find the inverse lunetion of/ over the

indicated interval. Use a graphing utility to graph/ and / ' in

the same v iewing window. Describe the relationship between the

graphs.

Fiinclion Inlurval

In Exercises 43 and 44, use the graph of the function

/ to complete the table and sketch the graph of / '. I'o

print an enlarged copv of the graph, go to the website

)( WW. mathgiaplis.com

.

43.

53. f(x)

54. ./(A) < A < 10

rp Graphical Reasoning In Exercises 55-58. (a) use a graphing

utility to graph the function, (b) use the drawing feature of a

graphing utility to draw the inverse of the function, and (c)

determine whether the graph of the inverse relation is an

inverse function. Explain vour reascniing.

X 1 3 4

/-'(.r)

X 1 4

f-'ix)

45. Cost Suppose you need M) |ichuiiIs nl lun eonimculities cosl-

uig SI. 25 and $1.60 per pound.

(a) Verify that the total cost is

y = 1.25a + 1.60150 - a)

where .v is the number ol pounds of the less expensive

eoniniodity.

(b) Find the inverse funclion ol the cost I'lniclion. What does

each variable represent in the inverse function

'

(c) Use the eonte.\t of the problem lo determine the domain ol

the inverse function.

(d) Determine the number of potmds of the less expensive

commodity purchased if the total cost is $73.

46. Think Alyout It The finiction l(\] = k(2 - x - a') is one-

to-one and /^'I3) = -2. I-ind k.

In Exercises 47-52, show that / is strictly monotonic on the

indicated interval and therefore has an inverse function on that

interval.

Fiinctioii llltCITllI

47. /(a) = (a - 4)^

48. fix) =
I
A + 2

1

49. fix) = 4
v-

50. / (a) = cot A

51. fix) = cos A

52. fix) = sec A

[4.'

(0. cc)

(1. -)

[0. ^]

77

55. /(a) A-' -I- .V -f 4

56. /)(.v) = Av'4

57. .^-fv)

.1-V-

v^ + 1

58. /(a)
4v

s A- -I- 15

In Exercises 59-62. determine whether the function is one-to-

one. If it is. find its inverse function.

59. fix) = Jx - 2

60. fix) = -3

61. /Ia) = |a - 2|. v < 2

62. /( v) = ax + /;. a +

In Exercises 63-66. delete part of the domain so that the

function that remains is one-to-one. Eind the inverse funclion ol

the remaining function and give the domain of the inverse

function. (Sotc: There is more than one correct answer.)

63. ,/(a) = (a - 3)- 64. fix) = 16

65. /(a) =
I
A + 3

1

66. fix)

-5 -4 -3 -2 -1
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Think About It In Exercises 67-7(1. deckle whether the luiic-

tion has an inverse function. If so, what is the inverse function?

67. xl'l is the volmne of water that has passed throtigh a water line

/ minutes after a control \al\e is opened.

68. /;(/) is the height oT the tide / hoiiis alier midnight, where

< ; < 24.

69. Cii) is the cost of a long distance call lasting / minutes.

7((. .-\{i) is the area of a circle of radius /.

In Kxercises 71-76, tlntl (/"')'(«) for the lunction / and real

nmnher a.

Fiiiution

71. /(v) = .V-' + Iv -
I

72. /(.v) = 57(.v-^ + 2v').

73. /Iv) = sin.v. --^^ < v < ^

Real Number

(1 = 1

a = - 11

74. /I.v) = cos2.v. (.) < .V < -
(( = 1

75. fix) = .V-' - -
.V

CI = 6

76. /(.v) = ^ .V - 4

In F;\ercises 77-S(l, (a) tind the domains of/ and / ', (b) tlnd

the ranyes of/ and / '. (c) graph / and /"'. and (d) show that

the slopes of the graphs of / and /
' are reciprocals at the

indicated points.

Functions

11. fix) = .V-'

f-'ix) = ^x

7S. /Ill = 3 - 4.V

79. lix) = s'.v- 4

/ '(.v) = .V- + 4. V >

8(1. fix) =
;. .V >

1 + .V-

f-'ix)
/4 - .V

Point

(M)
(I. -1)

(-1, 1)

(.\ 1)

(1.5)

(1.2)

(2. 1)

In Kxercises 81 and 82. lind dyjdx at (he indica(ed point for the

equation.

81. .V = v-' - 7y- + 2 82. I = 2 ln( v^ - 3)

(-4.1) (0.4)

In Exercises 83-86. use the functions /(.v) = j^.v — 3 and

g(x) = .v"to find the indicated \alue.

83. (

/
'

: ,? ' )(
1

)

85. (/ ' /-')(6)

84. (,!,.-' r')(-3)

86. (g-^-g-%-A)

In Exercises 87-90, use the functions f(x) = .v + 4 and

g(x) = 2.V — 5 to find the indicated function.

87. K ' f

89. (/ s)

88. r '

'
g-

90. i« '. /)-

91. Describe how to fmd the inverse function of a one-to-one

function given hy an equation in v and y. Give an example.

92. Describe the relationship between the graph of a function

and the i;raph of its inverse lunction.
I

"

j

93. Gi\ e an example of a function that does not ha\ e an in\erse

fiinclioii.

94. State the theorem that gives the method for finding the

den\atl\e of an inverse function.
|

1

In Exercises 95 and 96. the derivative of the function has !

the same sign for all .v in its domain, but the function is not i

one-to-one. Explain.

95. fix) = tan .v 96. fix)
.V- - 4

97. Prove that if / and 1; are one-to-one functions, then

1/ g) 'I.v) = ig-' --/-')(.v).

98. Prove that if/' has an inverse function, then (/"')"' = /.

99. Prove that if a function has an inverse function, then the

inverse function is unique.

100. Prove that a function has an inverse function if and only if it

is one-to-one.

True or False'.' In Exercises 101-104, determine whether the

statement is true or false. If it is false, explain why or give an

example that shows it is false.

101. If/ IS an even function, then / ' exists.

102. If the inverse ftinction of / exists, then the v-intereept of/ is

an \-intercept of f"\

103. If /(-v) = v" where /; is odd, then/"' exists.

104. There exists no function / such that /' = /'"'.

105. Is the conver.se of the second part of Theorem 5.7 tnie? That

is. if a function is one-to-one (and hence has an inverse func-

lionl, then must the function be strictlv monolonic'.' If so,

prose It, If not, give a counterexaniple.

106. Let / be tw ice-ditferentiahle and one-to-one on an open inter-

val / Show that its inverse lunction g satisfies

fi"(-v)

./•"(A'(-v)>

[,/'(,?<-v))]-^

If/ is increasing and concave dow nvvard. what is the concav-

ity of/" '
= ,t,'?

dt
107. ir/(.v-)

v/l + r-"

. tind (/ ')'(n).
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Exponential Functions: Differentiation and Integration

• Develop properties of the natural exponential function.

• Differentiate natural exponential fiuictions.

• Integrate natural exponential functions.

f~Ux) = e'

_2-L' .f(.v) = ln.v

The inverse ftinction of the natiu'al logarith-

mic function IS the natural exponential

function.

Figure 5.19

The Natural Exponential Function

The tiinctioii /(.v) = In .v is increasing on Us entire domain, and hence it has an inverse

function / '. The domain of/"' is the set of all reals, and the range is the set of

positive reals, as shown in Figure 5.19. So. for any real number .v.

,/ ( / '(-v)) = ln[/ '(.v)] = .V. -v Ls any real numlx-r.

If .V happens to be rational, then

ln(('M = -V In e = -V( I )
= .v. v is a rational number

Because the natural logarithmic function is one-to-one, you can conclude that / '( v)

and c' agree for rational values of .v. The following definition extends the meaning of

£' to include all real values of .v.

Definition of the Natunil Exponential Function

The inverse function of the natural logarithmic function /(.v) = In -v IS called

the natural exponential function and is denoted bv

./""'(.v) = e\

That is.

y = f" if and only if .v = In y.

The Number e

The symbol e was first used b> mathematician

Leonhard Eulcr to represent the base nl

natural logarithms in a letter to another

mathematician. Christian Goldbach, in 1731.

The inverse relationship between the natural logarithmic lunction and the natural

exponential function can be summari/,ed as follows.

ln(e>) and e'"' Inverse relationship

Example I Solving Exponential Equations

Solve 7 = e'

Solution You can convert from exponential form to logarithmic form bv fakiii:^ the

luitiinil losi (if hdtli siiles ot the ec|uation.

1 = e'^'

In 7 = ln(f' ' ')

\nl = .\ + I

- 1 -H In 7 = .V

0.946 = .V

Check this solution in the original equation.

Write original equation

Take natural log of both sides.

Apply inverse property

.Solve for .v.

Use a calculator.

LZl
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Example 2 Solving a Logarithmic Equation

Solve ln(2.v - 3) = 5.

Solution To convert from logarithmic form to exponential form, you can exponenti-

ate both sides of the logarithmic equation.

ln(lv - 3) = 5

2.V - 3

Write oiiginal equatioii-

Exponenii.iic both sides.

Apply inverse property.

.V = ^(c'' ^ 3) Solve for \

.V = 15.101 Use a ealeiilator.

The familiar rules for operating with ratioual exponents can be extended to the

natural exponential function, as indicated m the following theorem.

The natural exponential function is inereas-

ing. and its graph is concave upward.

Fi);ure 5.2(1

THEOREM 5.10 Operations with Exponential Functions

Let (/ and /' be any real numbers.

1. rt'" = t'" + " -$-'-'

Proof To prove Property 1 . you can v\'rite

ln(("V") = ln(('") + ln(f'')

= (7 + /)

= ln(<"'*").

Because the natuial log function is one-to-one. you can conclude that

,..V" = (>"+".

The proof of the second propeily is left to you (see Exeieise 130). 12]

In Section 5.3, you learned that an inverse function /'"' shares many properties

with/ So. the natural exponential function inherits the following properties from the

natural logarithmic lunction (sec Fiizure .5.20).

Properties of tlic Natural Exponential Function

I. The domain of /'(.x )
= e' is (-0O, (x) and the range is (0 oc).

2. The function f(x)

domain.

= (' is continuous. increasing. and one-to-one on its entire

3. The graph of /(.v) = (' is concave upward on its entire domain.

4. lim c' =0 and lim e' = CO
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Derivatives of Exponential Functions

One of the most intriguing (and tisetLil) characteristics of the natural exponential func-

tion is that it is its own deriviitive. In other words, it is a solution to the differential

equation v' = y. This result is stated in the next theorem.

THEOREM 5. 11 The Derivative of the Natiual Exponential Function

Let ;( be a differentiable function of .v.

'jii-'i-'
l/.V J.v

Proof To prove Properly I. trse the fact thai In c' = a. and differentiate both sides of

the equation.

in c' = x

y[lnc']=f[.v]
(/A t/.V

e (/a

— ('
J
= e

ilx

The derivative of c" follows from the Chain Rule.

Definition of expuncnti.i! fiini.iion

Ditferentuite both mJcs willi lespecl io v

NOTE 'I'ou can interpret this theorem geometricall> b_\' saving that the slope of the graph ol

fix) = e' at any point (a. e') is equal to the \-coordinate of the point

Example } Dilicrenlia(in<; Exponenliai Funtlions

The derivative of / changes from negative to

positive at v = - I.

Figure 5.21

^,.l>

^ \ 3e"'''<

a. — U-' = ('"--

(/A ClX

b. -yi^'-"] = e"---
dx ax \x

Example 4 Locating Relative Extrenia

Find the relative extrema affix) = xe\

Solution The derivative of / is given by

fix) =.v(e') + 6''(l)

= e'ix + I ).

Producl Rule

Because e* is never 0. the derivative is only when x = — I . Moreover, by the First

Derivative Test, you can determine that this corresponds to a relative minimum, as

shown in Figure 5.21. Because the derivative /'(a) = c"(a + I) is defined for all .v,

there are no other critical points.
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ni^ Example 5 The Normal Probability Density Function

Show that the iionmil piohnhilitx density fiiiicliiiii

I

Two pmnts ot

intlecticn

I
-!

The bell-shapt'd Lurve uivcii b\ a imrmal

probability density riinclioii

Fi"ure 5.22

fix) = -j=e-^-l'-

has points of inflection when v = ± I.

Sohition To locate possible points of inflection, find the A-\alues for which the

second derivative is 0.

/(-v)

f'(x)

1

I

,-v72

(-A-)e--/2

Write original function.

First derivaii\e

/"(.v) = —^z=::[{-.v)(-.v)t'"''/- + (-1)6'"*'/-] Product Rule

--{e~-^'^^-){x' - 1) Second derivative

Therefore, /"(a) = when a = ± 1. and yon can apply the techniques of Chapter 3 to

conclude that these \alues \ ield the two points of inflection shown in Figure 5.22.

NOTH The general lorni ol a nmnial pmbahdity density lunclion (whose mean is 0) is

aiven bv

/(a) = ,~C-n^-

wliere u is the standard deviation (<r is the lowercase Greek letter sigma). This "hell-shaped

curve" has points of inflection when a = ±tr.

I M I I I M I I I M I I I I I
-

/

4 h S 10i:i4UilS

Year 10^ msO)

Example 6 M.D.s in the United States

The nnnihcr i' of medical doctors (in thousands) in the United States from 1980

throti'jh 19^)7. can he modeled hy

= 47,S..S2()<'""-'"

Fijiure 5.23

where t = represents 19S(). At what rate was the number of M.D.s changing in

1992? (Source: American Meciiccil Associatiiin

)

Solution The derivative of the given luodel is

y' = (0.0271 )(47.S,520)c""-'"

= 12,887('""-'i'.

By evaluating the dcri\ati\'e when / = 12. you can conckide that the rale of change in

1 992 was about

1 7.839 doctors per year.

The graph of this model is shown in Figure .5.23. Z!
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Integrals of Exponential Functions

Each differentiation formula in Theorem 5.11 has a conesponduig nuegralioii formula.

THEOREM 5.12 Integration Rules for Exponential Functions

Let (/ be a dilferenti; hie tiMKtion of X.

1. c\lx = f' + C 2. c" illl = '" + C

Example 7 Integrating Exponential Functions

Find/c'''</.v.

Solution If \ou let u = 'h\ + 1. then du = 3 d\.

e'" + 'i/.v = 7 I
<'' '

'(,^^)</.V Muluph ami dn ide hy

-
I
f" dll SahMuuic \i = ?\\ + 1.

~e" + C Appl\ Fxponcnlial Riile

+ C Back-MibMilule.

NOTE III Example 7. the mi^Mng cou^tcun tactur .^ was introduced U> create ilii = }il\:.

However, remember thai \oii cannot mtrodiiee a nnssniy i'liruihlc factor ni the mtetirand for

instance.

e~''dx ± -
I

e"''{.v</.v).

Exniiiplf H Integrating Exponential Functions

Find J 5.V(' '' dx.

Solution Ifuuilet// = - x-. Ihen du = - 2x dx or x dx = -dti/2

5xe^^'dx= 5i' ^'{x dx) ReLii-oiip inle^raiid.

->e \ ~l .SullsllUllc: H= - V-

<"(//( Factor -^ mil of imenral.

5
""f" + C Apply Exponcinial Rule.

5 _ ^

' — f ' *C Back-siibMiliilc-
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Example 9 Integrating Exponential Functions

e" till

,1A + c

Jii

b.
I
sin .V c'^"^ ' </.v = - ('''"" (-sin .vf/.v)

= -f^"^> + C

(/ = CUS -V

Exiimplc 10 Findinj* Areas Bounded bv Kxpoueiilial Funelions

Evaluate the dellnitc intcmal.

a. <' ' t/v b.

Solution

I +

-(•
'
- (-1)

~ 0.632

b. cl.x = ln(l + e')

ln(l + e) - In 2

0.620

[(•' cos(c')](/.v = sin(('')

sin 1
- sin(f ')

0.482

L\ C. [t''COS(<'')]</A

See Figure 5,:4(;[).

See Fmure 5.24lh).

See Fi!!iire ?. 24(c).

lal

Kiuiiif 5.24

(b) (c)

U^
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EXERCISES FOR SECTION 5.4

In Exercises 1-4, write tiie exponential equation as a logarith-

mic equation or vice versa.

1. ('" = 1

3. In 2 = 0.6931 .

2. e-- = 0.1353 . .

4. In 0.5 = -0.6931

In Exercises 29-32, illustrate that the functions are inverses of

each other by graphing both functions on the same set of coor-

dinate axes.

29. fix) = c~'

/T

In Exercises 5-18, solve for .v accurate to three decimal places.

5. £''"' = 4 6. f'"-' = 12

7. e' = 12 8. 4e' = 83

9. 9 - 2t" = 7 10. -6 + 3f' = 8

11. 50c-' = 30 12. 200f -• = 15

13. In.v = 2 14. In.v- = 10

15. ln(,v - 3) = 2 16. In 4.v =
1

17. his .V + 2 =
I 18. ln(.v - 2)- = 12

In Exercises 19-22, sketch the graph of the function.

19. y = (?-> 20. y = {e'

21. y = e-'' 22. y = f-''-

T^ 23. Use a graphing utility to grapli/(.v) = c' and the given function

in the same viewing window. How are the two graphs related'

(a) g{x) = e'-- (h) /;(.v) = -^c' (c) (/(.v) = e"' + 3

7^ 24. U.se a graphing utility to graph the function. Use the graph to

determine any asymptotes of the function.

8 . , ,
8

six) = In V.v

n. fix) = e' - 1

,!,'(.v) = ln(.v + 1

)

30. fix) = e''^

six) = In .v'

32. fix) = <-'-'

six) = 1 + In.v

rp 33. Graphical Analysis Use a graphing utility to graph

(a) .A-v)
1 + e-

(b) g(.v)
1 + e-"'/v

In Exercises 25-28, match the equation with the correct graph.

,\ssume that a and C are positive real numbers. [The graphs are

labeled (a), (b), (c), and (d).]

fix) = I + and ,i,'(.v)

in the same viewing window. What is the relationship between

/' and ,!,' as .v^ ^;''

34. Conjecture Use the result of E.xercise 33 to make a conjec-

tiu'c about the value of

1 +

In Exercises 35 and 36, compare the given number with the

number e. Is the number less than or greater than c?

35. 1 +
1

1,000.000
(See Exercise 34.)

1111 1 1

36. 1 + I H h - + 1 +
\

2 6 24 120 720 5040

In Exercises 37 and 38, tlud the slope of the tangent line to the

graph of the function at the point (0, 1).

37. (a) V = t'" (b) V

38. (a) 1' = f-' (b) y = £"-'

1 -I- e-"'
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In Exercises 39-58, find the derivative (if the I'unction.

40. fix) = c'-'

42. \' = <?-'•"

44. V = x-e~'

^ 74.

39. / (a) = (-'

41. V = f--' + '-

43. V = f-^

45. ,-(/) = ic-' + c')

47. V = ln(c'')

49. V = Ind +

51. V

46. ail) = c'--'/''

I +
48. = '"l -.-;

50. 1,1

'' + e^'

1

c->
^,\ _ e-'

Area Pcrlorm the lollowing steps to lind the maxinium area

of the rectangle shown in the tigure.

(a) Solve for c in the equation /d) = fie + a).

(b) Use the result in part (a) to write the area A as a fimction of

A. [HiiU:A = A/d)]

(c) Use a graphing utility to graph the area I'unction. Use the

graph to approximate the dimensions of the rectangle of

maximum area. Determine the maximum area.

(d) Use a graphing utility to graph the expression for c found

in part (a). Use the graph to approximate

lim and lini

53. > = A-c' - 2.VC' + 2c

55. / (a I
= c ' In V

57. \' = c'(sin A + cos.v)

54. V = Ac'' - e"

56. / (a) = C-' In .V

58. V = hit''

In Exercises 59 and 60, use hiiplicit differentiation to find dyjdx.

59. .vc" - lO.v + 3v =

60. (" + .V- - y- = 10

In Exercises 61 and 62, find the second derivative of the

fnnction.

61. /Ia) = O + 2a)c
'"

62. ,i;(a) = n' A + c' In a

In Exercises 63 and 64, show that the function y = /(v) is a

solution of the differential equation.

63. 3' = c'(cos v"2a + sin v 2a)

\" - 2v' + }.\ =

64. y = c'(.^ cos 2a - 4 sin 2a)

y" - 2y' + 5v =

rp In Exercises 65-72, find the extrenia and the points of intlectlon

(if any exist I of the function. I'sc a araphin<> utility to f;raph the

fnnction and confirm vonr results.

Use this result to describe the changes in dimensions and

position of the i-ectangle for < ,v < -yi.

H\) = lO.v?--'

75. Verif\ that llic fmictinn

a > 0. b > 0. Z. >

{^ 76.

fV77.

i^ 78.

1 + ac-'"'

increases at a maximum rate when y = L/2.

Find the point on the graph of v = t'"' where the normal line to

the curve pas.ses through the origin. (Use Newton's Method or

the root-linding capabilities of a graphing utility.)

Find, to three decimal places, the \alue of v such that

('" ' = .V.

(Use Newton's Method or the root-tlnding capabilities of a

graphuig utility)

Deprecialiou The \alue 1' of an item i years after it is

purchased is

65. fix]

66. I(x)

67. ,i;(a)

68. ,i;(a)

..- + ^- V = i5.onot'- n < ; < 10.

1 -ix-wr-

69. /(a) = A-i'-'

70. fix) = .«•-'

71. Kit) = I + (2 + t)e^'

11. fix) = -2 + p-''(4 - 2.v)

73. Area Find the area of the largest rectangle that can be inscribed

under ihc ciir\e v = c" ' in the first and second quadrants.

(a) Use a graphing utility to graph the function.

(b) Find the rate of change of \' with respect to t when i = I

and / = -^.

(c) U.se a graphing utility to graph the tangent line to the func-

tion when t = I and r = 5.

rp 79. Wriliiiti Consider the function

1 + c''

(a) Use a graphing ulilit>' to graph f.

(b) Write a short paragraph evplaining \\li\ the graph has a

horizontal asymptote at y =
I and w h\ the function has a

nonremovable dfscontinuity at a = 0.
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J^ 80. Harmonic Motion Tiie displacement lioni etiinliliriuni ot a

mass oscillating on the end of a spring suspended from a

ceiling is

y = 1.56e-"-'cos4»r

where y is the displacement m feel and l is ihe Unic n^ seconds.

Use a graphing utility to graph the displacemeiil Inaction on the

interval [0. 10]. Find a value of / past uhieh Ihe displacement

is less than 3 inches from equilibrium.

V 81. Modeling Data A meteorologist measures the atmospheric

pressure P ( in kilograms per square meter) at altitude h ( in kilo-

meters). The data are shown below.

rp Linear and Quadratic Approximations In Exercises 8.^ and 84,

use a graphing utility to graph the function. Then graph

l\(x) =/((!) +,/'(0)(.v - (I)

and

PAx) =/(()) +/'(OH.v - 0) + \j"m{x - ())-

in the same viewing window. Compare the \ahies of/, /',, and P,

and their first derivatives at x = 0.

83. /(.v) = £'/= 84. fix)
„-.-/::

h 5 10 15 20

P 10,332 5.583 2376 1240 517

rp 85. Finding a Pattern Use a graphing uliliU to compare the

graph of the function y = c' with Ihe graphs of each ot the

followins; functions.

^

(a) Use a graphing utilit\ to ploi the points (/i. In /'). Use the

regression capabilities of the graphing utilit\ lo find a linear

model for the revised data points

(b) The line in part (a) has the form In F = tih + />. Write the

equation in exponential form.

(c) Use a graphing ulilil\ to plot the original tlala and graph the

exponential model in part (bl.

(d) Find the rate of change of the piessuie when h = 5 and

h = 18.

82. Modeling Data A 1994 Chevrolet Camaio coupe with a

6-cylinder engine. 5-speed transmission, and air conditioning

had a retail price of $17,040. A local dcilership h.id ihe

following guide for the approximate \aluc ol the car lor the

years 1995 through 2()()().

Year 1994 1995 1996 1997

Value $17,040 $14,590 $12,845 $10,995

Year 1998 1999 2000

Value $9,220 $8,095 $6,835

In each of the following, let \' represenl the \.iluc of the

automobile in the year I. with / = 4 corresponding to |4i)4.

(a) Use a computer algebra system to find linear and quadratic

models for the data. Plot the diita and graph the models.

(b) What does the slope represent in the line.ir model m

part (a)?

(c) Use a computer algebra system to lit an exponential model

to the data.

(d) Determine the hori/ontal asymptote of the exponenii.il

model found m part (c). Interpret its meaning in the context

of the problem.

(e) Find the rate of decrease in the value of the car when ; = 5

and I = 9 using the exponential model.

(a) v, = 1 +

(b) V, = I +
jy

+ ^

(c) V, = 1 +
1! 2! 3!

S6. Identity the pattern of successue polsnoniials m Exercise 85.

Extend the pattern one more term and compare the graph of

the resulting polynomial function with the graph of y = t'.

What do you think Ihis |iallcrii implies?

In Kxercises 87-108. find or evaluate the integral.

88. c •'{-4x')ilx87. c^'(5) </.v

89.

•1

91. \c '' il\

9.3. ''~;</.v

s V

95.

J.;.-'^-

97.

99. e ' ^ ' 1 - e>' t/.v

(' ,' + e-'
101.

103.

105.

'-^dx

^" " ' COS TTX llx

107.
I

t''Man(f-')(/.v

In Exercises 109 and 110. solve the differential equation.

90. <' ',/v

92. .v^c '
'- dx

94.

J x^
'-^

96. f,
'''\ dx

J 1 + .'-'

98. vc '--'</.v

100.
"'""'

'

dx
(• + c

'

102.
"2c> - 2.'-'

,

104. f-^^..
106. j.^cL :, ,_,,£. 2v tan 2,v </.v

108. ln(c-' ')(/v

109. ^ = .V."-
dx

110. ^ = ((^' - e •)-

dx
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In Exercise.s 111 and 112. find tht particular solution that

satisfles the initial condition.s.

111. fix) = -Ac' + f '). 112. fix) = sin.v + e'\

/(O) = l./'(0) = ./(O) = i./'(0) = \

rp Slope Fields In Exerci.ses 1 13 and 114. a differential equation,

a point, and a slope Held are yiven. (a I Sketch two approximate

solutions of the differential equation on the slope field, one of

which passes through the indicated point, (hi f'sc integration to

tlnd the particular solution of the differential equation and use

a sraphing utility to jjraph the solution. Compare the result

with the sketches in part (a). To print an enlarged copy of the

graph, go to the wehsite www.mathgraphs.com.

'"i

I I 15
III/
III/
III/
I I I I

I I I I

III/
I I I I

III/
I

(0. 1) 114. 0,

+
.11/

'fill
III/
11-2-

I / ^ yy.^^

I / / y yy^^^^
' / / y .^ .^.

' / / y y .^ .

' / / y yy^^.
' / / /^^^.

' / / ^ ^ ^^^^-

— —.-^XXXN^'
.^WXX^ ~^ /' / y ^^^—
-^XVW^- -^/' / ^ y^—-"
~-v.S,N.\ V-^^^ / y y.——-s,^\v-^- -^y / / ^^.—

^^^^\-w4-- -^^ / / ^^^—

' r .Xrea In F^xercises 115-118, find the area of the region hound-

ed by the graphs of the equations. I'se a graphing utility to

graph the region and verify your result.

115. V = c\y = 0..V = 0..V = 5

116. y = ("". y = 0. .V = (7. v = /;

117. V = .V(-'-'=''-',y = n..v = 0. .V = 76

118. V = p--' + 2. V = n..v = 0..V = 2

119.

(a) fill - I') (b) fikx) = L/lv)]'.

^1212().

Gi\cn the exponential tnncluin fix) = c'. show that

fill)

fiv)-

Approxiinate each integral using the Midpoint Rule, the

Trapezoidal Rule, and Simpson's Rule with ii = 12. Then use

the integration capabilities of a graphnig utility to approxi-

mate the integrals and compare the results.

(a)

^
Jjc' ,1a <h

121. Probability A car battery has an average lifetime of 48

months with a standard deviation of 6 months. The battery

lives are normally distributed. The probability that a gi\en

battery will last between 4S months and 60 months is

0.066.^ -ni)i.w{/-4Si'
Jt.

Use the integration capabilities of a graphing utility to approx-

imate the integral, Inteipret the resulting probabilit\'.

122. Probability The median waiting time (in minutes) for people

wailing for service in a con\enience store is given by the solu-

tion of the equation

-II .'I ./, -0.3f-""</r

.Solve the equation.

123. Gi\en f' > 1 for .v > 0. it follows that

c' dl > \ I ill

^

Perform this integration to dcri\e the inequality c' > I + .v

lor.v > 0,

124. Modeling Data .\ \al\e on a storage tank is opened for 4

hours to release a chemical in a manufacturing process. The

flow rate R (in liters per hour) at time t (in hours) is given in

the table.

t 1 2 3 4

R 42.'i 240 lis 71 36

(a) Use the regression capabilities of a graphing utility to find

a linear model for the points (;. In R). Write the resulting

equation of the form \r\ R = at + h in exponential form.

(bl LIse a graphing uliliU lo plot the dala and graph the expo-

nential model.

(c) Use the definite integral to approximate the number of

liters of chemical released durint; the 4 hours.

125. In your own words, state the properties of the natural

exponential function.

126. Describe the relationship between the graph of /'(.v) = In.v

and ,i;(.v) = e\

127. Is there a function /' such that / (,v) = / '(.v)'' If so. identify it.

128. Without integrating, state the integration formula you can

use to integrate each of the lollowinii.

(a)
+ 1

- dx (b) .w' (/v

129. Explain wh_\ | c ' dx > (J.

1.^1). Prove that'

131. Let/(.v)
In.v

-V

(a) Graph / on (0. ^) and show that / is strictly decreasing

on ic. cc).

(b) Show that iff < /\ < B. then A''' > BK

(c) Use part (b) to show that c~ > it'.
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Bases Other than e and Applications

• Define exponential limetioiis that have bases other than c.

• Differentiate and integrate exponential functions that have bases other than e.

• Use exponential functions to model compound inteiest antl exponential growth.

Bases Other than e

The base of the natural exponential function is e. This "nalural" base can be used to

assisin a ineaninii to a iicneral base a.

Definition of Exponential Function to Base a

If (/ is a positive real nuiiihcr (a i^ 1) and .v is any real number then the expo-

iientiul function to the base a ts denoted by </' and is defined by

If (/ = 1. then y = 1' = 1 is c 1 constant function.

These functions obe\ the usual laws of exponents. For instance, here arc sonic

familiar properties.

1. a" = 1

3. ^ = a-

1. ciur = fl'
+

4. (((')' - (/"

When modeling the half-life of a radioactive sample, it is convenient to use i a.s

the base of the exponential model.

Example 1 RailioiKlive Half Life Model

1 1— '

:.I1I)0 4.000 6,000 S.IHIO lO.niHl

Time (in years)

The half-life of carbon-i4 is about 5730

years.

Figure 5.25

The half-life of carhon-14 is about 57.30 years. II I gram of carbon-14 is present in a

sample, how much will he present m 1(1,IKK) years'

Solution Let / = represent the present time and let \ represent the amount (in

grams) of carbon-14 in the sample. Using a base of ,, you can model \ by the

equation

Notice that when / = .5730, the amount is reduced to lialf of the original amount.

When t = I 1,460, the amount is reduced to a quarter of the original amount, and so

on. To find the amount of carbon-14 after 10,000 years, substitute 10.000 for?.

= 0.30 gram

The graph of y is shown in Figure 5.25.



352 CHAPTER 5 Logaritliinic, Hxponciuial. and Oilier TianscemJciUal Fninctions

NOTE In precalculus. you learned that

log„.v is the value to which a should be

raised to produce v. This agrees w iih the

definition aiven here because

,,(l/ln,/lln I

(^.Inujll/ln.illn >

„(ln,;/lnolln v

Logarithmic Itmctions to liases other than c can be detuied in much the same way

as exponential liinctions to other bases are defined.

Definition of Logarithmic Function (o Base ,i

Iff/ is a positive real number (ii i^ I) and a is any positive real number, then

the logarithniic function to the base a is denoted by log_,A and is defined as

los , .V = -;— In .V.

Infl

Logarithmic functions to the base a have properties similar to those of the

natural logarithmic function iiiveii in Theorem 5.2.

1. log., 1 =

2. log., .\i' = log,, v + log,, V

3. lo2
, .v" = /; loii , .V

4. lo2
,

- = Ion .V^1
.^.

loe ,
\'

Log of 1

Log of a pi\>duct

Log of a pi>vver

Los of a quotient

From the definitions of the exponential and logarithmic functions to the base ((. it

follows that /(.v) = a^ and ,t;(.v) = log„.v are inverse functions of each other.

Propcrtit'f of Inverse Functions

I. V = <;'
i f and only il .V

= log,, y

2. fli"?"-' = .V, for .V >

3. log„(v' == .V. for all .V

The logarithmic f'tinction to the base 10 is called the common logarithmic

function. Thus, for common logarithms, y = 10' if and only if v = log m y.

Example 2 B.iscs Other than e

Solve for v in each eqtiation.

J
81

a. 3> 1). lot; T .V

Solution

a. To solve this equation, you can apply b. To solve this equation, you can apply

the exponential function to the base 2

to both sides of the eqtiation.

the logarithmic function to the base 3

to both sides of the eqtiation.

81

log, 3> = logj —

.V = log,3--'

.V = -4

log , .V

9l(ty, I

-4
0-4

16
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Differentiation and Integration

To differentiate exponential and logarithmic functions lo oilier bases, yon lia\c Ihrce

options: ( I ) use the detniilioiis of ((' and log,, .v and differentiate using the rules lor the

natural exponential and logarithmic functions. (2) use logarithmic differentiation, or

(.•i) use the t'ollowiui; ditferentiation rules for bases other than c.

THEOREM 5.13 Derivatives for Bases Other than e

Let (( be a positive real number (<( =^
1 ) and let ii he a dilTerentiable function oWw

I. -^[a'] = (in„)<('

3. y[log.,.v] = —^-
d\ (ln(/).v

2. 4k'] = (ln.h,4
(/a i/v

4. ~[loe u]
cl.\

I

(In (/);/ (/a

F'ronf By definition. </' = c"""''. Therefore, you can pro\e the first rule b\ letting

II = (In (/).v and differentiating with base e to obtain

T-[""] = T-k'"""] = ''"'v = ''"""'Mln</) = (In,;),,'.

To piine the third rule, you can write

d\ d.\

I

In ,/

In .V

1 /I I

In (/ \ V ' (In ,,)a

The second and lourlh rules are simply the Cham Rule versions ot the first and third

rules.

NOTE These difterenliatmn rules are similar to those for the natural exponential fiinelioii and

natural logarithmic function in lacl. lhe> ditler onl\ h\ the constant factors In </ and l,ln<;.

This points out one reason v\h\. tor caleiikis. c is the niosi coinenient base.

Exaniple 3 DiffercnUatinf; Functions to Other Bases

Find the derivative of each of the tollovvinii.

a. A

b. y = V'

C. A = login COS.V

Solution

a. v' = —[2'] = (In 2)2'
dx

b. a' = —[-"'] = (lii2)2'-'(3) = (3 In 2)2-
dx

Trv writing 2" as S' and differentiating to see thai you obtain the same resul

C. A = — Llog|„COS.vJ =
(InlO)cos.A In 10

tan A
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Occasionally, an integrand involves an exponential function to a base other than

e. When this occurs, there are two options: ( 1 ) convert to base e using the formula

fl* = ('"""'' and then integrate, or (2) integrate directly, using the integration formula

(which follows from Theorem 5.\?<)

/'(/a
In a

W + C.

Example 4 Integrating an Exponential Function to Another Base

Find J 2> (/v.

Solution

2'./v = -^2> + C
In 2 EZl

When v\c introduced the Power Rule. />,[-v"| = iix" '. \n Chapter 2. wc rei|inrcd

the exponent ;; to be a rational number. We now extend the rule to co\ er an\ real \alue

of ;/. Try to prove this theorem using logarithmic differentiation.

THEORE.M 5. 14 The Pow cr Rule for Real Exponents

Let /; he any re;il ntimber and 1 el 11 be 1 1 ditferentiable ftniction o{ A.

1. |[.v"] ^ „. 1
-

1

2.
ilii

= ni(" '
-—

The next example compares the derivatives of four types of functions. Each

function uses a different differentiation formula, depending on whether the base and

exponent are constants or variables.

E.Xiimple '> Comparing Variables and Constants

a. yM = Const.int Rule

NOTE Be sure you see iliai iheie is no

simple differentiation rule for calculating

the derivative of y = x\ In general, if

y = (((a)'''', you need to use logarithmic

differentiation.

b.f[.

C. f[A-] = ..V-'

d. y = A-

In y = In v'

In y = A In a

- = v(~) + (IuaKI) = 1 + In A

r' = I'd + In a) = A'd + In a)

Exponential Rule

Power Rule

LoLiarilhnlie ditleicnliation
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n A

1 $1080.00

1 $1081.60

4 $1082.43

12 $1083.00

365 S1083.28

Applications of Exponential Functions

Suppose P dollars is deposited in an account at an annual interest rate r (in decimal

form). If interest accumulates in the account, what is the balance in the account at the

end of 1 year? The answer depends on the number of times ;; the interest is compoiuidcd

according to the formula

For instance, the result for a deposit of $1000 at 8% interest compounded n times a

year is shown in the upper table at the left.

As n increases, the balance A approaches a Hmit. To develop this hmil. we use

the following theorem. To test the reasonableness of this theorem, try evaluating

[(a + I )/.y]' for several values of .v. as shown in the lower table at the left. (A proof of

this theorem is given in Appendix B.)

-V m
10 2.59374

100 2.70481

1000 2.71692

10.000 2.71815

100.000 2.71827

1.000.000 2.71828

Now. let's take another look at the formula for the balance A in an account in

which the interest is compounded /; times per year. By taking the limit as n approaches

infinitv. vou (.)btain the followmc.

A = lim P\\+-

P lim 1 +
n/r

Tnke iimil as n^' z/z.

Rewrite.

= p lim I

Pc'

Let \ = II /r. Then x^>zc as /i—>:

Apply Theoiem ."^ 1."^

This limit produces the balance after 1 year of continuous compounding. So. for a

deposit of $1000 at 8% interest compounded continuously, the balance at the end of

I year would be

A = 1000e""« = $1083.29.

These results are summarized as follows.

Summary of Compound Interest Formulas

Let P = amount of deposit. / = number of years. A = balance after t years,

; = annual interest rate (decimal form), and ;; = number of compoundings per

year.

1. Compounded ;; times per year: A = P[\ +

2. Compounded continuously: A = Pe"
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The balancL' iii

(.'xpoiU'iUially.

Fi<;ure 5.26

nm^ Example 6 Comparing Continuous and Quarterly Compounduig

A deposit of $2500 is made in an account that pays an annual interest rate of 5%.

Find the balance in the account at the end of 5 years if the interest is compounded (a)

quarterly, (b) monthly, and (c) continuously.

Solution

a. ,4 = P

h. A = P\\ +

= 2.soo(i + fy
= 2.500(1.012.5)^"

= $3205.09

0.05

12

2500(1.0041667)"

$3208.40

2500 I

c. A = Pe = 2500[.'""-'^'-'^'

= 2500e"-^

= $3210.06

Compounded quarterly

Coilliiouilded luoiuhly

Compounded conlniiiousiy

Figme 5.26 shows how the balance uicreases oyer the 5-year period. Notice that the

scale used in the figure does not giaphically distinguish among the three types of

exponential growth in (a), (b). and (c).

I : ^ 4 5 (1 7 S ') 111

I line (in hours)

1 he limit 111 the weight of the culture as

/-^cc IS 1.25 grams.

Fifiiire 5.27

Example 7 Bacterial Culture Growth

A bacterial culture is growing accoi'ding to the logistics growth function

1.25

+ 0.25e-"-""
I >

where v is the weight of the culture in gianis and / is the tunc in hours. Find the weight

of the culture after (a) hours, (b) 1 hour, and (c) 10 hours, (d) What is the limit as /

approaches infinity

?

Solution

a. When t = 0. y

b. When / = I, v

1.25

c. When/ = 10. v =

1 + 0.25f-"-«'"

= I gram.

_ 1.25

~
1 + 0.25e-"'""

==
1 .07 1 grams.

1.25

I + ()25(, "-HH1I

= 1 .244 grams.

d. Finally, taking the limit as ; approaches infinity, you obtain

1.25 1.25
lim 1 .25 'Jiams.
^--.-- 1 + 0.25(---"-*'

1 +

The graph of the function is shown in Figure 5.27.
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EXERCISES FOR SECTION 5.5

Depreciation In Kxt'icises 1-4. the time in whicii ii muchine

depreciates to one-half its purchase price is given. Find a model

that yields the fraction of the purchase price as a function of

time and determine that fraction at time /„

Depiwiatian nine /(,

1. 3 years

2. S years

.V 7 years

4. 5 years

In Exercises 5-8, e\aluate the expression without using a

calculator.

6 years

16 years

10 years

T vears

5. log, ;;;

7. log, 1

6. log,7 9

8. loa,-" a

In Exercises 9-12. urite the exponential equation as a logarith-

mic equation or >ice versa.

rf^ In Exercises 35-.18. use a graphing utililv to graph the function

and approximate its zero(s) accurate to three decimal places.

35. -(.vl = 6(2'-') - 25

36. fit) = 3IXI(LII()75'-') - 735.41

37. Ii{s) = 32 log|„(,v - 2) + 15

38. ,i,'(.v) =1-2 log,„[Atv ~ 3)]

In Exercises 39 and 40, illustrate that the functions are inverse

functions of each other by sketching their graphs on the same

set of coordinate axes.

39. /(.v) = 4'

,!,'( v) = lOgj -V

40. /(a) = 3'

^ix) = log, .V

In Exercises 41-56, I'md the deri\ati\e of the function.

9. (a) 2' = 8

(h) 3-' =1

11. (al log|„O.OI = -2

(h) log,,, 8 = -3

10. (a) 27- -' = 9

(h) 16'" = 8

12. (a) log,;^= -2

(b) 49'/- = 7

In Exercises 13-18, sketch the graph of the function b\ hand.

13. V = 3' 14. V = 3- '

15. y = {\y 16. y = 2>'

17. /((a) = 5--- 18. y = 3-l'l

In Exercises 19-24. solve for .v or b.

20. (a) log, ST = -v

(b) log,, 36 = X

22. (a) log,. 27 = 3

(b) log,, 125 = 3

19. (a) log,,, lOOO = X

(b) login 0.1 = A

21. la) log, A = -
I

(bl log,.v = -4

23. (a) A- - .V = log, 25

(bl 3a + 5 = log, 64

24. (a) log, A + log, (a - 2) = I

(b) log|||(A + 3) - log,,,.v = 1

In Exercises 25-34, solve the equation accurate to three decimal

places.

25. 3-" = 75

27. 2'-= = 625

29.(1+°°^
12

31. log,(A- 1) = 5

33. log, .Y- = 4.5

26. S''^ = 8320

28. 3(5'-') = 86

32. log|o(f - 3) = 2.6

34. logjv/.v - 4 = 3.2

41. fix] = 4'

43. y = 5'--

45. fiit) = i~2'

47. hill) = 2 "cos ttH

49. > = los;, A

51. /(aI = losi,——

-

"
" A - 1

53. y = log, v^A- - I

10102, ?

55. i.(/)
= f^

42. i^ix) = 2'

44. y = .v(6---')

3-'

46. /(/) = —

48. ,!,'(«) = 5-'"'-
sin 2a

50. y = log,,, 2a

.vv^ - 1

52. Mx) = log, -

54. \ = loa.
.V- - 1

56. fir) = ;''- log, Jt + 1

In Exercises 57-60, use logarithmic differentiation to find

dyldx.

57. ! = A-/'

58. y = .V'
- '

59. y = (a - 2)> + '

60. y = (1 + a)''"'

In Exercises 61-68, find or evaluate the integral.

61. |3'</a 62. 5 ' </a

63.
I

2'</a 64. (3' - 5-)i/a

66. (3 - a)7"-"\/.v

68. 2-'"' cos A, /a

65. |.v(5-'1(/a

3-'

67. "

,, i/.v

1 + 3-'
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/y Slope Fields In Exercises 69 and 70, a differential equation, a

point, and a slope field are given, (a) Sl<etch two approximate

solutions of the differential equation on the slope field, one of

which passes through the indicated point, (h) LWe integration to

find the particular solution of the differential equation and use

a graphing utility to graph the solution. Compare the result

with the sketches in part (a). I'o print an enlarged copy of the

graph, go to the website www.inulhf^raphs.cinn.

69.
,/v

0.4'' (U) 70. ^ = c-"'cosx. (tt, 2)
l/.V

/ / /

/ / /

/ / /

/ / /

/ / /

/ / /

/ / /

/ / /

/ / / /4-

I / / / I
I / / / /
/ / ///
I / / / /
11///
I / / / /
/ / / / /

\ I I I I I / I f ^ s' ^ ^ ,

V /

/ / /

/ / /

/ / /

/ / /

/ / /

/ / /

I / / / /
I / / / /

I / / / /

I / / / /
I / / / /
I / / / /
I / / / /
I / /-\

/ ^ y ^

/ y y ^

-/ y ^ ^

/ y y '

\ w, .'////--
\ \ -s.--—^^ / / /-^
\\^--

—

"^ / / /-
\\^-~-

—

^^/ / /~~

\ w- y / / y^
\W ^^/ / y-,

w-^ y//y--

\\x ^//•--

r±ri^
\\- ^y / / /-^

71. List some applications of the exponential liinetions

/(.v) = ((
' and i;(-v) = u '

72. Describe how to use a ealculator to tlnd the loganthiii of a

number if the base is not 10 or c

73. The table ot values below was obtained b\ evaluating a I

function. Determine which of the statements may be true

and which must be false, and explain why.

(a) \ IS an exponential function of v.

(bl \- IS a logarithmic function of .v.

(c) V IS an exponential function of y.

(d) y is a linear function of -\.

X 1
T 8

y 1 3

75. Ordering Funetions Order the functions

i\x) = log, .V. ^(j(.v) = .v\ h(x) = .V-. and k{x] = 2>

from the one with the greatest rate of growth to the one with the

smallest rate of growth for "large" values of .v.

76. Gi\en the exponential function /(.v) = a\ show that

(al ,/(» + r) =/(/() /(!).

(b) f(lx) = [,/(.v)]-.

77. Inflation If the annual rate of inflation averages 5% over the

next 1(1 years, the approximate cost C of goods or services

during any year in that decade is

CU) = Pd.O.s)'

where / is the time in years and I' is the present cost.

(a) If the price of an oil change for your car is presently $24.9,'i,

estimate the price 10 years from now.

(b) Find the rate of change of C with respect to t when I = 1

and I = S.

(c) Verify that the rate of change of C is proportional to C.

What is the constant of proportionality?

rp 78. Depreeiation After r years, the value of a car purchased for

$20,000 IS

Vit) = 20.000(j)'.

(a) Use a graphing utility to graph the I unction and determine

the \alue of the car 2 years after it was purchased.

(b) Find the rate of change of V with respect to t when ; = 1

and I = 4.

(c) Use a graphing utility to graph \"[r) and determine the

horizontal asymptote of \"(;) Interpret its meaning in the

context of the problem.

(K Compound Interest In Exercises 79-82, complete the table to

determine the balance A for P dollars invested at rate / for t

years and toinpounded ;; times per year.

74. Consider the function fix) = log,||.v.

(a) What IS the domain of/?

(b) Find / '.

(cl II V IS a real luimber hetween lOIIO and 10.000. deter-

mine the inter\al in which fix) will be found.
j

(d) Determine the intei\al in which > will be found if /(.v) '

is negative.

(e) If fix) is increased by one unil. \ must have been i

increased by what factor?

(f) Find the ratio of ,\ , to .v, given that /(.v,) = ^n and

/(.v,) = n.
'

^

I

n 1 2 4 12 ^t5 Continuous compounding

A

79. / =^ SIOOO

y — .">2 vf

/ = 10 years

80. /' - S2.S00

/• = 6%.

t — 20 years

81. A' = .SIOOO

/• = 5%

/ = 30 years

82. P = $5000

( = 7%

t = 25 years
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Compound Interest In Exercises 83-86, complete the table to

determine the amount of money P (present value) that should

be invested at rate r to produce a balance or$l(l(),()0(l hi / years.

t 1 10 20 30 40 50

p

83. r = 5%

Compounded continiiojsly

85. ) = 5'7f

Coniponnded monthly

84. / = 6%

Compounded continuously

86. r = 1<7<

Compoinidcd daily

87. Compound Interest Assume that you can earn b'i on an

in\cstment. compounded daily. Which ot the following options

would yield the greatest balance after S years?

(a) S20.(JOO now

(b) S30.000 after 8 years

(c) $8000 now and S20.()0() after 4 years

(d) $9000 now. S900() after 4 years, and S'-MIDI) after 8 years

y 88. Compound Interest Consider a deposit ol SlOO placed in an

account for 20 years at r'/c compounded continuously. LNc a

graphing utility to graph the exponential functions giving the

growth of the investment over the 20 years for each of the

following interest rates. Compare the ending balances lor each

of the rates.

(a) ; = 3% (h) r = y/t (c) ; = 6%

89. Timber Yield The yield V (m millions of cubic led per acre)

for a stand of timber at age / is

V = 6Je'-^>""'

where / is measured in years.

(a) Find the limiting volume of wood per acre as ; approaches

infinity.

(b) Find the rate at which the yield is changing when r = 20

years and / = 60 years.

90. Learning Theory In a group proiecl in learning theory, a

mathematical model for the proportion /' of correct responses

after ;; trials was found to be

0.86

(a) Use a graphing utility to graph the function.

(h) Estimate the percent of defoliation if 2000 egg masses are

counted.

(c) Estimate the number of egg masses that existed if you

observe that approximately 1 of a lorest is defoliated,

(d) Use calculus to estimate the value of v for which v is

increasing most rapidly.

rp 92. Population Growth ,4 lake is stocked with 501) fish, and their

population increases according to the logistics curve

10,000
'"" =

1 + 19.-'/-^

where r is measured in months

la) Use a graphing utility to graph the lunction.

(b) What is the limiting si/e of the fish population?

(c) .At what rates is the fish population changing at the end of

1 month and at the end of 10 months'

(d) After how many months is the population incre.ising most

rapidly .'

rp 93. ModeUng Data The breaking strength B (in tons) of a steel

cable of diameter J (m inches) is <:i\en in the table.

d 0.50 0.75 1.00 1.25 1.50 1.75

B 9.85 21.8 -18.3 59.2 84.4 114.0

(a) Use the regression capabilities of a graphing utility to fit an

exponential model to the data.

(b) Use a graphing utility to plot the data anil graph the model.

(c) Find the rate of growth ol the motlcl when </ - 0,8 and

J = 1.5.

ry 94. Comparing Models The amount y (in billions of dollars) given

to philanthropy (from individuals, foundations, corporations, and

chantable bequests) in the I iiilcd .States lor (he years 1941

through 1997 is given in the table, with a I corresponding to

1 99 1 . (Source: AAFKC Trust lur I'lulaiuhmpM

1 + t'-"-^"

(a) Find the limiting proportion ot coirect responses as /;

approaches infinity.

(b) Find the rate at which P is changing after n = ?• trials and

n = 10 trials.

K 91. Forest Defoliation To estimate the amount of defoliation

cau.sed by the gypsy moth during a year, a forester counts the

number of egg masses on j^ of an acre the preceding fall. The

percent of defoliation v is approximated by

= 300
-'*'

3 + 17f
-""*•-''

where x is the number of egg masses in thousands. (Smirce:

USDA Forest Senice)

X 1

")

3 4 5 6 7

y 105.0 110.4 116.5 119.2 124.3 133.5 143.5

(a) Use the regression capabilities of a graphing utility to find

the following models for the data.

y, = a.\ + b y, = a + h In .v

y, = ah^ !,, = f/.v''

(b) Use a graphing utility to plot the data and graph each of the

models. Which model do you think best fits the data?

(c) Interpret the slope of the linear model in the context of the

problem.

(d) Find the rate of change of each of the models for the year

1996. Which model is increasing at the greatest rate in

1996'
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rp 95. Conjecture

(a) Use a graphing utihty to appri)\iniale the integrals ol the

functions

/(') 41 ~X'\ ,i;(r) = 4(^ I
. and IM = 4<'-""'-'»«"

^8/
'^

V 4

on the inter\'al [0, 4].

(b) Use a graphing utiHty to graph the three funelions.

(c) Use the results in parts (a) and (b) to make a eonjeeture

about the three functions. Could you make the conjecture

using only part (a)? Explain. Prove your conjecture analyt-

ically.

96. Area Find the area of the region hounded by the graphs of

V = 3', V = 0..V = 0. and.v = 3.

97. Continuous Cash Flow The present value P of a continimus

cash How of ,S2(K)() per year earning 6% interest compounded

continiiousK o\er 1(1 vears is

^

20()()f '"""(//.

Find P.

98. Complete the table to demonstrate that c can also be defined as

lim (1 + .v)' '.

X 1
10-' 10-- 10--' 10-"

(1 + xyi'--

In Kxercises 99 and 100. find an exponential function that tits

the experimental data collected over time I.

99.
/ 1

T 3 4

y 1 200.00 720.00 432.00 259.20 155.52

100.
t 1

T 3 4

y 600.00 630.00 661.50 694.58 729.30

True or False? In Exerci.ses 101-106. determine whether the

statement is true or false. If it is false, explain why or <jive an

example that shows it is false.

101. V = 271.81)1/99,990.

102. If /( vl = In .V. then fU'"' ') - fie") =
1 for any value of /;.

103. The luiiclums fix) = 2 + c" and ;.;(.v) = ln(.v - 2) are in\erse

liinclioiis of each other

104. The e\pnnenlial function y = Ce' is a solution of the differ-

ential equation d" y/dx" = y. ii = I. 2. 3

105. The graphs of /(.v) = c' and ,i,'(.v) = c' ' meet at right angles.

106. If /(.v) = ,i;(.v)(''. then the only zeros of /' are the zeros oi g.

107. Solve the logistics differential equation

and obtain the logistics growth function of Example 7.

I 4/1 I

'

Hint:

lOS. 1-ind an equation ol the taiii^enl line to \ = .v""' at

SECTION PROJECT

Let ,/ (.v)

|.v|>, v ^

1

.

.V = 0.

(a) Use a graphing utility to graph / in the viewing window
-3 < .V < 3, -2 < y < 2. What is the domain of / ?

(b) Use the zooiii and mice features of a graphing utility to

estimate

lim fix).

(c) Write a short paragraph explaining why the function / is

continuous for all real numbers.

(d) Visually estimate the slope of/ at the point (0. 1).

(e) Explain why the derivative of a function can be approximated

by the formula

/(.v + A.V) - /(a- - A.V)

2A.V

/'(O)

for small values of A,v. Use this formula to approximate the

slope of/ at the point (0, 1).

/(O + A,v) -/(O - iVv) ^ /(A.V) -/(-A-v)

2\x 2A.V

What do you think the slope of the graph of / is at (0. 1 )?

(f ) Find a formula for the derivative of / and determine /'(O).

Write a short paragraph explaining how a graphing utilitN might

lead you to approximate the slope of a graph inconectly.

(g) Use your formula for the derivative of / to find the relative

extreina of /'. Verify your answer with a graphing utility.

FOR FURTHER INFORMATION For more information on

using graphing utilities to estimate slope, see the article

'Computer-Aided Delusions" by Richard L. Hall in The College

Mtilhciiicitics Joiinuil. To view this article, go to the website

www.niatliai'ticlcs.coin.
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Differential Equations: Growth and Decay

• Use sepm'atioi) of variables to solve a simple differential equation.

Use exponential functions to model growth and decay in applied problems.

Differential Equations

Up to now in the text, you have learned to solve only two types of differential

equations—those of the forms

y'=/(.v) and y" = /(.v).

In this section, you will learn how to solve a more general type of differential

equation. The strategy is to rewrite the equation so that each variable occurs on only

one side of the equation. This stiategy is called separation of variables. (You will

studv this strateav in detail in Section 5.7.)

NOTE When you integrate both sides

of the equation in E.xample 1, you don't

need to add a constant of integration to

both sides of the equation. If you did.

you would obtain the same result as m
Example I

.

,/\ = Lv d.\

:y- + C, =.v- + C,

;y- =.v- + (Cj - CO

\ V- = .V- + C,

Example 1 Solving a Differential Equation

Solve the differential equation v' = Iv/y.

Solution

A' — — Write on^iiial e(.|UJtion

y

w' = 2.V Multiply liiitli sides t\v v.

\v' il-X = 2.V (/.v lnieiir;ile «illi respect In v.

/y = 2.V(/.v ily = y\l.\

-y- = .Y- + C. Apply P..«erRule

I EXPLORATION
In Example 1 . the general solution of

the differential equation is

y- - 2v- = C.

Use a graphing utility to sketch

several particular solutions—those

given by C = ±2, C = ±1, and

C = 0. Describe the solutions

graphically. Is the following

statement true of each solution?

The slope of the graph at the

point (x. y) is equal to twice the

ratio of X and y.

Explain your reasoning. Are all

curves for which this statement is

true represented by the general

solution?

\- — 2.V- = C Re«me. letliiig C = 2C|.

So. the general solution is given by

y- - 2.V- = C.

\'ou can use implicit dilfeientiation to check this result.
| ; j

In practice, most people prefer to use Leibniz notation and differentials when

applying separation of variables. Using this notation, the solution of Example 1 is as

follows.

£/v _ 2v

,/.v
~

\-

\' cly = 2.V t/.v

\- cly = 2.V (7.V

iv- = .v^ + C,

y- - 2.v^ = C
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Growth and Decay Models

In iiiaiiy applicalions. the lute of change ot a variable 3- is proportidiial to the value of

V. It y is a Itiiictioii of time ;. the proportion can be written as foUovvs.

Rate nl" ciuinnc of \' is propoi-tional 10 v.^

/ /
cjy

cit

= kv

The general sohition of this differential equation is given in the following theorem.

THEOREM 5 J 6 Evponcntial Growth and Decay Model

If \ is a differentiable function of ; such that y > (I and \
' = ky. for some

constant A. tiien

y = Ce".

C is the initial value of 1. and k is the proportionality constant. Exponential

growth occurs when k > 0, and exponential decay occurs when k < 0.

NOTE Dilfcrentiale the tiinclioii

y = Cc''^ with respect Ici /. and xeril'y

that y' = kx.

Proof

v' = kr Wiile original L=-quation.

SepLtiale \anablcs.

(// = \k cIt

lIv = k ill

Integrate with respect to !.

i/v = v'l/f

In y = kt + C| Find anlidei"ivati\'e ol'each side,

y = (."'(a^
I Solve lor V.

y = Cf^' Let C = <.-''.

So. all solutiotis of x' = k\ are of the form A' = Ce'''.

(0.2)

+ +

If tin- rate of change of y is proportionul to

I. theti r follows an exponential model.

Figure 5.28

Example 2 ll.sinjj an Exponential Growth Model

The rate of change of y is proportional to x. When ; = 0. y = 2. Wheti t = 2. y = 4,

What is the value of >• when t = 3?

Solution Because v' = ky. you know that y and ; are related hy the equation

y = Cc*'. You can find the values of the con.stants C and k by applying the initial

coiiditiotis.

Cf" r = 2 When / = 0. v = 2.

4 = 2e-^- [=: A =
:^ In 2 « 0.3466 Wlien r = 2. y = 4.

Therefore, the model is

When ; = 3. the value of v is
2/'-'-*"^' " = 5.657 (see Fiizure 5.2,'^).
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Radioactive decay is measured in terms of luilf-life—the luiinber of years

required for half of the atoms in a sample of radioactive material to decay. The half-

lives of some common radioactive isotopes are as follows.

Uranium (-'"LD

Plutoninm (~'"Pu)

Carbon ('-T)

Radium (--'Ra

I

Einsteinium (-'''Es)

Nobelium (-"No)

4.5 1 0.000.000 years

24,360 years

5730 years

1 620 years

270 days

23 seconds

Example 3 Radioactive Decay

The worst iiticlear actidcnl ni history

happened in 1486 at the C hernobvi

nuclear plant near Kiev in the LIkraine.

An explosion destroyed one of the plant s

four reactors, releasing large amounts of

radioactive isotopes into the atmosphere.

Suppose that 10 grams of the pliitonium isotope Pu-234 was released in the Chernobyl

nuclear accident. How long will it take for the 10 grams to decay to I gram?

Solution Let \' represent the mass (in grams) ol the plutonium. Because the rate of

decay is proportional to ^. you know that

V = Ce^'

where t is the time in years. To find the values of the constants C and k. apply the

initial conditions. Using the fact that y = 10 when r = 0, you can write

10 = Ce Ce

which implies that C = 10. Ne\t, using the fact that v = 5 when ; = 24,360, you can

write

5 = 10£'*"'=-*-'6u'

In - = k
24,360 _

-2.8454 10^' « k.

Therefore, the model is

V = IMf. ll.l«)l>ll2S4.'i4/
Hulf-life model

To find the time it would take for 10 grams to decay to I gram, you can solve for l in

the eciuation

]
— |Q„-ll(in(«12S454/

The solution is approximately 80, '^.'23 years.
~1

NOTE The exponential decay model in Example 3 could also be written as y = 10 (5)'

This model is much easier to derive, but for some applications, it is not as convenient to use.

From Example 3, notice that in an exponential growth or decay problem, it is easy

to solve for C when you are given the value of y at t = 0. The next example

demonstrates a procedure for solving for C and k when you do not know the value of

V at f = 0.
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ll^-l Example 4 Population Growth

M)() -
h (4. 300)/

21 f^
- - /

250 -

:t)(l
-

175-

-

33,,n54. /
z>

/"5 150- - /

Z

125 -

100-

50 -

A. iOO)

-~ - (0. .i3l

(in tiavs)

Suppi>se an expciitiiental population of fruit flies incieases according to the law of

exponential growth. There were 100 Hies after the second day of the experiment and

300 flies after the fourth day. Approximately how many flies v\ere in the original

population?

Solution Let y = Ce^' be the number of flies at time /, where t is measured in days.

Because y = 100 when i = 2 and y = 300 when r = 4. you can write

lOOf Substitutinsj this value into the

Figure 5.29

100 = Cc-* and 300 = Ce^K

From the first equation, you know that C
second equation produces the following.

300 = lOOc -'t'-*'

300 = lOOc'-*

In 3 = 2k

:^ In 3 = k

0.5493 = k

Therefore, the exponential growth model is

X = Cc"'^"''.

To solve for C. reapply the condition i- = 100 when t = 2 and obtain

100 = Ce"^^'"'-'

C = lOOc'-"""*'^ « 33.

So. the original population (when ; = 0) consisted of approximately y = C = 33

Hies, as indicated in Figure 5.29.

Example S Declining Sales

(0. 100.000)

: 1 4 s (1 7 8

Tiling (in nu)nlhs)

Figure 5.3(1

Four months after it stops advertising, a manufacturing company notices that its sales

have dropped from 100.000 units per month to XO.OOO units per month. If the sales

follow an exponential pattern of decline, what will they he after another 2 months'

Solution Use the exponential decay model \' = CV*', where I is measured in months,

as shown in Figure 3.30. From the initial condition (l = 0), you know that C =

100,000. Moreover, because y = 80,000 when / = 4, you have

80,000 = 10(),()(10c^*

0.8 = f-*^

ln(0.8) = 4k

-0.0338 « A.

So, after 2 more months (i = 6), you can expect the monthly sales rate to be

y « lOCOOOf-""-'-"'''"^'

= 71.300 units. IZl
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In Examples 2 through 5. you did not actually have to solve the differential

equation

y' = kv.

(This was done once in the proof of Theorem ?.16.) The next example demonstrates

a problem v\hose solution involves the separation of variables techniciue. The example

concerns Newton's Law of Cooling, which states that the rate of change in the

temperature of an object is proportional to the difference between the object's

temperature and the temperature of the surroinidiiig medium.

I
TECHNOLOGY If you didn't read

!^ the text at the beginning of the chapter

I on page 312, turn back and read it

i now. There you can see how data

collected using a Texas lii.strunwiits

Calculator-Based Lahomutry (CBLI

System can be used to experimentally

I derive a model for Newton's Law of

S Coolina.

Time (in minutes)

Exniiiple 6 Newton's Law of Coolin};

Let y repiesent the temperature (in F) of an object in a room whose teniperatiue is

kept at a constant 60". If the object cools from 100° to 90" in 10 minutes, how much

longer will it take for its temperature to decrease to 80°?

Soiiilion From Newton's Law of Cooling, you know that the rate of change in \ is

proportional to the difference between y and 60. This can be written as

v' = k(x - 60). SO < V < 100.

To solve this differential equation, you can u.se separation of variables, as follows.

c/v

Y - 60

1

Jt

dy = k lit

k{r - 60)

cly kdt

DifferentKil equulion

Se]Xir;iie \anables.

Intetii'ale bnih sides

Fiiu! :in[iden\Liii\c ol each side.

y - 60

ln|y - 60| = kt + C,

Because y > 60. \y
— 60| = y - 60, and you can omit the absolute value signs.

Using exponential notation, you have

y - 60 = e^' + '^i d y = 60 + Ce*'. C = e^-

Using y = l(X) when t = 0. you obtain 100 = 60 + C(-*"" = 60 + C, which unplies

that C = 40. Beeau.se y = 90 when ; = 10, it follows that

90 = 60 + 40f*""'

30 = 40e""

A- = ynlnj = -0.02877.

So. the model is

V = 60 + 40e'"''-"^'

and finally, when ^• = 80, you obtain

80 = 60 + 40c'"""-«"'

20 = 40e-"»2s77,

Coolnii: model

I

1

-n.02S77/

in 5 = -0.02877r

r
~ 24.09 minutes.

Figure 5.31

Therefore, it will require about 14.09 more minutes for the object to cool to a

temperature of 80° (see Figure ,'i.31 ). _,_
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EXERCISES FOR SECTION 5.6

In Exercises 1-10, solve the differential equation.

1. ^ = .V +

3.

cjy

(/A

Y + 2

5.V

d\

6. v'
3v

7. y' = V.vv

9. II + .v-)v' - 2.VV =

8. y' = .v( 1 + x)

1(1. ,\A + 1
' = IOOa

In Exercises 11-14. write and solve the differential equation

that models the verbal statement.

11. The rate ol change of O with respect to r is invcr^eh propor-

tional to the square of t.

12. The rate ol' change of P with respect to t is proportional to

10 - t.

13. The rate of change of N with respect to \ is pioportional to

:.^(i - A.

14. The rate of change of v with respect to v varies jointly as .v and

L - V.

rp Slape Fields In Exercises 15 and 16. a differential equation, a

point, and a slope Held are <jiven. (a) Sketch two approximate

solutions of the differential equati(m on the slope field, one of

which passes throufjh the indicated point, (b) Use integration to

find the particular solution of the differential equation and use

a yraphino utility to fjraph the solution. Compare the result

with the sketch in part (a). To print an enlarfjed copj of the

graph, go to the wehsite www.niathiirapbs.com.

15. .v(6 - v). (0,0) 16. ^ = .vv. (CU)
dx

ii ilil iJ iJHiiili J ili'
5' ' I 1 I I -I'-- 5

I I I 1 i \ \
'

I I I I

/ I I I I I

::::):: 4

rp In P^xercises 17-20, find the function v = f{l) passing through

the point (0, I0| with the given tlrst derivative. I'se a graphing

ulilit\ to graph the solution.

-1 = 3' 18.

19.
dx

20.

dr

Jx

In Exercises 21-24, write and solve the differential equation

that models the verbal statement. Evaluate the solution at the

specified ^ alue of the independent variable.

21. The rate of change of v is proportional to y. When .v = 0, y = 4

and when v = 3. y = 10. What is the value of v when v = 6?

22. The rate of change of ;V is proportional to N. When I = 0.

N = ISO and when t = \. N = 400. What is the value of N
when t = 4'!

23. The rate of change of V is proportional to V. When r = 0.

\' = 20.000 and when t = 4, V = 12,500. What is the \alue of

V when r = 6?

24. The rate of change of P is proportional to P. When / = 0.

P = ."iOOO and when t = \,P = 4750. What is the value of P
when I = 5?

In Exercises 25-28, find the exponential function y = Cc" that

passes through the two given points.

25. y 26. .V

1—h^'

27. .V

f^'
I 2 .1 4 .S

28. V

1-^'

5 - (4. 5)i

4-
1

3^ /

1
-

- i^.jJ

12 3 4 5

29. In your own words, describe what is meant by a differential

equation. Give an example.

30. Give the differential equation that models exponential

growth and decay.

In Exercises 31 and 32, determine the quadrants in which

the solution of the differential equation is an increasing

function. Explain. (Do not solve the differential equation.)

31.
1

32. — = -.v-1
dx 2
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Radioactive Decay In Exercises 33—10, complete the table for

the radioactive isotope.

AiiuHiiit Anitmnt

After After

1.000 Years 10.000 Yeans

Half-Life Initial

Isotope

--"Ra

{ill \ears) Quantity

33. 1620 lOg

34. --"Ra 1620

35. --"Ra 1620

36. 14^ 5730

37. UQ 5730 5l!

38.
.4(-. 5730

39. -'"Pu 24.360

40. '"'Pu 24.360

1.5g

3.2g

2.1g

rp Papulation In Exercises 57-6(1, the population (in millions) of

a country in 1999 and the continuous annual rate of change A of

the population for the ,\ears 1990 through 2000 are f;i\en. Kind

the exponential jjrowth model /' = Ce'"' for the population hv

lettiu); 1 = correspond (o 200(t. I'se the model to predict the

population of the city in 2010. [Source: U.S. Census Bureau,

"liileriiational Data Base")

1999

0.5g

To

0.4a

41. Radioactive Decay Radioacti\c radinm has a half-ht'c of

approximately 1620 years. What percent ot a gi\en amount

remains after 100 years?

42. Carbon Dating Carbon- 14 datmg assumes that the carhon

dioxide on earth today has the same radioactive content as it did

centuries ago. If this is true, the amount of '^C absorbed by a

tree that grew several centuries ago shotild be the same as the

amount of ''*C absorbed by a tree growing today. A piece of

ancient charcoal contains only \5'7( as much of the radioactive

carbon as a piece of modem charcoal. How long ago was the

tree burned to make the ancient charcoal? (The half-life of '""C

is 5730 years.)

K Compound Interest In E^xercises 43-48, complete the table for

a savings account in which interest is compounded continuously.

Initial Anniml Tiitie to .Amount After

Investment Rate DoidAe 10 Years

43. SI 000 69c

44. S20.000 5H
45. S750 ih^

46. SIO.OOO 5yr

47. .S500 SI 292.85

48. S>200() .55436.56

49. • = iH. t = 20 50. = 6<7f. t = 40

51. = 8%, t = 35 52. = 9%. t = 25

53. r

55. r

1%

8.5%

54. r

56. ;

6%

5.5%

Countr\ Popu atioii

57. Bulgaria 8.2

58. Cambodia 11.6

59. .lordan 4.6

60. Lithuania 3.6

-0.()(W

0.03

1

0.036

- 0.004

61. Writing Use the results of Exercises 57-60 and the exponen-

tial model P = Cf'*' to discuss the relationship between the

sign of k and the change in population for a given country

rp 62. .Modeling Data One hundred bacteria are started in a culture

and the number A' of bacteria is counted each hour for 5 hours.

The results are shown in the table, where / is the time in hours.

K Compound Interest In Exercises 49-52. lind the principal P
that must be invested at rate ;•. compounded monthly, so that

$500,000 will be available for retirement in I vears.

T^ Compound Interest In Exercises 53-56, fmd the time necessary

for $1000 to double if it is invested at a rate of r compounded (a

I

annuallv, (b) monthly, (cl daily, and (dl continuously.

t 1 2 3 4 5

N 100 126 151 198 243 297

(a) Use the regression capabilities of a graphing utility to llnd

an exponential motlcl lor the data.

(b) Use the model to estimate the time required lor the po|iuhi-

tion to quadruple in si/e

63. .Xtmospheric Pressure Atmospheric pressure P (mcisuied m
millimeters of mercury ) decreases exponentially w ith increasing

altitude .V (measured in meters). The pressure is 760 millimeters

of mercury at sea le\el (.v = 0) and 672.71 millimeters of

mercury at an altitude of 1000 meters. Find the pressure at an

altitude of 3000 meters.

64. Revenue Because of a slump in the economy, a company finds

that its annual revenue has dropped from $742,000 in 1998 to

$632,000 in 2000. If the revenue is following an exponential

pattern of decline, what is the expected revenue for 2002? (Let

; = represent 1998.)

65. Learning Cur\e The management at a certain factory has

found that a worker can produce at most 30 units in a day. The

learning curve for the number of units N produced per day after

a new employee has worked / days is

N = 30( 1 - t'").

After 20 days on the job, a particular worker produces 1 9 Linits.

(a) Find the learning curve for this worker

(b) How many days should pass before this worker is producing

25 units per day'

66. Learning Curve If in Exercise 65 management requires a

new employee to produce at least 20 units per day after 30 days

on the job. find (a) the learning curve that describes this

minimum requirement and (b) the number of days before a

minimal achiever Is producing 25 units per day.
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rp 67. Sales The sales .S' (in thousands ol imits) ol a new prodnct

after it has been on the market lor i years is

,V = Ce' '.

(a) Find 5 as a lunction ot I il 5()(KI units ha\e been sokl alter I

year and the saturation point lor the market is 30.(l()() tinits

(tiiat is, hm S = M)).

(b) How man\ units will have been sold alter 5 years'

(c) Use a graphing utility to graph this sales function.

rp 68. Sales The sales .S (m thousands of units) of a new product

after il has been on the market for ; years is

5 = 25(1 - e").

(a) Find .V as a function of t if 4(100 units have been sold after

I \ear.

(b) How many iimls will saltirale this market?

(c) How many units will have been sold after 5 years?

(d) Use a graphing utility to graph this sales function.

69. I'lirestry The \ahic of a tract ol limber is

v(n = loo.oooc""-'

where / is the time in years, with t = corresponding to 1998.

If money earns inieresi contiiuuHisly at 10%, the present value

of the timber at any time t is

Ail) = V{t)c """.

Find the year in which the timber should he har\cslcd lo

maxinii/e the present value function.

rp 70. Modeling Data The table shows the net receipts anil the

amounts required to ser\ ice the nation. il debt of the United .States

liom 1990 through 1999. The nionetaiy amounts are given in

billions (if dollars. iSaurce: U.S. Oflicc <>IMiiihii;ciiieiil iiiul

Hikl!>cn

Year 1990 1991 1992 1993 1994

Receipts l(B2.0 1055.0 1091.3 1 1 .54.4 1258.6

Interest 264.7 285.5 292.3 292.5 296.3

Year 1995 1996 1997 1998 1999

Receipts l-\5|.8 1453.1 1579.3 1721.8 1 806.3

Interest 332.4 344.0 355.8 363.8 353.4

(a) Use the regression ciiiabilities of a graphing utility to find

an exponential model R for the receipts and a quartic model

/ for the amount required to service the debt. Let t represeni

the time in years, with / = concsponding to 1990.

(hi Use a graphing utility to plot the points corresponding to

the receipts, and graph the corresponding model. Based on

the model, what is the continuous rate of growth of the

receipts?

(c) Use a graphing utility to plot the points corresponding to the

amount required to service the debt, and graph the quartic

model.

(d) Find a function Pit) that approximates the percent of the

receipts that is required to service the national debt. Use a

graphing utility to graph this function.

71. Sound Intensity The level of sound p. in decibels, with an

intensity of / is

PU) ...,„{

where /„ is an intensity of 10""' watts per square centimeter,

conesponding roughly to the faintest sound that can be heard.

Determine ;e(/) for the following.

(a) /= 10"'"* watts per square centimeter (whisper)

(h) / = 10 '' watts per square centimeter (busy street corner)

(c) / = 10""^ watts per square centimeter (air hammer)

(d) / - 10 * watts per square centimeter (threshold of pain)

72. \'(>ise Level With the installation of noise suppression mate-

rials, the noise level in an auditorium was reduced from 93 to

80 decibels. Use the function in Exercise 71 to find the percent

decrease in the intensity level of the noise as a result of the

installation of these materials.

73. Earthquake Intensity On the Richler scale, the magnitude R

of an earthquake ol intensity / is

In / - In /„

In 10
R

where /„ is the minimum intensity used for comparison.

Assume thai /,,
=

I

.

(a) Find the intensity of the I9(.)6 .San Francisco earthquake

(K = 8.3).

(b) Find the factor by which the intensity is increased if the

Richter scale measurement is doubled,

(c) Findf/R/t//.

74. Newton 's Law of Cooling When an object is removed from a

furnace and placed in tin environment with a constant tempera-

tuie of 80"F, its core temperature is I500°F. One hour after it is

removed, the core temperaltire is I I20°F. Find the core temper-

ature 5 hours alter the object is removed from the furnace.

True or False? In Exercises 75-78, determine whether the

statenicnl is true or false. If it is false, explain why or give an

example that shows il is false.

75. In cxponenlial growth the rate of growth is constant.

76. In linear growth the rate of growth is constant.

77. If prices are rising at ;i rate of (.).5'/( per month, then they are

rising at a i.itc of b'i per year.

78. The differential equation modeling exponential growth is

dy/dx = ky where k is a constant.
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NOTE First order Iniear differential

equations are discussed in Appendix A-

Differential Equations: Separation of Variables

• Use initial conditions to find particular solutions of differential equations.

• Recognize and solve differential equations that can be sohed by separation of variables.

• Recognize and solve homogeneoiis differential equations.

• Use a differential equation to model and sol\e an applied problem.

General and Particular Solutions

Several times in the text, we have identified phvsical phenomena that can be described

by differential equations. For example, in Sectiiiii 5.6. you saw that problems involv-

ing radioactive decay, population growth, and Newton's Law of Cooling can be

torimdatcd in terms of differential equations.

A Itinction ^ = /( v) is called a solution of a dilfcrential equation if the equation

IS satisfied when \ and its derivatives are replaced b\ /fvl and its ilcn\ati\es. For

exaniple. differentiation and substitution would show that v = f"-' is a siilulion of the

differential equation \' + 2>' = 0. It can be shown that evei"y solution of this

diflereiitial equation is of the form

Cf Geneial soiulion ul v' + 2\' =

where (' is any real number. This solution is called the general .solution. Some

dilfcrential equations have singular solutions that cannot be written as special cases

of the general solution. However, we will not consider such solutions in this text. The

order of a differential equation is determined by the highest-order derivative in the

equation. For instance, y' = 4y is a first-order differential equation.

In Section 4.1. Example X, vou sav\ that the second-order dilfcrential c(.|ualion

.v"(/) = —32 has the i;eneral solution

s(?) -16/- + cj + r. rieiKM.il solulion nl \"(/l =

which contains two arbitrary constants. It can he shown that a differential equation of

order n has a tieneral soltilion with /( arbitrarv constants.

Example 1 Verifying Solutions

Determine whether the gi\en function is a solution of the differential et|uation

y" - y = 0.

a. v = sin .V b. v = 4t' ' c. \' = Ce'

Solution

a. Because v = sin .v. y' = cos .v. and y" = —sin v. it follows that

v" — \' = — sin.v — sin .V = — 2sin.v =^ 0.

Hence. \ = sin.v is iial a solution.

b. Because y = 4f"\ y' = —4e^\ and y" = 4c '. it follows that

y"- y = 4e-' - 4e^' = 0.

Hence. \' = 4t'"' is a solution.

c. Because v = Ce\ y' = Ce\ and y" = Ce\ it follows that

y"- y = Ce> - Q-' = 0,

Hence, v = Ce' is a solution for anv value of C.
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Sokiliiin cm vfs for.

F'if'iiie 5.32

Geometrically, the general siiltition of it first-order differential equation represents

a family of curves known as solution curves, one for each value assigned to the

arbitrai'y constant. For instance, you can verify that every function of the form

General solution of .v\ ' + \ -

is a solution of the differential ctiuation \y' + y = 0. Figure 5.32 shows some of the

solution curves corresponding to tlilTerent values of C.

As discussed in Section 4. 1 . particular solutions of a differential ec|uation are

obtained from initial conditions that give the value of the dependent variable or one

of its derivatives for a particular value of the independent variable. The term "initial

condition" stems from the fact that, often in problems in\ol\ing time, the \alue of

the dependent variable or one of its derivatives is known at the initial time r = 0.

For instance, the second-order differential equation s"(t) = -32 having the general

solution

s(t) = - 16/- + C,/ + C. General solution of ,v"(/) = -32

might ha\'e the following initial conditions.

.v(()) = SO. ,v'(0) = 64 lnili.ll conditions

In this case, the initial conditions yield the particular solution

.v(/) = - 16;- + 64; + 80. Piii-tieiikir solution

ffS) Example 2 Finding a Particular Solution

For the differential equation

w' - 3.V =

verify that \' = Cv' is a solution, and find the particular solution determined by the

initial condilion \ - 2 when .v = —3.

Solution ^'ott know that ^ = C.\ ' is a solution because y' = 3C.v- and

.vv' - 3v = .v(3C.v-) - }<(C\'-)

= 0.

Furthermore, the initial condition v = 2 when v = — 3 yields

y — C.\^ General solulion

2 = C( — 3)'^ Substitute initial condition.

27
C Solve for C.

and yott can conclude thai the particular solution is

\ Particular solution

Trv checking this solutioti by substituting for ^ and ^
'

in the original differential

equation. Ls'El

NOTE To determine a parlietilar sokition. the ntimher of initial conditions niiisi match the

number of constants in the general solution.



SECTION 5.7 Dift'ercntuil Hquations; Separation ol' Variables 371

FOR FURTHER INFORMATION For an

example from engineering of a differen-

tial equation that is separable, see the

article "Designing a Rose Cutter" by

.1. S. Hartzler in Tlie Coltef^c Miitlieiuaricx

Jdiimal. To view this ailicle. go to the

website wwwjtuithorliclcs.con}.

Separation of Variables

Consider a differential equation that can be written tn the form

/V/(.v) + Mv)^ =
dx

where M is a continuous function of a alone and A' is a contiiuioiis Innction of \ alone.

As you saw in the preceding section, for this t\pe of equation, all .v terms can be

collected with dx and all y terms with dw and a solution can be obtained by integra-

tion. Such equations are .said to be separable, and the solution procedure is called

seponition of variables. Here are some e.xaniples of ditferential equations that are

separable.

Original Diffcrciilicil Equatiim

X- + -\v

dy _
dx

sin .V3 = cos .V

xy'

Rcw rittcu with Variables Separated

3y dy = —.V- dx

d\ = cot .V dx

c' + 1 e' +
dx = - dx

n^H Example i Separation of Variables

Find the i;eneral solution of (a- + 4) ^ = a"\'.

</.v

Solution To begin, note that \ = is a soltition. To liml other sokitions, asstiine that

y # and separate \ariables as follows.

(a- + 4)(/^ = x\dx

dx X

y X- + 4

Now, integrate to obtain

Jv _

y

I

</v

.V- + 4
dx

\n\y\ =-ln(.v- + 4) -H C,

In V = \njx- + A + C,

f)ilfcrential tnrni

Separate variables,

I ulcerate.

I

v| = e"-'. Jx- + 4

^ = ±<''"Va- + 4.

Because ! = is also a solutnin, you can write the general solution as

\' = CV-V^ + 4. General solulum

NOTE We encourage you to check your solutions ihroiiglioui this chapter In Example .i yoti can

check the solution y = Cv'a- + 4 by differentiating and substituting into the original ei|iialion.

,1 ., d\
(a- + 4)

âx

(a- + 4)
Cv

.v(cy.v- +A]
Jx' + 4

Cxjx- + 4 = Cava- + 4

Original equalinn

Sulistitute

Solmion checks.
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In some cases it is not feasible to write the geneial solution in the explicit form

V = /(.v). The next example illustrates such a solution. Implicit differentiation can be

used to verify this solution.

Example 4 Finding a Particular Solution

Gisen the uiitial condition v(()) = 1. find the particular solution of the ec[uation

.VVf/.V + (-"''( V- - l),/v = 0.

Solution Note thai y = is a solution of the differential equation—but this solution

does not satisfy the initial condition. Hence, you can assume that v t^ 0. To separate

variables, you must rid the first term of y and the second term oft'""'. So, you should

multiply by c^'/y and obtain the following.

.xyd.x + ('-''(y- ~ 1) Jv =

<?->'( V- - 1)(/V = -.VV(/.V

V
I
Jy

— - In \
=

From the initial condition >(()) = I. you ha\e ^ - = -^ + C, which implies that

C = 1. So, the particular solution has the implicit form

V- - In A'

1

-I

V" - \n\- + (''' = 2.

You can check this b> differentiating and rewriting to get the original equation.

t— -V

2 4 6 8

Example S Finding a Particular Solution Curve

Find the equation of the curve that passes through the point (1,3) and has a slope of

y/.v- at the pouit (.v, x). as show n m Figure ,S.3,v

Solution Because the slope of the cur\e is gi\en by y/.v-. you have

(fv ^ ^
i/x

"
A-

wiih the initial condition v( I ) = 3. Separatinu vaiiablcs and intesratinc produces

1

^ #

Inv + C,

i/'t + r, = Cc-''\

Figure 5.33

Because y = 3 when .\ = I, it follows that 3 = Cc ' and C = 3t'. Therefore, the

equation of the specified curve is

V = (,Vk-i/> = 3e'>-"/>. .V > 0. ^
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NOTE The nolatioii /(a, \) is used to

denote a funetion of two xariahles in

miieh the same way as /(.v) denotes a

funetion of one \ariahle. You will stud\

funetions of two variables in detail ni

Chapter 12.

Homogeneous Differential Equations

Some differential equution.s that are not septirtible in .v and v can be made separable by

a change of variables. This is true for differential equations of the form y' = fix. \),

where /' is a homogeneous function. The function gi\en b> fix. y) is homogeneous

of degree /( if

fUx. n) = t"f{x. y)

where /; is a real number

Honioiieneoiis fiinclioii ol deeree n

E.xnwph' 6 Verifying Homogeneous Functions

a. fix. y) = x-y - 4.v' + 3.\y-^ is a homogeneous function of degree 3 because

filx.ty) = (f.v)-(fv) - 4(a)- + MlxHtr)-

= i'i.\-y) - f-'(4.v-) + IH3XY-)

= ri.\-y - 4.v' + 3.vy-)

= rfix.x).

b. fix. y) = xe^'^ + y sin(y/.v) is a homogeneous tunction of degree 1 because

fitx. n) = rxc"'" + r\ sin ^
tx

= t[ .vf '/' + \' sin
^

= tf(x. x).

c. fix.y) = .V + y^ IS not a homogeneotis function because

fitx. ty) = tx + t-y- = tix + tv-) + t"ix + y-).

d. /(a. y) = .v/y is a homogeneous function of degree because

fitx.tx) = - = ?"-.

tx \

Definition of Homogeneous Differential Equation

A homogeneous differential equation is an equatK)n ot the form

Mix.y)dx + M.v. v)(/v =

where M and N are homotteneous functions of the same decree.

Exaiiiplc 7 Testing for Homogeneous Differential Equations

a. (-V- + .vv) ilx + Y~ ilx = is homogeneous of degree 2.

b. .v' tlx = y' cly is homogeneous of degree 3.

c. (.V- + 1 ) dx + Y-cly = is luil a homogeneous differential eciiiation.
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To solve a homogeneous ditTereiitial equation by the method of separation of

variables, we use the follow inc ehantie of variables theorem.

THEOREM S.l 7 Change of Variables for Homogeneous Equations

If M(.v, y) tl.x + M.v, y) cly = is homogeneous, then it can be transformed into

a differential etjuation whose variables are separable by the substitution

y = v\

where v is a differentiable function of .v.

STUDY TIP The MibMitulion y = r.v

will yield a differential equation that is

separable with respect to the variables

.V and V. You must express your final

solution, however, in terms of a and y.

(=
I

(=}

General solutions of

(.V- - y-)(/.v + Ivn/r = I)

Fimiri' 5.34

Example 8 Solving a Homogeneous Differential Equation

Find the general solution of

(a- - y-)(/A- + 3av(/v = 0.

Solution Because (a- - y-) and .Ivy are both homogeneous of degree 2. let y

to obtain Jy = v civ + \-tl.\. Then, by substitution, you have

</v

(v- - r-A-)(/v + l\{v\)(\i/v + vclx} =

(a-- + 2v-a-)</a + .\v-'v Jv =

v-(l + 2r-),/A + A-(.^rv)</r = 0.

Dividing by v- and separating variables produces

(1 + 2r-)(/A = ~}vxilv

\Jx f --}v

I + 2i
-.civ

Inl.d --\n(\ + 2v-) + C,
4

4ln|.v| = -3 1n(l + 2r-) + ln|r|

In v^ = Injni + 2r-) '|

A-* = ni + 2v-)-\

Substituting for v prodtices the following general si>lulion.

-3

,v^ = C^ l+2(^f
\A7

.V- )

.V* = C

(.V" + 2v-)-'' = Cx' General soliilion

You can check this by differentiating antl rewriting to get the original equation.

TECHNOLOGY if you have access to a graphing utility, try using it to graph se\eral

of the solutions in Example 8. For instance. Figure .'i.34 shows the graphs of

(.V- + 2i'-)' = Cv-

forC = 1. 2. ,3. and 4.
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Applications

Exnwple 9 Wildlife Population

The rate of change of the number of coyotes Nil) in a population is directly propor-

tional to 630 — N(t). where / is the time in years. When / = (I. the population is 3(K),

and when t = 2. the population has increased to 500. Find the population when t = ?>.

Solution Because the rate of change of the population is proportional to fi.SO - N(l).

you can write the following differential equation.

/.(650 - N)

You can sciKe this equation using separation of \ariables.

lIN = /.-(65() - A') (It DillcicniLiI I. .1111

JN
650 ^N "''

-In 1 650 - N\ = kr + C,

In! 650 - N\ = -kt - C,

650 - A' = f'-*'-'i

A' = 650 - Cc--'-'

Separale \;iriables.

ASSIIIIIC :V < hSil

rn-ncr.il snliihnn

Using N = 300 when t = 0. you can conclude that C ^- 3-'iO, which produces

A' = 650 - 350e-*'.

Then, using A' = 500 when / = 2. it follows that

500 = 650 - 350e--* —: e^-* =
7 A = 0.4236.

So, the model for the coyote population is

A' = 650 - 350c""^-"". Model lot pi.piil.iiH.n

When t = 3, \ou can approximate the population to be

A' = 650 - 33(V-n-*^-'«-'i = 552 coyotes.

The model for the population is shown in Figure 5.35.

Time (in years)

Figure 5.35
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Each line r = A vis an nrthognnal trajectory

to tlie I'amiK of circles.

Figure 5.36

A coniiiion pri)bleni in electrostatics, thermodynamics, and hydrodynamics

involves finding a family of ctnves. each of which is orthogonal to all members of a

given lamily of ctirves. For example. Figure 5.36 shows a family of circles

.v-^ + \- C Famih of circles

each ol' which intersects the lines in the tamily

\ = Kx Family of lines

at right angles. Two such families of curves are said to he mutually orthogonal, and

each curve in one of the families is called an orthogonal trajectory of the other

family. In electrostatics, lines of force are orthogonal to the cqitipolenucil curves. In

thermodynamics, the flow of heat across a plane surface is orthogonal to the isother-

iinil curves. In hydrodynamics, the flow (stream) lines are orthogonal trajectories of

the \'cl()ciry poieiilicil iiirves.

E.xample W Finding Oi-tliogonal TrajiTtorics

Describe the orthtigonal trajectories for the lamily of curxes gi\en by

C

Orthogonal

Given family:

AT = C '

family;

y- .\~

Ortiidgcinal trajectories

Figure 5.37

for C =i^ 0. Sketch se\eial members of each family.

Solution First, solve the given equation for C and write .vy = C. Then, by differen-

tiating implicitly with respect to .v. you obtain the differential equation

.vy' + y =

civ

^= -

Differential equatu^n

Slope of given family

Because x' represents the slope of the given family of curves at (v. y). it follows that

the orthogonal I'amilv has the negative reciprocal slope v/y. and we write

^ ^ .y

il.x
"

V
Slope of orthogonal lamily

Now you can find the orthogonal family h\ separating \ariables tind integrating.

v (/\ =
I
-V (/.V

+ C,
y- .v-^

2 2

Therefore, each oithogotial traiectory is a hyperbola gi\en by

y- -V-

2C, = K *

The centers are at the origin, and the transverse axes are vertical for A' > and

horizontal for A' < 0. Several trajectories are shown in Figure 5.37.
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EXERCISES FOR SECTION 5.7

In Exercises 1-6, verify the sniiition of tlie differential equation.

Solution

i. \ = Cf"

I. X- Cy

3. \' = C| cos .V + C, sin .v

4. \ = C|('^' cos A + CiC"' sin A

5. V = -cos A In
I

sec A + tan aJ

6. V = 5(c"'' + e')

Differential Eiiinitioii

v' = 4v

v'= 2at/(a- - >-)

v" + ! =

rp In Exercises 23 and 24. the yeneral solution of the differential

equation is given. Use a <jra|jhinn utilitv to graph the particular

solutions for the given values of C.

V + 2v' 1\

y + y = tan x

y" + 2v' = 2^'

In Exercises 7-12, determine whether the function is a solution

of the differential equation y'"" - I6y = 0.

7. y = 3 cos A' 8. y = 3 cos 2a

9. y = f-"> 10. y = ? In A

11. y = C|C'-> + C,e--' + C, sm 2a + Q cos 2a

12. V = 3r-' - 4 sin 2a

In Exercises 13-18, determine whether Hie function is a solution

of the dilTerential equation xy' — ly = aV',

13. » = A-

15. V = A-(2 + e')

17. V = In A

14. y = A-f

'

16. y = sin a

18. V = A-('' - 5a=

19. Think About It il )s knou n iliat v = Cc^' is a solution of the

differential equation y' = (l.()7v. Is it possible to deterniino ("

or k from the information gi\ en' If so. find its \alue-

20. Think About It It is known that y = A sin tot is a solution ol

the differential equation \
" + 16i- = Find the \alue of m.

In Exercises 21 and 22. some of the curves corresponding to

different values of C in the general solution of the differential

equation are given. Find the parlicidar solution that passes

through the point indicated on the graph.

Solution Diffcrentiiil Equation

21. V- = Cx^ 2ay' - 3\' =

22. 2a- - V- == C 1 v' - 2a =

Figure for 21

23. 4yy' - a- =

4y- - A- = C

C = 0. C = ±1.C=±4

24. \c' + A =

A- + y- = C

C = O.C = l.C = 4

In Exercises 25-30, \erifv that the general solutions satislv the

differential equation. Then find the particular solution that

satisfies the initial condition.

25. V = Cc -

y' + 2y =

^ = 3 when a" =

26. 3a- + 2y- = C

3a + 2yy ' =

V = 3 when a = I

27. y = C, sin 3a + C, cos 3a 28. \ = C, + C, In a

y"+ 9y = xy" + y' =

y = 2 whenv = 77/6 y = when v = 2

1
' = 1 when A = /r/6 a ' = , w hen a = 2

29. V = C|A + C,x'' 30. \ = e-' He, + C,a)

A-v" - 3Ay' + 3y = yi'" - I2y' + 4i' =

\' = when A = 2 y = 4 when a =

y
' = 4 when A = 2 y = when a = 3

In Exercises 31-42, use integration to find a general solution of

the differential equation.

31.
oy

</a

= 3a-

33.
</a

= A

1 + A-

35.
</v

,/a-

= A - 2

A'

37.
</y

</a

</y

</v

-

sin 2a

39. xjx - 3

41.
</y = AC''

32.
Jv

4v

M.
</a I + e'

36.
cly-~ = A cos A-
dx

38.
rfv-~ = tan- A
</.v

40. r = -vVs - A
(/a

42.
Jy

= '' ''

In Exercises 43-54. find the general solution of the differential

equation.

43.
tly X

ill-

rfv X- + 2

45. — = Q.05r
lis

47. (2-1- A)y' = 3y

49. vv' = sin a

51. J\ - 4a- v' = A

53. V In A - aa' =

</a 3y-

46. ^ = 0.05,s
d.s

48. xy' = y

50. \a' = 6 cos(7rv)

52. s A- - 9y' = 5x

54. 4vv' - 3e> =
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In Exercises 55-64. liiid the partkular solution tliat satisfies tlie

initial condition.

In Exercises 83-86, find the particular solution that satisfies the

initial condition.

Diffcrenlial Eqiialum

55. vv' - f' =

56. ^'(v + Jyy' =

57. i(v + 1) + \'' =

58. 2\x' - In A- =

59. v(l + A-)v' - Ad + V-) =

60. \v'l - .v-\' - .\J\ - \- =

61. -— = tiv sin V-
ilv

62.

63. dP - kPili =

64. JT + kiT - 70) Jr =

Initial Condition

r(0) = 4

v( i )
= 4

y(-2) = 1

v( I ) = 2

v(0) = v^

v(0) = 1

nW) = I

;({)) =

^(0) = P,,

7"(()) = 140

In lAercises 65 and 66, find an ctiualion of the {jraph that passes

Ihriiuiih the pohit and has the indicated slope.

Point Slope

65. (1.1)
9.x

' =
16,

66. (8,2)
, 2v

In Exercises 67 and 68, find all functions/ having the indicated

property.

67. The lanjicnl lo (lie yrapli ol / al (he ponil (a, i) mtersCLis the

A-a\is at (a + 2. 0),

68. All lanycnts Id the graph df /' pass through the drigin.

In l-Acrclses 69-76. determine whether the luiictldn Is honioge-

neous, and if It Is, determine Its de<;ree.

69. /Iv, v) = A-' - 4.\y" + 1'' 70. ,/(a. v) = a' + 3a--v- - 2v'

A-\-

Diffcrential Eijiiation

83. A,/v - (2xe-'/>" + y)d.x =

84. - V- d.\ + a-(a + y) dy =

85. I A sec- + v1(/a - A(/v =

86. (2a-- + \-)(/a + wdy =

Initial Condition

v( 1 )
=

v( 1 ) = I

v( 1 ) =

v( I ) =

Slope Fields In Exercises 87-90, sketch a l'e« solutions of the

differential equation on the slope tield and then find the general

solution analyticall\. To print an enlarged copy of the graph, go

to the website www.mathgraphs.com.

87.
d\

88.
(/V

£/A

i <, i + •> < < ^ A-

y / /

/ / t

/ / t

1

/ / ^ 4 - - ~~ •^ V \

/ / / - - V \ \

1 / / > _ - ^ \ \ \

1 / / / - - \ \ \ \

-4
\
_T

\ - , /
>

/ 4

\ \ \ _T ~ - - / / /

\ \ V -. - - - ^ y /

\ N - -4- - - - / /

89. ^ = 4 90. -^ - 0.25.v(4

\ \ \ \S -f \ \ \ \

\ \ \ \ -f \ \ \ \

\ \ \ \ \ \ \ \

^r X N X S

y y y /•

I I / /

I I I I

i \ \ \

/ y y

11//
I I I I

\ \ \ \

.'.-.'•--VNXS

-4-2 2 4

71. /(a. V) =
^'A- + A^

73. /(a. a) = 2 In AT

A"

72. f[x.y)
^ A- + V-

74. /(a, a) = tan(v + a)

V

rp In Exercises 91-94, use a computer algebra system to sketch the

slope field for the differential e(piatlon, and graph the solution

satisfying the specified Initial condition.

75. /(v. v) = 2 In - 76. /(a. \) = tan
V

'

\

In Exercises 77-82, solve the homogeneous differential equation.

A + V ... ,
a' + V"

91. ^ = 0.5v. v(0) = 6
dx

92. A. a(0)

93. — = 0,02v(l() - v). v(0) = 2
d\

94.
,/a

0.2a(2 - a). v(0) = 9

77. V
2a-

79. y
= A - \'

X + y

81. V ^ AV

78. \' ^
Ay-

80. y
= A + V-

2a-v

ST
2 V + 3y

95. Radioactive Decay The rale of decoiiipositidn ol radioactive

radium is proportional tt) the amount present at any time. The

half-life of i-adioacli\e radium is 1620 years. What percent of a

present amonnt will rei-iiain after 25 years'.'

96. Chemical Reaction In a chemical reaction, a certuii-i com-

pound changes inio another compound at a rate proportional to

the unchanged amount. If initially there is 20 grams of the

original compound, and there is 16 grams after 1 hour, when

will 75 percent of the compound he changed'.'
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^ Slope Fields In Kxcrcisfs 97-10(1, (u) write a differential

equation for the statement, (hi match the differential equation

«ith a [jossihle slope Held, and (e) \erify \our result h\ usin<> a

graphing utility to graph a slope field for the differential

equation. [The slope fields are laheled (a), (b), (c), and (d).| To

print an enlarged eopy of the graph, go to the website

www. math^raphs.i 1)111.

(a) (b)

i!i:i;ii)nj:i!i;i!i-

i; ;i;nHi:;:!;Hni

(c) (d)

rrri::-

103. Sailing Igimnng resistance, a sailboat starting from rest

accelerates [dv/ih) at a rate prcipcirtional to the difference

belween the \ehicilies of the \\ iiid and the boat

(a) Write the \elocit\ as a liinclioii of lime il tlie wind is

blowing at 20 knots, and al'tei' I niimite die lioat is nio\ing

at 5 knots.

(b) Use the residt m part (a) to write the distance tra\eled by

the boat as a function of time.

iV 104. Rciilii) Reception In hilly areas, radio reception may be poor.

Consider a siiuatioii where an FM transmitter is located at the

point (-1. II behind a hill modeled by the graph of

y = .V — .V-. and a radio recei\er is on the opposite side ol the

hill. (Assume that the ,v-,i\is repiesents ground le\el at the

base ol the hill, I

(al What IS the closest the radio can be lo the hill so ih.it

reception is unobstructed'

(bl Write the closest position v ol the radio as a lunctioii ol'//

if the transmitter is located al (
- I. h).

(c) Use a graphing utility to gr.ipli the liinclioii in part (b).

Deteriiiiiie the \ertical .issmptote of the function and

interpret the result.

fr In Kvercises 105-110. find the orthogonal trajectories of the

faniil\. I se a graphing utility to graph several members of each

family.

97. The rate of change of v with respect to .v is proportional to the

difference between y and 4,

98. The rate of change of \ with respect to \ is proportional to ihe

difference between a and 4,

99. The rate of change of y with respect to .v is proporiioiKil to the

product of y and the difference between y ami 4

100. The rate of change of y with respect to .v is proportional to y-.

p 101. Wviiihl Gain A calf thai weighs bO pounds at birth gains

weiLiht al the rale

dt
Ad 200 - ir)

where h' is weight in pounds and i is time in years. Sohe the

differential equation.

(a) Use a computer algebra system to sohe the differential

equation for k = 0.8. A = 0.9. and A = 1 . Graph the three

solutions.

(b) If the animal is sold when its weight reaches 800 pounds,

find the time of sale for each of the models in part (a).

(c) What is the nia\iniuin weight of the animal for each of the

models?

102. Weight Gain A calf that weighs u,, pounds at birth gains

weiL'ht at the rate

lit

1200 - u

105. .V- + y- = C

107. .V- = Cv

109. V- = Cv'

106. A- - 2i- = C

108. ^- = 2Cv

110. A = Cc'

where ir is weight in pounds and / is time in years. Solve the

differential equation.

111. In your own words, describe the difference between a

I

general solution of a differential equation and a particular .

solution.
I

I

112. When determining a particular solution, how do you deter-

mine how many initial conditions are required''

113. Slate the lest for deternnnini: il a dil'Icrenli.il equation is

homogeneous. Cnve an example.

114. In your own words, describe Ihe relationship between two

families ol cui\cs ihal arc nuilually orthogonal. i

True in- t-'alse? In Exercises 115-118, determine whether the

statement is true or false. If it is false, explain why or give an

example that shows it is false.

115. II \ = /(.v) is a solution of a first-order dillerenlial eqiuilion.

then y = /(a) -f C is also li solution.

116. The differential equation y' = av - 2y + \ - 2 can be

written in separated variables form.

117. The function /(.v. y) = a- -I- -V^ -I- 2 is homogeneous.

118. The families A- + y- = 2C-i and a- + y- = 2A'a are mutually

orthogonal.
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Inverse Trigonometric Functions: Differentiation

• Develop pnipertie^ nf the six inveise tngonornetnc I'tnictions.

• Differentiate an inverse trigonometric function.

• Review the basic differentiation formulas for elementary functions

Domain: |-ff/2, !t/2\

Range: [-1.1]

The sine linictioii is oiie-to-onc on

[-7T/l.n/2l

Figure 5.38

Inverse Trigonometric Functions

This section begins with a rather surprising statement: Ndiu' of the six basic trif^ono-

iiictrii- functions lias an inverse function. This statement is true because all six

trigonometric functions are periodic and hence not one-to-one. In this section you

will examine these six functions to see whether their domain,s can be redefined in

such a way that they will have inverse functions on the restricted domains.

In Example 4 of Section 5..^. you saw that the sine function is increasing (and

therefore is one-to-one) on the interval [— 7r/2, 7r/2] {see Figure 5. .^8). On this

interval you can define the inxerse of the restricted sine function to be

y = arcsin A it and only if sin r = .v

where -
1 < .v < I and -tt/2 < arcsin .v < tt/I.

Under suitable restrictions, each of the six trigonometric functions is one-to-one

and so has an inverse function, as indicated in the following definition.

NOTE The term "iff" is used to repre-

sent the phrase "if and only if,"

Definition of Inverse Trigonometric Functions

Function

y = arcsin .v iff sin y = .v

> = arccos v iff cos i' = .v

V = arctan .v iff tan \' = .v

y = arccot a iff cot y = v

V = arcsec .v iff sec v = A'

Domain

A- >

\' = arccsc .v iff esc v = a \.\\ > I

Range

-
1 < A < 1 -f..v.

77

2

-
1 < A < 1 < \- < 77

7T TT- CC < A < 'x: -- < V <
->

- CO < A < CO < V < 77

< r < TT. \- #

-^.v.^, v.O

NOTE The Icriii "arcsm ,v" is read as 'tho aresine of a" or sometimes "the angle whose sine

is A." An alternative nolalion for the imcrse sine function is "sin"' .v."

EXPLORATION

The Inverse Secant Function In the definition above, the inverse secant func-

tion is defined by restricting the domain of the secant function to the intervals

"• T U T- T'' • Most other texts and reference books agree with this, but some

disagree. What other domains might make sense? Explain your reasoning graphi-

cally. Most calculators do not have a key for the inverse secant function. How can

you use a calculator to evaluate the inverse secant function?
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A' = arcsin .v

Domain: [- I, 1

1

Range: [- 7r/2. 7r/2]

The graphs ol the six inverse trigonometric functions are shown in Figure 5.39.

\' = arccsc .v

Domain: {-cc. - 1] U [Koc-)

Range: f- -/2.0)U (0. tt/2]

V = arctan .x

;^-

_-l
i y 1 2

Domain: (
— oo. co)

Range: (- tt/I. -njl)

\ = arccos .v

Domani: [~ I. 1]

Range: [0, tt]

Figure 5.39

V = arcsec .v

H h

Domain: (-cc. - 1] U [l.oc)

Range: [0. tt/I) U (tt/1. tt]

-\ ^-v

y = arccot x

Domain: (
- co, ^j)

Range: (0, tt)

Example 1 Evaluating Inverse Trigononietiie Functions

Evahiate each ot the following.

a. arcsin — -
b. arccos t. arctan v3 d. arcsin(().3)

NOTE When evaluating inverse

trigonometric functions, reniemher that

they denote {iiii;U'\ in nuluin iihiiMirc.

Solution

a. By definition, y =arcsin(-2) implies that sin y = — n. In the interval

[— tt/2. tt/2]. the correct value of v is - 77/6.

1\ TT

h. By dethiition, \- = aiccos II implies that cosy = 0. In the interval [(), 77], you have

v = tt/2.

arccos () = —

c. By definition, y = arctan ^'3 implies that Ian y = Vi. In the interval

( - tt/2. tt/2). you have y = 77/3,

arctan ^3 = —

d. Using a calculator set in nuliciu nn>dc produces

arcsin(0,3) = 0.3047. Z
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" EXPLORATION MS
Graph v = arccos(cos x) for

— 4n < A < 4iT. Why isn't the graph

the same as the graph of v = .v?

Inverse functions have the properties

./(/-'(a)) = .V and /-i(/lv)) =.v.

When applying these properties to inverse trigonometric functions, remember that the

trigonometric functions have inverse functions only in restricted domains. For .v-values

outside these domains, tliese two properties do not hold. For example. arcsin(sin tt) is

equal to 0. mil tt.

Properties of Inverse Trigonometric Functions

If - 1 < A- < 1 and - tt/2 < y < ir/l. then

sin( aicsin v) = .v and arcsin(sin v) = A'.

If - tt/2 < V < tt/2. then

tan(arclaii a) = v and arctan(tan y) = y.

if
I

v| > 1 and < y < tt/2 or 7r/2 < y < tt. then

sec(arcsecA) = \ and arcsec(secy) = v.

.Similar properties hold for the other inverse trigonometric functions.

E.\:iiiiple 2 Solving an Equation

arctandv - 3) = OriginLiI fquation

r = arcsin x

Figurt 5,40

\' = arcsec-

Figure 5.41

Jl

tan[ai"clan(2.v — 3)] = tan— TakLM.ingem of hoih sides.

4

2v —3=1 tan(aKlan v) = .v

.V = 2 Solve lor.\, H

vSotiie problems in calculus require that you evaluate expressions such as

coslarcsin a), as illustrated in Example ^.

E.xaiiiple 3 Using Right Triangles

a. Given y = arcsin a, where < y < tt/2. find cos y.

b. Given ^' = arcsec( ^'5/2). find tan y.

Solution

a. Becau.se y = arcsin x. you know that sin y = .v. This relationship between a and y

can be represented by a right triangle, as shown in Figure 5.40.

cos r = coslarcsin x)
adj.

hyp.
./1~^

(This result is also valid for - tt/2 < \ < 0.)

b. llse the rieht trianale shown in Ficure .'i.41.

tan \ = tan
s'-S opp.

adj.
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NOTE There is no common agreement

on the definition of arcsec .v (or arccsc v)

for negative vakies of .v. When we

defined the range of the arcsecant, we

chose to preserve the reciprocal identity

I

arcsec .v = arccos -.

v

For example, to evaluate arcsec (-2),

you can write

arcsec! -2) = arccosi -(1.5)== 2i)9.

One of the consequences of the definition

of the inverse secant function gi\en in

this text is that its graph has a positne

slope at every .v-vakie in its domain.

(See Figure 5.39.) This accounts for the

absolute value sign in the formula for the

dcn\alive of arcsec .v.

Derivatives of Inverse Trigonometric Functions

In Section 5.1 yoti saw that the derivative of the tniiisccihlfiitiil function fix) = In .v

is the (ilfii'hniic function /'(.v) = l/.v. You will now see that the derivatives of the

inverse trigonometric functions also are algebraic (even though the inverse trigono-

metric functions are themselves transcendental).

The following theorem lists the derivatives of the six inverse trigonometric func-

tions. Note that the deri\atives of arccos /(. arccot ii. and arccsc ii are the negatives of

the derivatives of arcsin /(. arctan ii. and arcsec ii. respectively.

THEOREM 5.18 Derivatives of Inverse Trigonometric Functions

Let /( be a differentiabic function of .v.

—
1 arcsin u\

a

/(

'

V\ - ir

d
r 1— [arctan )(J

/.v

u

'

1 + li-

^r , n lt

'

d »

— [arccot "] =
,

,

(/,V 1 + u

1 - u-

n'

To derive these foriiiulas, you can use implicit ditrerentiation. For instance, if

V = arcsin ,\. then sin v = .v and (cos v)v' = 1. (See Exercise 76.)

S

3 TECHNOLOGY If your graphing

\' utility does not have the arcsecant

^ function, you can obtain its graph

using

f(x) = arcsec .v = arccos -.

.V

Example 4 Differentiating Inverse Trigonometric Functions

(/ 2 2
a. -- [arcsin I2.v)l = —

,
- = —

,

d\ v'l - (2.V)- J\ - 4x-

'/ r 1 -^ 3
b. — arctan (3.V) =

,
^ .^ ,.

=
, ^ ^ -,

ilx I + (3.v)- 1 -I- 9.V-

I 1</ r . r] iU2)x '/-

c. — arcsin V-v = —
,

= —r- i
= —

,

</-v'-
-' yi - .V 2v^Vl - .V 2 y.v - .V-

d. ~ [arcsec e-"] = r--^
d\ e-\/{e-')

2e-'

1 f-'V?-*" - I ye-*'

The absolute value siizn is not necessary because <-" > 0.

NOTE From Example 5. you can see

one of the benefits of inverse trigono-

metric functions—they can be used to

integrate common algebraic functions.

For instance, from the result shown in

the example, it follows that

yi - .v-(/.v

1,
= -(arcsin .V -I- .vvl - .vl.

Example ? A Derivative That Can Be Simplifieri

Differentiate v = arcsin .v -I- .vVl — .v-

Solutlon

jr^^
X-

lx){\ -.Y-)-'/2 +

^ - X- yi - .v^

= + yr^p

= yi - .V- + yi - A--

= 2yT^:? :s^
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The graph of i' = (arctan a)- has a hiiri-

zonlal asjmptole at r = jt-j^.

Figure 5.42

Example 6 Analyzmg an Inverse Trigonometric Grapli

Analy/e the graph of a' = (arctan .v)-.

Solution h'rom the deri\alive

v' = 2 (arctan .v)l

_ 2 arctan v

1 + A-

you can see that the only critical number is .v = 0. By the First Derivative Test, this

value coiTesponds to a relative minimum. From the second derivative

+ .V-

+ A-
1 + .V-

(2 arctan .v)(2v)

(1 + A--)=

_ 2(1 - 2.V arctan .v)"
(1 +.V-)-

it follows that points of inHcctLon occm' when 2a arctan a = 1. Using Newton's

Method, these points occur when a ~ ±0.76.^. Finally, because

T
77'

iim (arctan a)- = —

-

it follows that the graph has a horizontal asymptote at 3' = tt-/4. The graph is shown

in Fieure .'S.42.

n^-/ Example 7 Ma.ximizing an Angle

A photographer is taking a picture of a 4-foot painting hung in an art gallery. The cam-

era lens is 1 foot below the lower edge of the painting, as shown in Figure 5.4,-l. How
far should the camera be IVoni the painting to maxinu/e the angle subtended by the

camera lens?

Solution In Figure .^.4.i. let /3 be the angle to be ma\imi/ed.

p = - a

arccot - - arccot x

The camera shoiikl hi' 2.2,1(i feet from the

painting to maximize tlic angle p.

Figure 5.43

Differentiating protliices

1/5'm_
,lx 1 + (.v725) I + A-

-3
1

+
25 + .V- 1 + A-

4(5 - .V-)

(25 + x-){\ + x-y

Because dji/dx = 1) when v = vO, you can conclude from the First Deri\ali\e Test

ih.ii this distance yields a maximum value of (i. .So. the distance is a = 2.2Mi feet and

die angle is /3 = 0.7297 radians = 41.81°.
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G\LlLKi)(,u.il.Ki (1564-1642)

Galileo's approacli to science departed Irom

the accepted Aristotelian view that nature had

describable qiuiHiics. such as'lluidil) "and

"potentiality." He chose to describe the physi-

cal world in terms of measurable quauuties.

such as time, distance, force, and mass.

Review of Basic Differentiation Rules

In the 1600s. Europe was ushered into the scientifie age h\ sticli great thtnkers as

Deseartes. Galileo. Huygens. Newton, and Kepler. These men believed that natine is

governed by basie laws—laws that can. for the tiiost part, be written in terms of

mathematical equations. One of the tnost influential publications of this period

—

Dialoiiuc (III tlie Civnl WarUI Systems, by Galdeo Galilei—has become a classic

description of modern scientific thought.

.As mathematics has developed during the past few hundred years, a small number

of elementary functions has proven sufficient for modeling mosi phenomena in

physics, chemisti'v. biology, engineering, economics, and a variety of other fields. .\n

elementary function is a function from the following list or one that can be formed

as the sum, product, t|uotient, or composition of functions in the list.

Ali^chniic Functions

Polynomial functions

Rational functions

Functions unolv imi radicals

TransccihtcntLiI Funclnnis

Logarithmic functions

E.vponenlial functions

Trigonometric functions

ln\erse Iriiionometric functions

With the differentiation niles introduced so far in the text, you can differentiate wt\

elementary function. For convenience, we summarize these differentiation rules here.

Basic Differentiation Rules for Elementary Functions

1.
dx

Cll = cu'

4.
d_

d\

u

r

\u' - u\

v-

7. |w = 1

10. i /'"] = c" ll'

2. —[ll ± v] = ll' ± v'
l/.V

y[cJ =
d\

8. T^\«\] = i^i"'}- "^0
dx \ii\

11. y[log„,,] = -^
dx (In (/)((

3. ""["I'l = iir' + 17/

'

o. ^1" J
= nil ll

dx

9. f[ln.] =
-'

dx ll

12. —[d'] = (\nci)d'ii'
dx

13. — [sin»] = (cos/()»'
dx

14. —[cos;;]
civ

sin //)((' 15. vlt'iii "] = f'-'-'c'' ")"'
dx

16. — [cot;(] = —(esc- (;)/('

dx
17. — [sec/r] = (sec /( tan »)/(

'

dx
18. — [esc ;(] = — (esc /( cot !/);('

dx

19. — [aresin;/] = —
,

dx^ Jl - ir-

20. — [luccos ;(] = — .

d\ VI - »-

-.. ''r 1 "
21. — arctan in = r

(/.v'
-'

\ + II-

-.- "^ r 1
"l''

22. -- arccot u =
^

dx^ -'

I + II-

23. — Larcsec/(J = ^d\ \ii\Jir

11 '^ r 1
~"

24. — L^ii-c-csc ii\
=

, ,
dx \ii\jir - 1

' Simic iniporliiiit functions used in engineering; and science (such as Bessel functions and

gannna functions) are not elementary functions.
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EXERCISES FOR SECTION 5.8

rV Numerical and Graphical Analysis In Kxercises 1 and 2,

(a) use a <<rapliiii^ iililit> to compkle the tahle, (h) plot the

points in the tahle and <ii'aph the tiinction hv hand, (e) use a

^i'aphin<i ulillt\ to ^laph the lunction and compare the result

with your hand-drawn oraph in pari (h). and Id) determine any

intercepts and symmetry of the graph.

In Exercises 21-28, write the expression in algebraic form.

21. cos(arcsin 2.v) 22. sec(arctan 4.v)

23. sin(arcsec .v) 24. cos(arccot .v)

25. tan| arcsec - 26. sec[arcsin(.v - I)]

X -

1

-0.8 -0,6 -0.4 -0.2 0.2 {:).4 0.6 0.8 '

y

27. CSC arctan 28. cosl arcsin

1. \' = arcsin .v Z. ^ = arccos .v

3. True (ir False? Decide whellier llie lolKminj: statenienl is

true or taise, and explain: Because cos( - tt/?<) = ,. it follows

that arccos 5 = - 7r/3.

4. Determine the missing coordinates of the points on the graph

of the function,

9 \' = arctan .v

-3

FK In Exercises 29 and 30, use a graphing utility to graph/and g in

the same viewing wintlow to verify that they are equal. Explain

why they are equal. Identify any asymptotes of the graphs.

"I,

29. f{\) = sin (arctan 2.v). ,i; (.v)

Vl + 4.V-

3(1. /Iv) = tan arccos- . ,;;(,v)

yr^^

/<^i
[--y

'-^^-
)

In Exercises 31-34, solve the equation for .v.

31. arcsnil.rv - w) = \ 32. arctan! 2.v - 5) = -
I

33. arcsin v'2a = arccos ^'\ 34. arccos .v = arcsec .v

In Exercises 35 and 36, verify each identity.

35. (a) arccsc .V = arcsin-. .v > 1

I TT

In Exercises 5-12. evaluate the expression without using a

calculator.

(It) arctan .x + arctan - >

^. arcsin
^

7. arccos -

9. arctan
s-'3

II. arccsc(-^/2)

6. aresm

8. arccos

10. arccotl- v 3)

12. arcco,'

In Exercises 13-16, use a calculator to approximate the value.

Round your answer to two decimal places.

13. arccos! -O.S)

15. arcsec 1.269

14. arcsm(-().3y)

16. arctan! -3)

In P^xercises 17-20, evaluate the expression without using a

calculator. {Hint: See Example 3.)

36. la) arcsin(-.v) = -arcsin .v, |.v| < I

lb) arccos(-.v) = 77- arccos .v. |.v| < 1

'r In Exercises 37-40, sketch the graph of the function. Us

graphing utility to verify your graph.

37. f(\) = arcsin(.v - 1) 38. f(.\)
= arctan .v + ^

39. /Iv) = arcsec 2.V 40. /(,v) = arccos^

In FjXercises 41-60, llnd the derivative of the function.

41. j\x) = 2aresin|.v - I) 42. f[t) = arcsin r-

43. ,i,'!.v) = 3 arccos -

17. la) SI 111 arctan
'-

I 4
lb) seel aresm -

19. la) eot| arcsinl
-

lb) CSC arclani - tt;

18. la) Uin arccos

lb) cos arcsin
13

45. /(.v) = arctan -

arcsin 3.v

47. ,i;!,v) =
-V

49. hil] -' sin (arccos /)

20. la) sec

lb) tan

arctani — - 51. y = .V arccos .v — V 1
— .v-

1 / I
,

-^ + 1

53, \' = - - In + arctan V

44. /!-v) = arcsec Iv

46. fix) = arctan v^-

48. /;|-v) = ,v- arctan ,v

50. / (,v) = arcsin .v + arccos .v

52. V = In!/' + 4) - ' arctan

-

2 \ 2 .V - 1
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54. v s '4 - .V- + 4 arcsin
'-

55. \ = A arcsin A + ^/\ — x-

56. V = A arclan 2v - j ln(l + 4a--)

57. \' = S cu'csin
-

58. \

54. \' ^ arclan v +

As \b - A-

'25

1 + A-
60. 1 = arclan :

4)

P Linear and Onadratic Approximations In Exercists 61 and 62,

usi' ii cdMipiittT alyt'hra system to find the linear approximation

/',(.v) =/(«) +f(a)(x -a)

and the quadratic approximation

/M.v) =/(«) +f'{a){x -a) + \f"{anx - o)-

to the function / at v = a. Sketch the graph of the function and

its linear and ([uadralic approximations.

61. /'(a I
= arcsin v 62. /(a) = arctan v

a = 1

72. Writing Repeat Exercise 71 If the altitude (4 the plane is 3

miles and describe how the altitude altects the rate of change

of «.

73. Angular Rate of Cliange hi a Iree-lall cxpcrinient. an object

is dropped from a height of 25(i feet. .A camera on the ground

?00 feet from the point of ini|iacl records the fall of

the object.

(a) Find the position function giving the height of the object at

time t assuming the object is released at time r = 0. At what

time will the object reach giouiui level?

(b) Find the rate of change ol the angle of elevation of the

camera when / = 1 and i = 2-

74. Angular Rale of Change A telcMsion camera at ground

level is filming the lift-off of a space shuttle at a point 7?!)

meters from tiic launch pad Let f* be the angle of elevation of

the shuttle and let \ be the distance between the camera and the

shuttle. Write H as a function of v for the period of time when

the shuttle is moving verticalK Dillcrcntiate the result to tind

d0/dt in terms of .v and dx/di.

75. Prove that

arctan v + arctan i' = arctan -

X + v

I - AV"
A^ * I.

In Exereiscs 6.^-66. find any relative extrema of the function.

63. /(.v) = arcscc.v - -\ 64. /'(.\) = arcsin i - 2.v

65. fix) = arctan .V - arctaiil.i - 4)

66. Iiix) = arcsin \
-- 2 arctan a

67. Explain why the domains of the trigonometric functions are

restricted when finding the inverse trigonometric tunctuuis,

68. Explain \\h\ tan 77 = I) does not imply that arclan = -.

69. Explain how to graph y = arccot a on a graphing utilitv that

docs not have the arccotangent function.

70. Are the derivatives of the inverse trigonometric functions

algebraic or transcendental functions? List the derivatives

of the inverse trieonometric functions.

Use this iDrmula In show that

I I 77

arctan - + aictan - = --.

76. Verily each differentiation lornuila

dr.-, 11'
,

(/
,

,
11'

(a) —I arcsin (/I = ,
(b) —| arctan » J

=
;

</a v' I
- ir '" 1 + "'

(/ 1-

-I

»

'

(c) — [arcsec 11 \
=

, ,

dx 1»| V "- -
1

(d) — [arccos 11]

dx
. I - ir

— u

'

(e) --[arccot ;(] =
,

dx 1 + /(

1/ 1- , — ;('

(I )
— [arccsc ((J

=
,

</a \u\Jir - 1

71. Angular Rale of Change An airplane tiles at an altitialc of .S

miles toward a point directly over an observer. Consider II and

A as shown in the figure,

la) Write H as a function of a.

(b) If the speed of the plane is 400 miles per hour, find ilH/di

when .V = 10 miles and .v = 3 miles.

5 mi

JUli-

77. Existence of an Inverse Determine the \alues ol A such that

the function fix) = A.a + sin.v has an inverse tunction.

rp' 78. Think About It LKe a graphing utility to graph

fix) = sin A and ,i;(a) = arcsin (sin a).

(a) Wh\ isn't the graph ot ,e the line y = .v?

(b) Determine the extrema of i;.

True or False? In Exercises 79-82, determine whether the

statement is true or false. If it is false, explain «hy or give an

example that shows it is false.

79. The slope of the graph of the inverse tangent tunction is posi-

tive for all A.

80. The range of y = arcsin .\ is [O. tt].

81. — [:uctan(tan a)] = I tor all .v in the domain.

82. arcsin- x + arccos- .v = I
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_aBiji.scxvJ
Inverse Trigonometric Functions: Integration

• Integrate lunctioiis whose anliderivatives involve inverse Irigonomelrie functions.

• Use the method ot completing the sc^uare to integrate a function.

• Review the basic integration formulas involving elenientary functions.

Integrals Involving Inverse Trigonometric Functions

The derivatives of the si,\ inverse trigoiioiiictric lunctioiis fall into three pairs. In each

pair, the derivative of one function is the negative of the other. For example.

</ r . n 1— [arc-sin .vj = —

=

d.\ yi

and

d\
[.u-c

When listing the aiirideiivarive that corresponds to each of the inverse trigonometric

functions, you need to use only one tiiember from each pair. It is conventional to use

ai'csin.v as the antiderivative of 1/ Vl — .v", rather than -arccos.v. The next theorem

gives one antiderivative formula for each of the three pairs. The pioofs of these inte-

gration rules are left to you (see Exercise 61 ).

NOTE For a proof of part 2 of

Theorem 5.19. see the arlicio "A Dncct

Proof of the Integral Fornuila for

Arctangent" hy Arnold J. Insel ui /7/c

Ciilli'gt' Miitheinatics Journal. To view

this article, go to the website

\i\['\\:nh![lun'l!iic.\.<t>in-

THEOREM 5.19 Integrals Invohing Inverse Trigonometric Functions

Let II be a differentiabic function of .v. and let a > 0.

Jii

tr — u-

ilii

= arcsm—He

- arctan—h C
ir + ir a ci

dii I \u\—
, , ,

= - arcsec—
it^ II— ir ii "

Exiniiple 1 Integration with Inverse Trigonometric Functions

b.

f/.V

v'4 - v-

d.x

2 + 9.V-

arcsin - + C

?< dx

'1 - + (3.1

(f = .1v, a = J2

dx

7= arctan —^ + C
3y2 Ji

2 dx

j A y4.v- - 9 J 2.V y(2.v)- - 3-

1 |2.v|

= ' arcsec^ + C

II = 2.1. ,( = .1

The integrals in Example 1 are fairly straightfoi'ward application.s of integration

formulas. Unfortunately, this is not typical. The integration formulas for inverse

trigonometric functions can be disguised in many ways.
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TECHNOLOGY PITFALL Computer

software that can peiform symbolic

integration is useful for integrating

functions such as the one in Example

2. When using such software,

however, you must remember that it

can fail to find an antiderivative for

two reasons. First, some elementary

functions simply do not ha\e anti-

derivatives that are elementary

functions. Second, every symbolic

integration utility has limitations—you

might have entered a function that the

software was not programmed to

handle. You should also remember that

antiderivatives involving trigonometric

functions or logarithmic functions can

be written in many different forms.

For instance, when we used a sym-

bolic integration utility to fnid the

integral in Example 2. we obtained

_d\

t-' -
I

arctan ^/e- I -I- C.

Try showing that this antiderivative

is equivalent to that obtamed m
Example 2.

Example 2 Integration by Substitution

Find
d\

1

Solution As it stands, this integral doesn't fit any of the three inverse trigonometric

formulas. Using the stihstitntion ;/ = c'. however, produces the following.

;/ = e' dii = e^ dx dx
dlt du

C II

With this substitution, you can integrate as follows.

dx [ dx
Wme e-' as {c'f-.

SLibsiiuile-

v.^> -
1 J Vier- - 1

dii/ii

J Jir - 1

= r du

. u^/ii- - 1

Rewrite to t1t Aresecant Rule.

arcsec — b C Apply Arcecam Rule

arcsec e^ + C Back-suhsnuue

Example 3 Rewriting as the Sum of Two Quotients

Find
I

—
,

dx.
/4 — .V-

•Solution This integral does not appear to fit any of the basic integration formulas.

By splitting the integrand into two parts, however, you can see that the first part can

be found w itli the Power Rule and the second part yields an in\crsc sine ftmction.

.V +

sM^
dx

v/T
: dx +

74
: dx

(4 - .X-)-' '~(-2.v) dx + 2
I

,
'

^ dx
'4 — .V-

(4 - .V-)'

1/2
arcsin - + C

V4 - .V- + 2 arcsin ^ + C

Completing the Square

Completing the square helps when quadratic functions aie involved in the integrand.

For example, the quadratic .v- + bx + c can be written as the difference of two squares

by adding and subtracting (b/2)-.

X- + hx + c = X- + bx +
hV-

\ +
b\- lb\-

+ c

+ c
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ri""! Example 4 Completing the Square

Find
dx

V- - 4a- + 1'

Solution Yini can write the denominator as the sum of two squares as follows.

.\- - 4.V + 7 = (.V- - 4.V + 4) ~ 4 + 7 = (.v - 2)- + 3 = ir + a-

Now. in this completed square torm. let ;/ = v — 2 and a = ~ji.

dx

4.V + 7 J (.V

dx

+ 3 V3
arctan

73
+ c

J^

The area of the region houmled b\ the

graph of f. the v-axis. x = '.. and .v = 5 is

Figure 5.44

[TECHNOLOGY With definite

; i
integrals such as the one given in

f Example ."i. remember that you can

f;
resort to a numerical solution. For

V, instance, applying Simpson's Rule

r' (with n = 6) to the integral in the

example, you obtain

523599.
ii f"-" I

'^ This differs from the exact value of

the integral {-it/6 = 0.5235988) by

less than one millionth.

If the leading coefficient is not 1 . it helps to factor before completing the square.

For instance, you can complete the square of 2.v- — 8.v + 10 as follows.

2.V- - 8.V + 10 = 2(a- - 4v + .5)

= 2(.v= - 4.V + 4 - 4 + ?)

= 2[(.v - 2)= + 1]

To complete the square when the coefficient of .v-^ is negative, use the same "factoring

process" illustrated above. For instance, you can complete the square for 3.v — .v- as

follows.

3.V
- - (A- - 3a)

- [v- - 3.V
-

Example *> Completing the Square (Negative Leading Coefficient)

Find the area of the region bounded by the graph of

./3.V - A-

the .v-axis. and Ilic lines .v =
2 and .v = j.

Solution From Figure .5.44, you can see that the area is given by

Area

«/4

: dx.

Using the completed square form deri\ed aboxe. you can integrate as follows.

9/4
dx dx

3/2 y3.v - x'- Iv2 7(3/2)- - [x - (i/2)]-

. X - (3/2)" y/4

3/2 -V:

. 1

arcsin - -arcsm (1

TT

6

== 0.524
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Review of Basic Integration Rules

You have now completed the introduction of the basic integration rules. To be

efficient at applying these rules, you should have practiced enough so that each rule is

committed to memory.

Basic Integration Rules (a > 0)

1. \kf(u)dii = k\ fin) tin fill) ± gUi)] dii = \f(i,) dii ± g(u) dii

3. dii = II + C
((" + '

4. \ii"dii = + C. II ^
II + I

5. |^ = ln|//| + C 6. e" dii = e" + C

7. Id'dit =
I
7^)"" + C 8. sin ;( (//( = — cos ii + C

9. cos u dii = sin » + C 10. tan // (/;; = -hijcos u\ + C

11. cot (/ (/// = ln|sin //] + C 12. sec /( dii = In
I

sec u + tan u\ + C

13. I CSC /( dii = — ln|csc // + cot ;(| + C 14. sec- /( (//( = tan » + C

15. CSC- u dii = —cot II + C 16. sec II tan ii dii = sec ii + C

17. CSC u cot II dii = — CSC 11 + C

1 dii 1 ;( „
19. ^ z; = - arctan - + C

a- + II- a a

18.

20.

—— = arcsm—he

dii 1 |i/|—
.

^
= - arcsec h C

((VJ(— ii- a a

You can learn a lot abont the nature of integration by comparing this list with the

summary of differentiation rules given in the preceding section. For differentiation, you

now have rules that allow you to differentiate iiiiy elementary function. For integration,

this is far from true.

The integration rules listed above are primarily those that we happened on when

developing differentiation rules. We do not find integration rules for the antiderivative

of a general product or quotient, the natural logarithmic function, or the inverse

trigonometric functions. More importantly, you cannot apply any of the rules in this

list unless you can create the proper dii corresponding to the (( in the formula. The

point is that we need to work more on integration techniques, which we will do in

Chapter 7. The next two examples should give you a better feeling for the integration

problems that you ( <(/; and cciniiot do with the techniques and rules you now know.
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Example 6 Comparing Integration Problems

Find as many of the following integrals as you can using the foiinulas and techniques

vou have studied so far in the text.

dx

-v.'.v- -
1

b.
X dx dx

^x^^\

Solution

a. You I ((/( find this integral (it fits the Arcsecant Rule).

dx
I I

„= arcsecLv + C
xjx- - 1

b. You ciii> find this integral (it fits the F'ouer Rule).

'''''
Tv- - l)-'"(lv)./.v

J^^^X
(.V- - 1)'-"

1/2
+ C

y.v= -
1 + c

c. You caiinol find this integral using present teehnic|ues. (You should scan the list of

basic integration rules to verify this conclusion.)

Example 7 Comparing Integration Problems

Find as many of the following integrals as you can using the formulas and techiiiciues

you have studied so far in the text.

dx

X In .V

In .V dx

X
c. In V dx

Solution

a. You <(()( find this integral (it fits the Log Rule).

,v In A j In V

= ln|ln vl + C

b. You can find this intcjial (it fits the Power Rule).

ln.V(/.v /I

.V

(In a)' dx

(\nx)~
+ C

c. You ((iiiiidt find this integral using present technicjues

NOTE Note in Examples 6 and 7 that the .siiiiplc.'.i functions arc the ones that you cannot yet

integrate.
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EXERCISES FOR SECTION S.9

In Exercises 1-30, find or evaluate the integral.

3

v9 - A-

I

J

dx

s 1 - 9a-

7

: d.X

5. -,d\
16 + A-

7.

9.

11.

13.

15.

1

1 + 4a--

1

av'4a= - 1

a'

A- + 1

dx

1

/I - (A + D-

../i^T
1/^

dr

17.
I

J^I^^l^d.
V! - A^

A

^ dx

4.

6.

8.

10.

12.

14.

16.

18.

/l - 4a^

dx

'o V4 - A-

4

1 + 9a-
,/a

^ dx
-,9 + X-

1

4 + (a -
1

)

A-' -
1

T Ja-

A- + 1

I

r' + 1(1

1_
A77^
I/. :

dx

d!

dx
' - 4

arccos a

V'l - A-

dx19.

21.

23. I ^^^'^Vj.v

1 + A-

17^^"'

, , 1 -I- cos- A

I

27. 1^,.

Ix

29.
A- + 5

v/9 - (a - 3)-

24.

26.

28.

30.

I,
1 + sin- A

3

2./^(l + a)'

4v + 3
dx

— </a

'

1 - A-

V - ->

(a + 1
)- + 4

In Exercises 43 and 44, use the specified substitution to find the

integral.

43. Je' - 3 dt 44.

(( = vV' - 3

V + 1

n = Va -

dx

45. What is a peifect square trinomial''

46. What term must be added to a- + 3a to complete the

square? Explain how you found the term.

In Exercises 47-50. determine which of the integrals can be

found using the basic integration formulas you have studied

so far in the text.

47. (a)
1

:(/a (b)

v' I -A- J .'1 -A

48. (a) \c'' (Ix (bl I xe'^^ d:

dx (c)

(c) \—,t'''''dx

, 49. (a) -Jx - 1 dx (bl v^ A -
1 dx (c)

50. , a, |y^,/A ,b, ^^,/A ,c) Jy^^</A

dy

/v Slope Fields In Exercises 51 and 52, a differential equation, a

point, and a slope field are given, (a) Sketch two approximate

solutions of the differential equation on the slope field, one of

which passes through the indicated point, (b) I se integration to

find the particular solution of the differential equation and use

a graphing utility to graph the solution. Compare the result

with the sketches in part (a). To print an enlarged copy of the

graph, go to the v\ebsite wnw.mathgraphs.com.

In Exercises 31—12, find or evaluate the integral. (Complete the

square, if necessary.)

51.
d\

1 + A-
(0,0)

d\

31.

33.

35.

37.

39.

41.

dx

,
A^ - 2v+ 2

2.1

.V- + 6.V + 13^'

1

~J-x- '- 4a

X +
//v

J-x- - 4a

" 2a -
3

,

; ./4a-- -V-

A

A^ + 2a- + 2

32.

34.

36.

38.

40.

42.

d\
-^^ 5'

, .V- + 4v + 13

2.V - 5

A- + 2a + 2

2

J-x- + 4a

A -
1

dx

dx

"/ /

1

'^/ / I t / /^'

^/ / I-

'^z/ I-

-^z / I-

.1 / /^^
/ / z^. ^-

./ //^--^-

—

/ / / ^.—-^-—
-I / Z^^'"'—
/

/

Z^^"

I / Z^"

52. -r = aV16
dx

(0.

\ \ \ ----- -

\\\--- — --///
\ \ N -- -
\ \ \ ^ -
,\ \ :m - i

C-1

/ //^"——
I / /^'
I / ^^.—^.—
.///^^^-.

—

5/--//X

\
\-< X -. -4-
\ V -^ ^ ~
\ N X -^ -
\ \ -^ -

—

\ \ ~- ^ —
\ \ ^

^ y- ^
^ / /
/ /

^ ^ ^,

I

-
!' i I -K^ -f

-^ J /
^ / /
/ / /^ -' /
^ / /

Ix

1

(.V - 1 ) -Jx- - 2;

.V

s/9 -1- 8a- - A-*

'

'"r In Exercises 53 and 54, use a computer algebra system to graph

the slope field for the differential equation and graph the

solution satisfying the specified initial condition.

dx aVa-

10

(3) =

dx yi6

y(0) = 2

l\
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In Exercises 55 and 56, find the area of the region bounded by

the graphs of the equations.

I

56. \

A- - 2.V + 5

1

T. ^• = 0. V = I . A = 3

V4 - -v^'

» = 0, A = 0. A = 1

57. Approximation Determine which value best approximates

the area ol liie rcaion between the A-axis and the function

,/lv)
I

J\ - X-

over the interval [-0.5, 0.5]. (Make your selection on the basis

of a sketch of the region and not by performing any calcula-

tions.)

(a) 4 (b) -.1 (c) 1 (d) 2 (e) :<

rp 58. Approximation Sketch the region whose area is represented

bv Ihe intciiral

arcsin \ i/.v

and use the integration capabilities of a grapiiing utility to

approxiiiialc tlic area.

rp 59. (a I .Show that

rp 62. Consider the integral

/6a - .V-

(a) Find the integral by completing the square of the radicand.

(b) Find the integral by making the substitution u = v/v-

(c) The antiderivatives in parts (a) and (bl appear significant!)

different. Use a graphing utility to graph each in the same

viewing window and determine the relationship between

the two antiderivatives. Find the domain of each.

rp 63. Vertical Motion An object is projected upward from ground

le\el with an initial velocity of 500 feet per second. In this exer-

cise, the goal is to analwe the motion of the object during its

upward flight.

(a) If air resistance is neglected, find the \elocit\ of the object

as a function of time. Use a graphing utility to graph this

function.

(b) Use the result in part (a) to find the position function and

determine the maximum height attained by the object.

(c) If the air resistance is proportional to the square of the

xelocity. you obtain the equation

I -f .V

^ </.V = 77.

(b) ApproMiiiatc the number — using Simpson's Rule (with

/) = fi) and the integral in part (al

Icl .Approximate the number ~h\ using the integration capa-

bilities of a graphing utility.

60. Innstigation Consider the function

F{x)
2 ,

/- + I

(a) Write a short paragraph giving a geometric interpretation of

the function /'(vl relative In the function

/(a)
A- + I

Use what you ha\e written to guess ihe \alue of \ ihat will

make F maximum.

(h) Peiiorm the specified integration to find an allernatne form

of Ha). Use calculus to locate the value of .v that will make

F maximum and compare the result w ith your guess in part

(al,

61. Verily each rule by differentiating (<; > 0).

du
(a)

../;,

arcsin—H C

I
(//( I /(

(h) -^ ; = - arctan - + C
' <r + ir a a

(c)
du I (/—

, ^
= - arcsec ^-^ + C

11 Ju— a- ti ti

dt
-(32 + A-r-)

where —32 feet per second per second is ihc acceleration

due to gravity and A is a constant. Find the \elocity as a

function of time by solving the equation

dv

32 + A-r-

(d) Use a graphing utility to graph the velocity function \ii) in

part (c) if A = 0.001. Use the graph to approximate the time

^ii
at which Ihe object reaches its maximum height.

(e) Use the inlcgration capabilities of a graphing utility to

approximate the integral

v{i)dt

where vil) and l„ are those found in part (d). This is the

approximation of liie maximum iieight of the object,

(f ) Explain the dilference between Ihe results m parts (b) and

(el,

lOR FURTHER INFORMATION For more miormation on this

topic, see "What Goes Up Must Come Down; Will Air

Resistance Make It Return Sooner, or Later?" by John Lekner

in Mtidienuitics Magazine. To view this article, go to the

website www.niaihaniclcs.ioiii.

64. Graph \

,

Prove that
-

1 + .V

;, y, = arctan a, ami v, = a on [(), 10],

I + X
- < arctan x < x tor .v > 0.

J
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Hyperbolic Functions

• Develop properties of hyperbolic functions.

• Differentiate and integrate hyperbolic functions.

• De\eIop properties of inverse hyperbolic functions.

• Differentiate and integrate functions involving inverse hyperbolic functions.

J(iH4N\ Htl\Kl(M LoiBrRr(1728-1777)

The first person to publish a lomprehensive

study on h) perbolic functions was Johann

Heinrich Lambert, a Swi,ss-Gernian mathe-

matician and coilcauue of Euler.

Hyperbolic Functions

In this section you will look biicny at a special cltiss of exponential functions called

hyperbolic functions. The naine liypciiwlic Iwunun arose from comparison of the

area of a semicircular region, as shown in Figure ,5.45. with the area of a region under

a hyperbola, as shown in Figure 5.46. The integral for the seniiciiculai region in\()l\cs

an inverse trigonometric (circular) function:

-ii

Vi - .\- d\ -Vv'l - -V- + arcsin .v = 1.571.

The integral for the hyperbolic region in\ol\es an inverse Inpcrbolic function;

I

J\ + X- d\ xj\ + x" + sinh^'.v 2.296.

This IS onl\ one of many ways in which the hyperbolic ftinctions arc similar to the

trigonometric functions.

Circle: i- + i

-

Finure 5.45

Hyperbola: - .v-

F'i<;ure 5.46

FOR FlRTHIiK l,\FORMATIO.\ For

more infornialion on the development of

hyperbolic functions, see the article "An

Introduction to Hyperbolic Functions in

Elementary Calculus" by Jerome

Rosenthal in MuiluimiUcs Teacher. To

view this article, go to the website

www.iULilhtinulcs.ioni.

Definition of the Hyperbolic Functions

e' - e-' . 1

sinh .V
=

cosh .V
=

tanh -v

cosh .V

-)
csch.v = —-—

.

sinh .V

£-' + e-' 1

2 cosh X

sinh .V 1

tanh X

'

. X ^

X ^

NOTE sinh .v is read as "the hyperbolic sine of .v," cosh .v as "the hyperbolic cosine of .v," and

so on.
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The graphs of the six hyperbolic t'tiiictioiis and their domains and ranges are shown

in Figure 5.47. Note that the graph of sitth a- can be obtained by addition of ovdiiuaes

using the e.xponentiai functions /(.v) = if* and ,t;(.v) = ^^f "'. Likewise, the graph of

cosh-V can be obtained by addition of onlinates using the exponential functions

/(.v) = if' and /((.v) = ^e'\

\ = SMlh -V

'
1' = cosh A

.L---I--' -v

Domain: (- :>c. cc)

Raime: (- cc. co)

Domain: (- cc, co)

Range:fl.cc)

i
1 v

Domain: (

Ranae:(- I.I

cc.oc)

Domain: (-c/c.O) u (0. oc)

Range: (-cc.O) u ((I. cc)

I'i^jiiit 5.47

\' = sech .V

Domain: (
- co, co)

Ranald). I]

cosh .V

1' = coth .T =

.V

!_ "
tanh A'

1

+-*-V

Domain: (-oo.O) U (0,^)

Range: (- co, - I) u (I. co)

Many of the trigonometric identities ha\e corresponding liyptiholic ulciilities.

For instance.

cosh-^ .V - sinh- a
e' + e '\- le^ — e ^

e-" + 2 + e- 2 + ?-->

lOK hrtiii:r ISFORMATION To

understand geometrically the relation-

ship between the hyperbolic and

exponential functions, see the article

"A Short Proof Linking the Hyperbolic

and Exponential Functions" by Michael

J. Seery in Ttie AMATYC Review. To

view this article, go to the website

www. nialluinivlfs. coin.

and

sinh .V cosh .v

t'
'
- e ' w ('

' + f

g-.\ _ g -A

sinh 2.V.
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Hyperbolic Identities

cosh- A — sinh-A =
I

tunh- A + sech- a- = 1

coth- A — csch- A =
1

sinh- A
I -I- cosh Iv

sinh(A" -I- y) = sinh a cosh a' -I- cosh a sinh y

sinh(A' - y) = sinh a cosh y — cosh v snih \'

cosh(A -I- y) = cosh A cosh y -I- sinh a sinh y

cosh(A' — y) = cosh A cosh y — sinh a sinh y

14- ct)sh 2v
cosh- A =

sinh 2v = 2 sinh a cosh v cosh 2v = cosh- v + sinh- a

Differentiation and Integration of Hyperbolic Functions

Because the hypeiboHc functions are written in terms of f ' and c ', you can easily

derive rules for their derivatives. The following theorem lists these derivatives with the

corresponding integration rules.

THEOREM 5.20 Derivatives and Integrals of Hyperbolic Functions

Let /( be a differeiitiahlc Junction of .v.

— [sinh //] = (cosh ii)ii
'

(7.V

cosh /( (/;/ = sinh ii + C

— [cosh ;(] = (sinh //)/(
'

(/a

sHih II (III = cosh II + C

— [tanh /(] = (sech- //);(

'

sech- /( (/;/ = tanh ii + C

— [coth ;(] = - (csch- ii}ii
'

(/a

csch- (/ Jii = - coth II + C
J

— [sech ;/] = - (sech ii tanh ;/)((
'

(/a

sech /( tanh ii ilii = - sech ii + C

-— [csch u] = — (csch ;/ coth (();/
'

csch )( coth (/ (/(/ = — csch/( + C

Proof

— smh.vj = —
</.v cl.\

d_

dx
[tanh .V

c' — t'
-v

->

sinh A

-

cosh A

e-v + ^-v

cosh A

cosh A(cosh ,v) — sinh .vtsinh .v)

cosh- A

cosh-

A

sech-

A

In Exercises 87 and 9 1 . you are asked to prove some of the other difterentiation rules.
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Example 1 Differentiation of Hyperbolic Functions

a. —[siiihl.v- - 3)] = 2vco.sh(.v- - 3)
(/a

(/ r n siiih A
b. — |hi(coshA)J = —,— = tiinliA-

d.\ cosh A-

c. — [Asiiih.A - cosh a] = ,vcoshv + sinhA' — sinhx = a cosh A'

d.\

Example 2 Finding Relative Extrcma

/(.v) = (.V - 1 ) cosh A - sinh .v

/"(()) < 0. sod). - Disarekilive

ma\inuini. /
"( 1 ) > 0. su ( 1 .

- siiih 1

)

is a relative minimum.

Fif;iire 5.48

Find the relative extienia of /(a) = (.v — l)cosh.\ - siiih.v.

Solution Begin hy settini: the first derivative of / equal to 0.

/ '(.v) = (.V — I ) sinh A + cosh .V — cosh a =

(.V - 1 ) sinh A =

So, the critical numbers are a = 1 and a = 0. Using the Second Derivative Test, you

can verify that the point (0. -
1 ) yields a relative maximum and the point ( 1 .

- sinh 1

)

yields a relative minimum, as shown in Figure 5.48. Try using a graphing utility to

confirm this result. If your graphing utility does not have hyperbolic functions, you

can use exponential functions as follows.

./Iv) \mu^' + e-

CZJ

When a uniform flexible cable, such as a telephone wire, is suspended from two

points, it takes the shape of a catenary, as discussed in Example 3.

n^^ Example 1 Hanging I'ower Cables

Catt'nar\

Figure 5.49

Power cables arc suspended bclwccn two towers, forming the catenary shown in

Figure .5.4'-). The eciuation tor this catenary is

V = (( cosh -.

The distance between the two tt)wers is 2/'. Find the slope of the catenary at the point

where the cable meets the right hand tin\cr.

Solution Differentiating produces

\ = i\\
- sinh ~ = sinh -

.

\cll tl II

At the point (/). a cosh(/)/i')), the slope (from the left) is given by

/» = sinh-. ^
FOR FURTHER INFORMATION In Example 3, the cable is a catenary between two

supports at the same height. To learn about the shape of a cable hanging between

supports of different heights, see the article "Reexamining the Catenary" by Paul

Cella in The- CoUci^c Matluiuaucs Joiniial. To view this article, go to the website

www.iiuithiinicli-s.i'diu.

^
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E.Viimple 4 Integrating a Hyperbolic Function

Find cosh 2.v sinlr 2.\ i/.v.

Solution

cosli 2.V sinlr 2.\ </.v = -
| (snih 2v)-(2 cush 2.v) dx

1

II = sinli _-v

(sinh2,v)'

3

sinh' 2.V ^

C

Inverse Hyperbolic Functions

Unlike trigonometric functions, hyperbolic functions are not periodic. In fact, by look-

ing back at Figure 5.47. you can see that four of the six hyperbolic functions arc actu-

ally one-to-one (the hyperbolic sine, tangent, cosecant, and cotangent). So. \ou can

apply Theorem 5.7 to conclude that these four fiuictions have inverse functions. The

other two (the hyperbolic cosine and secant) are one-to-one if their domains are

restricted to the positive real numbers, and for this restricted domain they also have

inverse functions. Because the hyperbolic tLuictions are defuied ui terms of exponen-

tial functions, it is not suiprising to find that the inverse hyperbolic ftnictions can be

written in terms of louarilhniic lunclions. as shown ni Theorem 5.21.

THEOREM 5.21 Inverse Hj-perboHc Functions

Fumlian

sinh" ' .V = ln(.v -I- v'-V- + 1)

cosh '.V = ln(.v + v'-v- -
1

)

•
, 1 + -^^

tanh .V = - In
2 1

- .V

1 . \ + \

ci)th ' .V = - In

sech ' .V = In
I + J\

\

esch '.v=ln|-[+ ^" ^''

l-v|

Domain

(-OC. oo)

[1.-^-)

(-1.1)

(-O0. -l)U(l.cyc)

(0. Ij

(-co.O)U(O.^)

Proof The proof of this theorem is a straightforward application of the properties of

the exponential and logarithmic functions. For example, if

/'(.v) = sinh .V

e' — e "

and

.i;(.v) = ln{.v + J.X' + 1 )

you can show that figix)) = a and ,?(/(-v)) = .v. which implies that i; is the inverse

function of/. UiJ
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I

>',=.
<4

l' il I —I

/ .

Graphs of ihc h\pci"b(ilit (angciU lunttion

anil tlio nni'i'si' hvpciinilit tangent t'tnitlmn

Figure 5.50

TECHNOLOGY You cuii use a graphing utility to confinii graphically the

lesults of Theoiein 5.21. For instance, try sketching the graphs of the I'ollowing

functions.

Vi = tunh.v

y, = taiih" ' .V

I I + .V

H\pei'boliL t;ini:ent

Detlnilion of hyperbolic tangcnl

hnerse hvperholie iLingeni

Dellnuion ol inverse liyperholie tangent

The resulting display is shown in Figure 5.50. As you watch the graphs being

traced out. notice that y, = ys and y , = Vj. Also notice that the graph of \\ is

the reflection of the graph of y, in the line y = .v.

The graphs of the inverse hyperbolic functions are shown in Figure 5.51.

H 1 1-

\' = cosli V

Diimam: [I. :>

Range: L().:x^:

V = tanh '

.V

Domain; (-1.1)

Range: (- go, oo)

f-^-V

Domain: (- cc. :^

Ranne: (- o/o. ^:)

Domain: (0. I]

Range: [0, CO

)

Figure 5.51

^^.v

^' = eoth .V

Domain: (-^, — I) U ( I, oo)

Range: (-^.OjudKoo)

+—^-v

Domain: (- :c,(l) U (0, oo)

Ranse: (-to, (I) u (0, oo)

The inverse hyperbolic secant can be used to elefine a curve called a inictrix or

pursuit (ur\'c. as discussed in E.xainple 5.
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Example S A Trartrix

,- = :Osech"' ^~V20--\-

A person must walk 41.27 Ikl to hiing llu'

boat 5 feet from the dock.

Figure 5.52

A person is holding a rope that is tied to a biiat. as shown in Figure 5.52. As the person

walks along the dock, the boat tra\els along a tractrix, given bv the equation

\' = a sech '

^

s,'ii' - .v-

(/

where </ is the length ot the rope. It </ = 20 feet, find the distanee the person must walk

to bring the boat 5 feet from the tlock.

Solution In Figure .S.52. notiee that the distanee the person has walked is given by

v, = V + 720- - -V- =
( 20 seeh- ' ^ - ^20= - .\-

)
+ V^O- - .v-

20seeh-'
20'

When .V = 5. this distanee is

v, = 20.seeh '
— = 20 In
A.,„,„i^ViMiAf):

(.) 1 /4

20ln(4 + v'T5)

41.27 feet.

Differentiation and Integration of Inverse Hyperbolic Functions

The derivatives of the inverse hyperbolic functions, which resemble the derivatives of

the inverse trigonometric functions, are listed in Theorem 5.22 with the cotTespond-

ing integration formulas (in logarithmic form). You can verify each of these formulas

by applying the logarithmic definitions of the inverse hyperbolic functions. (See

Exercises 88-90.)

THEOREM 5.22 Differentiation and Integration Involving Inverse

Hyperbolic Funtfions

Let /( be a differentiable function of .v.

dr..,. II
'

</

d\

d_

d.\

d

[siiih ' ;/]
=

[tanh ' ii]
=

Jir + 1

u

1
- ir

--11

[cosh

[sech- '

//]

/v i( V 1 - ir

dii

— coth ' /, =
,

d.\ I - ir

d-\- 1"| v' 1 + ir

.

'"
= ]n(ii + v'lr ± cr ) + C

/ir ± ir

dll 1 , CI + II

In
cr — II- Ici

dll

CI - II

+ C

II ^'cr + ir

1 a + Jcr ± »-
- - In 7—. h C

(/ \ii\
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Example 6 More About a Tractrix

For the tractrix given in Example 5. show that the boat is always pointing toward the

person.

Solution For a point (.v. y) on a tractrix. the slope of the graph gives the direction of

the boat, as shown in Figure 3.,S2.

, </

dx
2()sech-'— - ^/20- - .V-

20

20=

1

(.v/2())v-'T - (.v/20)=

.V

+

V20= - x'-

xJlQ- - X- JlQ- - X-

J2Q- - X-

However, from Figure 5.52. you can sec that the slope of the line segment connecting

the point (0, y,) with the point fv, v) is also /;( = (— ^20-^ - .v-^ )/.v. Thus, the boat is

always pointing toward the person. (It is because of this property that a tractrix is

called d puisiiit ciinc.)

Example 7 Integration Using Inverse Hyperbolic Functions

Find
vV4 - 9.\-

Solution Let a = 2 and ;/ = 3.v.

Jx f 3 dx

74 - 9.\- (3.v)y4-9.v=

'

In
- + -^^ -

- 9.\-

2'"
|3.v|

'I ^/ii- - tr

+ c
1 a + V <7- - II-

-- In TT ^ C
H

Example H Integration Using Inverse Hyperbolic Functions

Find
dx

5 - 4v-

Solution Let a = ^ 5 and (/ = 1\.

5 - 4\- 73)

1

A'2j5

^in
475

In
75 +

75-2
75 + 2.V

75 - 2.V

+ C

c

-il \(l - N\
+ C
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EXERCISES FOR SECTION 5.10

In Exercises 1-6, evaluate the function. If tlie value is not a

rational number, <;ive the answer to three-decimal-place

accuracv.

In Exercises 33 and 34, show that the function satisfies the

differential equation.

1. (a) siiih 3

(b) tanlil-2)

3. (a) cschdn 2)

(b) colhdn 51

5. (a) cosh ' 2

(b) scch ' ^

2. (a) cosh (1

(b) sech 1

4. (a) sinh^'

(b) tanh-'

6. (a) csch"' 2

(b) colli"' 3

l-'iiucluin

33. V = (/ sinh .v

34. V = (/ cosh -V

Diffennrial Eijiiiitini}

y'" - y' =

v"- V =

In Exercises 7-12, verify the identity.

7. tanh- a + sech- a =
1

1 + cosh 2a
S. cosh- A =

y. sinhl V + y) = sinh a cosh y + cosh v sinh v

10. smh 2a = 2 sinh v cosh a

1 1. sinh 3a = 3 sinh a - 4 smh' a

rj^ Linear and Qnadralic Approximaliiins In Exercises 35 and 36,

use a computer algebra system to liiul the linear approximation

l\{x) =f{a) +f'{a){x -a)

and the quadratic approximation

/',(A-) =/(«) +f'{a)ix - a) + if'iaHx - a)-

to the function / at v = a. I se a jiraphin^ utility to yraph the

function and its linear and quadratic approximations.

1 2. cosh A + cosh \

V + »

2 cosh ——^ cosh -

In Exercises 13 and 14, use the value of the j;iven hyperbolic

function to find the other hyperbolic functions.

13. smh A = 5. cosh A =
. tanh a =

csch A =
. sech v = . coth a =

14. sinh A =
, cosh A =

, tanh v = 3,

csch A =
, sech a = , coth a =

In Exercises 15-28. find the deri\alive of the function.

15. \- = smh( 1
- A -I

17. fix) = In(sinhA)

ly. V = ln(tanh

21. /;(a) = -smh 2a -
^

23. /'(;) = arctanlsinh t)

25. ,y(A) = A^"^"
'

27. » = (cosh A - sinh a

16. ^ = coth 3v

18. :^ix) = InlcoshAl

20. y = A cosh A — sinh x

22. hit) = t - coth t

24. !,'lv) = sech- 3a

26. /{a1 = <-^"''i'

28. v = sechlv + I

)

P In Exercises 29 and 30. find any relative extrema of the function

and use a graphing utility to confirm your result.

29. fix) = sin A sinh A - cos a cosh v. — 4 < a < 4

30. fix) = A sinhl V - 11- cosh(A -
1 )

V In F^xercises 31 and 32, use a graphing utility to graph the func-

tion and approximate any relative extrema of the function.

35. fix) = lanh a

(7 = 1

36. /(a) = cosh A

(( =

Catenary In Exercises 37 and 38, a model for power cables

suspended between two towers is given, (al (!raph the model,

lb) find the height of the cable at the towers and al the midpoint

between the towers, and Id find the slope of the model al the

point where the cable meets the right-hand tower.

37. V = II) + 15 ( 15 < A < 15

38. l.S + 25 cosh—, -25 < A < 25

In Exercises 39-54. find or evaluate the integral.

40.
-'^'^ ^"^

39.
I
smhil - 2iI</a

41

42.
I .

•••;•;,
,/.v

coslrl V -
I ) sinh( \ -

1 ) i/v

sinh A

43.

45.

47.

49.

51.

53.

1 + sinh- V

josh A

sinh
- </a 44. ech-i: I ) </v

V csch- — ilx

csch(l/A)coth(l/A)

25 -

^ : -I

v-* +

~ d\
X-

2

7 dx

46. sech '

V lanh v i/v

48. cosh- 1 ,/a

50. I .
' , </a-

: dx

54.
I

-
, dx

, s/25 - A-

1

xj\ + 4x'

cosh A

V y - sinh-

31. g(A) = A sech A 32. /;(a) = 2 tanh a- - a
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In Exercises 55-62, find the derivative of the function.

55. V = cosh"'(3.v) 56. v = tanh"' -

57. y = sinh^'ltan.v)

58. y = sech"'(cos 2.v), < a < 7r/4

59. 1' = coth '(sui 2v) 60. i' = (csch" ' .v)-

83. Chemical Reactions Suppose that chemicals A and B com-

bine in a 3-to-l ratio to form a compound. The amount of

compound v being produced at any time r is proportional to the

unchanged amounts of A and B remaining in the solution. So.

if 3 kilograms of A is mixed with 2 kilograms of B, you have

61. y = 2vsinh '(2.v) - Vl + 4.v- </l \ 4

3*:,

16
(.V- - 12.V + 32).

62. » = A lanh ' \ + Inv 1
- .v-

63. Define the liyperbolic fimctions.

64. List the rules for differentiating inverse hyperbolic tunc

tions. List the con'esponding integration formulas.

^

If 1 kilogram of the compound is formed after 10 minutes, find

the amount formed after 20 minutes by solving the integral

equation

3A-

,/r

d\

Tractrix In Exercises 65 and 66. use tlie e(|uatiun (il the Iractrix

V = o sech '

s a— x-. a > 0.
a

65. t-'ind il\/(l\

66. Let L be the tangent line to the tractrix at the point P. If L inter-

sects the y-axis at the point Q. show that the distance between

P and Q is ii.

In Exercises 67-74, tlnd the indefinite intej^ral usin^ the

formulas (if Theorem 5.22.

16
"

J A- - 12a + 32'

r\^ 84. Vertical Motion An object is dropped from a height of 400

feet.

(a) Find the velocity of the object as a function of time (neglect

air resistance on the object).

(b) Use the result in part (a) to find the position function.

(c) If the air resistance is proportional to the square of the

velocity, then

67.

69.

1

. 1 -h (-'

1

: dx

W'l + A
: d\

71. ,</A
' 4v - .v^

73.
4a - 2.V

^ (Av

68.

70.

72.

74.

') - A-'

si + V
d\

dx

(a- + 2)^/x- + 4a +

dx

(a -I- 1 ) y2A- + 4.V -I- 8

In Exercises 75-78, solve the differential etjuation.

h 1

75.

76.

77.

dx ysO + 8a - 16.V

dy 1

dx (a -
I ) v''-4v- -I- 8.V - I

dy .v' - 2Lv

;/.v ."^ -I- 4v - A-=

78.
dx I - 2.V

</a 4v - A-

In P'xertises 79-82, find the area of the region bounded by the

jjraphs of the equations.

79. y = sech ^. y = 0, x = -4, a = 4

80. \' = tanh 2,v. ^• = 0. a = 2

81.

82. X

V7~T~\'
\ = 0. A = 2

VV^4 . V = 0. X = 3.

dl
- 32 -I- kv-

where -32 feet per second per second is the acceleration

due to gravity and k is a constant. Show that the velocity r

as a function of time is

vU) = y tanhU'32A-r)

by performing the following integration and simplifying

the result.

</r

kv-
dl

(d) LIse the result in part ic) to find lim li/l and give its

inteipretation.

(e) Integrate the velocity function in part (c) and find the

position i of the object as a function of ;. Use a graphing

utility to graph the position function when k = 0.01 and the

position function in part (hi in the same viewing window.

Estimate the additional time required for the object to reach

ground le\el when air resistance is not neglected.

85. Wiitinf; Give a written description of what you believe would

happen if A were increased in Exercise 84. Then test your asser-

tion with a particular value of /..

86. Show that arctanlsinh a) = arcsin(tanh .v).

In Exercises 87-91, verifv the differentiation formula.

87. — [cosh .v] = sinh a 88. -[sech 'v] =
,

' ,

</a .Vs I - -V-

89. 4 ['•-ii^li ' v]
'

l/.V

_ 90. -f [smh ' .v] = J

91. — [sech -v] = — sech a tanh .v

dx
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SECTION PROJECT

The Gateway Arch in St. Louis, Missouri was constructed using

the hyperbohc cosine luiiction. The equation used to construct

the arch was

y = 693.8597 - 68.7672 cosh 0.01 0O333.V,

-299.2239 < .v < 299.2239

where .v and \' are measured in feet. Cross sections of the arch

are equilateral triangles, and (.v, y) traces the path of the centers

of mass of the cross-sectional triangles. For each \'alue of .v, the

area of the cross-sectional triangle is

A = 125.1406 cosh 0.0 1 00333.V.

(Source: Owner's Manual for the Gateway Arch. Saiiil Louis,

MO. h\ William Thuxcr)

(a) How high above the ground is the center of the highest

triangle? (At ground level, y = 0.)

(b) What is the height of the :u-ch? {Him: For an equilateral

triangle, A = s/3<;". where c is one-half the base of the

triangle, and the center of mass of the triangle is located at

two-thirds the height of the triangle.)

(c) How wide is the arch at ground level?

REVIEW EXERCISES FOR CHAPTER S

In Exercises 1 and 2. sketch the graph of the liinction

by hand. Identify any asymptotes of the graph.

1. ;lv) = In ,v + 3 2. /(v) = ln(.v - 3)

In Exercises 3 and 4. use the properties of logarithms to

expand the h)garithniic function.

3. In
/4.V- -

I

4.V- + 1

4. In[(.v- + I K.v -
1 )]

In Exercises 5 and 6. write the expression as the logarithm of a

single quantity.

5. In3 + ^ ln(4 - .v-) - In .v

6. 3[ln.v - 2 1n(.v- -I- 1 )] + 2 In 5

In Exercises 7 and 8, solve the equation for v.

7. In V -^^^" = 2 8. In.v + ln(.v - 3) =

In Exercises 9-16, find the derivative of the function.

.v(.v - 1

)

9. ,£r(.v) = In ^/I-

It.

12.

13.

14.

15.

16.

fix) =.vv/ln.v

/(.v) = ln[.v(.v- - 2)-'"']

1

'

Ir
Mil + lix) +

a + h
1

\' = 7^[(; + h\ - ,1 ln(</ + /)v)]

\ . a + ii:

^' = — In

I /) ,( + /).V-— + — In
K.v <r .V

In F^xercises 17-24, Hnd or evaluate the integral.

17.

19.

21.

23.

7v
: t/v

- ,/.v

10. /((.v) = In
-

I -I- cos v

<n
A

sec e do

18. \^^.lx

20.
I
^^^</.v

In V

24.
I

tan| T " v | dx
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Pp BiJH In Exercises 25-30. (a) find the inverse of tlie function.

(b) use a graphin<; utility to "jrapli / and / ' in the same view-

ing window, and (c) verifv thaty "'(/(.v)) = /(/"'(.v)) = x.

25. fix) = Iv - 3

27. /(v) = .A- + 1

29. /I.v) = < A + I

26. /(a) = .Sa- - 7

28. fix) = A-' + 2

30. fix) = X- - 5, A > n

In Kxercise 31-34. find (/ ')'(«) for the function/ and real

numher a.

Fuiiition

31. /(a) = a' + 2

32. /Ia) = aVa - 3

33. /(a) = tan A

34. fix) = In A

Riiu' ludiihcr

a = -1

i(
= 4

s/377 77

4 ^ -^^ n " = T
a =

rp 58. Depreciation The value I' of an item ; years after it is

purchased is

\' = 8000f-""', f) < r < 3.

(a) Use a graphing utility to graph the function.

(b) Find tlie rate of change of V with respect to / when t = 1

and r = 4.

(c) Use a graphing utility to sketch the tangent line to the func-

tion when / = 1 and r = 4.

In Kxercises 59 and 60. find the area of the region bounded by

the graphs of the equations.

59. y = xe''\ y = 0. a = 0, a = 4

60. 1' = 2e-\ V = 0. A = 0, A = 2

In Exercises 61-64. sl\etch the graph of the function by

py^ B^B In Exercises 35 and 36, (a) find the inverse function of

/. (hi using a graphing utility to graph/ and/"' in the same

\iewing window, and (c) verify that/" '(/(a)) =/(/"'(a)) = x.

i?. /(a) = In v'a 36. fix)

In Exercises 37 and 38, graph the function without the aid of a

graphing utility.

37. 38. \ = 4c-

hand.

61. y = 3"'^

63. \ = 1o2,(a - I)

62. y = 6(2-'-)

64. V = logj A-

In Exercises 65-70, find the derivative of the function.

65. fix) = y-

67. V = A--> + '

69. ,i,'(a) = log, „M

66. fix) = i4ey

68. y = a(4 ')

70. /((a) = log.
A - 1

In Exercises 39-46. find the derivative of the function.

e'
.W. /(a) = ln(c' '

)

41. ..(') = '-V'

43. \ = Je~' + ('--

45. ,(,'(aI = —

40. ,i,'(a) = In
-J ^

42. hi:) = (--"'-

44. y = 3(-'- -'"

46. /((*) = -e-'"-"

In Exercises 71 and 72. find the indefinite integral.

71. (A + 1)3"" "'(/a

In Exercises 47 and 48. use implicit differentiation to find tly/dx.

47. vin A + V- = 48. cos a- = vc'

In Exercises 49-56. find the indefinite integral.

49.

51.

vc '' c/x

,,4> _ ,,:, + 1

- dv

50.

52.

54.
I

A-i

56,
<•-' + I

57. Show that y = e'{a cos 3a + /> sin 3a) satisfies the diflcrcniial

equation y" - 2y ' + lOy = 0.

72. l^^^dt

rp 73. I'liink Ahaiil It Find the deri\ati\e of each function, gi\en

that ii IS constant.

(a) V = .v' (b) \' = <(' (c) y = a' (d) v = a"

74. Climb Rate The time i (in minutes) for a small plane to climb

to an altitude of h feet is

IS.IIOO

' = -^°"'"'"i.s.ooo-/,

where I8,0()() feet is the plane's absolute ceiling.

(a) Determine the domaui ol the function appropriate for the

context of the problem.

(b) Use a graphing utility to giaph the time function and

identify any asymptotes.

(c) Find the time when the altitude is increasing at the greatest

rate.

75. Compound Interest How large a deposit, at 7 percent interest

compounded continuously, must be made to obtain a balance of

$10,000 in 13 years'

76. Compound Interest A deposit earns interest at a rate of /

percent compounded continuously and doubles in \alue in 10

years. Find r.
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77. Air Pressure L'lider ideal condilunis. air prcsMire decreases

continuously witli height above sea level at a rate proportional

to the pressure at that height. It" the haroineter reads 30 inches

at sea level and 15 inches at IS. 001) feet. Inid the hanmietric

pressure at 35,000 feet.

78. Radioaetive Decay Radioactive radium has a half-lite of

approximately 1620 years. If the uiitial quantity is .5 grams,

how much remains after 600 years ,'

79. Population Growth A population grows continuously at the

rate of 1.5'/f . How long will it take the population to double?

80. Fuel Economy A certain automobile gets 28 miles per gallon

of gasoline for speeds up to 50 miles per hour. Over 50 miles

per hour, the number of miles per gallon drops at the rate of 12

percent for each 10 miles per hour

(a) If 5 is the speed and y is the number of miles per gallon,

find y as a function of .s by solving the differential equation

cly

ih
-0,012v. .V > 50.

lb) Use the function in part la) to complete the table.

Speed 50 55 60 65 70

Miles per gallon

81.

In Exercises 81-S6. solve the differential equation.

/v .V- + 3 „, ih c---'

dx .V

83. y
'
- 2.vy =

85. f^^

</.v 1 + f--'

84. y' - (' sin.v =

dx 3(.v + v)
86.

d.x

87. Verify that the general solution y = C^x + C,-v' satisfies the

differential equation .vyi " - 3.vv' + 3y = 0. Then find the

particular solution that satisfies the initial condition i = and

v' = 4 when v = 2.

88. Vertical Motion A falling object encounters air resistance that

is proportional to its velocity. If the acceleration due to gravity

is -9.8 meters per .second per second, the net change in

velocitv is

di
kv - 9.8,

(a) Find the \elocity of the object as a function of time if the

initial velocity is r,,.

(b) Use the result in part (a) to find the limit of the \elocity as

t approaches infinity.

(c) Integrate the velocity function found in part (a) to find the

position function .s.

In Exercises 89 and 90. sketch the graph of the function

by hand.

89. fix) = 2 arctanlv + 3) 90. /;(v) = -3 arcsin 2.v

In Exercises 91 and 92, e>ahiate the expression without using a

calculator. {Hint: Make a sketch of a right triangle.)

91. (a) sin( arcsin ^)

(h) cos(arcsin i)

92. (a) tanlarccot 2)

(b) cos(arcsec v^)

In Exercises 93-98, find the deri>ative of the function.

93. y = tan(arcsin .v)

95. V = .V arcsec .v

97. \' = .v(arcsin .v)- - 2.v + 2v'l — .v- arcsm

94. ( = arctanl.v' -
1

)

96. \ = ^ aictan i'-'

98. \' = ^/.v= - 4 - 2 arcsec -, 2 < .v < 4

gEa!li In Exercises 99-106, find the indefinite integral.

1

99.

1(11.

103.

</.v

.V

J V 1 - -V-'

.V

16 + ,v

- </.v

105.
I

"'••'^"'"^/-'
,/.v

4 + \-

100.
3.25.v-^^

102.
1

,

16 + .V-

104.
. 4 - .V-

106.
arcsin .v ,

d.x

I - .V-

107. llarnionic Motion A weight ol mass iii is attached lo a

spring and oscillates with simple harmonic motion. By

Hooke's Law, sou can determine that

dx

JA- - y-

wheie A is the maxiiiiuni displacement, f is the time, and k is

a constant. Find v as a lunction of i. gi\cn that x = when

; = 0.

108. Think About It Sketch the rei;ion whose area is vtiveii by

i;

'arcsin..,.. Then ,md the are:, of the region. Expiain how

vou arrived at your answer.

m In Exercises 109 and 110, find the derivative of the

function.

109. v = 2.V - cosh v-^ 110. y = v tanh ' 2v

In Exercises 1 1 1 and 1 12, find the indefinite integral.

111.
/^^^\

: dx 112. .v-sech-.v"'(/.v



408 CHAPTER 5 Logarithmic, Exponential, and Other Transcendental Functions

|-
Vroble-m 'Dolving

1. Find the value of n that maximizes the angle indicated in the

figure. What is the approximate measure of this angle?

(<7 + .V, h + y)

Figure for 1 Figure for 2

2. Recall that the graph of a function v = fix) is symmetric with

respect to the origin if whenever (v. v) is a point on the graph.

(— .(, — v) is also a point on the graph. We say that the graph of

the function v = fix) is symmetric with respect to the point

{a,b) if whenever ia - x. h — y) is a point on the graph.

iu + X. b + y) is also a point on the graph, as indicated in the

figure.

(a) Sketch the graph of y = sin .v on the interval [0. 2it]. Write

a short paragraph explaining how the symmetry of the giaph

with re.spect to Ihe point (0. it) allows you to conclude that

sin X dx = 0.

(b) Sketch the graph of y = sin .v + 2 on the interval [(). 277].

Use the symmetry of the graph with respect to the point

(tt. 2) to evaluate the integral

(sin.v + 2)</.v.

(c) Sketch the graph of y = arccos.v on the interval [-1. I]

Use the symmetry of the graph to evaluate the integral

f
arccos .v dx.

(d) Evaluate the integral

{^ 3. Let/U) = sin(ln.v).

1

1 + (tan.v)--2
dx.

(a) Determine the domain of the function /;

(b) Find two values of .V satisfying /(.v) = 1.

(c) Find two values of .V satisfying /(.v) = — 1.

(d) What is the range of the function /"?

(e) Calculate /'(-v) and use calculus lo lind the maximum value

of/ on the interval [1. 10].

(f) Use a graphing utilitv to graph / in the \iewing window

[0.5] [-2. 2] and estimate lim /(.v). if it exists.

(g) Detennine lim fix) analytically, if it exists.

4. Graph the exponential function y = c; ' for a = 0.5. 1 .2. and 2.0.

Which of these curves intersects the line y = .v? Determine all

positive numbers a for which the curve i- = a' intersects the line

y = •^•

5. (a) Let P(cos /, sin t) be a point on the unit circle v- + y- = 1

in the first quadrant. Show that 1 is equal to twice the area of

the shaded circular sector AOP.

MhO)]

(b) Let P(cosh t, sinh t) be a point on the unit hyperbola

X- - y- = 1 in the first quadrant. Show that t is equal to

twice the area of the shaded region AOP. Begin by showing

that the area of the shaded region AOP is given by the

formula

Air)
1

- cosh r sinh 1 y.v" - 1 dx

6. Consider the three regions A. B. and C determined by the graph

of/(-v) = arcsin.v, as indicated in the figure.

(a) Calculate the areas of regions A and B.

(b) Use your answer in part (a) to evaluate the integral

arcsin v dx.

tr-

ie) Use your answer in part (a) to evaluate the integral

In .\ </.v.

(d) Use your answer in pari (a) to evaluate the integral

arctan .v dx.

1
1

-

n

14 ^/
6/ c

1 Vi 1

") T"

Figure for 6 Figure for 7

7. Let L be the tangent line to the graph of the function y = In .v at

the point ia. b). Show that the distance between /; and c is always

equal to 1

.
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P-ft

8. Let L be the tangent line td the graph of the function \' = c' at

the point {a. b). Show that the distance between a and c is

always equal to 1.

Pp 14. A $120,000 home mortgage for 35 years at 9k% has a monthly

payment of $985.93. Part of the monthly payment goes for the

interest charge on the unpaid balance and the remainder of the

payment is used to reduce the principal. The amount that goes

for interest is

9.

10.

11,

Use integration by substitution to find the area under the curve

1

V = —

=

Jx + .V

between .v = 1 and .v = 4.

Use integration by substitution to find the area under the curve

1

v-

12.

sin-.v + 4 cos- .v

between .r = and .v = 77/4.

The differential equation dy/dt = ky^*'. where k and £ are

positive constants, is called the doomsday equation.

(a) Solve the doomsday equation

dx

dt

given that y(0) = 1.

Find the time T at which lim v(r) = 00.

(b) Solve the doomsday equation dy/dt = ky^*'' given that

y(0) =
y,.

Explain why this equation is called the doomsday equation.

The differential equation dy/dt = ky(L - y). where k and L are

positive constants, is called the logistics equation.

(a) Solve the logistics equation

^ = v(l-v)
dt

given that y(0) = 4.

1

Him:
1

v(l - V) 1

13.

M M
, , 1 + —

12M 12

(b) Graph the solution on the interval -6 < f < 6. Show that

the rate of growth of the solution is maxiniuni at the point

of inflection.

(c) Solve the logistics equation dy/dt = v(l - y) given that

y(0) = 2. How does this solution differ from that in part

(a)?

A thermometer is taken from a room at 72°F to the outdoors,

where the temperature is 20°F, Determine the reading on the

thermometer after 5 minutes if the reading drops to 48°F after

1 minute.

and the amount that goes toward reduction of the principal is

In these formulas, P is the size of the mortgage, r is the interest

rate, M is the monthly payment, and t is the time in years.

(a) Use a graphing utility to graph each function in the same

viewing window. (The viewing window should show all 35

years of mortgage payments.)

(b) In the early years of the mortgage, the larger part of the

monthly payment goes for what puipose? Approximate the

time when the monthly payment is evenly divided between

interest and principal reduction.

(c) Use the graphs in part (a) to make a conjecture about the

relationship between the slopes of the tangent lines to the

two curves for a specified value of /. Give an analytical

argument to verify your conjecture. Find u '(15) and i' '( 1 5 ).

(d) Repeat parts (a) and (b) for a repayment period of 20 years

{M = SI 1 18.56). What can you conclude'

rp 15. Let S represent sales of a new product (in thousands of units),

let L represent the maximum level of sales (in thousands of

units), and let t represent time (in months). The rate of change

of 5 with respect to t \aries jointly as the product of S and

L- S.

(a) Write the differential equation for the sales model if

L = 100, 5 = 10 when t = 0, and S = 20 when / = 1.

Verify that

I + c<'-*'-

(b) At what time is the growth in sales increasing most rapidly?

(c) Use a graphing utility to graph the sales function.

(d) Sketch the solution in part (a) on the slope field shown in

the figure below. To print an enlarged copy of the graph, go

to the website ivww.iudthgraphs.coin.

(e) If the estimated maximum level of sales is con'ect, use the

slope field to describe the shape of the solution curves for

sales if, at some period of time, sales exceed L.

s
,.

140 4^
120^
100-

80 +
60^

40^

20+ ' ' ' '

4—+

—

i-^'
I



Constructing an Arch Dam
Dams were originally built to ensure water supplies

during dry seasons. As teehnical knowledge has

increased, they ha\e begun ser\ ing either functions.

Today, dams may be built to create recreational lakes,

to power generators, and to prevent flooding. Every

new dam creates concerns. A daiu may upset an area's

ecology and force the relocation of people and

wildlife. Also, a poorly constructed datn endangers

the entire stirronnding region, creating the possibility

of a massive disaster.

There are several designs used in dam construc-

tion, one of which is the arch dam. This design curves

toward the water it contains, and is usually built in

narrow canyons. The force of the water presses the

edges of the dam against the walls of the canyon,

so that the natnral rock helps support the structure.

This added support means that the arch dam can be

built with less construction materials than its gravity-

suppoiled counterpart.

A cross section of a typical arch dam can be

modeled as shown in the figure below. The model for

this cross section is as toUows.

fO.d.lv- + 7.1.V + 350. -70 < .V < - 16

fix] = |.^89. -16 < .V <

l-6.59.\v + 389. < .v < 59

To form the arch dam. this cross section is swung

through an arc, rotating it about the y-axis. The

number of degrees through which it is rotated and the

length of the axis of rotation vary, depending primarily

on how much the water level varies. A possible config-

uration shows a rotation of 150° and an axis of rotation

of 150 feet.

400-

- -

300- -

200- -

100- -

- -

(-16. .^89)»-« (0.389)

(-1(1.244)

(-70,(1)

150°

QUESTIONS

1. Find the area of a cross section of the dam.

2. Describe a strategy for estmiating the wilunie of concrete that would be needed to build

this dam.

3. L'se the strategy to estimate the volume of concrete needed to build the dam described on

this page.

The coiHcpts pivsi'iiteil lien' will he explored fiinliei- in llii.s einipler. Fur iiii eMensniii oj this

tipplieanon. \ee luih 9 <>( the liih .series thai iueinnpiniies this !e\l tii college. hmci).com.
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Applications of
Integration

i\

Hoover Dam. one of the highest coiKTete dams in the

world, uses a gravity-arch construction. It relies on

both the walls of the Black Canyon and its own mass

to hold back the waters of the Colorado River.

Frank Crowe calculated the winning

bid of $48,890,955 for Six Companies,

the private contracting firm that built

Hoover Dam. Under his leadership, the

dam was completed two years early.

FOR FURTHER INFORMATIOS To learn more about the calculus of dam design, see

Culciihis. Understanding Chani>c. a three-part, half-hour \ ideo production by

COMAP and funded bv the National Science Foundation.

411



412 CHAPTER 6 Applications of Integrnlion

Area of a Region Between Two Curves

• Find the area of a region between two curves using integration.

• Find the area of a region between intersecting curves using integration.

• Describe integration as an accumulation process.

Figure 6.1

Area of a Region Between Two Curves

With a tew modifications you can extend the application of definite integrals from the

area of a region iiiicler a curve to the area of a region henveeit two curves. Consider

two functions / and g that are continuous on the interval {a. /']. If, as in Figure 6.1.

the graphs of both / and g lie above the .v-axis. and the graph o^ g lies below the graph

of/, you can geometrically interpret the area of the region between the graphs as the

area of the region under the graph of ,i; subtracted from the area of the region under

the graph o'i f. as shown in Figure 6.2.

Area of region

between /'and ,i;

[/•(v) -g(.v)](/.v

Figure 6.2

Area of region

under/

/(.v)</-v

Area of region

under g

,?(.V)(/-V

Representative rectangle

Heiglit: /(.i^) -,i;lA^I

,, Width: A.\'

fix )

(/ .V b

Figure 6.3

To verify the reasonableness of the result show n in Figure 6.2, you can partition

the interval [u. />] into ;; subintervals, each of width A.v. Then, as shown in Figure b3.

sketch a representative rectangle of width A.v and height /(.v, )
- ,t;(.v, ), where v, is

in the rth interxal. The area of this representative rectangle is

A/A, =
( height )( width) = [/(.v,) - ,!,'(.v,)] A.v.

By adding the areas of the /; rectangles and taking the limit as j|Aj|—>0 (;!^oo), you

obtain

lim ^[/(.v,) - ,!>(.v,)]A.v.

Becau.se / and g arc continuous on [(/, /'], / — g is also continuous on [</, />] and the

limit exists. Therefore, the area of the given region is

Area = hm ^L/U,) - .^'(vjjA.v

[/(.v) - ,i,'(.v)] </.v.
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Area of a Region Between Two Curves

It"/ and i^ are continuous on [<(, /)] and ,?(a) < fix) for all A in [(/. /']. then the

arc; of the region bounded by llic l raphs of / and i; and the verti :-d\ ines

-V
= a and

A =

A = /) is

[,/(.v) - .i;(.v)] </a.

In Figure 6.1. the graphs of/ and g are shown above the .v-axis. This, however,

IS not necessary. The same integrand [fix) — ,?( v)] can be used as long as / and g are

continuous and g(.\) < /(a ) for all a in the inter\al \ii. /?]. This result is sinninarized

graphically in Figure 6.4.

NOTE The height of a represenlati\e

rectangle is fix) - i;{x) regardless of the

relative position of the i-axis. as shown

ill lisure 6.4.

f(.\)- K{\\-

(V. l,'(\l)

l(x)~n{x)<

(V. ,i;lv))

Fisiiire 6.4

Representati\e rectangles arc used throughout this chapter in \arious applications

of integration. A vertical rectangle (of width A.\ ) implies integration with respect to a.

whereas a horizontal rectangle (of width Av) implies integration with respect to v.

Exiimplc 1 Findins* (he Area o( a Region Belween Two Curves

.?(-v) = -V

RegKin bounded h\ the graph of /. the graph

of '.;. V = 0. and.v =
I

Figure 6.5

Find the area of the region bounded by the graphs of ^ = .v-^ + 2. v = —.v. .a = 0. and

.V = 1

.

Solution Let gix) = -x and fix) = x- + 2. Then gix) < fix) for all v in [d. 1], as

shown in Figure 6.,S. Thus, the area of the representative rectangle is

l.\ = [fix) - gix)] Aa = [ix- + 2) -
( -A)J Aa

and the area of the retiion is

[fix) - gix)]Jx = [(A= + 2) - i-x)]dx

^ + ^ + 2v
3 2

1 1

- + -
3 2

n
6

'

+ 2

UC
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Area of a Region Between Intersecting Curves

In Example 1, the graphs of /'(.v) = .v- + 2 and ,!,'(a) = -_v do not intersect, and the

values of a and b are given explicitly. A more common problem involves the area of

a region bounded by two intevst'cting graphs, where the values of a and h must be

calculated.

Example 2 A Region Lying Between Two Intersecting Graphs

Find the area of the region hotindcd b\ the graphs of f(x] x~ and ,!,'(.v) = .v.

(.v,/(.v))

«(-'-) = -V

\—V--'"

Region linundcd by the graph of /anil the

graph of s

Figure 6.6

Solution in Figure 6.6. notice that the graphs of / and y have two points of inter-

section. To find the v-coordinates of these points, set f(\] and ,?(.v) equal to each other

and solve for x.

X- = X

-X- - .V + 2 =

(.V + 2)(.v - 1) =

A = - 2 or 1

Set /(v) equal to ,i,'(v).

Write m general form.

Factor

So]\e tor V

Thus, a = —2 and h = \. Becau.se i;(.v) < fix) for all v in the interval [-2. 1]. the

representative rectangle has an area of

A/1 = [fix] - ,k(x)] \x

= [(2 - x~) - x] \x

and the area of the reeion is

[C .V-) - .vl</.v + 2.\

Example 3 A Region Lnng Between Two Intersecting Graplis

The sine and cosine curves intersect infinitely many times, bounding regions of equal

areas, as shown in Figure 6.7. Find the area of one of these regions.

l- ^- /""^

h

g(x) = COS A

^,/(-V)) X^\

A \a/
-1 -

U \ /
. (-V, g(.v)l ._ V_/

/(.v) = sin .V

One of the regions bounded In the graphs of

the sine and cosine I'linctions

Figure 6.7

Solution

sin .V
= cos .V Set /(v) equal to '..'(v).

sin .V =
1 Divide both sides hy cos v

cos X

tan V =
1 Tngononielnc identity

X = 71
< V < T IT Solve for V

So, II = Tr/4 and h = 5tt/4-. Because sin .v > cos .v for all v in the inter\al

[7J-/4. .'>7t/4], the area of the region is

A = I [sin X — cos .v] ilx

Iit/-1

-cos V - sin -V

.';7t/4

J ;r/4

i
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If two curves intersect at iiioir than two points, then to find the area of the region

between the cnr\es. von must Inid all points of intersection and check to see which

curve is above the other in each iiiterxal determined by these points.

,i;(A)</(v) f{\)<i;l\)

/(A) = 3.v -A-- 10a

In [-2.0].s(a-) < /'(v)aiKlin[0.:].

/(vl < .'(v).

Figure 6.8

Example 4 Cuncs That Intersect at More Than Two Points

Find the area of the region between the graphs of /'(.v) = 3a-' — x- - lO.v and

gix) = -A- + Iv.

Solution Begin by setting /'(a) and ,!,'(a) equal to each other and solving for a. This

yields the A-\alues at each point of intersection of the twii graphs.

IOa = -

12a =

r + 2.V

3a(a- - 4) =

A = -2.0.2

Set /(a) equal to gix).

Write in general form.

Factor.

.Solve tor v

.So. the two graphs intersect when .v = —2.0. and 2, In Figure 6.8. notice that

,t;(A) < /(a) on the interval [-2. 0]. However, the two graphs switch at the origin, and

fix) < ,<.,'(a) on the interval [0. 2]. Hence, you need two integrals—one for the interval

[-2. 0] and one for the intcr\al [(). 2].

[./(a) - .kM] Jx + [g(x) - fix)] ilx

(Ir- - 12a) (/a + (-3a' + 12a) (/a

"

3.v^

4
- h\-

(1

+
\^^'"

1 ( ^
[ 4 ^

^"
J

-(12 - 24) + (- 2 + 24)

24 u^

NOTE In E.xample 4, nolicc that \ou get an incorrect result if you integrate from -2 to 2.

Such integration produces

fix) - .^{x)]dx = (3a' - 12a) Ja = 0.

If the graph of a function of ^' is a boundary of a region, it is often convenient to

use representative rectangles that are horizonhd and Find the area by integrating with

respect to v. In general, to determine the area between two curves, you can use

A = [(top curve) — (bottom curve)] (Va Vertical rectangles

in \ariabie a

A =
I

[(right curve) — (left curve)] tA' Horizontal rectangles

ni variable v

where (ApV,) and (.v,. y,) are either adjacent points of intersection of the two curves

involved or points on the specified boundary lines.

^^P iiuliicircs tliiit III the Interactive 3.0 CD-ROM mul Internet 3,0 versions of tins text

{available at coIIege.hmco.com) you will find an Open Exploration, which further explores this

e.xample using the computer algebra systems Maple, Mathcad, Mathematica, and Derive.
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Example ? Horizontal Representative Rectangles

Find the area of the fegion bounded by the graphs of .v = 3 — ^'- and v = \' + 1 .

Solution Consider

,i;(y) = 3 - \- and fir) = y + 1,

These two eufves interseet when v = —2 and r = 1. as shown in Figure 6.9. Because

/(v) < g( v) on this interval, you have

AA = [,!,'(v) -/(v)]Av

= [(3 - V-) - (y + I)] Ay.

Hence, the area is

[(3 -y-) - (V + l)J(/v

(-y- -V + 2)dy

+ 2\

1 _ 1
3 2

+ 2

/(.!') = .V + I

g(.v) = 3-v-

Hon/oiual rectangles (integration with

rc^pt'ct toy)

Figure 6.9

Vertical rectangles (integration wilh respect

to V)

Figure ft. 10

In Example 5. notice that by integrating with respect to y you need only one

integral. If you had integrated with respect to .v. you would have needed two integrals

because the upper houiidar\ changes at v = 2, as shown in Figure 6.10.

A (.V - I) + v'3 - -v </.v + {J?< - .V + 73 - .V (/.

-'[ [x -
I + (3 - .v)'/-] d\ + 2 (3 - .v)'/- dx

.y- (3 - .v)

1— -V

3/2

(3 ~ .vl-V-

"

3/2

2-2 1 I6\ /2\ 9

2
+ '-y)--"""- 3)^2



SECTION 6^ Area of a Reaion Between Two Curves 417

Integration as an Accnmulation Process

In this section, we developed Ilie integration formula fiir the area between two curves

by using a rectangle as the ivpnwciihitirc clement. For each new application ui the

remaining sections of this chapter, we \\ ill construct an appropriate representatix e ele-

ment using precalculus formulas you already know. Each integration forniula then will

he obtained by summing or accumulating these representative elements.

Known precalculus

formula

Representative

element
^> New integration

formula

For example, in this section we developed the area formula as follows.

(heiahtKwidth) [z:> A/\ = [fix) - g(x)] A.V c; [,/(. ,'(.v)] </a-

Example 6 Describing Integration as an Aceuniulation Process

Find the area of the region bounded by the graphs of v = 4 - v- and the v-axis.

Describe the integration as an accumulation process.

Solution The area of the region is given by

A =
\ (4 - .v-)</.v.

You can think of the integration as an accumulation of the areas of the rectangles

Ibrnied as the representative rectangle slides lioni x = —2 to .v = 2.

,4 = (4 - V-) rfv = ()

i:
14 - v-)</a (4 - v'l i/.t

i— -V

(4 - .V-) J.v = 9 (4 - A-) r/.v
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EXERCISES FOR SECTION 6.1

III Kxercises 1-6. set up till' definite integral that gives the area

of the legidM.

1. fix) = .\-

i'(.v) =

3. fix) = X- - \x + 3

,?(.v) = -.V- + 2a- + 3

,
\

V-

/

\

/l
-

>--x^

/,
/-I - \i-/ 4 5

6. /(a)

h '

1- r
/ I

1

//
"'/^

/ /

In Kxertises 7-12. tlie integrand of the definite integral is a dlf-

lerence of luo lunitlons. Sketch the graph of each function and

shade the region «liose area is represented l)> tlie integral.

Think About It In Exercises 13 and 14. determine which value

best approximates the area of the region hounded by the graphs

of/ and i;. (Make your selection on the basis of a sketch of the

region and iiat by performing any calculations.)

13. ,/'(a) =

(a) -

14. fix)
--

(a) 1

A + 1 ,t,'(A) = (A - n-

(b) 2 (c) 10 (U) 4

- 3A. ,!,.(A-) = 2 - ^/a

(b) 6 (c) -3 (d) 3

(e) S

(c) 4

In Exercises 15-30, sketch the region bounded hy the graphs of

the algebraic functions and find the area of the region.

15. \' = iv' + 2. V = A + 1. A = 0. A = 2

16. ^ = -^a(a - S), \- = 10 - 3A. A = 2, a = 8

17. fix) = X- - 4a, .i,'(a) =

18. /(a) = -A- + 4a + 1. !;(a) = a + 1

19. fix) = X- + 2x + 1, gix) = 3a + 3

20. fix) = -A- + 4v + 2. !;(a) = a + 2

21. y = A. ! = 2 - A-. > =

22. A = —,. y = 0, A = 1, A = ."S

A"-

23. fix) = ..^X + 1. .t,'(A) = A + 1

24. fix) = </x - 1, gix) = X -
I

25. fix) = y-, giy) = y + 2

26. /Iv) = a(2 - v), ,v(y) = -y

27. fix) = V- + 1. giy) = 0. V = -1. V

1'

28. ,/(v =
;.

X 16 - A-
giy) = 0. y = ji

29. tix = i^.A=0,
A

V = 2. y = 10

30. iix
4

- y 4. A =

rp In Exercises 31—10. use a graphing utility to graph the region

bounded by the graphs of the lunctions. and use the integration

capabilities of the graphing utility to find the area of the region.

7.

8.

9.

11.

i\ + 1)

(I

</a-

v-) - (a

4(2"'-') -

(2 - secA)i/A

1 )] clx

Ix 10.

12. (sec- A — cos a) iIx

31. /(a) = a-(a' - 3a- + 3). gix) = A-

32. fix) = a' - 2a + 1. gix) = -2a, a-
=

33. ^ = .V- - 4a- + 3, y = 3 + 4v - .v-

34. y = .V-* - 2a--, y = 2.v-

35. fix) = A-" - 4a-, ,i;(a) = a- - 4

36. fix) = v-i - 4v-, ,i;(A-) = a' - 4v

37. fix) =1/(1 + X-). gix) = \x-

38. / (a) = 6a/(a- + 1 ), y = 0. < a < 3

39. y = yi + x\ y = \x + 2, a =

40. V
4 + A-

0, A
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In Exercises 41-46, sketch the refjioii houiuled hv the jiraphs of

the transcendental functions, and find the area of the region.

41. fix) = 2sin.v. g(.\) = tan .v, -- < a- < -

42. /'(.v) = sin .V, gl\) = cos 2.v, < A <

43. fix) = cos A", g(A-) = 2 - COS A. < A < 2 77

44. fix) = sec^ tan ^. t;(A-) = (./^ - 4)a- + 4. a =
4 4

45. fix) = xc-'\ V = 0. < A < 1

46. fix) = .V. gix) = 2a + 1

^ In Exercises 47-50, use a graphing utilit> to graph the region

hounded hy the graphs of the functions, and use the integration

capabiUties of the graphing utility to find the area of the region.

47. fix] = 2 sin A + sin 2a. v = 0. (I < a < 77

4S. /(a) = 2 sin A + cos 2a. \ = 0. < a < 77

49. fix)
1

\' = 0. 1 < A < 3

50. ,,(v) = i^, v = 0. .v = 5

^ In Exercises 51 and 52, (a) use a graphing utility to graph the

region bounded by the graphs of the e(|uations. (b) Set up the

integral giving the area of the region. Can you evaluate the inte-

gral by hand? (c) Use the integration capabilities of a graphing

utility to approximate the area.

51. -
. \- = 0. A- = 3

V 4 - A

52. ! = v^ e\ y = 0. a- = 0, I

In Exercises 53-56, find the accumulati(ui function /•". fhen

evaluate f at each specified value of the independent variable

and graphically shovv the area given b\ each value of /'.

53. f(Al = (3? ^ \)ilt (a) FW) (bl Fi2) (c) ^(6)

54. f(A) = (\i- + 2)ili (a) f(OI lb) F(4) ii:) Fi6)

55. F(a) =
I
cos^(W (alH-l) (b) F(()) (0/^(3)

56. F(vl =
I

4e'-dx (a)f(-ll (h) /(()) (c) F(4|

In Exercises 57 and 58. use integration to find the area of the tri-

angle having the given v ertices.

57. iO.O).Ui.O).ib.c) 58. (2. -3). (4. 6), (6, I)

In Exercises 59 and 60, set up and evaluate the definite integral

that gives the area of the region bounded by the graph of the

function and the tangent line to the graph at the indicated point.

59. fix) =A\(1,1) 60. fix)
1

-1-
I

l.i

61. Suppose horizontal representative rectangles are used wlien
j

finding tlie area of the region between two curves. Identify i

the variable of integration.

62. In your own words, describe how to proceed from a precal- 1

cuius formula to a new integration formula wlien using

integration to solve applied problems,

63. The graphs of a = a"* - 2a- + I and \' = I
- a- intersect

at three points. However, the aiva between the curves cmi

be found by a single integral. Hxplain uh\ this is so. and

write an integral for this area.

64. The area of the region hounded b\ the graphs ol \ = \
' and

1' = X cciiiiKitbn found h\ the >-in>:le uiteeiLiI

ix-' ~ x) ilx.

Explain why this is so. U.se symmetry to write a single

integral that does represent the area.

65. A college graduate has two |ob oflers. The starting salary

for each is 532,000. and after eight years of service each

will pay $54,000. The salary increase for each offer is

shown in the figure. From a strictly nionetarv viewpoint,

which is the better offer? Explain.

.v /)

hd.OOl) -

Offer 2

.s( 1.0(10 - /
40.000 - ^y^^

.i( 1.0( 10 ' otter 1

;o,ooo- -

10.000-

1 1 M 1 M 1'

bO -J I'roposii T

.so - y
40 - -

\Pl-o losa!

.^0 - - \

.:!o
- - ^

\
10

-

—
\

—

1

1 h-L
4 (

"I'ear

21 Kill

"lear

Figure for 65 Figure (or 66

66. A state legislature is debating two proposals for eliminating

the annual budget deficits by the year 2010. The rate of

decrease of the deficits lor each proposal is shown in the

figure. From the viewpoint of minimi/ing Ihe cumulative

state detlcit. which is the better proposal' Fvplain.

In Exercises 67 and 68, find b such that the line y = h divides

the region bounded by the graphs of the two c(piations into two

regions of equal area.

67, V = 9 - A-, v = 68, ^• = 9 - Lvl, v =

In Exercises 69 and 70, evaluate the linnt and sketch Ihe graph

of the region whose area is represented by the limit.

69. lim y (a - a-)Aa
li^ll-ii ,f'|

where .v, = ijn and A.v = I ju

70. hm Y(4 - .v-)Aa

w here a, + (4(7;i) and Aa = 4/h
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Reveiuw In Kxtrcists 71 and 72. two models R^ and K, are

j;iven lor re\iiuie (in hillions of dollars per year) I'or a large cor-

poration. The model R^ j;i\es projected annual re\enues from

200(1 to 2005, with t = eorrespondinj; to 2000, and R, gives

projected revenues if there is a decrease in the rate of growth of

corporate sales over the period. Approximate the total reduction

in rev enue if corporate sales are actually closer to the model R,.

71. «, = 7.21 + 0.5X; 72. K, = 7.21 + (1.26/ + 0.02;'

/?, = 7.21 + 0.45/ A', = 7.21 + 0.1/ + 0.01/^

rp 73. Modi'linii Data The table shows the total receipts R and total

expenditures E for the Old-Age and Survivors Insurance Trust

Fund (Social Security Trust Fund) in hillions of dollars. The

time / is given in years, with / = 1 corresponding to 1941.

(Sdurcf: SiicidI Security Adnuiiistration)

t 1

T 3 4 5

R 299.3 311.2 323.3 328.3 342.8

E 245.6 259.9 273.1 284.1 297.8

/ 6 7 8 9

R 363.7 397.2 424.8 457.0

E 308.2 322.1 332.3 339.9

(a) Use a graphing utility to fit an exponential model to the

data lor receipts. Plot the data and graph the model.

(b) Use a graphnig iililit\ to 111 an cvponotlial model to the

data lor expenditures. Plot the data and graph the model.

(c) If the models are assumed true for the years 2000 through

2005, use Integration to approxinialc the smpltrs revenue

generated diuing those years

(dl Will the models found ni parts (a) and (hi uitersecf.'

Explain. Based on your answer and news reports about the

fund, will these models be accurate for long-term analysis'.'

74. I'm/it The chief Iniancial officer of a company reports that

profits tor the past fiscal year were $893,000. The officer pre-

dicts that profits for the next 5 years will grow at a continuous

annual rate somewhere between 33% and 5%. Estimate the

cumulative difference in total profit over the 5 years based on

the predicted range of growth rates.

75. Area The shaded region in the figure consists of all points

whose distances to the center of the square are less than the

distances to the edges ol the s(.|uai"e Find the area of the region.

76. Mechanical Design The surface of a machine part is the

region between the graphs of x^ = |.v| and \\ = 0.08.V- + l<

(see figure).

(a) Find k If the parabola Is tangent to the graph of y,.

(b) Find the surface area of the machine part.

77. Building Design Concrete sections for a nev\ building have

the dimensions (in meters) and shape shown in the figure.

(a) Find the area of the face of the section superimposed on the

rectangular coordinate system.

(b) Find the \iilunie of concrete in one of the sections by mul-

tiplying the area in part (a) by 2 meters.

(c) One cubic meter of concrete weighs 5000 pounds. Find the

welaht of the section.

(--'i..'i. 0)

7S. liiiilding Design To decrease the weight and to aid in the

hardening process, the concrete sections in Exercise 77 often

are not solid. Rework Exercise 77 to allow for cylindrical open-

inijs such as those shown in the fniiire.

(-.'^.-'i, 0)

True or False'.' In Kxercises 79-SI, determine whether the

statement is true or false. If it is false, explain why or give an

example that shows it is false.

79. 11 the iirea ot the region bounded b_\ the graphs ot / and ,1,'

is I, then the area of the region bounded by the graphs of

/((a) = J{\) + C and k{x) = gix) + C is also I.

50. II [fix) - .i,'(-v)](/.v = A, then [f^{\)
- f{x)]d.x = -A.

51. II the graphs of /' and ,e intersect midway between .v = u and

\ = /), then

:/(.v) - i;(.v)] ,/.v = 0.

Figure for 75 Figure lor 76

i
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Volume: The Disk Method

• Find the vohime of a solid of revolution using the disk method.

• Find the volume of a solid of revolution using the washer method.

• Find the volume of a solid with known cross sections.

The Disk Method

In Chapter 4, we mentioned that area is only unc of the many applications of the

definite integral. Another important application is its use in finding the volume of a

three-dimensional solid. In this section you will study a particular type of three-

dimensional solid—one whose cross sections are similar. We begin with solids of

revolution. Such solids are used commonly in engineering and manufacturing. Some
examples are axles, funnels, pills, bottles, and pistons, as indicated in Figure 6.1 1.

Rectanule

i-ft

Axis of revolution

Di.sk

fH

Volume of a disk: vR-w

Figure 6.12

Solids of revolution

Figure 6.11

If a region in the plane is revolved about a line, the resulting solid is a solid of rev-

olution, and the line is called the axis of revolution, ("he simplest such .solid is a right

circular cylinder or disk, which is formed by rcvohmg a rectangle about an axis adja-

cent to one side of the rectanale, as shown in Fiszure 6. 12. The volume of such a disk is

Volume of disk (area of disk)(width of disk)

where R is the radius of the disk and vr i,s the width.

To see how to use the volume of a disk to find the volume of a general solid of

revolution, consider a solid of revolution formed by revolving the plane region in

Figure 6.13 about the indicated axis. To determine the volume of this solid, consider

a representative rectangle in the plane region. When this rectangle is revolved about

the axis of revolution, it generates a representative disk whose volume is

AV = ttR-\.x.

Approximating the volume of the solid by n such disks of width A.v and radius R(.x^)

produces

Volume of solid = ^ Tr[/?(.v,)]= A.v

/=
I

= 7rj;[/^(,v,)]=A.v.
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Representative
Axis of Representative

"\^ rcclangle
resokition disk

^ Plane region
1

Ri ^
L

f ^

Disk method

Kiguri' 6.13

Appruximalion

b\ // disks

This approximation appears to become better and better as ||A||—>C) (n^ oc). There-

fore, you can define the volume of the solid as

r
Vohinie of solid = Imi ttV [/^(.v )]- A.v = - [/^(.\ )] - r/.v.

IIAIHU ,^^1 J„

Schematicallv. the disk method looks like this.

Kinn\ii Pnvalciihis

Formula

Repieseulative

Element

New Iiitei^nilioii

Formula

Volume of disk

V = ttR-w
~'

Solid of revolution

A similar formula can be derived if the axis of revolution is vertical.

The Disk Method

To find the volume of a solid of revolution w ith the disk method, use one of

the followina. as indicated in Fiatire 6.14.

Horizontal Axis of Rcvolulion Vertical A.\is of Revohition

Volume = V = 77 [/?(a)]-(/.v Volume = V = 77 [/?(v)]-(/v

NOTE In Figure 6.14. note tliat yon

can determine the variable of integration

by placing a representative rectangle in

the plane region "perpendicnlar" to the

axis of revolution. If the width of the

rectangle is A.v, integrate with respect to

-V. and if the width of the rectangle is Av,

integrate with respect to v.

/<{'.)<

V = n^'jR(x)]-'ilx}

Hori/ontal axis of revolution

Figure 6.14

Vertical axis of revolution
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Solid of revolution

Figure 6.15

Plane reaion 2

Ri\)

g(.\)

i ^-v

The simplest application of the disk method involves a plane region bounded by

the graph of / and the .v-axis. If the axis of revolution is the x-axis, the radius R(.\) is

simply fix).

Example 1 Using the Disk Method

Find the volume of the solid formed by revolving the region bounded by the graph of

/(a) = s'sin .V

and the A-axis (0 < v < tt) about the A-axis.

Solution From the representative rectangle in the upper graph in Figure 6.15. you

can see that the radius of this solid is

R(x) = f(x)

= -/sin X.

So. the volume of the solid of revolution is

V = u\ [Rix]]- clx = TT \ {s/'s\nxY d.x

r= 77 sin -V (/a

Apply disk metliod

Simplify.

Intearate.

71(1

Example 2 Revolving Ahout a Line That Is Not a Coordinate Axis

Find tlie volume of the solid formed by revolving the region bounded by

,/(a) = 2 - .V-

and ,!,'(a) = 1 about the line y = 1. as shown in Figure 6.16.

Solution By equating fix) and ,t;(A). you can determine that the two graphs intersect

when A = ± 1. To find the radius, subtract ,i;(a) from /(.v).

R{x) = fix) - gix)

= (2 - X-) - I

= 1 - X-

Finallv. intecrate between - 1 and I to find the volume.

V'= 77 [/?(a)]-\/a =77 (1 - x-)\lx Apply disk method.

( 1 - 2a- + .V*) clx Simplify.

Intearate.

Figure 6.16

A - 2a' a5
1

—

3 5

677

15 z
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l<<

Axis of revolution

Disk

1.

}li

The Washer Method

The disk method c;iii be extended to cover solids of revolution with holes by replac-

ing the representative disk with a representative washer. The washer is formed by

revolving a rectangle about an axis, as shown in Figure 6.17. If r and R are the inner

and outer radii of the washer and \r is the width of the washer, the volume is given by

Volume of washer = tt(R- — r-)w.

To see how this concept can be used to find the \olume of a solid of revolution,

consider a region bounded by an outer radius Rt\] and an inner radius r(.v). as

shown in Figure 6.18. If the region is revolved about its axis of revolution, the volume

of the resulting! solid is i:i\en by

V = 77 ( [Rt\)]- ~ [r(.v)]-) dx. Washer method

.Sohti {^\ re\oliition

Figure 6.17

= x^

Plane reizion

Note that the integral involving the inner radius I'epresents the volume of the hole and

is siihtraclcd from the intciiral involvint; the outer radius.

Solid of revcilulion

with hole

Plane retiion

Figure 6.18

Example 3 Using the Washer Method

Find the volume of the solid formed by revolving the region bounded by the graphs of

V = Jx and >' = .v- about the .v-axis. as shown in Fiiiure (i. l*^).

Solid 111

revoluuon

Solid (if revolution

Figure 6.19
377

10

'

Apply washer method

Solution In Figure 6.14. you can see that the outer and inner radii are as follows.

R(x) = Va' Outer radais

/(.v) = .V^ Inner radius

Integrating between and I produces

V = tt\ {[Rix)]- ~ [r(x)Y)dx

[J^xf - {x-V]dx

= 77
I

(v - .v^) dx Simplify.

Intesrale.
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In each example so far. the axis of fevolution has been liorizonlul and we have

integrated with respect to .v. In the next example, the axis of revolution is vertical and

you must integrate with respect to \'. In this example, you need two separate integrals

to compute the volume.

Example 4 Integrating with Respect to v, l%o Integral Case

Find the volume of the solid formed by revolving the region bounded by the graphs of

V = .v^ + I. A- = 0. v = 0. and a = 1 about the v-axis, as shown in Fiijure 6.20.

Plane region

Figure 6.20

Geiu'nntd by Malhfinalica

Solution For the region shown in Figure 6.20. the outer radius is simply R = \.

There is. however, no convenient formula that represents the inner radius. When
< v < I. / = 0. but when 1 < v < 2. / is determined by the equation y = .v- + 1.

which implies that r = J\' — 1 .

0. < \- < 1

[ Vv -
I . I < \- < 2

Using this defniition of the inner radius, you can use two integrals to find the volume.

\/= Tt) (1- - 0-)t/v +77 [l- - [Jy - I )"](/v Apply washer method.

I d\ +77 (2 - \)dy Simpliiy.

+ 77

= 77+7714-2-2 + -

Inteariite.

Figure 6.21

Note that the first integral 77/1, I cly represents the volume of a right circular cylinder

of radius 1 and height 1 . This portion of the volume could have been determined with-

out using calculus. t .

TECHNOLOGY Some graphing utilities have the capability to genei-ate (or have

built-in software capable of generating) a solid of revolution. If you have access to

such a utility, try using it to sketch some of the solids of revolution described in

this section. For instance, the solid in Example 4 might appear like that shown in

Fisure 6.21.
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(a)

n^i Exmnpli' ? Manufacturing

>5 in.

Solid of ivvnluiiim

/?(Ai = a/IJ^ i
'- = V^sT?

v = 3

-5-4-3-: -I 12 3 4 5

Plane region

(bl

Figure 6.22

A iiiunufactuier drills a hole through the center of a metal sphere of radius 5 inches,

as shown in Figure 6.22(a). The hole has a radius of 3 inches. What is the volume of

the resulting metal ring?

Solution You can imagine the ring to he generated by a segment of the circle whose

equation is .v- + y' = 25. as shown in Figure 6.22(b). Because the radius of the hole

is 3 inches, you can let v = 3 and solve the equation v-^ + y-^ = 25 to determine that

the limits of integration are .v = ±4. So. the inner and outer radii are j(.v) = 3 and

Ri\) = y25 — .v*" and the volume is given by

{[R{.\)y- - [r(.v)]-)</.v = 7t\ [{ 725 - .v-)" - (3)- d\

77 (16 - .v-)(/.v

77 16.V

25677
cubic inches. Z]

Solids with Known Cross Sections

Willi the disk method, you can find the volume of a solid having a circular cross

section whose area is A = —R-. This method can be generalized to solids of any

shape, as long as you know a formula for the area of an arbitrary cross section. Some

common cross sections arc squares, rect.ingles. triangles, semicircles, and trapezoids.

Volumes of Solids witli Known Cross Sections

1. For cross sections of area A{x) taken perpendicular to the .v-a,xis.

Volume = A{a-)cIa-. See Figure 6.2.3(a).

2. For cross sections of area Aiy) taken perpendicular to the y-axis.

Volume =
I

,4(\')(/\'. See Fiijure 6.23(b).

.V = /;

&N X = a

1^

(a) Cross seLlioiis perpendicular to .v-a.\is

Figure 6.2.^

(b) Cross sections perpendicular to v-axis
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y = s(-v)

y=/(-v)

Cross sections are equilalerul Iruiiigles.

/•(A) = 1
- i

Example 6 Triangular Cross Sections

Find the voluine of the soHd shown in Figiiie 6.24. The base of the sohd is the region

bounded by the hnes

,/(.v) = 1 - ^. ,i;(.v) = -1 + ^. and .v = 0.

The ei'oss sections perpendicular to the ,\-a\is arc cc|Lnlatci"al triangles.

Solution The base and area ol each triansitilar cross section are as follows.

Base = I

v''3
Area = —— (base)

4

I +

A(x)
'^

x)-

X Lciiiilh oi' base

Avcii of et|Uihueral irianglc

Area ol cross section

Because a ran^zes from lo 2, the volume o( the solid is

V -
I

Mx)cLx =
I ^(2 -.v)-(/a-

2s/3

Triangular base in .vi -plane

Figure 6.24 Exaiuple 7 An Application to Geometry

Prove that the volume of a pyramid with a square base is K = -JiB. where /; is the

height of the pyramid and />' is the .irea of the base.

MM/'

Area of base = B = h'

h-x.

\y

fll

\h

Figure 6.25

.Solution As shown in figure 6.23. you can intersect the pyramid with a plane

[larallcl lo ihc base at height \ lo form a square cross section whose sides are of length

/)'. LIsini; similar triantiles. vou can show that

h
or /) = -(/;- v)

where h is the length ol the sides of the base ol the pyramid. So,

/;-

Integrating between and /; pi"oduces

V A(\)d\
h
-ill - y)-ily

h-
= Ti (/; - V)- 'A'

lh-\ 'ih -
.

)'"

\lrl 3 J

b^(h^\
- 1A3}

-\„S.
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EXERCISES FOR SECTION 6.2

In Exercises 1-6. set up and eMiluate the integral that gives the

\olume of the solid formed by revolving the region about the

.v-a\is.

10. A -V- + 4v

1. V A- + 1 2. ^' = 4 - A-

4. V = yg"

?. V = A-. \' = A 6. 1 V = 4 -

in Exercises 11-14. find the volume of the solid generated b\

revolving the region bounded bv the graphs of the equations

about the indicated lines.

11. V = , T. \- - (I. A = 4

(a) thcA-axis (bl the v-axis

(c) the Inie v = 4 (d) the hne a = 6

12. V = 2a-. 1 = 0. A -- 2

(a) the \-axis (bl the A-axis

(c) the line v = !S (d) the line a = 2

13. y = A--, y = 4a- - a-

(a) the A-axis (b) the line \' = 6

14. y = b - 2x - A-. \- = A- + 6

(a) the A-axis (b) the line v = 3

In Exercises 7-1(1. set up and evaluate the integral that gives the

\olunie of the solid formed bv revolving the region about the

v-axis.

7. \- = A- 8. y = yi6

In Exercises 15-IS, find the M)lunie of the solid generated bv

revolving the region bounded bv the graphs of the equations

about the line y = 4.

15. y = A. y = 3. a =

16. y = \\-\ y = 4. v =

I

17. V 0. 0,
1 -I- A

18. A' = sec A, \' = 0. < A <

In Exercises 14-22. find the volume of the solid generated b\

revolving the region bounded bv the graphs of the equations

about the line x = 6.

19. y = A. y =

20. y = (1 - A.

21. A = y-. A

22. A\ = 6. 1'

0, y = 4, A- = 6

y = 0. » = 4. A-

= 4
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In Exercises 23-30, find the viiUiniL' i)f the solid generated by

revolving the region bounded by the graphs of the equations

about the .r-a\is.

23. y

24. ^

25. y

26. V

I

V-V + 1

'

\' = 0. .V = 0. A = 3

.vy4 - .V-. V =

1. -V

-. V = 0. A = 0. 8
A + 1

27. y = e-\ y = 0. a = 0. a = 1

28. y = £>'-, y = 0. a = 0, a = 4

29. y = A- + 1. y = -a- + 2a + 5, a = 0, A = 3

311. y = v^, y = ~l\ + 4, a = 0. a = 8

In Exercises 31 and 32, find the Miluine of the solid generated by

revolving the region bounded by the graphs of the equations

about the v-axis.

31.

32.

= 3(2

= 9 -

-a). » = 0. A =

A-. \ = n. A = 2, A = 3

^ In Exercises 33-3S. use the integration capabilities of a graph-

ing utility to approximate the volume of the solid generated by

revolving the region bounded b\ the graphs of the equations

about the .v-a\is.

33. \' = sin A", y = 0. a =

34. y = eos a. \- = 0. a

35. V = c'-''. y = 0. A =

36. 1 = In v. y = 0. a =

37. \' = c'
' + f-'-. y =

3S. \' = 2 arctan(().2A). y

= 0, A

= 0. ..

-- 0. A

I. A

0. A

= 0.

3

- I,

= 0.

Think Ahiiiit It In Exercises 39 and 4(), determine «hich value

best approximates the volume of the solid generated by revolv-

ing the region bounded b\ the graphs of the equations about the

.v-axis. (Make your selection on the basis of a sketch of the solid

and nol by performing any calculations.)

39. y = e'--. ^

(a) 3 (h)

40. V = arctan a.

(j. A = (J. A = 2

5 (c) 1(1 (d) 7

= 0. A = 0. A = I

(a) 10 (h) J (e) 5 (d)

(e) 20

(e) 15

41. Give tlie intcijration lornuila 1 11 llnduit; the \olumes ot

solids usiiig (a) the disl\ nietliod and ( h 1 the waslier method.
|

42. Give the intearation formula t ir llnding the \oluiTies of '

solids of known cross sections.

43. A region bounded h\ the paraboki \ = 4a — a*^ and the [

A-a.\is is revolved about llie v-a\is. .\ second region bounded ^

by the parabola y = 4 - .\
' and the A-axis is revolved about ;

the A-axis. Without integrating, how do the volumes of the

two solids compare'.' H\plain,

44. The region in the figure is revolved about the indicated axes

and line. Order the volumes of the resulting solids from

least to greatest. Explain >(>in- reasoning.

(a) .v-axis (b) i-axis (c) a = >S

45. If the portion of the line i = iA lying in the Inst qiiadiant is

revolved about the A-axis. a cone is generated. Find the xokime

of the cone extending trom \ ^ to v = 6.

46. Use the disk method to \enly that the \(ilimie of a right circu-

lar cone is , rrr-li. where r is the radius of the base and /; is the

height.

47. Use the disk method to xerilv that the \olunie of a sphere is

4

48. A sphere of radius r is cut b> a plane h ill < r) units aho\e the

equator. Find the \oluine ot the solid (spherical segment! above

the plane.

49. A cone of height H with a base of radius r is cut b\ ,i plane

parallel to and /; units above the base. Find the \olume ol the

solid (frustum of a cone) below the plane.

50. The region bounded by y = Va. y = 0. a = 0, and .v = 4 is

revolved about the A-axis.

(a) Find the value of a in the interval [0.4] that di\ides the

solid into two parts of equal volume.

(b) Find the values of a in the interval [0.4] that di\ide the

solid into three parts of equal volume.

51. Volume ofa Fuel Tank A tank on the w ing of a jet aiicralt is

formed by revoMng the region bounded by the graph ot

= i,-^ /"
A and the \-axis about the A-axis (see figure).

where a and v are measured in meters. Find the tank's xoliime.



430 CHAPTER 6 Applicalions ol Integration

rp 52. Volume of (i Lah Glass A glass container can be modeled by

revolving the grapli of

_ I

^'O.l.v' - 2.2.V- + 10.9a + 22.2. 0<a<1I.5
^ ^

|2.95. 11.5 < .V < 15

about the v-a\is. where ,» and \' are measured in centimeters.

Use agraphnig utility to graph the lunction and find the \olume

of the container.

53. Find the volume of the solid generated if the upper hall' of the

ellipse y.v- + 2.*i\ - = 225 is revolved about

(a) the v-a,\is to form a prolate spheroid (shaped like a football).

(b) the y-a\is to form an oblate spheroid (shaped like half of a

candv).

Fifiiiie lor •<}[ii) Figure lor 53(b)

^5-1 Minimum Volume The arc of v = 4 — (.V7'4) on the interval

[0. 4j is revolved about the line y = h (.see figure).

(a) Find the volume of the resulting solid as a function of /i.

(b) Use a graphing utility to graph the function in part (a), and

use the graph to appro.Kimate the value of/i that minimises

the volume of the solid.

(c) Use calculus to find the value of/' that minimizes the vol-

ume of the solid, and compare the result with the answer to

part (b).

^-: ' I ! '
1 I I I I

Figure lor 54

-.1
t

Figure for 56

rp' 56. Modeling Data .\ draftsman is asked to determine the

amount of material required to produce a machine part (see

figure in first column). The diameters </ of the part at equally

spaced points .v are listed in the table. The measurements are

listed in centimeters.

rK 55. Water Depth in a Tank A tank on a water tower is a sphere of

radius 50 feel. Determine the depths of the water when the tank

is tilled to one-fourth and three-fourths of its total capacity.

{Note: Use the root-finding capabilities of a graphing utility

after exaluatlnL' the definite inlesiral.)

.r 1

-)

3 4 5

d 4.2 3.8 4.2 4.7 5.2 5.7

X 6 7 8 9 10

d 5.8 5.4 4.9 4.4 4.6

(a) Use these data with Simpson's Rule to approximate the

volume of the part.

(b) Use the regression capabilities of a graphing utility to find

a fourth-degree polynomial through the points representing

the radius of the solid. Plot the data and graph the model.

(c) Use a graphing utility to approximate the definite integral

yielding the volume of the part. Compare the result with the

answer to part (a).

57. Think About It Match each integral with the solid whose

volume It represents, and give the dimensions of each solid.

(a) Right circular cylinder ibl Fllipsoid

(c) Sphere (d) Right circular cone (c) Torus

(1) 7T

(ill) 7T

,lx

Ui- -.v-)-</.v

(IV) </v

(v) 7T [(/? + V/-- - .1-)- - (R - Jr- - \-Y\d.\

58. Find the volume of concrete in a raiiiji that is ,i meters wide and

whose cross sections are right triangles with base 10 meters and

height 2 meters (see tlaure).

3 m

59. Find the volume of the solid whose base is bounded by the

graphs of y = .v -F 1 and v = .v- ~ 1, with the indicated cross

sections taken perpendicular to the .v-axis.

(a) Squares (h) Rectangles of height 1
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60. Find the volume of the soHd whose base is hounded bv the

circle .v- + y- = 4, with the mdicated cioss sections taken

perpendicular to the .r-axis.

(a) Squares (b) Equilateral truuiL'les

>^

(c) Semicircles

^

(d) Isosceles right triangles

61. The base of a solid is bounded by y = a\ y = 1). and .v = 1.

Find the volume of the solid for each of the following cross sec-

tions (taken perpendicular to the y-a\is): (a) squares, (b) semi-

circles, (c) equilateral triangles, and (d) semiellipses v\hose

heights arc twice the lengths of their bases.

62. Find the volume ot the solid of intersection (the solid coninion

to both) of the two tight circular c\ linders of radius ; v\hose

axes meet at risht ancles (see fitture).

Two inlersectiim cvlinders Solid of intfrsfction

FOR FL'RTHER ISFORMATIOS For more information on this

problem, see the article "Estimating the Volumes of Solid Figures

with Curved Surfaces"" by Donald Cohen in Mathcinnlics Teacher.

To view this article, go to the website www.iiiatJiarrick's.cnni.

63. Cavalieri's Theorem Prove that if two solids have equal

altitudes and all plane sections parallel to their bases and at

equal distances from their bases have equal areas, then the

solids have the same volume (see fisurc).

64. A manufacturer drills a hole through the center of a metal

sphere of radius R. The hole has a radius /. Find the volume of

the resulting ring.

65. For the metal sphere in Exercise 64. let R = .^. What value of r

will produce a ring whose vulunic is exactiv half the volume of

the sphere!'

66. The solid shov\ n in the figure has cross sections bounded by the

graph of

|.v|" + |v|" = 1

where \ < a < 2.

(a) Describe the cross section when u =
I and n = 2.

(b) Describe a procedure for approximating the volume of the

solid.

H' + i.v|' = i |.v|"-h|v|''=l l.vP + |vP=l

67. Two planes cut a right circular cylinder to loriii a wedge One

plane is perpendicular to the axis of the cylinder and the second

makes an angle of W degrees with the first (sec figure).

(a) I'lnd the volume of the v\cdgc if C = 45".

(b) Find the volume of the wedge for an arbitrary angle 0.

Assuming that the cylinder has sufficient length, how does

the volume ol the wedge change as t) increases from 0°

to 90°?

^- / R,%. > li

Area of/?, = area of/?.
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Volume: The Shell Method

• Find the xoltime of a solid of ie\olution using the shell method.

• Conipaie the uses of the disk method and the shell method.

Axis orrevolul

Ki"iire 6.26

The Shell Method

In this section, you will study an alternative method for finding the volume of a solid

of revolution. This method is called the shell nifthod because it uses cylindrical

shells. We will compare the advantages o\' the disk and shell methods later in this

section.

To begin, consider a representative rectangle as shown in Figure 6.26, where vv is

the width of the rectangle, /; is the height of the rectangle, and /; is the distance

between the a.xis of revolution and the center of the rectangle. When this rectangle is

revolved about its axis of levolution, it forms a cylindrical shell (or tube) of thickness

\r. To find the volume of this shell, consider two cylinders. The radius of the larger

cylinder corresponds to the outer radius of the shell, and the radius ot the smaller

cylinder corresponds to the inner radius of the shell. Becatise /) is the average radius

of the shell, you know the outer radius is p + (n'/2) and the inner radius is /) — tii/2).

/' + T

Axis of

revokiMdn

z^--

11'

Oulci" radius

aLiiLis

So. the voltime o\' shell is

Volume of shell = (volume of cylinder) — (voltmie of hole)

= Itti'Iiw

= 27T(a\erage radius)(height)(tliickness).

You can use this formtila to find the volume of a solid of revdkition. Assume that

the plane region in Figure 6.27 is revohed about a line to form the indicated solid. If

you consider a horizontal rectangle of width A\', then, as the plane region is revolved

about a Ime parallel to the A-a,\is. the rectangle generates a representative shell whose

volume is

AV= 27r[/)(v)/!(v)] Av.

You can approximate the volume of the solid by /; such shells of thickness Ai'. height

/((y, ). and average radius /'( v, ).

Volume of .sol id = ^27T[/)(v,)//(y,)] Ay = 27t^[/)( v,)/;(y,)] Ay

This approximation appears to become better and better as ||A|| -^ (n —> go).

Therefore, we define the volume of the solid to be

Fijiure 6.27

.ShIkI nt leMilunoii

Volume of solid = lim 2 7tV [/)(! )/;(v )] Aa'
!|A!| -.11 ,-^| '

-

'

= 2 7T [/-(v)//(y)]</v.
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The SheU Method

To find the volume of a solid of revolution with the shell method, use one of

the followinu. as shown in Ficure 6.28.

Hoiizoiital A.MS (if Reyoliititiii Vertical Av/.v of Rfvoliilinii

Volume = V = 2tt
\

/>( v)/;( v) (/v Volume = V = 2tt
\

pixMiix) d\

hlv)

} /'<) I

H()ri/ont;il axis (if revolution

Fi"ure 6.28

/'(v)

Verlical axis of a'volutioii

> M\ I

/1(.V) = -V

(I.Ol

Axis of

ixnokitioii

Figure 6.29

Example J

Find the \iilumc ol the solid ol rcxokition lornicd bj ic\i>l\ing the region boundctl by

> = .V — .v'

aiKJ the v-a\is ((I < .v < 1) about the v-a.\is.

Solution Because the a\is of rexolution i^ \eitical. use a xertical representatixe

rectangle, as shown in Figure 6.29. The uidtli A.v indicates that .\ is the variable of

integration. The distance from the center ol llie rectangle to the a.\is of revolution is

p(x) = X. and the height of the rectangle is

/;(.v) = .V - .v\

Because .v ranges Imni to 1. the xdlume of the solid is

V = 1jt\ p(\)ll[x) d\ = 2 77 .v(.v - .v')(/.v

(-.v-* + .\-)(/.v

.V-' .V'

h
—

S 3

1 I

^"'"5 +
3

Appl\ shfll niL'lhnd.

Simplify.

Inleiirale.

47T

13

'
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Example 2 Using the Shell Metliod to Find Volume

Find the \okinie of tlie solid of revolution formed by rex olN'ing the region bounded by

the graph o\'

and the \-a.\is (0 < r < I ) about the A-a\is.

Fisiirt 6.30

Solution Beeause the axis of revolution is horizontal, use a horizontal representative

rectangle, as shown in Figure 6.30. The width Ay indicates that y is the variable of

integration. The distance from the center of the rectangle to the axis of revolution is

/'( y) = ^. and the lieight of the rectangle is h{y) = e^-'. Because y ranges from to

I, the \oluinc of the solid is

V = Itt \ p(\)h(y) dy = Itt
\

yc'^'ily Appl> shell mcihod.

1.986.

Inteizrate.

m

NOTE To sec ihc advantage of using the shell method in Example 2. solve the eqnallon

v = (' ' for \.

['• < .V < I /e

[. -In.v. \/e < A < 1

Then use liiis ct|uation lo lliul liic volinuc using the disk mclliod.

Comparison of Disk and Shell Methods

The disk and shell methods can be distinguished as follows. For the disk method, the

representative rectangle is always pcrpciuruiilni to the axis of revolution, whereas for

the shell method, the representative rectangle is i\\wdys panillcl lo the axis of revolu-

tion, as shown in Figure 6.31.

, V' = K
j^

(/?-- I-)' tly '

d

r
X /
I^.Vv,

c
ly

R

^-^
rJ

Vertical axis

of ri'volution

Disk method: RepreseiUativt rcciangle is

perpendicular to the avis of rcMiliilion.

Figiirt 6,31

Horizontal avis

of revolution

ii<

v =
^-"l:'

ph ' dv '

d "^ \

'L IIk',^-^'~'

Pi \
c -^

J

h

'-

Vertical avis

of revolution

Shell method: Representative rectangle is

parallel to the axis of rcMilulion.

Horizontal axis

of revolution
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Often, one method is iiioie convenient to use than the other. The follow ing exam-

ple illustrates a case in which the shell method is preferable.

For I <v<2:
R= 1

A.KIS of

rc\olulion

(a) Disk melliod

/H-v) = .\- + I

(hi Shell method

Figure 6.32

^^ Example 3 Shell Mctliod Preferable

1

-

ForO<v< 1: 1 A\

R= 1

; =

1

Find the xohinie of the solid formed by rcMiKinsj the iciiion botmdcd b\ the yiaphs of

V = .V- +1. y = 0, .V = 0. and .v = I

abont the \-a\is.

Solution In Example 4 in the preceding section, yoti saw that the disk method

reqtiires twii integrals lo determine the xohime of this solid. See Figure h..i2(a).

V = -
\ (

1- - ()-) iiy + TT \ [1- -
( N y -

1

)"J
Jy .AppK disk method

1 ily + -
I

(2 - y) Jy .Simplily.

Iiile>;rate.

.:
I

= 77 + ttI 4 - 2 - 2 +
:^)

_ 3 77

~
2

In Figure 6.32(b). you can see that the shell method requires only one integral to find

the volume.

V'= 277
I

pixMiix) d\

2-
I .v(.v- -T \)d\

— + —
4 2

Apply shell method.

Intes^rate

377

L:l]

Suppose the region in Example 3 were re\ol\ed about the \ertical line .v = 1.

Would the resulting solid of re\oltition ha\e a greater \oiiime or a smaller \olunie than

the solid in Example 3? Without integrating, you should be able to reason that the

resulting solid would have a smaller volume because "more" of the revolved region

would be closer to the axis of lexolution. To confirm this. ti"\ sohing the following

iiite>iral. which cives the volume of the solid.

V = 2- (1 - .vK.v- 1 ) </.v />lv)

FOR FIRTHER I\FORMATlON To learn more about the disk and shell methods, see the article

"The Disc and Shell Melliod" by Charles A. Cable in The Aniericaii Maihcimukal Monthly. To

view this article. 20 to the website WMM.nuilluinicUscKiu.
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Figure 6.33

Exiimple 4 Volume of a Pontoon

A pontoon is to be made in the shape shown in Figuie 6.33. The pontoon is designed

by fotating the gfaph of

y = 1
-4 < .V < 4

about the .v-axis, where .v and v are measnred in feet. Find the vokinie of the pontoon.

3 + /?(.v| = 1 - ^

/)(!) = V

-4 -5 -: -I 1 : .'^ 4 -

(b) Siiell mcliinti

Figure 6.34

Solution Refer to Ficure h. 34(a) and use the disis method as follows.

V = TT

77

6477

15

'
-

T6 J

"^

^-J-h)'^
.V .V

V - — +
24 1280

~ 13.4 cubic feet

Appl_\ disk melhod.

Simplify.

Inteerate.

Try using Figure 6.34(b) to set up the mtcgral for the xolume using the shell method.

Does the integral seem moie complicated? u,_i

For the shell method in Example 4, you would have to solve for .v in terms of y

in the equation

V = 1 - (.v7l6).

.Sometimes, soh ing for v is \er\ dilficult (or e\en impossible), hi such cases you

must use a vertical rectangle (of w idth A-V). thus making v the variable of integration.

The position (horizontal or vertical) of the axis of revoknion then determines the

method to be used. This is illustrated in Example 5.

Example 5 Shell Method Necessary

/!(-V)=.v'+.V4- I - 1

Figure 6.35

Fiiul the volume of the solid formed bv revolving the region bounded by the graphs of

y = v' + .V + 1. y = 1. and .v = I about the line .v = 2. as shov\ n in Figure 6.35.

Sohilii)!] In the equation y = v' + v + 1. you cannot easily solve for .v in terms of

y. (See the section on Newton's Method.) Therefore, the variable of integration must

be .v. and you should choose a vertical representative rectangle. Because the rectangle

is parallel to the axis of revolution, use the shell method and obtain

V = 2it\ />(.\)/;(.v)(/.v = 2;t| (2 - .v)(.v-' + .v + 1 - 1 ) c/.v Apply -.hell nu-ihnd.

Siniplily.

lnti:i::ratc.

27t| (-.v^ + 2.V' - .V- + 2.v)(/.v

:77
-V .V

+ .V-

1 1 1

,,,__ + ___+!

2977-

15
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EXERCISES FOR SECTION 6.3

In Exercises 1-12, use the shell method to set up and evaluate

the intesra! that gives the \()lunie of the solid generated bv

revolving the plane region about the v-a\is.

1. V 2. V = 1

^—^A-

4. V = A- + 4

;j

H M--V

5. y = .V-, y = 0. a = 2

6. r = 3A-. y = 0. a = 6

7. \- = A-, y = 4a — A-

8. y = 4 - A-, y =

9. > = 4v - A-. A = 0. y = 4

10. \ = 2v. \- = 4. A =

11. V

12. V =

"''/-,
V = 0, A = 0. A =

1

1.

-. A >

A =
, V = 0. A = 0, A = 77

In Exercises 13-16, use the shell method to set up and e\aluate

the integral that gives the volume of the solid generated by

revolving the plane region about the .v-axis.

13. 14. V

,/ 1 h-

2- -

1
- "

-1 - ^^
'

-:- - \
15. V = -A = l.A = 2. V = 16. A + V-

A
16. A =

In E^xercises 17-20, use the shell method to lind the volume of

the solid generated by revolving the plane region about the

indicated line.

17. y = A", y = 4a — a^". abniit ihe line v = 4

18. y = A-. y = 4a — a-, aboiil ihe line a = 2

19. y = 4a - A-. y = 0. about Ihe hue v = 5

20. y = VA. y = 0. a = 4, about the line a = 6

In Exercises 21-24, use the disk or the shell method to llnd the

volume of the solid generated by revolving the region bounded

by the graphs of the equations about the indicated line.

n. V = \\ V = (I. A- = 2

(a) the A-axis (b) the \-a\is

10

(c) the line a"

22. Y 7. ^ = n, A = I , A

(a) the A-a\is (b) the y-a\is (e) Ihe line y = 10

23. x"- + y"- = «'-, A = 0. V =

(a) Ihe A-axis (b) the y-axis (e) Ihe line a = d

24. A- ' + y-' = ir '. n > (hypocyeloid)

(a) the \-a\is (h) the y-a\is

25. Give the integration formula for Undnig the \okuiie of a

soliil using the shell methoil.

26. The region in the figure is revolved about ihe indicated axes

and line. Order Ihe volumes of the resulting solids from

least 10 greatest. Explain your reasoning.

(a) .v-axis (b) y-axis (c) a = 5

In Exercises 27 and 28, give a geometric argument that

explains why the integrals have equal values.

27. 77
I

(a - I)</a = 277
I

v[-S - (y- + \}]dy

.v(^]</v28. 77 [16 - (2y)^](/y

Jo
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rp In Exercises 29-32, (a) use a graphing utility to graph the plane

region bounded hv the graphs of the equations, and (b) use the

integration capabilities of the graphing utility to approximate

the volume of the solid generated by revolving the region about

they-axis.

29. .v-"' + y-"-' = 1. A = 0. y = 0. first quadrant

30. y = v/1 -A-', y = 0. a =

31. y = i'ix - 2)-(a - 6)-. y = 0. a = 2. a = 6

32. 1'

1 + e"
-. X = 0. A = I , A = 3

Think Ahoiil It In Exercises 33 and 34, determine which value

best approximates the volume of the solid generated by revolv-

ing the region bounded by the graphs of the equati(ms about the

y-axis. (Make your selection on the basis of a sketch of the solid

and not by performing any calculations.)

i3. y = 2c'" ',y = 0, a = 0, a = 2

(a) 5 (b) -2 (cl 4 (cl) 7,5 (c) 13

IT
34. y = tan a, y = 0, v = 0, v = —

(a) 1,3 (b) -^ (c) S (d) 10 (01 I

35. Miicliinc Pari A solid is generated by revolving the region

boinided by v = ,a-^ and v = 2 about the i-axis. A hole,

centered along the axis of revolution, is drilled through this

solid so (hat one fourth of the volume is removed. Find the

dianieler of the hole.

36. Machine Pari A solid is geneia(ed b\ re\(il\nig (he region

bounded by y = ^/9 - a- and y = (1 abotK the ^'-axis. A hole,

cen(eied along (he axis of re\olu(ion, is drilled (hrough this

solid so that one thud ol the xolunie is leiniued. Find the diam-

eter of the hole.

37. Volume of a Torus A torus is formed by revolving the region

bounded by ihe circle a" + y- =
1 about the line v = 2. as

show 11 111 the figure. Find the volume of this "doughnut-shaped"

solid [Hull: The integral J ,

^\ — .v" (/.v represents the area of

a semicircle.)

ub"

Figure for 37 Figure for 4(1

38. Vohimc of a Torus Repeat Exercise .^7 for a torus formed by

revolving the region bounded by the circle a- + y- = /- about

the line x = R. where r < R.

39. Volume of a Segment ofa Sphere Let a sphere of radius ; be

ctit by a plane, thus forming a segment of height /;. Show that

the volume of this segment is ^Trli-{?ir - h).

40. Exploration Consider the region bounded by the graphs of

y = ax", y = ((//'. and a = (see figure in first column).

(a) Find the ratio R^iu) of the area of the region to the area of

the circumscribed rectangle.

(b) Find lim W,(«) and compare the result with the area of the

circumscribed rectangle.

(c) Find the volume of the solid of revolution formed by

revolving the region about the y-axis. Find the ratio /?,(;;)

of this volume to the volume of the circumscribed right

circular cylinder.

(d) Find lim ft,(H) and compare the result with the volume of

the circumscribed cylinder.

(e) Use (he rcsuUs of parts (b) and (d) (o make a conjecture

about the shape of the graph of y = tix"{0 < x < h) as

/I ^ r/c.

41. Think About It .Match each of (he in(egrals with the solid

whose volume it represents, and give the dimensions of each

solid.

(a) Right circular cone (b) Torus (c) Sphere

(d) Righ( circular cylinder (el Ellipsoid

(1) 2tt hxilx
Jii

(ii) 271 /m
I

1 - -|,/a

(iii) 277-
I

Ixjr- - X- clx

(iv) 2-17

(V) 2 7T {R

, - ^ </.v

(2.'7^^:?),/A

42. Volume of a Storage Shed A s(orage shed has ;i circular base

of diameter 80 feet (see figure). Starting at the center, the inte-

rior height is measured every 10 feet and recorded in the table.

X 10 20 30 40

Height 50 45 40 20

(a) Use Simpson's Rule to approximate the volume of the

shed.

(b) Note that the roof line consists of two line segments. Find

the equations of the line segments and use integration to

find (he \()lume of the shed.

10 20 .^1) 40 so

Distance from center
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fp 43. Modeling Data A pond is approximately eireular, with a

diameter of 400 feet (see figure). Starting at the center, the depth

of the water is measured every 25 feet and recorded in the table.

X 25 50 75 100 125 150 175 200

Depth 20 19 19 17 >5 14 10 6

(a) Use Simpson's Rule to approxuiiate the \oliniie of water in

the pond.

(b) Use the regression capabilities of a graphing utilil\ to find

a quadratic model for the depths recorded in the table. Use

the graphing utility to plot the depths and graph the model.

(c) Use the integration capabilities of a graphing utilit\ and the

model in part (b) to approximate the \oliniic of water in the

pond.

(d) Use the result in part (cl to approximate the number of

gallons of water in the pond if 1 cubic toot of water is

approximately 7,4S gallons

yn 111(1 Lin

Distance troni cenler

The color-enhanced photo of Satiu'n was taken h\ \byager I

.

In the photograph, the oblateness of Saturn is clearl\ \ isihle.

SECTION PROJECT

The Oblateness ofSaturn Saturn is the most oblate of the nine

planets in our solar system. Its equatorial radius is 60.268

kilometers and its polar radius is 54.364 kilometers.

(a) Find the ratio of the \olumes of the sphere and the oblate

ellipsoid shown below.

(b) If a planet were .spherical and had the same volume as

Saturn, what would its radius he?

Computer model of "spherical Saturn." whose equatorial radius

is equal to its polar radius. The equation of the cross section

passing through the pole is

X- + V- 60.26S=.

Computer model of "oblate Saturn." whose equatorial radius is

greater than its polar radius. The equation of the cross section

passing through the pole is

+
60.268- 54.364-

1.



440 CHAPTER 6 Applications of Integration

C'HRISIUN lllM,KNS(l()2'»-lb95)

Tiie Dutch nialhcmaticuiii ( hnstian Huygens.

who invented tlie pendtiltini clock, and James

Gregory ( 163S 1675). a Scottish mathemati-

cian, both made early contributions to the

problem of fmding the length of a rectitiahle

curve.

Arc Length and Surfaces of Revolution

• Find tlie arc length of a smooth curve.

• Find the area of a surface of revolution.

Arc Length

In this .section, definite integrals are used to find the arc length of a curve and the area

t)l a surface of revolution. In both cases, we approximate an arc (a segment of a curve)

by straight line segments whose lengths are given by the familiar distance formula

(/ = V(.\s - .V|)^ + (v, - v,)^.

A rectifiable curve is one that has a finite arc length. You will see that a sufficient

condition for the graph of a function / to be icctitlable between {a. /(</)) and (/', /(/>))

is that /' be ciniiinuous on [a. h]. Such a function is continuously differentiable on

[((, /'], and its graph on the interval [a. h] is a smooth curve.

Consider a function ^' = /(.v) that is continuously differentiable on the interval

[</, /']. You can approximate the graph of / b\ /; line segments whose endpoints are

determined by the partition

(I = .V|| < .V| < .V, < • < .v„ = b

as shown in Figure 6.36. By letting A.v^ = .v^

approximate the length of the graph by

and Ay, = y,
— y,_ ,. you can

-i:^ i)' + (.v,-.v,-,P

X v/(A.v,)= + (A.v,

/ = 1

V (A.v,)- + (|^V(A.v,)-

This approximation appears to become better and better as [|A|[^0(;; -^ oo).

Thei'efore. we define the length of the graph to be

lim V ,.(ifia..

.v=/(.v)

/ = length ol ^^

curve from \

/
i

a to b
\
\
\

/ \

CI 1 1 \

Hgure 6.36

Because /Iv) exists for each v in (.v, |,.v,). the Mean Vtilue Theorem guarantees the

existence of c, in (.v, , . .v, ) such that

/(.v,)- /(.v,_|) =./'(<, )(.v, -.V, ,)

A.v,
,/'<',)

Because /' is continuous on [</./>], it follows that v 1 + [,/'(.v)]" is also continuous

(and hence integrable) on [a. h]. which implies that

^ = ,fei:^>^Trwr<^-^-^'

/I +[/'(.v)]-</.v.

Wc call .V the arc length of /' between a and /'.
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Definition ol

Let the functio

[a. h]. The arc

rh

S = nA
J,:

SiniilarK. lor ;

ami (/ IS

f''

,v = y

Aic Length

1 given by y =

length of / be

fix)

ween

given

ep

by

esent a

ind h IS

snioo

vl. the

th cnr\e

arc len

on

gth

llie

of

inle

•.^ he

rval

tween c

+ [r{-\)]-d\-

siiiootli curve

+ [,i,''(v)]2<A

The arc length of the graph of / from

(ai.|i) IoIas.!':) is the same as the standard

distance formula.

Figure 6.37

Because the dctlnilion of arc length can be applied lo a linear luiiclion. vou can

check to see that this new definition agrees with the standard distance fornitila for the

length of a line segment. This is done in Example I

.

Example 1 The Lcnj^lli of ;i Line Segment

Find the arc length from (.Vi.y,) to (.v^. .> J on the graph of /(.v) = ;;;.v + /', as shown

in Figtire 6.37.

Solution Because

\\ - V,

ni = fix)

it follows that

.V, M

v'l + [,r(-v)]-<^v Fnrnuihi for arc Icivjlh

I +
I

-^^^
I ,/.v

V, - X,

h -
.Vi

)- + (y.
- V,)',

V U:-.v,F

/<^
- V|)- + (.V:

-
.v,)

=

V (.V, -.v,)^

Imegr.ilc and siniplity.

= ./(.v, -.v,)-+ (v, -y,):

which is the formula for the distance between two points in the plane.

TECHNOL()(;\ Definite integrals representing arc length often are very difficult to

evaluate. In this section we present a few examples. In the next chapter, with more

advanced integration technic]ues. you will be able to tackle more difficult arc length

problems. In the meantime, remember that you can always use a numerical integra-

tion program to approximate an arc length. For instance, try using the numerical

integration feature of a graphing utility to approximate the arc lengths in Examples

2 and 3.
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\ y=M !

The arc leiiglli (if llic grapli dI' i' oil [ ;. 2J

Figure 6.38

I OR I LRTIIliK IMORMATIOS To see

liov\ arc length can he used lo (.Icfnic

trigonometric functions, see the article

"Trigonometry Requires Calciikis. Not

Vice Versa" by Yves NievergeU in

UMAP Modules. To view this article, go

to the wehsiie www'.iniirlhirhtU'sAnin.

Example 2 Finding Arc Length

Find the arc length of the graph of

V = .vy6 + l/(2.v)

on the interval [3, 2j. as shown in Fignre 6.38.

Solution Using

i/v _ 3a_- _ J_ _ I
</v

"
6 2a-

"
2

yields an arc length of

-'I)"- 1 +
I / , 1

A"
:

A-
(l.X Formula tor arc leneth

\/^

^(.v^+2 + -^|,/A

'^v^ + ^W/v

} .V

1 /13 47
h —

6 24

SimplMv

Inteizratc.

33

16'

(S. 5)

.1 4 5 6 7 S

Till' arc length of the graph of v on |(l. S] is

approximately '-).(I7.M.

Figure 6.39

Example 3 Finding Arc Length

Find the arc length of the graph of (v — D' = .y- on the interval [0, 8]. as shown in

Figure 6.39.

.Solution Begin h\ soh itig for v in terms of v: .v = ±{y — 1)' -. Choosing the

positive value ol a produces

dy 2

The A-inter\al [d. Xj concspoiids to the \ -interval [l. .^]. and the arc length is

-'ir--
3
(v- 1)'/- dv Foinuila lor aiv length

'v-l-'>

v/9y - .-i dy

(9v - 5)V-"

18

_ J_
"

27

= 9.0734.

3/2

(40'/^ - 4.'/:)

Siniplily.

Intes^rate.
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rtm-i Exnniple 4 Finding Arc Length

H h

V = IlKCOS.Vl

The ;ii"c li'iiulh of the graph iil r (in [(I. '^\ is

.ipproxiiiiateh l).S,S14,

Fifjure 6.40

Find the arc iength (il the graph dI \ = hilcos v) from a = to .v = n/4. as show n m
Fiiiiirc (S.40.

Solution Using

clx sin .V

ilx cos v

yields an arc length of

tan A

S =
I ^ / \ + l-j-] iL\ = \ \'l + tan-A</v Formula Inr are length

'sec- A' il.x

sec A clx

In
I

sec A + tan x\

= ln(v^2 + l) - In I

= 0.8814.

Tngunonietne identity

Siniplily.

Integrate.

* Catenary: v

y = 1 50 cosh YM)

The arc length of the cable is appro\imatel\

21? feet.

Figure 6.41

Example 5 Length of a Cable

An electric cable is hung between two towers that are 200 feet apart, as shown in

Figure 6.41. The cable takes the shape of a catenary whose equation Is

75(f</i3» + e^'/i-^") = 150 cosh
V

150'

Finel the arc length of the ctible between the two towers.

1

Solution Because '•'"" — e
'"'''"). you can write

:v')- = ;^(^'>/" - 2 + e~^
'-''')

and

1 + (v')- = -Ac^"'' + 2 + e--'l'') (e>/i5i-' + t-'-'/i-'^'-')

Therefore, the arc length of the cable is

,v = n/I + (\')-dx (f '/'^" + (--'/I5I') dx Furnnila lor are length

-iloo

Integrate.

-J - |l)()

= 75 ,,., 1.^0 _<. -IS"

= \5Qi(e-'' -- e -1^)

« 21.1 feet.
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Area of a Surface of Revolution

In Sections 6.2 and 6.3. integrution was used to calculate the volume of a solid of

revolution. We now look at a procedure for finding the area of a surface of revolution.

A\is of

!c\ nkition

Fi"iiie 6.42

Definition of a Surface of Revolution

If the graph of a continuous function is rcxohcd about . line, the resultins:

surface is a surface of revolution.

The area of a smface ol rcxolution is tlcrncd fioni the forniiila for the lateral

surface area of the frustum of a right circular cone. Consider the line segment in

Figure 6.42. where L is the length of the line segment.
; , is the radius at the left end

of the line segment, and r, is the radius at the right end of the line segment. When the

line segment is re\ol\'ed about its axis of re\'olution. it forms a frustum of a right cir-

cular cone. \\ ith

S = liTiL

where

1,

Laler.il surface area uf frusuini

.A\ei'aL!c radius of frusiuni

(In Exercise ."iS. you are asked to verify the formula for S.)

.Suppose the graph of a function/ having a continuous deri\ati\e on the interval

[(/, /)]. is re\(il\ed about the .\-a\is to form a surface of re\olution. as shovMi in Figure

6.4_3. Let A be a partition of [a. /']. w ith subinterxals of width A.v,. Then the line

sei:ment of lencth

\L, = VA.v,- + Ay,-

generates a Irustum of a cone. Let r, be the average radius of this frustum. B\ the

Intermediate Value Theorem, a point d, exists (in the /th subinterval) such that

/, = /'((/, ). The lateral surface area AS, of the frustum is

AS, = 277/-, A/.,

= 2. /(</,)y^7j^^ A.v,.

y = /(.v)

Fij;iire 6.4.^



SECTION 6 4 Arc Lenclli and Surfaces cif Revniulion 445

Axis of

resolution

v=/U)

'- = /(-v

v=/(.v)

^ ^
c \
-g \
> \rv. /(A))

_
^

' ^7*v,^

t/:
'

X
<

(/ b
>^- ^'

Figure 6.44

By the Mean Value Theorem, a point r, exists in (.v,_ ,. .v,) such that

/(.v,) -/(.v, _,) Av,
./'<^-,)

aa-;

Therefore, A,S, = 27t/(J,)v 1 + [/'(c-,)]- Aa, , and the total snrtace area can be

approximated by

S='2jT^f(d,)J\ + [/'(r,)]=A.v,,

It can be shown that the hmit ot the richt side as llA||A|| ^i)(n -, cc), is

S = 277 /(a)v/i + [/'(a)]=(/,v.

In a siiiidar manner, if the graph of/ is rex'oKcd about the y-a\is, then 5 is

277 aV'I + [/'(a)]^/.v.

Ja

s

In both formulas for S. you can regard the products 277/(.v) and 277a as the circum-

ference of the circle traced by a point (a, y) on the graph of / as it is revolved about

the A- or ^-a\ls (Figure 6.44). In one case the radius is r = /'(a), and m the other case

the radius is r = \. Moreover, by appropriately adjusting /, you can generalize the

formula for surface area to cover iiny horizontal or vertical axis of revolution, as

indicated m the follow nvj definition.

Dcliiiilion ol the Area ol a Surface of Revolution

Let V- = fix) have a continuous derivative on the interval [<;, /']. The area S of

the surface of revolution formed by revolving the graph of / about a horizontal

or vertical axis is

S = 277 r(A)v' 1 + [f'{.\)]-clx V is a runctioii ol \

where ;(a) is the distance between the giapli o\ / and the axis of revolution. If

A =
,!,'( v) on the interval [< , </], then the surface area is

S = 277 I /•(y)v' 1 + [,t;'(y)]-(/v a is .i tuncnon ot v

where r{\) is the distance between the graph o\' g and the axis of revolution.

The formulas in this tlefmilion are sometimes written as

r"
5 = 277 r{.\} els \ IS a lunction ol .V.

Ja

and

r(v)(/,s A IS a tunction of ^

.

v'here (A = v 1 + [/'(.v)]- c/.v and t/j ^ vl + [^''(v)]~ t/v, respectively.
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Figure 6.45

/-(.v)=/(,\)

Example 6 The Area of a Surface of Revolution

Find the area iif the surface formed b\ re\ ol\ ing the graph of

on the interval [0, l] about the v-axis. as shown in Figure 6.45.

Solution The distance between the .v-a.\is and the graph of / is ;(a") = /(.v)

because /'(.v) = 3.v-. the surface area is

(•"
,

S = 2tt\ ;-(.v)V1 + [/'(.v)]-i/.v Fomuilj Im surface area

and

77 .v\ 1 + (3.v-)^/.v

36
(36a-')(1 + 9.V-')'''-</.V .Simplily.

9.V
4,.V2Tl

3/'

== 3.563.

Axis of re\'nlution

Figure 6.46

Example 7 The Area of a Surface of Revolution

Find the area of the surface formed by revolving the graph of

fix) = X-

on the interval [(). ^^\ about the v-axis. as shown in Figure 6.46.

.Solulion In this case, the distance between the graph of / and the v-axis is r(x) = x.

Using /'(.v) = 2.V. you can determine that the surface area is

5 = 2— r(.v)vl -t- [/"'(.v)]- (/.V Formula for surt.iee area

TT .Vv'l + (2.v)-</v

(1 -I- 4a-)"-(8v) ilx Simpliiy

(I + 4.v-)'^-

3/2
Iiileniale.

= ^[(] +8)V-- I]

1377

3
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EXERCISES FOR SECTION 6.4

In Exercises 1 and 2, find the distance hetween the points hy

usin}; (al the Distance Formula and (h) inte>;ration.

1. (0.(1). (?. 12) 2. (1.2). (7. 10)

In Exercises 3-10, find the arc len<;lh of the graph of the func-

tion o\er the indicated interval.

3. ' = ?.v' - + 1. [0. 1]

5. 8]

7. =
8 + I^-

7T .^7T

9. = ln(sln a).
4' 4

4. = 2.V-' - + 3. [0. 9]

6. • = iv-'^ + 4. [1.27]

8. -fs^s^-i-i

10. V = -ie' + e- [0. 2]

T=' In Exercises 1 1-20, (al graph the function, highlighting the part

indicated by the given inter\al. (hi find a definite integral that

represents the arc length of the cur\e over the indicated interval

and observe that the integral cannot he evaluated with the

techniijues studied thus far, and (c) use the integration capabil-

ities of a graphing utility to approximate the arc length.

II. V = 4 Lo. 2]

13.

15. V

'. [1.3]

[O.tt]

[0. 2]17. V =

19. V = 2arctan,v. [O. l]

12. V = A- + A- --2. [-

14. -aIi- ["-'J

16. V = cos A,
TT TT

1 ' '}

18. y = In V. [ ^]

2.1]

20. 36 [0, 3]

Approximatioit In Exercises 21 and 22. determine which value

best approximates the length of the arc represented by the inte-

gral. ( Make your selection on the basis of a sketch of the arc and

not by performing any calculations.)

21.

(a) 3 (b) Ic) 4 (d)

(e) 3

(e) I

^

23. ./(A) = A^ 24. ./(A) = (A- - 4)^

25. Think About It The figure shows the graphs of the func-

tions y, = A. IS = 7v''^ V, = jA-. and Vj = -v^''- on the

interval [0, 4]. To print an enlarged copy of the graph, go to the

website wwiv.mathgniph.s com.

(a) Label the functions,

(h) List the functions In order of increasing arc length.

(c) Verify your answer in part (b) by approximating each arc

length accurate to three decimal places.

rp 26. Think About It Explain why the two integrals are equal

1

I + -^ d\ s 1 + r-' </a-

Use the integration capahihtics of a graphing utility to \enty

that the integrals arc equal,

27. Length of Pursuit A llceing object leaves the origin and

moves up the \-a\is (see riguie). At the same time, a pursuer

leaves the point (I. 0) and alw.iys moves toward the fleeing

object- If the pursuer's speed is twice that of the fleeing object,

the equation of the path is

1
,

:(.v' .\v' ^ -I- 2).

How far has the tleemg object traveled when it is caught' Show

that the pm-sucr h.is tra\eled twice as far

r

Approximation In Exercises 23 and 24, approximate the arc

length of the graph of the function over the interval [0. 4] in four

ways, (a) I'se the Distance Formula to find the distance between

the endpoints of the arc. (b) Use the Distance Formula to find

the lengths of the four line segments connecting the points on

the arc when .v = 0, .v = 1, v = 2. .v = 3, and x = 4. Find the

sum of the four lengths, (c) Use Simpson's Rule with /; = 10 to

approximate the integral yielding the indicated arc length.

(d) Ise the integration capabilities of a graphing utility to

approximate the integral yielding the indicated arc length.

20- " 100 It

-20
211

y = 3I - 10(e'
:o^^,-,/2»)

Figure for 28

y=i(A^'--3A"- + 2l

Figure for 27

28. Roof Area A bam is 100 feet long and 40 feet wide (see

figure). A cross section of the roof is the inverted catenary

y = 31 - \0{e''-"+ f- '/-").

Find the number of square feel of rooting on the barn.
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29. Length ofa Catenary Electrical wires siispcinlecl between two

towers form a catenary (see Tigiire) modeled hy the equation

y = 20 cosh :^. -20 < v < 20

where v and y are nieastircd in meters. Eind the length ol the

suspended cable if the towers are 40 meters apart.

Figure for 29

-inn i ion \

(-201)2.(11 (299.2,(1)

Figure tor 3(1

3(1. Length of Gateway Anli The Gateway Arch in St. Louis,

Missouri, IS miideled by

y = (i9.v.S,Si)7 - 6S. 7672 cosh 0.0100.1,\\v,

-2^)4.22,iy < .V < 294.22,^4.

41. Delnie <i rectifiable cur\e.

! 42. What precalculus lormula and representative element are

used to develop the integration formula for arc length'

j
43. What precalculus formula and representative element are

i
used to develop the integration formula for the area of a

1
surface of revolution'

i 44. The graphs of the functions/, and /, on the interval [ti. h\

are shown in the figure. The graph of each is revolved about

the -v-axis. Which suiface of revolution has the greater

surface area? Explain.

(See the Section Pro|ect: St. Louis Arch.) Enid the length ol this

curve (see figure).

31. Find the arc length from (0, }) clockwise to (2, ^^5 ) along the

circle .v' + y- = 9.

32. Find the arc length from (-3, 4) clockwise to (4. 3) along the

circle x- + \- = 2.'i. Show that the result is one-fourth the

circumference of the circle.

In Fxcrcises 33-36, set up ;ui(l evaUnitc tlio tletiuite iiitegnil tor

tlie area of the surfuee geiierated by revolving the curve al>out

the .v-axis.

33. y = iv\ [0, 3]

6
35. v = ^ + ^. [1.2]

34. V = 2 Jx. [4, 9]

36. y = -y [0, 6]

In Exercises 37 and 3S. set up and evaluate the definite integral

that gives the area of the surface of revolution generated by

revolving the curve about they-axis.

Funcliiin

37. y = i/x + 2

38. 1=9- X-

InteiTal

[1.8]

[0.3]

'c In Fxercises 39 and 40, use the integration capabilities of a

graphing utility to approximate the surface area of the solid of

revolution.

/iiiicliiin Interval

39. y = sin .v [O.tt]

revolved about the -axis

40. y = In.

I

[1.^']

revolved about the -axis

45. A right circular cone is generated by revolving the region

boundetl bv \ = hx/r. y = /(, and .v = about the \-axis.

Verify that the lateral surface area of the cone is

.S'
= TT rjr" + /)-.

46. A sphere of radius / is generated hy revdiving the graph of

y = -Jr- — X- about the v-axis. Verify that the surface area of

the sphere is 47t /-.

47. Iiiid the area of the /.one of a sphere formed by revolv ing the

graph of \' = v'y - v". < .v < 2, about the y-axis.

48. Find the area of the zone of a sphere formed by revolving the

graph of v = %//- - v". (I < v < a. about the y-axis. Assume

thai <i < /.

49. llulh Design An ornamental light bulb is designed by revolv-

ing the graph of

-.y<r- < X < i

about the v-axis, where v and y are measured in feet (see

figure). Eind the surface area of the bulb and use the result to

approximate the aniuunl of glass needed to make the bulb.

(Assume that the glass is 0,015 inch thick.)
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^ 50. Modeling Data The ciiciinilerence C (in niches) of a vase is

measured at 3-inch iniei\als starling at its base. The measure-

ments are shown m the tabic, where >' is the \ertical distance in

inches from the base.

rp 54. Think About It Consider the equation — -f
"—

1,

-V 3 6 9 12 15 18

c 50 63,5 70 66 5<S 51 48

(a) Use the data to approximate the volume of the \ase by

summing the \olunics of approximating disks

(b) Use the data to approximate the otitside surface area

(excluding the base) of the vase by summing the outside sur-

face areas of approximaliiiy Irustunis of right circular cones,

(c) Use the regression capabilities of a graphing utility to find

a cubic model for the points (v. r) where ; = C/(27r)- Use

the graphing utility to plot Ihc points and grapli the inotle!,

(d) Use tlie model in part ic) and the integration capabilities of

a graphing utility to approximate the volume and ouiside

surface area of the vase. Compare the results uitli \our

answers in parts (al and (h).

'P' 51. Modeling Data Propcrlv bounded by two perpendicular

roads and a stream is shown m tlie figure, .All distances arc

measured in feet,

(a) Use the regression capabilities of a graphing utility to fit a

fourth-degree polynomial to the path of the stream,

(b) Use the model of part (a) to approximate tlie area of the

property in acres.

(c) Use the inlegralion capabihlies of a graphing ulilils to find

the length of the sircain thai bounds the property.

™T(0,540. ,,_„^„,,

«<5p-390)^,200.42.S)
4110+ ^s, »--^T T"-v.^(250, 360i

(iOO,390)!

200

52. Individual Project Select a solid of rexolution from everyday

life. Measure the radius of the solid at a minimum of seven

points along its axis. Use the data to approximate the volume of

the solid and the surface area of the lateral sides of the solid,

53. Let R be the region bountled by v =
1 /,\. the ,v-axis. ,v = I . and

,\ = b. where /) > 1 . Let 1} be the solid formed w hen R is

revolved about the .v-axis.

(a) Find the volume \' of I).

(b) Express the surface area S as an integral.

(c) Show that V approaches a finite limit as /) —> -yz.

(d) Show that S ^ zc u^ h —> ziz.

(a) Use a graphing utility to graph the equation.

(b) Set up the detuiite integral for finding the fust quadrant arc

length of the graph in pan (a).

(c) Compare the interval of integration in part (b) and the

domain of the integrand. Is it possible to evaluate the

definite integral' Is it possible to use Simpson's Rule to

evaluate the definite integral .' lAplain. (You will learn how

to e\aluate this i\pe of integral m Section 7.8.)

55. (a) Gi\en a circular sector with radius /. and central angle W

(see figure), show that the area ot the sector is given by

S L-a

(b) By joining the straight line edges of the sector in part (a), a

right circular cone is formed (see figure) and the laleial

surface area of the cone is the same as the area of the sector

Show that the area is

S = TT V L

where r is the radius of (he base ol ihe cone {Hint: The arc

length of the sector equals (lie circuuileience ot the base o!

the cone,)

Figure for 55(al Figure for 55(h)

(c) Use the result in pan (bi to \crify that the formula Inr the

lateral surface area ol ihe frustum of a cone with slant

height L and radii
/

, and i\ (see figure) is

S = 7r(r, + \\]L.

[Niite: This formula was used to develop the integral for

findini; the surface area ol a surlace of re\olution,)

/ Axis of

56. Writing Read the anicle "Arc Length, Area and the Arcsine

Function" by Andrew M, Rockett in Mathciiuitics M(ii;ii:iiu'.

Then write a paragraph explaining how the arcsine function can

be defined in terms of an arc length, (To view this article, go to

the website w'ww.iiiiitlhinu Icy-i'iijii)
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• Find the wmk doiiL' by a constant force.

• Find tlie work done by a \'ariable force.

Work Done by a Constant Force

The concept of work is important to scientists and engineers for determining the ener-

gy needed to perform xarious jobs. For instance, it is useful to know the amount of

work done when a crane hfts a steel girder, when a spring is compressed, w hen a rock-

et is propelled into the air. or when a truck pulls a load along a highway.

In general, we say that work is done by a force when it moves an object. If the

force applied to the object is coiisuint. we ha\e the follow nig definition of work.

Dcfinilion of Work Done by a Constant Force

If an object is moved a distance D in the direction of an applied constant torce

F. then the work W done by the force is defined as W = FD.

There are many types of force.s—centrifugal, electromotive, and gravitational, to

name a few. A force can be thought of as a pusli or a /)(///; a force changes the state of

rest oi" state of motion of a body. For gra\ itational forces on earth, it is common to use

unils of mcastirc corresponding to the weight of an object.

Example 1 Lifting an Object

4-
50 Ih

1

3- -

2- - 4 ft

1- -

.._,

50 lb

The work tlone in lifting a .'i(l-p(iund obje

4 feet IS 200 foot-puiinds.

Fiuiirc fi.47

Determine the work done in lifting a 50-pound object 4 feet.

:;;.u:t!ii>! The magnitude of the rei|uired force F is the weight of the object, as shown

in Figure 6.47. So, the work done in lifting the object 4 feet is

W = FD Work = (loax-Kdistaiuc)

= -50(4) Foivf = ."io piuinds. disUince = 4 teet

= 200 foot-pounds. !^i^'

In the L'..S. nicasinemenl s\stem. work is t\picall\ expressed in foot-potinds

(ft • Ih), inch-pounds, or foot-tons. In tlic ccntimctcr-gram-second (C-G-S) system,

the basic unit of force is the dyne—the force reqtiired to produce an acceleration of

I centimeter per second per second on a mass of 1 gram. In this system, work is

typically expressed in dyne-centimeters (ergs) or newton-meters (joules), where

1 joule = 10^ ergs.

EXPLORATION s^SiSlfs^^i

How Much Work'/ In Example 1. 200 foot-pounds of work were needed to lift

the 50-pound object 4 feet vertically off the ground. Suppose that once you lifted

the object, you held it and walked a horizontal distance of 4 feet. Would this

reciuire an additional 200 foot-pounds of work? Explain your reasoning.
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F(.v)

The :imniint of force changes as an obiect

changes position (A.v).

Fij;iire 6.4S

Work Done by a Variable Force

In Example 1. the force involved is cimshmt. If a yuriahlc force is applied to an object,

calculus is needed to determine the w ork done, because the amount of force changes

as the object changes position. For instance, the force rcc|uircd to compress a spring

increases as the spring is compressed.

Suppose that an object is moved along a straight line from .v = u to .v = /) by a

continuously varying force F(x). Let A be a partition that di\ ides the inter\al [a, h]

into n subintervals determined bv

.v„ < .V, < .V, < < A- = /'

and let A.v, = .v, - .v,_ ,. For each /. choose c, such that .v,
,

< c, < .\,. Then at c, the

force is gi\en by F(r, ). Because F is continuous, you can appro.ximate the work done

in moving the object through the /th subinterval by the increment

AW, = f(r,)A\,

as shown in Figure 6.4fs. So. the total work done as the object moves from ii to /> is

approximated by

= §F(c,)A.v,

This approximation appears to become better and better as ||A||^0 (;;—> cc)

Therefore, we define the work to be

EmILIE DE BRETEtir (17(16-174'))

Another major work b\ de Breteuil was the

translation of Newton's "Philosophiae

Naluralis Principia Matliematica'" into

French. Her translation and commentary

greatly contributed to the acceptance of

Newtonian science in Europe.

W= lim Vf(,,)A.v,

Fix) dx.

Definition of ^Vorl^ n mc In a Variable Force

If ai object is mo\ed a ong a straight line by a contnuiously \'arvint! orce

Fix) . then the work U done bv the force as the object is mo\ed from .V - (/

to .V = /) is

W = lim y AW,

= Fix) ilx.

J 11

The remainmg examples in this section use some well-known physical laws. The

discoveries of many of these laws occurred during the same period in which calculus

was being developed. In fact, during the seventeenth and eighteenth centuries, there

was little difference between physicists and mathematicians. One such physicist-

mathematician was Emilie de Breteuil. Breteuil was instrumental in synthesizing the

work of many other scientists, including Newton. Leibniz. Huygens. Kepler, and

Descartes. Her physics text Insriluiions was widely used for many years.
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The tollowing thice laws of physics wcie dc\clopcd hy Robert Hooke

( 1635-17(13). Isaac Newton ( 1642-1727). and Charles Cotilomh (1736-1806).

1. Hooke's Law: The force F required to compress or stretch a spring (within its

elastic limits) is proportional to the distance d that the spring is compressed or

stretched Irom its original length. That is.

F = kd

where the constant of proportionality k (the spring constant) depends on the

specific nature of the spring.

2. Newton's Law of Universal Gravitation: The force F of attraction between two

particles of masses m
,
and nu is proportional to the product of the masses and

inversely proportional to the square of the distance d between the two particles.

That is.

Ill fill-,

EXPLORATION

The work done in compressing the

spring in Exainple 2 from .v = 3

inches to .v = 6 inches is 3375

inch-pounds. Should the work done

in compressing the spring from v =

inches to .v = 3 inches he more than,

the same as, or less than this?

Explain.

II III |and /)( , are given in grams and d in centmieters. F will be in dynes for a value

of /v =6.670 10 ^ cubic centimeter per gram-second squared.

3. Coulomb's Law: The force between twci charges (/, and i/, m a \acuum is

proportional to the product of the charges and in\erscl\ proportional to the square

of the distance d between the two cliarces. That is.

F = k 'Ml
d-

II (/, antl 1/, are gi\en in electrostatic units and (/ in centimeters, f will be in dynes

lor a \aluc of A =
1

.

n^i Exiimple 2 Compressing a Spring

A force of 7.~i() pounds compiesses a spring 3 inches from its natural length of 15

inches. Fintl the work done in compressing the spring an additional 3 inches.

Naliiral lenmli (F = n)

Cumpressed .-^ inches (/-'= 7,s())

r^
Conipressetl -v inches i/- = 2.S().i)

Fif;ure 6.49

Solutioi) By Hooke's l^aw. the force F(x) required to compress the spring .v units

(from its natural length) is flv) = kx. Using the given data, it follows that f(3) =

750 = (A)(3) and thus k = 250 and F(\] = 25().v. as shown in Figure 6.49. To find the

increment of work, assume that the foice required to compress the spring over a small

increment A.v is nearly constant. So. the increment of work is

A\r = (force)(ilistance increnient) = (250.\)A.\.

Because the spring is compressed from .v = 3 to .v = 6 inches less than its natural

length, the work required is

W = Fix) dx 25i)xdx Fennuiia lor work

125.V- 4500 - 1125 = 3375 inch-pounds.

Note that you do imi integrate Iroiii x = to .v = 6 because you were asked to deter-

mine the work done m compressing the spring an lukliliniuil 3 inches (not including

the first 3 inches).
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Ni'l ilruwri In

^•1 1
1

j >

4000

A.v

A 4800

The work required to move a space module

800 miles above earth is approximately

1.056 10" foot-pounds.

Figure 6.50

Example 3 Moving a Space Module into Orbit

A space module weighs 15 ton.s on the surface of earth. How much work is done in

propelling the module to a height of 800 miles above earth, as shown in Figure 6..'i0'?

(Use 4000 miles as the radius of earth. Do not consider the effect of air resistance or

the weight of the propellant.)

Solution Because the weight of a body varies inversely as the square of its distance

from the center of earth, the force fl.v) exerted by gravity is

/l.v)
C

C IS the conslanl of proporutmality.

\5 =

Because the module weighs Li tons on the surface of cailh and the radius of earth is

appro.xiniately 4000 miles, you have

J^^

(4000)=

24().()00.()()0 = C.

So. the increment of work is

AW = (forccKdistancc mcrcment)

240,000.000
,= ; A.v.

Finally, because the module is propelled from .v = 4000 to .v = 4800 luiles, the total

work done is

W = Fix) cl\ =

-240,000,000

.V

240,000,000
:/.v Fi.)rniuki fur work

Inleerale.

= -30,000 + 60,000

= 10,000 mile-tons

= 1.036 10" foot-pounds.

In the C-G-S system, using a conversion factor of 1 foot-pound = 1 .33382 joules, the

work done is

W .432 10" joules.

The solutions to Examples 2 and 3 conform to our development of work as the

summation of increments in the form

AW = (force)(distance increment) = (F)(A.v).

Another way to formulate the increment of work is

AW = (force incrementXdistance) = (Af )(.v).

This second interpretation of AW is useful in problems involving the movement of

nonrigid substances such as fluids and chains.
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16 -V

>Av

The wdik rei.|Liired tn |nini|i oil out lliioug

a hole in the top of the tank is approM-

niatel\ 589.7X2 foot-poiintls.

Kifjuru 6.51

Example 4 Emptying a Tank of Oil

voluine)

A spherical tank of radius 8 feet is half ftill of oil that weighs 50 pounds per cubic

foot. Find the work retiuired to pump oil out through a hole in the top of the tank.

Solution Consider the oil to be subdivided into disks of thickness Av and radius .v,

as shown in Figuie 6.51. Because the increment of force for each disk is given by its

weight, you ha\e

\F = weight

_ /50 pounds

\ cubic foot

,

= 5l)(7T.v-A\') pounds.

Fiir a circle of radius 8 and center at (0, 8). you have

.V- + (v - 8)= = 8
=

.\- = I6y - y-

and you can write the force increment as

Af = 50(;r.\-'A.v)

= 507t(16v - v-)Av.

In Figure 6,51. note that a disk y feet from the bottom of the tank must be moved a

distance of ( 16 — \') feet. Theiefore. the mciement of work is

AVV= Af(l6 - v)

= 50Tr(l6y - v^)Av(l6 - v)

= 507t(256v - 3:v^^ + v')Av.

Because the lank is half full, v ranges from U to 8. and the work required to empty the

tank is

W 5()7i(256v - 32v^ + v')Jv

5071

5(1 77

128V- --v-'+-

1.264

589.782 foot-pounds.

To estimate the reasonableness of the result in Example 4. consider that the

weight ot the oil m the tank is

1 /4
- (voliimeKdcnsity) = - -778-M(5(l)

~ 53,616.5 pounds.

Lifting the entiie half-tank of oil 8 feet would involve work of 8(53.616.5) = 428.932

foot-pounds. Because the oil is actually lifted between 8 and 16 feet, it seeins reason-

able that the work done is 589,782 foot-pounds.
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riie work required to raise one end of the

chain 20 feet is 1000 foot-pounds.

Figure 6.52

Example S Lifting a Chain

A 20-foot chain weighing 5 pounds per foot is lying coiled on the ground. How much

work is required to raise one end of the chain to a height of 20 feet so that it is fully

extended, as shown in Figure 6.52?

Solution Imagine that the chain is divided into small sections, each of length Av.

Then the weight of each section is the increment offeree

AF = (weioht) = (^-e^^^i^)(lenoth) = 5Av.
\ toot /

Because a typical section (initially on the ground) is raised to a height of v. the incre-

ment of work is

AVF = (force incrementKdistance) = (5 A\)\' = 5\' Ar.

Because v ranues from to 20. the total work is

W = 5v dr = ,iv- 5(400)
= 1000 foot-pounds.

Work done by expanding gas

Figure 6.53

In the next example we consider a piston of radius r in a cylindrical casing, as

shown in Figure 6.53. As the gas in the cylinder expands, the piston moves and work

is done. Up represents the pressure of the gas (in pounds per square foot) against the

piston head and V represents the volume of the gas (in cubic feet), the work increment

mvoKcd in moving the piston A.v feet is

AW = (forceXdistance increment) = F(A.v) = p{iTr-)A.x = p AV.

So, as the volume of the gas expands from \',| to \\. the work done in moving the

piston is

W = p dV.

Assuming the pressure of the gas to be inversely proportional to its volume, we have

/) = k/V and the integral for work becomes

W :dV.

Example 6 Work Done by an Expanding Gas

A quantity of gas with an initial \olume of 1 cubic foot and a pressure of 500 pounds

per square foot expands to a volume of 2 cubic feet. Find the work done by the gas.

(Assume that the pressure is inversely proportional to the volume.)

Solution Because p = k/V and p = 500 when V = \. we have k = 500. So, the

work is

W=
\

^dV
50(.)

-dV = 500 In h' 346.6 foot-pounds.
Cyl



CHAFFER 6 ApplicLilions of liUegralion

EXERCISES FOR SECTION 6.5

Constant Force In Exercises 1—I, determine the work done by

the constant lorce.

1. A lllO-pouiul hag orsug;ir IS lilteil 1(1 feet.

2. An elcelne hmst lifts a 2800-poumJ car 4 feet.

3. A force of 1 12 new tons is required to slide a cement block

4 meters in a construction project.

4. The locomotive of a freight train pulls its cars with a constant

force of 9 tons a distance of one-half mile.

5. State the definition of work done by a constant force.

6. State the definition of work done by a variable force.

7. The graphs show the force f, (in pounds) reqimed to move

an object 9 feet along the .v-axis. Order the force functions

from the one that yields the least work to the one that yields

the most work wilhoiit doing any calculations.

(a) (b)
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Verify your answer to bAeicise 7 by calculating the work for

each force liniciion.

Hookv's Law In Exercises 9-16, use Hooke's Law to determine

the variable force in the spring; problem.

9. A force of .^ poimds compresses a l.'i-mcli spring a total of

4 inches. How much work is done m compressing the spring

7 inches'?

10. How much work is done m compressing the spring in Exercise

9 from a length of 10 inches to a length of 6 inches'

11. A force of 2.'i() ncwtons stretches a spring .^0 centimeters. How
much work is done in stretching the spring from 20 ccntimclcrs

to 50 centimeters?

12. A force of 800 newtons stretches a spring 70 centimeters on a

mechanical device for driving fence posts. Eind the work done

in stretching the spring the required 70 centimeters.

13. A force of 20 pounds stretches a spring 9 inches in an exercise

machine. Eind the work done in stretching the spring 1 foot

from its natural position.

14. An overhead garage door has two springs, one on each side of

the door. A force of 15 pounds is required to stretch each spring

1 foot. Because of the pulley system, the springs stretch only

one-half the distance the door travels. Find the work done by

the pair of springs if the door moves a total of 8 feet and the

springs are at their natural length when the door is open.

15. Eighteen foot-pounds of work is required to stretch a spring 4

inches from its natural length. Eind the work required to stretch

the spring an additional 3 inches.

16. Seven and one-half foot-pounds of work is required to com-

press a spring 2 inches from its natural length. Find the work

required to compress the spring an additional one-half inch.

17. Fiopiilsion Neglecting air resistance and the weight of the pro-

pellant. determine the work done in propelling a 5-ton satellite to

a height of

(a) 100 miles above earth.

(b) .lOO miles above earth.

18. Propulsion LIse the information in Exercise 17 to write the

work 11' of the propulsion system as a function of the height /j

of the satellite above earth. Emd the limit (if it exists) of \V as

/) approaches infinity.

19. Propulsion Neglecting air resistance and the weight of the

propcllant. determine the work done in propelling a lO-ton

satellite to a height of

(a) I 1,000 miles abo\c earth.

(b) 22.000 miles abo\c earth.

20. Propulsion A lunar module weighs 12 tons on the surface of

earth. How much work is done in propelling the module from

the surface of the moon to a height of 50 miles'? Consider the

radius of the moon to be 1 100 miles and its force of gra\ ity to

be one-si\th that of earth.

21. Pumpiuff Water A rectangular lank with a base 4 feet by 5

feel and a height of 4 feet is full of water (see figure). The water

weighs 62.4 pounds per cubic foot. How much work is done in

pumping water out over the top edge m order to empty (a) half

of the tank'? (b) all of the tank?

^1.. xlM
Cn^s

22. Think About It Explain why the answer in part (b) of

Exercise 21 is not twice the answer in part (a).
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23. Pumping Water A cylindrical water tank 4 meters high u ith

a radius of 2 meters is buried so tliat the top of the tank is 1

meter below ground level (see figure). How much work is done

in pumping a full tank of water up to ground level' (The water

weighs 9800 newtons per cubic meter.

)

Figure for 23 Figure for 24

24. Pumping Water Suppose the tank in Exercise 23 is located on

a lower so that the bottom of the tank is 10 meters above the

le\el of a stream (.see figure). How much work is done in filling

the tank half full of water through a hole in the bottom, using

water from the stream'

25. Pumping Water An open tank has the shape of a right circu-

lar cone (see figure). The tank is S feet across the top and 6 feet

high How much work is done m emptying the tank by pump-

ing the water over the top edge?

Figure for 25 Figure for 28

26. Pumping Water If water is pumped in through the bottom of

the tank in Exercise 2."^, how much work is done to fill the tank

(a) to a depth of 2 feel'

(b) from a depth of 4 feet to a depth of 6 feet''

27. Pumping Water A hemispherical tank of radius 6 feet is posi-

tioned so that Its base is circular. How much work is required to

fill the tank with water through a hole in the base if the water

source is at the base'?

28. Pumping Diesel Fuel The fuel tank on a truck has trape-

zoidal cross sections with dimensions (in feet) shown in the

figure. Assume that an engine is approximately 3 feet above the

top of the fuel tank and that diesel fuel weighs approximately

55.6 pounds per cubic foot. Find the work done by the fuel

pump in raising a full tank of fuel to the le\el of the engine.

Pumping Gasoline In Exercises 29 and 30. find the worli done

In pumping gasoline that weighs 42 pounds per cubic foot.

[Hint: Evaluate one Integral by a geometric formula and the

other by observing that the integrand is an odd function.)

29. A cylindrical gasoline tank 3 feet in diameter and 4 feet long

is canied on the back of a truck and is used to fuel tractors.

The axis of the tank is horizontal. Find the work done in pump-

ing the entire contents of the fuel tank into a tractor if the

opening on the tractor tank is 5 feet above the top of the tank in

the truck.

30. The top of a cylindrical storage tank for gasoline at a service

station IS 4 feel below ground level. The axis of the tank is

horizontal and its diameter and length are 5 feet and 12 feet,

respectively. Find the work done in pumping the entire contents

of the full tank to a height of 3 feet above ground le\el.

Lifting a Chain In Exercises 31-34, consider a 15-foot chain

hanging from a winch 15 feet above ground level. Find the work

done by the winch In winding up the specified amount of chain.

If the chain weighs 3 pounds per foot.

31. Wind up the entire chain.

32. Wind up one-third of the chain.

33. Run the winch until the bottom of the chain is at the lO-foot

level.

34. 'Wind up the entire chain with a 500-pound load attached to it.

Lifting a Chain In Exercises 35 and .^6, consider a 15-foot

hanging chain that weighs 3 pounds per foot. Find the work

done in lifting the chain vertically to the Indicated position.

35. Take the bottom of the chain and raise it to the 15-foot level,

leaving the chain doubled and still hanging vertically (see

fisure).

I

I.S-2v

36. Repeat Exercise 35 raising the bottom of the chain to the

12-foot level.

Demolition Crane In Exercises 37 and 38, consider a demoli-

tion crane with a 500-pound ball suspended from a 40-foot cable

that weighs 1 poimd per foot.

37. Find the work required to wind up 15 feet of the apparatus.

38. Find the work required to wind up all 40 feet of the apparatus.
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Bo\lc\ Imw 111 Kxercises 39 and -10. Hiitl the Moik doiif by the

gas for the fjheii \<)hiiiie and pressure. Assume that the pressure

is in\ersel\ proportional to the ^olunle. (See Kxampie 6.)

39. A quanlitv of gas with an initial \olnnic of 2 ciiliic led and a

pressure of lOdf) poiniils pei square foot expands to a \oliime

of 3 cubic feet.

40. A quantity of gas witli an innial \oliinie ol' 1 ciiliic fool and a

pressure of 2500 pounds per square foot expands to a \(iliuiie

of 3 cubic feet.

41. Electric Farce Two elcctmns repel each othci with a force

tliat \aiies ni\crsel_\ as the sqnaie of the distance between thcni.

II one electron is fixed at the point (2, 4). find the work done In

nio\ ing the second electron from (
- 2. 41 to 1 1 . 4).

rp 42. Modeling Data The hydiauhc cylinder on a woodsplitter has

a 4-inch bote (diameter) and a stroke of 2 feet. The hydiaulic

pump creates a ma\imnni pressure of 2001) pounds per square

inch. Therefore, the maximum force created by the cylinder is

20001 7t2-) = 800077 pounds.

(a) Find the work done through one extension ol the cylmdei"

given that the maxnnum force is required.

(hi The force exerted in splitting a piece of wood is \ariable.

Measurements of the force obtained when a piece of wood

was split are shown in the table. The variable .v measures

the extension of the c\linder in leel, and / is the force in

pounds. L'se .Simpson's Rule to approximate the work done

in splitting the piece of wood

^ X :
1

4

,1 3
2

F{x) 20.0(J0 22,000 15.000 10.000 5000

Table for 42(b)

(c) Use the regression capabilities of a graphing utility to find

a fourth-degree polynomial model for the data. Plot the data

and graph the model.

(d) L'se the model in part (e) to approximate the extension of

the cylinder when the force is maximum.

(e) Use the model m part (c) to approximate the work done m
splitting the piece of wood.

rp Hydraulic Press In Exercises 43—16. use the integration

capabilities of a graphing utility to approximate the Hork done

by a press in a manufacturing process. X model for the variable

force /•' (in pounds) and the distance .v (in feet) the press moves

is given.

Force Inlen'al

43. F{\ -= lll()0[l,,S - Ind + n] < .V < 5

44. Fix

Fix

<' - 1

100
< .V < 4

45. = lOO.Vv 125 - .V' < .V < 5

46. Fix = 1001) sinh \ < .V < 2

SECTION PROJECT

Tidal power plants use "tidal energy" to produce electrical

energy. To construct a tidal power plant, a dam is built to sepa-

rate a bay from the sea. Electrical energy is produced as the

water flows back and forth between the hay and the sea. The

amount of "natural energy" produced depends on the volume of

the bay and the tidal range—the vertical distance between high

and low tides. (Throughout the world, several natural bays have

tidal ranges in excess of 15 feet; the Bay of Fundy in Nova

Scotia has a tidal ranse of 47.5 feet.)

(a) Consider a basin with a rectangular base, as shown in the

figure. The basin has a tidal range of 25 feet, with low tide

corresponding to y = 0. How much water does the basin hold

at high tide?

(b) The amount of energy produced during the filling (or the

emptying) of the basin is proportional to the amount of work

required to fill (or empty) the basin. How much work is

required to fill the basin with seawater? (Use a seawater

density of 64 pounds per cubic foot.

)

The Bay of Fundy in Nova Scotia has an extreme tidal range, as

displayed in the greatly contrasting photos above.

FOR FURTHER INFORMATION For more information on tidal

power, see the article "LaRance: Six Years of Operating a Tidal

Power Plant in Fiance" by J. Cotillon in Water Power Magazine.
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Moments, Centers of Mass, and Centxoids

• Undersland the iJefinition e)f mass.

• Find the center ol' mass in a one-dimensioiial system.

• Find the center ol' mass in a two-dimensional system.

• Find the center of mass of a planar lamina.

• Use the Theorem of Pappus to find the \olume of a solid of re\olution.

Mass

In this section \ou will studs se\cral important applications ol intcsratinn that are

related to mass. Mass is a measure of a body's resistance to changes m motion, and rs

independent of the particular grasitational system in which the body is located.

Ho\\e\er, because si) main applications inxohing mass occur on earth's surface. \\c

tend to equate an object's mass w ith its weight. This is not technically correct. Weight

IS a type of force and as such is dependent on gravitv. Force and mass arc related bv

the equation

Force = (massKaceeleration).

The table below lists some commonly used measures of mass and force, together w ith

their conversion factors.

System of

Measurement

Measure of

Mass Measure of Force

U.S. Slug Pound = (slug)(ft/sec-)

International Kilogram Newton = (kilogram)(m/.sec-)

C-G-S Gram Dyne = (gram)(cm/sec-)

Conversions:

1 pound = 4.44S newtons 1 slug = 14.59 kilograms

1 newtoii = 0.224S pound 1 kilogram = 0.068.54 slug

1 dyne = 0.000002247 pouiul 1 gram = 0.00006854 slug

1 dyne = 0.00001 newi(.)n 1 meter = 0..^048 foot

Example 1 Mass on the Surface of Earth

Find the mass (in slugs) of an object whose weight at sea le\el is 1 pound.

Solution Using .^2 feet per second per second as the acceleration due to gravity

produces

Ma
force

acceleration
Force — (niass)(accelcr;iliiin)

pound

32 feet per second per second

, , pound
0.0.3 1 25 !

,

toot per second per second

0.03125 slua.

Because many applications in\(il\ing mass occur on earth's surface, this amount of

mass is called a pound mass.
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20 ks 30 ka

-2 m-

The seesaw will balance when the let! and the

right moments are ei|iial.

Figure 6.54

Center of Mass in a One Dimensional System

We will consider two types of moments of a mass—the moment about a point and

the moment about a line. To define these two moments, consider an idealized situa-

tion m w Inch a mass i)i is concentrated at a point. If .v is the distance between this point

mass and another point P. the moment of /« about the point P is

Moment = iiix

and \ IS the length (»f the moment arm.

The concept of moment can be demonstrated simply by a seesaw, as illustrated in

Figure 6.54. Suppose a child of mass 20 kilograms sits 2 meters to the left of

fulcrum P, and an older child of mass 30 kilograms sits 2 meters to the right of P.

From experience, you know that the seesaw will begin to rotate clockwise, moving the

larger child down. This rotation occurs because the moment produced by the child on

the left is less than the moment produced by the child i)n the right.

Left moment = (20)(2) = 40 kilogram-meters

Right moment = (31l)(2) = 60 kilogram-meters

To balance the seesaw, the two moments must be equal. For example, if the larger

child moved to a position t meters from the fulcrum, the seesaw would balance,

becairse each child wmild produce a moment of 40 kilograni-meters.

To geneialize this, you can introduce a coordinate line on which the origin corre-

sponds to the fulcrum, as shown in Figure 6.5.5. Suppose several point masses are

located on the .v-axis. The measure of the tendency of this system to rotate about the

origin IS the moment about the origin, and it is defined as the sum of the ;; products

A/„ iii.x, + ;j;,.v, + + '"„v,.

If m, A'l + /H,.v, +
Figure 6.55

+ '"„-V„ 0, the s\stem is in ec|uilihriLini.

If A7|| IS 0. the system is said to be in equilibrium.

For a system that is not in equilibrium, the center of mass is defined as the point

X at which the fulcrum could be relocated to attain equilibrium. If the system were

translated a units, each coordinate .v, would become (.v, - .v ). and because the moment

of the Iranslalcd system is 0. you ha\'e

!i }i It

^ "',(v, — .v) = V /;;,.v, — V /)(,-V = 0.

I \ 1=1 1=1

Solving for a produces

V in X
_ _ ,-^1 _ moment of system about origin

total mass of system

+ /»„A„ = 0. the system is in cc|uilibi"ium.

S"'-

'

/;/ |V| + /;(,AS -I-
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Moments and Center of Mass: One Dimensional System

Let the point masses /»|. ;;;, ;»„ be located at .v,. .v-,, . .
•

'^,1-

1. The moment about the origin is M,, = »/, v, + ;;;,v, + + in^^x,^

2. 1 he center of mass is v = — . where in = m, + m-, + •

m
+ III,, is the

total mass of the system.

Example 2 Tlic Center of Mass of a Linear System

Find the center of mass of the linear system shown in Fiiiure 6..S6.

-(lO) \

! 1 1—M?)—I
1

\
0- 1 (K)j

\
i

—--V

-4 -.1 -2 -1 n I : ."i 4 5 ft 7 S fl

Figure 6.56

Solution The moment about the origin is

A/ii = /»|-V| + in^_x^_ + in~^x,, + "(4.^4

= 10(-5) + LS(()) + .^(4) + 10(7)

= - 50 + + 20 + 70

= 40.

Because the total mass of the system is /;; = 10 + 15 + 5 + 10 = 40. the center of

mass IS

__ yW^ ^ 40 ^
"^ m 40 '^

NOTE In Example 2. where should you locate the luleruni so thai the point masses will be in

equilibrium'.'

Rather than define the moment of a mass, you could define the moment of a/o/rc.

In this context, the center of mass is called the center of gravity. Suppose that a

system of point masses /»,. /;/, iii„ is located at .v,. .v, v„. Then, because

force = (massKacceleration). the total force of the system is

f = ;»,(/ + m^a + + m„a

= Ilia.

The torque (moment) about the origin is

r,, = ("i|fl).v, + (/»,((),v, + • • + [iii„L\)x„

= M„ci

and the center of gravity is

r„ ^ M„fl _ M„ _ _

F ma III

Therefore, the center of gravity and the center of mass have the same location.
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y (.v„ y,)

(-v„.y„)

In a iwo-Jiiiiensional svslcni. there is a

moment alionl the i -axis. U, . and a moment

ahotil the v-a\is. .1/,.

Figure 6.57

Center of Mass in a Two-Dimensional System

You can extend the concept of moment to two dimensions by considering a system of

masses located in the .vv-phine at the points (.V|,y,). (.v,. y,) (a„. y„). as shown in

Figure 6.57. Rather than defining a single moment (with respect to the origin), we

define two moments—one with respect to the .v-axis and one with respect to the

v-axis.

Moments and Center of Mass: Two Dimensional System

Let the point masses iiifjii^ . )»„ be located at (.v,. y, ). (.v,. -v.) (V.v,,).

1. The moment about the v-axis is M^ = iii^.x^ + »n.\s -I-
• + "l„\r

2. The moment about the v-axis is M^ = iiiiy^ + 1112}-, + + '»„>„

3. The center of mass (.v. y ) (01 center of gravity) is

A/,

.V = — and
III

y = Ma
III

where in = /», + iiij + + ;h„ is the total mass of the system.

The moment of a system of masses in the plane can be taken about any horizon-

tal or \eitical line. In general, the moment about a line is the sum of the product of the

masses and the ill recteii distances from the points to the line.

Moment = niA \, - h) + /;;,( a\ - /') -I-

Moment = iii,(.\, a) + iiiA.w

+ ill„(y„ — b) Honzonlal line V = /;

+ lll„i\„ ~ o) Vertical Ime .v = u

1 T 14'')
(0,0) 1'", = 3 '^-'
1 h-^^—t 1

1 H-

A

12 3 4

©
(3,-2)

The center of ma.ss of the system is
( j, 5).

FIgiiri' 6.58

Example 3 Tlie Center of Mass of a Two Dimensional System

Find the center of mass of a system of point mas.ses ;;;, = 6, nu

/»4 = 9, located at

(3, -2), (d. 0). (-.S. .^,). and (4.2)

as shown in Finuie 6.58.

and

Solution

m = 6 -H 3 +2 +9 =20

A-/, = 6(3) + 3(0) + 2(-5) + 9(4) = 44

M^ = 6(-2) + 3(0) + 2(3) + 9(2) = 12

Therefore,

A/, 44 11

and

III

20

20

Mass

Monient about v-a\ls

MnnieiU aLioiil .\-a\is

and thus the center of mass is (y, 5).
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(-v,.v) (?.y)

U

You can think of the center of mass ix.v)

of a lamina as its balancnig point. For a cir-

cular lamina, the center of mass is the center

of the circle. For a rectangular laiuuta. the

center of mass is the center of the rectangle.

Figure 6.59

\'

/^v,,/(.7)r

Ax

* (\-.v,)

g

'

"
;( V. St.v))

.V J

Center of Mass of a Planar Lamina

So far in this section we have assumed the total mass of a system to be distributed at

discrete points in a plane or on a line. We now consider a thin, flat plate of material of

constant density called a planar lamina (see Figure 6..S9). Density is a tneasure of

mass per unit of volume, such as grams per cubic centimeter. For planar laminas. how-

ever, density is considered to be a tneasure of mass per unit of area. Density is denoted

by p. the lowercase Greek letter rho.

Consider an irregularly shaped planar lamina of uniform density p. bounded by

the graphs of y = /(.v). y = g{\). and a < x < b. as shown in Figure 6.60. The mass

of this region is gi\en by

m = (densityXarea)

/>

[/(.v) - g(x)'\ dx

= pA

where A is the area of the region. To find the center of mass of this lamina, partition

the interval [a. b] into /; subintervals of equal width A.v. Let .v, be the center of the /th

submterval. You can approximate the portion of the lamina lying in the ;th subinteival

by a rectangle whose height is /; = /(.v,) - ,i,'(.v,). Because the density of the rectangle

is p. its mass is

»/, = (density Karea)

= p[,/'(-V,) - ,i,'(-v,)] Av.
1

. -^.''

Densii\ Heiiilil Widih

Now, considering this mass to be located at the center fv,. \, ) ol the rectangle, the

directed distance from the .v-a\is to (.v,. y,) is y, = [/(.v,) + .i,'(.v,)]/2. So. the moment

of 111 about the .v-a,\is is

Moment = (massKdistancc)

= "',.v, = p[,/(v,) - s;(-v,)] A.V
./(A-,) + ,i;(.v,)"

Planar lamina of uniform density /;

Figure 6.60

Summing the moments and takins the limit as (/—>co suiiszest the definitions below.

AInmcnts and Cenior ofMass nf a Planar lamina

Let / and ? be continuous functions such that /(.v) > i;(.v) on [n. />]. and

consider the planar lamina of uniform densit\ p hounded by the graphs of

^ = /(.v). V = ,i,'(,v). and ti < x < b.

1. The moments about the .v- and y-axes are

A-/, = p
fix) + gix)

->
[,/lv) ~ g(x)] dx

M, = p .v[/(.v) - g(x)] dx.

M,, M
2. The center of mass (.v. \) is siven by .v = ^ and i- = —^. where

m III

m = pJl^ifix) - gix)] dx is the mass of the lamina.
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noi

Figure 6.61

/?»/ Exnviple 4 The Center of Mass of a Planar Lamina

/(.v) = 4-.v-

Find the center of mass of the lamina of uniform density p bounded by the graph of

f(.\)
= 4 — A- and the A-axis.

Solution Because the center of mass hes on the axis of symmetry, you know that

-v = 0. Moreover, the mass ot the lamina is

III = p \
(4 - A") iix

4v -

To find the moment about the A-axis. place a representative rectangle in the region, as

shown in Figinc (i.61. The distance from the A-axis to the center of this rectangle is

,/lv) 4 - A=

Center ol mass;

(I,

The ci'iitiT of mass is the h^ilaiuiiiL' point.

P"i"ure 6.62

Because the mass of the representative rectangle is

p/lv) A.V = p(4 - A-) A.V

you have

(16 - 8a- + A-*) (/a

p
16a ---.^

256p

5

and y is gi\en by

^ _ M, _ 256p/15 _ 8
-'*' ~ m ~ 32p/3 ~ 5

'

So. the center of mass (the balancing point) of the lamina is (o. !^). as shown in

Figure 6.62.

The density p in Example 4 is a common factor of both the moments and the

mass, and as such cancels out of the quoticnis representing the coordinates of the

center of mass. So. the center of mass of a lamina of iiiiifonn density depends onl\ on

the shape of the lamina and not on its density. For this reason, the point

I'enier of mass or cennoitl

is sometimes called the center of mass of a ivi^ioii in the plane, or the centroid of the

region. In other words, to find the centroid of a region in the plane, you simply assume

that the region has a constant density of p = 1 and compute the coiTCsponding center

of mass.
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The cenH'oid of iIk' region is (
- ^, — ).

Figure 6.63

f: EXPLORATION

Cut an iiTegular shape t'roni a piece

of cardboard.

a. Hold a pencil vertically and move

the object on the pencil point until

the centroid is located.

b. Divide the object into representa-

tive elements. Make the necessary

measurements and numerically

approximate the centroid. Compare

your result with the result in

pari (a).

r»|-,^,

(a) On>:iiial region

(5. I)

I 2 .1 4 .1 6

(b) The centroid of the region is (2.Q. 1 ).

Figure 6.64

Example 5 The Centroid of a Plane Region

Find the ccnlniid o( ihc region bdiuKlcd by the graphs of /(.v) = 4 - .v- and ^i^(.v)
=

.V + 2.

Solution The two graphs intersect at the points (-2.0) and (1..^). as shown in

Figure 6.63. So. the area of the reuion is

A [fix) -A'(.v)](/.v= (2 -x-x-)dx = -.

Thc centroid (.v. v) of the region has the following coordinates

1

.v = -, ^.v[(4-.v^ V + 2)]</.v = ^ (-.v' - .V- + 2.v),/.v

9

\_

A j ,

9\2

+ .V-

9 ]-.

I
9

4 3

'^ --^' :'--"-'
j[(4-.v:,-U. 2,] ./v

(-.V- + .V + 6)(-.v- - .V + 2),/v

(a--* - 9.V- - 4.V + 12)</.v

3.v' - 2.V- + 12.V
i;

So. the centroid of the region is (v. y) =
(
— i. t)-

For simple plane regions, you may he able to tlnd the centroid wilhotit resorting

lo mlcuration.

Example 6 The Centroid of a Simple Plane Region

Find the centroid of the region shown in Figure 6.64(a).

Solution By superimposing a coordinate system on the region, as shown ni F-'igiire

6.64(b). vou can locale the centroids of the three rectanelcs at

i {-:

1 3\ 15 ]

-I' -I r \~<'~i
and (-S. I).

Using these three points, you can find the centroid of the region.

A = area of regii)n = 3 + 3 + 4 = 10

__ (l/2)(3) + (5/2)(3) + (.'i)(4) _ 29

10 10

(3/2)(3) + (l/2)(3) + (l)(4) ^ m
10 10

So. the centroid of the recion is (2.9. 1 ).

2.9

V

\A'^.

NOTE In E.xample 6. notice that (2.9. 1 ) is not the "average" of (i. fj. (3, 5). and (5. 1 ).
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The \oUime I is 2 - r 1 where 1 is the area of

region A'.

Figure 6.65

Theorem of Pappus

The final topic in tins section is a useful theorem credited to Pappus of Alexandria (ea.

300 A.D.), a Greek mathematician whose eight-volume Mathemutical Collection is a

record of much of classical Greek mathematics. We delay the proof of this theorem

until Section 13.4 (Exercise 54).

THEOREM 6.1 The Theorem of Pappus

Let ^ be a region in a plane and let L be a line in the same plane such that L

does not intersect the interior of R. as shown in Figure 6.65. If / is the distance

between the centroid of R and the line, then the volume V of the solid of revo-

lution formed by revoUing R about the line is

\-= 2 77;v\

where A is the area of R. (Note that 2— r is the distance tra\eled b\ the centroid

as the recion is ie\ol\ed about the line.)

The Theorem of Pappus can be useel to find the volume of a torus, as shown in

the following example. Recall that a torus is a doughnut-shaped solid formed by

i"e\olving a circular region about a line that lies in the same plane as the circle (but

does not intersect the circle).

Example 7 Fmding Volimie by the Theorem of Pappus

Find the volume of the torus formed by revolving the circular region bounded by

(v - 2)- + \'- = 1

about the \-axis. as shown in Figure 6.66(a).

EXPLORATION

Use the shell method to show that the

volume of the torus is given bv

47r.vyi - (.V - l)-dx.

Evaluate this integral using a graph-

ing utility. Does your answer agree

with the one in Example 7?

(a)

Fi"uri' 6.66

Toiiis

(b)

(.v-2)- + v-= 1

Centroid

Solution In Figure 6.66(b), you can see that the centroid of the circular region is

(2, 0). So. the distance between the centroid and the axis of revolution is / = 2.

Because the area of the circular region is ,4 = it. the \olume of the torus is

V = 2tt iA

= 27r(2)(7T)

= 477-^

== 39.5. tZl
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EXERCISES FOR SECTION 6.6

In Exercises 1—t, find the center of mass of the point masses

lying on the .v-axis.

1. Ill, = 6. »(, = 3. Ill,, = 5

.Y| = -5..V, = 1..V, = 3

2. /H| = 7. 1112 = 4. (», = 3, ;»4 = 8

.v, = -3..V, = -2. A, = 5..v_, = 6

3. Ill
I

= I. Ill 2
= l./"j = I./H4 = \.iii^ = 1

.V, = 7. .V, = 8..V, = I2..v_, = l.'S..!-, = 18

4. Ill, = 12. //I, = 1.0); = 6, /»4 = 3. ;)(^ = II

x, = -6..V, = -4..V, = -2,.V4 = 0..V, = 8

12.

Ill- 3 4

U,.J,) (-2. -3) (-1,0)

'",
T

1 6

(^,.^,) (7. 1) (0.0) (-3.0)

in- 12 6
15

15

(^i^y,) (2.3) (-1..'^) (6, 8) (2.-2)

5. Graphical Reasniiiiii;

(al Translate each pnuil mass in Exercise 3 to (lie right .s units

and determine the resulting center iif mass.

(bl Translate each point mass in Exercise 4 to the Icll 3 units

and determine the resulting center of mass,

6. Conjecture Llse the result ol Exercise ."i to make a eonicctiire

about the change m the center of mass that results when e.ich

point mass is translated L units hori/ontalK

Statics Problems In F.xercises 7 and S. consider a heam ol

length /, with a fulcrum x feet from one end (see figure!. If there

are objects with weights 11 , and II , placed on opposite ends of

the beam, find x such thai the system is in e(|uilibrium.

/ A

In F:\ercises 13-24. find .1/,. .1/,. and (x. v) for the laminas of

uniform density f) bounded b) the graphs of the equations.

13. V = J'x.y = 0..V = 4

14. V = i.v-. V = 0..V = 2

15. V = .V-. \' = .V-"'

16. v = v(v.y = X

17. V = -.V- + 4.V + 2, V = .V + 2

IS. V = v'v + I. V = TV + 1

19. V = .V- \y = 0. .V = S

.v-/-\ V = 4II.

I.

2

3.

4.

- L-x

In Exercises 25-28, set up and e\aluate the integrals lor finding

the area and moments about the x- and y-axes for the region

bounded by the graphs of the ei|natious. I Assume
f)
= I.)

7. Two children weighing ,10 pounds and 75 pounds are going to

play on a seesaw that is 10 Icct long.

8. In order to mo\e a 55()-pound rock, a person weighing 200

pounds wants to balance it on a beam that is 5 teet long.

In Exercise 9-12, find the center of mass of the giyen system of

point masses.

10.

m, 5 1 3

(^i,y;) (2,2) (-3. I) (1. -4)

m, 10 T 5

(^,-,J,) (l.-l) (5. 5) (-4.0)

26. \

27. y

28. ^-

-. V = 0.
V

2v + 4. \'

I- - 4, \'

< -v < 4

= 0. < .V < 3

=

rV In Exercises 29-32, use a graphing utility to graph the region

bounded by the graphs of the equations. I se the integration

capabilities of the graphing utility to approximate the centroid

of the region.

29. y = 10.vv'l25 - .v\ y =

30. y = .vf -"-, y = 0. .v = 0. .v = 4

31. Prefabricated End Section of a Building

\ = 5 ,: 400 - .V-. V =

32. lV/>(7( ofAgnesi

y = 8/(.v- + 4),y = 0, .v = -2,.v = 2
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In Exercises 33-38. find and/or xeiih the centroid oi the

eommon resioii used in engineering.

33. Triangle Show that the centroid of the triangle with vertices

(-(/, 0). (<;. 0). and (b,c) is the point of intersection of the

medians (see fii^ure).

(/'..I (<; + /). I I

I.;, II)(-fi. 0)

Figure for 33 Figure lur 34

34. Paralleloj-ram Show that the centroid of the parallelogram

with \ertices (0. 0). (a. 0), (/>, c). and (</ + />. c) is the point of

intersection ol the diagonals (see figure).

35. Trapezoid Find the centroid of the trapezoid with x'crtices

(0. 0), (0, ((). (c. /)). and (i . 0), Show llial il is llic intcrscclion of

the line connecting the midpoints of the parallel sides and the

line connecting the extended parallel sides, as shown in the

tlsure.

Figure l(ir 35 Figure for 36

36. Semicircle Find the centroid of the region bounded by the

graphs of V = ^//-- - v- and v = (see figure 1-

37. Semiellipse Find the centroid of the region bounded by the

t;raphs of \ = — Ja- — .v-^ and v = (sec fiizure)."
u

Parabolic spandrel

/^.-•ll, Il

= 2v-A-

(0.0)

Figure for 37 Figure for 38

38. Parabolic Spandrel Find the centroid of (he paral)olic

spandrel shown in the figure.

39. Graphical Reasoning Consider the region bounded by the

graphs of y = .v- and y = h. where h > 0.

(a) Sketch a graph of the region.

(b) Use the graph in part (a) to determine .v. E.xplain.

(c) Set up the integral for finding M^. Because of the form of the

integrand, the \alue of the integral can he obtained without

integrating. What is the form of the integrand and what is the

value of the integral' Compare v\ ith the result in part (bl.

h
(d) Use the graph in part (a) to determine whether y > T or

y < —
. H.\plain.

(e) Use integration to verify your answer in part (d).

40. Graphical and Numerical Reasoning Consider the region

bounded by the graphs of y = .v^" and y = /;. w here h > and

;; is a positi\e integer.

(a) Set up the integral for finding A/,. Because of the form of

the integrand, the value of the integral can be obtained

without integrating. What is the form of the integrand and

what is the value of the integral? Compare with the result in

part (b).

/> h
(bl Is y > - or y < - ' Explain.

(c) Use integration to find y as a function of ;!.

(d) Use the result in part (c) to complete the table.

n 1
1 3 4

y

(e) Find lim v.

(f ) Give a geometric explanation of the result in part (e).

rp 41. Modeling Data The manufacturer of glass for a window in a

conversion van needs to approximate its center of mass. A coor-

dinate system is superimposed on a prototype of the glass (see

figure). The measurements (in centimeters) for the right half of

the symiTietric piece of glass are shown in the table.

X 10 20 30 40

y 30 2y 26 20

(a) Use Simpsons Rule to approximate the center of mass of

the glass.

(b) Use the regression capabilities of a gr.iphing utility to find

a fourth-degree poly nomial model for the data.

(c) Use the integration capabilities of a graphing utility and the

model to approximate the center of mass of the glass.

Compare with the result in part (a).
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^ 42. Modeling Data The manufacturer of a boat needs lo approx-

imate the center of mass of a section of the hull. A coordinate

system is superimposed on a prototype (see figure). The mea-

surements (in feet) for the right half of the s\mmctric

prototype are listed in the table.

X 0.5 1.0 1.5 t

I 1.50 1.45 1.30 0.99

d 0.50 0.48 0.43 0.33

(a) Use Simpson's Rule to approximate the center of mass of

the hull section,

(b) Use the regression capabilities of a graphing utility to find

fourth-degree polynomial models for both curves shown in

the figure. Plot the data and graph the models.

(c) Use the integration capabilities of a graphing utihty and the

model to approximate the center of mass of the hull section.

Compare with the result in part (a).

In Exercises 43-46, Introduce an appropriate coordinate

system and tlnd the coordinates of (he center of mass of (he

planar lamina. (The answer depends on the position ol the

coordinate s\stem.)

43. 44. '*!*-

^ 1 > 1

1

1

t

45. 46.

2 2

4 4

[_J

47. Find the center of mass of the lamina in Exercise 43 if the

circular portion of the lamina has twice the density of the

square portion of the lamina.

48. Find the center of mass of the lamina in Exerci.se 43 if the

square portion of the lamina has twice the density of the circu-

lar portion of the lamina.

In Exercises 49-52. use the Theorem of Pappus (o tind the

volume of the solid of revolution.

49. The torus formed by re\ol\nig the circle (.v - 5)- + y- = 16

about the v-axis

50. The torus formed by revolving the circle .\- -1- (v - 3)- = 4

about the .v-axis

51. The solid formed b\ revolving the region bounded b\ the

graphs of ^ = A. \ = 4. and v = about the \-a\is

52. The solid formed by revolving the region bounded by the

graphs of y = 2 v' v — 2. y = 0. and .v = 6 about the y-axis

53. Let the point masses m,. m, m„ be located at {.v,, y,).

(.V,. v,) (-v„. v,,)- Define the center of mass (.v. y).

54. What is meant by a planar lamina? Describe what is meant

by the center of mass (.v. y) of a planar lamina.

55. The centroid of the plane region bounded by the graphs of

v = f(x). 1=0. -V = 0, and .\ = 1 is (j^. -^]. Is it possible to

find the centroid of each of the following regions bounded

by the graphs of the equations? If so. identify the centroid I

and explain your answer.

(a) \' =/(.v) + 2. V = 2. v = (). and > = 1

(b) y =/(.v - 2), v = 0. .V = 2. and .v = 3

(c) y = -/(.v). y = 0. .V = 0. and v = I

(d) y = /(.v), V = 0. .V = -1. and v = 1

56. State the Theorem of Pappus.

In Exercises 57 and 5S. use the Second Theorem of Pcippns.

which Is stated as follows. If a sefjnient of a plane curve C Is

revolved about an axis that does not Intersect the curve (except

posslblv at its endpolnts), the area .S of the resullhi}; surface of

revolution is jjlven hy the product of the leiijjth of ( limes the

distance d traveled b\ the centroid of C

57. A sphere is toriiied by revtihiiig the grapli ol

V = V '- - -V-

about the .v-a\is. Use the fornuila for surface area. S = 4m--, to

tind the centroid of the semicircle y = Jr~ — x-.

58. .A torus is formed by revoK ing the graph of

(v - D- -1- y- =
I

about the i-axis. Eind the surface area ol the torus.

59. Let ;i > 1 be constant, and consider llie region bounded by

/(.v) = v". the .\-axis. and -\ = I . Find the centroid of this

region. As /; —> -yz. what does the region look like, and where is

its centroid''
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Blaise Pascal (1623-1662)

Pascal is well known for his work in many

areas of mathematics and physics, and also

for his influence on Leibniz. Although much

of Pascal's work in calculus was intuitive and

lacked the rigor of modern mathematics, he

nevertheless anticipated many important

results.

Fluid Pressuie and Fluid Force

• Find nuid pressure and fluid force.

Fluid Pressure and Fluid Force

Swimmers know that the deeper ati object is submerged in a fluid, the greater the pres-

sure on the object. Pressure is defined as the force per unit of area over the surface of

a body. For example, because a colurnn of water that is 10 feet in height and 1 inch

square weighs 4.3 pounds, the fluid pressure at a depth of 10 feet of water is 4.3

pounds per square inch. ' At 20 feet, this would increase to 8.6 pounds per square inch,

and in general the pressure is proportional to the depth of the object in the fluid.

Definition of Fluid Pressure

The pressure on an object at depth /( in a liquid is

Pressure = P = wli

where w is the weight-density of the liquid per unit of volume.

Below are some common weight-densities of fluids in pounds per cubic foot.

Ethyl alcohol 49.4

Gasoline 41.0-43.0

Glycerin 78.6

Kerosene 31.2

Mercurv 849.0

Seawater 64.0

Water 62.4

When calculating fluid pressure, you can use an important (and rather suiprising)

physical law called Pascal's Principle, named after the French mathematician Blaise

Pascal. Pascal's Principle states that the pressure exeited by a fluid at a depth /; is

transmitted equally in all direclions. For example, in Figure 6.67, the pressure at the

indicated depth is the same for all three objects. Because fluid pressure is given in

terms of force per unit area (P = F/A). the fluid force on a submerged luvizontal

suiface of area A is

Fluid force = F = PA = (pressure)(area).

The pressure at h is the same for all three objects.

Figure 6.67

* The Inliil pressure nil cm object in 10 feet of water would also include the pressure due to

earth ',v utiiu <spliere. At sea level, atinosplieric pressure is approximately 14.7 pounds per square

inch.
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The Oiiid force on a horizontal metal sheet is

equal to the fluid pressure times the area.

Figure 6.68

Example I Fluid Force on a Submerged Sheet

Find the fluid force on a rectangular metal sheet measuring 3 feet by 4 feet that is

submerged in 6 feet of water, as shown in Figure 6.68.

Solution Because the weight-density of water is 62.4 pounds per cubic foot and the

sheet is submerged in 6 feet of water, the tluid pressure is

P = (62.4)(6) /' - nh

= ,^74.4 pounds per square foot.

Because the total area of the sheet is /I = (3)(4) = 12 siiuare Icct, the fkud force is

PA ;,74.4
'^''"" .'^

1(12 sciuare feet)
square loot/

4492.8 pounds.

This result is independent of the size of the body of water. The fluid force would he

the same in a swimming pool or lake.

-L(v,

Calculus methods must he used to find the

fluid force on a vertical metal plate.

Figure 6.69

In E.xaniplc I. the tact that the sheet is rectangular and horizontal means that vou

do not need the methods of calculus to solve the problem. We now look at a surface

that is submerged vertically in a tluid. The problem is more difficult because the

pressure is not constant o\cr the surface.

Suppose a vertical plate is submerged in a fluid of weight-density w (per unit of

volume), as shown in Figure 6.64. To determine the total force against ojie side of the

region from depth c to depth </, you can subdi\ ide the inter\al [c. </] into n subniter-

vals, each of width A^'. Next, consider the representative rectangle of width Ay and

length A( ^,), where y, is in the /th subinterval. The force against this representative

rectangle is

Af, = ir(depth)(area)

The force auainst /; such rectangles is

^ ^F, = ir^/;(v,)Z.(v,)Av.

Note that w is considered to be constant and is factored out of the summation.

Therefore, takinu the limit as ||A|| -^ in —> c/o) suasests the followiui: definition.

Definition of Force Exerted by a Fluid

The force F exerted bv a fluid of ;onstant weight -density n (per unit of

\olume) against a submerged vertic al plane region from V = c to y = dis

F = vr lim V/,(v)L(v,)Av =
-/

u /;( v)Z,(v) A-

where h{y) is the depth of the tluid at V and L{\) is the hori/ontal 1 ength of the

region at y.
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ff^y Example 2 Fluid Force on a Vertical Surface

"
'l

1. .-1
1

1

4 ft

.1 1 ''

'

+

t\ 7'
5ft\

/;

J'
K 6 ft-

(a) Water iiate in a dam

/!(v) = -v

6

ZZ7
(4. -4)

]Av

(3.-9)

(b) The fluid force a<:ainsi the gale is 13.936

pounds.

Figure 6.7(1

A vcitical gate in a dam has the shape of an isosceles trapezoid 8 feet across the top

and 6 feet across the bottom, with a height of 5 feet, as shown in Figure 6.70(a).

What is the fluid force on the gate if the top of the gate is 4 feet below the surface

of the w ater'.'

Solution In setting up a mathematical model for this problem, you are at liberty to

locate the .v- and \-axis in several different ways. A convenient approach is to let the

y-axis bi.sect the gate and place the .v-axis at the surface of the water, as shown in

Figure 6.70(b). So. the depth of the water at v in feet is

Depth = /M v) = ~.v.

To find the length /,( \) of the region at y. we find the equation of the line forming the

right side of the gale. Because this line passes through the points (.i. ~^)) and (4. -4).

its equation is

-9)
-4 -9)

X - 3)4-3
v + 9 = 5(.v - 3)

y = 5.V - 24

V + 24

In Figure 6.70(b) you can sec that the length of the region at y is

Length = 2.v

= ^(v + 24)

= L( v).

Finally, by integrating fioni y = -9 toy = -4. you can calculate the Huid force to be

F = w\ l,{y)L{y),ly

= 62.4
I

(-v)(-|(v + 24)(/y

= -62.4

-62.4

(y- + 24y)</y

+ 12v-

-62.41-
167.'i

13,936 pounds.

NOTE In Example 2. v\'e let the ,v-axis coincide vvilli the surface ol the vvaler. This was

convenient, but arbitrary. In choosing a coordinate system to represent a physical situation, you

should consider various possibilities. Often you can simplify the calculations in a problem by

locating the coordinale sysleiii to take ad\antage of special characterislics of the problem, such

as symmetry.
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7--

6-

5-

4-

3-

E.xample 3 Fluid Forte on a Vertical Surface

_X
Av

Observation

window

The tlind loree on the window is |6I)S.5

pounds.

Figure 6.71

A circular observation window on a marine science ship has a radius of 1 foot, and the

center of the window is 8 feet below water level, as shown in Figure ("i.7 I . What is the

fluid force on the window?

Solution To take advantage of symnielry. locate a coordinate system such that the

origin coincides w ith the center of the window, as shown in Figure 6.7 1 . The depth at

y is then

Depth = hix) = 8 - y.

The horizontal length of the window is 2.v. and you can use the equation for the cncle.

.V- + y-^ =
1 , to solve for .v as follows.

Length = 2.v = 2^/1 - r = L{y)

Finally, because \' ranges from -
1 to I. and using (i4 pounds per cubic tool as the

weight-density of seawater. you have

F = \v\ li{y)L{y)Jy

= 64 (8 - y)(2)yi - y-cly.

Initially it looks as if this integral would be difficult to solve. However, if you break

the integral into two parts and apply symmetry, the solution is simple.

f=64ll6) s'l - v-(/v - 64(2) yj] - r- ih

The second integral is (because the integrand is odd and the limits of integration are

symmetric to the origin). Morecwer. by recognizing that the first integral represents

the area of a semicircle of radius 1. you obtain

F = 64(16)(^) - 64(2)(())

= 5]2tt

~ 1608.5 pounds.

So. the fluid force on the window is l(i()8..S pounds. [21

10

/ is not dilTerentiable at .v = ± 1.

Figure 6.72

TECHNOLOGY To confirm the result obtained m Fxainple 3. you might have

considered using Simpson's Ride to approximate the \alue of

128 (8 - .v)v/l - .v-(/.v.

From the graph of

15 \i fix) = (8 -.v)yi -.v=

however, you can see that / is not diflerentiable when .\ = ± 1 (see Figure 6.72).

This means that you cannot apply Theorem 4.19 from Section 4.6 to determine the

potential error in Simpson's Rule. Without knowing the potential error, the approx-

imation is of little value. Try using a graphing utility to approximate the integral.
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EXERCISES FOR SECTION 6.7

Force on a Siihnicri;i'cl Sheet In Kxercist's 1 and 2. the area of

the top side ol a piece of sheet metal is <;i\eii. The sheet metal is

submeri;ed h(iii/oiitall\ in 5 teel ol water, lind the flnid force

on the top side.

I. .1 square feet 1 6 square feet

Buoyant Force In Exercises 3 and 4. llnd the Inioyant force of

a rectan<;ular solid of the <;i\en dimensions snhnier<;ed in water

so that the top side is parallel to the surface of the water. The

huoyant force is the difference between the lluid forces on the

lop and bottom sides of the solid.

3.

4
t

2 ft 3 ft

4 ft

8 ft

Flnid Force on u Tank Wnll In Exercises 5-1(1. find the lluid

force on the vertical side of the tank, where the dijnensiuns are

ui\en in feet. Assume that the tank is lull of water.

5. Rectanale 6. Tnan^le

8. Seiiiieirele

9. Parttbola, \' = a~

Fluid Force of Water In Exercises 1 1-14, find the lluid force on

the vertical plate submerued in water, where the dimensions are

given in meters and the weight-density of water is 9800 new tons

per cubic meter.

11. Square 12. Square

2
I

13. Triaimle 14. Rectanale

Force on a Concrete Form In Exercises 15-18. the figure is the

vertical side of a form for poured C(uicrete that weighs 140.7

pounds per cubic foot. Determine the force on this part of the

concrete form.

15. Rectanale 16. Senilellipse,

y = -js/ia - .V-

4 ft-

-10 ft-

17. [Rectanale 18. Trianale

4 11

19. Fluid Force of Gasoline A e\ lindrieal gasoline tank is placed

so that the axis of the cylinder is horizontal. Find the fluid force

on a circular end of the tank if the tank is half full, assuming

that the diameter is 3 tect and the gasoline weighs 42 pounds

per cubic foot.
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20. Iliiid Force of Gasoline Repeat Exercise 19 tor a lank thai is

full. (Exaluate one integral by a geometric formula and the

oilier hy ohser\ing that the integrand is an odd function.)

21. Fluid Force on a Circular Plate A circular plate of radius /

feet is submerged vertically in a tank of tluid that weighs ir

pounds per cubic foot. The center of the circle is k ik > r) feci

below the suiface of the tliiid. Show that ihc llind force on the

surface of the plate is

F = »ki-r-).

(Evaluate one integral by a geometric lornuila and the other by

obscrxiiig that the integrand is an <iild tunction I

22. Fluid Force on a Circular Plate L'se the result of E.xercise 2

1

lo lind the tluid force on each ol the circular plates show n in the

figure. Assume the plates are in the uall ol a lank fillcti with

water and the measurements are gncn in Icet.

(al I (b)

^27.

23. Fluid Force on a Rectangular Plate A rectangular pl.ite of

height h feet and base /> tecl is submerged vertically in a tank

of fluid that weighs ir pounds per cubic tool. The center is k

feet below the surface of the fluid, where /( < k/2. Show thai

the fluid force on the surface of the plate is

F = wkhh.

24. Fluid Force on a Rectani^uhir Plate l'se the result of

Exercise 23 to find the tluid torce on each of the rectangular

plates shown in the figure. Assume the plates are in the wall of

a tank filled with water and the measurements are given in teet.

(a) (b)

Modeling Data The \eitical stern of a boat wilh a superim-

posed coordinate system is show n in the figure. The table shows

the width w of the stern at indicated values of y. Find the tluid

force aaainst the stem if the measurements are siven in feet.

V
i

1
J

2
5

3
7

4

w 3 5 8 9 10 10.25 10.5 10.5

Water lexel

.Stern

I I I I I

-5 -4 -2
I I I I I

/V28. Irrigation Caned Gate The vertical cross section of an

irrigation canal is nindeletl b\

"''^^
where v is measured in led and .v = correspomls lo ihe

center of the canal, L'se the integration capabilities of a graph-

ing utility to approximate the tluid force against a vertical gate

used to stop the flow of water if the water is 3 feet deep.

rp III Kxcrcises 29 and 3(1. use the inleiiialion capabilities of a

jiraphing utility lo approximate tile Iliild force on Ihe \eitical

plate hounded b\ the .v-axis and the top hall of llie ^laph of the

c'(|uation. .Assume that the base of Ihe plate is 12 feet beneath the

surface of the water.

29. 4-''-' 30.
2S 16

31. Think About It

10

25. Submarine Porthole A porthole on a vertical side of a

submarine (submerged in seawaler) is I foot square. Find the

fluid force on the porthole, assuming that the center of the

square is 15 feet below the surface.

26. Submarine Porthole Repeat Exercise 25 for a circular

porthole that has a diameter of I foot. The center is 15 feet

below the surface.

(al .Approximate the depth of the water m Ihe lank in Exercise 5

if the fluid force is one-hall as great as when the lank is lull.

(bl Explain why Ihc answer m pari (a) is not j.

32. Define fluid pressure.

33. Define tluid force against a submerged vertical plane region.

34. Two identical senncirciilar w indows are placed at the same

depth m the \crlical wall of an aquarium (see figure).

Which has the greater lliiid force'' Explain.

\d
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REVIEW EXERCISES FOR CHAPTER 6

Area In Exertists 1-10, sketch the nyion boundt'd by

the j;raplis of the equations, and determine the area of the

resiion.

f9

1. V

3. V

1

0. .V = 1. A 4. A

I

^• 0. A
a- + 1

4. A = y- - 2y, a = -

5. \- = A-. y = a'

6. A = y- + 1 . A = y + 3

7. \' = t'\ y = e-. X =

8. A = CSC A, \' = 2 (one retjion)

1. A

9. \ = sin A. y

10. .\ = cos I', A

- 5/7
cas A. — < A < —

4 4

1 TT ItT
: -, — < V <
2 3 " - 3

fr In p.xercises 11-14, use a "jraphing utihty to <;raph the re};ion

bounded by the jjraphs of the functions, and use the integration

capabilities of the graphing utility to find the area of the region.

11, y = A- - 8a^ + 3. y = 3 + Sa- - a-

12, y = X- - 4a + 3. y = a\ a =

13, N-^ + x/y = 1. y = n, A =

14, y = A-* - 2a-. y = 2a-

In Exercises 15-18, use \ertical and horizontal representative

rectangles to set up integrals for tlnding the area of the region

bounded by the graphs of the equations, Eind the area of the

region by evaluating the easier of the two integrals.

15. A = \- - 2\. X =

16, V A - 1. V

• 17, V = I

18, A = Jx - 1.

A - 1

2. \- = 0. A = n

l'>. Think Ahiiiit It A person has two job olTeis. The starting

salary tor each is 5)30,()(JO. and after 10 years of service each

will pay $56,000. The salary increases for each offer are shown

in the tlgnre. From a strictly monetary viewpoint, which is the

better offer? Explain.

20. Modeliiiii Data The table shows the annual ser\ ice revenue /?,

in billions of dollars for the cellular telephone industry for the

yeiirs 1992 through 1998. (5(i»nc.' CclliilcirTclccomiitiiniititions
|

Industiy Association) ':

Year 1992 1993 1994 1995 1996 1997 1998

Ri 7.8 10.9 14.2 19.1 23.6 27.5 33.1

(a) Use the regression capabilities of a graphing utility to fit an

exponential model to the data. Let t be time in years. v\ ith

/ = 2 con'esponding to 1992. Use the graphing utility to

plot the data and graph the model.

(b) A financial consultant believes that a model for service

revenue for the years 2000 through 2005 is

ft, = 10 + 5.2Kc"-'.

\\ hai is the dilTcience ni total service rexenue between the

two models for the years 2000 through 2005'!'

liUMtiTHl In Exercises 21-28, find the volume of the solid gen-

erated by reM)lving the plane region bounded by the equations

about the indicated lines.

21, y = A. ^ = 0. A = 4

(a) thcA-axis (b) the y-axis

(c) the lincA = 4 (d) the Ime a = 6

y = v V. y =

(a) thcA-axis

(c) the \-a\is

2. A =

!3, ~ + ^ = 1

16 9

24.^ + ^

25,
1

26, A =

a' + I

re\cil\cd about the \-axis

1

(b) the line y = 2

(d) the line a = — 1

(ai the \-a\is (oblate spheroid)

(b) the A-axis (prolate spheroid)

(a) the y-a\is (oblate spheroid)

(b) the A-axis (prolate spheroid)

V = 0. .V = 0, A =
I

./I +x-
revolved about the v-axis

0. A = - 1. A = 1

27, ^ = l/( I + ^ A - 2). y = 0. a = 2. .v = 6

re\olved about the )'-axis

28, y = c \ \ = 0. .V = 0. A = I

revohcd about the A-axis

In Exercises 29 and 30, consider the region bounded by the

graphs of the equations y = .v^ .v + 1 andy = 0,

29. Area Find the area of the region.

30. Volume Fuid the xiilume of the solid generated by revolving

the ivi^ion about (a) the v-a\is and (b) the i-axis.
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31. Depth of Gasoline in a Tank A gasoline tank is an ohiale

spheroid generated by revolving the region bounded by the

graph of (.v-/ 1 6) + ( v-/9) = 1 about the y-axis. where a and y

are measured in feet. Find the depth of the gasoline in the tank

when it is filled to one-fourth its capacity.

M. Magnitude of a Base The base of a sohd is a circle of radius

a. and its vertical cross sections are equilateral triangles. Find

the radius of the circle if the \oUinic of the solid is 10 cubic

meters.

Arc Length In EmtcIm's 33 and 34. tnid the arc lenytli

of the j;raph of the function omt the hidicated internal.

33. /(.v) = -x^'\ [n. 4] 34.
1

"^i- t'-^]

r^ 35. Length of a Catenary \ cable ol a suspension bridge forms

a catenarv modeled bv the CLiiialuin

300 cosh
2000

2S0. -2000 < .V < 2000

where .v and v are measured m feet, I'se a graphing utility to

approximate the length of the cable

36. Approximation Determine which \aluc best approximates

the length of the arc represented h\ the integral

J\ + (.sec'.v)' (/.v.

(Make your .selection on the basis of a sketch of the arc and inH

by performing any calculations.)

(a) -2 (b) I (c) TT (dl 4 (el 3

37. Surface Area Use integration to find the lateral surface area

of a right circular cone of height 4 and radius 3.

3S. Surface Area The region bounded by the graphs of

V = 2 s .V. V = 0. and .v = 3 is revolved about the .v-axis. Find

the surface area of the solid aencrated.

39. Work Find the work done in stretching a spring from its nat-

ural length of 10 inches to a length of 1 5 inches, if a force of 4

pounds is needed to stretch it I inch from its natural position.

40. Work Find the work done m stretching a spring from its

natural length of 9 inches to double that length. The force

required to stretch the spring is 50 pounds.

41. Work A water well has an 8-inch casing (diameter) and is I 75

feet deep. If the water is 25 feet from the top of the well,

determine the amount of work done in pumping it dry, assum-

ing that no water enters the well while it is being pumped.

42. Work Repeat Exercise 41. assuming that water enters the

well at a rate of 4 gallons per minute and the pump works at a

rate of 12 gallons per minute. How many gallons are pumped

in this case?

43. Work A chain 10 feet long weighs 5 pounds per foot and is

hung from a platform 20 feet above the ground. How much

work is required to raise the entire chain to the 20-foot level?

44. Work A w indlass, 200 feet above ground level on the top of a

building, uses a cable weighing 4 pounds per foot. Find the

work done in winding up the cable il ''I--'- . .

(a) one end is at ground level.

(bl there is a 30()-pound load attached to the end of the cable.

45. Work The work done by a variable force in a press is 80 foot-

pounds. The press moves a distance of 4 teet and the toice is a

quadratic of the form F = ci.\-. Find a.

46. Work Find the work done bv the force F shown in the fmure.

F

-

X -

4 -

•--^^^^^^^^^^^^^^^q- 4^

2
-

"l 1 1 1 M M M Ni-
: 4 (1 s III i:

Feel

In Kxercises 47-50. tlnd the ctntroid of the resjiiin

hounded by the graphs of the e(|nations.

48. V = v-, V = 2.V -I- 347. y.v +

49. V = cr

0, V

.V-, V 50. \ , V

51. Centroid A blade on an industrial fan has the configuration of

a semicircle attached to a trapezoid (see figure). Find the

centroid of the blade.

52. Fluid Force A swimming pool is 5 feet deep at one end and

10 feet deep at the other, and the bottom is an inclined plane.

The length and width of the pool are 40 feet and 20 feet. If the

pool is full of water, what is the fluid force on each of the

vertical walls''

53. Fluid Force Show that the fluid force against any vertical

region in a liquid is the product of the weight per cubic volume

of the liquid, the area of the region, and the depth of the

centroid of the region.

54. Fluid Force Using the result of Exercise 53, find the tluid

force on one side of a vertical circular plate of radius 4 feet that

is submerged in water so that its center is 5 feet below the

surface.
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'i. P'S, Proble-m Solving

1. Let R be the area of the region in the first quadrant bounded by

the parabola v = .v- and the line y = ex, c > 0. Let T be the area

of the triangle AOB. Calculate the limit

lim —

.

Btc.c-)

2. Let R be the region bounded by the parabola y = .v — x- and the

A-axis. Find the equation of the line y = nu that divides this

region into two regions of equal area.

\' - V - .v^

V = ni\

1

3. (a) A torus is formed by revolving the region bounded by the

circle

(.V - 2)^ + y^ = 1

about the y-axis (see figure). Use the disk method to calcu-

late the volume of the torus.

^

Centroid

(b) U,se the disk method to find the volume of the general torus

if the circle has radius r and its center is R units from the

axis of rotation.

4. Graph the curve 8y- = .x-{l — x-). Use a computer algebra

system to find the surface area of the solid of revolution obtained

by revolving the curve about the .v-axis.

5. A hole is cut through the center of a sphere of radius r fsee

figure). The height of the remaining spherical ring is /;. Find the

volume of the ring and show that it is independent of the radius

of the sphere.

6. A rectangle R of length / and width ii' is revolved about the

line L (see figure). Find the volume of the resulting solid of

revolution.

Figure for 6 Figure for 7

7. (a) The tangent line to the curve y = x' at the point A(\. 1)

intersects the curve at another point B. Let R be the area of

the region bounded by the curve and the tangent line. The

tangent line at B intersects the curve at another point C (see

figure). Let S be the area of the region bounded by the curve

and this second tangent line. How are the areas R and S

related?

(b) Repeat the above construction by selecting an arbitrary

point A on the curve y = x\ Show that the two areas R
and S are always related in the same way.

8. The graph of y = fix) passes through the origin. The arc length

of the curve from (0, 0) to (x,/(x)) is given by

^(x)

f J\ + e'dt.

Identify the function /.

9. Let / be reclifiable on the interval [a. b], and let

f
s(x)= Vl + [f(t)]-dt.

(a) Find
dx

(b) Find ds and (</.?)-.

(c) If/(f) = t^'-. find .s(x) on [1. 3].

(d) Calculate i(2) and describe what it signifies.
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10. The Archimedes Principle states that the upward or buoyant

force on an object within a fluid is equal to the weight of the

fluid that the object displaces. For a partially submerged object,

you can obtain information about the relative densities of the

floating object and the fluid by observing how much of the

object is above and below the surface. You can also detemiine

the size of a floating object if you know the amount that is

above the surface and the relative densities. Suppose you can

see the top of a floating iceberg. The density of ocean water is

1.03 X 10' kg/m\ and that of ice is 0.92 10' kg/m\ What

percent of the total iceberg is below the suiface?

! = /.-/,

11. Sketch the region bounded on the left by .v = 1 , bounded above

by y = 1 /.v \ and bounded below by y = ~ 1 /.v-\

(a) Find the centroid of the region for 1 < .v < 6.

(b) Find the centroid of the region for 1 < .v < b.

(c) Where is the centroid as 6—>co?

12. Sketch the region to the right of the y-axis. bounded above by

V = l/.v"* and hounded below by y = - l/.v"'.

(a) Find the centroid of the region for 1 < .v < 6.

(b) Find the centroid of the region for 1 < .v < b.

(c) Where is the centroid as 6 —> °o ?

13. Find the work done by each force F.

(a)

H—1—I—

h

14. To estimate the surface area of a pond, a surveyor takes several

measurements, as shown in the figure. Estimate the surface area

of the pond using (a) the Trapezoidal Rule and (b) Simpson's

Rule.

In Exercises 15 and 16, find the consumer .surplus and producer

surplus for the supply and demand curves. The consumer

surplus and producer surplus are represented by the areas

shown in the figure.

Consumer

surplus

Point of

Demand Function

15. P|(.v) = 50 - 0.5.V

16. /7|(.v) = 1000 - 0.4.V-

Sitpply Fiinctiou

pAx) = 0.125.V

p,(.v) = 42v

17. A swimiTiing pool is 20 feet wide, 40 feet long, 4 feet deep at

one end, and 8 feet deep at the other end (see figure). The

bottom is an inclined plane. Find the fluid force on each of the

vertical walls.

(40, 4)

8- " \ %-^

Av K^
1

. 1

10 20 .10 40

20 ft



Making a Mercator Map

When flying or s;nling, pilots expect to be given a

steady compass course to follow. On a standard flat

map. this is difficult because a steady compass course

results in a curved line, as shown in the lower left and

middle figures on the facing page.

For curved lines to appear as straight lines on a

Hat map. Flemish geographer Gerardus Mercator

( 1.^ 12-1594) realized that latitude lines must be

stretched horizontally by a scaling factor of sec 4>-

where (b is the angle of the latitude line. For the map

to preserve the angles between latitude and longitude

lines, the lengths of longitude lines are also stretched

by a scaling factor of sec at latitude 4>. The Mercator

map has latitude lines that are not equidistant, as

shown in the lower left figure on the facing page.

To calculate these vertical lengths, imagine a globe

with latitude lines marked at angles of every \4> radians.

with A(/) = (/),
—

(f), -
I-
The arc length of consecutive

latitude lines is R\(j). On the Mercator map, the vertical

distance between the equator and the fust latitude line

is R/\(j) sec <6|. The vertical distance between the first

and .second latitude lines is /?A</) sec 0,. The vertical

distance between the second and third latitude lines is

R^4> sec (^,. and so on. as shown in the figure on the

right below.

On a globe, the angle between consecutive latitude

lines is At/), and the arc length between them is R^(f>

(see the left-hand figure below ). On a Mercator map.

the vertical distance between the /Ih and (/ - 1 )st lati-

tude lines is R\4> ^ec 4>^. and the distance from the

equator to the /th latitude line is approximately

R\cf) sec (*| + R\(t> sec </>, + • + R\4> sec 4>,

(see risiht-hand fmure below).

Ccnie

Globe

jt({),

Et|uator

Lat I

Lat (t>^

Lat 0,

RA0 sec <p ,

t

RAO sec 0,

i

t

ffA0 sec d
1

*

Equator

Mercator map

QUESTIONS

1. Use summation notation to write an expression to calculate how far from the equator to draw

the line representing latitude (/j„.

2. In the calculations above. Mercator realized that the smaller the value u.sed for At/), the better

the map became (better in the sen.se that straight lines could be used to plot steady compass

courses). From your knowledge of calculus, how could you use Mercator's observation to calcu-

late the total veilical distance of a latitude line from the equator?

3. Use the result of Question 2 to find how far from the equator to place latitude lines who.se

angles are 10°, 20°, .V)°, 40°. and 50°. (Use a globe radius of /? = 6 inches.)

4. What problem do you encounter when you attempt to calculate how far from the equator to

place the North Pole?

///(' ciHWcpIs pi'cscijtt'il hoc will he explored fitnhci' in ihis clmpfi'i: For tin t'.\'ti'fisi<ni of this

(ipplitiilioii, \('f Lcih HI in ilic hih scritw lliiii lu <i'niinuu<'\ llu.\ /c.v/ (// college. hnico.com.
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Integration Techniques.
UHopitaVs Rule,

and ImproperIntegrals

Globe: flight with constant 45° bear-

ina

ISi^^^ j-yj;u-—^^33;

m
Standard flat map: flight with con-

stant 45° bearing

mJ'mWnSm.

1 1- i>^J

-r- ,

:: _£|:;::_Mj-^t::
1

1-,

--"-t^-r^-.T+J"
i i

!
'

iLi^-+ jJ,--J-l ''-1--^-!^.

,r^ " 'll /
Mercator map: flight with constant

45° bearina

Gerardus Mercator was known as

one of the best geographers of the

Renaissance. He was also the first

to refer to a collection of maps as

an "atlas."

481
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Basic Integration Rules

• Rc\ iew procedures for fitting an uitegrand to one of the basic integration rules.

Fitting Integrands to Basic Rules

In this chapter, you will study several integration techniques that greatly expand the set

of integrals to which the basic integration rules can be applied. The foniiulas tu'e

reviewed on page 4S4 and on the uiside front cover. A major step in .solving any inte-

gration problem is recognizing the proper basic integration rule to be used. This is not

easy. As demonstrated in E.xaniple 1 . slight differences in the integrand can lead to very

diflerent sokition techniques.

It^-l Example 1 A Comparison of Three Similar Integrals

;2M EXPLORATION

,4 Coitiparisuii of Three Similar

Integrals \\ hich. if any. of the

following integrals can be evaluated

using the 20 basic integration rules?

For any that can lie evakialed. do so.

For any that can't, explain vi hy.

dx

d.x

dx

J\ - X-

X-

/| __,-:

NOTE Notice in Example Ic that some

preliminary algebra was required before

applying the rules for integration, and

that subsequently more than one rule

was needed to evaluate the resulting

integral.

Evaluate each of the integrals

.V- + 9 .\- + 9 A- + 9

Solution

a. LIse the Arctantient Rule anti let (/ = .v and ti = .^.

.v' + 9
d.\ = 4

r + .^

T </-V

4(-ai-ctanM + C

4 .V

- arctan -r + C

Constant Muilipjc Riilt

Arclaniient Rule

Simpliiy

b. Here the Arctangent Rtile does not apply because the numerator contains a factor

of -v. Consider the Loi; Rtilc and let (/ = .v" + 9. Then dii = 2.\ dx. and \oti ha\e

4v
- dx = 2

dx

x" + 9 ' "
I .V- + 9

du

II

= 2ln|;/l + C

= 2 Infv- + 9) + C.

Constant Mulliple Rule

Subsliuiuon: ti = x- + 9

Log Rule

Rewrite as a function of .v.

c. Because the degree of the ntinicralor is equal to the degree of the denominator, you

should first use division to rewrite the improper rational function as the sum of a

polynomial and a proper lationtil function.

4.V-
dx 4

.16

.V- + 9
dx

4 dx - .Vi

v- + 9

Rewrite usinu lon^ division.

tlx Write as iwo integrals

= 4.V — 36 1
- arctan t I

+ t" Inte.arate.

= 4v — 12 arctan t + C" Simplify,

tjj^ iiidiiiitc.s ilhii III ilw liiteiacli\c .^.(j CD-ROM and Internet .^,1) vcrsiitiis of lliis text

(available at eollege.hmco.com) ycK will find an Open Exploration, whieli further explores this
;

example using the eoinpiiter algebra systems Maple. Mathcad, Mathematica, and Derive.
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The area of the region is approMiiiately

Figure 7.1

Example 2 Using Two Basic Rules to Solve a Single Integral

Evaluate
A- + 3

'„ V4 - .T-

dx.

Solution Begin by writing the integral as the sum of two integrals. Then apply the

Power Rule and the Arcsine Rule as follows.

74"
: d\ =

'u S./4 - .V

1

d.\ +
,'4 - .V-

4 - .V-) ' H-2.\-)d\ + 3

-(4 - .V-)"- + 3 arcsin-

/.v

V3 + -7t) - (-2 + 0)

1.839

(See Figure 7.1.)

: d.\

TECHNOLOGY Simpson's Rule can be used to gi\e a good approximation of the

value of the integral in Example 2 (for n = 10. the approximation is 1.839). When

using numerical integration, however, you should be aware that Simpson's Rule

does not give good approximations when one or both of the limits of integration are

near a vertical asymptote. For instance, using the Fundamental Theorem of

Calculus, vou can obtain

.Y + 3

74^7 </.v = 6.213.

Applying Simpson's Rule (with /; = 10) to this integral produces an approximation

of 6.889'^

STUDY TIP Rules 18. 19. and 20 of

the basic integration rules (see page 484)

all have expressions involving the sum or

difference of two squares:

a- — ir

a- + ir

With such an expression, consider the

substitution ii = f{.\). as in Example 3.

Example 3 A Substitution Involving a^ - u^

E\aluate d.\.

yi6 - .v'^

Solution Because the radical in the denominator can be written in the form

^(r - ir = v"4- - (.v')-

you can try the substitution // = .v\ Then dii = 3.v- dx. and you have

I f 3.V-J.V
dx =

'16 -.v'-' 3 J ^/|6 - (.V')-

1 I (///

3 J 74^ - ,r

= - arcsin t + C

Rewrite inlesral.

Subslilution; u = .v^

Arcsine Rule

— arcsin^ + C. Rewme as a function of .v.

3 4
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SLiiprisingly, two of the most coninioiily o\ e'liooked integration rules are the Log

Rule ant! the Power Rule. Notice in the next two examples how these two integration

rules can he disguised.

Review of Basic Integration

Rules (.1 > 0)

1. I kf(ii)dii = klf{ii)ili(

2.
I

[/(/() ± ,iiiu)],lii =

J
/'(»)(/» ±

J.
!,•((/ )</(/

3.
J

Jii = u + C

4. I II",hi = + C. II * ~\
J II + \

5. ("^ = lnl„| + C
J II

6.
I

e" dii = (" + C

1

7.
I
<;" (/(( = -— \ci" + C

J \ In (/ /

8. sin // dii = —cos ii + C

9. cos II dii = sin II + C

10.
I

tan /((/;( = -ln|cosi/| + C

11. col /( ilii = ln|sin (/j + C

12. sec » (/i/
=

In|sec II + Ian ii\ + C

13. CSC II ilii =

— ln|csc;( + colli] + C

14. sec- (( till = tan ii + C

15. CSC- II ilii = — cot II + C

16. sec II tan ;r <//( = sec ii + C

17. CSC // col II dii = —esc II + C

dii
18.

19.

20.

arcsin —h C
<;- — II-

dii

cr + ir a

du I

IIJ u- - a- CI

= - aretan—t- C
a

arcsec -"—
^ + C

Exiimple 4 A Disgnispd Form of tht' Log Rule

Evaluate
1 +

- dx.

Solution The integral does not appear to fit any of the basic rules. However, the

quotient form suggests the Log Rule. If you let ii = \ + i'\ then du = e" dx. You can

obtain the rec^uired du by adding and subtracting c' in the numerator, as follows.

I

1 + e-

- dx
+ e'

dx
1 + e'

\ + e' _ f

'

1 + r '

i + ('
'

t' ' dx
d-\

+ c'

= X - Ind + e') + C

Add and sahtract c' tn nunierato

dx Rewrite as two iVactions.

Rewrite as Iwii inlegrals,

Ime'jrate-

NOTE There is usually more than one way to solve an integration problem. For instance, in

Example 4. try integrating by multiplying the numerator and denominator by e"' to obtain an

integral of the form -fdii/ii. See if you can get the same answer by this procedure. (Be

careful: the answer will appear in a different form.)

Exaiiiple 9 A Disguised Form of the Power Rule

Evaluate ,f (cot v)[ln(sin v)] ilx.

Solution Again, the integral does not appear to fit any of the basic rules. However,

considering the two primary choices for (/ {ii = cot .v and /( = In sm v). you can see

that the second choice is the appropriate one because

cos A
II = In sin .V and du = —. dx = cot .v dx.

So, you have

(cot A)|lnlsin a)] (/a =- ii du

+ C

.SubsiiuitHMi: n = In sin v

Integrate.

= — [ln(sin \)]- + C. Rewrilc as a function ofA.

NOTE In Example ."i. try ilicckiiii; thai the deri\alive of

-[Inlsinv)]- + C

is the intCL'iand of the ori'jinal inlcizral.
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Trigonomctiic identities can often he used to tit integrals to one ot tlie basic inte-

cration rules.

TECHNOLOGY It" you have access

to a computer algebra system, try

using it to evaluate the integrals in this

section. Compare the /(in?i of the anli-

deri\ati\e given by the software w ith

the form obtained by hand. Sometimes

the forms will be the same, hut often

they will differ. For instance, why is

the antiderivati\e In 2.v + C equivalent

to the antideri\ali\e In .v + C?

Example 6 Using Trigonometric Identities

Evaluate / tan" 2-y dx.

Solution Note that tan- » is not in the list of basic integration rules. However, sec- u

is in the list. This suggests the trigonometric identity tan- u = sec- ;/ -
1 . If you let

(( = 2 V, then ihi = 2 dx and

tan- 2.V dx = - tan- /( dti

(sec- (/ - 1 ) (///

sec- /( du

tan ;( + C

1

tan 2v - .v + C.

SLibstitulion: (/ = ^.v

Tritionometnc identity

(111 Rewrite as two iiile>irals

Rc\\ rite as a tuncli(.iii n\ .v.

We conclude this section w ith a sunniiaiN of the coiiiiuon procedures for lltlitig

intcizrands to the basic intcjiation rules.

Procedures for Fitting Integrands to Basic Rules

Technique

Expand (numerator).

Separate numerator.

Complete the square;

Divide improper rational function.

Add and subtract terms in numerator.

Use trigonometric identities.

Multiply and divide by Pythagorean conjugate.

Example

(1 -t- f')- = 1 -t- 2e' + e-'

1 -f- .V ! .V

A- + 1

1

.V-

1

+ 1 .V- +

1

1

J2x -

X-

.V- J\ - (.V
-

1

D-

X- + 1

2.V

X- + 1

2.V -1- 2 - T
2.V + 2

.Y- + 2.V + I X- + 2x + 1 .V- + 2.V + 1 (.V + 1 )-

cot- .Y = CSC- .Y — 1

1 - sin .y\ 1 — sin .v

1 + sin -Y + sin.v/\l — sin.Y/ 1 — sin- .y

1 — sin .Y

NOTE Remember that you can separate numeralors but not denominators. Watch out lor this

common ciror when fittins; intccrands to basic rules.

^^^4 + i
.V- + 1 A- 1

Do not separate denominators.
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EXERCISES FOR SECTION 7.1

In Exercises 1-4, select the correct antiderivativc.

1.

'" -^^

rf-v ^A- + 1

29. ( I + 2.V-)- dx

31. V cos 2tt-\- i/.v

(a) 2s/.v- + 1 + C (b) J.\~ + 1 + C

30. vf I + -
1 J.v

32. sec4,v</.v

(c) W-v- + I + C (d) InU' + I) + C

</v _ A-

</a
~

a- + 1

33.
I
esc 7TA col TTX dx

35. I c"' ,/a

34.
sin A

</a-

V cos A

36. CSC- -\e'^"' ' dx

(a) InvA- + I + C (b) + C

3.

(c) arctan a + C

dx _ 1

dx
"

X- + 1

V- + 1

)

(d) ln(A- + 1) + C
37.

+ I

- </v 38. dx

(a I lOs A- + I + C (b) —r- C
(a- + li-

te) arctan A + C (d) ln(A- + I) + C

4. ^ = A cos(a- + 1

)

(/a

(a) 2Asin(A- + 1) + C (b) -isiniA- -I- 1) + C

(c) 3sin(A- -I- 1) -F C (d) -2Asin(A- + 1 ) -I- C

In Exercises 5-14, select the basic integration formula you

can use to evaluate the inlenral, and identify ii and « when

appropriate.

39. 1^,/A

41.
I
^-^^,/v

cos A

I

4(1. (tanA)[ln(eosA)]</v

42.
I
i^^^^Ja

sin a

43.

45.

47.

.OS I) - 1

3- + 2

,-- -^ 9

dft

si - (2/ - n-
:dl

44.

46.

48.

3 (sec A - I)

3

dx

t- +
-di

49. 1^,/,

51.

4 -I- 3a

5(1. I -^dt

~, dx

13a - 2)^/a

I

.'a(1 ~2j~x]

3

2r - 1

'1 - r-

11.
I

rsin /- di

13. cos A('-'" ' dx

6. \r--,^2"

8.

-)

{2t - n-^ + 4*^

0. f ^dx
Jx- - 4

>
sec 3a Ian 3a dx

4. \
'

./v

V 6a — A'-

4

4v- + 4a -I- 65
- dx 54.

(a- I)v'4a--8a-I-3

s' I
- 4a - A-

ijx- - 4

In F^xercises 15-54, evaluate the indefinite intefjral.

PP Slope Fields In Exercises 55 and 56, a differential equation, a

point, and a slope field are )>iven. (a) Sketch two approximate

solutions of the differential eijuation on the slope field, one of

which passes through the indicated point, (hi Use integration to

find (he particular solution of the differential equation and use a

graphing utility to graph the solution. Compare the result with

the sketches in part (a). To print an enlarged copy of the graph,

go the the website wMw.mathifraphs.com.

.. ds

yi -H
56. ^ = tan-(2A). (0.0)

dx

15. (

17.
(.- - 4)-'

5)' - Ja

(/:

16. (i(a - 4)\/a

19.
I
I- i/i^ -

I dt

1

18.

20.

(I - 9)-
dt

I
^^s^^ 1

1 WN^^^
1 \\S^^^
I \NN^^^^
I \\S-^^^
I \NN^^^-

I \ W^^

21.

23.

25.

27.

V +
(3r- I)-'

J-i - 2a- dx

3

(2a + 3)-

24.
I"

/"'
,

J Jx- + 2x - 4

^^^ -I

--^-^-^^y / / 1

\-\- k'-\-

/
//-•

) / /^
/ / /^
/ / /

[ / / /
I f //--
I I t /-

—

—

^^ ^ / /
1

't: l

'^^^ / / I

\ \ I

\ \ I

\ \ 1

\ \ I

\ \ I

i / f / /

I M /

I M / /-
\ \ \ I /
I / / I /

/ f / / ^

—

I I I ^-—
I / I /^—
I I //--r-

; ( //'-

—'// ; I—'/ / ; I—-' / 1 \ \

—''/I I I—^// 1 I

—^y-f I I—^ / n \—
- / / / )—/ 1 1 I

-±^
—'/I I—•-// 1—'//

1

—^// ;

::;;;(

I

X -
I

I +

26.

28.

V - 4

I

rV In Exercises 57 and 58, use a computer algebra system to sketch

the slope field for the dilTerential equation and graph the solution

through the specified initial condition.

3a -
I 3a -1-

1 57. 4^ = 0.2v. v(0)
dx

58. T- = -"^ - V. v(0)
tl.V
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In Exercises 59-62, solve the differential equation.

59. V- = (1 + e')-
cl-\

61. (4 + tan-A)v' = see-.v

60.
cir ( 1 + c'')'

cit

62. v' =

-vV^v- -
1

In Exercises 63-70, evaluate the detlnite inle<;ral. Ise the inte-

gration capabilities of a graphing utility to verify your result.

63. I cos 2.V J.v

65. \e '' dx

67.

64.
I

sin- r cos r dt

I
- In A

66. l/.V

V.v- + 9

69.
4 + 9.V

^ </-v

68. I
^^ -dx

70.
'„ v'25 - .V-

^dx

In Exercises 71-74. use a computer algebra system to evaluate

the integral. Use the computer algebra system to graph two

anliderivatives. Describe the relationship between the two

graphs of the anliderivatives.

71.

73.

1

+ 4a- + 13

I

dx 72. , ,
"

,

,

./a

A- + 4a + 13

sin
de 74.

+ e-

In Exercises 75-7S, state the integration formula you would

use to perform the integration. Do Jiiil integrate.

75.

77.

/.„= + l)'i/A 76. > sec(A- + DtanlA- + I ) </a

A- + I

78.
V- + 1

- dx

79. Explain why the antideri\ative y,
=<'*'' is eqiiixalent lo

the antideri\ ati\e \ , = Cc '.

80. Explain why the antiderivative V| = sec- A + C, is equiva-

lent to the antiderivative v, = tan- x + C.

81. Determine the constants a and h such that

sin A -I- cos A = (( sin(A -I- /;).

dx
Use this result to integrate

stn A + cos A

^ 82. Think About It Use a graphing utility to graph the function

/(a) = jIa' - 7a- + 10a). Use the graph to determine whether

Approximation In Exercises 83 and 84, determine which value

best approximates the area of the region between the v-axis and

the function over the given interval. (Make your selection on the

basis of a sketch of the region and nut by integrating.)

83. fix)
4.1

().2

84. f(x

\- + \

'

(a) .1 (hi I (c) -8 (d) 8 le) 10

4
7. [0.

A- -I- 1

(a) .^ (hi I (c) -4 (d) 4 (e) 10

Area In Exercises 85 and 86, find the area of the region bound-

ed by the graph(s) of the equation(s).

85. y- = A-(l - A-)

86. y = sin 2a, y = 0, a = 0. .v = n/2

87. Area The graphs of /'(.v) = a and ,i;(a) = ((a- intersect at the

points (0. 0) and ( \/ci. !/<(). Find ti {a > 0) such tliat the area

ot the region bounded by the graphs of these two functions is
f.

88. Interpreting an Integral You are given the integral

iTTX'dx

but are not told what it represents. (There is more than one

correct answer for each part.)

(a) .Sketch the region whose area is given by the integral.

(b) Sketch the solid whose volume is given by the integral if

the disk method is used.

(cl Sketch the solid whose xolume is given b\ the integral if

the shell method is used.

89. \olume The region bounded by y = f"'". y = 0. a = 0, and

A = /; (/) > 0) is revolved about the y-axis.

(a) Find the volume of the solid generated if /j = I.

(h) Find /) such that the volume of the generated solid is ^ cubic

units.

90. Average Value Compute the average \alue of each of the

functions over the indicated interval.

(a) fix) = sin ii\. (I < a < ir/n. n is a positive integer

(b) fix) 3 < A < 3
1 -I- A-

91. Centroid Find the A-coordinate of the centroid of the region

bounded by the graphs of

v = —
,

V = 0, A = 0. and a = 4.

fix) dx

is positive or negative. Explain.

s'25 - .v^

92, Surface Area Find the area ul the surface formed by re\olv-

ing the graph of y = 2Va on the interval [0,9] about the

.v-axis.

fy Are Length In Exercises 93 and 94, use the integration capa-

bilities of a graphing utility to approximate the arc length of the

curve over the indicated interval.

93. y = tan tta, [o.
j]

94, y = .v-/-\ [1.8]
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Integration by Parts

Find an antiderivative using integration by parts.

Use a tabular nietliod to perform integration by parts.

EXPLORATION

Proof Without Words Here is a

different approach to proving the

formula for integration by parts.

Exercise taken from "Proof Without

Words: Integration by Parts" by

Roger B. Nelsen. Mathematics

Magazine. Apn\ 1991. Used by

permission of the author.

11= fix) v = g{x)

Explain how this graph proves the

theorem. Which notation in this proof

is unfamiliar? What do you think it

means?

Integration by Parts

In this section yoti will study an important integration technique called integration by

parts. This technique can be applied to a wide variety of functions and is particularly

useful for integrands involving /);()</»< 7.v of algebraic and transcendental functions. For

instance, integration by parts works well with integrals such as

,v- c' ilx. and c' sin .v ii\V In v dx.

Integration by parts is based on the formula for the derivative of a product

d
[uv

dv dllU—+V —
dx dx

where both ;; and i- are diffeientiabie functions of v. If ;(
' and v ' are continuous, vou

can integrate both sides of this equation to obtain

iiv' dx + VII ' dx

u dv + r (/((.

By rewriting this eciuation. you obtain the following theorem.

THEOREM 7.1 Integration by Parts

If // and V are Ifiiict ions of A and ha\e continuous deri\ atives then

;/ (A' = IIV
-

This formula expresses the original integral in terms of another integral. Depend-

ing on the choices of ;/ and dv. it may be easier to evaluate the second integral than ,

the original one. Because the choices of // and dv are critical in the integration by parts j

process, the following guidelines arc provided.

Guidelines for Integration by Parts

1. Try letting ilv be the most complicated portion of the integrand that fits

a basic integration rule. Then /( will be the remaining factor(s) of the

integrand.

2. Try letting /( be the portion of the integrand whose derisative is a function

simpler than /;. Then dv will be the remaining factor(s) of the integrand.
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Example 1 Inlrijnitinn b}' l'nr(s

E\aluate
J" .Vf

' Jx.

Solution To apply integration by parts, yon need to write the integral in the lorin

J ;( </i . There are several wa\s to do this.

(.V)(t''(/.V), (<'M(.V</.V), (I )(.»< ',/.v). (.V<'')(</a)

NOTE In Example I . note that it is

not necessary to include a constant ot

intet;ration when sohnTj

Jx = (•' + C,.

To dlusiraie this, replace r = c ' by

V = t ' + C| and apply integration by

parts to see that you obtain the same

result.

The guidelines on page 488 sttggest choosing the first option because the derivati\'e of

;/ = V is simpler than .v, and ih- = c' lix is the most complicated portion of the inte-

grand that fits a basic integration lornuila.

civ = c' dx CX'"- V = civ = (' Jx = e'

It = X CT (/;( = ilx

Now. integration b\ parts produces the follow ing.

II ih' = (M' — f (/// liitegriltion hy parts formula

xe ' (/.v = xe ' - (.' ' ilx .Sulisntute.

= xe' — ('
' + C Inleiirale

To check this, dillcrcntiate .ve' -<;'' + C to see that you obtani the original integrand.

Example 2 Inti'jjration by Parts

FOR IIRIHER l.\l t)RM\TIO\ To see

how mtegration by parts is used to prove

Sterling's approximation

ln(«!) = n In n - ii.

see the article "The Validity of Stirling's

Approximation: A Physical Chemistry

Project" by A. S. Wallner and K. A.

Brandt in Jnuriial of Cliciuical

Eiliiviitiiiii- To view this aiticle. go to the

website wwiviiuitluiniilfs^ciim.

TECHNOLOGY Try graphing

.V- In .V J.v and — In a
-

on your graphing utility. Do you get

the same graph!" (This will take a

while, so be patient.)

Evaluate J.v- In .v Jx.

Solution In this case, .v- is more easily integrated than In \. Ftirthermore. the deriv-

ative of In -V IS simpler than In \. rhcrcfoie. you shoiikl let ilv = .v- tlx.

V = X~ ilxilv = .V- c/.v iZ^'

II = In .V - till = - ilx
X

Integration by parts pioduces the following.

II dv = iiv —
I
V (III

.v-\/l
\- In Y dx = ^ hi .V

^y'"-^-3

3 /\.v

.V- dx

integration by parts kurnuki

il\ Substitute

SimphtV.

^,n,v-|.C

You can check this result bv dift'erentiatins.

Inleerate.

(/ \x' .v'

dx 3
In .V

-
' V_ ^(^]

+ (In.vX.v:) -^ = x-\nx
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The area of the region isapprii\imalcly

0.571.

Figure 7.2

One surprising application of integration hy parts invohes integrands consisting

of a single factor, such as Jln.V(/.v or J" arcsin .v </.v. In such cases, you should let

dv = (/.v. as illustrated in the next example.

Example i An Intt'!«r;ind vvitli a Singli' Term

Evaluate arcsin .v</.v.

Solution Let ilv = tlx.

ilv = d\ [X> V = dx = X

II = arcsin .v dii =
I

d.\

v'l -.V-

Integration hy parts now produces the lollowing.

arcsin .v d.\ = \ arcsin .\
-

s 1
- .V-

Integration tiy pans

formula

.SLibsiitule.

.\ arcsin .v + -
I (I — .v-) ''-

( — 2.v) (/.v Rewrite.

= .V arcsin .V + ^ 1 - ,V- + C Integrate.

Using this antiderivative. you can evaluate the definite integral as follows.

arcsin .v dx = arcsin .v + J\ — .v-

= (1.571

The area represented h\ this dcrinite integral is shown in Figure 7.2. W\

TECHNOLOGY Remember that there are two ways to use technology to evaluate a

definite integral: ( 1 1 you can use a numerical approximation such as the Trapezoidal

Rule or .Simpson's Rule, or (2) you can use a computer algebra .system to find the

antiderivative and then apply the Fundamental Theorem of Calculus. Both methods

have shortcomings. To find the possible enor when using a numerical method, the

integiand must have a second derivative (Trapezoidal Rule) or a fourth derivative

(Simpson's Rule) in the interval of integration: the integrand in Example .-i fails to

meet this requirement. To apply the Fundamental Theorem of Calculus, the

symbolic integration utility must be able to find the antiderivative.

Which method wdtiki voii use to c\aluate

ai'ctan .v dx'.

Which method would you use to evaluate

"I

arctan .v- </v'?
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Some integrals require repeated use of the iiilegratioii by parts foriiuila.

Example 4 Repeated Use of Inlcgralion by Parts

Exaltiatc f v- sin v (/.v. •

Solution The factors a- and sin ,v are ceiiially easy to integrate. However, tlie deriv-

ative of \- becomes simpler, whereas the deri\ati\e ot sni a docs not. Therefore, yiui

should let II = .V-.

dv = sin A </a
^

sin .V </a = —cos .V

II = -\- CZ till = 2.V dx

Now. integration b_\ parts produces the follow ing.

V" sin A d.\ = —.\- cos .V + 2.V cos .v d.\ Fnsi use til inlcj.T.iliiiii by pans

This first use of integration by parts has succeeded in simplifying the original integral,

but the integral on the right still doesn't fit a basic integration rule. To e\'aluate that

integral, you can applv integration by parts again. This tune, let ;/ = 2a.

cos .V i/.V cos A i/.\ = sin A

(//( = 2 d.\

Now. integration by parts produces

l.v cos A (/.v = 2.V sin .V ~ 2sin.V(/.v Second use ol' mlegialion by parts

= 2.A sin .V + 2 cos .V + C.

Combining these two results, you can wiite

I- sin A i/.v = —.V" cos A + 2a sin v + 2 cos .v + C.

m. EXPLORATION
Try to evaluate

e^ cos 2.V c/.v

by letting ii = cos 2.v and ilv = e' dx

in the first substitution. For the

second subsdtution, let ii = sin 2a

and dv = c' dx.

When making repeated applications of integration by parts, you need to be care-

ful not to interchange the substitutions in successive applications. For instance, in

E\aniple 4. the first substitution was /( = a-^ and dv = sin a dx. It. in the second appli-

cation, you had sw uchcd the substitution to ;/ = cos .v and dv = 2.v. you vvotdd have

obtained

v-sinvj.v = — .v-cos.v + 2.v cos .\ i/.v

-.V- cos .V -I- .V- cos .V -1-
I
.V- sin .v dx

= .V- sin .V dx

thus undoing the previous integration and returning to the original integral. When

making repeated applications of integration by parts, you should also watch for the

appearance of a cmishiiu niidllplc of the original integral. For instance, this occurs

when you use integration by parts to e\aluale J c'cos 2x ilx. and also occurs in the

next example.
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NOTE The integral in Example 5 is an

important one. In Section 7.4 (Example

."i), sou will see that it is used to find the

arc length of a parabolic segment.

STUDY TIP The trigonometric

identities

1
- cos 2.V

-)

1 + COS 2.V

play an imporlanl role in this chapter.

E.vnmple S Integration by Parts

Evaluate J sec' .v </.v.

Solution The most complicated portion of the integrand that can he easily integrated

is sec- .V, .so you shotdd let dv = sec- .v d.y and (( = sec .v.

civ = sec- .V (7.V Cl^> 1' = sec- .v </.v = tan x

II = sec -V cX (//( = sec .v tan .v i/.v

integration by parts produces the following.

(/ (/\' = ;n' —
I V dii

sec ' .v d\ = sec .v tan .v - sec .v Ian- .v ilx

sec ' .V </.v = sec .v tan .v + sec .v (/\

.sec' .V dx = - sec .v tan v + - Inlsec .v + tan .vt + C

Integration by parts

formula

SubsiitLtte.

sec\vi/.V = sec .\ tan .\ - sec.v(sec-.v —
I ) i/.v Tngonomelric ideniny

sec' .V (/.v = sec .V tan .V -
| .sec' .v </,\ + | sec .v </.v Rewrite.

Coliecl like integrals

Iniegiatc and di\ ide

b\ :,

' sin .V

1

Example 6 Finding a Ccnlroid

A machine part is modeled by the region bounded by the graph of \ = sin .v and ihe

.\-a\is. < .V < -/I. as shown in Figure 7,3. Find the centroid of this region.

Solution Begin by fniding the area of the region,

A = sin .V dx =

Now. you can find the coordinates t)f the centioid as follows.

1 ('"'- sin .V

^M
(sin x) dx

4
( 1

- cos 2.v) dx
4

77

Yoti can e\altiale the integral for .v, ( I /A) J,!'
"

.v sin .v dx. \\ itli micgralioii by parts. To

do this, let dv = sin .v dx and ;/ = x. This produces r = - cos .v anti (/;/ = dx. and you

can write

.vsin.vj/.v = -.vco.s.v + cos .v i/.v

= — .vcos.v -I- sin.v + C".

Finallv. yoti can determine .v to be

I

'' =
A

X sin A </a =
.V cos .V + sin .V

Figure 7..^ Therefore, the cenlroitl of the region is ( 1, 77/8). ca
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As you gain experience in nsing imcgRilmn by parts, yuur skill in deterniining ii

and (A- will increase. The lbllov\ing snmmary lists several coninion integrals with

suggestions for the choices of ;/ and ih\

STUDY TIP You can use the acronym

LIATE as a guideline for choosing ii in

integration by parts. In order, check the

integrand for the following

Is there a Logarithmic part?

Is there an Inverse trigonometric part'.'

Is there an Algebraic part?

Is there a Trigonometric part?

Is there an E.xponcntial part?

Summary of Common Integrals Using Integration by Parts

1. For integrals of the form

.v" ('"'
(/.v, x" sin ax dx. or x" cos cix Jx

let It = x" and let </v = c'" dx. sin cix dx. or cos ax dx.

2. For intciirals of the form

v"ln.V(/.v. x" iivcsin iix dx. or .v" arctan i/.v i/.v

let u = hi .V, arcsin cix. or arclan (a and let dv = .v" dx.

3. For intesirals o\' the form

I

e'" sin /).v i/.v or c'" cos hx dx

let (/ = sin /)v or cos /).v and let dv = f'" dx.

Tabular Method

In problems involving repeated applications of tntcgration h\ parts, a tabiilai method,

illustrated in Example 7, can help to organize the work. This method works well for

integrals of the form j .v" sin ((.v (/\, J .v" cos (a dx. and J .v" c'" dx.

n^-l Example 7 Using the Tabular Method

Evaluate J .v- sin 4.v dx.

Solution Begin as tisual by letting u = .v- and dv

a table consisting ot three columns, as follows.

r'(/.v = sin 4.V(/.v. Next, create

FOR FURTHER ISF0RM.\T10S For

more information on the tahiikir

method, see the article "Tabular

Integration by Parts" by David Horowitz

ill The College Mathematics Journal.

and the article "More on Tabular

Integration by Parts" by Leonard

Gillman in The Collei>e Matheimitics

Journal. To view these articles, go to the

website www.inathailicles.eom.

Altcnuile u and Its v'atul Its

Stilus Derivatives Antiderivatives

t

sm 4,v

~~~^
-7COS4.V^.v --..

j^ sin 4.V

COS 4.V

Differentiate until yon i)blain

as a den\ ati\e

The solution is obtained by adding the signed products of the diagonal entries:

.V- sin 4.V dx = -- .V- cos 4.v + - .v sin 4.v + ™ cos 4.v + C. m
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EXERCISES FOR SECTION 7.2

In Exercises 1—t, match the aiitiderivative with the correct

intefjral. [liitef>rals are hiheled (a), (b), (e), and (dl.J

( a

)

Jin .V </-V ( b ) j .v sin x dx

(c) f.v-f ' rf.r (d) J .V- cos .V rf.x-

1. y = sin .V ~ .V ctis a

2. \' = A"- sin A + 2a- cos a - 2 sin j

3. y = A'-f '
— 2av' + 2e'

4. y = —x + A In A

In Exercises 5-1(1. identify /( and dr for evahiatin;; the integral

usinj; Integration hy parts. (Do not evaluate the integral.)

In Exercises 37-42, solve the differential equation.

5. AC^' </a

7. (IuaI-Ja

9. A sec- A d\

6. a-c-W/a

8. In 3\ </a

10. A- COS A dx

II. \.\c -'</a

13. vV'</v

15. a-V''(/a

17. I Ml + 11,//

14.
;-

16.
I

1
' In A, /a

I

18.
v(InA)'

T dx

19. iJ^./v 20. V^dx

21. 7T dx
12a + D-

23.
I

(a- - I)c'</a

(a- + 1)

24.
I

"^^ dx

7 dx

25. vs'v -
I dx

27. V cos V (/a

29. A ' sin A dx

31. ; CSC / col / (//

33. arclun a d\

iS. <;-' sin A dx

26. ,
,,

Jl + 3a-

28.
I
A sui \ d\

30. A - COS A </a

32. H sec (I tan fl dH

34. 4 arccos a dx

36. c' cos 2a dx

37. y' = xe'-

39. -^ = -y£=
dt Jl + 3/

41. (cosy)y' ^

38. ^-
'
= In A

40

42.

</.v

rf Slope Fields In Exercises 43 and 44, a differential equation, a

point, and a slope field are given, (a) Sketch two approximate

solutions of the differential equation on the slope field, one of

which passes through the indicated point, (hi llse integration to

find the particular solution of the differential equation and use

a graphing utility to graph the solution. Compare the result

with the sketches in part (a). To print an enlarged copy of the

graph, go the the website www.malhgraphs.com.

43.
d\

aVvcosa. (0.4) 44.
dx

e'-''^ sin 2a-, (O,

In Exercises 11-36, evaluate the integral. U'^ote: Solve by the

simplest method—not all require integration by parts.)

12. |~(/a

\ I I n I I ~ > \

\ / I I I I / -~\\
\ / I I i I /-^ \

\ / ; ; i ; / - 8+
w M M / - V

\ / I I

\ / I 1

\ / I I

\ / ! I I I /-\N,-

I n I I

/-\ \ \ \ \ \ I

' -w \ \ \ \ I

/-w \ \ \ \ I

/-N \ \ \ \\

I

/'\ M 1 I \ ;

/-'\ M I 1 \ /

1 I \ ;

1 I 1 \ /

'-— \ W \ \ \ I— \ \ U \ \ /^~\ \\\\\ i

y--\ \ \ \\ \ /'-\ W \ \ \ /

-'-V W \\ \ /
'^-\ \ \ \ \ \/
'^-\ \ w \ \/— \ \ M \ \ /

"T""l"l'( !

///-
///-
///-
///-
///-
///-
///-
///-
///-

///
///

t^
-\\V

-\\\-
-\\v
-\\v
-\\v
-\\v

-///-N\N -

///~\N>
-///—\NNf--
///-
-///—\NN

I '-.-l-
)

-///—sw
///—NNNf-.
-///—\NN7

///—\NV
///—\NN-|-.

-///'—NNV

-//.—54-'--

^h ^ h

rp In Flxercises 45 and 46, use a computer algebra .system to sketch

the slope field tor the differential equation and yraph the solu-

tion through the specified initial condition.

45. ^ = -e-^/^
d\ y

v(0) = 2

46. — = - sni A
ilx y

^(0) = 4

fp In Exercises 47-58, evaluate the definite integral. Use a graph-

ing utility to confirm your result.

47. AV-' -Ja
Jo

49. I A cos A dx
J(l

.
['''

^l. arccos A (/a

53. I
(

' sin A i/a

48. a-c'(/a

50.
I

Asni2A</A

A arcsin a- dx

54.
I

f
"

" cos A dx

55. V- In A dx

57. A arcsec a </a

56. In(l + A-) dx

^-4

58. I A sec- A d\
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In Exercises 59-64, use the tabular metliud to evaluate the

Integral.

59. \-L'''d\

61.
I

A ' sin A i/.\

63. V sec- V </a

60. .\\'--Ulx

62. A ' cos 2a (/a

64. a-(a - 2)' -rfv

65. Integration by parts is based on what differentiauon rule'.'

66. In your own words, state guidelines for integration by parts.

In Exercises 67-72, state whether you would use Integration

by parts to evaluate the integral. If so. identity what you

would use for u and dv.

67. |'^<^v

69. A-f-'jA

rp In Exercises 81 and 82, use a computer algebra system to

evaluate the integral for ;; = (I, 1, 2, and 3. Ise the result to

obtain a general rule for the integral for any positive integer ii

and test vour results for ;; = 4.

81. A" IHA,/a 82. A "f ' cL\

In Exercises 83-88, use integration by parts to verify the for-

mula. (For Exercises 83-86, assume that ;; is a positive integer.)

83. A "sin A (/a ~ — a"cos.v + ii x" ' cos a i/a

84. .v"cos.vt/v = A"sin,v — ii \" ' sin a i/a

85. A" \nxd\

86. A" (-'"(/a =

68. V In .V (/.\

70. 2At''</.v

71.
y.v + 1

dx =-/7#+ 1

{n + 1)-'-

a" e'" II

\ + in + \)\nx] + C

A ' C lIX

87. .'" sm /)A ,/a

88. ," cos/u</a

c'"Mi' sin hx — h cos hx)

ir + b-

e"' (ti cos bx + b sin bx)

CI- + b-
+ C

In Exercises 89-92, evaluate the integral by using the appropri-

ate formula from Exercises 83-88.

r In Exercises 73-76. use a computer algebra system to evaluate

the integral.

89. V' hlA./A

91.
I
<-V(is3a</v

73. re-^'dt

75. £'"-' sin3A(/A

9(1.

92.

V- cos A' dx

74.
I

a"* sin ira da

76. I A-" (2.^ - x-?-dx

11. Integrate 2a^ 2a - 3 i/a

(a) h\ parts, letting Jr = v 2a - 3 dx.

(b) by substitution, letting u = 2a - 3.

Integrate
j
a v 4 -1- a dx

(a) by parts, letting dv ~ v4 + a dx.

(b) by substitution, letting » = 4 + x.

78. In

79. Integrate
. 4 + A-

dx

(a) by parts, letting dv = (a/ ^^4 + .v- ) dx.

(b) by substitution, letting » = 4 + a-.

80. Integrate I xJA - x dx

(a) by parts, letting dv = v 4 - x dx.

(b) by substitution, letting » = 4 — .v.

iF .\na In Exercises 93-96, use a graphing utility to sketch the

region bounded by the graphs of the e(|uatiuns, and tlnd the

area of the region.

93. y = .v('->.y = 0, a = 4

94. y = z,.\e^''\y = 0, .v = 0, a = 3

95. y = c ' sin -v, \ = 0, a = 0, .v = I

96. y = A sin .v, y = 0, a = 0, .v = tt

97. Area, Volume, and Centroid Given the region bounded by the

graphs of y = In.v, y = (J, and a = c, tind

(a) the area of Ihe region.

(b) the volume of the solid generated by revolving the region

about the .v-axis.

(c) Ihe volume of the solid generated by revolving Ihe region

about the y-axis.

(d) the centroid of the region.

98. Centroid Find the centroid of the region bounded by Ihe

graphs of y = arcsin .v, v = 0, and y = jt/2. How is this prob-

lem related to Example 6 in this section'.'
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9y. Average DisphiccmeiU .\ danipnig force affects the vibra-

tion of a spring so tliat the displacement of the spring is

y = ('
"" (cos 2i + .T sin 2/).

Find tlie average value of y on the interval from / = to / = v.

100. Memory Model A model for the ability A7 of a child to

memori/e. measured on a scale from to Id, is

M =
\ + \.bl\nt. < / < 4

where / is the child's age in years. Find the average value of

this runclion

(a) between the child's tlrst and second birthdays.

(b) between the child's third and fourth birthdays.

Present Value In Kxercists 101 and 102. find the present value

P of a continuous Income flov\ old/) dollars per year if

P = c(l)e-"dt
Jo

where f, is the time in years and ; is the annual interest rate

compounded eontinuouslv.

101. ,(/) = lOO.OOd + 4000/. ( = 39!-.. /,
= 10

102. , (fl = ."MLOOO + .SOOr, r = 19c. t, = 5

Integrals Vseil to lind Fourier Cocffteients In Exercises 103

and 104. verily the \alue ol the definite integral, where n is a

positive integer.

lO.V

104.

\ sill n\ (1\ = '

n IS odd

.V- cos nx (/.v

(-U'Mtt

105. Vibrating String A string stretched between the two points

(0. 0) and (2. 0) is plucked by displacing the string It units at

its midpoint. The motion of the string is modeled by a Fourier

Sine Series w'hose coefficients arc sjivcn bv

/>„ = /( .vsin^-(/.v + // (-A + 2)sin^^</.v.

Find /)„.

106. Find the fallacv in the following araument that 0=1.

l/l = ,/.v

+

Y = / ilx = .V

(.v) -^)(.v)</.v=l+ '''^'

107. Let y = fix) be positive and strictly increasing on the interval

< « < .V < b. Consider the region R bounded by the graphs

of y = fix), y = 0. V = ii. and v = b. \{ R is revolved about

the y-axis, show that the disk method and shell method yield

the same volume.

108. Think About It Hxplainwhy

X sin .V tlx < .V J.v.

Evaluate the integrals to verify the inequality.

i^ 109. Consider the differential equation fix) = .ve"' with the initial

condition /(O) = 0.

(a) Use integration to solve the difteiential equation.

(b) Use a graphing utility to graph the solution of the differ-

ential equation.

(c) Euler's Method From the dclliiilion of the derivative it

follows that for "small" ilv

./'(-v) -
,/lv + A.V) - f[x)

\x

fix + A.V) '^/(.v) + [r(v)]Av,

Consider points of the form

(.v„. v„l = (;; A\. v„
I

+/'(.v„
,

\x)

where fv,,. v,,) = (0. 0). Starting with /; = 0. use the

recursive capabilities of a graphing utility to generate the

next SO points of this form when A.v = 0.05. Use the

graphing utility to plot the points and compare the result

with the graph in part lb).

idl Starling with /; = 0. repeat part (c) by generating the next

40 points when A.v = III

(e) Give a geometric explanation of the process described in

part (c). Why do you think the result in part (c) is a better

approximation of the solution than the result in part (d)?

rp 110. Euler's Method Consider the differential equation

t'(x) = cos ^ v

with the initial condition /'(()) = 2.

(a) Try solving the differential equation by integration. Can

you perform the integration'

(b) Starting with n = 0. use the recursive capabilities of a

graphing utility to generate 80 points of the form shown in

part (c) of Exercise 109 when A.v = 0.05. Plot the points

for an approximation of the graph of the solution of the

differential equation.

So. 0=1.
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Sheila Scott Macintyre (1910-1960)

Sheila Scott Macintyre published her first

paper on the asymptotic periods of integral

functions in 1935. She completed her doctor-

ate work at Aberdeeti I'niversity. where she

taught. In 1958 she accepted a visiting

research Icllowship at the University of

Cincuinali.

Trigonometric Integrals

• Solve trigonometric iniegrafs involving powers of sine and cosine.

• Solve trigonometric integrals involving powers of secant and tangent.

• Solve trigonometric integraK invoh ing sine-cosine products with different angles

Integrals Involving Powers of Sine and Cosine

In this section you will study techniques lor evaluating integrals of the form

sin'" .V cos" .V </-V and | sec'" .v tan" .v iLx

where either ni oi ii is a positive integer. To find anliderivatives for these forms, try to

break them into conilimations of trigonometric integrals to which you can apply the

Power Rule.

For instance, you can evaluate Jsin^.v cos .» </.i with the Power Rule bv letting

II = sin -V. Then, clii = cos .v (l.\ and you have

s , r , ,
"" ^ sin'Vv

^m' .V cos v i/.v = //" ,//( = ^ + C = + C.

J 6 6

To break up / sin'" .v cos" v cl\ into forms to w hich vou can appiv the Power Rule.

use the following identities.

siir .V + cos- .V = I Pyihagoie.m ideniily

1 - cos 2.V
stn- .V Halt-.in5ilc KJcntilv tor '^in v

1 + cos 2.V

COS- .V
= Hall-.ineie iJentit\ lorciis-.v

Guidelines for Evaluatinj^ Integrals Involving Suie and Cosine

1. If the power of the sine is odd and positive, save one sine factor and convert the remaining factors to cosines. Then,

expand and integrate.

Odd Convert to cosines Save for tin

sin-**' X cos" x lix = (sin- .v)^ cos".v sin a t/.v = (I - cos- .v)' cos" .v sin .v (/a

2. If the power of the cosine is odd and positive, save one cosine factor and convert the lemaining factors to sines. Then,

expand and integrate.

Odd Convert to sines Save for tin

sin"'.v cos-** ' .V (/.v = sin"'.v(cos-.v)* cos .v i/a = sin'"A(l - sin- .v)* cos .v h/a

3. If the powers of both the sine and cosine are even and nonnegative. make repeated use of the identities

1
- cos 2.V

and
I + cos 2.V

to convert the integrand to odd powers of the cosine. Then proceed as in guideline 2.
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TECHNOLOGY
Try using a computer algebra system

to evaluate the integral in Example 1.

When ue ditl this, we ohtained

sin' .V cos"* .V i/.v

-cos^ v - sin- .V + T^ 1 + C.

Is this equivalent to the result obtainetl

in E,\ample I
.'

Example 1 Power of Sine Is Odd and Positive

Evaluate I sin' .v cos"* v il\

Solution Because you expect to use the Power Rule with ii = cos .v. save one sine

factor to form Ju and convert the retiiaining sine I'aclors to cosines.

Triuonoinelric idenlitv

sin' .V cos"' .V ilx =
I
sin-.v cos^ .vlsin v) tlx Rewrite

( 1
— cos- .v)cos^ .V sin .v dx

(cos^.v — cos'' .v)sin .V (/.v Multiply,

cos"* .V siti .V dx —
I
cos'' v sin v dx

JOS"* .v( - sin x] dx + cos" .v( — sin .v) dx

cos- .V cos .V—^- + —^- + C lnlc"ratc.

In Example 1. />(>?/; ol the powers /» and ;; happened to he positi\e integers.

However, the same strategy will work as long as either ;/; or ;; is odd and positive. For

instance, in the next example the power of the cosine is 3, but the power of the sine
1

IS — T.

nm-i K.MitiipIe 2 Power of Cosine Is Odd and Positive

The area of the

(l.2,V),

Fifiure 7.4

6 3

region is approximately

Evahtate dx.

Solution Because you expect to use the Power Rule with » = sin v. save one cosine

factor to form du and convert the remaining cosine factors to sines.

COS" x

/b Vsin.v
dx = COS- .V COS .V

dx

I

I, vsin.v

'"
( I

- sin- .v)(cos .v)

dx
nib X sm .V

[(sin .v) "- COS X — (sin .v)'''- cos .v] dx
w/h

(sin .v)

1/2 5/2 -/6

'2 +
32

80

« 0.239

Figure 7.4 shows the legion whose area is represented by this integial.
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John Walks (1616-1 703)

Wallis did much of his worl< in calciilii'i prior

to Newton and Leibniz, and he influenced the

thinl<ing of bolli of tliese men. Wallis is also

credited with introducing the present symbol

(co) for infinity

Example 3 Power of Cosine Is Even and Nonnegativc

E\:iltKiIc co-s"* .V il\

Solution Because //( and ;; are both even tiiid iionnegative (in = 0). vdti can replace

co.s-'.vby [(1 + cos2.v)/2]-.

,,os^v,/.v= ||i^4^^|
</.v

</.v

1 cos 2.V cos- 2.V
- H H

4 2 4

I cos 2.\ I / I + cos 4a

4
+

4

= H ,/ V - 2 cos 2.V cL\ + — 4 cos 4.V ilx

3.V sin 2.V sin 4.v
= — + + + C

8 4 32

Try using a symbolic differentiation utility to verify this. Can vou siiiiplifv the

derivative to obtain the original inlearand?

In E\aniple .3. if yon were to e\;iluate the dctlnile nitegral from to 7i/2. you

wottld obtain

cos"* .v i/.V

3.V sin 2.V sin 4.v
h

1

X 4 32

-/2

TT
+ + - (0 + + 0)

3

16

_ 377

16'

Note that the onJN term thai contribules to the soltUion is 3.v/S. This obser\alion is

generali/ed in the hillowiny lorniLihis de\eloped b\ .lohn Wailis.

Wallis's FoiTTinlas

1. If /! is odd (/! > 3). then

f"'- /2\
cos" .V ll.\ = ^

Jo \-V

/4\ /6\ // - 1

\5/ ' 7i \ /; 1

2. If n is even in > 2). then

cos" .V i/.V = -
Jo \2/

/3\ /S\ /.-I
M""]

U/U/ I n Ki)-

These formulas are also valid if cos" .v is replaced by sin" .v. (\'ou are asked to

prove both formtilas in E.xercise 96.)
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Integrals Involving Powers of Secant and Tangent

The Ibllowing guidelines eaii help you evuluate integrals of the form Jsec"'.v tan" .v d.x. 1

Guidelines for Evaluating Integrals Involving Secant and Tangent

1. If the power of the secant is even and positive, save a secant-squared factor and convert the remaining factors to

tangents. Then expand and integrate.

h\en Convert to taiisenls Save for (/(^

^ r-—7^-7- '—7'—
• r

C-* .V tan" .V (/.v = (sec-.v)* ' tan" .v sec- .v c/.v = (1 + tan'.v)' ' tan" .v sec- .v J.v

2. If the power of the tangent is odd and posilixe. save a secant-tangent factor and convert the remaining factors to

secants. Then expand and integrate.

Odd Convert to secants Save for dii

sec"' .V tan-*-^ ' -vf/.v = sec™ ' .v(tan-;v)*sec .v tan .v rf.v = sec"' '.v(sec-.v— 1 )* sec.v tan .v (/.v

3. If there are no secant factors and the power of the tangent is even and positive, convert a tangent-squared factor to a

secant-squared factor, then expand and repeat if necessary.

Convert to secants

tan" A (/.v = tan" - .v(tan-.v) i/.v = tan" -.v(sec-.v~ \) il\

4. H the integral is of the form fsec"'.v </.v. where ;;/ is odd and positive, use integration by parts, as ilUistrated in

Example 5 in the preceding section.

5. If none of the first four guidelines applies, try converting to sines and cosines.

Example 4 Power oi Tiinjient Is Odd and Positive

Evaluate |
— '

</.v.

V sec .V

Solution Because you expect to use the Power Rule with 11 = sec .v, save a factor of

(sec -\ hill A > to form dii and coin ert the lemainiiig tangent factors to secants.

'
" (l-\ = I (sec a) ''-tan\v(/A

(.sec v) -''-(tan- aXscc a tan v) (Av

(sec a) ''-(sec-.v- I )(sec a tan .v) </.v

[(sec.v)'''- - (secvj^'Z-JIsec A tan a) (/a

T

-(.sec.vP''- + 2(see.v)-''^ + C j^
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Example S Power of Secant Is Even and Positive
NOTE In Example 5. the power of the

tangent is odd and positive. So, you

eould also evaluate the integral with the

procedure described in guideline 2 on

page 500. In E.xercise 81, you are asked

to show that the results obtained bs these

two procedures differ only by a constant. Solution Let u = tan 3.v. then Jii = 3 sec- .\v cl\ and you can write

Evaluate sec^ 3.v tan' 3.v J.\

sec"* 3.V tan' 3.v i/.v = sec- .\\ tan"' 3.v(scc- 3.v) cl.\

( 1 + tan- 3 v) tan'' ,3.v (.see- 3.v) J.v

(tan' 3.1 + tan^3.v)(3sec-3.v)</.v

I / tan^ 3.V tan" 3.v

3\ 4 6

tan"" 3.V tan'' 3.v

+ C

i; 18
C.

Exiiitiple 6 Power of Tangent Is Even

p/4
Evaluate tan^.vJ.v.

Jo

Solution Because there are no secant factors, you can bcyin by converting a tangent-

squared factor to a secant-squared factor.

The area of the region is approvimateh

(1.119,

Figure 7.5

tan"* -V (/.v - Ian- .vltan- .\ ) Jx

tan- .v(sec- .\ — I ) dx

= tan- .V sec- x ilx - tan- .v tl.

= tan- .v sec- x dx - (sec- a —
I ) </.v

tan X + X + C
tan- A

You can evaluate the definite intenral as follows.

-/4

tail"* A (/.v

tan ' .V

3

- tan A -1- A

77 2

4 3

0.119

it/->

The area represented by the definite integral is shown in Figure 7,5, Try using

Simpson's Rule to approximate this integral. With ;; = 10. you should obtain an

approximation that is within 0,00001 of the actual value, 2Zj
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For integrals involving powers of cotangents and cosecants, you can follow a

strategy similar to that used for powers of tangents and secants. Also, when integrat-

ing trigonometric functions, remember that it sometimes helps to convert the entire

integrand to powers of sines and cosines.

Example 7 Converting to Sines and Cosines

bvaluate ^ (L\.

Solution Because the first four guidelines on page 500 do not apply, ti7 converting

the integrand to sines and cosines. In this case, you are able to integrate the resulting

powers of sine and cosine as follows.

tan^ ,v \cos .v7\ sin.v ,

(sin .v) "(cos .v) ilx

^(sin.v) ' + r

- esc .V + C

FOR FlRTHIiR IXFORMiTIOiX To

learn more ahout uitegrals involving

sine-cosine products with different

angles, see the article "Integrals of

Products of Sine and Cosine with

Different Arguments" by Sherrie J.

Nicol in The College Mcillniihilh \

.IdiiniiiL To view this article, go to the

website u ww.iihitlhirtiiles.eniii.

Integrals Involving Sine-Cosine Products with Different Angles

Integrals involving the products of sines and cosines of two different angles occur in

many applications. In such instances you can use the following product-to-sum

identities.

sin /;;a" sin /(-v = -(cos[(;;; — ;;).v] — cos[(/;) -I- ii)-\])

sin ;».v cos (;.v = -(sin[(/;; - /ih] + sin[(/;/ + /jfv])

cos III.\ cos, ihx = — (cos[(;» — ;().v] + cos[(/» + n).\])

Example H Using Product-to-Stini Idenlilies

Evaluate J sin ,5,v cos 4.v </.v.

Solution Considering the second product-to-sum identity above, you can write the

following.

sin .5.V cos 4.V d.\ = - (sin .v -I- sin 9.v) i/.v

1
(

cos 9.v ^

- -cos .V — -I- C

cos .V cos 9.V

"2 18~ + C
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EXERCISES FOR SECTION 7.3

rp 1. Consider the function /(.v) = sin^'.v + cos''.v.

(a) Use the power-reducing formulas to write the function ui

terms of the fnsi power of the cosine.

(b) Determine another way of rewriting the function. Use a

graphing utiHty to verify your result.

(c) Determine a trigonometric expression to add to the function

so that it becomes a perfect square trinomial. Rewrite the

function as a perfect square trinomial minus the term that

you added. Use a graphing utility to verify your result.

(d) Rewrite the result in part (c) in terms of the sine of a double

angle. U.se a graphing utility to verify your result.

(e) In how many ways have you rewritten the trigonometric

function ' When rewriting a trigonometric expression, your

result may not be the same as another person's result. Does

this mean that one of you is wrong'.' Explain.

2. Match the antiuerixalive in the left column with the correct

integral in the rit;ht column.

( a ) V = sec .v

(b) V = cos .V + sec .v

(c) \ = X ~ tan -V + 5 tan .v

(i) sin .V tan- .v i/.v

(h) S cos'.V(/.v

(^l) sin -V sec- .V (/-v

(d) y = 3.V + 2 sin .v cos'.v + (i\ ) | tan"" » i/.v

3 sin .V cos .V

In Exercises 21-38, evaluate the integral involving secant and

tangent.

21. Isec.rvi/.v

23. Isec',\v</,v

5. sec' 77 .V (/a

27.
I
tan' - </.v

29. sec- .V tan .\ ilx

31. tan- .V sec- .v d.\

}•}. sec'' 4.V tan 4,V(/\

35. sec ' V tan \ ilx

37. |'^^,/v
sec A

22. sec-(2.v - l)</.v

24. secWi/A

26. tan-.vi/

28. tan ^ sec- -- dx

30. lan' 2/ sec' It ill

32. tan'' 2a sec- 2a i/.v

34.
I
sec- - Ian - dx

36. Ian' .\\ ilx

3S. |'"V'</>
sec A

In Exercises 39—12, solve the differential equation.

39. V- = ^in"' 't"

41. v' = tan' 3a .sec 3a

40.
da

sin- — cos- —

42. I' '
= v/tan .v sec"" .v

In Exercises 3-16. evaluate the integral.

3.
I
cos' A sin .V (/a 4. | cos" .v sin"' a dv

5. sin'' 2a cos 2a dx

7. sin"' .V cos- a dx

9. cos' rtv'sin e d$

11. cos-3a</a

13. sin- a cos- a da

15. A sin- A (/a

6. sin' A dx

8.
I
cos' -(/a

,
sni /

10.
I

dl

^ cos /

12. lsm-2A</\

14. sin-'2H</H

16. -V- sin- A dx

rV Slope Fields In Exercises 43 and 44. a differential e<|uati()n. a

point, and a slope field are gi\en. lal Sketch two approximate

solutions of the differential ecjuiition on the slope Meld, one of

which passes through the indicated point. Ibl I se integration to

find the particular solution of the differential equation and use

a graphing utility to graph the solution. Compare the result

with the sketches in part (a). To print an enlarged copy of the

graph, go to the website www.inatliiiiuphs.ciim.

In Exercises 17-20, verify VVallis's Formulas by evaluating the

integral.

43. "T = sm-A. (0, 0)
d\

-/ ^ • —
' ^ / y—

/ y ^ y / / >

^ • / y ^

' / ^—
'/_4-

- ^ / y -^—

^

-y / y

.

X
- y / y '' ^

— y / /--—^^
" y / y

.

^
-^y / y -y

\-\ '\
I
- -V

' y y y -^

' y y y "
- y y y '

44.
;^

= sec^vtan^v.(0.4)

1 1

I \

I \

1 1

/ /-

; /-
/ /-
;
/-

I
/•

/
/-

I I I .f I

-
I-

-1.5 1

I \

I 1

/•

I
/--

—'/ I /—'/ I I—'/ ; ,'

—/I I— / 1 I-"/
I I

I
-y f I I—- /I /

1

—--/I /—--/
I I

—^/ ; /— / i (

17.
I

cos' A dx =
I)

19. cos^ A dx

3

35

18.

20.

cos .V l/.V = 7T

sin- A </v = —
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rp In Exercises 45 and 46. use a computer algebra system to sketch

the slope field for the differential equation, and graph the

solution through the specified initial condition.

(/v 3 sin A-

4s. "T = . ^(0) 46. ^ = 3x'^lan-A. v(U) = 3
I.x V

In Exercises 47-50, evaluate the integral.

47. sui 3veos 2ai/.v 48. cos 4f*cos( - 391 </(;

49. MnfKin3(^</W 50. sni(-4v) cos 3a- (/v

rp In Exercises 51-60, evaluate the integral. I'se a computer

algebra system to contlrni your result.

79. In yotu own worils, describe how you would integrate

J sin"' A cos" A d\- for each of the following.

(a) 111 is positive and odd.

(b) n is positive and odd.

(c) III and // are both positive and even.

80. In \our own words, describe how you would integrate

J sec'" A tan" a dx for each of the following.

(a) III IS positive and e\en.

(h) II is positive and odd.

(cl II IS positive and even, and there are no secant factors.

(d) /// IS positive and odd. and there are no tangent factors.

51. cot '2a, /a

53. csc'9(/fl

52. tan"* - sec^ - dx

54. CSC- 3a col 3a (/a

cot- /

?5. I ilr

CSC ;

57.
I

dx
sec V tan a

56. l^^di
CSC t

58. I ""--^"^""-Vv

rp In Exercises 81 and 82. (a) find the indefinite integral in two

dillerent "ays. (b) Ise a graphing utility to graph the anti-

derivative (without the constant of integration) obtained by

each method to show that the results differ only by a constant,

(c) Verify analytically that the results differ only bv a constant.

59. I tan' I - sec^ t) dl
I - sec /

60, dt
j cos r - I

In Exercises 61-68, evaluate the deliiiile integral.

61. siirAt/v

•77 4

63. I tan 'a (/a

62. tan- > d\

64. sec- /^' tan / dt

65.

67.

cos I

", ^— "'

I + sin /

cos-' A dx

66. sin3«cosW(/y

68. (sin- A + \)dx

rp In Exercises 69-74, use a computer algebra system to evaluate

the integral, (irapb the antideri\alives lor tvio dillerent values

of the constant of integration.

69. cos^-</a

71. sec' TTxdx

73. sec^ TTx tan ~x dx

70. sin- A cos- A- dx

72. Itair-d - a)</a

74. I.sec'd - a) land - a)</a

rp In Exercises 75-78, use a computer algebra system to evaluate

the defuiite integral,

75, sin 2Hsin 3«(/f< 76, (I - cos «)- </(;

77, sin^K/A 78, sin" A, /a

81, sec^V tan Mv Ja 82. sec- A tan a ilx

83. Area Find the area ol the region bounded b\ the graphs of the

equations y = sin- ttv. \' = 0. a = 0. and a =
1

.

84, Volume Find the \-okiiiie of the solid generated by revolving

the region bounded b\ the graphs of the equations y = tan a.

y = 0. A = - tt/4. and a = tt/4 about the v-axis.

Volume and Ceutroid In Exercises 85 and 86, for the region

bounded by the graphs of the equations, find (a) the volume of

the solid formed by revolving the region about the .v-axis and (b)

the centroid of the region,

85, V = Si|-| A. V = 0. A = 0. A = 7T

86. \ = cos v. \- = 0. A = 0. A = 4

In Exercises 87-90, use integration by parts to verify the

reduction formula.

.._ I ,
sin""' A cos A /( - I

, .

87. sin" A (/a
=

i

I
sin" -A (/A

«M I n ,
COS" ' .V sin A II - 1 . ,

on, cos V (/a =
\ cos -.V(/.v

89. cos'" A sin" A </a

cos'"* A sill" A

111 + II

II -
1

III + II

COS'" A SI n" - A dx

90.
I
sec" A dx = r sec" - a tan a -I 7 | sec" - a dx

II - 1 ;/ ~ I
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In Exercises 91-94, use the results of Exercises 87-90 to e\aluate

the integral.

91. sni\v</A

9.V
I
sec-* -^ (/.v

92. e(.s^v,/A-

94. Mil' A COS- A </a

rp 95. Mddeliiif; Data The table shows the normal maximuni (high)

and iiiinmunii (low) temperatures for Erie. Pennsylvania for

eacii month of a year. (Source: NOAA)

Month Jan Feb Mar Apr May Jun

Max 30.9 32.2 41.1 53.7 64.6 74.0

Min 18.0 17.7 25.8 36.1 45.4 55.2

Month Jul Aug Sep Oct Nov Dec

Max 78.2 77.0 71.0 60.1 47.1 35.7

Min 5'i.9 39.4 53.1 43.2 34.3 24.2

The maximum and minimum temperatures can be modeled by

fit) = (/,, + d, COS —- + /), Sin
-—

6 6

1
('-, m

,

o. =7 /(/) cos — dl

"Jo f"

/>, =7 /(/) sin ^ (It

(a) Approximate the model Hit) for the maxmium temperatures.

Let / = correspond to January. (Hinr: Use Simpson's Rule

to approximate the integrals and use the Januai^ data twice.)

(h) Repeat part (a) for a model IJr) lor the minimum tempera-

ture data.

(c) Use a graphing iitilily to compare each model with the

actual data. During what pail of the year is ihe difference

belv\een the maximuni and minimum temperatures greatest .'

96. Wallis's Formulas Use the result of Exercise 88 to prove the

following versions of Wallis's Formulas.

(a) If )i is odd in > 3), then—
1^)(^)(?

(b) If II IS even {ii > 2). then

co,s".vJ.v=(^)(^)(^

;( - 1

n - 1

97. The inner product of two functions / and x on [a. h] is given

hy if- fi) =
.f„ ,/( v),i,'(a) (/a. Two distinct functions/ and a are

said to be orthogonal if {f. g) = 0. Show that the following set

ot functions is onhosional on [— 77. tt\.

I
sin A, sin 2,\. sin 3a. . cos A. cos 2a. cos 3.V.

SECTION PROJECT

Power lines are constructed by stringing wire between supports

and adjusting the tension on each span. The wire hangs

between supports in the shape of a catenary, as shown in the

figure.

(-L/2, 0) (L/2. 0)

Let T be the tension (in pounds) on a span of wire, let // be the

density (in pounds per foot), let t; ~ 32.2 be the acceleration due

to gravity (in feet per second per second), and let /. be the dis-

tance (in feet) between the supports. Then the equation ol (he

catenary is

T ( iig.x— cosh -—
iig \ T

where .v and y are measured in feet.

(a) Find the length of the wire between two spans.

(b) To measure the tension in a span, power line workers use

the return wave luetliod. The wire is struck at one support,

creating a wave in the line, and the time / (in seconds) it

takes for the wave to make a round trip is measured. The

velocity v (in feet per second) is given by v = JT/il How
long does it take the wave to make a round trip betv\een

supports?

(c) The sag .v (in inches) can be obtained by evaluating y v\hen

A = L/2 in the equation for the catenary (and multiplying

by 12). In practice, however, power line workers use the

"lineman's equation" given by .v = 12.075/-. Use the fact

that [cosh(((gL/2r) + 1] = 2 to derive this equation.

FOR FLRTHER INFORMATION To learn more about the

mathematics of power lines, see the article "Constructing

Power Lines" by Thomas O'Neil in The UMAP Journal. To

view this article, go to the website www.matharticles.com.
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Trigonometric Substitution

Use lrii;ononielnc subslilulion lo solve an inlegral.

Use integrals to model and soKe real-life applications.

EXPLORATION i :;

Inteiiratiitg a Riidical Function

I'p to this point in the text, you ha\e

not evaluated the followint; intearal.

J\ - .V- dx

From geometry, you should be able to

find the e.\act value of this integral

—

what is it? Using numerical integra-

tion, with Simpson's Rule or the

Trapezoidal Rule, you can't he sure

of the accuracy of the approximation.

Why'?

Try finding the exact value using the

substitution

.V = sin ti and i/.v = cosHi/H.

Does your answer agree with the

value you obtained using geometry'.'

Trigonometric Substitution

Now that you can evaluate integrals in\ ol\ mg powers of irigonotiietric functions, you

can use trigonometric substitution to evaluate integrals involving the radicals

/a- + ir. and

The objective with trigonometric substitution is to eliminate the radical in the inte-

grand. You do this with the Pythagorean identities

cos- = \
- sin- 0. sec- = \ + tan- 0. and tan- = sec- 6-1.

For example. W n > (1. let ;( = ;/ sin H. where — tt/2 < f* < Tr/2. Then

V(/- — ir = Ja- — (r sin-

= Ja-( 1 - sin- 0)

= ^ (r cos- H

= CI cos H.

Note that cos 6 > 0. because - tt/2 < f) < tt/2.

Trigonometric Substitution (a > 0)

it^^

1. For integrals invoh ing v^"" ~ "". let

u = a sin H.

r

H

Then Ja- — ir = a cos 6. w here

-tt/2 < H < tt/2.
y tr - ir

2. For integrals involving v^tr + ir. let

11 = a tan 6.

r

U

Then Jir + ir = a sec H. where

-tt/2 < H < tt/2.

3. For integrals involving ^/ir - ir. let

II = (( sec H.

r

ytr - ir

Then x ir - tr = ±a tan H. where

{) < H < tt/2 or tt/2 < H < tt.

Use the positive valtie if ;/ > a and

the negative value if /r < —a.

(/

NOTE The restrictions on (K'usurc that the runction that dcllnes the substitution is one-to-one.

In tact, these are the same intcr\ als over \\ hich the arcsine. arctaiiLienl. and arcsocaiit are defined.
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Figure 7.6

Example I Trigonometric Substitution: // = a sin

Evaluate
cl.\

'JV

Solution First, note that none of the basic integration rules applies. To use trigono-

metric substitution, you should observe that ^9 - .v- is of the form v't'" — "" So, you

can use the substitution

.V = (( sin W = 3 sin W.

Usinsz differentiation and the triancle shown in Fieurc 7.6. vou obtain

(/.v = .^ cos ticlH. V 9 - .V- = 3 cos e. and .v- = 9 sm- H.

Thciclore. trigonometric substitution yields the follownig.

i/.v r 3cosH</(^
Siihstiiiiic

.V-V9 - .V- J (9 sin- m^ cos 6)

_ I

I"

dti

"
9 1 sm- W

sc-Odt^

cot H + C

Simplily.

Trieononictnc rIlmiiiiv

Apply Cosecant Rule

(^)^ C Siibstniiic lor cot II

9.V
C

Note that the trian<;le in Ficure 7.fi can be used to conxert the H\ hack to .v's as follows

cot H
adj. _ ^ 9 - .V-

opp, .V

TECHNOLOGY U.se a computer algebra system to integrate each of the follow ing.

dx [ dx { dx [ dx

J^) - X- ] xj'^ - x" J.v-s/9~^ \/9^

Then use trigonometric stibstitutioti to duplicate the results obtained with the

computer algebra system.

In an earlier chapter, you saw how the inverse hyperbolic functions can be used

to evaluate the inteci'als

du dii

ir — II-

and
(/((

II V "- ± "-

You can also evaluate these integrals using trigonometric substitution. This is illus

trated in the next example.
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tan H = 2.V. sec = ^/4.v' + I

Figure 7.7

Example 2 Trigonometrif Substitution: 7/ = a tan Q

Evaluate
dx

J X 4.V- + ]

Solution Let ;/ = 2.v. (/ = 1. and 2.v = tan ft. as shown in Fictire 7.7. Then,

clx = - sec^ ft lift and V4.v- + 1 = sec ft.

Trigonometric substilinion produces the tollovving.

1 , 1 fsec-Hdft
clx = -

V'4.v- + I sec ft

^ccHtlft

In I sec 6 + tan ft\ + C

ln|y4.v= + 1 + 2.vl + C

SultstilLile.

Simplity.

Apply Secant Rule.

Biick-Mibsliliite.

Try eheci^ing this result w itii a computer algebra system. Is the result gi\en in this

form or m the form of an iincrsc hyperbolic finiction.' ,_.;.2j

\'ou can extend the use ot trigonometric substitution to co\ er integrals in\ol\ ing

expressions such as (;/- - ir)"'- by writing the expression as

tan = X. sin f)
-

Fiuurt 7.8

s/v^ + 1

/f^* Example 3 Trigonometric Substitution: Rational Powers

Evaluate
dx

f\- + ])'/-'

Solution Begin by writing (.v- + ))''- as (y.v- + 1 )\ Then, let a = 1 and

II = X = tan ft. as shown in Fisure 7.8. Usins

dx = SLX- Hdft and J.\- + 1 = sec

you can apply trigonometric substitution as follows.

</.v
/'

</.v

(.V- + 1)-V- J(y;^^M)'

sec- ft do

sec'' ft

dft

sec

cos ft dft

+ C

sin ft + C

X

'.V- +

Rewrite clenominalnr.

Subslilute.

.Simplil'v-

Trigonomelrie idenlily

Apply Cosine Rule.

Back-sulistiliite-

CZi
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For definite iiuegral.s. it is ot'leii convenient to determine the integration limits for

that a\oid conserting baci\ to .v. 'I'ou might want to re\ iew this procedure in Section

4.5, E,\amples 8 and 9.

Exaiiiplc 4 Converting the Limits ot Integration

Figure 7.9

- ,
r

V.V- - 3 ,

hvaluate | dx.

Solution Because v v- - 3 has the form ^ir — ir. you can consider

II = -V. a = y3. and .v = ^3 sec 61

as shown in Figure 7.9. Then.

d\ = 73 sec H tan JH and J.\- - 3 = J3 tan H.

To determine the upper and lower limits ol integration, use the suhstitution

.V = .,3 see H. as follows.

Lower Limn

When .V = v^3. sec ff = 1

and H = 0.

Therefore, you have

Upper Limit

When .V = 2, .see B =
2

73

and = 77

Integration Inietiration

limits for -V limits for B

i \

' v/(^ 3 ""'— ,/.v
=

'
( 73 tan (^)( V3 sec 6 tan «) Jf^

. .3 -^' 73 sec

/•7T/6

v/3 tan= e (IB

r-/h

= 73 (sec- H ~ DJB
.

= ./3 tan f? - ^;

^ L/3 6J

, 7371
' 6

« 0.0931. CZ!

In Example 4. try converting back to the variable .\ and evaluating the antiderivative

at the original limits of intetiralion. You should obtain

L-
/^^^^

, n V-v^ - 3 X
ax = V 3 1= arcsec —1=

X 73 73. ./3
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When using trigonometric substitution to e\aliiate defniite integrals, you must be

careful to check that the values of ft lie in the intervals discussed at the beginning of

this section. For instance, if in E.xample 4 you had been asked to evaluate the definite

intemal

J^^^3
cl.x

then using ii = .v and a = ^/3 in the interval [-2, - ^/?>\ would imply that u < —a.

So. when determining the upper and lower limits of integration, you would have to

choose ft such that tt/2 < ft < tt. In this case the integral would be evaluated as

follows.

"^V-V- - 3 P (- V3 tan ft)( 73 sec ft tan ft) J ft

T/b ^3 sec 6*

7

- ^'ihm-ftJft

v^ (sec- ft - \)dft

Jfw/b

= -V3

Xanft-ft

"

L >?7/6

(0 - tt) -
I 7=

-
57T

6

./37r

= -0.0931

Trigonometric substitution can be used with completing the square. For instance,

try evaluating the following integral.

Jx- - 2.V J\

To begin, you could complete the square and write the integral as

yCv - 1)= - P (/.v.

Trigonometric substitution can be used to evaluate the three integrals listed in the

following theorem. These integrals will be encountered several times in the remainder

of the text. When this happens, we will simply refer to this theorem. (In E.xercise 81,

you are asked to verify the formulas given in the theorem.)

THEOREM 7.2 Special Integration Formulas (a > 0)

1 / ;; \

1. ^''a- - ir dii = ^ a- arcsin - + uja- - ;r | + C
2\ a /

2. v/;/- - <;- (hi = -z^UiJu- - a- - a- ln|(( + Ju- + a-\) + C.u > a

\

3. Jir + fl- (/// = -zdijir + a- + a- \n\it + Jir + a-\) + C
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Applications

The arc length of the ciir\e from (0. II) to

( I. t) is approMiiiateh M4S.

Figure 7.1(1

Example S Finding Arc Lengtli

Find the arc leiigtJT of the graph of /'(.v) = ^.v- from a = to a = 1 (see Figure 7.10)

Solution (Refer to the arc lensitli formula in Section 6.4.)

,v= Vl + [/'U)]^rf.v

Vl + .V- cl.\

-/4

sec ' 6 JH

sec HVdn H + In | sec H + tan e\

\[J2 + \x\[j2+ I)]- I.14S

-/4

Formula for arc leiiiith

/•(A) = .V

Lei u — 1 and a — tan H.

Example 5. Section 7,2

The barrel is not quite full of oil the top

0.2 foot of the barrel is empty

Figure 7.1 1

I

A- + y- = 1

='^>>.,^^^

0.4 II /

If

\o.b ft

A
-1

r
r

Exiiiiiple 6 Comparing Two Fluid Forces

A sealed bairel of oil (weighing 48 poinids per cubic fool) is tloating in seawater

(weighing 64 pounds per cubic foot), as shown in Figures 7.1 1 and 7.12. (The barrel

is not completely full of oil—on its side, the top 0.2 foot of the barrel is empty.)

Compare the tluid forces against one end of the barrel from the inside and fVom the

outside.

Solution In Figure 7.12, locate the coordinate system with the origin at the center of

the circle given by .v- + v- = 1. To find the fluid force against an end of the baiTel

fi-(}iii ihv in.sulf. integiatc between —
I and 0.8 (using a vveight of ir = 48).

F = u \ h{v)L(Y)clY General equation (see Section b.7)

^,ns,jc
= +«

I
«'« - .v)(2)yi - y-ily

76.8 yi - V- cIy - 96 v^.^l - v= ilv

To find the fluid force fidiii the mitsidc. integrate between -
1 and 0.4 (using a weight

of n' = 64).

64 (0.4 - a)(2).'^I - v-(/v

v^(/A - 128 \J\ - y-d\51.2

We leave the details of integration for you to complete in Exercise 74. Intuitively,

would you say that the force from the oil (the inside) or the force from the seawater

(the outside) is greater? By evaluating these two integrals, you can detemiine that

Figure 7.12 /^.HMde
= 1-1-^ pounds and f;,^,,,^, == 93.0 pounds.
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EXERCISES FOR SECTION 7.4

In Exercises 1—t, match the antiderivnti\e with the correct

integral. Ilntegrais are labeled (a), (b), (c), and (d).|

(a)

^ 16 - .V-

:d.x

^ ,
. .V- + 16 ^

(bl
I

dx

(c» K 7 + 6.V - .v-rf.v

(d)
.V- - 16

.rf.v

I. 4 In
J.x- + 16 - 4

/.v- + 16 + C

2. Slniy.v- - 16 + .vl + - y.v- - 16
+ C

. .V .Vv/16 - .V- ^
3. X arcsui H C

, „ . .V - .1 (.V- 3)v7 + 6v--v^

In Exercises 5-8. e\aluate the indetlnite integral using the

substitution x = 5 sin 0.

,. i^^nzii,.

10

725 - .V-

In Exercises M-12, evaluate the indellnite integral using the

substitution .v = 2 sec It.

v.v- ~ 4
10.

I

-' '' ^ ,/.v

11. i\/.v- - 4clx
'x- - 4

In Exercises 1.1-16. evaluate the indellnite integral using the

substitution .v = tan 0.

13. iv' I + x-dx

15. -t;^ dx

14.

16.

9.v'

s^I + .V-

: dx

-^ dx
(I + x-y-

'

j (1 + X')-

In Exercises 17 and IS, use Theorem 7.2 to e\ahiale the integral.

In Exercises 19-40. evaluate the integral.

19.

21.
I

yi6 - .V-

dx

20.

22.
1

s'25 -.V-'

23.
I
V 16 - 4v-t/.v

1

- J^ : </.V

24. v7l6 - 4.v-(/.v

26.
(I - /-)-''

27. I^^.v 28. l-^Hiill,,

29.

31

v^M.v- + 9

-3.V

tx

dx
(v- + 5)'/^

33. |c'' v'l + f-'(/.v

30.

32.

1

Vv'4.v- + 16

1

-.dx

: dx
(V" + 3)-'/^

34. I (,v + l)v^-- + 2.V + 2dx

iS. |<\i - c-' dx

37.
'

dx
4 + 4.V- + A--"

39.
I
arcsec 2.v ilx. x > ,

36. ,- </.v

V f

38.
v' + v + 1

x' + 2.1- + 1

40. .1 arcsin .v dx

In Flxercises 41-44, complete the square and evaluate the

integral.

41.

43.

s/I^

s/x- + 4.V + 8

42.

: dx 44.

./2x

^x~ - 6.V + 5

: dx

In Exercises 45-50, evaluate the integral using (al the given

integration limits and (h) the limits obtained by trigonometric

substitution.

45.

47.

49.

1-

(1 - t

dxr
- + 9

.V-

dx

lit 46.

•T/:
1

(1 - t-Y'-
dl

48. V9 - 2.5.V- dx

4 y.v- - 9
50. r^^i^dx

17. U 4 + 9v- dx ../

Fj^ In Exercises 51-54, use a computer algebra system to evaluate

the integral. Verify the result by ditferentiation.

18. v/l + x-dx
51.

53.

y.v- + 10.V + 9

</.v

dx 52. (.(- + 2.V + 11 )'/=(/.(

.^^^ 54. .( \ .V- ~ 4 dx
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55. State the substitution you would make it you used trigono-

metric substitution and the integral in\olved the given

radical, where a > 0.

(a) s/ci- - ir

(c) Vii- - a-

(h) ^/Tr + ir

56. State the method of integration \oti uouki use lo perhirni

the intenration. Do not mtesjrale.

(a) -vV-V- + 1 d\ (b) ,v-^'.v- 1 ih

57. Area Fnid the area enclosed b\ the ellipse show n ni the figure.

/) r-. ^

- „Va--.\

Figure for 5S

58. Mechanical Design The surface ^)f a machine part

region between the graphs of y =
|.\| and v- + (y - A)

(see figure).

(a) Find k if the circle is tangent to the graph of y = |.v

(h) Find the area of the surface of the machine part.

(c) Find the area of <he surface of the machine part as

tion of the radius of the circle r.

59. Area Find the area of the shaded region of the circle ot

a. if the chord is li units (0 < h < a) Ironi ihc center

circle (see figure).

is the

- = 2.S

i lunc-

radius

of the

r 60. Volume The axis of a storage tank m the form of a right

circular cylinder is horizontal (see figure). The radius and

length of the tank are I meter and 3 meters.

(a) Determine the \olume of fluid in the lank as a function of

its depth (/-

(b) Use a graphing utility to graph the function in part (a).

(c) Design a dip stick for the tank wilh markings of j. -. and
J.

(d) If lluid is entering the tank at a rale of j cubic meter per

minute, determine the rate of change of depth ol the lluid

as a fLinction of its depth </.

(e) Use a graphing utility to graph the function in part (di.

When will the rate of change of depth be mininumi ' Docs

this agree with your intuition'.' Explain.

Vnlume of a Torus In KAt-rcises 61 iind 62. find the \ohniie of

the torns generated h\ reMilving the region hounded h> the

grupli of the circle ahoiit they-iixis.

61. (.1 - 3)- + 1- =
1 (see tlizure)

62. (.V -/))- + \' = (',
/) > ;

Arc l.cuiilli In Kxertises 63 and 64, find the are length of the

eur\e over the indicated interval.

Fiiihtion

63. 1 = In .V

64. X = iv-

lutcrval

[1-?]

[0.4]

65. Arc Length Show that the length of one arch of the sine curve

is equal to the length of one arch of the cosine curve.

66. Conjecture

(a) Find formulas for the distance between (0,(1) and (a. a-]

along the line and along the parabola y = .v-.

(b) Use the formulas from part (a) to find Ihc distances for

(( =
1 and II = 10.

(c) Make a conjecture about the difference between the two

distances as a increases.



514 CHAPTER 7 Inlogratlon Techniques, L'Hopitais Rule, and Improper Integrals

Pp I'mjectile Motion In Exercises 67 and ftS, (a) use a graphing

utility Id graph the path iil a pnijeetile that follows the path

gi>en b.\ the graph ol the equation, (h) determine the range of

the projectile, and (c) use the integration capabilities of a graph-

ing utility to determine the distance the projectile travels.

rp 75. Tractrix A person moves from the origin along the positive

y-axis pulling a weight at the end of a 12-meter rope (see

figure). Initially, the weight is located at the point (12. 0).

(a) Show thai the slope of the tangent line of the path of the

weight is

67. » A - O.OD.Sa- 68.
72

Centioiil In Kxercises 69 and 70, llnd the cenlroid of the region

determined by the graphs of the inequalities.

69. \- < .Vv'A- + 9. V > 0. X > -4. A < 4

70. \ < iv-. (a - 4)- + V- < 16. v >

71. Surface Area Find the surface area of the solid generatetl hy

re\ohing the region bomided by the graphs of v = a-, v = 0.

A = 0. and V = s'2 about the v-axis.

72. Average Field Strength The tleld strength H of a magnet of

length 2L on a particle r units from the center of the magnet is

2mL
H

(/- + l}?'-

where ±m are the poles of the magnet (see figure). Find the

a\erage field strength as the particle nni\es from to R unils

from the center bv evalualins: the inle>;ral

* .V- + \ - = 1

3-v

-f— '

Figure for 72 Figure for 73

73. Fluid Force Find the fliiid lorce on a circular obser\ation

umdou ol radius I loot m a \ertical wall of a large uater-filled

tank at a fish hatchery for each of the indicated depths (see fig-

ure). U.se trigonometric substitution to evaluate the one integral.

(Recall that in .Section 6,7 in a similar problem, you evaluated

one integral by a geometric formula and the other by observing

that the integrand was odd.)

(a) The center of the window is 3 feet below the water's surface.

(b) The center of the window is </ feet below the water's

surface (J > 1 ).

74. Fluid Force Evaluate the following two integrals, which

yield the fluid forces given in Example 6.

(a) f,„

(b) f,„

48

64

(0.8 - v)(2)yi -y-,/v

(0.4 - y)(2)^/l - y-dy

s/144dv

d.\ X

(bi Use the result in part (a) to find the equation of the path of

the weight. I'se a graphing utility to graph the path and

compare it with Ihe Hgure.

(c) Find any \ertical asymptotes of the graph in part (b).

(d) When the person has reached the point (0, 12). how far has

the wemht moxed .'

12-
. \

ID ^ \
8- - \\
6-

1

'^\\ Wcisht

4- \
" A

^

x;-'

rp 76. Modeling Data For the years U)M( I through 1VM7. the average

size S (in thousands of dollars) of ordinary life insurance

policies in force in the United States is given in the table.

(Source: American Cinuicil of Life Insurance)

Year 1990 1991 1992 1993 1994 1995 1996 1997

S 37.9 41.5 43.0 45.8 45.9 49.1 52.3 56.0

A model for these data is

5 = s'' 1520.4 -I- 111.2f -I- 15.8/-

where / is the time in \ears. with / = coiTcsponding to 1990.

flse a graphing utility to answer each of the following.

(a) Graph the model for < / < 7.

(bl Find the rate ol increase in .V when t = 5.

(c) Use the model and integration to predict the average value

of S for the years 2000 through 2002.

True or False? In Exercises 77-SO, determine whether the

statement is true or false. If it is false, explain why or give an

example that shows it is false.

77. II \ - sin H. then

78. II I = sec IK I hen

79. II A = tan t>. then

80. If.v = sin H. then

</a

si -.V-
</a

1

dx

I

sec H tan H dH.

I cos $ dH.

In

V- v'T"- A- dx = 2 sin- « cos- dB.

(1 +.V-)''-

81. Use trigonometric substitution to \erii\ the integration forniu-

las given in Theorem 7.2.
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Partial Fractions

Uiiderslaiul the concept of a partial fraction decomposition.

L'se partial fraction decomposition with linear factois to integrate rational Ituictions.

L'se partial fraction decompONition v\ith quadratic faclor.s to integrate lational functions.

lV\~ -5.V + h

sec 6 = 2.V
-

Figure 7.13

John Bernoilli (1667-1748)

The method of partial fractions was intro-

duced by John Bernoulli, a Swiss mathemati-

cian who was instrumental in the early

development of calculus. John Bernoulli was

a professor at the University of Basel and

taught many outstanding students, the most

famous of whom was f eonhard Euler

Partial Fractions

This section examines a procedure for decomposing a rational fimclion into simpler

rational functions to which volt can apply the basic integration formulas. This proce-

dure is called the mt'thod of partial fractions. To see the benefit of the iiielhod of

partial fractions, consider the integral

1

- d\.
- - 5.V + 6

To e\ aluate tliis integral wirluni! partial fractions. \ ou can complete the se|uai c and use

tri'jonometric substitution (see Fisure 7.13) to obtain the followiiiL;.

1

5.V + 6
Jx

/.v

(.V
-

-V2 )-
-- (\/2f

(1/2 sec 0[ in H ilH

(l/4)tan-^ h

2
I
CSC H ilH

i; = s sec H

d\- = i sec II Uui II ,111

= 2 ln|csc - cot H\ + C

Iv - 5
In

In

!v/v--5.v-f6 2 y.v- - S.v + 6

.V - 3

+ C

V.v- - 5.V + 6

- C

+ c

In C

= ln|.v - 31 - Inj.v - 2\ + C

Now. suppose you had observed that

I ^ __\ 1__

X- - 5x + 6
~

.V - 3 X - 2'

Then vou could evaluate the integral easily, as follows

i 1

PariKil traciiuu Jccnnipusitinn

.1- 5.V + 6
dx d\

X - 3 X -

Inl.v - 31 - Inl.v - 2\ + C

This method is clearly pi'eferable to trigonometric subslitiition. However, its use

depends on the ability to factor the denominator, .v- - 5.v + 6. and to find the partial

fractions

I

and
A- - 3 -v - i

In this section, you will study techniques for tlnding partial fraction decompositions.
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STUDY TIP In precaleuliis \on learned

how to eonibine tnnetions such as

.V - 2 A + 3 (a - 2)(a- + 3)

The method of partial fractions shows

NOLI htn\ to re\erse ihts process.

(.V - 2)(.v + 3) .V + 3

Recall from algebra that every polynomial with real coefficients can be factored

into linear and irreducible quadratic factors. For instance, the polynomial

.v' + .v-* - .V - 1

can be written as

.v^ + .v-* - .V - 1 = .v^(.v + 1) - (.V + 1)

= (.\^ -
I )(.v + 1 )

= (.V- + 1 K.v- -
1 )(a + 1

)

= (.V- + 1 )(.v + 1 K.v -
1 K.v + 1

)

=
(.V - l)(.v + 1)^'(a' + 1)

where (.v - 1 ) is a linear factor, (.v + 1
)- is a repeated litiear factor, and (v- + 1 ) is an

in'educible quadratic factoi". Using this factorization, yon can write the partial fraction

decomposition of the rational expression

Nix)

.v' + .v-* - .V - 1

where M.v) is a polynomial of degree less than ."i. as follows

Nl\) A , B C Dx + E

(x - l)(.v + l)-(.v- +1) .V - 1 .V + 1 (.V + D- .v- + 1

Decomposition of N{x)lD(x) into Partial Fractions

1. Divide if improper: If A'(.v)/D(.v) is an improper fraction (that is, if the

degree of the numerator is greater than or equal to the degree o\ the dctiomi-

nator), divide the denominator into the numerator to obtain

M.v) Nix)

D(.v)
<^'P"l>"-"-'l'+^^^.j

v\ here the tlegrcc of /V|(.v) is less than the degree of D(.vl. Theti apply steps 2,

3. and 4 to the proper rational expression A',(.v)//>(.v).

2. Factor denominator: Completely factor the denominator into factors of the

form

(/'.v + (/)'" and (((.V- + hx + c)"

where nx- + hx + c is irreducible.

3. Linear factors: For each factor of the form (/u + q)'". the partial fraction

decLimpositioii must include the following sum of;;; fractions.

-4.

(/'.V + </) (/M- + (/)- (/>.v + tjY"

4. Quadratic factors: For each factor of the form ((;.v- + hx + c)". the partial

fraction decomposition must include the following sum of;; fractions.

B,x + C, B,.v + C, B..X + C.

ax- + hx + c {ax~ + hx + c)- ((;.v= + /;.v + f)"

For a revii'w offuclorizalion techniques, see Piecaleulus, 5tli edititiii. hy Liirsiiii and Hosteller

or Piecaleulus: A Graphing Approach. 3rd edition, by Larson, Hosteller, and Edwards (Boston,

Masuiclnixells: Hoiiahlon Mifflin. 2001).
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Linear Factors

Algebraic techniques for determining the constants in the numerators of a paitial

decomposition with linear or repealed linear factors are demonstrated in Examples I

and 2.

Example 1 Distinct Linear Factors

Write the partial fraction decomposition for
A- - 3.V + 6

NOTE Note that the substitiitinns Idr \

in Example 1 are chosen for their c()n\e-

nience in determining values for A and

B: v = 2 IS chosen to eliminate the term

A(.v - 21. and .v = 3 is chosen to elimi-

nate the term B{-\ - 3). The goal is to

make cninfiiii'iil substitutions uhenexcr

possible.

S()liiti(»n Because .v- — 3.v + 6 = (.v — 3)(.\ - 2). you should inckidc one partial

fraction for each factor and write

I A B
+

X- - 5.V + 6 .V - 3 .V - 2

where A and B are to be detertiiined. Multiplviug this ecpiation bv the least common
denominator (.v — 3)(.v - 2) yields the basic equation

1 = A(x - 2) + B(x - 3). Sasic etiLKilion

Because this equation is to be true for all .v. \ou can substitute an\ convenient \alues

for .V to obtain equations in A and B The most coiuenient \alues are the ones that

make particular factors equal to 0.

To solve l\ir A. let .v = 3 and obtain

1 = /\( ; — 2) + B( ^ - 3) Lei.v = .^ in basic equation.

I = /\(l) + fi(0)

A = \.

To solve lor B. let .v = 2 and obtain

I = A{2 - 2) + B(2 - 3) Let 1 = J ni basic equation.

I = AH)) + B(-l)

B = -\.

Therefore, the decomposition is

I 1 I

.V- - 3.V + 6 .V - 3 .V - 2

as indicated at the beninnint: of this section.

FOR FURTHER INFORMATIOS To learn

a difterent metliod tor finding the partial

fraction decomposition, called the

Heavyside Method, see the article

"Calculus to Algebra Connections in

Partial Fraction Decomposition" by

Joseph Wiener and Will Watkins in The

AMATYC Review. To view this article,

go to the website www.malhariieles.eom.

Be sure you see that the method of partial fractions is practical only for integrals

of rational functions whose denominators factor "nicely." For instance, if the denom-

inator in Kxample 1 were changed to .v- — 5.v + .'i. its factorization as

3.V + 5 .V +
Jl J5

would be too cumbersome to use with partial fractions. In such cases, you should use

completing the square or a computer algebra system to peiform the integration. If you

do this, you should obtain

5.V + 5
d.\

J5
ln|2.v - V5

75
Inllv + V^ - 5| + C.
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Example 2 Repeated Linear Factors

^ ,

, 5.V- + 20.Y + 6
,

bvaluatc —; —r, d\.
x' + 2.V- + .V

FOK FLRTHER ISFURMATIOS For

an alternative approach to using partial

fractions, see the article " A Shortcut in

Partial Fractions" by Xun-Cheng Huang

in The College Mathematics Journal. To

view this article, go to the website

w'ww-ifnithartiiles.coiii.

TECHNOLOGY Most computer

algebra systems, such as Deii\e.

Maple. Mathcad. Mathemalica. and

the TI-89. can be used to convert a

rational function to its partial fraction

decomposition. For instance, using

Maple, you obtain the following.

'.\v- + 2().v + 6
. partrac. v

6
- +

a' + 2.V- + v

1

Solution Becau.se

.v' + 2.V- + .V = .v{.v- + 2.V + 1)

= Aiv + 1
)-

you shiiuld include one fraction for ciicli power of v and (.v + 1 1 and write

5.V- + 2().v + 6 _ A B C

.v(.v +1)= ~ .V .V + 1 (.V + !)-

Multiplying by the least common denominator v( v + 1
)- yields the ha.sic equation

5.V- + 20.V + 6 = Ai\ + I
)- + Bxix + 1 ) + C.V. Basic equau.m

To solve for ,4, let .v = 0. This eliminates the B and C terms and yields

6 = A(l) + +

A = b.

To solve for C. let .v = — I. This elininiates the .4 and B terms and yields

5 - 20 + 6 = + - C

C = ^.

The most eonvenicnl choices lor v have been used, so to find the \'aluc of B. you can

use any other value of .v along with the calctilated values of ,4 and C. Using \ = I.

A = 6. and C = 9 produces

5 + 20 + 6 = A(4) + B{2) + C

?,\ = 6(4) + 2B + 9

-2 = 2B

B = -\.

Therefore, it follows that

5.V- + 20.V + 6

.v(.v+ I)-

- dx
I 9

+
A^ X +1 (.V + 1 )

6ln|.v| - ln|.v + l| + 9

9

dx

{x +
+ C

In
X + X + 1

+ C.

(.V +1)- .V + I

Try cheeking this result by differentiating. Include algebra in your check, simplifying

the derivative until you have obtained the original integrand. ,^''"|

NOTE It is necessary to make as many substitutions for a as there are unknowns

{A. B.C. . . .) to be determined. For instance, in E.xample 2. wc made three suhsiitutions

(a = - I, A = 0. and a = 1) to solve for C, A, and B.
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Quadratic Factors

When using the method tif partial fractions with linear factors, a convenient choice of

A immediately yields a value for one of the coefficients. With ciiuulratic factors,

a system of linear equations usually has to be solved, regardless of the choice of .v.

ff^^ Example 3 Distinct LLnciir and Quadratic Factors

c ,
1

2a-' - 4a- - 8 ^
Exakialc -^ —^ r.dx.

(.V- - a) (a- + 4)

Solution Because

(a- - a)(a^ + 4) = v(a - 1)(a' + 4)

you should include one partial fraction for each factor and write

2a-' - 4.V - 8 A B C\ + D
= - + +

a(a - 1)(a- + 4) A A -
I A- + 4'

Multiplying by the least common denominator a(a — 1)(a- + 4) yields the husic

ClJlliltiDIl

2\' - 4v - 8 = ,4(a - I)(a- -f 4) + ftv(A- + 4) + (Cv + D)(a)(a - 1).

To solve for A. let ,v = and obtain

-8 = -4(- 1K4) + (I + ^-- 2 = A.

To solve for B. let .v --
1 and obtain

- 10 = + S(5) + !^N -2 = B.

.\[ this point, C and D are yet to be determined. \'ou can find these remaining constants

by choosing two other values for.v and solving the resulting system of linear equations.

If A = — 1. then, using A = 2 and 6 = — 2, you can write

-6 = (2)(-2)(.'i) + (-2)(-l.H5) + (-C + D)(-l){-2]

2 = ~C + D.

If A = 2. you ha\'e

(1 = (2)(1)(8) + (-2)(2)(8) + (2C + D)(2K1)

8 = 2C + D.

Solving the linear system by subtracting the first et|uation from the second

-C + D = 2

2C + Z) = 8

yields C = 2. Consequently, D = 4, and it follows that

2.V' - 4a - 8

a(a - 1)(a2 + 4)
(/a

2a 4 ,
,

X X - 1 A- + 4 X- + 4

2 InLvi - 2 InLv -
1 1

-t- Inl.v- + 4) + 2 arctan ^ + C.
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In Examples 1. 2. and 3. we began the soltitiun of the basie equation by substi-

tuting values of A that made the hnear factors equal to 0. This method works well

when the partial fraction decomposition involves linear factors. However, if the

decomposition involves only quadratic factors, an alternative procedure is often more

convenient.

Example 4 Repeated Quadratic Factors

^ , ,
8.V-' + 13.Y

,

bvaluate —^ —r av.
U- + 2)-

Solution Include one partial fraction for each power of (a- + 2) and write

8.Y-' + Llv _ A.\ + B C\ + D
ix- + 2)^ ~ A- + 2 ^ (a- + 2)-'

Midliplung by the least common denominator (a- + 2)- yields the /'<;.v/c' v(ji((iri(>ii

8a-' + 13a = (/\a + B)tx- + 2) + Cv + D.

Expanding the basic equation and collecting like terms produces

8a' + I3.V = A.\' + 2Ax + B.\- + 28 + Cv + D

Sa' + 13a = ,4a' + Ba- + {2A + C}.\ + [2B + D).

Now. you can equate the coefficients of like terms on opposite sides of the equation.

S = .\ U = IB - U

8.V-' + (Ia- + 13a + = ,4a' + Bx- + (2,4 + C).v + (2B -.- D)

t t

= fl

13 = :-i + (

Using the known \ alues A = 8 and fi = 0. > ou can w rite the following.

13 = 2A + C = 2(X) + C O- C = -3

= 28 + D = 2(0) + D — D =

Finallv. noli can conclude that

8a' + I3.V

(a- + 2)-
</.v

8a -3.V , ,

4lnU^ + 2) + ^,;^,-^ + r.

\^\
TECHNOLOGY Use a conipuler algebra system to evaluate the integral in

i; Example 4— you niighl find that the form ol the antiderivative is different. For

i instance, when you use a computer algebra system to work Example 4. you obtain

7^^—^(/.v = ln(A» + 8a'^ + 24a^ + 32a- + 16) +
^,

,' ..
(-V- + 2)- 2(a- + 2)

+ C.

Is this result equivalent to that obtained in Example 4?



SECTION 7.5 Partial Fractions 521

When integrating rational expressions, keep in mind that for improper rational

expressions such as

M.v) _ 2.Y-' + A- ~ 7.V + 7

D(x)
~

A- + A - 2

you must first di\ idc to obtain

Ma)
^ , ,

-2a- + 5
= 2a' — 1 H

D(x)
"

X- + X T

The proper rational expression is then decomposed nito its partial tractions by the

usual methods. Here are some guidelines tor soUing the basic equation that is

obtained in a partial fraction decomposition.

Guidelines for Solving the Basic Equation

Linear Factors

1. Substitute the roots of the distinct linear factors into the basic ec|uation.

2. For repeated linear factors, use the coefficients determined in guideline 1 to

rewrite the basic eL|uation. Then substitute other convenient values of a and

sohe for the remaining coefficients.

Quadratic Factors

1. Expand the basic equation.

2. Collect terms according to powers of a.

3. Equate the coefficients of like powers tii obtain a system of linear equations

involving A. B. C. and so on.

4. Solve the system of linear equations.

Before concluding this section, here are a few things _\ou should remember. First,

it is not necessary to use the partial fractions technique on all rational 1 unctions. For

instance, the following integral is evaluated more easily by the Log Rule.

^' + ' -Jx = !|" /".^^
.
,/v = Imlv^ + 3a - 41 + C

+ 3a - 4 3J .v' + 3a - 4 ' 3

Second, if the mtegiand is not in reduced form, reducing it may eliminate the need for

partial fractions, as shown m the following integral,

2 , r (A ^ IKa - 2)
''=

'
• -2)(.v= + 2a + 2)''^

A + 1

(7A
A- + 2a + 2

= ^ln|A= + 2a + 2\ + C

Finally, partial fractions can be used with some quotients in\ol\ing transcendental

functions. For instance, the substitution ;/ = sm .v allows you to write

" ilx — . /' = sin A. i//( — cos .V t/.v

sin-v(sin a —
1

)

J iiiii — 1)
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EXERCISES FOR SECTION 7.5

In Kxcrcises 1-6. sjive the form olthe partial fraction dtcompo-

sition of the rational lApression. Do not solve for the constants.

1.

3.

4a-- + 3

A- - lOv

2a - 3

A- + IOa

16a

(A - ?)'

4.
A - 2

A- + 4a- + 3

6
2a- -

1

IOa-
""

a(a- + n-

In Exercises 7-28. use partial fractions to evaluate the integral.

7.

9.

11.

13.

A- - I

ilx

\
- -I- A -

5 - A

- </a

</a

,/a

2a- + a- - I

V - + I2v +

v' - 4v

2v' - 4a- - 15a- + 5

A-^ - 2a - S

17.
I

±^l^^^.v

19.

21.

23.

25.

27.

A-' + A-

A-- + 3a - 4

v' - 4a- + 4a'

A- -
1 ,

V '
-I- A-

v-

d.\

' - 2a-- - S

/a
I 6a-' - I

A- -I- 5

A — A - -H A- -H 3
'

8. ^, </a

4v- - M

10.
A- + I

A-- + 4a- + 3

,,. i^ii^i^L^,,

14.

A-- - 4A

A ' - A + 3

v^+A-2"
A- +

16.
A- - 4v

~'\- ~ ^

18. -^dx
(A - U-

20.
4a=

.
a" + A- - A - 1

77,

r 6v ,^ r i/a
A' - 8

37.

38.

39.

2a- - 2a + 3

A ' — A-- — A — ;

a-(2a - 9)

A-' - 6a-- + 12a - 8

I

d\. (3. 10)

/a, (3.2)

- 4
-,/a-. (h. 41 40.

.V- - A -I-

-rfv, (2.6)
A • - A- -I- .V - I

In Kxerclses 41—16, use substitution to evaluate the integral.

41.
I

^^^ Ja 42. ^^^-^^,/A
cos a( cos A — I) J COS A -t- COS--V

43.
I . ,

^^""^
-,/A 44. f F^^^^'/.v

sin-.v + sni A — 2 J tanvdanA + II

45.
(.>-i)(.- + 4)''' *"•

J ic- + m"^u'''

In Kxercises 47-50. use the method of partial fractions to verify

the inteyration fornuila.

47.

48.

49.

50.

I

v(,( + /'aI ,,

^^ ,/A = fin
,/- — A- 2<(

,/v = - In + C
\

a + l

11 + A

A

,/ - A
+ c

( ; V^</A = T^f—V + 111!" + /'-vi) + C
J („ -I- /7a)- b-\a + bx

' '/

I

/a = /)

-(,; -1- /)-v)
'

((.v , -I- /),v

+ C

24.
I
^^^^-^,/A
(v- + y)-

V- - 4a + 7
26.

28.

vy In Kxercises 51 and 52, use a computer aljjebra system to sketch

the slope Held for the differential equation, and graph the solu-

tion through the specified initial condition.

,1
' - A- + .V + 3

A-- -I- .V + 3

,/v

.\" + 6.V- + y
-,/a

., </v 6

</a 4 - .V-

\m = 3

52.
cjl _ 4

,/v
"

.V- - 2v - 3

v(0) = 5

rp In Kxercises 29-32, evaluate the definite integral. L'se a graph-

ing utilitv to verifv vcmr result.

29.

31.

1 , 2a- + 5.x + 2

X + I

v(.v- + I )

,/a

30.

32.

V- 1
,

A- — A

V- -I- A + I

rp In Kxercises 33—tO, use a computer algebra system to deter-

mine the antiderivative that passes through the indicated point.

Use the system to graph the resulting antiderivative.

33.
3a

V- - 6a -I- 9

A - + A +

,/a. (4.0) 34.
6\- + I

A-(,V - I)-'

,/.v. (2. I)

(a- + 2)
-,/.v. (0. I)

(a- - 4)-

53.

" (

' ~ ~ A- - ,5

54. Describe the decomposition of the proper rational function

M-v)/D(a) (a) if ntx) = (/>A + i/Y". and (b) if D(x) =

(,a- + />v + ,)" where ax- + hx + c is irreducible.

55. Stale the method you would use to evaluate each integral.

Do not integrate.

'

v + I , r 7.V -h 4 ,

''"
J.v^ + 2a-s'''

'^"
J.v^ + 2a-s''-^

4
'"'

J.v^ + 2a +
5''-^
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56. Area Find the area ot tliL* region hi)unded by the graphs of

V = 7/(16 - X-) and V = L

57. Modeling; Data The predicted cost C (in 1 00.000s of dollars)

lor a company to remove /)% of a chemical from its waste water

is shown in the table.

p 10 20 30 40 50 6(1 70 80 90

c 0.7 1.0 1.3 1.7 2.0 2.7 3.6 5.5 11.2

A model for the data is

124;>
C < / < 100.

10 +p){100 - /')"

Use the model to tnid the a\erage cost for remo\ing between

75';; and 80% of the chemical.

y^ 58. Logistics Growth In Chapter 5. the exponential grov\ th equa-

tion was deri\ed from the assinnplion that the rate ot growth

was proportional to the e\istmg qiuintuy In practice, there

often exists some upper limit /. past w Inch growth cannot occur.

In such cases, we assume the rate of growth to be proportional

not only to the e.xisting quantity, but also to the difference

between the existing quantity ^ and the upper hunt L. That is,

^ = ML - v).

In integral form, we can express this relationship as

/v

v(Z. - v)
k,li.

(a) A slope field for the differential equation Jy/tlt = y(3 - v)

is shown. Draw a possible solution to the difterential equa-

tion if v(0) = 5. and another if \(0) = -, To print an enlarged

copy of the graph, go to the website i\'i\\\:iiuirhi;niplisAiini.

I 1 11 M I M 1 I M I 1 n 1 1

I I M M I I M I I M M 1 n I

1 I n I I M M.I I 11 1 n \ M
I M \ 1 1 M \ M 1 1 \ U \ I M
\ \ U \ 1 \ 1 \ \ U M 1 \ \ M \

\ \ \ \ \ \ \ \ \ \ \ U \ \ \ \ \ \ \WWWWWWWSSWW

f I i t f / / / / I f I f / / I f I / I
1 1 1 1 11 1 1 1 1 ! I n I I 1 1 1

1

I I I I I I I I I I I I I I I I I I I I

I I I I I I I I I I I I I I I I I I I I

I I I I I I I I n I I I : I I I I I I

I I I I I I I I I I I n I I I I I I I

I I I I I I M I M I I I I [ I I M
///////////////'////
////////////////////

1
\

! ! ^-

(b) Where y(0) is greater than 3. what is the sign of the slope

of the solution

'

(c) For y > 0. find lim i'(/).

(d) Evaluate the two integrals above and solve for y as a func-

tion of t. w here y,, is the initial quantity.

(e) Use the result in part (d) to find and graph the solutions in

part (a). Use a graphing utility to graph the solutions and

compare the results with the solutions in part (a),

(f) The graph of the function v is called a logistics curve.

Show that the rate of growth is maximum at the point ot

inflection, and that this occurs when y = 1/2,

59. Approximation Determine which value best approximates

the area of the region between the v-axis and the graph of the

function 10/[-v(.v- + ll| o\er the inter\al [1.3], Make your

selection on the basis ol a sketch of the region and not by

pert'orniing any calculations,

(a) -6 (b) 6 (cl 3 (d) 5 (e) 8

6(1. Vohiinc and Ceiitroid Consider the region bounded by the

graphs of

V = 2v/(.v- + 1 ). V = 0. v = 0. and ,v = 3,

(a) Find the \olumc of the solid generated by revohing the

region about the v-axis.

(b) Find the centmid ol the region,

61. Epidemic Model A single inlectcd mdnidual enters a

community of ii susceptible individuals. Let .v be the number of

newlv infected individuals at time t. The common epidemic

model assumes thai the disease spreads al a rate proportional to

the product of the tot.il number intected and the number not \et

infected. So

dx
kix + ]){ii - ,v)

,ind you obtain

1

dx =
\ kdl

ix + i)[n - x)

Sohe for v as a lunction of /,

62. Chemical Reactions In a chemical reaction, one unit of

compound ^' aiul one unit of compound Z are con\ertcd into a

single unit of compound .\. If .v is the amount of compound X

formed, and the rate of formation of .X is proportional to the

product of the amounts of iincoinerted compounds^' and /,. then

dl
-VK.-n V)

where i„ and r,, are the initial .imounts of compounds ^ and Z.

From the above equation you obtain

1

(/,V k dl.

( v„ - .v)(,:„ - .v)

(a) Perform the two integrations and solve for x in terms of /,

lb) Use the result in pail (a) to find \ as / ^ cc if ( 1 ) \,, < ,-,,

(2) V,, > .-.,,. and (3) v„ = :,,,

63. Evaluate

+ x^
dx

in two different ways, one of which is partial fractions.



524 CHAPTER 7 Integration Techniques. L'Hopitals Rule, and liiipiopei Integrals

Integration by Tables and Other Integration Techniques

Evaluate an indefinite integral using a table oi integrals.

Evaluate an indefinite integral using reduction formulas.

Evaluate an indefinite integral involving rational I'luiclions of sine and cosine.

TECHNOLOGY A computer algebra

system consists, in part, of a database

of integration formulas. The priniar>

difference between using a computer

algebra system and usmg tables of inte-

grals is that u ith a computer algebra

system tlic computer searches through

the database to find a fit. With integra-

tion tables, roll must do the searchiiii;.

Integration by Tables

So far in this chapter you ha\c studied several integration techniciucs that can be used

with the basic integration lules. But merely knowing hinv to use the various techniques

is not enough. You also need to know when to use them. Integration is first and fore-

most a problem of recognition. That is, you must recognize which rule or technie|ue to

applv to obtain an antiderivative. Frec|ucntly, a slight alteration of an integrand will

require a different integration technique (or pi'oduce a function whose antiderivative is

not an elemcntarv function), as shown below.

.V In .V (/.\
= In .v

4
+ C

In .V , (In.v)- ^ „
i/.V = b C

-\ 2

Inlojjralion by parts

Rule

1

A In .V

d\ - ln|ln.v| + C

In v

dx = ?

L.ii; Rule

Not .111 elementarv function

Many people find tables of integrals to be a valuable supplement to the integra-

tion techniques discussed in this chapter. Tables of common integrals can be found in

Appendi.x C, Integration by tables is not a "cure-all" for all of the difficulties that

can accompany integration—using tables of integrals lequires considerable thought

and insight and often involves substitution.

Each integration formula in Appendix C can be developed using one or more of

the techniques in this chapter. You should try to verify sevei'al of the formulas. For

instance. Formula 4.

((( + IniY bM^^'"""^""") + c lorniLiki 4

ctiii be verified using the method of partial fractions, and Formula 19

diiJa + hii

III = 2Ju + hti + a
'a + bit

t-iirniiilLi 19

can lie verified using integration by parts. Note that the integials in Appendix C are

classified according to forms iinolviniz the following.

hii)

[a + Ini + cir)

(a- ± ir)

bu

s/ir — ir

Inverse trigonometric functions

Logarithmic functions

Trigonometric functions

Exponential functiims
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EXPLORATION Example 1 Integration by Tables

Use the tables of integrals in

Appendix C and the substitution Evaluate

u = Vx — 1

to evaluate the integral in Example 1

.

If you do this, you should obtain

aV-V - 1

Solution Because the expressinn inside the radical is linear. \oii should consider

forms involving Ja + hii.

-
arctall . / 1- C Fmimila 17 (<; < 0)

V-v -
1 J

" +1 J II ^ii + hii \/-ti V -CI

Does this produce the same result as Let ii = - \, h = I. and ;( = .v. Then clii = il.w and you can write

that obtained in Example I?

ilx

J :V:x
2 arctan V-v - 1 + C.

fT^ Example 2 Integration by Tables

Evaluate ,f.vy.v-» - 9 ilx.

Solution Because the radical has the form s i/-' — ir. you should consider

Formula 26.

V"" ^ ir ilii = -{iisjii- — a- — ir ln|;( + v ('" — <r|) + C

Let ;( = .V- and </ = 3. Then ilii = 2.v </.\. and vou have

xj.x^ - 9</.v = - Jlx-y- - 3-(2.v)</.v

^(.vV-V-' - 9 - 9 Inj.v- + y.v-' - 9|) + C.

Example 3 Integration by Tables

Evaluate |

-—
; i/.v.

TECHNOLOGY Example .i shows Solution Of the forms involving c". consider the following.

the importance of having several

solution techniques at your disposal.
j

till

with a table, but when we entered it

into a well-known computer algebra

system, the utility was unable to find

the antiderivative.

Tu , I , , n- 1. . 1 ] .

- ;( - lull + e"} + C Formula S4
1 his integral IS not ditticult to solve I | + c"

Let ;( = -.V-. Then Jii = -2.v i/.v. and sou have

I r -2.v(/.v
d\ =

\ + e"'' ' 2 1 + f

= -^[--v- - ln(l + e--^')] + C

= :,[.v- + ln(l + (' ')] + C. r^
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Reduction Formulas

Several of the integrals in the integration tables have the form ] J(.\)il.\ = g{.\) +

J /;(a) (/.v. Stieli integration formulas are called reduction formulas because they

reduce a gi\eii integral to the sum of a function and a simpler integral.

Example 4 Using a Reduction Formula

Evaluate .\ ' sin v tix.

Solution Consider the follow ine three formulas.

/( sin /( clii = sin (( — (/ cos u + C Formula 52

li" sin II (III = — ii" cos II + n ii" ' cos ii ilii Formula 54

li" cos II (III = ii" sin II — II ii"" ' sin ;( dii Formula 55

Using Formula ,^4. Formula .5,S. and then Formula 52 produces

.v'sin.V(/.\ = — .v'cos.v + 3 .v-cos.V(/.v

TECHNOLOGY .Sometimes when

you use computer algebra systems you

obtain results that look very different, but

are actually equivalent. We used several

to evaluate the integral in E.xample 5. as

follows.

Maple

— .v' cos X + 3 I .V- sin .v ~ 2 v sin .v dx

— X-' cos .V + 3.V- sin .v + 6.v cos .v — 6 sin .v + C.

Example S Using a Rt'dutlion Formula

73 - 5.V
-

v-^arctanh (^^3 - 5xji)

Derive

h\aluate dx.

^ 3 In
V(3 - 5.V)

Solution Consider the following two formulas

a + bii - v'«

/

dii 1

s/(3 - 5.V)

Mathemalicu

u-Jci + bii Ja

Ja + hii

In

Ja + /)(( + Ja

du

+ C Formula 17 Ik > 0)

Sqrt[3 - 5.v]
-

Sqrl[3] ArcTanh

Mathead

du = ija + hii + ii I
,

Formula 19
" ] ii^ii + hii

Using Formula 19. with d = 3. h = -.i. and ;/ = .v. produces

dx

Sqrt[3 - -5.v]

Sqrt[3]

^3 - ,Sa-

dx = ^\2J^ - 5x + 3
.vV3 - 5.V

v''3 - 5.V +

= x/3 - 5.V +

Using Formula 17. with a = 3. /' = -5. and ii = x. produces

3 r dx

2 J xJJ^Yx'

(-6 + 5.v + 2v/3v/3-.5.v)W3 In

Notice that computer algebra systems do

not include a constant ot inlearation.

^3 - 5V ; 3/ 1

^^-r dx = JJT^x + -^ In
2-v 2 \ J ^

J3 - 5.V - 73

JJ^^x +^ In

/3 - 5.V + 73

v'3 - 3.V - 73

+ C

''3 - 5.V + 73
+ C.
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Rational Functions of Sine and Cosine

Example 6 Integration by Tables

T- 1 f sin 2a-
E\aliiate dx.

j 2 + cos .V

Solution Substituliiig 2 sin v cos a for sin 2a produces

sin 2a , ., ( sin v cos a
,

ilx = 2 (/a.

2 + cos A J 2 + cos A'

A clieck of tile tonus in\ol\ ing sin ;/ or cos u in Appendix C siiow s that none of those

hsicd apphcs. Therefore, you can consider forms in\ol\ ing </ + /'(/. For example.

— = T^ (hll - (I \n\cl + hill) + C. Fiirinuki 3

Let ci = 2. h = 1. and // = cos v. Then du ~- - sni a d.x. and you have

^
jsitiACOsA _

_^ j
cos a( — sin A c/.v )

2 + cos A ~
J 2 + cos .V

= -2(cosA - 2 hi
1
2 + cosa|) + C

= -2 cos A + 4 hi|2 + cos A I
+ C. ;2

Example 6 involves a rational expression of sin a and cos a. If you are unable to

find an integral of this form in the integration tables, try using the following special

substitution to con\ert the Irigoiiometric expression to a standard rational expression.

Substitution foi Rat onal Fiinrtions of Sine and Cosine

For integr lis mvo VUIL ration. il tuiictii)ns of sin _ and cosine. the siib-- tilLition

" =
1

sin A

.V

A
tan -_+ cos

yields

cos .V

1
- ir

sin A =
2u

aiul </.v
= 2 du

I + ir1 + ir' 1 + ir'

Proof From the substitution for u. it follows that

, sin- A _ 1 — cos- .V I
— cos a

( I -I- cos a)- ( I -I- cos a)- I + cos a'
II-

Solving for cos .v produces cos .v = (I - ir]/(] + ir). To find sin .v. write //

sin .v/( 1 + cos a) as

sin A = i((l -I- cos a) = (; I +
I + irl 1 + ((-

Finally, to find d\. consider ;/ = tan(A/2). Then you have arctan // = .v/2 and

d.x = (2c/»)/(l + ir).
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EXERCISES FOR SECTION 7.6

In Exercises 1 micl 2, use a table of intejjrals with forms involv-

iiif; a + bu to e\aliiate the integral.

I.

1 + A-

ch 2. f—

^

J 3a-{1v ^

111 Kxereises 3 and 4. use a table of integrals with forms involv-

in<; ^ //- ± cr to e\aluate the integral.

3. fV 1 + ('-' d\ 4. , ^.,
In Exercises 5 and 6, use a table of integrals with forms involv-

ing s a- - II- to evaluate the integral.

1

A-\/T^^
d\ 6.

s/9
}dx

In Exercises 7-1(1. use a table of integrals with forms involving

the trigonometric functions to evaluate the integral.

7. sin^ 2.V </v ../^,

VI - cos ^' V,

</v 10.
1 - tan ."i.v

- J.v

In Exercises 11 and 12, use a table of integrals with forms

involving e" to evaluate the integral.

II.
1

1 +
- </.v 12. e '''- sin 2a' d.x

In Exercises 13 and 14, use a table of integrals with forms

involving In /( to evaluate the integral.

13. v'ln \d\ 14. (lnA)'</v

In Exercises 15-IS. find the indelinite integral (a) using inte-

gration tables and (bl using the indicated method.

InU'^nil Melhiid

15. A- c' dx

16. aMuai/a

17.
A- (a + 1 )

18.
7.S

Inlegralion b_\ parts

Integration by parts

dx Paitial Tractions

Partial fractions

In Exercises 19-50. use integration tables to e\aluate the integral.

19. Af> </a 20.
yiT"

: dx

21. A arcsec(A- + 1) dx

Ix

23.
I
X- \nxdx

1

22. arcsec 2a' dx

24. A SMI A dx

27.

29.

31.

33.

35.

37.

39.

41.

43.

44.

45.

47.

49.

A- Jx- - 4

c ' arceos e ' dx

26.

28.

30.

1

A- + 2v + 2

'

0-
-T(/0

V

I
- sec A

cos A

7 dx

dx

1
- sin 0'

32. f .

'" dx

1 + sin^ A

cos e

34.

I
- tan <

1

/[I + (hif)-]

A + 2 sin H + sin-

1

— df) 36. v'3 + A- dx

x-j2 + 9a-

/
' cos / (//

In A

dx 38. x-J2 + 97-dx

40. ^ A aretan \ '' - dx

v(3 + 2 In a)
42.

( 1
- f-'l

dx

(a- - 6a + 10)-
,dx

(2a - 3)-y(2A- - 3)- -F 4dx

X

s'x-' ~ 6a- -I- 5

a'

: dx 46.
I , ;

'

dx
v'sin- X + 1

v'4 - A--

</a 48.
'3 - A

-T dx

^ ^ + X

50.
I

tan
"

t) de

dx

(1 + e'Y

In Exercises 51-56, verify the integration formula.

51.
I '-^T—. dii = T^ I

hii —, 2,/ ln|>( +
/7„i )

+ C;—7^ (/» = -T /);(
—

-

id + bii)- h' \ a + bu

dii
,,'<, + bu i2n + \)b

u" s/ii + bu — nil

Vf -I" bu
-.du\

53. I , ' .„., ,/»=
, p^—,

I"- ± ('") '- a-Ju- ± ir
+ C

54. u" cos ;( du = u" sin // — /; "" ' sin u di,

55. aretan // (//( = » aretan /( - liwl -I- ir -I- C

56. (In »)"(/» = /((In;/)" - u\ (In;/)" ' i/u
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rp In Exercises 57-62, use a tonipiiter algebra system to determine

the antiderivative that passes through the indicated point. Use

the system to graph the resulting antiderivati\e.

57.
1

.v-"Vl --V
ch. {\.5]

58. aV-v- + Iv (/.v. (0. 0)

1

59

60.

61.

62.

(.V- - 6.V + 10)
-dx. (3,0)

A + 1

1

sin H tan H

sin 6

(cos «)(1 + sin H)

-</a-. (O. 72)

/ft (f.2)

lie. (0. 1)

In Exercises 63-7(1, evaluate the integral.

63.

65.

1

2-3 sin H
(IS

, , ,
sin W

64. I
^- —lM

1 + sin « + cos (J

dti 66.

1 + cos- «

3-2 cos H
M

67.
I . ^L"' . dB 68. |t^^^^^^.M3-2 cos B

69.
I
'-^^^^de 70.

1 + cos

l_

sec H - tan H
'dd

Area In Exercises 71 and 72. find the area of the region bound-

ed by the graphs of the equations,

V Y
71, V —^^. V = 0. A = S 72, \ = :, \' = 0. A

v/7TT -

1 + e'-

In Exercises 73-78, state (if possible) the method or integra-

tion formula you would use to find the antiderivative. Do not

integrate.

81. Work A liydraulie cylinder on an industrial machine pushes a

steel block a distance of a feet (0 < a < 5), where the variable

force required is

Fix) = 20()(h(' ' pounds.

Find the v\ork done m pushing the block the full 5 leet through

the machine.

82. \\iirk Repeat f^.xercise SI. using a force of

500.V
/•(a) = = pounds.

V26 - .V-

83. Building Design The cioss section of a |irecast concrete

beam tor a btiilding is bounded h\ the graphs of the equations

-) _ -)

.V = , :. .V = — , . \ = 0, and v = 3
Vl + y- v'l + .^-

"

where a and \ are measured in leet. The length i>f the beam is

20 feet (see figure)

(a) Find the \()lume \' and the weight 11 of the beam, .-\ssume

the concrete weighs 148 pounds per cubic loot.

(b) Find the centroid ot a cross section of the beam.

.««#,

21) h

H ^ .V

73.
c

+ 1

75. JAf'^/A

77. le'dx

dx 74. \-~dx

76.

84. Average Population Size A population is growing according

to the logistics model

3001)

where / is the time in days. Find the average population over the

interval [O. 2].

IV In Exercises 85 and 86. use a graphing utility to (a) solve the

integral equation for the constant k and (b) graph the region

whose area is given by the integral.

78. e-'Je-' + I dx
85.

2 + 3a
dx =10 86. 6a- c ' - Ja = 50

79. Generate four integration problems that can be integrated

from a table of integrals after an appropriate substitution.

Use four different integration formulas from the table in the

text.

80. Describe what is meant by a reduction formula. Give an

example.

True or False In Exercises 87 and 88, determine v\hether the

statement is true or false. If it is false, explain why or give an

example that shows it is false,

87. To use a table of integrals, the integral you are evaluating must

appear in the table.

88, When using a table of integrals, you may have to make substi-

tutions to rewrite your integral in the form m which it appears

in the table.
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iBgf«iTiisaiM17H6ttit

Recognize limits that produce ludelermiiuUe forms.

Apply L'Hopitul'.s Rule to evaluate a limit.

Indeterminate Forms

Recall from Chapters 1 and 3 that the forms 0/0 and oc/oc are called iiuleteriuiiuite

because they do not guarantee that a limit exists, nor do they indicate what the limit is.

if one does exist. When you encountered one of these indeterminate forms earlier in the

lc\l. you attempted to rewrite the expression by using various algebraic techniques.

Iiulctcniunatc

Finn] Limit

2.V- - 2
litn — = lim 2(.v - 1

)

-V-. - I .V + I 1 — -
i

-4

hill ^^ r = im T
, , , T,

>--.-- 2.V- + 1 .-"-: 2 + (1/.Y-)

_ 3

Algebraic Technique

Divide numerator and

denominator by (.v + 1 ).

Divide numerator and

denominator by .v-.

Occasionally- you can extend these algebraic techniques to find limits of

transcendental functions. For instance, the limit

8- -
1

7 - ~ /

6- - /

5 - - /

4- - /

-^-

7
/'= e-'-\

X

-4 -.1 _2 -1 1 2 3 4

Tlu' limit as V approaches appears in be 2,

Fi"uri' 7.14

lim
,-*ii t»' -

1

produces the indeterminate form 0/0. Factoring and then dixiding produces

lim = lim = lim ((
' + 1 ) = 2.

1— II ('" - 1 V— (I (' — 1 .-'11

However, not all mdetermmate lorins can he c\aluated b\ algebraic niani|iiilation.

This is particularly true when iiolli algebraic and transceiKlental functions are

in\'ol\ed. For instance, the limit

lim
1— II .V

produccs the mtleterniinate form 0/0. Rewriting the expression to obtain

r
lim
1^11 \ .V

merely produces another indeterminate form, oo — oo. Of course, you could use tech-

nology to estimate the limit, as shown in the table and in Figure 7.14. From the table

and the graph, the limit appears to be 2. (This limit will be Ncrilled in Example I.)

X -1 -0.1 -0.01 -0.001 0.001 0.01 0.1 1

e-> - 1

X
0.86.S 1.813 1.980 1.998

7
2.002 2.020 2.214 6.389
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GUILLAIMK L'Hol'lUI (16hl-17ll4)

L'Hopital's Rule is named alter tlic Freneh

mallieniatician Guillaiime Frani;ois Anloine de

L'Hopital. L'Hopita! is credited with writing

the first text on differential calculus (in 1696)

in which the rule publicly appeared. It was

recently discovered that the rule and its proof

were written in a letter from John Bernoulli

to L'Hopital."... I acknowledge that I owe

very much to the bright minds of the

Bernoulli brothers. ... I ha\e made free use of

their discoveries . .
.," said L'Hopital.

L'Hopital's Rule

T(i find the limit illustrated in Figure 7.14. voii ean use a theorem called L'HopitaP.s

Rule. This theorem states that tinder ccrlain conditions the limit of the qtiotient

f{.\)/g{.\) is determined by the limit of the quotient of the derivatives

,?'(-v)'

To prove this theorem, you can use a iiioie general result called the Extended Mean
Value Theorem.

THEOREM 7.3 The Extended Mean Value Theorem

If/ and ,?

such that

that

are differentiabie

s'lv) i= for any

on an open interval [a. h) and continuous

V in (((. /)), then there exists a point ( in (n

on [(/. /)]

. />) such

fie)

g'(c) gib)

- fia)

~ gUiY

NOTE To see why this is called the Extended Mean Value Theorem, consider the special ease

in which ,i,'(.v) = .v. For this ease, yui obtain the "siaiidard" Mean Value Theorem as presented

in Section 3.2.

The Extended Mean Value Theorem and L'Hopital's Rule arc both proved in

Appendix B.

THEOREM 7.4 L'Hopital's Rule

Let / and ,i,' be iLinctions that are differentiabie on an open interval (<(. />) con-

taining f. except possibly at c itself. Assume that ,i;'(.v) =t^ for all .\ in in. />),

except possibly at c itself. If the limit of /(.v )/,t;(.v) as .v approaches c prodtices

the indeterniinate form (1/(1. then

./(-v)

g(^)

y ,/'(v)

1— g (.v)

provided the limit on the right exists (or is mlinitc). This restilt also applies il

the limit of /(.v)/,t;(.v) as v approaches c produces any one of the indeterminate

forms co/cc, (-co)/oC'. a;/(-^3o), or (-cc)/(-co).

FOR FLRTHER IMORMATION
To further understand the necessity of

the restriction that ,;;Tv) be nonzero for

all .V in (a. h). except possibly at c.

see the article "Counterexamples to

UHopitaFs Rule" by R. R Boas in

The American Miuliematical Monthly.

To view this article, go to the website

www. iiunhii nicies. com.

NOTE People occasionally use L'Hopital's Rule incorrectly by applying the Quouenl Rule to

/(.v)/o(.v). Be sure you see thai the rule involves /'(.vl/g'l.v). not the derivative of /(.v)/,i,'(.v).

L'Hopital's Rule can also be applied to one-sided limits. For instance, if the limit

of /'(.v)/,i;(.v) as .v approaches c li-oni the rii^ht produces the indeterminalc form

(.)/0. then

,. /'(a) ,. fix)
Itm -— = hm —

—

>-. g{.\-) >^. g (.v)

provided the limit exists (or is infinite).
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EXPLORATION

Numerical and Graphical

Approaches I 'e a nruiierieal or a

graphical approach to approximate

each of the following limits.

1

lim

b. lim

c. lim

d. lim
,— II .V

What pattern do you observe? Does an

analytic approach have an advantage

for these limits? If so, explain your

reasonina.

A

3- - 1

A

4- -
1

A

5- ' - 1

Example 1 Indeterminate Form 0/0

Exaliiate lim .

1^11 .V

Solution Because direct substitution results in the indeterminate form 0/0

lim ((-> - 1) =

lim
f-> - 1

lim A =
V— (I

yoti can apply l.'Hopital's Rtiic as follows.

d

lim
1 ,. dx— = lim

[e'- - 1]

.-(1 d^

dx

2e-'

[v]

lim -

I—.11

.Apply l.'Hopital's Rule.

DiIIlmciuilIIo nLiiiierator and Uenoniiiiator.

E\aki;ilc Ilie liillil.

NOTE In writing the string of equations in Example 1 . you actually do not know that the first

limit is equal to the second until you have shown that the second limit exists. In other words, if

the second hniit hail not existed, il would not ha\e been permissible to apply L'Hopital's Rule.

Another form of L'Hopital's Rule states that if the limit of f{x)/f;{x) as x

approaches zc (or — jc ) produces the indeterminate form 0/0 or z/z/zic. then

,. ./Iv) ,. fix)
lim —— = am „ .

f^== g(x) -v-^'^ g (x)

provided the limit on the right exists.

Example 2 Indeterminate Form oo/oo

hvaluate Inn .

I — ^- .V

NOTE Try graphing y, = In a and

Vt = A in the same viewing window.

Which function grows faster as a

approaches cc? How is this observation

related to Example 2?

Solution Because direct substitution results in the indeterminate form co/cc, you

can apply L'Hopital's Rule to obtain

^[In.v
In.v d\

lim = lim —;

-\^^ X i^=c d

dx
[x]

im -
—^ .V

Apply L'Hopital's Rule.

Dillcrcnli.ilc nuuierator and Jenoniuialor.

Evaluate llic Hmil.
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Occasionally it is necessary to apply L'Hopilal's Rule more than once to remo\e

an indeterminate form, as ilkistrateel in Example 3.

Example 3 Applying L'Hopilal's Rule More than Once

E\'aliiate lim -—

.

Solution Because direct substitution results in the imieterminate form co/co. you

can apply L'Hopital's Rule.

lim = lini — = hill ^
V
— -^ e ' \^---r- a \-^---r. —e '

This limit \ lelds the indeterminate lorm (
- 3c)/( — oc). so you can appl\ L'Hopital's

Rule ayaiii to obtain

r 2.Y dx ,-2
lim — = lim — = lim ^— = 0.

\— -^— c' >
— -^(/|- , i-*-cce'

in addition to the tonus ()/() and c/c/^^'. there are other indeterminate forms such

as oc. 1"-^-. oc". 0". and cc — oc. For example, consiiler the follow iiij: four limits

that lead to the indeterminate form I) • cc.

Iim(.v)(-]. hml.vlf-). lim (.v)( — ). lim (r')
. -11 \.V/ 1—1) \.V/ 1— >: \t''/ 1 — :^ \.v

Limit Is I Linmis 2 limit is Limit is :>c

Because each limit is different, it is clear that the form • oo is indeterminate in the

sense that it does not determine the value lor even the existence) of the limit. The fol-

lowing examples indicate methods for evaluating these forms. Basically, you attempt

to convert each of these forms to 0/0 or co/co so that L'Hopital's Rule can be applied.

Example 4 Indeterminate Form • oo

Evaluate lim e^'^Av.

Solution Because direct substitution produces the indeterminate form • co. you

should try to rewrite the limit to fit the form 0/0 or cc/cc. In this case, you can rewrite

the limit to fit the second form.

r . r I- -^^
lim e v -V = hm

Now. by L'Hopital's Rule, you have

,.
..G 1/(27^) 1 „

hm = hm = hm —p— = 0. ^-^
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If rewriting a limit in one" of the forms 0/0 or oo/oo does not seem to work, try
j

the other form. For instance, in Example 4 you can write the limit as !

I

lim e"'v^ = lim^" y->r-

which yields the indeterminate form 0/0. As it happens, applying L'Hopital's Rule to

this limit produces

lim
y-U2 l/(2.v-'/-)

which also yields the indeterminate form 0/0.

The indeterminate forms P^. oo", and 0" arise from limits of functions that have

variable bases and variable exponents. When we previously encountered this type of

function, we used logarithmic differentiation to find the derivative. You can u.se a

similar procedure when taking limits, as indicated in the ne\t example.

Example S Indeterminate Forni 1'

Evaluate lim 1 H

—

J
r"~

The limit of [1 + ( l/.v)] ' :is.v apimiachcs

iiilinit) is ('.

FiiEurc 7.15

Solution Because direct substitution yields the indeterminate form 1^. you can

proceed as follows. To begin, assume that the limit exists and is equal to y.

\ = lim 1 +

Taking the natural logarithm of both sides produces

In A' = In lim 1 +

Because the natural logarithmic function is continuous, you can write the following,

.vinll +In \' = lim

lim

lim
A—* CO

lim

ln[l + (l/.v)]

l/.v

(-l/.v-)il/[l +(l/.v)]l

[/x-

IniJecerniin.ue loriii zn

Indelerininale t'orni 0/0

L'Hopltals Rule

1

V— 1 + (l/.v)

Now. because you have shown that In \' = 1. you can conclude that y = e and obtain

1

lim 1 + -
I
= ('.

You can use a graphing iitilit\ to confirm this result, as shown in Eigure 7.1.'i.
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L'HopituI's Rule cun also be applied to one-sided limits, as demonstrated in

Examples 6 and 7.

n^-l Example 6 Indeterminate Form 0"

Esaluate lim (sin a)'.

Solution Because direct substitution produces the indeterminate form , you can

proceed as follows. To begin, assume that the limit exists and is equal to ^.

A' = lim (sin.v)' Indelermin.ile lurm O'

In y = ln[ lim (sin.v)'l Take naiur.il log of both sides.

= lim [ln(sin .v)'] Contmimv

= lim [.V Inlsni .v)] Indeterminate rorm (-oc)

ln(sin .v)

lim
1—"' l/.v

cot .V

— .V-

v^ii
' tan .V

= lim
I—.0 •

Iini

Indeterminate tonii -cc/dc

LHopiial's Rule

Indeterminate lorni 0/0

lim = LHopital's Rule
.V— (I* sec-.v

Now. because In v = 0. you can conclude ihtti ^ = c" = I, and ii follows that

lim (sin .v)' = 1.

v = (sin.v)'

The limit of (sin .v) ' is 1 as .v approaches

IVom the right.

Figure 7.16

TECHNOLOG^ When evaluating complicated limits such as the one in Example 6.

it is helpful to check the reasonableness of the solution with a computer or with a

graphing utility. For instance, the calculations in the following table and the graph

in Figure 7. Id are consistent with the conclusion that (siii.\l' appioaches I as .v

approaches tl from the right.

X 1.0 0.1 0.01 0.001 0.0001 0.00001

(sin*)' 0.8415 0.7942 0.9550
^

0.9931 0.9991 0.9999

Try using a computer or graphing utility to estimate the follow uig limits.

lim ( 1 - cos .v)"

and

lim (tan .v)'
\ ^11

Then see if you can \erify your estimates analytically.
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STUDY TIP In each of the examples

presented in this section. L'Hopital's

Rule is u.sed to find a limit that exists. It

can also be used to conclude that a limit

is infinite. For instance, try using

L'Hopital's Rule to show that

lim —
1
— -^- .V

Example 7 Indeterminate Form oo - oo

E\aluate lini
I \ln .V .V

Solution Becattse diiect substitution yields the indeterminate form oc — co. you

should try to rewrite the expression to produce a form to which you can apply

L'Hopital's Rtilc. In this case, you can combine the two fractions to obtain

Inn = Imi
> -I \ln .V A- - 1 / >-!

.V - 1 - hi A

(a -
1 ) hi A

Now, because direct substitution produces the indeterminate form 0/0. you can apply

L'Hopital's Rtilc to obtain

lim
1 1

lim

[x - 1
- In .v]

-v^l VhiA A - 1/ v^r il . -.

--[(a -
1 ) In A

I

cl.\

1
- (I /a)

lim

hm

L(.v- l)(l/.v) + IuaJ

.V - 1

V - 1 + A hi A

This limit also yields the indeterminate form 0/0. so you can apply L'Hopital's Rule

again to obtain

lim
1

In A .V - 1

lim
1 + a( 1 /.v) + In A

We have idcnlilicd the forms 0/0, oc/so, so - cc, oc, 0", 1'^-, and cc" as

iihlclvrniiihilc. There arc similar forms that voti shotild recoanize as "'determinate."

CC: + CC' —> CO Lnnit IS positive intiniiy.

" CC — CO: —> —CO Lnnit is negative infniity.

0-^ -^

0"=^- -> oo

Limit is zero.

Limit is positi\e infinity.

(You are asked to verify two of these in Exercises 95 and 96.)

As a final comment, we remind you that L'Hopital's Rule can be apphctl only to

i.|uotients leading to the indeterminate forms 0/0 and co/^;. For instance, the follow-

ing application of l.'Hopital's Rule is iiicdireit.

Incorrect use oi L'HnpiUirs Rule

The reason this application is incoiTect is that, even though the limit of the denom-

inator is 0, the limit of the numerator is 1, which means that the hypotheses of

L'HopitaLs Rtilc have not been satisfied.
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^

EXERCISES FOR SECTION 7.7

Numerical and Graphical Aiialysia In Extrcises 1—I. complete

the table and use the result to estimate the limit. I'se a graphinj;

utility to graph the function to support your result.

1. lim
sin 5a

X -0.1 -0.01 -0.001 0.001 0.01 0.1

m
2. lim

X -0.1 -0.01 -0.001 0.001 0.01 0.1

m
3. lim .v'

,

21. lim

23. lim
3a- 2a + 1

2.V- + 3

A- + 2.V + 3

.V - 1

27. Hm

29. lim
''---^ v'v' + I

31.
cos A

lini
. — -^ A

33.
,, In A
lim

35.
1- ''
lim —

^

arctan a -
( 7r/4)

, -1 X -
1

24. lim
A - 1

A- + 2a + 3

26. lim
a'

A + 2

28. lim
-V-

1 - . v: t»'

30. lim
1—

^

A-

Va^ + 1

32. lim
sin A

, . r. .V - -

34. hill
In A-*

' — -'-- A'

36. lim
e^li

y^'JZ X

X 1 10 10- 10' lO-" ur

f(x)

4. lim
6a

---=
v''3-\- - Iv

X 1 10 10- 10' lo-* 10^

fix)

rp I" Kxercises 37-54. (a) describe the type of indeterminate form

(if any) that is obtained by direct substitution, (b) Evaluate the

limit, usini; E'llopital's Rule if necessary, (c) I'se a yrapbinj;

utility to };raph the function and verify the result in part (b).

(Eor a geometric approach to Exercise 37. see the article "A

Geometric Proof of lim {-cl In d) = 0" bv John H. Mathews in

The Collefic Mathematics .loitnuil. \'n view this article, go to the

uebsite www.malhailieles.cniii.

)

In Exercises 5-10, evaluate the limit (a) using techniques from

Chapters 1 and 3 and (b) using I/HopitaPs Rule.

,. 2(a - 3)
6. lim

2a- - .V - 3

.V + 1

7. lim-

9. lim

Jx + \ - 2

X - 3

5.V- - 3a + 1

3a- - 5

8. lim -

sin 4.V

Iv

2,v + I

10. hm -—,
v--^ 4a- + X

In Exercises 11-36, evaluate the limit, using E'EtopitaPs Rule if

necessary. (In Exercise 17. ;; is a positive integer.)

11. hm

13. hm

A A - -

A - 2

V4 - A- _ ~>

15.
,. e' - (1 -a)

I— A

17.
,. <?' - (1 -)- a)

,_n- x"

19.
,, sin 2a
hm . ,
,1^0 sin 3a

X- - A - 2

,'r", A + 1

lin,
-^"''

.-: A - 2

,
f' - (1 -^.v)

(-^1)" .V

18.
,. InA^

.^1 .V 1

,. sin «A

^

37. hm (-Aln,\)

39. hm A sin -
.---•:\ x/

41. lim a'/'
1— ii

43. lim a''''

45. hm (1 + a)'''>

47. hm [3(a)''-]

49. lim (In a)'
'

liu ( ^
,^^^^-4 a- 2

53.
. / 3 2 \

A-i-\ln A A - 1 /

38. hm V " col .V

40.
1

hm A tan -
-/; -V

42. lim (tf' -1- .v)-'"

44. hm 1 + -
.-.-.c \ A/

46. lim (1 + a)'/"
1 y.

48. lim [3(a - 4)]'--'

50. lim
/ 77 \

cos ^7
- -V 1

52. liiii

1 yV - 1

- 4A- - 4 A-

54. hm
10 3 \

A X-l

In Exercises 55-58. use a graphing utility to (a) graph the func-

tion and (b) find the required limit (if it exists).

3
^^. Inn

lim

n(2A -
5)

-v)

56. Inn (sm a)'

57. (V.x- + 5.V + 2 -

58. lim
a'

-1^0 sin bx
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-i v...,:.:,.-,„.v^.^-s;i;..,.;..

5y. List six different indeterminate forms. ,

60. State fHopilal's Rule. |

61. 1-ind the diflerentiable functions/ and ,;; that satisfy the spec-

ified condition such that Iim_/(.v) = and lim i'(.v) = 0.

{Note: There arc many coiTect answers.)

(a) lim^ = 10 (b) lim^ = (c) lim^ = ^
.

,-.^ g{x] .--- aix) ,-^ ,s,'(.v)

62. Find differentiable functions / and ,i; such that

lim fix) = lim .i?(.v) = oo

lim [fix) - aix)] = 25.
1—^

{Note: There arc many ctirrect answers.)

Think About It In Exercises 75-78, L'Hopital's Rule is used

iiicorrectlv. Describe the error.

75. lim = lim lim le' = 2 X
sin —.V —

I 77 cos 7T.V \/
76. Inn = hni , = tt /\

,-ll .V ,— II 1

__ ,. 1 ,. cos(I/-v) \/
77. lim X cos - = Inn -, /\

(^cc .V :^--^- l/.V

lim
[-sin(l/.v)](I/.v-)

-I/.v^

=

78. lim
e

'

,,-=.= I +
lim r* = lim I = I X

Pf^ 79. ,Analytical Approach Consider lim

Comparing Functions In Exercises 63-68, use L'Hopital's

Rule to determine the comparative rates of increase of the

functions

,/(.v) = .V", ,i;(.v) = f". and /;(.v) = (In.v)"

where// > (),/// > 0, and .v —> oo.

63. lim ^^

(In.v)-'

64. Inn -

65. lim

67. hm
(In.v)"

66. lim

68. hm

In.v)-

69. Numerical Approach Complele the table to show that .v even-

tually "overpowers" (In .v)'*.

X 10 10- 10^ 10'^ 10'' 10'"

(Inx)*

X

70. Numerical Approach Complete the tabic to show that e

eventually "overpowers" .v''.

X I 5 10 20 30 40 50 100

X^

rp In Exercises 71-74, find any asymptotes and relative extrema

that may exist and use a <;raphin;i utility to j;raph the function.

{Hint: Some of the limits required in llnding asymptotes have

been found in precedinf^ exercises.)

71. y = .v'/'.

73. V = 2xe-

X > 72. y

74. Y

x\ X >

In .V

---^ jx- + r

(a) Find the hmil analytically without trying to use L'Hopital's

Rule.

(b) Show that L'Hopital's Rule fails.

(c) U.se a graphing utility to graph the function and approxi-

mate the limit from the graph. Compare the result with that

in pari (a).

80. Compound Interest The formula for the amount A in a

sa\'ings account compounded n times per year for t years at an

interest rate / and an initial deposit of P is

A = P{]

L'se L'Hopital's Rule to show that the limiting formula as the

number of compoundings per year becomes infinite is

A = Pe".

81. Velocity in a Resisting Medium The velocity of an object

falling through a resisting medium such as air or water is

f'- ^2

where v„ is the initial velocity, r is the time in seconds, and k is

the resistance constant of the medium. LIse L'Hopital's Rule to

find the formula for the velocity of a falling body in a vacuum

by fixing i-,, and / and letting k approach zero. (Assume that the

downward direction is positive.)

82. The Gamma Function The Gamma Function r(/() is defined

in terms of the intearal of the function

/(.v) It > 0.

Show that for any fixed value of ii. the limit of /'(.v) as x

approaches infinity is zero.
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83. Area Find the limit, as .v approaches 0. of the ratio of the area

of the triangle to the total shaded area in the fiyiire.

I ,/lv) = 1 - cos .V

^X^ <1
- CO^ \ 1

\^'y
- COS .V)

-K K K K

y 84. Use a graphing iitiiit_\ to graph

V* -
1

./iv) ^ ^-
for A- = I. 0.1. and 0.(11. Then evalnate the limit

-
I

93. In Chapter i we used a geometric argument (see figure) to

pro\e that

I-
s'"^

1hm—— = 1.

»->n

(a) Express the area of the triangle WBD m lerm>. ot H.

(b) Express the area of the shaded region in terms of H.

(c) Express the ratio R of the area of \.\IU) to thai of the

shaded region.

(d) Iiiid Inn R.

lim —

—

In Exercises 85-88. apply the K\teiided Mean \alue Theorem to

the runctions/ and >• on the indicated lnter\al. Find all \aUies r

in the lnter\al («./>) such that

/'(.) _/(/.) -/(«)

g\c) g(b)-g(aY

Fimciions hitenal

85. f(x) = .v' 0. 1]

,i,'(.v) = .V- + 1

86. /(.v) = -
.V

"1.2]

^i,'(.vl = .V- - 4

87. /Iv) = sin .V "?

,t;(.v) = cos .V

88. /(.v) = In .V :i.4]

,;,'(.v) = .V-'

True or False? In Kxercises 89-92, determine whether the

statement is true or false. If it is false, explain \vh\ or ^\\v an

example that shows it is false.

89. hm
.1- + .V + I

= lim
1

1

9(1. If V = r'/.v-. then v' = ('/2.v.

91. If /)(.v) is a polynomial, then lim [/)(.v)/f'] = 0.

92. If hm ^ = 1. then hm [fix] - {x)] = 0.

94. Sketch the graph of

\0.

V ^

V =

and determine i; '(()).

95. Prove that if /f.v) > 0. lim /Iv) = 0. and lim ,i,'(.v) = c». then

hm /(v)-'" = 0.

96. Prove that if /(v) > 0. lim /(.v) = (1. and lim ,i,'(.v) = - cc. then

lim/(.v)'^'"' = ^.

97. Prove the following geneiah/alion ol the Mean Value Theorem.

If/ IS iwice dillerentiahle on the closed inler\al [n. />]. then

/(/>) - /(«) = f'(a)(b - o) - l"il){r- /')<//.

98. Show that the indeterminate form (.)" is not always equal to 1 by

exaluatina

lim .v'"-
In2,/|l +ln <l
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The unlinunded region has an area of i

.

Figure 7.17

• F.valuate an improper integral that has an infmile limit of inlegralion.

• n\aluate an improper integral that has an inlinite discontintiily.

Improper Integrals with Infinite Limits of Integration

The definition of a definite integral

,/lv) d\

requires that the interxal [ti. h] be finite. Furthermore, the Ftindaniental Theorem of

Calctilus. by which you have been evaluating definite integrals, requires that / be

continuous on [a. h]. In this .section you will study a procedure tor evaluating integrals

that do not satisfy these requirements—usually because either one or both of the limits

of integration are infinite, or/ has a finite number of intmite discontinuities in the

interval [a, b]. Integrals that possess either property are improper integrals. Note that

a function / is said to ha\e an infinite di.scontinuity at c \f. frniii the lii^ht or left.

lini/(.v) = CO or lini/'(A) = -oo.

To get an idea of how to e\aluatc an improper integral, consider the integral

d\ 1

h
1 = 1

/)

which can be interpreted as the area of tlie shaded region shown in Figure 7.17. Taking

the limit as h^rcc produces

dx
lim ^("-1

This improper integral can be interpreted as the area of the iinhoiiiulcd region between

the graph of /(.v) = l/.v- and the v-axis (to the right of .v = 1 ).

Definition of Improper Integrals with Infinite Integration Limits

1. If/' is continuous on the interval [a. cc), then

fix) d.x = lim fix) </.v.

2. If/' is continuotis on the interval (-cc. />], then

fix) dx = lim fix) dx.

3. If/ is continuotis on the interval (
- cc. cc), then

fi.x) dx =
fi.x) dx + fi.x) dx

where c is any real number.

In the first two cases, the improper integral converges if the limit exists

—

otherwise, the improper integral diverges. In the third case, the improper integral

on the left diverges if either of the improper integrals on the right diverges.
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Example 1 An Improper Integral That Diverges

Evaluate

Solution

dx— = lim

lim

X

In A-

Take limit .is /'

Apply Log Rule.

lim (In/) — 0) .\ppl\ FuiKl.imenlal Theorem nt C;ileuliis

OO E\aliuite limit /?1

Tins unbounded region has an niftntle area.

Figure 7.18

NOTE Tiv comparing the rcgtons showti in Itgiircs 7.17 and 7. IN. The\ look stniilar. yet the

reL'ion in I'ltture 7.17 has a ftntte area ol I and tlie iCiiion in I'i'jure 7. IS h;is an tnftnitc area.

Example 2 Improper Integrals Tliat Converge

E\aluatc each ot the improper integrals.

a. f ' </-v

Jo

h.
.V- +

Solution

a.
I

(' ' dx = lim
I

e' ' dx

imi
1,-,-^.

lim (-tf-" + I)

b. dx = lim
.V- + 1 h^--^- „ .\- + I

lim arclan .v

lim arclan /'

77

(See Figure 7. 19.) (See Ft cure 7.20.)

The area of the unbounded region is I .

Figure 7.19

The area of the unbounded region is tt/2.

Figure 7.2(1 \Zl]
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Iti the tiilhnving exatnple, note how L'Hopital's Rule can be used to evaluate an

improper integral.

Example 3 Using L'Hopital's Rule with an Improper Integral

Evaluate (I - x)c'-' ilx.

Solution Use integration by parts, with ilv = c ' r/.v and u = (\ — x).

The area of tlu' unbounded reuion is

l-i/.i-

Figure 7.21

(I - .vie - dx = -e-'{\ - .v) 'rf.v

= -f-' + xe-' + i'-'- + C

= .vf-^ + C

Now, apply the definition of an improper integral.

( 1
- x)e " </.v = lim lim

h\ i

Finally, using L'Hopital's Rule on the right-hand limit produces

h 1

lim -7 = lim -— =

from w hich \ov\ can conclude that

I

(1 - x)e-' dx = —

.

e

(See Figure 7.21.)

Example 4 Infinile Upper and Lower Limits of Integration

E\aluate
e'

+ e-
- dx.

Solution Note that the intcgiand is conlmuous on (
— <x>. oo). To evaluate the inte-

gral, you can break il into two parts, choosing c = as a convenient value.

The area of the unbounded region is tt/ _

Figure 7.22

+ e-

- dx = c — dx +

lim

1 +

arctan c'

I +

+ Inn

— dx

arctan c

lim
I

arctan c'' + lim aictan c''

,4 / h~'^-\ 4

IT „ TT IT

77-

2

(Sec Ficurc 7.22.) \Zi
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Example S Sending a Space Module into Orbit

In Example 3 of Section 6.5. yoti lotind that it vvotikl ret|tiire 10,000 mile-tons of work

to propel a 15-ton space module to a height of 800 miles above earth. How much work

is required to propel the module an unlimited distance away from earth's surface

'

The work roqinrecl lo HKne a spaci' module

an tinlimili'il distance awa) from earth is

appimimately 6.336 10" foot-pounds.

Figure 7.23

Solution At first you nnght think that an infinite amount of work wtnild be required.

But if this were the case, it would be impossible to send rockets into outer space.

Because this has been done, the work required must be finite. You can determine the

work in the follow ing manner. LIsing the integral of E.xampie 3. Section 6.5. replace

the upper bound of 4X00 miles b\ jc and write

W = 240.000.000
i\

lim
ft—

^

lim

24().()00.0()0

-V

240.000.000 240.000.000\
+

/) 4000

= 60.000 mile-tons

= 6.336 10" loot-potmds.

(See Fii;ure7.23.)

Improper Integrals with Infinite Discontinuities

The second basic type of improper integral is one that has an infinite discontinuity at

or hctwecn the limits of intecration.

Definition of Improper Integrals with Infinite Discontinuities

I. If / is continuous on the interval [n. h] and has an infinite discontinuity at h.

then

/lv)<7.v = lim
I

/(\)(/a.

2. If/ is continuous on the interval (</./'] and has an infinite discontinuity at li.

then

r,

fix) d\ = lim /(.v) (/.v.

3. If/ is continuous on the inter\al [</. />]. except for some c in (</. /;) at which /

has an intinite disc(intinuity. then

fix] ilx = ,/'(.v) </v + fix) dx

In the first two cases, the improper integral converges if the limit exists

—

otherwise, the improper integral diverges. In the third case, the improper integral

on the left diverges if either of the improper integrals on the right diverges.
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The area ol llie unbounded region is 3/2.

Figure 7.24

Example 6 An Improper Integral with an Infinite Discontinuity

Esakiale

Solution The integrand has an infinite discontinuity at .v = 0. a.s shown in Figure

7.24. You can evaluate this intecrai as follows.

.v-'^-^/.v = lim
V3

lim -d - b-'^)
/>-»() 2

3

2

Example 7 An Improper Integral Hiat Diverges

E\aluatc

Solution Because the integrand has an infinite discontinuity at x = 0. you can write

tfie foliowinii.

dx
-^ = Inn
.V ''—0 '

So. you can cmKludc thai the improper integral diverges.

Example 8 An Improper Integral witli an Interior Discontinuity

The improper integral
|

I /.v'l/.v diverges.

tigure 7.25

Evaluate

Solution This integral is improper because the integrand has an infinite discontinuity

at the interior point .v = 0. as shown in Figure 7.25. So. you can write the following.

dx - dx

From E.xample 7 you know that the second integral diverges. Therefore, the original

improper integral also diverges. ^

NOTE Remember lo check for infinite discontinuities al uitenor ponils as well as endpoints

when determinmg whether an integral is improper. For instance, if \(HI had not recognized that

the uilegral in E.xample 8 was improper, you would have obtained the iihunvcl result

liicoiTeei e\.ilualion
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The integral in the next example is inipidpcr for nvo reasons. One limit ot inte-

gration IS infinite, and the integrand has an intlnite diseontinuity at the otiter limit ot

inteuration. as shown in Fiiiure 7.26.

^^ E.uniiple 9 A Doubly-Improper Integral

The area ol tlie unhiuiiuk'd region is it.

Figure 7.26

E\'aliiate
dx

Solution To evaluate this integral, split it at a eomement point (say, .v =
1 ) and w rite

dx d.x

.v(.v +1) J„ v.v(.v +1) J, v-vLv + 1)

d.x

11m
/.—ii

2 aretan s v Inn 2 aretan n .v

" !)
-

" * 4!) - ii

Example 10 An Applir;ilion Involving Arc Length

Use the fonnula for are length to show that the eireunirerenee of the eiivle .\- + y~ = 1

is 2tt.

The eireunirerenee of the eircle is lir.

Figure 7.27

Solution To simplify the work, eonsider the tjuarter circle given by v = ^ 1 - .v-.

where < .v < 1. The function \' is dilferenliable for any .v in this interval except

.V =
1 . Therefore, the arc length of the e|tiaitei circle is given hy the improper integral

.V = vi + (v')-rfv

1 +
v/r

</.v

'o Vl - .v"

This integral is improper hecatise it has an infinite discontinuity at v = I . So. yoti can

write

</.v

jr

lim
/—I

77

T

Finally, multiplvmg hy 4, you can conclude that the circumference of the circle is

4.V = 27T, as .shown in Ficure 7.27. j, yj
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We conclude this section with a useful theoiem describing the convergence or

divergence of a coinnion type of improper integral. The proof of this theorem is left

as an exercise (see Exercise 43).

THEOREM 7.5 A Special Type of Improper Integral

if/) > 1

diverges, if p <

Example 11 An Application Involving A Solid of Revolution

The solid formed by revolving (about the .v-a\is) the iiiihoiiiuk'd region lying between

the graph of /(.v) = l/.v and the v-axis (v > I ) is called (labriel's Horn. (See Figure

7.28.) Show that this solid has a linile \olume and an intuiitc surface area.

FOR FURTHER INFORMATION To

lurthcr invcstigalc solids that ha\c runic

Ndlumes and infinite surface areas, see

the article "Supersolids: Solids Having

Fiinlc Volume and InfinUc Surfaces"

b\ \\ illiam P. Lo\c in Mniliciihiliiw

Tccichcr. To \ icw this arliclc. go to llic

vvchsitc i\\\\\:iiuilliiiilii liw-iiiiii.

Solution Using the disk method and Theorem 7.3, you can deterniinc the volume

to be

V = 7T </v Theorem 7..s. p = 2 > 1

2 -
1

= 77.

The surface area is tiiven bv

I +-JA-.S = 271- /(.V)^ 1 + [/'(.V)]^/.V = :

Becau.se

on the interval [1, yz), and the improper integral

l,/.v

.V

diverges, you can conclmlc thai (he improper integral

also di\eraes. (See Exercise 46.) So, the surface area is infinite.

FOR FVRTHFR INFORMATION To Icain

about another lunclion Ihat has a funic

volume and an intinilc siirlacc area, see

the article "Gahriers Wedding Cake" by

Julian F. Flcron in The Collef^e

Miithcmaiics Joiinial. To view this article,

go to the website www.mathartkle.s.cdiii.

mask

Galiricls Horn has a luiile voliimo ami an infinite surface area.

Figure 7.28
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EXERCISES FOR SECTION 7.8

In Exercises 1-6. explain «hy the integral is improper and

determine whether it di\eroes or converges. Evaluate the

intef;ral if it converjjes.

In Exercises 9-26. determine whether the improper integral

diverges or converges. Evahiate the integral il it converges.

I. -^d\
J.) V.v

(.V - 1
)-

1

(A- - 3)V 7 dx

4.
I.V- l)-'^'

(-' d\

1

"'-

3

i/a

II. ^ dx
J 1 V A-

13. AC"-' d.x

J - -jz

rzr.

15. v'r ' dx

17. (' ' cos A dx

(^
]

19.

I x{\nxV'''

f' 1

21.

J-._ 4+A-

2}.
'

' dx

rrx dx

III.

12.

14.

16.

18.

20.

22.

24.

26.

^ dx
a'

4

ITx
''-

At" "' ' dx

( V - 1 )c </a

(' '" sm /)\ (/v, (/ >

In A
dx

(a- + 1
)-

</a

I +

sin - dx

rp In Exercises 27-42, determine whether the improper integral

di\erges or converges. Evaluate the integral il it con\erges,

and check your results with the results obtained by using the

integration capabilities ol a graphing utility.

27.

29.

; </a

1

.11.
I

AlnA(/v

2S.

3(1.

S
-</i

4

v6 - A

32.
I

lnA-</A

p Writiiii; In Exercises 7 and 8, explain w by the evaluation of the

integral is iiiconccl. I'se the integration capabilities of a graph-

ing utility to attempt to evaluate the integral. Determine

whether the utility gives the correct answer.

,13.

35.

-17.

39.

41.

Ian HdH

AvA- - 4

I

8.

^,/A=-2 X

:'-'</a = X

,, v'aIv + 6)

,14.

36.

38.

40.

42.

sec H,l(l

1

1 >. 4 -

1

A-

,
4 - A-

2

,
(A _ 7

1

d\
-In.

In Exercises 43 and 44. determine all values of/j for which the

improper integral converges.

4.1.
I

^,dx 44.
I
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45. Use mathemalieal induction to \eiit'y that tlie tbllovving integral

converges lor an_\ positive iiilcger //.

.\'"e ' (/.v

46. Gi\en contniuotis Itinetions / and i,' siicli tliat < f(x} < g(.\)

on tlie interval [</. cc). prove the lollowing.

(a) It // ,i,'(vl (/.\ converges, then ,ff' t(-\) (/-v converges.

(h) It ]]^' /(a ) i/.v diverges, then }]'' gix) il.x diverges.

In Exercises 47-56. use the results of Exercises 43-46 to deter-

mine «lietlier tlie improper iiite^^ral converjjes or diverfjes.

47.
I
Xdx 48.

li^'
4'».

51.
.V- + 5

:;'^ r '

1

'zr

55. c ' ci\

50. x\--Uix

52.

54.

56.

1

y.v -
I

I

1
JTxix + 1 )

'

I

'.V In V

dx

57. List the different types of improper integrals.

58. Define the terms converges and diverges when working

u ith improper integrals.

1

59. Explain why
|
— dx + 0.

61). Give examples of an improper integral with infinite limits

that (a) conven_!es and ibl diverges.

iMpluce Transfoniis Let / (/) be a function deluied for all posi

tive values of/. The Laplace Transform of /(?) is defined hy

ris) = e-''f(t)dl

if the improper integral exists. Laplace Iransforms are used to

solve differential equations. In Exercises 61-68. find the

Laplace Transform of the function.

61. /I;) =
1

63. /(/) = ;-

65. /(/) = cos((/

67. /(/) = cosh at

62. f{l) =
I

64. /(;) = (•"'

66. /(/) = sin at

68. fit) = sinh at

Area and Volume In Exercises 69 and 70, consider the region

satisfying the inequalities, la) Find the area of the regi(m. (b)

Kind the volume of the solid generated by revolving the region

about the .v-axis. (c) Find the volume of the solid generated by

revolving the region about the v-axis.

69. y < e-\ y > 0, .v > 70. y < \/x~, y > 0. .v > 1

7L Arc Length Sl^etch the graph of the hypocycloid of lour

cusps

and find its perimeter.

72. Surface Area The region hounded by

(.V - 2)- + y- = 1

is revolved about the y-axjs to form a torus. Find the surface

area of the torus.

73. The Gamma Funclion The Gamma Function !"())) is defined

by

Viii) =
I

.v""'c ' (/.\. )( > 0.

(al Find ni). rC). and F{3).

(b) Use integration by parts to show that r(;; + I) = iiViii).

(c) Express r(;/) in terms of factorial notation where ;; is a

positive integer

74. Work A ?-ton rocket is fired Irom tlic surface of earth into

outer space.

(a) How inucli work is required to overcome earth's gravita-

tional Ibree'.'

(b) How far has the rocket traveled when hall the total work

has occuiTed '.'

I'rohahilily \ nonnegativc function f is called a probability

density funclion if

fiDdt = 1.

The probability that .v lies between a and b is given by

/'(« < X < /)) = fU}dt.

rhe expected value of v is giv en by

I'Xv) = tf(t)dt.

In F'xercises 75 and 76. (a) show that the nonnegative function

is a probability density function, (b) find P(0 < x < 4), and

(c) find E(x).

fie -"'\
t > II lie -' \ t >
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Capitalized Cost In Exercises 77 and 78. find the capitalized

cost C of an asset (a) for ii = 5 years, (b) for it = 10 years, and

(c) forever. The capitalized cost is jjiven by

C = C„+ i.it)e-"dt

where C„ is the original investment, t is the time in years, r is the

annual interest rate compounded continuously, and c(t) is the

annual cost of maintenance.

77. C„ = $650,000

<(r) = $25,000

/ = 0.06

78. C„ = $650,000

cd) = $25,000(1 + O.OSf)

; = 0.06

79. Electromagnetic Theory Find the value ot the following inte

grai used ui eleetroniagnetic theory.

I

80. VVnf/Hg

(a) The improper mlegrals

I

- l/.V and
''!,.

diverge and converge, respectively. Describe the es.sential

differences between the integrands that cause one integral

to converge and the other to di\crge.

(b) Sketch a graph of the function ! = sin v/v over the interval

(I.cc). Use your knowledge of the definite integral to

make an inference as to whether or not the inteizral

dx

converges. Give reasons tor your answer.

(c) Use one iteration of integration hy pails on the integral in

part (b) to determine its divergence or convergence.

81. Think About It Consider the intearal

10
</v.

To determine the convergence or divergence of the integral,

how iriany improper integrals must be analy/ed' What must be

true of each of these integrals if the gi\eu integral con\ erges'.'

^ 82. Exploration Consider the integral

4
dx

1 + (tan.v)"

where i) is a positive integer.

(a) Is the integral improper? Explain.

(b) Use a graphing utility to graph the integrand for ii = 2, 4,

8, and 12.

(cl Use the graphs to approximate the integral as )? ^ cc.

(d) Use a computer algebra system to e\aluate the integral lor

the values of ;; in part (b). Make a conjecture about the

value of the integral for any positive integer n. Compare the

results with your answer in ]iart (c).

,.2,;- I

83. Let /„

Pro\e that /..

(.v= + I

)

/ » ~
1

;; + 2

7Tl''v, « > I.

and then e\aiuate each ot the lollowing.

(a) I , ,
'

. ,

,

./.\

(b)

(c)

(.V- +

-V'

!)-•

(.V-
' +

.v'

I)'
dx

c/.V

(v- + I
)'^

rp 84. Sormal Probability The mean heiglit of American men

between IS and 24 \cars old is 70 inches, and the standard

deviation is 3 inches. II an I.S- to 24-year-oId man is chosen at

random from the populaliun. the piohabilil\ that he is 6 Icct tall

or taller is

^c-i- -'"'='"
%7.v.P(72 < .V < oc)

, , .

Jv: 3 72 77-

(Sdiirce: Nutioiuil Ccnlcr for Hcallh Suilisiics)

(a) Use a graphing utility to graph the integrand. Use the

graphing utility to com nice \oursclf that the area between

the .v-axis and the integrand is I

,

(b) Use a graphing utility to approximate f(72 < x < :/:).

(c) Approximate 0.5 - PilO < x < 11] using a graphing

utility. Use the graph in part (a) to explain w h\ this icmiIi is

the same as the answer in part (h).

True or Ealse? In Kxercises 85-88, determine whether the

statement is true or false. If it is false, explain why or give an

example that shows it is false.

85. If/ IS continuous on |l), -yz) and lim fix) = 0, then X"^" /'(v) dx

con\crgcs.

86. If / IS continuous on [O, cc) and j,(' fix) dx dnerges, then

hm /(.v) ^ 0.

87. If /' IS continuous on [O. zr,] and hm j[x) = 0, then

J,r/'(.v)rfv= -/(()).

88. If the graph of / is symmetric with respect to the origin or the

y-axis, then ^{^' f(x) dx converges il and only if J '., / (,\) J.v

converses.
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REVIEW EXERCISES FOR CHAPTER 7

In F^xercises 1-8, use the basic integration rules to

evaluate the integral.

I. I Vs^- -
I dx

3. |^-<A

Inl2.v)

dx

6. 2.vy2.v - 3 J.v

16

v''l6 - .V-

f/.V

.v-* + 2.v^ + A- + I

In Kxereises 9-16, use integration by parts to evaluate

the integral.

9. (-' sin 3-v (/_v

13. (- sui 2.\ dx

15. \ arcsin 2\ J.v

10. (a- - l)( ',/a

12. arclaii 2a i/v

14.
I
\njx' -

I d\

16.
I

<•' arctan c' ilx

In Exercises 17-22. evaluate the trigonometric integral.

17. e(.s'(-A - I), /a 18.
I

sui- '^Ja

19. ( sec^ ^ </a

I

21.
I
- sin H

de

20.
I

lan Hsee-i HdO

22. I eos2Msin H + eos 0}- dti

In Exercises 23-28, use trigonometric substitution t

evaluate the integral.

o

23.
= s/4"

24.
A- - 4

</.v. .V > 3

,4 + X-

27. V 4 - -v- </.v 28,

6. U "^J - Tx- </.v

sin e

I + 2 cos-
do

In Exercises 29 and 30. evaluate the integral using the indicated

methods.

29. dx
s/4 + X-

(a) Trigondmetric substitution

(b) Substitution: ir = 4 + a-

(c) Integration by parts: dv = (.v/y4 + x-) dx

3(1. > ^ 4 + A </.v

(a) Trigonometric substitution

(h) Substitution: ii- = 4 + a

(c) Substitution: u = -I + x

integral.

31.

33.

35.

(d) Integration by parts: dv = ^/4 + x dx

In Exercises 31-36, use partial fractions to evaluate the

'

2.V-' - 5a- -I- 4a - 4.V ~ 2K
- dx

V- - .V - 6

.V- + 2.V

, 1
A- -I- .V - I

r-

</.v

32.

dx 34.

- (iv

A- + 2x - \>
36.

4,v
_ 1

Ma - IF*''

sec-

tan Hitan 0-1)
d0

K(U In P^xercises 37—14. use integration tables to evaluate

the integral.

37.
(2 + ,\v)-

</a

39. I ^ . , dx
I + sui ,v-

41.

43.

A- + 4v + 8

1

sm TT.V COS TTX

38.

40.

42.

44.

2 + 3.

X

dx

1 + <•'"

3

2.vy9A^ -
1

1

-dx

Ix. X >

1 + tan TTX

45. Verify the reduction formula

(In a)", /a = AlhiA)" - III (In a)"-' </.v.

46. Verify the reduction formula

tan" A dx = tan" ' .v - | tan" - .v dx.
II -

1

In P^xercises 47-54, evaluate the integral using any method.

47.
I

(ysin ycos 6 do

,.1/4

48. </a

49.
I -I- X

dx

51. ^ I -I- cos A </a

53. cos .V ln(sin .v) d.\

50.
I

\' I + v'A(/.V

3 V ' + 4v ,

54.
I
(sm + cos 0)- dO
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In Exercises 55-58, solve the differential equation using any

method.

55.
'0 y

A- - 9

57. \' = ln(A= + a)

56.
</>' J4
d\

58. y' = vM - cos H

'F In Exercises 59-64. eMiluate the detlnite integral using any

method. Use a graphing utility to verify your result.

59. a(a- - 4)-''-(/v

61.
I

"^^/A

63. A' sin A (/a

60.

62.

64.

(a - 2)(a - 4)

Ar''t/A

</v

^

s'l + A
d\

Area In Exercises 65 and 66. find the area of the region hound-

ed h\ the graphs of the equations.

65. \- = A-v'4 - A". ^ =

I

66. \
=

J-1 - A-
-. > = 0. A = 0. A = 4

In Elxcrcises 67 and 6S. tlnd the centroid of the region hounded

by the graphs of the equations.

67. y = v/l - A--, y =

68. (a -
I
)^ + y- = I. (a - 4)- + y- = 4

Arc Leiii;tli In Exercises 69 and 70. approximate to two deci

mal places the arc length of the cur\e over the given interval.

Fuiiclion llllcrviil

69. y = sin A [0. tt]

70. V = sin- A [a n]

icil In Exercises 71-7t

the limit.

71 l,m
"""''

. -1 A - I

73. lim ~
.---c A^

75. lim (In a)-/'

77. Iim 1 000 I +
0.09

72. lim -—:;

—

-" sin Inx

74. lim xe^''

76. lim (a - 1)1

78. lim
In A A -

I

83. I'nsi'iit Millie riic hoard ot directors of a coipor.ilion is cal-

culating the price to pay for a business that is forecast to yield

a continuous flow of profit of $500,000 per year. If money will

earn a nominal rate of 5% per year compounded continuously,

what is the present value of the business

(a) for 20 years'

(b) lore\er(in perpetuity)?

{New: The present \alue for t„ years is /,'" 500,000f """" i/r.)

84. \bliime Find the \olume of the solid generated by revolving

the region bounded by the graphs of y = av" ', > = 0, and

A = about the A-axis.

85. Probability The a\erage lengths (from heak to tail) of

different species of warblers in the eastern United States are

approximately normally distributed with a mean of 12,9

centimeters and a standard deviation of 0.45 centimeter (see

figure). The probability that a randomly selected warbler has a

length between n and /> centimeters is

F[a < A < b) = ^-= t,-(--i:-J)7:(0'J5)^j^.^

0.95v2 7tJ.,

Use a graphing utility to approximate the probability that a

randomly selected warbler has a length of (a) 13 centimeters or

greater and (b) 15 centimeters or greater. iSoiiicc: Peicrxoii's

Field Guide: Eastern Birds)

9 111 II 12 13 14 15 Ih

86. Using the inequality

111 1 112

for A > 2. approximate ^ d\.

In Exercises 79-82, determine whether the improper

integral converges or diverges. Evaluate the integral if it C(m-

verges.

79. : J.V

i/A-

81.
I

A- In A (/a

80.

82.

7^'^^

^^,/v
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P'S, 'Problem 'Dolving

1. (a) Evaluate the integrals

(I - x-)dx and (I - X-)- d.\

(b) Use Wallis's Formulas to prove that

for all positive integers n.

2. (a) Evaluate the integrals

f
In A (/-V and (In -v)- (/v.

( b ) Pro\e that

(ln.v)"(/.v= (-1)";!!

for all positi\e integers ;;.

3. Find the value of the positive constant c such that

hm {'-^\ = 9.
^-j-- \x — c

4. Find the value of the positi\'e constant c such that

'.V - fV 1

lim
,v +

rp 7. Consider the problem of finding the area of the region bounded

by the curve

5. In the figure, the line x = 1 is tangent to the unit circle at A. The

length of segment QA equals the length of the circular arc PA.

Show that the length of seginent OR approaches 2 as P
approaches A.

A(1,0)

6. In the figure, the segment BD is the height of triangle hOAB.
Let R be the ratio of the area of ADAB to that of the shaded

region formed by deleting AOAB from the circular sector sub-

tended by angle 8. Find lim R.

[.V- + 9]3/2'

the .v-axis and x = 4.

(a) Use a graphing utility to graph the region and approximate

its area.

(b) Use an appropriate trigonometric substitution to find the

exact area.

(c) Use the substitution a = 3 sinh u to find the exact area and

verify that you obtain the same answer as in part (b).

8. Use the substitution ii = tan - to find the area of the shaded

1

region under the graph of v
2 + cos .V

. < .V < 77/2

1 h^A-

9. Find the arc length of the graph of the function

y = ln( 1 - .V-)

on the interval < .v < ,.

10. Find the centroid of the region above the .v-axis and bounded

above by the cur\e \' = f "'"'", where c is a positive constant.

I

Hint: Show that ' dx dx.
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11. Some elementary functions, such as/(.\-) = sin(.v-). do not ha\e

antiderivatives that are elementary functions. Joseph Liouville

proved that

-dx

does not have an elementary antiderivative. Use this fact to

prove that

n^ 15. Use a graphing utility to estimate each limit. Then calculate

each limit using L'Hopital's Rule. What can you conclude

about the indeterminate form co?

r

1

lix

In A

is not elementary.

12. (a) Let y =/"'(a) be the inverse of/. Use integration by

parts to deri\e the formula

[/-'(.v)</a = a/^'(a) - /(v)</y.

(b) Use the formula m part (a) to c\aluatc the integral

arcsin .v dx.

(c) Use the formula in part (a) to find the area under the graph

of V = In X, I < X < e.

13. Factor the polynomial p(x) = a'' + I and then find the area

under the sraph of v = —; -. < a < 1.
^ ^ A-" + I

14. (a) Use the substitution k = — - a to evaluate the integral

sm -X"

- dx.

Jq cos A + sm A

(b) Let II be a positive integer. Evaluate the integral

J'"'

sin" A

cos".v + sin"A
- dx.

(a) lim ( cot a +

(b) lim
I
cot A

I— li-

fe) lim

16. Suppose the denominator of a rational function can be factored

into distinct linear factors

D(.x) = ix - c.)(x - c.) (.V

for a positive integer ;; and distinct real numbers r,. r, r„.

If A' is a polynomial of degree less than n, show that

Ma) ^ P,
^

P,
^

. ,

Pn

Dix) A - f| A - f, A - C„

where Pj = Miv)/D'(q) for k = 1.2 /;. Note that this is

the partial fraction decomposition of A'(a)/D(a).

17. Use the results of Exercise 1 6 to find the partial fraction decom-

position of

A' - 3a- + 1

.v-* - 13a- + Uv

18. The velocity (in feet per second) of a rocket whose initial

mass (includins: fuel) is ;;; is

V = i>t + u In . f < ~-

in — rt r

where ii is the expulsion speed of the fuel. ;• is the rate at which

the fuel is consumed, and g = — 32 feet per second per second

is the acceleration due to gravity. Find the position equation for

a rocket for which in - 50,000 pounds, ii = 12.000 feet per

second, and r = 400 pounds per second. What is the height of

the rocket when r = 100 seconds? (Assume that the rocket was

fired from ground level and is moving straight up.)

19. Suppose that /(«) = f(b) = g(a) = g(h) = and the second

derivatives of / and g are continuous on the closed interval

[a. b]. Prove that

f{.x)g"{.x) dx = f"lx)glx) dx.

20. Suppose that /(a) = .f(b) = and the second den\atives of/

exist on the closed interval [a. b]. Prove that

f
(a - a)(x - b)f"lx) dx = 2 fix) dx.



The Koch Snowflake: Infinite Perimeter?

Why is geoDietiy often descriluil as "cakl" diul "dry"'.'

(Jite reason lies in its inaliilily u> ilesciilH' llie shiipe of ii

eioud. a mounltnn. ti t'oti\ltint'. or a tree. Clouils tire nol

splieres. mounUiins are nol cones, coosilines ore not eii-

eles. and hari. is nol sniootli. lun' does lighteniiif; tra\-el

In a straii^ht line. ... NtUnre e\hlhit\ not simply ii lii;.^lier

ile,i;ree hnl tui alloi^ether ilijlerent level ol eoinpkwily.

BL'ium M.indL'Ibiiii ( m24-i

To meet the challenge of creating a geciineliv

capable ot describing nature. Mandelbrot developed

fractal geometry. Fractal sets come in diverse forms.

Soine are curves, others are disconnected "dust" and

still others are such odd forms that there are no exist-

iiiL: geometric terms to describe them.

One of the "classic" fractals is the Koch

snowtfake. named after the Swedish mathematician

Helge \(in Koch ( 1870-1924). It is sometimes

classified as a "coastline curve" because of the way

a coasthne appears increasingly more complex with

magnification. To describe the Koch snowflake,

Mandelbrot coined the term teraiiiiii. which translates

literally troni the Greek words for "monster curve."

The construction of the Koch snowflake begins with

an equilateral triangle whose sides are one unit long. In

the first iteration, a tilangle with sides one-thh-d unit

long is added in the center of each side of the oiiginal.

In the second iteration, a tilangle with sides one-ninth

unit long is added in the center of each side. Successive

iterations continue this process—without stopping.

QUESTIONS

1. Write a formula that describes the side length of the triangles that will be added in the nth

iteration.

2. Make a table oi the perimeter oi the original triangle and ot the teragon in the first three

iterations, as shown above. Write an expression describing the perimeter of the teragon after

the ;?th iteration. What do you expect will happen to the perimeter as /( approaches infinity?

3. Make a table of the area ot the teragon m the first lour iterations. Write an expression describ-

ing the area after the iilb iteration. What do you expect will happen to the area as /? approaches

infinity?

4. Is it possible for a closed and bounded region in the plane to ha\e a finite area and an infinite

perimeter? Explain your reasoning.

riie {(iniepls presented here will he exphnvil ftirther in this chapter l'<n- an e.ytension of this

appliciUion, see Liih 1 1 in the lah sei-ies thai accoinpanies this te.yl at college. hmco.com.

554
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The sphereflake fractal is a ihree-diniensional version of the Koch snowtlake.

You are asked to prove that its surface area is intuiite in Exercise S4 on page

575.

After developing some of the

first computer graphics

programs. Benoit Mandelbrot

was able to share some ol' the

most beautiful fractals with

the world and create a grow-

ing interest in this new area

of fractal geometry.

Eric Haines generated the sphere-

like fractal.

Fractals are self-similar, as

seen in the fern fractal. When
magnifying a small portion of a

IVactal image, you see an image

similar to the oricinal fractal.

555
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Sequences

• List the terms of a sequence.

• Determine whetlier a sequence converges or diverges.

• Write a formula for the ;ah term of a sequence.

• Use properties of monotonic sequences and bounded sequences.

EXPLORATION

Finding Patterns Describe a pattern

for each of the fohowing sequences.

Then use your description to write a

formula for the ;;th term of each

sequence. As n increases, do the

terms appear to be approaching a

limit? E.xplain your reasoning.

1 i i i X

b. 1,3. ,-;. T,. T3;].
. . .

,,. m m jn HI
C. H), , . „ . |||, 15. . . .

. i i ii 16 25
a. 4. „. I,,. 15. 5,j. . . .

i JL ± ± il
^- 7- Id- 1.1- 16- m-

Sequences

In mathematics, the word "sequence" is used in much the same way as in ordinary

English. To say that a collection of objects or events is //; sei/iwiice usually means that

the collection is ordered so that it has an identified first member, second member, third

member, and so on.

Mathematically, a sequence is defined as a function whose domain is the set of

positive integers. Although a sequence is a function, it is common to represent

seqitences b\ subscript notation rather than by the standard function notation. For

instance, in the sequence

1. 2,

i i

3. 4.

i i Sequence

1 IS mapped onto n^. 2 is mapped onto </-,, and so on. The numbers k,. k,. ii, </,,,

. . . are the terms of the sequence. The number <(„ is the Hth term of the sequence,

and the cntiic sec|uencc is denoted by |(/„|.

NOTE Occasionally, it is convenient to begin a sequence with ii,,. so that the terms of the

sequence become

</,i.
i/|. 1I2. "5 i'„. . .

Exnmple 3 Listing the Terms of a Sequence

a. The terms ol the sequence {<(„[ = j3 + (-1)"1 are

3 + (-1)'. 3 + (-1)-. 3 + (-1)\ 3 + (-1)-",

2, 4, 2, 4,

" 1
b. The terms of the sct|uciicc |/',,

o

1-2.J-

3 4

2 • r 1-2-2" 1
- 2 3"

1
- 2 •

4"

1, -- -'-. i
3 5 7

c. The terms of the seqtience Ic,,' = l— are

F 2- 3- 4-

2' — r 2" — 1" '•'— r ''^—
i"

_[
4 9 26

r 3' 7" 15" 'Jtj,
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Limit of a Sequence

The primary focus of this chapter concerns sequences whose terms approach hunting

values. Such sequences aie said to converge. For instance, the sequence
J
1/2"

)

1 1 1 ± ±
2" 4' S' 16" 32" '

converses to 0. as indicated in the follow iiiii defniition.

L+ e

L
L-e

I I I I 1 I I I M i I
n

1 2 .1 4 .S h - M

For u > A/, the terms of the sequence M lie

within f units of L.

Figure 8.1

Definition of the Limit of a Sequence

Let L be a real nuinhei. The limit of

;

1 sequence Jt/,, lisi , written as

lim i/„ = L
1^— v;

if for each e > (1. there e.xist s A/ > such that |t/„
--L\ < 8 wheiie\er ;) > A/.

Sequences that have limits converge. whereas sequences that do not ha\e hmits

diverge.

Graphically, this definition sa\s that e\entuail\ (for/; > A/) the terms of a

sequence that converges to L will lie within the hand between the lines \' = /, + k and

y = L — s. as illustrated in Figure S. I

.

If a sequence ]((„[ agrees with a lunction / at every positive integer, anil il /(.v)

approaches a limit /, as a ^> -yz. the sct|iicnce must comerge to the same limit L.

THEOREM 8.1 L mit of a Sequence

Let L be a real nuiiibe r. Let,/ be a function of a real variab e suih that

lim fix) = L.

If |((„| is a sequence such thi t /(;;) ^ (/„ lor every positive intes. er /;. then

lim ((„ = L.

NOTE There are different ways in

which a sequence can fail to have a

limit. One way is that the terms of the

sequence increase without bound or

decrease without hound. These cases

are written symbolically as follows.

Terms increase without bound:

lim ((„ = c»
'/

—

•^-

Terms decrease without bound:

lim ((„ = - zc

Example 2 Finding the Limit of a Sequence

Find the limit of the sequence whose ;(th term is

Solution Pre\ioiislv voti learned that

iim^l+-^ =..

Therefore, you can apply Theorem 8.1 to conclude that

lim (/ = lim 1 H

—

Ul



558 CHAPTER IS Inrinitc Series

The t'olU)\viiig properties of limits of sequences parallel those given for limits of

functions of a real variable in Section 1.3.

THEOREM 8.2 Properties ot Limits of Sequences

Let lim ii, = L and lim /' =
11
— 'y~

K.

1. lim ((/, ± /)„ ) = L±K 2. lim ca„ = vL. c is any real number

3. lim (((, /)„)
= LK 4.

(7„

lim — =
^ -. "• ^ and A' ^ ()

f^i Example 3 Determining Convergence or Divergence

a. Because the sequence |(i„| =
J
3 + (-1)"! has terms

2. 4. 2, 4. . . . See Example la. page 5?6

that alternate between 2 and 4. the limit

lim (/

does not exist. So, the sequence diverges.

JL_\
b. For \h„\ = -1^ —I. you can divide the numerator and denominator by ;; to

obtain

= lim
I

/( :,--.. (\/n)

I— — — ~ See Example Ih. page?5b

which implies that the sequence converges to — i.

Example 4 Using L'Hopital's Rule to Determine Convergence

Show that the sctiiicnce whose inU term is a„ converses.

Solution Consider the function of a real variable

./<-v) = -
I

Applying L'Hopital's Rule twice protluces

TECHNOLOGY Use a graphing

utility to graph the function in Example

4. Notice that as .v approaches infinity,

the value of the function gets closer

and closer to t). If yon have access to a

graphing utility that can generate terms

of a sequence, try using it to calculate

the first 20 terms of the sequence in

Example 4. Then view the terms to

observe numerically that the sequence

converses to 0.

lim lim
-^-2> -

I v^-- (In 2)2' ,-.--- (ln2)-2>
0.

Because /(/() = ((„ for every positive integer, you can apply Theorem 8. 1 to conclude

that

So, the sequence converges to 0.

See Example Ic, page .s56.

4^5^ iiuliccili's lliiit ill the Interactive 3.0 CD-ROM mid Internet 3.0 vcrsiaiis of this rcxt

(iiYciiUihle at college.hmco.com) yoi/ willfind an Open Explonitioii, wh.icli fiiillwr explores this

example iisint; the eonipiiter algebra systems Maple, Mathead, Mathematica. and Deri\e.
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To simplify some ot the formulas dex eloped in Iliis ehapler. ue use the symbol /;!

(read ";; factorial'"). Let n be a positi\e integer; then /( factorial is given by

«! = 1 2 • 3 • 4 (;( - I) • ».

Zero factorial is given by 0! = 1. From this definition, you can see that 1! = I.

2! = 1 • 2 = 2. 3! = 1 •2-3 = 6. and so on. Factorials follow the same conven-

tions for order of operations as exponents. That is. just as 2.v' and (2.\
)

' imply different

orders ol operations. 2;;' and (2;;)! imply the following orders.

2/(1 = 2(/;') = 2(1 • 2 • 3 • 4- /;)

and

(2/;)! = I
• 2 • 3 • 4- -/f • (// + 1)

Another tiscful hmit theorem that can be rewritten for seL|uences is the Squeeze

Theorem from Section 1.3.

1.0-

0.5-

-0.5 -

-1.0-

-1.5--

1 2"

(-1)"

For n > 4, ( - I )"/ ii'. is squeezed between

-l/2"and 1/2".

Figure 8.2

THEOREM 8.3 Squeeze Theorem for Sequences

If

lim fl„ = L = lim /?„

and there exists an integer A' stich that k,, < c„ < /), for all ii > /'
v'. then

lim c„ = L.

Exiiinplc 5 Using the Squeeze Theorem

Show that the seqtience |(„| = m~ 1'" ^ converges, and Hnd its limit.

NOTE Example ."i suggests something

about the rate at which /;! increases as

/I—>co. As Figure 8.2 suggests, both

1/2" and 1//;! approach as ii^oo.

^'et \/n'. approaches so much faster

than 1/2" does that

hm --—; = hm -^ 0.

In fact, it can he show n that for any fixed

number k.

lim — = 0.
1.-.OC );!

This means that rlw facuinal fuuilum

grows faster than any e.xpuncntial

function.

Solution To apply the Squeeze Theorem, you must find two con\eigent sc(.|uences

that can be related to the given sequence. Two possibilities are <(„ = -1/2" and

/»,,
= 1/2". both of which converge to 0. By comparing the term /;! with 2". you can

see that

;;! = I • 2 • 3 • 4 • .S 6 • • /; = 24 • 5 • 6 n (/. > 4i

/I - 4 tactors

and

Tl = T . T . 1 .")."). ") 2 = 16

^; - 4 factors

This implies that for /; > 4. 2" < /(!. and you have

;; > 4^<(-l)"^<^.
II'.

as illustrated in Figure 8.2. Therefore, by the Squeeze Theorem it follows that

lim (-1)"— = 0.
Il^zr. Ill EE]
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In Example 5. the sequence \c,/, has holh positive and negative terms. For this

sequence, it happens that the sequence of absolute values,
j |c„| [. also converges to 0.

You can show this by the Squeeze Theorem using the inequality

< — < — . /! > 4.
;i! 2"

In such cases, it is often convenient to consider the sequence of absolute values—and

then apply Theorem 8.4, which states that if the absolute value sequence converges to

0, the original signed .sequence also converges to 0.

THEOREM 8.4 Absolute Value Tlieorem

For the sequence |i/„l, if

lim |<i,J
= then liiii <(„ = 0.

Proof Consider the two sequences
I j*;,,] 1

and |-|</„ii. Because both of these

sequences converge to and

-|"J ^ "„ ^ l"J

YOU can use the Squeeze Theorem to conclude that |((„| converges to 0. [2]

Pattern Recognition for Sequences

Sometimes the terms of a sequence arc generated by some rule that does not explic-

itly identify the nth term of the seqtience. In such cases, you may be requii-ed to

discover a pattern in the sequence and to describe the /;th term. Once the //th term has

been specified, vou can investigate the convergence or di\ergence of the sequence.

Example 6 Finding the ;;th Tcnn of a Sequence

Find a sequence {i;,,} whose first five terms are

2 4 X H;i 32

T" 3' 5" T' 9 '

'

and then determine whether the particular sequence 30U have chosen converges or

diverges.

Solution First, note that the ntmierators arc successise powers of 2. and the denom-

inators form the sequence of positive odd integers. By comparing </„ with 11. you have

the following pattern.

Tl t2 03 04 t5 9/1

I" 3 5 7 " 9 2;; - I

Using L'Hopital's Rule to evaluate the limit of /(.v) = 2V(2.v - I), you obtain

,.
2'

,. 2'(ln2) _ ,.
2"

lim = lull
—-— = 00 I ; lini = 00.

t^y^ 2.V —
I I — >: 2 ii^x In — 1

Hence, the sequence diverges.
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Without a specific rule for generating the terms of a sequence or some knowledge

of the context in which the terms of the sequence arc obtained, it is not possible to

determine the convergence or di\ ergence of the sequence merely from its fust se\ eral

terms. For instance, although the fu'st three terms of the following four sequences are

identical, the tirsl two sequences converge to 0. the Ihud sequence converges to ,;. and

the fourth scc|ueiicc diverges.

fr'
'

1 1 1 1 1

~>
' 4'

f^' 16" • -)!?• •

IbJ
1

-)

1

4'

1 1

s 1
.5

•

6

(/; + \){n- - ;j + 6)

J ,. 1

1 1 1 7 ir — 3/! + .3

i'„ 1

1

4'

1

X' 62 "

1 „

" 9n- - 25;; + 18" ' '

-;;(/; + 1 )(;; - 4)
i'/„l ' ") ' 4"

-. U....
6(;;- + 3;; - 2) '

'

'

The process of determining an ;;th term from the pattern observed in the fust several

terms of a sequence is an example of indiicuvc ivusduiu!;.

Example 7 Findinj; (lie //th Term of a Sequence

Deteiniinc an ;;lh term for a sequence whose fir^t fi\c terms are

_2 S _26 8t) 242

1" 2" 6 24' 120"

and then tlecide whether the sequence converges or diverges.

Solution Note that the numerators are 1 less than 3". Hence, you can reason thai the

numerators are given by the rule 3" — I. Factoring the denominators produces

1 = 1

2=1-2
6 = I • 2 • 3

24 = I 2 • 3 • 4

120 = 1 2 • 3 • 4 • 5 .

This suggests that the denominators are represented by ;;!. Finally, because the signs

alternate, yoti can w rite the /;th term as

;;!

From the discussion about the growth of ;;'. il follows that

lim |(;„|
= lim ^—,— = 0.

Applying Theorem 8.4. ynu can conchiLle that

lim (;„ = 0.

So. the sequence
I «„ I

converges to 0.
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\ /

\ /

(«„| = |3 + (-l)"l

(a) Not nionotonic

l''„)
, 1 +hI

I 2

(b) Monolonic

4- -

3- -

1
-^ < "'

T -

k„l 2"-

1 - m''' <i

^'l
'"4

1 2 3 4

(c) Not monotoiiic

Figure 8.3

Monotonic Sequences and Bounded Sequences

So far you have determined the convergence of a sequence by finding its limit. Even if

you cannot determine the limit of a particular sequence, it still may be useful to know

whether the sequence converges. Theorem 8.? identifies a test for convergence of

sequences without determining the limit. First, we give some preliminary definitions.

Definition of a Monotonic Sequence

A sequence
1 <(„ |

is monotonic if its terms arc noiidecreasing

(/i
<((,<((,< < (/„ < •

or if its terms are nonincreasing

ii ,
> ((, >((,>•> (/,, > •

.

Example 8 Determining Wietlier a Sequence Is Monotonic

Determine whether each sequence ha\'ing the given (Uh teiin is nionotonic.

2/1 ;r
a. ((„ = 3 + (-1)" b. /;„

=
1 + II

c. c,

1

Solution

a. This sequence alternates between 2 and 4. Therefoie. it is not monotonic.

b. This sequence is monotonic because each successive term is larger than its prede-

cessor. To see this, compare the terms /)„ and /'„i|. [Note that, because n is

positive, you can multiply both sides of the inequality by ( 1 + /;) and (2 + n)

without re\ersing the inequality sign.]

/) .

= 2(;i + I)
= h,

] + n ! + (;(+])

2;;(2 + /()<(! + ;i)(2;; + 2)

4;; + 2/;- < 2 + 4;; + 2ii-

< 2

Starting with the final inequality, which is valid, you can reverse the steps to

conclude that the original inequality is also valid.

c. This sequence is not monotonic. because the second term is larger than the first

term, and larger than the third. (Note that if we drop the first term, the remaining

sequence t,. i,. c^. ... is monotonic.)

Figure 8.3 graphically illustrates these three sequences.

NOTE In Example 8b. .inolher way to see that the sequence is monotonic is to argue that the

derivative of the con-esponding differentiable function fix) = 2.\-/{ 1 + .v) is positive for all x.

This nnpites that / is increasing, which in tin"ii imphes that {«„[ is increasing.
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NOTE All three sequences shown in

Figure 8.3 are bounded. To see this,

consider the following.

2 < ((„ < 4

1 < b„ < 2

4
< '•„ < T

Delinilion of a Bounded Sequence

1. A sequence {(/„! is bounded above if there is a real number M .such that

(/„ < M for all /(. The ntiniher M is called an upper bound of the sequence.

2. A sequence |((„1 is bounded below if there is a real number ,\' such that

N < (/„ for all ;;. The numher A' is called a lower bound ol tlic seiiuence.

3. A sequence |</„ |
is bounded if it is bounded abo\'e and bounded below.

One impoilant propertN of the real nunibcrs is that thcs arc complete.

lnformall\. this means that there are no holes or gaps on the real number line. (The

set of rational numbers does not have the completeness property.) The completeness

axiom for real numbers can be used to conclude that if a sequence has an upper

bound. It must haxe a least upper bound (an upper bound that is smaller than all

other up|icr bounds for the sct|ucncc). For example, the least upper bound ol the

sequence j((„l = \ii/(n +1)1.

1 2 3

4'

4

s "

'

;;

2" .i' "

;; + 1

is I. We use the completeness axiom in the proof of Theorem S.,'^.

THEOREM 8.5 Bounded Monotonic Sequences

If a sequence |((„} is bounded and monotonic. then it converges.

4- -

3- -

L
^

^ • —

1
- •r'

'/| (/| < C/-, < (/, < <L

12 3 4 5

Every bounded nondecre;ising sequence

converges.

Figure 8.4

Proof AssLime that the sequence is nondecreasing. as shown in Figure S.4. For the

sake of simplicity, also assume that each term in the sequence is positi\e. Because the

sequence is bounded, there must exist an tippci' boiuul ,1/ such that

((, <(;,<(/;< < </„ < < ,\/.

From the completeness axiom, it follows that there is a least upper bound L such that

(;,<(;,<(/-,<• < (/„ < < L.

For E > 0. It follows that /. — e < L. and therefore L - e cannot be an upper

bound for the sequence. Consequently, at least one term of {(/„| is greater than

L - E. That is, L - e < a^ for some positi\e integer A'. Because the terms of !(/„|

are nondecreasing, it follows that a^ < </„ for ;/ > /V. You now know that

L - E < ((y ^ "„ < L < L + e. for every ;; > A'. It follows that \a„ - L\ < f. for

/) > A', which by definition means that i«„] convei'ges to L. The proof for a nonin-

creasing sequence is similar __/!

Example 9 Bounded and Monotonic Sequences

a. The sequence |«„| =
| 1//;| is both bounilcd and monotonic and so, by Theorem

8.5, must converge.

b. The divergent sequence I/;,,'
= \ii-/(ii + III is monotonic, but not bounded. (It rv

bounded below.)

c. The dixergent sequence
I
(„

I

= {(-1)"' is bounded, but not monotonic. ^^



EXERCISES FOR SECTION 8.1

In Exercises 1-12, write tlie first five terms of the sequence. In Exercises 27-30, write tlie next two apparent terms of tlie

sequence, Descrilje the pattern you used to find these terms.

1. — 2, "„
~

/( + 3

3, = HT 4,
^'ii

= i-W

5, = . IITT

Sin
— 6, ti,,

= IITT
COS—

7, =
(-1) ^"''-

8, <'„
= (-1)"^'(-'

\/i/;r

9, = 1 1

n ir
10, "" = lO + ^ + A

)i II-

I. =
3"

12, "„
= :vi'.

in - 1)!

27, 2.?, 8, II. .

29, 3,"ii-i

28. i. 4, 5. 5. . . .

30. 5. 10.20.40. .

In Exercises 31-36, simplify the ratio of factorials.

10! - 25!
31.

33.

35.

8!

in + I)!

11'.

(2n - 1)!

{2n + 1)!

32.

34.

36.

23!

(» + 2)!

;;!

(2» + 2)!

(2;i)!

In Exercises 13-16, write the first five terms of the recursively

defined sequence,

k + \

13, c?! = 3, (ij^i = 2(t/, - 1) 14. (/, = 4, i/j
,

15. a, = 32. (((^
I

= 3(7( 16. </, = 6, 0^ + ,

= \a^-

In Exercises 17-20, match the sequence with its graph, [The

graphs are ialu'led (a), (h), (c), and (d).|

In Exercises 37-42, find the limit (if possible) of the sequence,

37, ((„ = —; r

39, ((„
=

yii- + 1

41 . ((„ = sin

38, (/„
ir

40, <;/„

5n

Jn- + 4

42, a„
2

= cos -

(a)

8-

6-
•

4- -•

2 -

2 4 6 S 10

(b)

lot

6- •

4- -•
•

2 -
•

1

t i

*•-
1 4 6 8 10

/k In Exercises 43-46, use a graphing utility to graph the first ten

terms of the sequence. Use the graph to make an inference about

the convergence or divergence of the sequence. Verify your infer-

ence analytically and. if the sequence converges, find its limit.

43. (/„
=

45. ((„
=

44. CI,

1

46. ((„ = 3

(c) "„

4-

3-

2 ^-

1
•

(d) "„

4j-t-»»* n

2 4 6 S 10

In Exercises 47-66, determine the convergence or divergence of

the sequence with the given ;;th term. If the sequence converges,

find its limit.

47. «„ = (-1)"

17. n„ =
" 11 + i

19. n„ = 4(0.5)"-

18. «„

20. a„

1 I 11 -H-H-f>
2 4 6 8 10

8/;

;; + 1

4"

49. a„ =

51. a„ =

53. a„

iir — /I + 4

2ir + 1

1 + (-1)"

(I

Ml,')

48. ci„ = 1 + (- 1

)"

50. (/„
=

52. i;„
=

54. (/, =

i'li + 1

1 + (-1)"

ir

In V"

rp' In E^xcrcises 21-26, use a graphing utility to graph the first ten

terms of the sequence.

21, a„

1 4
22. a„ = 2 - -

11

23, a„ = 16(-0.5)"-' 24. (/„ = 8(0.75)"

25. a
2n

26. „ - -"'

57. a

' 4"

in + I)!

56. (/„ = (0.5)"

58. a„

59. .„ = ^^^ - ^. » > 2
II n -

\

,1 + 1
60. a., =

III +1 2h -
1
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61. a„ = —. p >

63. w„ = (l +
^^"

- '•'n "
65. <(„ =

In Exercises 67-S(), vvrilc an expression for the «tli term of the

sequence. (There is more than one correct answer.)

62. o„ = II sill
-
II

64. "„ = -'-"

66
cos ml

a = :

—

67. 1.4.7, 10. . . .

69. -1.2.7. 14.2.1. . . .

71 = i i i

/-•>. _. 1.1. 4, s- • •

74 _i 1 _i !* -^21
l-i. 5. 1. 4. x- 16- •

75. 2, 1 + i 1 + 5, 1 +
J, 1 + i . . .

76. I + 5. 1 + i 1 + |. 1 + 1^. 1 + ^. .

12 3 4

68. 3. 7. II. KS, .

70 1 _i 1 _-L

n-, i i i il I

'— >• s- s. 1 1- >

77.

7S.

79.

2 • 3' 3 • 4' 4 • ."^^
-"^

6"

ill I

:• (> :4' i2(i'

I
• 3 • .S 1 • 3 • ."i • 7

80. l.A,-.
.V- .V .V X

6 ' 24' 12()'

I'V' In Exercises 81-90. determine whether the sequence with the

given /;th term is monotonic. Discuss the boundedness of the

sequence. Use a graphing utilit\ to c(mfirni \our results.

81. (/„ = 4 - -

I

83. "„ =^
85. a„ = (- 1 r

87. <(„

89. (/„ = sin
'

82. </„

3/1

)( + :

84. (i„ = lie

86. CI.

88. <'„ = 1^^

90. a„ =

' r In Exercises 91-94, (a) use Theorem 8.5 to show that the

sequence with the given Hlh term converges and (h) use a graph-

ing utility to graph the tlrst ten terms of the sequence and find

its limit.

91. ci=5+-
II

«.<-„ = 3(1

92. a„ = 4

94. </„ = 4 +

95. Coinpoiiiid Interest Consider the sequence |/4„| whose ;ilh

term is aivcn hv

Pi
1;

wiiere P is tlie principal. ,\„ is tlie accounl balance alter n

months, and ; is the interest rate compounded aniuially.

(a) Is |.4„] a con\'ert!ent sequence'.' Explain.

(bl Find the tlrst ten terms ol the sequence il P = $'-)()IIO and

) = II. M.S.

96. Investnieiit A deposit of .Slot) is made at the beginning of

each month in an account at an annual interest rate o! 12%

compounded monthl\ The balance in the account alter 11

months is

A„ = l(l()(mil[ll (III" - 1],

(a) Compute the first si\ terms ol the scqticncc 1/4„|.

(bl find the balance after .^ \c.irs b\ computing tlie fiOili term

of the sequence.

(c) Fiiitl the balance after 20 years by conipiiting the 240th

term of the sciiiicnce.

97. In your own words, define each ol the following,

(a) Sequence

(h) Convergence of a sequence

(c) Bounded monotonic sc(.|ucnce

98. The giaplis of two sequences are given in the figures, i

Which graph represents the sequence with alternating

signs? Explain

I I \ I f i ' " I 1 I T T f

In Exercises 99-102, give an example of a sequence satisfy-

ing the condition or explain why no such sequence exists.

(Examples are not unique. I

99. A nionotonically increasing sequence that converges to 1(3

100. A monotonically increasing bounded sequence that does

not converge

101. A sequence that converges to
J

102. An unbounded sequence that converges to 1 00
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103. Government Expendilnres A goxeinnicnt program llial

currently costs taxpayers $2? billion per year is cut hack hy

20 percent per year.

(a) Write an expression lor the amount hudgetcd h>r Ihis

program after n years.

(h) Compute the budgets for llie first 4 years.

(c) Determine the convergence or diveigence ol the sequence

of reduced budgets. If the sequence converges, find its limit.

104. Inflation If the rate of intlation is 4^% per year and the

average price of a ear is ciiirently $16.0(1(1, the average price

after ii years i-,

P„ = SI 6,000(1.04.^1".

Compute the ,i\ciage price lor the next 5 years.

rp 105. Modelint; Ikilti The average cost per day for a hospital room

from 1990 through 1997 is shown in the table, where </„ is the

average cost in dollars and n is the year, with ;; = con'e-

sponding to 1990. (Sauivc: American Hosjvhil Associiilinii}

n 1

->

.^ 4 5 6 7

"n 687 752 820 881 931 968 1006 1033

(a) Use the regression capabilities of a graphing utility to find

a model of the form

((„ = Ivr + III + </, // = 0, 1, 2, 3, 4, 3, 6, 7

for the data. Use the graphing utility to plot the points and

graph the model,

(bl Use ihe model to predict the cost in the \car 2(104.

rp 106. Modelinti Data The annual sales (/„ (in millions of dollars) of

H, .1. Hcin/ Company trom 1990 through 1999 are given below

as ordered pairs ot the lonii in. a^). where ;/ is the year, with

n = corresponding to 1990, iSinnvc: IW9 H. J. Heinz

Report)

(0,6086), (1.6647). (2, 6.SS2), (3,7103), (4,7047),

(5,8087), (6,9112), (7,9357), (8,9209). (9, 9.i()())

(a) Use the regression capabilities of a graphing utility to find

a model of the firm

a„ = hii + c. )j = 0, 1 9

for the data. Graphically coinpare the points and the iholIcI.

(b) LIse the model to predict sales in the year 2004.

107. Comparing Exponential and Faetorial (irowtit Consiilei

the sequence ((„ = l(l"/»!.

(a) Find two consecutive terms that are e(.|ual in magnitude.

(b) Are the terms following those found in part (a) increasing

or decreasing?

(c) In Section 7.7, E.xercises 63-68, it was shown that for

"large" values of the independent variable an exponential

function increases more rapidly than a polynomial func-

tion. From the resiili m |iarl (b), what inference can you

make about (he rate of grow th of an exponential function

versus a factorial function for "large" integer values of »?

,f../^l

108. Compute the first six terms of the sequence

U/„| = 1(1 + i///)"l.

If the sequence converges, find its limit.

109. Compute the first six terms of the sequence U',,! =
)
Z^n \. If

the sequence converges, find its limit.

110. Prove that if j.v,J converges to L and L > 0, then there exists

a luunber N such that .v„ > for ii > N.

111. Fihonaeei Seqnenee In a study of the progeny of rabbits,

Fibonacci (ca. 1 175-ca. 1250) encountered the sequence now

hearing his name. It is defined recursively by

where 1.(;, = 1 and «-,

(a) Write the first 12 terms of the sequence.

(b) Write the first ten terms of the sequence defined by

/'.
.

= n > \.

(c) Using the definition m part (b), show that

I

/>„ 1 +

(d) The golden ratio /) can be defined by lim /'„ = p. Show

that
""'"

P=\ + \/p

and solve this equation for p.

112. Complete the proof of Theorem 8.5.

True or False? In Exercises 113-116, determine whether the

.statement is true or false. If it is false, explain why or give an

example that shows it is false.

113. If |ii„| conxerges to 3 and l/i„l converges to 2, then ]<(,, + /)„}

converges to 5.

114. If U/„} converges, then Inn (i/„ - </„^|) = 0.

115. If;; > I, then ;;! = ;;(;; - I)!.

116. If 1(;„| converges, then \ii,Jii\ converges to 0.

117. Consider the sequence

J2. ^2 + 72. + V2 + s/2. . . .

where o„ = 72 + fl„ _ , for ;; > 2. Compute the first five

terms of this sequence. Find lim <;„.

rp 118. Conjecture Let .v,, = I and consider the sequence -v„ given

bv the formula

I I

1,2.

Use a graphing utility to compute the first ten terms of the

sequence and make a conjecture about the limit of the

.sequence.
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Infinite Series

The stud> of infinite series was considered a

novelty in the fourteenth century. Logician

Richard Suiseth. whose nickname was

Calculator, solved this problem.

If ihmiglwul llh' first hall of a «mn

linii' interval a variation conlinui's at a certain

intensity, throughout the next tjiuirter of the

interval at double the intensity, throughout the

following eighth at triple the intensity ami so aJ

infinitum: thenjhe average intensity for the

whole interval will he the intensity of the varia-

tion during the seeoihl suhiuterval lor double

the intensity)

.

This is the same as saying that the sum of the

infinite series

1 2 3
- + - + - +
2 4 8

is 2.

Series and Convergence

• Understand the definition t)f a convergent infinite series.

• Use properties of infinite geometric series.

• Use the ;nh-Terni Test for Divergence of an infinite series.

Infinite Scries

One important application of infinite sequences is in representing "infinite stiniiiia-

tions." Informally, if |(v„[ is an infinite sequence, then

^ fl„ = rt, + At + ^3 + ' + "„ + Inriniie series

is an infinite series (or simply a series). The numbers (v,, <;,. it,, are the terms of the

series. For some series it is convenient to begin the index at ;; = (or some other

integer). .'Xs a typesetting convention, it is common to represent an infinite series as

simply — ((„. In such ca.ses. the starting value for the index must be taken Ironi the

context of the statement.

To find the sum of an intiniie series, consider the follow ing sequence of partial

sums.

5, = ((,

5t = i/| + ((,

5, = (7| + a 2 + ('-,

5„ = ((| + ((, + «3 + + "„

If this sequence of partial sums converges, the series is said to converge and has the

sum indicated in the followinc definition.

Definition of Conver;4ent and Divcro'cnt Series

For the infinite series i! < „. the Htli partial sum is given by

S„ = «, + ((, + •• + "„•

If the sequence of partial sums j.S'„| converges to .S' then the series ^II </„

converges. The linnt S IS called the .sum of the series.

S = ((, + a^ + + (/,, + -

If 1 5,,
|- diverges , then the series diverges.

STUDY TIP As you study this chapter,

you will see that there are two basic

questions involving infinite series. Does

a series converge or does it diverge? If a

series converges, what is its sum? These

questions are not always easy to answer,

especially the second one.

EXPLORATION S&-
Finding the Sum of an Infinite Series Find the sum of each infinite series.

Explain your reasoning.

a. 0.1 + 0.01 + 0.001 + 0.0001 +

c. I +\ + \ + -, + i + -

"• 10 "^ 100
'^ 1000 ^ 111.000

""

O. Kill +100 ' 10.000 ' 1.000,000



568 CHAPTER S Infinite Series

TECHNOLOGY Figure S.5 shows

the first 15 partial sums of the infinite

series in Example la. Notice how the

\alues appear to approach the line

V = 1.

Figure 8.5

NOTE \\m can gconietncalK deter-

mine the partial sums of the series in

Example la using Figure 8.6.

I

1

16

1
s

1

M
1

32

^

1

4

Fifjure 8.6

FOR Fl'RTHER INFORMATION To

learn moie about the partial sums of

infinite .series, see the article "Six Ways

to Sum a Series" by Dan Kalman in The

College Miilhcnuilic.s .lininuil. To view

this article, go to the website

\\\y\\\i}}iitlhu-ihlcs.(tii}i.

Example 1 Convergent and Divergent Series

a. The series

^1 111 1V— = - + - + - + — +
„4, 2" 2 4 S 16

has the following partial sums.

1 1 3
5,

2 4 4

s, = - + - + - = --^24X8

S„ =

Because

litii

1 1 I

- + - + -
2 4 8

= I

_L - -" - 1

1/1
~

nil

it follows that the series converges and its sutn is 1.

b. The /;th partial sum of the serie.s

V 1 1

,

W( " + 1

is given by

I

'-IMi-^l^i-ji^

S.. = 1

II + 1

Because the limit ol .S'„ is 1. the series comerges and its sum is 1.

c. The series

£l=l+l+l+l+---

diverges because .S',, = /; and the sequence of partial sums diverges. [21

The series in Example lb is a telescoping series. That is, it is of the form

(/>, - b^) + (/^2 ~ ''.1* + '/'.I
~ ^'4) + "'4 -''?) + Telescoping series

Note that /', is canceled by the second term. h. is canceled by the third term, and so

on. Because the nth partial sum of this series is

It follows that a telescoping series will converge if and onl\ if/),, approaches a fiiiile

number as ;(^oc. Moreover, if the scries coinerges. its sum is

S = b, ~ lim /)„
,

|.

ii—>^~
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EXPLORATION i

In "Proof Without Words." h\

Benjamin G. Klein and Irl C. Bivens,

the authors present the following dia-

gram. E.xplain why the final statement

below the diagram is valid. How is

this result related to Theorem 8.6?

\PQR = \TSP

1 +; + )•- + r-' +
1 - r

Exercise taken from "Proof Without

Words" hy Benjamin G, Klein and

Irl C. Bivens. Muthemalics Mai^azine.

October 1988. Used by permission of

the authors.

E.vamph' 2 Writing a Series in Telescoping Form

Find the slim of the series

Solution Using partial fractidiis. you can write

2 2 II
a..

An- -
1 (2,1 - 1)(2;; +1) 2;; -

1 2;i + 1

From this telescoping form, you can see that the /;lh partial sum is

" \ I 3 / \^ 5 1 \2n -
] 2n +

So, the series converges and its sum is I. That is.

y , T~ = lim S„ = lim I

-

Geometric Series

;; + 1

The series gi\en in Example la is a geometric series. In general, the series given by

V ((;•" = u + ar + ((/- + + ar" + •
, a ^ Geimiclnc scries

(1=0

is a geometric series with ratio r.

THEOREM 8.6 Convergence of a Geometric Scries

A geometric series with ratio / diverges if \r\ > 1. If <
|

< 1, Ihcii Ihe

series converges to the sum

V ,.-" " n - 1,-1 - 1

j; = (l ' ^

Proof It is easy to .see that the series diverges if r = ± I . If ; ^ ± 1 . then .S',^
=

a + ar + ar- + • + ((;" '. Multiplication by r yields

r.S'„ = (/; + ar- + iir' + • • • + ar".

Subtracting the second cc|uatioii from the first produces 5„ — /'S,, = a — ar" . There-

fore. S„(l - r) = a(\ - /"). and the ;nh partial sum is

( 1
- r'

\
- r

i < \r\ < 1. it follows that ;"^>0 as /;-

lim S„ = lim
1
-

/

(I - '")

and you obtain

lim (I - )")

I
- r

which means that the series cajiverf^cs and its sum is n/i 1
- ;1. We leave it to you to

show that the series divenies if Irl > I. .,,_
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TECHNOLOGY Try using a graph-

ing utility or writing a computer

program to compute the Mini ol tlie

first 20 terms of the sequence m
Example 3a. You should obtain a sum

of about 5.999994.

Example 3 Convergent and Divergent Geometrie Series

a. The geometric series

3y -= V ^

-

, = - «• " ^-

= 3(1) + 3

has a ratio of '" =
; with ii = 3. Because < |;j < 1, the series converges and its

sum is

3(/

\
-

I- \
- (1/2)

b. The geometric series

= 6.

^ /3Y' , 3 9 27y- = +- + - + — +
„4l2^ 2 4 8

has a ratio of r = ,. Because |;| > 1. the series diverces. ^
The fonmihi lor the sum ot a geometric series can he used to write a repealing

decimal as the ratio of two integers, as demoiisliated m the next example.

ft^¥ Example 4 A (ieometrit Series tor a Repealing Decimal

LIse a geometric series to express O.OXOXOS as the ratio of two integers.

Solution For the repealing tiecimal 0.080808. yon can write

8 8 8 8
^ + —;

H H ; +
10- 10-* 10'^ 10''

8 \l 1

0.080808 .

10-/\10

For this series, you ha\'e n = 8/10- and / = I/10-. So.

a 8/10- 8
0.080808 . . .

= = —; r = —

.

1
- r 1

- (1/10-) 99

Try dividing 8 by 99 on a calculator to see that il produces 0.080808.

The com ergence of a series is not affected by remo\ al of a finite number of terms

from the beginning of the series. For instance, the geometric series

K^F ' ti^'
11 = 4 ^ - '

,1 II * -

both comerge. Furthermore, because the sum of the second series is <//( 1 — r)

vou can conckulc that ihe sum of the first series is

5 = 2
1 \' / 1 V

+ 1^

15
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STUDY TIP As you study this chapter,

it is iniportunt to distinguish between an

infinite series and a sequence. A sequence

is an ordered collection of numbers

</,. ll-.. lis. . ",,

whereas a series is an infinite sum of

terms from a sequence

a, +((, + + a„ + •
.

The following propc-rties are direct consequences of the corresponding propeilies

of limits of sequences.

THEOREMS.? Properties of Infinite Series

If :l a„ = A. i: />„ == B. and ( is a tea number then the followini: series

con\erge to the ind catcd sums.

1- 1 [(/„ = cA

2- S ("„ + /'J
= A + B

3- S ("„ - /'„)
= A - B

//th Term Test for Divergence

The following theorem states that if a series comcrges. die linut of its iilh term must

be 0.

'

NOTE Be sure you see that the

con\erse of Theorem 8.8 is generally

not true. That is. if the sequence )((„i

converges to 0. then the series i^ (/„

conxerees.

THEOREM 8.8 Limit of ;;lh Term ol ;i Convergent Series

If y <;„ converges, then lim </„ = 0.

Proof Assume that

y (/„ = lim S„ = L.

„=
\

Then, because 5„ = 5',,.
,
+ ((„ and

lim S„ = lim 5„_ ,
= L

it follows that

L = lim S„ = lim (5„_| + fl„)

= lim 5„_
I

+ lim «„

= L + lim (/„

which implies that |((„! con\ei"ges to 0. 7Z.

The contrapositne of Theorem S.X pro\ ides a useful test for ilivc'r(;cinc. This

Htii-Term Test for Divergence states that if the limit of the /;ih term of a series does

iiol con\ers:e to 0, the series must diverse.

THEOREM 8.9 ;/th-Term Test for Divergence

If lim (/ ^ 0. then V ci„ diverges.
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Exiiwple 5 Using the //th Term Test for Divergence

a. F(ir the series V 2". you have

So. the Hniit of the /(th term is not 0. and the series diveraes.

b. For the series V
,^, 2"! + 1

. you iiave

STIDV TIP The series in Example

5c will play an iniponant mle in this

chapter.

^1,111
„ = 1

" 2 3 4

You will see that this series diverges

even though the (jth term approaches

(I as /( approaches zr..

So. the limit ol the ;;th term is not U. and the series di\erges.

^
I

c. For the series V -
. you have

lim - = 0.

Because the limit of the );tii term is 0. the ;ilh-Term Test lor Dnergence does not

apply and yon can draw no conclusions about con\ergence or dixergencc. (In the

next section, ndu will see that this particular series diverges.)

Example 6 Bouncing Ball Problem

D

7 —

6

_S

4

.1 4 .i h

The height of each hiiiince is lliree-ldurths

the height of the pi"e\ious hoimce.

Figure 8.7

A hall is dropped from a height of 6 feet and begins bouncing, as shown in Figure 8.7.

The height of each bounce is thiee-tourlhs the height of the pre\ ious bounce. Find the

total \erlical tlislance tra\eled h\ the ball.

Solulion When the ball hits the ground for the first time, it has traveled a distance

of D| = 6 feet. For subseqiicnl bounces, let /), be the distance traveled up (//)f/ down.

For example. /J, and D, are as follow s.

D, = b[\) + 6(i)= 12(^1

Up Down

O, = 6(i)(i) + 6(i)(i)
= 12(^f

Up Dow n

By continuing this process, it can be determined that the total \ertical distance is

/;> = 6+ 12(3) + 12(5)' + 12(^)' + • •
•

6 + 12(^)2 (r

I

= 6 + 9(4)

= 42 feet.
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EXERCISES FOR SECTION 8.2

In Exercises 1-6, find the first five terms of the sequence of

partial sums.

In Evercises 21-26, verify that the infinite series converges.

1

1. 1
- + -L + -L +o T i|, ^ 25 T

21. V
4 ^ « ^

I

I 2 3 4 5

,"i "(/( + 1)

1

(Use partial fraelicms.)

22. y — — (Use partial fractions.)
,fr', n{ii + 2)

7 ' M ^ II

S.l~ 6-2—
In Exercises 7-16, vcril\ thai the infinite scries di\cr{jes.

4V'
' M'-^

9. V inonii.o.^.i)"

11. f

13. y

,i = {) ^ -^

'

10. S 1[-\X)?^)"

„4, 2/1 + 3

15. y

/r + 1

I" + 1

14- 2^
,r^i v'/- + 1

1^-2^

23. V2

25. ^ (0.9)" =
I + 0.9 + O.SI + 0.729 + • •

•

26. 2 (-0.6)" = 1
- 0.6 + 0.36 - 0.216 +

;( =0

rp Numerical, Graphical, and Analytic Analyaix In Exercises

27-32, (al find the sum of the series, (b) use a graphing; uliMtv

to find the indicated partial sum ,S„ and complete the tabic, (c)

use a yraphinj; utilil> to <;raph the first ten tcrius ol the

sequence ol partial sums and a horizontal line representing the

sum, and (d) explain the relationship between the lua^nitudc of

the terms of the series and the rate at which the sequence of

partial sums approaches the sum of the series.

In Exercises 17-20, match the series with the yraph of its

sequence of partial sums. [The graphs are labeled (a), (b). (c).

and (dl.| I se the graph to estimate the sum of the series.

Confirm \our answer analvticallv.

n 5 10 20 50 100

s„

27. V
(a) s„

I

4-

3-

(b) s„

4

i,{n + 3)

29. V 2(0.9)"^'

31. V 1()(0J5)""'

^^-
2, nin + 4)

30. V 3(0.85)"

2 3 4 5 6 7 8 9

32. S;l-;

In Exercises 33-46, find the sum of the convergent series.

12 3 456789

(C) s„

4
(d) s„

4

M I I i M
12 3 4 5 6 7 8 9

4- •

3- -

1 -
• •

•
r •
^

12 3 4 5 6 7 8 9

33. y 34. V
,r^\ "(" + -)

35. y ^
36. V '

,f^, In + 1 Uu + 2) ,4^1 (2;i + 1)(2« + 3)

37. iM)' 38. IHsJ
39.

'- 1 1
\"

V -4" \ 2/
40.

.SrH)"
41. 1 + 0.1 + 0.01 + 0.001 +

42. 8 + 6 + ^ + T + •

\2j(r
» *t(-7

18. 2

20. Sf^^"

43. 3 -
1 + 5

-
5

44. 4 - 2 + 1 - i

-i(i-i 46. £[(0.7)" + (0.9)"]
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In Exeriises 47-50, express the repeating decimal as a geomet-

ric series, and write its sum as the ratio of two integers.

47. 0.4

49. 0.07573

48. 0.SI81

50. 0.2 1515

In Exercises 51-62, determine the convergence or divergence of

the series.

— -^ 11 + \

51.

I,

,1 + 10

\0n + 1

53.

,1,

(1 1

\ii n + 2

V 3;i -
1

59. £(1.075)"

61. V-iL
.fr'. In II

54. y —

56. V

1

Ui + 3)

3"

5«- li.
,1 = fi

^

60. 2
e, 100

62. y 1 +
A\"

63. State the definition of convergent and divergent series.

64. Describe the difference between liin <(„ = 5 ;md y^,, = 5-
!

65. Define a yedmetric series, state when it converges, and give

Ihe liiriiiuUi tor the sum of a convergent geometric series. 1

66.
1

State the »th-Term Test for Divergence.

rV In P'xercises 67 and 6S, (a) find the common ratio of the

geometric series, (bl write the function that gives the sum of the

series, and (cl use a graphing utihtv to graph the function and

Ihe partial sum .S',.

67. 1 + .V + .V- + .v' + 68. I

ry In Exercises 69 and 70, use a graphing utility to graph the

function. Identify the horizontal asymptote of the graph and

determine its relationship to the sum of the series.

73. Marketing A company producing a new product estimates the

annual sales to be 8000 units. Each year 10% of the units that

have been sold will become inoperative. So, 8000 units will be

in use after 1 year. [SOOO + 0.9(8000)] units will be in use after

2 years, and so on. How many units will be in use after n years'?

74. Depreciation A company buys a machine for $225,000 that

depreciates at a rate of 30% per year. Find a formula for the value

of the machine after ii years. What is its value after 5 years?

75. Multiplier Effect The annual spending by tourists in a resort

city is $100 million. Approximately 75% of that revenue is

again spent in the resort city, and of that amount approximately

75% is again spent ni the same city, and so on. Write the

geometric series that gi\es the total amount of spending gener-

ated b\ the SIOO million and find the sum of the series.

76. Multiplier Effect Repeat Exercise 75 if the percent of the

revenue tii.it is spent again in the city decreases to 60%.

77. Distance A ball is dropped from a height of 16 feet. Each

time it drops /i feet, it rebounds OS!// feet. Find the total

distance traveled by the ball.

78. Time The ball in Exercise 77 takes the following times for

each fall.

.v, = - I6r + 16. .s, = Oifr = 1

.V, = - 16?- -I- 16(0.81), .V, = Oif/ = 0.9

.V, = - I6r -f 16(0.81 )-. .V, = if / = (0.9)-

ij = - 16/- + 16(0.81)"'. s^ = if ; = (0.9)'

.v„ = - 16/- -I- 16(0.81)"-'. ,v„ = Oif; = (0.9)"-'

Beginning with v,. the ball takes (he same amount of lime to

bounce up as it docs to fall. ,ind thus the l<ilal time elapsed

before it comes to rest is

r = I + 2 V ((1.9)".

Find this total time.

l'ri)hahility In Exercises 79 and 80, the random variable /;

represents the number of units of a certain product sold per day

in a store. Ihe probability distribution of ;; is given by l'{n).

Kind the probability that two units arc sold in a given day [Pi.2)]

and show that P{i) + I'iZ) + P{i) + •• = !.

79. Pin)
1 / I

f- mniioii

80. Pin) =
3\3

69. fix)

70. fix)

(0.5)'

I
- 0.5

I
- (0.8)'

I
- O.S

M-^
i\"

1'-
4Y'

fr SI. Prohahility If a fair coin is tossed repeatedly, the probability

that the first head occurs on the ;;th toss is given by P(u) = (^) ,

where h > 1

.

(a) Show that "V
(

-

rV Writing In Exercises 71 and 72, use a graphing utility to deter-

mine the first term that is less than O.OOOI in each of Ihe conver-

gent series. Note that the answers are very different. Explain

how this w ill affect the rate at w hich the series converges.

1.

(b) The expected number of tosses required until the first head

occurs in the experiment is given by

S"U

71.
1

n(u + I)' s 72- S
I

^(0.01)"
Is this series geometric?

(c) Use a computer algebra system to find the sum in part (b).
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82. Area The sides of a square are Id inches in length. A new

square is formed by connecting the midpoints of the sides of the

original square, and two of the triangles outside the second

square are shaded (see figure). Determine the area of the shaded

region (a) if this process is continued five more times and (b) if

this pattern of shading is continued uirmitely.

In Exercises 83-86, use the fiirmiila for the nth piirtial sum of a

geometric series

"^'
, «(1 -/•")

> ar' = — .

^j I — I-

83. Present Value The winner of a S 1.000.000 sweepstakes will

be paid $50,000 per year for 20 years. If the money earns 6%
interest per year, the present \alue of the w innings is

I

Annuities In Exercises 87-90, consider making monthly

deposits of P dollars in a savings account at an annual interest

rate r. I se the results of Exercise 86 to find the halance A
after / years if the interest is compounded (a) monthly and

(b) continuously.

87. P = S.50, r = 3<7f. t = 20 years

88. P = S7.5, r = 5%. ; = 2-5 years

89. P = SI 00. r = 4%. t = 40 years

90. P = S20, r = m. I = 50 years

rp 91. Modeling Data The annual sales «„ (in millions of dollars) of

H. .1. Hein/ Company from 1990 through 1999 are given below

as ordered pairs of the form (/;. «„). where /; is the year, with

/! = corresponding to 1990. (Source: 1999 H. J. Heinz

Report)

10,6086), (1,6647), (2.6582), (3,7103), (4,7047),

(5,8087), (6,9112), (7,9357), (8,9209), (9,9300).

(a) Use the regression capabilities of a graphing utility to find

a model of the form

a„ = ce'-". /! = 0. 1 9

V 5(),()0(

1,06

Compute the present \alue and interpret its meaning.

84. Sphereflake The spheretlake shown on page 554 is a com-

puter-generated fractal that was created by Eric Haines. 3D/Eye

Inc. The radius of the large sphere is 1 . To the large sphere, nine

spheres of radius ^ are attached. To each of these, nine spheres

of radius 5 are attached. This process is continued infinitely.

Pro\e that the sphereflake has an infinite surface area.

85. Income Suppose you go to work at a company that pays

$0.01 for the fust day, $0.02 for the second day. $0.04 for the

third da\, and so on. If the daily wage keeps doubling, what

would your total income he for working (a) 29 days, (b) 30

da\s, and (c) 31 days?

86. Annuities When an employee receives a paycheck at the end

of each month. P dollars is invested in a retirement account.

These deposits are made each month for t years and the account

earns interest at the annual percentage rate /, If the interest is

compounded monthly, the amount ,-\ in the account at the end

of t years is

P + P

Pl^

+ P 1 -I-

12

'"T2
-

I

If the interest is compounded continuously, the amount A in the

account after r years is

A = P + Pe'"- + Pe-'"- + Peii:"--i>r/i:

_ P(e" - 1 )

~
e' '- -

\

'

Verify the formulas for the sums given above.

for the data. Giaphicall) compare the points and the model.

(b) Use the data to find the total sales for the 10-year period.

(c) Approximate the total sales for the 10-year period using the

formula for the sum of a geometric series. Compare the

result with that in pail (b).

92. Salary Wm accept a job that pays a salary of $40,000 for the

first year. Suppose that during the next 39 years you receive a

4'7f raise each year. What would be your total compensation

over the 40-year period?

93. Prove that 0.75 = 0.749999 ....

94. Prove that every decimal with a repeating pattern of digits is a

rational number.

95. Show that the series

"^ I

can be written in the telescoping fonn

|[(c--S„_,)-(r-5„)]

where S,, = and 5„ is the iilh partial sum.

96. Let i! (7„ be a convergent series, and let

^« = "a'+i + "/v+; +

be the remainder of the series atfer the first ;V terms. Pro\e that

lim /?., = 0.

97. Find two divergent series S i(„ and S /)„ such that 2(f;„ + />„)

converges.

98. Gixen two intuiite series I£ </„ and i: /?„ such that S <(„ converges

and S /?„ diverges, pro\e that ^[n,, + /'„) diverges.
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True or False? In Kxerciscs 99-102, determine whether the

statement is true or false. If it is false, explain «hy or give an

example that shows it is false.

99. If Inn (/„ = 0. then V ,/ converees.
„ -

1

1(10. If f; ((„ = L. then ^ a„ = L + </,,

>i= I ,1 = 11

101. If
|(i < 1. then 21"'"" = "/(I - ')

102. The series V
1000(;! + I)

diverges.

103. Writing Read the article "The Exponential-Decay Law

Applied to Medical Dosages" by Gerald M. Armstrong and

Calvin P. Midgley in Mathematics Teaclier. (To view this

article, go to the website www.nuiiliiinicles.cdm.) Tlien write a

paragraph on how a geometric sequence can he used to find the

total amount of a dnig that remains in a patient's system after n

equal dosages have been administered (at equal linic intervals).

104. Prove that

11 1

- + - + -

for |;-[ > I.

1

SECTION PROJECT

The following procedure shows liow to make a table disappear

by removing only half of the table!

(a) Original table has a length of L.

(b) Remove j of the tabic centered at the midpoint.

Each remaining piece has a length that is less than iL.

(c) Remove ^ of the table by taking sections of length ygL from

the centers of each of the two remaining pieces. Now, you

ha\ e removed J
+

s
>'' 'he' table. Each remaining piece has a

length that is less than jL.

(d) Remove j^ of the table by taking sections of length ^L from

the centers of each of the four remaining pieces. Now, you

have removed 4 + « + Te o^' the table. Each remaining piece

has a length that is less than gL.

Will continuing this process cause the table to disappear, even

though you have only removed half of the table' Why?

FOR FURTHFR l\'FORMATIOy Read the article "Cantor's

Disappearing Table" by Lany E. Knop in TJie Colleiie

Mathematics Journal. To view this article, go to the website

www.matharticles.coin.
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The Integral Test and » Series

• Use the Integral Test to determine w hether an infinite series eoiiscrges or diserges.

• Use properties of /^-series and harmonic series.

Tlie Integral Test

In this and the following section, yoti w ill study several convergence tests that apply

to series \\ ith posiinc terms.

t InsLTibcd rectanL'les;

^/(l) = LirCLl

12 3 4 II- \ n

Circumscribed rectaniiles

/ ,
= tui -

I

)

THEOREM 8.10 The Integral Test

If/' is positive, continuous, and decreasing for

.

- > and (/^,
= /(;()

. then

^((„ and /(\)t/.v

11=1 J

I

either both coincrge or both dnerge.

Proof Begin by partitioning the interval [1 . "] into ;; — 1 unit intervals, as shown in

Figure 8.8. The total areas of the inscribed rectangles and the circumscribed rectan-

gles are as follows.

V/(,) = /(2) +/(?,) + • + f(u) Inscribed area

II- 1

^f(i) = /ID + /(2) + • • + /(;; - 1) Cireumsciibed aica

1 = 1

The exact area under the graph of / Irom \ =
I to .v = /; lies belwcen the inscribed

and circumscribed areas.

^/(/) < /(vI,/a < V /(,)

1 = 2 .'
I .1

Using the (nil partial sum. .S'„ = /(I) + /'(2) + • • +/'(/;). you can write this

inei.|ualit\ as

S„ - /(I) < /(.v)(/.v < 5„_,.

Nov\. assuming that J, /(.v) cL\ converges to L. it tollous that for /; > 1

S„ - /( 1 ) < L — S„< L + / ( 1 ).

Conseciuentl\. |S„1 is bi)unded and monotomc. and b\ Theorem 8..^ it conserges. So.

i ((„ converges. For the other direction of the proof, assume that the improper integral

diverges. Then /"/(a)</.v approaches infinity as ii—>^/z. and the inequality

S„_
I

> J|",/(aI (/.v implies that |,S"„1 di\erges. So. i; </,, diserges.

NOTE Remember thai the convergence or divergence of S </„ is not alfecled b\ deleting the

first A' terms. Similarly, if the conditions for the Integral Test are satisfied tor all a > A' > I.

you can simply use the integral J^' / (.v) (/.\ to test tor convergence or divergence, (This is illus-

trated in Example 4.)
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Example 1 Using the Intcjiinl Test

Apply the Integral Test to the series V
îr + I

Solution Because /(.v) = a/(.v- + I) satisfies the conditions for the Integral Test

(check this), you can integrate to obtain

^
/.v = l

A- + I X- +
dx

2h^'^.
,
A- + I

</v

= - lim
2 h~zr-

\n(x- + I

)

- Inn [ln(/'- + I )
- In 2]

= oc.

So. the series dncrge.s.

Example 2 Using tlit- Intcgnil Test

BecaiiM' the niipi'iipcr iiili'gra! coiucrgcs. iht

intlnitc series also converges.

Figure 8.9

Appl\ the Integral Test to the series V ^r
;;- + 1

Solution Because /(.v) = l/(v- + I) satisfies the conditions lor the Integral Test,

you can integrate to obtain

I

X- +
dx = lim

1

1—-^-
I, A- + I

arctan a

</v

= lim

= lim (arctan b - arctan I

)

h—y:

_ TV TT

~
2 ~ 4

_ TT

~ 4'

So. the series coiivciiics (see Figure (S.9).

TECHNOLOdV In Hxaniple 2. the lact that the nnproper integral con\ci"ges to tt/A

does not imply that the infinite series con\ergcs to 7i/4. To approximate the stmi of

the .series, you can use the inequality

,V
]

-ji
I

A'

.^, II- + \ ,.4', II- X- + I

dx.

(See Exercise 36.) The larger the value of A', the better the approximation. For

instance, using A' = 200 produces 1.072 < ^l/(n- + I) < 1.077.



SECTION S.3 The Integral Test and /)-Series 579

Harmonic Series

Pythagoras and hw students paid close atten-

tion to the development of music as an

abstract science. This led to the discovery of

the relationship between the tone and the

length of the vibrating string. It was observed

that the most beautiful musical harmonies

corresponded to the simplest ratios of whole

numbers. Later mathematicians developed this

idea into the hSrmonic series, where the terms

in the harmonic series correspond to the nodes

on a vibrating string that produce multiples

of the fundamental frequency. For example, ^

is twice the I'lindamcntal frequency. ^ is three

times the fundamental frequency, and so on.

p-Series and Harmonic Scries

ill the remainder o( this section, we investigate a second ivpe of series that has a

simple arithmetic test tor coinergence or dnergence. A series ol the form

,f9! I"' V IP y /)-series

IS a/;-series, where p is a positive constant. For/) = 1. the series

1,11
/) 2 3

Haniinnic series

is the hurmonic .series. ,A general harmuiiic series is of the form ^1 /((//; + h). In

ninsic. strings of the same material, diameter, and tension, whose lengths form a

harmonic series, produce harmonic tones.

The Integral Test is convenient for cstahlisiimg ihe convergence or divergence of

/'-series. This is shown in the proof of Theorem S.l 1.

THEOREM 8.11 Convergence of /; Series

The /)-series

^ 1 1 1 i 1V— = — + — -f — + — -I---.
„-^i

/('' 1'' 2'' y 4''

1. converges il /> > 1, and

2. diverges if < /) < I

.

Proof The proof follows from the Integral Test and from Theorem 1.5. which

states that

(7.V

converges if/) > 1 and diverges if < /' S 1.

NOTE The sum of the series in

Example 3b can be shown to be 77-/6.

(This was proved by Leonhard Euler.

hilt the proof is too difficult to present

here. I Be sure you see that the Integral

Test does not tell you that the sum of

the series is equal to the value of the

integral. For instance, the sum of the

series in Example .^b is

= 1.64.';

but the value of the corresponding

improper integral is

1

d.\ = 1

.

Example 3 Convergent and Divergent //Series

Discuss the convergence or divergence of (a) the harmonic series and (b) the /i-series

with /) = 2.

Solution

a. From Theorem S.l I. it lollows that the harmonic series

.it', » 1 2 3
/• = I

diverges.

b. From Theorem 8.1 1. it follows that the /)-series

A ,1- 1- 3-

converses.
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Exanrple 4 Tesling a Scries for Convergence

Determine whether the lollow ing seiies converges or diverges.

^ 1

f^ II \n n

Solution This series is similar to the divergent harmonic series. If its terms were

larger than those of the harmonic series, you would expect it to diverge. However,

because its terms arc snialler, you are not sine what to expect. Using the Integral Test

with

,/(.v)

1

.V In .V

you can see that the series diverges.

1

, A In V

</.v =
1/a

</.v

In .V

Indn v)

= lim [Indn/)) - Indn 21]

= lim

OO

NOTE The nilinitc scries m Example 4 Uixerges very slowly. For instance, the sum ol the first

ten terms is approximately 1.6878 196, whereas the sum of the first 100 terms is just slightly

larger. 2.3250871. In fact, the sum nf the first 10,000 terms is appnivimately 3.0 1 502 1704.You

can see that although the infinite series "adds up to infinity," it docs so very slowly!

EXERCISES FOR SECTION 8.3

III K\tiTises 1-1(1, use the Inte<;nil Test lo di'terniine the

cdiiveryc'iitt' (ir di\crneiK'e of the series.

I. V
/) + I

2. y-

3. E' 4. 2 ... -r-

,111 I I

5. - + - + — + — + — + • •

2 5 10 17 26

,1111 I

6. - + - + - + - + — + •

3 5 7 4 II

, In 2 In 3 In 4 In 5 In 6

2 3 4 5 6

1 2 3

8. - + - + —
4 7 12

+ •

>). V

n- + 3

k is a positive integer
" + <

10. V it^c ". /. is a positive integer

III Kxeieises II and 12. use the lnte>;ral Test t<» determine the

eonveryence iir di^er<;enee of the p-series.

II. V 12. V 1

In Exercises 13-20, use Theorem 8.1 1 to determine the coiiver-

>;enee or di\erj;ence ol the/;-series.

14. y13. V ^
15. I

+—= + —= + —=+•
72 ./3 741111

16. +- + - + — + — + ••
4 9 16 251111

17. I + —j= + j= + —p + —7=

272 373 474 575

i8.i+^-^^ + -L + -L + ..

74 79 716 725

I

19. 2,3^ 20. V —



SECTION S.3 The Integral Test and /)-$enes 581

In Exercises 21-24, match the series with the j;'"iph "* '•''

sequence of partial sums. [The graphs are labeled (a), (b), (cl.

and (d).] Determine the convergence or divergence of the series.

(a) s;

8 —

6 —

4 —

(b) s„

5--

4"
3--

2--I

1

--

M M I I I M I
"

2 4 6 8 10

M I I i I I I M ' "

2 4 6 S 10

(d)

3-

•

2 -

1
-

-•

2 4 6 8 10

s „

6-

5 -

4- •
•

3 ^ -

2-

1-

-•

2 4 6 8 10

21.
„?, .'/^

22. y

24. y

^

25. Writing In Exercises 21-24, lini ((„ = for each series biil

II
—

• v:

lhe\ do mil ail converge. Is this a contradiction of Theorem S»'.'

Why do you think some converge and others diverge'

26. Numerical and Graphiial Analysis (a) Use a graphing utilny

to find the indicated partial sum 5„ and complete the table, (b)

Use a graphing utility to graph the first ten terms of the

sequence of partial sums, (c) Compare the rate at which the

sequence of partial sums approaches the sum of the series lor

each series.

n 5 10 20 50 100

s„

l\" 15 1 77-

T
rp 27. Numerical Reasoning Because the harmonic series diverges,

it follows that for any positixe real number M there exists a

positive integer N such that the partial sum

y -> M.

(a) Use a graphing utility to complete the table.

M 2 4 6 8

N

(b) As the real number M increases in equal increments, does

the number N increase in equal increments? Explain.

28. The Kieniann /.eta function lor real numbers is defined lor all

V tor which the series

11= I

converges. Fiinl the doniain ol the timction.

In Kxerclses 29 and 30, find the positive values of/; for which the

series converges.

29. y 30. Y^

i
31. State the Integral Test and gi\c an example of its use.

32. Detinc a /'-scries and state the requiiements tor its conver-

gence.

33. A friend in your calculus class tells you tliat the follow mg
series coinergcs because the terms arc \cr\ small and

approach II rapidly Is your Inend correct' Explain,

1,1,1,
10,000 10,001 10,002

34. Find a series such that Ihc /ith term >;oes to (1, but the series

di\erges.

35. Let / he a positive, continuous, and ilecicasing tunclion for

-V > 1. such that «„ = fin)- Prove thai il llic series

l<',i
11= 1

converges to .S', then the remainder Ry = S -
5,v is houiuled by

< K, < /(.v)</.v.

36. Show that the result of Exercise 35 can be written as

y a„ < V a„ < V a„ + /(.v) </.v.

In Exercises 37—12, use the result of Exercise 35 to approximate

the sum of the convergent series using the indicated number of

terms. Include an estimate of the maximum error for jour

approximation.

'' X 7^

Six terms

1

39. y -T ,

Ten terms

41. ^ ne-"'
11= I

Four terms

38. y ~

Four terms

40. 2
1

,-, in + ])[\n(n + 1)P

Ten terms

42. 2c "

Four terms
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In Exercises 43-48. use the result of Exercise 35 to find A' such

that Rv - •••••••' 'or the convergent series.

51. Euler's Constant Lei

45. 2

1 1

47. y -
.^, n-1- + I

46. f .-"/^

48. y ^^^

49. (a) Show that V —rr converaes and ^ diverges.

(b) Compare the first five terms ol eaeh series in pail (a).

(c) Find )( > 3 such that

1 1

(J In )(

rp 50. Ten terms are used to approximate a convergent />-series.

Therefore, the remainder is a function of /7 and is

< /?„,(/)) <
"

1

</,v. /' > I

(a) Perform the nitegratioii m the inequality.

(b) Use a graphing utility to represent the inequality graphi-

cally.

(c) Identify any asymptotes of the error function and interpret

their meaning.

1+^ +

(a) Show that \niii + 1) < S„ < 1 + In /;,

(b) Show thai tlie sequence |((„| = \S,^ — In //' is bounded.

(c) Show that the sequence i((„| is decreasing.

(d) Shov\ that (/„ converges to a limit y (called Euler's constant).

(e) Approximate -y using di,,,,.

52. Find the sum o! the series V hi 1 ^

Review In Exercises 53-64, determine the convergence or

divergence of the series.

53. y r-
1

I
- 1

5-^- t -!/

57. V

59. 2
/ir + 1

61. V
( I +

1

63. V

1

-'^ /i(ln/i)'

54. S_„
56. ^t J^.

58. V(l,07.s)"

62. 2 I'l"

^A ^ In"
64. > ^

SECTION PROJECT

The harmonic series

1
1 I 11+2+3+4+

is one of the most important series in this chapter. E\ en though

its terms tend to zero as n increases,

lim - = 0,
n-».=o ))

the harmonic series diverges. In other words, even though the

terms are getting smaller and smaller, the sum "adds up to

infinity."

(a) One way to show that the harmonic series diverges is attrib-

uted to J. Bernoulli. He grouped the terms of the harmonic

series as follows:

-1 +
111 11 I

3+5 +
5 +

---
+ 8

+ 9 +
---

+ T^
V

> \ >\ >',

A^
..J.,..

Write a short paragraph explaining how you can use this

grouping to show that the haniionic series diverges.

(b) Use the proof of the Integral Test, Theorem 8.10. to show

that

ln{); + I) < 1 + - + -
4

+ - < I + ln)i.

(c) Use part (b) to determine how many terms M you would

need so that

,V 1

y - > 50.

(d) Show that the sum of the first nullion terms of the harmonic

series is less than 15.

(e) Show that the following inequalities are valid.

'iTii ^ Tfi + TT + .
I

20
< In -^

I 200
2(111 - 'f 09

(f) Use the ideas in part (e) to find the limit

lim y -.
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Comparisons of Series

• Use the DirccI Comparison Test lo deteiniinc whether a scries converges or diverges.

• LKe the Limit Comparison Test lo determine whether ;i series converges or diverges.

Direct Comparison Test

For the convergence tests developed st) tar. tlic terms ol the scries liad to be fairly

simple and the series had to have special characteristics in order for the convergence

test.s to be applied. A slight deviation from these special characteristics can make a test

nonapplicable. For example, in the following pairs, the second series cannot be tested

by the same convergence test as the tnst scries even though it is similar to the first.

1. y :^ is >;eometric. but '^ -^ is not.

2. ^ — is a /)-series. but V —
;/-' + 1

IS not.

3. ci„ = —; —7 is easilv integrated, but h = —^ -^ is not.
" (ir + 3)- '

-
"

ill- + })-

In this section you will study two additional tests lor positive-term series. These two

tests greatly expand the variety of series you are able to test for convergence or

divergence. They allow you to coinpun' a series having complicated lernis with a

simpler series whose convergence or divergence is known.

THEOREM 8. 12 Direct Comparison Test

LetO < ", < /)
, for all u.

1. If S"'

yi

converses, then V a„ converges.^^11

2. If

)1= 1

diverges. then V /j,, diverges.

n 1

Proof To prove the first property, let L = V h„ and let

S„ = 11, + (/, + + "„

Because < <;„ < /'„. the sequence S,. St. 5,.. . . is nondecreasing and bounded

above by L: so. it must converge. Because

it follows that !i (( converges. The second propertv' is logically equivalent to the first.

NOTE As stated, the Direct Comparison Test requires that < a„ < b„ for all 11. Because the

comergence of a series is not dependent on its first several terms, you could modify the test to

require only that < a^^ < h„ for all ;; greater than some integer N.
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Example 1 Using the Direct Comparison Test

Dctcrniiiie the convergence or divergence of

IV
2 + 3"

Solution This series resembles

oo [

> —

.

Comerut'iit i^eonietric series^ -111 ' -

Term-hy-terni comparison yields

1 1

"i,
= < — = /'„. ;; > 1.

3" 3"

So. by the Direct Comparison Test, the series converges.

Example 2 Using the Direct Comparison Test

Determine the con\eriience or divercence of

,k 2 + ^i

Sohition This series resembles

V '

> ——T. Di\eri:eiu /'-senes

Terni-hy-lerm comparison yields

/; > 1

1 1

< —

=

2 + , ..

which Joes not meet the requirements for divergence. {Remember that if terni-by-term

comparison reveals a series that is siiniller than a divergent series, the Direct

Comparison Test tells you nothing.) Still expecting the series to diverge, you can

compare the given series with

1 Di\ei'.ieiU luirniuiiK series

NOTE To verity the last inequality

in Example 2. try showing that

2 + s/n 2 II whenever it > 4.

In this case. lerm-b\-terni comparison yields

1 1

w„ /'„. '; > 4

and. by the Direct Comparison Test, the given series diverges. ^

Remember that both parts of the Dnect Comparison Test rei.|tiire that < a,, < b„.

Informally, the test says the follow ing abotit the two series with nonnegatne terms.

1. if the "larger" series converges, the "smaller" series must also con\erge.

2. II the "smaller" series diNerces. the "laruer" series must also di\erge.
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Limit Comparison Test

Olleii a gi\cn series eloseh resembles a/i-series or a geonielric series, yet vou caniKil

establish the term-by-term comparison neeessary to appl\ the Direct Comparison

Test. LInder these circumstances you may be able to apply a secoiul comparison test,

called the Limit Coniparisoii Test.

THEOREM 8.13 Limit Comparison Test

Suppose that (/„ > 0. /),, > 0. and

/'„

L

where L i>< fiiiik' ciml posiln'c. Then the two series i; n and ^ />„ either both

converge or both diverue.

NOTE As v\ ith the Direct Comparison

Test, the Limit Comparison Test could

be modified to require only that ci„ and

/>„ be positixe tor all ii greater than some

inteaer N.

Proof Because a„ > 0. h„ > 0. and

lim —^ = Z.

there exists N > i) such that

< -r < L + 1 . for II > N.
/)„

This iiiiplies that

< </„ < (L + l)/7„.

Hence, by the Direct Comparison Test, the convergence of ^ />„ implies the con\er-

gence of !l i/,^. Similarly, the fact that

hm m ^
\

can be used to show that the comeigence of S <(„ implies the conxeiyence of 2] />„,

Example i Usin^ the Limit Comparison Test

Show that the following general harmonic series diverges.

1

( > 0. /) >
,;4'i

im + b'

Solution B> comparison v\ ilh

I^]\cr'jont liarmiiiiic series

you have

/)

,. \/(an + h) ,.
;;

hm — = hm
\/n n^-j- an + /' (/

Because this limn is greater than 0. you can conclude from the Limit Comparison Test

that the >;i\en series diverges.
"
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The Limit Comparison Test works well tor comparing a "messy" algebraic series

w ith a /'-series. In choosing an appropriate /'-series, you must choose one with an /;th

term of the same magnitude as the ;)th term of the given series.

Given Series Coiiipcuisoii Seiicx Coiicliisiou

^ ^ Both series converge.

V —-j^=^= V —T= Both scries diverse.

> —:
^ > ^ = ? ^ Both series converce.

In other words, when choosing a series tor conipanson. yon can disregard all but the

hi'^licsi pdwcr.s of II in both the numerator and the denominator.

Example 4 Using the Limit Comparison Test

Determine the convergence or divergence of

„ =
i

I'- + •'

Solution Disregarding all but the highest powers of /; in the numerator and the

denominator, vcu can compare the series with

Because

hm
„-.:x: /,, „_-^„ V;r + l/\ 1

lim -^^ = 1

.:---^- /;- + 1

you can conclude by the Limit Comparison Test that the given series converges.

Example ? Using the Limit Comparison Test

Determine the convergence or divergence of

y .

« = ,

4/;' + 1

Solution A reasonable comparison would be w ith the series

y: 2"

> ^. Diveri2cnt series

Note that this series diverges by the ;(th-Tcrm Test. From the limit

you can conclude that the given series diverges.



SECTION S.4 Cdiiiparisons of Series 587

EXERCISES FOR SECTION 8.4

1. Graphical Analysis The figures show the graphs of the first ten

terms, and the graphs of the first ten terms of the sequence of

partial sums, of each series.

„^i " „ I

""- + -^ „^i iijij- + 0.5

(a) ldentil\ the series in each figure.

(b) Which scries is a /'-series? Does it conxerge or di\erge'.'

(c) For the series that are not /i-series, how do the magnitudes of

the terms compare with the magnitudes of the terms of the />-

series? What conckision can you draw about tlic

convergence or divergence of the series'

(d) Explain the relationship between the magnitudes of the

temis of the series and the magnitudes ol the lernis ol the

partial sums.

In Kxereises 3-14. use the Direct ('((iiiparisuii lest In deternihie

the cimversienee or tli^erueiiee of the series.

)/- + 1

5. V
4^,

1

n - 1

7. V
n (

1

-V' + 1

9. V In ;;

II + 1

II. V 1

13. V , '

4. 2
DC

6. y

I

ft, -'^/r + 2

I

II I

8. V ^^

—

10

2C

V 1

Jir' + 1

l!= 1

1

Ai'Ti - 1

V 4"

,4', 3" -
I

6-"t

5 J
»

4^
n

3- 11

i\

1 ^^ \»

1
-
•k".
*->.

1 4 6 X III

-++*"

Graphs of terms

1
2 4 6 S 111

Graphs of partial sums

2. Graphical Analysis The figures show the graphs of the Inst ten

terms, and the graphs of the fust ten terms of the sequence ol

partial stuns, of each series.

and
O..'^' /ii + 0.5

(a) Identily the seriesin each figure.

lb) Which series is a /(-series' Does it converge or di\erge?

Ic) For the series that are not /'-series, how do the magnitudes of

the terms compare w ith the magnitudes of the terms ol the /'-

series? What conclusion can you draw about the

convergence or divergence of the series?

(d) E.xplam the relationship between the magnitudes of the

terms of the series and the magnitudes of the terms of the

partial sums.

In Kvercises 15-2S. use the limit ('oniparison lest to determine

the ciinveigence or divergence of tlie series.

..^'i
3" - 3

^ 3

/, - 1

/r + 1

17.

II (

1

Jii- + 1

19.

-y.

V
•1 1

2)i- - 1

3/;^ -f 2'; -1-
1

21.
/( -F 3

lAii + 2)

^^ V
n 1

1

"v /)- + 1

TC
„.-,

^ ^

18- y ^^=
,tt^ Jn- - 4

,;4^i
;r - 111 + 5

22. y ,'

24. V

i[ii- +

II

11. y sin-

26. V
1

1

-', (ii -b 1)2"-'

5

28. y

„•", " + Jir -b 4

I

In Kxercises 29-36, test lor con>er;;enee or di\ers;i'nee. usin<j

each test at least once. Identif\ the test irsed.

(a) Hth-Term Test

(el p-Scries Test

(e) Inteijral Test

(;;) Limit Comparison Test

(b) Geometric .Series lest

(dl Telescoping Series Test

(fl Direct Comparison lest

4-t

3-

.?x.

MM
Graphs of terms

16-

12-

8-

4- A--•

: 4 6 8 10

Graphs of partial sums

29. V^
31. V 1

„", 3" + 2

l\"

„4'4 3»- - 2/! - 15

I I

34- y -
,

,f^^ \ii + \ 11 + 21

3
36. y

„4', »(« + 3)
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37. Use tlie Limit Comparison Test with the harmonic series to

show tliat the series 2 a„ (where < (i„ < (/„_
,

) diverges if

lim ;«(„

is I'lnilc and non/ero.

38. Prove that, if P(ii) and Q(i>) are polynomials of degree / and k.

respectively, then the series

,f-'^ 0(")

con\erges if/ < k -
\ and diverges if/ > k - 1.

In F.xercises 34-42. use the piilMioniiiil test fjiven in Exercise 38

to determiiie Hhether the series comtryes or diverfjos.

y).i + x + i + ^ + i + ---

40. i +
iJ

+ J. + 5L+± + ...

^1- t
II' + 1

42. Y ^

48. It appears that the terms of the series

lOOII ^ lUUl ^ 11102 ^ IW} ^

are less than the conesponding terms of the convergent series

1 + i + 1 + ± + . . .

I ^ 4 ^ ') ^ 111 ^

If the statement aho\'e is correct, the first series converges.

Is this correct? Why or why not? Make a statement about

how the divergence or convergence of a series is affected by

inclusion or exclusion of the first finite number of terms.

In F^xercises 4M-52, determine the tonverjience or divergence of

the series.

11' + 1

'*"•
:(iii + 4(11)

"*"

SO — + — +-"'•
21111 ^ 210 ^

51. ^
52. Jfr

' soil '

+ ^

In Exercises 43 and 44, use the divergence lesl gi\en in Exercise

37 to show that the series diverges.

«• s
5̂ii-* + 3

44. y ^

53. Think About It Re\iew the results of Exercises 44-52.

Explain v\hy careful analysis is required to determine the

con\'ergence or divergence of a series and why only consider-

ing the magnitudes of the terms of a series could he misleading.

rp 54. Consider the following series and its sum.

" " "
'"^" ..--...-., ., -.-.,.

45. State the Direct Comparison Tesi and give an example of its

use.

46. Stale the Limit Comparison Test anil gi\c an example of its ;

use

47. The figure shows the first 20 terms of the convergent series

anJ ihc fiisi 20 terms of the series

,1-
1

Identify the two series and explain your reasoning in mak-

ing the selection.

1.(1
i

m
0.8 -

0,6

0.4

0.2-

•

'ill: :*?•••••••• ,,

4 8 12 Ih 20

1

1

^, {2i, - I)- S

(a) Verify that the series converges.

(b) Use a graphing utility to complete the table.

II 5 10 20 50 100

s„

(c) find the sum of the series

1

„^, (-";;i - n-

by hand. Describe how you found the sum,

(d) flse a graphing iililily In find ihe sum of the series

^ '

.. .

„^o(2" - n-

Tnie or False? In Exercises 55-58, determine whether the

statement is true or false. If il is false, explain why or give an

example that shows it is false.

55. If < a.. < h , and V u . converiies, then V b„ diverges.

56. IfO < i/„+io 2 Z),, and "S />„ converges, then ^ ((„ cconverses.
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57. It (/, + b„ < c„ and V c converses, then the scries V a
Ml 11= \

and V /'„ both converge. (Assume Ihal the terms ot all three

series are positive.)

58. If (/„ < /'„ + <;, and ^ «„ diverges, then the scries V /> and

y r„ both divcrtie. (.Assume tliat the terms ot all llirce series

are positive.)

59. Prove that if the nonnegatixe series

converse, then so does ihe series

y "„/'„^ II I!

60. Use the result ot H.\ei"cise .19 to pro\e that if Ihe nonnegative

series

converses, then so does the series

61. Find two series that deiiionsiia(e the result of E,\ercise .S9.

62. Find two series that demonstrate the result of Exercise 60.

63. Suppose that X u,, and X /'„ are series with positi\e terms. Prove

the lollowing-

(a) If Iim — = (J and X />„ con\'erges. then i^d,, also converges.

(hi If Iim
/>"

yz and il /' di\erses. then lii, also dixerses.

64. Find two series that demonstrate the results of Exercise 63.

65. Investigation Consider an equilateral triangle with sides of

length 9. Center et|iiilateral triangles with sides ol length .^^ on

each side ot the first triangle. Center equilateral triangles with

sides of length I on each side of the second set of triangles.

Continue this process of centering equilateral triangles on the

previous set ol triangles where the length of the sides of each set

is T that of the pic\ lous set This forms the Koch snowflakc as

described on page .i54. L'se infinite .series to find (if possible)

the area and the perimeter of the figure below.

t ".7-

SECTION PROJECT

Most wines are produced entirely from grapes grown in a single

year. Sherry, however, is a complex mixture of older wines with

new wines. This is done with a sequence of barrels (called a

solera) stacked on top of each other, as shown in the photo.

KxcrliinAriie Inui'ji; Work

The oldest wine is m the bottom tier of barrels, and the newest

is in the top tier. Each year, half of each barrel in the bottom tier

is bottled as sherry. The bottom barrels are then refilled with the

wine from the barrels above. This process is repeated throughout

the solera, with new wine being added to the top baiTels. A
mathematical model for the amount of /i-year-old wine that is

removed from a solera (with k tiers) each vetir is

/(/(. A) = k < II.

(a) Consider a solera that has five tiers, numbered k =
1 , 2, 3. 4.

and 5. In 1980 (;; = 0), half of each barrel in the top tier (tier

1 ) was refilled with new wine. How much of this wine was

removed from the solera in I98I? In 1982? In 1983' ... In

1995? During which year(s) was the greatest amount of the

1 980 wine removed from the solera?

(b) In part (a), let «„ be the amount of 1980 wine that is lemoved

from the soleia in vear ». Evaluate

FOR FURTHER IMFORMATION See the article 'Finding Vintage

Concentrations in a Sheny Solera" by Rhodes Peele and .lohn T.

MacQueen in the UMAP Miuliiles. To view this article, go to the

website www.imithai-ticies.coiii.
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Alternating Series

• L'se the Alternaling Series Tesl lo determine wiietlier an infinite series converges.

• Use the Alternating! Series Remaitider to approximate the sum of an ahernating seiies.

• Classify a convergent series as absolutely or conilitionally convergent.

• Rearrange an infinite series to obtain a different sum.

Alternating Scries

So far. most series we have dealt with have had positive terms. In this section and the

following section, you will study scries that contain both positive and negative terms.

The simplest such .series is an altiTiiating series, whose terms alternate in sign. For

example, the geometric series

1\

2/

--i^:-
1 1- H

8 16

is an tiltt'niating iii'ometric series with r= -,. Alternating series occur in two ways:

either the odd terms are negative or the even terms are negative.

THEOREM 8.14 Alternating Scries Test

Let (/„ > 0. The alternating; series

t <-"""" ^'"J 1

converse if the followinc two conditions are met.

1. lim ((„ = U < (/ ,. for all n

Proof Consider the alternating series Z
(where 2;i is even)

5,„ = ill, - II-,) + (a, - (I i) + ("^
-

((„. For this series, the partial sum

+ (".„ "J
has all nonnegative terms, and thcrctore {i^J is a nondecreasing sequence. But you

can also write

'j) ^ ("4 ^ ">) ("l„-2 ~ <^2n-\^ ~ "21:

which implies that S,,, < «, for every integer /;. Thus [S^,,] is a bounded, nonde-

creasing sequence that converges to sotiie value L. Because So,,-, - ch,, — S^,, and

(j,„ —> 0. you have

lim St„_, = liin 5,,, + liin «,„

= L + lim «,„

= L.

Because both S,,, and S,„_| converge to the same limit L, it follows that ]S„| also

converges toL. Consequently, the given alternating series converges.

NOTE The second condition in the Alternating Series Test can be modified to require only

that < a,,^
I

< ((„ for all n greater than some integer N.
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NOTE The series in Example I

is called the altenuitiu^ hanuonic

series—more is said about this series

in Example 7.

Example I Using the yVUfrnatinj; Series Test

Determine the convergence or divergence of V ( - 1

)"

'

Solution Because

1 1

;; + 1 ;;

for all II and the limit as n^r/z of I /;; is 0. you can apply the Alternating Series Test

to conclude that the series converszes.

KXSllIvIc ^ T\:in()'lTlp \]( i>i-it:ltiTl(i

Determine the con\er>:ence or divergence of V

To appK the Alternating Scries Test, note that, for /( > I.

I n- <
;; + I

I'l- 1

~y~ ~
II + I

ill + 1)2"--' < ii2"

II + \ II

<

Hence. ((„ . ,
= (/; + l)/2" < ii/l""'^ = «„ for all ;;. furthermore, by l^'Hopital's

Rule.

lim ——7 = lim r—rr,—^ = ZI': lim -—r = 0.
A—-^- 2'" ' .--^- 2' " '(In 2) "-"-= 2"" '

Therefore, hv the Alternatnm Series Test, the scries converizes.

Example 3 Cnsr ^ i,u\yh\r^ ihn \If /Mnril 1 111 i Ki'vh'^ Ti.^i T-.iUi:

NOTE In Example 3a. remember that

whenever a series does not pass the first

condition of the Alternating Series Test,

you can use the /ith-Term Test for

Divergence to conclude that the series

diverges.

a. The alternating series

1
(-l)"+'(;; +1) 2 ?• 4 5 6

1 ?> 4 ."i

passes the second condition of the Alternating Series Test because </„+ ,

< </„ for

all n. You cannot apply the Alternating Series Test, however, because the series

does not pass the first condition. In fact, the series diverges.

b. The alternating series

r_i l_i r„i r_i
1 1^2 2'^

} ,3^4 4

passes the first condition because i/,, approaches as ;; —> oc. You cannot apply the

Alternating Series Test, however, because the .series does not pass the second

condition. To conclude that the series diverges, you can argue that S^/v efu^ls the

Mh partial sum of the divergent harmonic series. This implies that the sequence of

partial sums diverges. Hence, the series diverges.
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Alternating Scries Remainder

For a convergent alternating series, the partial sum S^ can be a useful approximation

for the sum S of the series. Just how close S^, is to S is stated in the followinu theorem.

THEOREM 8.15 Alternating Series Remainder

If a convergent alternating series satisfies the condition 0,^+
,

< (i„ , then the

absolute value of the remainder R^ involved in approximatin g the sum S by

S,Y is less than ( or equal to) the first neglected term. That is.

\s - s^\ = \RJ < rt^,+ |.

Proof The series obtained by deleting the first N terms of the given series satisfies

the conditions of the Allernalinii .Series Test and has a sum ot R,..

R^ - S ~ S^ - ^ (- 1

" • = (- l)'^((/,,vt
I

-
",v + : + ",:v + .i

- )

= <:(^+| - ((;,v+i - fl,v + _,)
- (rt,v + 4

~
"a' + j) - < %+,

Consequently. |.S' — Sy| = \R.^,\ < ((y^ ,. which establishes the theorem. 12]

ff^^ Exmiiph' 4 Approximating the Sum of an Alternating Series

TECHNOLOGY Later, in Section

8.10. you will he able lo show that the

series in Example 4 eonxerges to

1

1111
+ + +

»!/ I' 2' V 4! .5 6

Appro\Miiate the sum of the tollouing series by its first six terms.

;i= 1

Solution The series converges by the Alternating Series Test because

1

< — and lim — = 0.

0.6.^212,

(/( + I)! /(' "--^- )(

The stun of the first six terms is

i'= 1-- + + = 0.6.^194
"

2 6 24 120 720

and. b\ the Alternating Series Remainder, vou ha\e

For now. try using a eonipuler In

obtain an approximation of the sum of

the series. How many terms do you

need to obtain an approximation that

is within 0.00001 unit of the actual

15 - Sj = \R,\ < a.
-S040

= 0.0002.

Therefore, the sum 5 lies betv\een 0.63194 - 0.0002 and 0.63194 + 0.0002. and you

have

0.63174 < .S' < 0.63214. m
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Absolute and Conditional Convergence

Occasionally, a series may have both positive and negati\'e terms and not he an alter-

natins series. For instance, the series

,^ sin_sin /) sin 1 sin 2 sin 3
H h

1 4 Q

has both positive and negative terms, yet it is not an alternating series. One way to

obtain some information about the conversence of this series is to investisate the

conxergence of the series V By direct comparison. \ou ha\e |sin ;(| < I lor all

;;. so < ^, ;; > I. Therefore. b\ ihe Direct Comparison Test, the series V
ir

' -^

sin /;

converges. The next theorem tells noli that the original series also comerges. A proof

is gi\en in .Appendix B.

THEORE.M 8.16 Absolute Convergence

If the series 2 \aj converges, then the series S «„ also converges.

The converse of Theorem S. 16 is not true, hor instance, the alternating harnionk'

series

^ 4

converges b\ the .Alternating .Scries Test. \'et the harmonic series dixerges. This type

of comeraence is calletl conditional.

Ucliiiition of Absolute and Con(lition<il Convergence

1. 2 c(„ is absolutely convergent if li |((„| con\erges.

2. 2£ «„ is conditionally convergent if — </„ converges but i^
|(/,J

diverges.

Example S Absolute and Conditional Convergence

Determine whether each of the series is convergent or divergent. Classify any conver-

sent series as absolutelv or conditionally convercent.

^ (-l)"»! _<11_11,^_3|

b- 1 v-T 7!"75

Solution

a. By the /;th-Term Test for Divergence, you can conclude that this series diverges.

b. The given seines can be shown to be convergent by the Alternating Series Test.

Moreover, because the /)-series

I

yi 72 J3, ./4

dixerses. the siven series is cniulitioiudlx conxercent.
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Example 6 Absolute and Conditional Convergence

DclcriniiiL" whethci each of the series is convergent or divergent. Classify any conver-

gent series as absolutely or condilionallv convergent.

- 1
(-1)

3"

D"

1111
1 1_ —

3 9 27 81

+
1 1

ln(;; + \) In 2 In 3 In 4 In 5

Solution

a. This is iini an allernatina series. However, becans

V (-1) '"'-

3" li
is a convergent geometric series, yon can appl\ Theorem 8. 16 to conclude that the

gi\en series is dh.sdliitcly conxergent (and hence con\ergent).

b. in this case, the Alternating Series Test indicates that the given series converges.

However, the series

1

ln(/; + I)

+ h h

In 2 In 3 In 4

di\erges by direct comparison w ith the terms of the harmonic series. Therefore, the

siiven series is loiuliliniuilly conxer-^ent.

Rearrangement of Series

A finite stini such as ( 1 +3-2 + 5 — 4) can be rearranged withotit changing the

value of the sum. This is not necessarily true of an infinite series— it depends on

whether the series is absolutely convergent (every rearrangement has the same sum)

or conditionally convenient.

FOR FURTHER INFORMATION Georg

Friedrich Ricniann ( liS26-liSfi6) proved

that if S ((„ is conditionally convergent

and S is any real number, the terms of the

series can he reananged to conxerge to S.

For more on this topic, sec the article

"Rieinann's Rearrangement Theorem" by

Stewart Galanor in Miitheiiuitics Teacher.

To view this article, go to the website

www.iihitlhiinilcs.coin.

Example 7 Rearrangement of a Series

The alternating harmonic series conveiges to In 2. That is,

I I I I I

Rearrange the scries to prodtice a different sum.

Solution Consider the following rearrangement.

I I I

1

(.See Exercise 47. .Seclion S.IO.)

1 111111 11
4^3 6 8

"^
5 10 12

"^
7

1

14

1

\

1 \ 1 /I 1 \ 1 /I 1 \

2/ 4 I3 6/ 8 \5 10,/

1

12
^

1

I7

"
1

'
14

1 1111 1 1

4 6 8 10 12 14

1 /

1

1 1 1 1 1 1 \+ + + ,,. =
2 3 4 5 6 7 /

^{ln21

By rearranging the terms, you obtain a sum that is half the original sum. L^^l
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EXERCISES FOR SECTION 8.5

In Exercises 1-4, iimtcli the series with the graph of its sequence

of partial sums. [The graphs are labeled (a), (h). (cl. and (d).|

In Exercises 9-28, determine the convergence or divergence of

the series.

(a) s„

5 -

4-

3--

(b) i,

10

8

6

4

I I I I I M M !

"
2 4 6 8 iO

i I 1 1 1 I M I I

"

2 4 6 S 10

(c) s„

6--

4-

T --

(d) s„

6

5

4

3

I I I M ! M i i

> "

2 4 6 S 10

M i i M I M
i

- "

2 4 6 S 10

3. Y^
,,4', "2"

-•• 2
(-1)" ' 10

'r .\iiiinriciil aiitl Graphical Analysis In Exercises 5-.S. explore

the Ahernating Series Remainder.

(a) Use a graphing utility to find the indicated partial sum .S„

and complete the table.

(bl Use a graphing ulilitv to graph the first ten terms of the

se(|uence of partial sums and a horizontal line representing

the sum.

(c) \\ hat pattern exists between the plot of the successive points

in part (b) relative to the horizontal line representing the

sum of the series? Do the distances betv\een the successive

points and the horizontal line increase or decrease?

(d) Discuss the relationship betMeen the answers in part (cl and

the Alternating Series Remainder as given in Theorem S. 15.

9. V
n~ I

11= I

15. V

17- i

(-1)" t 1

n

(-1)" +

1

2)1
-

1

( - D" n-

/r + 1

( - 1
)"

Jn

(-!)" -
)

ln(/( + 1)

10.

-X-

V (-|)"^'h

In - 1

1 '>

.1,

(-1)"

ln(// + 1)

14. V
.( 1

//- + 1

16. V
1, -

1

(-1)"^' /;-

/r + 5

V (-!)""' Indi + 1)

19. \ sm ^

21. S cos HTi

(-1)"
23. y

,^ I , (2» - \)1T
20. > - Mil ;

22. V -cus;,-

(-1)"

25. y
(-!)"" Jn

1/
-

(

26. V

,,^,,(2/1 +1)!

(-1)"^' v^
in

37. v^(-""" yi-i)

28. y ^-^^ = V (-
1
)"- I sech ,/

In Exercises 29-32, approximate the siiiu of the series b\ using

the first six terms. (See Example 4.)

29. V

31. V

(-l)"-'3

/r

(-1)"2

,
n\

30.

32.

11=
1

V

-|)-'4

ln(/i + 1)

-1)"-^;

n 1

T 3 4 5 6 7 ' 9 10

S„

rp In Exercises 33-38. (a) use Theorem 8.15 to determine the

number of terms required to approximate the sum of the

convergent series vNith an error of less than (1.001. and (b) use a

graphing utility to approximate the sum of the series with an

error of less than 0.001.

„= 1

2)1-1 4

6. Vi^>i^ = i
,,4', Oi - D' e

'•S^

33. Sl^ = i

35. y
( - 1

)"

- (-1)"-'
.

„-^o(2'i + 11

(-11"*'

sin 1

38. 2^^
.fr',

"4"

cos 1

= In;

34 y(^ir =^
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In Exercises 39 and 4(1. use Tluoreni 8.15 tci determine llie

nmnber of terms re(|Mired to approximate tiie sum of tlie series

witli an error of less Hum 0.0(11.

39. y ^-^—
„=

I

-" - 1

^ (_ 1
V'+i

In Kxereises 41-56, determine whether (he series eonveryes

conditionalh or ahsohiteh. or diverges.

(-1)"-

^
(/I + 1)-

43.
,_l)„+l

N ')

45. y
" 1

(-l)"^i/r

(" + D-

47. 1
(-1)"

In ;(

49.
,1:

/;' - 1

51. V (-1)"

(2/1 + 1)!

53. V COS /ITT

n + 1

^^ V COS n IT

42. V (-1)"^'

" + '

44. 2^^^

46. y
I)"' '(2/1 + :<}

II + 10

48. 2 (-1)"''""'

- 2 ^^
52. V (-1)"

,f-'i, v'/i + 4

54. V (-11"-' arctan //
^^

sin[(2H - I)]7t/2]
56. 2

.-ij^^:^y: ;;::• :^s:i^;^//i4^^i:^>

57. Define an alternating series and state the Alternating Series

Test.

58. Give the remainder after A' terms of a convergent alternat-

ing .series.

59. In your ov\n words, state the difference between absolute

and conditional con\ergencc of an alternating series.

6(1. Cii\e an example of an alleniatmg series that conxerges

while the series of its absolute values diverges. 1

61. The graphs of the sequences of partial sums of two series

are show n in the figures. Which graph represents the partial

sums of an .ilternating series' Explain.

(a) S„ (b) S„

1

- 4- - •
•

-1 -

_T -

2 4 6
^

- • 1
'

• •
•

-3 -

2 4 6

62. Princ that the alternating /(-series

I

y (-1)
//''

coinerges if/) > 0.

63. Fro\c that if i^ |(/„| converges, then - ti~ con\erges. Is the

coinerse true' If not. give an example that shows it is false.

64. LKe the result of E.xcrcise 62 to give an example of an alternat-

ing /i-series that converges, but whose corresponding /^-series'

diverges.

65. Give an example ol a series that demonstrates the statement you

pnued m Exercise 6,i.

66. Eind all values of .y for which the series S fv"///) (a) converges

absolutely and (b) converges conditionally.

True or False? In Kxereises 67 and 68, determine whether the

statement is true or false. If false, explain why.

67. II both ^ (/„ and X ( </„) comcrge. then ^ |(/„| converges.

68. If i^ (/„ does not con\ci"ge. then ^ |i/,J does not converge.

In Exercises 69-78, test for con\eri;ence or diverijence and iden-

tify the test used.

75. V inOf-"/:
// 1

( -l)""4
3»- -

I

70.

„^1 "' + -'^

72. Y '

,;^i
2" + 1

74.
^ ^ir

„4'| 2;i- + 1

76 ^ (-1)"

77. V 78. 2
In n

n

79. The follow iug Liigument, that = 1. is iiiconvcl. Describe the

error.

= (I + + + • •

= (I - 1) + (I - 1) + (1 - 1) +

= 1 + (-1 + 1) + (-1 + 1) +

= 1 + + + •

= 1
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=-' EXPLORATION. JiSMl

Writing a Series One of the

tollovving conditions guafantees that

a series will diverge, two conditions

guarantee that a series will converge,

and one has no guarantee—the series

can either converge or diverge. Which

is which? Explain your reasoning.

a. lim
/I—>°o

b. Hm

lim
"„*i

(/„

d. lim

The Ratio and Root Tests

• Use the Ratio Test to determine whether a series con\erges or dixerges.

• Use the Root Test to determine whether a series converges or diverges.

• Review the tests for convergence and divergence of an infinite series.

The Ratio Test

This section besziiis with a test for absolute convereence—the Ratio Test.

THEOREM 8.17 Ratio Test

Let S (i„ be a series with nonzero terms.

1. !£((„ converses absdliiieU if lim < 1.

2. w a„ dixoiizes if lim > 1 or lim

3. The Ratio Test is inconclusive if lim

Proof To prove Property 1. assume that

lim /• < 1

and choose R such that ()</</?< I. By the definition of the hunt of a sec|uciice.

there exists some A' > such that |((„
,
|/(/„| < R tor all ii > /V. Thcrcfoic. you can

write the follow iny incqualilies.

I",v+il < l",v|/^

l",v.:l < l«v.i|/^< l"v|/^=

1"^ + .^! < Ion + iIR < l"~-.i|/^' < l",v|/^'

The geometric series Ii |fl,y|/?" = \a,^,\R + |(i,vl'^" + • • + |«,vl^" + ' converges,

and so, by the Direct Comparison Test, the series

2 l"'V + „l
= I"a.+ iI + l",v.:i + • • • + kv-.„| +

(1= I

also converges. This in turn implies that the series S
|(/,J

converges, because discard-

ing a finite number o\' terms (/; = /V -
1 ) does not affect convergence. Consequently,

by Theorem 8.16. the series Ii ((„ converges absolutely. The proof of Property 2 is

similar and is left as an exercise (see Exercise 74). ]

NOTE The fact that the Ratio Test is inconclusive when |fl„+|/"„| -^
I can he seen by

comparing the two series 2 (1//;) and 2 (I/;;-). The first series diverges and ilic second one

converges, hut in both cases

lim = 1.
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Although tlie Ratio Test is not a cure for ail ills related to tests for convergence,

it is particularly useful for series that coiiveriic nipiilly. Series involving factorials or

exponentials ai'e frequently of this type.

Example 1 Using the Ratio Test

Determine the convergence or divergence of

2"

Sir-

STUDV TIP A step Irequcntly used m
applications of the Ratio Test involves

simplifying quotients of factorials. In

E.xaniple 1. for nistance. notice that

)i! _ ii< _ 1

(» + I)!
^

(/; + 1)»!
"

/( + r

Solution Because <;„ = 2"/ii\. you can write the following.

lim
«„.! = lini

'
111 + 1

111'

((„ All + 1)!

= lim

^/J+l

1"
All + D!

= lim

T

; + 1

Therefore, the scries converges.

Example 2 Using the Ratio i'cst

Determine whether each series converges or diverges.

a. V R-
b. y

ÎI

Solulioii

a. This series converges because the limit of |((„^ |/((„| is less than 1.

lim
II ^-yz

"ii ,

lim
11^'-/'-

III + n-
V

lim
2(;> + D-

3/r

b. This series diverges because the limit of |(/,, ,
\/ti„\ is greater than I.

All + 1)"" (ill
lim

II
—>^z

= lim
ill + D! \/;"

(/( + 1)""' / 1

(/( + 1) V;;"

(ii + D"

lim I + -
ll-^OC \ I,
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11^1 Exnmple 3 A Failure of the Ratio Test

Determine the eoinergenee or dixergenee of V (— | ]

n + V

•Solution The hniit of |(;„+ |/(;,J is equal to 1.

lim
'"',,+

1 = hni

= Hni

Jn + I \l n + 1

" + ^ A . "

;; + I /;; + 1

;; \/; + 2

So. the Ratio Test is ineonclusive. To determine whether the series eonverges, you

need to try a different test. In this case, you can apply the Alternating Series Test. To

show that (/„.,
I

< «„. let

./Iv) = V.v

.V + I

Then the derivative is

-.V +
/'(.v)

ljx(x + I)-'

Because the derixatixe is negatixe for a > 1. xou knoxx that / is a decreasing function.

Also, by L'Hopital's Rule.

lini -
.----- A- + I

= lini
i/C

lim

0.

ij:.

Therefore, by the Alternating Series Test, the series converges.

The series in Example .* is ti)iulitii>iuill\ i-t>in-c-i->^i'iit. This folloxvs from the fact

that the series

i i"„i
11= 1

diverges (by the Limit Comparison Test with i^ 1/^ /;). but the series

converges.

TECHNOLO(^ A computer or programmable calculator can reinforce the conclu-

sion that the series in Example 3 converges coudUiimally. By adding the first 100

terms of the series, you obtain a sum of about - 0.2. (The sum of the first 100 terms

of the series X [(;„| is about 17.)
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The Root Test

The next test lor CDineigeiice or di\ei"geiice of series woiks espeeialK v\ ell for series

involving ;;th powers. The proof of this theorem is similar to that gi\en for the Ratio

Test, and we leave it as an exercise (see Exercise 75).

THEOREM 8.18 Root Test

Let S (/„ be a series.

1. i; <;„ converges absohitely if lini v |('„| < 1.

/ /

2. i; ((„ diverges if lim vk'„ > ' "i' '''ii vl",,!
= CO.

3. The Root Test is inconclusive if lim v'|(',,|
=

^

Example 4 Using the Root Test

Determine the convenience or diveriicnce of

y

Solution Yoti can apply the Root Test as follows.

lim V \a
\

= lim ,

e 2,,/n

lim ,

= inn —

= < 1

Becau.se this limit is less than 1, you can conclude that the series converges absolutely

(and hence converses).

FOR FURTHER INFORMATION For

more informalion on the iiscliilness of

the Root Test, see the article "N\ and

the Root Test" by Charles C. Mumma II

in Tlw American Mathciiicitical Monthly.

To view this article, go to the website

www.inathai'Uclus.cdm.

To see the usefulness of the Root Test for the series in Example 4. tr\ applying

le Ralio Test to that series. When vou do this, von obtain the follow iiii:.

lim
/; —•Zr.

lim

,ZiU^ I I

= lim c^

= lim c'-

n—^-

=

(/( + 1)"+' II"

II"

II

II + \ / \ii +

Note that this liniil is not as easily evaluated as the limit obtained b\ the Root Test in

Example 4.
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Strategies for Testing Series

You have now studied ten tests tor deleiniiiiiiig the eonvei'geiiee ov di\ergence of iiii

infinite series. (See the sLimniary in the table on page 602.) SkiM in ehoosing and

applying the various tests will eome only with piaetiee. Below is a set of guidelines

for ehoosing an appropriate test.

Guidelines for Testing a Series for Convergence or Divergence

1. Does the ;(lh term approach (I.' If not. the series diverges.

2. Is the .series one of the special types—geometric, /^-series, telescoping, or

alternating?

3. Can the Integral Test, the Root Test, or the Ratio Test be applied?

4. Can the series be compared favorably to one of the special types?

In some instances, more than one test is applicable. llo\\e\er. your objective should

be to learn to choose the most clllcient test.

Example 5 Applninj* the Strategies for Testing Series

Determine the con\erL'ence or diveraence of each series.

a. V ^^^^ b. V (^
:vi + 1 ,^, \ (1

d. V -^—
e. V ( - 1

)" —^- f. V -^
„^i •"' +1 ,,-^1 -*" + 1 ,f^i

10"

Solution

a. For this series, the limit of the /?th term is not ((/„^>^ as /(^cc). So. by the

;;th-Term Test, the series dixerges.

b. This series is geometric. Moreover, because the common ratio of the terms is less

than 1 in absolute \alue (r = 77/6), you can conclude that the series con\erges-

c. Because the function /(.v) = vc"' is easily integrated, you can use the Integral Test

to conclude that the series con\'erges.

d. The /;th term of this series can be compared 10 the inh term ol the harmonic series.

After using the Limit Comparison Test, you can conclude that the series diverges.

e. This IS an alternating series whose /(th term approaches 0. Because </„..
,

< ((„. you

can use the Alternating Series Test to conclude that the series converges.

f. The nth term of this series involves a factorial, which indicates that the Ratio Test

may work well. After applying the Ratio Test, you can conclude that the series

diverges.

g. The nth term of this series involves a variable that is raised to the nth power, which

indicates that the Root Test may work well. After applying the Root Test, you can

conclude that the series converses.
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Summary of Tests for Series

Test Series
Condition(s)

of Convergence

Condition(s)

of Divergence
Comment

/ith-Tcrni

,1
"" lim rt„ it

This test cannot be used

to show convergence.

Geomelric Series
I'i < 1 |r| > 1 Sum: S = -

a

- r

Telescoping Series S (''„-/'„.,) lim />„ = L Sum: S = hf ~ L

/'-Series r > 1
/'< 1

Alternating Series f (-1)" '„,.

;;= 1

<«,i., ^ <'„

and lim t/,, =

Remainder:

\R,,\ ^ ",v+

1

Integral

( / is contiiuious.

positive, and

decreasing)

1 'V
11= 1 / (a) iL\ converges

Ji

fl\) lis di\erges

Ji

Remainder:

< Ry < /(a) ,/a

Root
1,

"" lim V(/,, < 1 lim V (/ 1 > 1

Test is inconclusive if

lim </l"„l = 1-

Ratio
i,= 1

lim
"„+i

< 1 lim
"„+i

> 1

Test is inconclusive if

</ lim
"„-i = 1."11

1

(/„

Direct Comparison

11= 1

< t(„ < />„

and V /i„ converges
11= 1

< /)„ < u„

and ^ /'„ diverges

11
-

1

Limit Comparison

11= 1

lim ^ = L >

and V /)^ converges

lim ^ = L >

and V /)^, diverges
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EXERCISES FOR SECTION 8.6

In Kxercist'S 1—t. \erifv tlii' formula.

{ii + D!
I. — = ill + DinUii - I)

(n - 21!

{2k 1

{2k)\ {2k)(2k - 1)

3 • 5- {2k ^ I)

1 2'-k\{2k - 3)(2A- - 1)

{2k)'

2'A-l

rp" Xiiiiicnctil. Graphical, and Analytic Analysis In Exercisi's II

and 12, (a) mtHn dial the stiles lonverfjes. (h) L se a Krapliino

utility to find the indicated partial sum .S„ and complete the

table, (c) Use a graphing utility to graph the first ten terms of

the sequence of partial sums, (d) I'se the tahle lo estimate the

sum of the series, (e) Explain the relationship between the

magnitude of the terms of the series and the rate at which the

sec|uence of partial sums approaches the sum of the series.

3-5 {2k - 5) {2k)<.
k > 3

In pjXercises 5-10. match the series with the graph of its

sequence of partial sums. IThe graphs are labeled (a), (b). (c).

(d). (el. and (f).]

(a) S„

7

6

5

4

3

i i M I I I ! M "

2 4 6 S to

(C) ,S,

3

I I I M M I I i^
2 4 6 s in

(e) s„

1 -

6-
5-

- •
•

4- >-

3- -

2 -

1
-

1 4 6 8 H)

5. y „
3\"

> 1

9. VI

,4/

(-3)"^'

n\

4n

(b) .v„

2 4 6 S to

(d) S,

10

8

4

1 I
! M-> "

(f) S„

--• •
8-"

6t
4-

r ••••
•

""

_") - : 2 • 6 8 10

-4-
; •

^ (-l)"-'4

..-e, (2.)!

10. 2 4e""

It 5 10 15 20 25

s„

"•S,"1s 12. f^
In Exercises 13-32, use the Ratio lest to determine the conver-

gence or divergence of the series.

13. V

15. V ;

17. V

14. V 3"

19. V
'/ 1

(l-

21. V ( - 1
)" 2"

n\

23. V
<!=

1

n\

25. V
n II

4"

n\

27, V 3"

[n + D"

29.

V.

n

4"

3" + 1

31.
li

(-1)"- '»!

1 3 • 5 (2/1 + 1)

V (-l)"[2 4 6- • •(2»)]

16. V „

18. %'{

20. t

22- i

(-1)"' 'Oi + 2)

;;(// + I)

(-1)" '(3/2)"

24. yiM
..4', /r^

26. S^

28. Vl^
>-- ( — 1 )in4ii

^, 2 • 5 8 (3/1 -
1

)

In Exercises 33 and 34, verily that the Ratio Test is inconclusive

for the/j-series.

33. (a) V 4^ <h) y 4^

34. (a) y ~ (h) f ^
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In Kxercises 35-42, use the Root Test to determine the c<)n\ei-

gence or tli\erj;ence of the series.

37. V i^
„t^, (In ;,)"

39. f (I'lV, + l)

41
1 1 1 i

(In 31' (In 4)-' (In 5)^ (In 6)"

42. I +
3 4 5 6

+ — + — + -7 + -r+-
i V- ^' V V

36. y ,

40. f . "

In Exereises 65 and 66, write an equivalent series with the index

of summation beginning at /; = (I.

Zi. A"
66. 2

{n

rp In Exercises 67 and 6<S. (a) determine the nunilier of terms

required to approximate the sum of the series with an error less

than 0.0(1(11, and (h) use a graphing ntilit) to approximate the

sum of the series with an error less than 0.0001.

67. 2
-3)'

If-kl

(-3)'

3-5 {2k+ 1)

In Exercises 43-60. determine the con\crgence or divergence of

the series using any appropriate test from this chapter. Identifv

the test used.

., ^ (-l)"*'5
.^J

II

45.
4'

3

ii^^i

47. V 111

II + 1

49. V (-l)"3"--

T'

51.

,1,

10/1 + 3

111"

53.
cos )(

S5. 1
111"

57.

-jz

1
(-ir3"-i

n'

59. y ^^^
.'^i 3 ? • 7 ^ • (2/,

60. 2
3 • 5 • 7

I + I)

2n + I)

\8"(2ii - ])ii\

44 V :_

/;

46. t (-:)"

48 V ;;

'f^\
111- + I

^0 V 10

„=l

52. 1 All- -
1

54. V (- D"
J-^^ » In 11

56 V In (;

;;= 1

ir

58. 2
(-|)"3"

69. Slale the Ratio Test.

70. Stale the Rimt Test.

71. ^otl are lolil that the terms of a positive series appear to

appioaeli /cm rapldl_\ as ii approaches lnfinit>. In fact.

((7 < 0.0001. Given no other information, does this imply

that the series converges? Support your conclusion with

examples.

72. The graph shows the tnst ten terms of the sequence of

partial sums of the convergent series

3;; + 2

Find a series such that the terms of its sequence of partial

sinns arc less than the conesponding terms of the sequence

in the ficiirc. hm such that the series diverges.

In Exercises 61-64, identify the two series that are the same.

II I I I II ! M • "

2 4 6 S 10

73. Using the Ratio Test, it is determined that an alternating

series converges. Does the series con\erge condilionally or

absolutely?

61.
V, iiy

63.

(b)
ijyi

1
n - 11

(11 + \}5"-'

(n + I)'

(-1)"

{2ii + 1)!

(b) V
II

-
1

(-1)" '

(2)( - I)!

(c)
(-1)" '

{111 + I)!

62. (a) V „

(b) Y '" + 1)

(c) y »h
^\"-i

(b) y ^-4—

(c) 1
i)„.

,r„ (" + 1
)2"

74. Picne Properly 2 of Theorem S.I 7.

75. Proxc Theorem S, l.S. {Him for Fnipcny I: If the limit equals

/ < I, choose a real number R such that r < R < I. By the

definition of the limit, there exists some N > such that

V|<J < R for /; > /V.

)

76. Writing Read the article ",\ Differentiation Test for

Absolute Convergence" by Yaser S. Abu-Mostafa in

Mathematics Magazine. (To view this article, go to the web-

site \i\n^:iiialluirticles.c<)iii.) Then write a paragraph that

describes the test. Include examples of series that converge

anti examples of series that diverge.
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Taylor Polynomials and ApprOxiniatlons

• Find polynomial approxinialiiins of elemcnlary functions and compare them with the

elementaiy function.

• Find Taylor and Maclaurin polynomial approximations of elementary functit>ns.

• Use the remainder of a Taylor polynomial.

Near (c. /Ic)). the graph of /' can be used to

approximate the graph of /!

Figure 8.10

Polynomial Approximations of Elementary Functions

The goal of this section is to show how polynomial functions can be used as approx-

imations for other elementary functions. To find a polynomial function P that

approximates another function /^ begin by choosing a number c in the domain of / at

which / and P have the same value. That is.

P(c\ = fir). r.r.iphs III / .mil Pp.iss ihioii'jh I. / I. II

The approximating polynomial is said to he expanded about c or centered at c.

Geometrically, the requirement that Pic) = fie) means that the graph of /' passes

through the point icfic)). Of course, there are many polynomials who.se graphs pass

through the point icfic)). Your task is to Find a polynomial whose graph resembles

the graph of / near this point. One way to do this is to impose the additional require-

ment that the slope of the polynomial function be the same as the slope of the graph

off at the point icfic)).

P'ic) = f'ic) Graphs ol / .ind P h:i\c the same slope ,it d. / 1, )1,

With these two ice|unemcius, \ou can obtain a simple linear approximation off, as

shown in Fiuurc X. 10.

! /(-V) = <•"

Pi is the first-degree polynomial

approximation of /(.v) = c'.

Figure 8.11

Example I First Depict' Poliiiioniial Appro.ximation of fix) = c'

For the function /(.v) = e\ find a first-degree polynomial function

f|(.v) = (/„ + «|.V

whose value and slope agree with the value and slope of/ at .v = 0.

Solution Because /(.v) = c' and /'(.v) = c'. the \aliie .ind the slope of/, at .v = 0, are

given by

/(O) = e = \

and

/'(()) = e-= 1.

Because P|(.v) = i/,, + (7|.v, you can use the condition that P^iO) = /(O) to conclude

that (/„ = 1. Moreover, because f, '(.v) = a,, you can use the condition that P, '(0) =

/'(()) to conclude that i/, =
1 . Therefore,

P|(.v) = 1 + .V.

Figure 8.1 1 shows the graphs of P|(.v) =
I + .v and fix) = e\ \Jf\

NOTE Example I isn't the first time you have used a linear function to approximate another

function. The same procedure was used as the basis for Newton's Method.
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In Figure 8. 1 2 you can see that, at points near (0, 1 ), the graph of

V /(.v) = e"

P: is tiie second-degree pol\nomial

appn)\imation of fix) = c'.

Figure 8.12

P,(.v) 1 + A- Isl-deiirec .ippro\iniutHin

is reasonably close to the graph of /'(.v) = e\ However, as you move away from (0, 1 ),

the graphs move farther from each other and the accuracy of the approximation

decreases. To improve the approximation, you can impose yet another requirement

—

that the values of the second derivatives of P and/ agree when .v = 0. The polynomial,

f2, of least degree that satisfies all three requirements PifO) ~ fW- ^2 (0) = ./ '(0),

and P-,"(0) = /"(O) can be shown to he

PAx) + .V + -.V- 2nd-degrcc appioMiiialion

Moreover, in Figure 8.12. you can see that P, is a better approximation of/ than P,.

If you continue this pattern, requiring that the values of P„l\) and its first ;( derivatives

match those of/(.v) = t'" at .v = 0, you obtain the following.

P„(.v) = I + .V + ^j- + ^.v' +

= e'

1

.v" /fih-dciiicc .ippidMni.iiinn

;natioii of/(.v)

Construct a table comparing the values of the polynoiuial

PAx) 1 + .V +
-J-

+ -x^ .ird-dcgreo .ippiuMniatioii

with f{.\) = e' for several vahies of v near 0.

Using a calculator or a computer, you can obtain the results shown in the

table below. Note that for ,v = 0, the two functions have the same value, but that as .v

moves farther away from (1, the accuracy of the approximating polynomial f ,(.v)

decreases.

X -1.0 -0.2 -O.I 0.0 0.1 0.2 1.0

e'' 0.3679 0.81873 0.904837 1 1. 105171 1.22140 2.7183

PAx) 0.3333 0.81867 0.904833 1 1.105167 1.22133 2.6667

.J
'""^—.—._

f ''-'

P\ is the third-degree polynomial

approximation of A(,v) = e'.

Figure 8.13

;>j TECH^OLO(,^ A graphing utility can be used to compare the graph of the approx-

imating polynomial with the graph of the function /! For instance, in Figure 8.13,

the graph of

PM 1 + .V + '.V- + i.v^ li-dt'Llicc approMiiuilu

^:! is compared with the graph of/(.v) = c'. If you have access to a graphing utility, try

comparing the graphs of

,: P4IV) = 1 + .V + \x- + Ix' + ^.V^

i P,(x) = 1 + .V + Ix- + Ix^ + ^.V^ + ^.V^

I
P,(x) = 1 + .V + iv^ + Ix^ + i.V^ + ^.V^ + ^.V'^

£j With the graph ot /. What do you notice?

4ih-di.'gi'LV appro vinnil ion

5[h-dcj:ivc appro si nuiium

(->lh-tlci:rcc appro\ini,ilion
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Brook TwLOR (1685-1731)

Although Taylor was not the first to seek

polynoiiiial approximations of transcendental

functions, his account published in 1715 was

one of the first comprehensive works on the

subject.

Taylor and Maclaurin Polynomials

The polynomial appioxiiiialion of /(.v) = c' given in E,\;nnple 2 is e,\panded about

c = 0. For expansions about tin tirbitrarv xalne of c. it is eon\enient to write the

polynomial in tiie form

P„(.v) = ((„ + ((|(.v - c) + <(Xv - c)- + ((,(.v - c')' + + a„(.\ - c)".

In this form, repeated differentitition produces

P„'(.v) = (/, + 2lu{x - i) + 3fl,(.v - r)- + • • • + );(/„(.v - c)""'

P„"(.v) = 2(/, + 2(Mi,)i\- -() + +;;(/;- l)<;„(.v - c)"--

P„"'(.v) = 2(3((,,) + • • • + „{n - \){n ~ 2)(/„(.v - c)"'-'

P„""(.v) = //(/; - !)(;; - 2) • •(2)(1)<(„.

Letting .v = c. you then obttiin

and because the \;ilue of/ and its first ;; deri\'ati\es nnist tigrec with the \aliie of P„

and Its first ;; dernatixes at .v = c. it follows thtit

/'(() = (i||. /''((•) = (/|

./"(r)

(N,
/""(r)

With these coefficients, yon can obtain the following definition of Taylor polynomials,

named after the English mathematician Brook Taylor, and Maclaurin polynomials,

named after the Fnclish mathematician Colin Maclatirin ( l(i')X-1746).

NOTE Maclaurin polynomials are

special types of Taylor polynomials for

which c = 0.

Definition of ;7(h Taylor Poh-noni!:!! ;!ii(l nth .\I;ifl;lurin PohTiomiiil

If / has ;; derivatives at i , then the polynomitil

P„{x) =/(<) + ficHx - c) + ^{x - c)- + • + , (.V C')"

is called the «th Taylor polynomial for /' at c. If r = 0. then

p(.v)^/(o. + r(o,.v+-^;*o'.v^+-^';!"'v3+.

is also called the «th Maclaurin polynomial for/.

FOR FURTHER I.\F()R\IATI().\ To see

how to use series to obtain other

approximations to c, see the article

"Novel Series-based Approximations to

(' by John Knox and Harlan J. Brothers

in The College Mathcimitics Jounuil.

To view this article, go to the website

www.malharticles.eiiin.

Example 3 A Maclauxln Polynomiiil for/(.v) = e'

Find the ;;th Maclaurin polynomial for/(.v) = e'^.

Solution From the discussion on page b()6. the (;th Mtichiurin polynomial for

fix) = c'

is given by

P„{x) = 1 + .V + vT.v- + -.v' + + —.V".
2! 3! iv.
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Example 4 Finding Taylor Polynomials for In .v

Find the Tiiylor polynomials Z^, , P, . P-, , P, . and P, for fix) = In x centered at c =
1 .

Solution Expandiiig ahont c = 1 yields the lollovvini;

/(.v) = hi A- /(I) = In I
=

,/'(.v)
=

./"(.v)

1

,/-"'(.v)

/'(I)

/"(
1

)

.r"u) .rv)
1-*

Therefore, the Taylor polynomials arc as follows.

P„(a) =./(1) =

P, (a) = / ( 1 ) + ,/'(
1 )(a -

1 ) = (a -
1

)

l\ ( a) = ,/( 1 ) + /'( 1 )(a- - 1 ) + m^ (a - 1)
=

= (a - 1) - -(a - n-

P,{x) = /( 1 ) + ,/'(
1 ){x -

1 ) + -^'(a -
1
)- + ^^^(a- -

1
)'

= (a- 1)-^(a- 1)- + ^(a- 1)^

p,{x) =/(i) +./'(1)(a - 1) + =^'^(A - n- + ^'^(-v - 1)-'

/'-"(I)

(a- 1) -^(A- !)- + - (A- 1)'-7(a- 1)^

Figure 8.14 compares the graphs off,. P,. P,. and P, with the graph of /(a) = In a.

Note that near.v = 1 the graphs are nearly indistinguishahle. For instance, Pj{0.9) ~

-().l()5,V'i8andln{0.9) = -0.105,^61.

2 - -
'',

/

1
- ^ ./•

-yr
2 .1 4

_2 -

^

2 -

1
-

/

/ T ,i\ !

'

-1 -

r 'A„

\ \
H—-V

As» increases, the gr;ipli of /'„ becomes a hetter unci better approximalioii of tlie graph (if /( v) = In v near A = 1.

Figure 8.14

H h— A-
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Example S Finding Maclaurin Pohiioniials for cos a-

Find the Maclaurin polynomials P„. P,, P,, and P,, for /(.v) = cos .y. Use P,,(x) to

approMinatc Ihe xakic of cos((). 1 ).

4
/ ( \ ) = cos v

Near (0. 1 ). the graph of P^, can be used tn

approMiiiale the graphof /(.v) = cosy.

Figure 8.15

Solution Expanding about c = yields tiic follow iny.

fix) = cos A- /(I I) = COSK = 1

,/"(.y) = -sin.v /'(()) = -sind =

/"(.V) = -COS A- /"(I)) = -COSO = -1

/""(a) = sm V f"'(n) = sin o =

Through repealed diflereiitiation. \oli can see thai llic pattern I. (1. - 1.0 contuiues,

and \oii oblani the following Maclatirni pol\ noniials.

P„(a) =
1

P.M = 1

1 , I
, 1 ,

2! 4' 6!

Using P,,(-v). you obtain the approximation cos (0.1) = 0.995004165. which coincides

with the calculator \alue to nine decimal places. Figure 8.15 compares the graphs of

/(a) = cos A and P„. \-":]

Note in Example 5 that ihe Maclaurin pol\ noniials for cos a lia\c onK e\en

powers of .V. Similarly, the Maclaurin polMioiuiaK lor sm a ha\e onl\ otkl powers of

.V (see Exercise 17). This is not generall\ Hue of Ihe faylor polynomials lor sm .\ ami

cos A expanded about c + 0. as you can see in ihc next example.

iTSj Example 6 Finding a T;
,.,1,,,. 11,^1, .„,,,,.;.. I r.

Find the third Taylor polynomial for /(.v) = sin.v. expanded about ( = 7r/6.

f(-\) = sin.v

Near ( Tr/b. 1/2). the graph of /\ can

be used to appioximale the graph of

fix) = SUIY.

Figure 8.16

Solution Expanding about c = n/h yields the following.

.
- 1

/(.v) = sin A

fix) = cos A

/'"(a) = - sin A

/"(a) = -cos A

73
/'I — I

= cos

/"U—

^

^ u =-^«%.

So, the third Ta\ lor pohnomial for fix) = sin .y, expanded about ( = 7t/6. i

73 s''3

""">^"^ 6/ 2(3')''* 62 2 \" 6

Figure 8. 16 compares the graphs of/(a) = sin .y and P-,

6// 77

:^i" "
6

y&L
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Taylor polynomials and Mai.lauriii pol\iioinials can be used lo approximate the

value of a function at a specific point. For instance, to approximate the value of

In(l.l). you can use Taylor polynomials for fix) = In a expanded about c = 1. as

shown in Example 4. or you can nsc Maclaunn polynomials, as shown in Example 7.

Example 7 Approximation Using Maclaiirin Polynomials

Use a fourth Maclauriii polynomial to approximate the \ ahie of ln( 1.1).

Solution Because 1.1 is closer to 1 than to 0. you should consider Maclaurin poly-

nomials for the function ,!,'(.v) = ln(l + .v).

,i,'(.v)
= Ind + ,v)

,v'(.v)
= (1 + .V)

I

,i;"(.v) = -(1 +.v)--

,!,'"'(.v)
= 2(1 + .v)-'

.!,''-"(.v)
= -6(1 + x)-'

giO) = ln(l + 0) =

gW = (1 + I))-
I
= 1

g"(0) = -(1 + ())-= = -1

g"'{0) = 2(1 + ())--' = 2

i,l4>(()) = _5(1 + ())-4 ^ _6

Note that \ou obtain the same coefficients as in Example 4. Therefore, the fourth

Maclaurin polynomial tor t;(.v) = ln(l + .v) is

/^(-v.^.(0...mv.^.v^.^.v^ + ^.v^

1 , 1 , 1 J= .V - ^.v- + - v^ - - v^.

Consequently.

hi(l.l) = hid + (1.1) = P,H).\) ---- i).m5M)>i?'.

Check to see that the fourth Taylor polynomial (from Example 4). e\aluated at

.V = 1.1. yields the same result. jF\

II P„(0.1)

1 0.1000000

T 0.0950000

3 0.0953333

4 0.0953083

The table at the left illustrates the accuracy of the Taylor polynomial approxima-

tion of the calculator value of ln( 1.1 ). You can see that as /; becomes larger, P„(0.1)

approaches (he calculator value ot ().()'-)53 102.

On the othei- hand, the table below illustrates that as you move away from the

expansion point c ^
I , the accuracy of the approximation decreases.

Fourth Taylor Polynomial Approximation of ln(l + .v)

X 0.0 0.1 0.5 0.75 1.0

ln(l + x) 0.0000000 0.0953102 0.4054651 0.5596158 0.6931472

P,{x) 0.0000000 0.(J953083 0.4010417 0.5302734 0.5833333

These two tables illustrate two very important points about the accuracy of Taylor

(or Maclaurin) polynomials for u.se in approximations.

1. The approximation is ustiallv belter at .v-\alues close to c than at .v-\ahies far

from c.

2. The approximation is usually better for higher-degree Taylor (or Maclaurin) poly-

nomials than for those of lower decree.
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Remainder of a Taylor Polynomial

An approximation teciiniqiie is of little value without some idea of its accuracy. To

measure the accuracy of approximating a fiuiction value /(.v) by the Taylor polynomial

P„(a), \ou can use the concept of a remainder /v'„(.\). defined as follows.

/(.v) = P„(.v) + R„{x)

Exact

value

ApplDMllUlle

Value

Reniainde

So. Rjx] = fix) - P^^ix). The absolute \alue (>r/?^,(\) is called the error associated

with the approximation. That is.

EiTor - \RJx)\ = l/(-v) - PJx)\.

The next theorem gixes a general procetkuc foi cslnnalmg the remainder asso-

ciatctl with a Taylor polynomial. This important iheorem is caiicti Ta\l(ir",s

'Iheoreni. and the remainder given in the Iheorem is called the Lafiraii^e form of

the remainder. (The proof of the theorem is lcngth\. and isgixen m .Appendix B.)

THEOREM 8.19 Taylor's Theorem

If a function / is differentiable through order /( + 1 in an interv.il / cont.iinine

c. then, for each .V in /. there exists r between .\ and ( sue h that

fix) =f{c) + f'lcHA -d.^^'^fv-cr^ + f
ir.

—
(
)" + RJ.\)

where

R„(x] =
f-

-"'(:.),

+ 1)!*-^'
- cY"-'.

NOTE One useful eonseqiience of Taylor's Theorem is thai

|«„(.v)| < max |/'"'"(.-)]
{II + I)'

where niax|/'"" "(r)| is the maximum \alue of/'"+ "(r) between .v and c.

For II = 0, Taylor's Theorem states that if/ is differentiable in an mlci\al /

containinu i\ then, lor each v in /. there exists - between .v and c such that

fix) =f{c) +f'{:){x - c) or /'(:) = fix) - fie)

Do you recognize this special case of Taylor's Theorem? (It is the Mean Value

Theorem.)

When applying Taylor's Theorem, you should not expect to be able to tnid the

exact value of :. (If you could do this, an approximation would not be necessary.)

Rather, you try to find houiuK iov f'"^ "(,":) from which you are able to tell how large

the remainder R„ix) is.
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Example 8 Determining tlie i\ccuracy ol an Approximation

The third Maclauiiii piilyiioiiiial for sin .v is given by

P~M) = v -
fj.

Use Taylor's Theorem to approximate sin (I). I ) by P.IO. 1 ) and determine the aeeuracy

of the approximation.

NOTE Ti) usmti a calculaliM to \erify

the results obtained in Examples S and 'J.

For Example 8, yon obtain

sin((), I) = 0.()yMS3_i4.

For Example 9. you obtain

P,(1.2) = U.1M27

and

lnll,2) = 0,1X23.

Solution Using Taylor's Theorem, you have

st n.v = .v-- + /?3(-v)=.v-^ + ^.v^

where 1) < - < 0.1. Therefore.

sin(().l) = 0.1
(0_1P

3!
0.1 - 0.000167 = O.OWS33.

Because /'^'(c) = sin ,-. it t'olhnvs that the error |/v',(O.I )[ can be boinided as follows.

sin,- ,, 0.0001
< /?,((), 1) = (().!)•• < ,— = ().0()00()4

This implies that

0.099833 < sinlO. 1) = (),()9g.S33 + /^J.v) < 0.099833 + 0.000004

0.099833 < sin(O.l) < 0.099837.

Example 9 Approxiniatuig a Value to a Desired Accuracy

Determine the degree of the Taylor polynotnial P„(.v) expanded about c = 1 that

should be used to approximate ln( 1.2) so that the eiTor is less than 0.001.

Solution Following the pattern of Example 4. you can see that the (;; + I )st deriva-

tive of/(.v) = In .V is given by

,/''"""(-V) = (-l)"^;^.
.v" '

Using Taylor's Theoretn. you know that the erior |W„( 1.2)| is given by

\R..i\-
I hli^i 2 - 11"

in + 1)!

/)! 1

(0. 2)"-' '

,-""'(
/; + 1)

(0.2)"+'

where \ < : < 1.2. In this interval. (0.2)"+ '/,-"+ '(;/ + 1) is less than (0.2)"+ '/(j; + 1).

So, you are seeking a value of /; such that

(().:

(/; + 1)

-0.001 1000 < (/; + 1)5"'

By trial and error, \oii can determine that the smallest value of /; that satisfies this

inec|uality is /( = 3. So. you would need the third Taylor polynomial to achieve the

desired acctnacy in approxirnating ln( 1.2).
~
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EXERCISES FOR SECTION 8.7

In Hxercises 1-4. match the Taylor polynoniial approximation

or the function f{x] = c ' - with the correct fjraph. [The

graphs are labeled (al. (hi, (c). and (d).|

(a) (b)

2 --

=I^t
\

H^
-2 ,-

I 2

/ -I --

/ --

10. /(.v) = sec.v. c =

-

X -2.15 ().5X.5 0.685
IT

4
0.885 0.985 1.785

f(x)

P.(x)

(c) (dl

~i .

/--^
—

")
. -1

' V
\

/
I _T - \

1. ,i;(.v)
= -iv- + 1

2. ,t,.(,v)
= iv* - iv- + 1

.^. k(-v) = f-"'^[(.v+ 1) + 1]

4. ,ir(.v)
= f-i'-[5(.v- 1)-' - (v - 11 + l]

r In Exercises 5-8, lind a tirst-dei;ree pohnomial function /',

whose value and slope agree «ith the value and slope of/ at

.V = c. Use a graphini; utility to graph / and /',. \\ hat is /*,

called?

5. i\x) = -^.
V-v

7. f(x) = sec .V,

4
6. /(.v)

8. /Tvl = tan .v.

/ V II. CoujiClure C'nnMdci Ihe liniclion fix] = cos a and its

Maclaiinn polynomials l\. 1'^. and f„ (sec Example 5).

(a) L'se a graphing iililily lo graph / and Ihc nidicalcd polyno-

mial approximations.

(b) Evaluate and compare the \alues ot/'"'(()) and /^./"'((l) for

u = 2. 4. anil (i

(e) L'se the resnlls in pari (bl lo make a eonieeline about /""((ll

and P„""((ll,

rp 12. Conjecture Consider the Unietion/(.v) = x-c\

(a) Eind the Maclaiinn polynomials P,. P,. and /', lor f.

(h) Use a graphing iililit) to graph /. /',
. /'j. and P^.

(e) Evaluate and compare the \alues ol /'"'(()) and /'/"'(O) for

II = 2. ,1. and 4

(d) l'se the residts in part (cl to make a eon|eetiire about /
'"'101

and P„""(OI.

In Kxercises 1.^-24. llnd the Maclaurin polynomial of degree n

for the function.

t^ Graphical and Sunieiual Analysis In F^xercises 9 and 10, use a

graphing utility to graph/ and its second-degree polynomial

approximation /", at .v = c. Complete the table comparing the

values of/ and P,.

9. f{x)
,/T'

P,(x) = 4 - 2(.v -
1 ) + ^(.v - 1 )-

X 0.8 0.9 1 1.1 1.2 1

fix)

Pz(x)

13. fix) = e~\ n = 3

15. /(,v) = c-'. » = 4

17. /I.v) = sin.v. II = 5

19. /(.v) = xc\ II = 4

21. fix) = —^. II = 4
X + 1

23. fix) = sec.v. II = 2

14. fix) = <• '. /( = 5

16. fix) = <•''. » = 4

18. /I.v) = sin 7T.\. II - 3

20. fix) = x-c '. n = 4

22. fix) II = 4
X + I

24. fix) = tan.\. ii = 3

In Exercises 25-J?(). find Ihe nlh Taylor polynoiuial centered

at c.

25. fix) n = 4.

26. fix) = — » = 4. ( = 2
.V-

27. / (.v) = s/v. /( = 4. ( = 1

28. fix) = ifx. II = 3. (=8
29. fix) = In.v, /( = 4. c = 1

30. fix) = .V^COS-V. /I = 2, C = TT
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rp 111 Exercises 31 and 32. use a conipiittr algebra system to find

the inditaled Taylor polynomials for the I'unction/. (Jrapli the

function and the Taylor polynomials.

rp In Exercises 37—10. the (jraph of y = f(x) is shown with four of

its Maclaurin polynomials. Identify the Maclaurin polynomials

and use a graphing utility to confirm your results.

31. ./'(.v) = tan .V

(a) II = 3. c =

(h) II = 5. <- =

(c) ;; = 3. c = TtjA

32. /(a)
,v- + 1

(a) /; = 2. ( =

(h) ;; = 4. c =

(c) ;; = 4, f =
1

rp 33. NtDiierical and Grapliical Appioximatioiis

(a.) LKe the Maclamin pcilMKiiiiials P, (v), P,{x). P<,{\). and

Pj{x) for/(.v) = sin ,v to complete the table.

X 0,25 0.50 0.75 1.00

sinx 0.2474 0.4794 0.6816 0.8415

P,(x)

PAx)

Ps(x)

Piix)

(b) Use a graphing utility to graph fix) = sin v and the

Maekuirin polynomials in part (a).

(e) Describe the change in accuracy of a polynomial approxi-

mation as the distance jioin the point where the polynomial

is centered increases.

rp 34. Numerical and (irapliical Approximations

ta) Use the Taylor polynomials P, (.v) and P_f(x] for /(,v) = In .v

centered at c = 1 to complete the table.

X 1 .00 1.25 1.50 1.75 2.00

Inx 0.2231 0.4055 0.5596 0.6931

PAx)

PAx)

(b) U.se a graphing utility to graph /(.v) = In x and the Taylor

polynomials in part (a).

(c) Describe the change in accuracy of polynomial approxima-

tions as the degree increases.

Numerical and Graphical Approxinialions In Exercises 35 and

36. (a) find the Maclaurin polynomial /'i(-v) for/(.v),(bl complete

the table for/(.v)and /',(.»), and (c) sketch the graphs of/(.r)and

Piix) on the same set of coordinate axes.

x -0.75 -0.50 -0.25 0.25 0.50 0.75

fix)

PAx)

V = arctan .v

4(1.
V ,, ^ 4^.^{-.v-/4)

1

*-

A1=:

4 il

In Exercises 41-44, approximate the function at the given value

of .V, using the polynomial found in the indicated exercise.

41. ,/(.() = c \

42. fix) = x-e-'

43. fix) = In.v.

44. fix) = .v-eo>

/(i). Exercise 1

3

/(j). Exercise 20

/(1.2), Exercise 29

/(—
). E,xercise30

In Exercises 45-48, use Taylor's Theorem to obtain an upper

bound for the error of the approximation. Then calculate the

exact value of the error.

,- ,,. ,, .^ ,
(0.3)- (0.3)-'

45. cos(().3) = I ^^ -I
—

—

p r p p
46. . = I + 1 -f ^ + - + - + -

47. aicsin(0.4) ~ 0.4 +
(0.4)^

2 • 3
48. arctan(0.4) = 0.4

(0.4)3

In Exercises 49 and 50. determine the degree of the Maclaurin

polynomial required for the error in the approximation of the

function at the indicated value of v to be less than 0.001.

49. sin(0.3) 50.

35. fix) = arcsin .v 36. fix) = arctan .v

Pp" In Exercises 51 and 52, determine the degree of the Maclaurin

poly noniial re(|uired for the error in the approximation of the

function at the indicated value of .v to be less than 0.0001. Use a

computer algebra system to obtain and evaluate the required

derivatives.

51. fix) = ln(.v -I- I), approximate / (0.5).

52. fix) = cos(77.v-), approximate /(0. 6).



SECTION 8.7 Taylor Polynomials and Approximations 615

In Exercises 53 and 54, determine the values of.v for which the

function, can be replaced by the Tay lor polynomial if the error

cannot exceed 0.001.

53./(.v) = .'=l+_v + ^ + - .V <

54. fix)

55. An elementary function is approximated by a polynomial.

In your own words, describe what is meant by saying that .

the polynomial is expanded about c or cfiitered at c.
|

56. When an elementary function / is approximated by a

second-degree polynomial P, centered at c, what is known

about / and P, at c?

57. State the definition of an )(th-degree Taylor polynomial of/
|

centered at c. !

58. Describe the accuracy of the i?th-degree Taylor polynomial

of / centered at c as the distance between c and .v increases.

59. In general, how does the accuracy of a Taylor polynomial

change as the degree of the polynomial is increased? I

60. The graphs show first-, second-, and third-degree polyno-

mial approximations P,, P^- '""' f} "f "^ function /. Label

the graphs of P,. P,, and P,. To print an enlarged copy of
j

the graph, go to the website www.inathgraplis.cviii.

61. Comparing Madaurin Polynomials

(a) Compare the Maclaurin polynomials of degree 4 and

degree 5. respectively, for the functions

./(-v) and g(x) = xe'.

What is the relationship between them?

(b) Use the result in part (a) and the Maclaurin polynomial of

degree 5 for/U) = sin .v to find a Maclaurin polynomial of

degree 6 for the function ,t;(.v) = x sin .v.

(c) Use the result in part (a) and the Maclaurin polynomial of

degree 5 for f(x) = sin x to find a Maclaurin polynomial of

degree 4 for the fimction g{x) = (sin .v)/.v.

tor

the Maclaurin

62. Differentiating Maclaurin Polynomials

(a) Differentiate the Maclaurin polynomial of degree 5

f(x) = sin .v and compare the result wi

polynomial of degree 4 for g(x) = cos .v.

(b) Differentiate the Maclaurin polynomial of degree 6 for

f(x) = cos .V and compare the result with the Maclaurin

polynomial of degree 5 for g(x) = sin .v.

(c) Differentiate the Maclaurin polynomial of degree 4 for

fix) = t-'. Describe the relationship between the two series.

63. Graphical Reasoning The figure shows the graph of the

function

f(x) = sinl
—

and the second-degree Taylor polynomial

P,(.v) = 1 - —(.V - 2)^

centered at v = 2.

(a) Use the symmetry of the graph of / lo write the second-

degree Taylor polynomial for / centered at x = — 2.

(b) Use a horizontal translation of the result in part (a) to find

the second-degree Taylor polynomial for /' centered at

.V = 6.

(c) Is it possible to use a horizontal translation of the result in

part (a) to write a second-degree Taylor polynomial for/

centered at .v = 4? Explain.

64. Prove that if / is an odd function, then its nth Maclaurin

polynomial contains only terms with odd powers of.v.

65. Prove that if/ is an even function, then its /ith Maclaurin

polynomial contains only terms with even powers of v.

66. Let P„{.v) be the ;ith Taylor polynomial for/ at c. Prove that

P„(c) =/(t) and P'*'(c) = /"He) for I < k < ». (See Exercises

9 and 10.)

67. Writing The proof in Exercise 66 guarantees that the Taylor

polynomial and its derivatives agree with the function and its

derivatives at x = c. Use the graphs and tables in Exercises

33-36 to discuss what happens to the accuracy of the Taylor

polynomial as you move away from .v = c.
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EXPLORATION

Graphical Reasoning Use a graph-

ing utility to approximate the graphs

of the following power series near

.V = 0. (Use the first several terms of

each series.) Each series represents a

well-known function. What is the

function?

- 1
{-l)"x"

nl

(-l)".v^"

,^0 (2")!

^ (-l)".v^"+'

~ (-l)".v-"*i

2n + 1

e- 1

Power Series

• Understand the definition of a power series.

• Find the raditis and interval of convergence of a power series.

• Determine the endpoint convergence of a power series.

• Differentiate and integrate a power series.

Power Series

In Section 8.7. we introduced the concept of approxiiiiating ftinctions by Taylor poly-

nomials. For instance, the function /(,v) = c' can be iippnixinicilcJ by its Maclaurin

polync)mials as follows.

e' = 1 + .V

e' ==
1 + .V +

91

.V- .V

+ V + — + —
2! 3!

2! 3! 4!

A"- .V .V .V

e'-M-.vH + [- — H

2! 3! 4! 5!

!sl-det:ree pohnomial

2nd-dcgree polynomial

3rd-dcgree pofynomiLiI

4th-degree polynomial

.Sth-dcgree polynomial

In that section, you saw that the higher the degree of the approxiniating polMioniiaf

the better the approximation becomes.

In this and the next two sections, you will see that se\eral important types of

functions, incliuliug

/(a) = f
>

can be represented cxiut/y by an infinite series ctilled a power series. For example,

the power series representation for e' is

-V- -V' .V"

+ .V + — + — -1- •
• H

2! 3! ;('

For each real number a, it can be shown that the infinite series on the right converges

to the number c'. Before doing this, hiiwever. we will discuss some preliminary results

dealing with power series—beginning with the following definition.

Definition of Power Series

If A is a variable, then an infinite scries of the form

V ii^^x" = ((„ + (l|A + (l,A- + «,.v-' + + a,^x" +
11 -

is called a pciwer series. More generally, series of the form

^ ((„(-V - c)" = fl,| + ((|(a - c) + «i(a - f)- -!-• + ((„{a
-

/? =

- cY + •
•

is called a power series centered at c, where c is a constant.

NOTE To siniplify the notation tor power series, we agree that (.v - c)" = 1, even if .v = c.
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Example 1 Power Series

a. The follow iiig power series is centered at 0.

A- A
+ V H i

h. The following power series is centered at ~ I.

^ (
- 1 )" (.V + 1 )" = 1 - (A- + 1 ) + (a + 1 )- - (a- + 1

)' +
//--(I

c. The lollowini: power scries is centered at 1.

f -U - D" = (A - 1) + ^(A - D- + ^(A -!)-' +

Radius and Interval of Convergent^

A power series in a can be \iewed as a function of v

fix) = £ a„lx - c)"

where the iltiiiuiiii nf / is the set of all \ tor which the power series converges.

Determination of the domain of a power series is the primary concern m this section.

Of course, every power series converges at its center c because

/(c) = 2 "-.<' -^)"

= </„( I ) + + +

= "n-

+ +

So. c alwass lies in the domain ol /. The following important theorem stales that the

domain of a power series can take three basic lorms: a single point, an interval

centered at c. or the entire real line, as shown in Figure S.I 7. A proof is given in

Appendix B.

A single point

An inlci\.il

R K

The real hne

Till' doinain of a power series has only

three basic forms: a single point, an interval

centered at c, or the entire real line.

Figure 8.17

THEOREM 8.20 Convergence of a Power Series

For a power series centered at c. preciselv one of the follow ing is true.

1. The series converges i)nly at c.

2. There exists a real number R > such that the series converges absolutely

for |a — c| < R. and diverges for |a - r| > R.

3. The series converges absolutely for all .v.

The number R is the radius of C()n\ergence of the power series. If the series

converges only at c. the radius of convergence is /? = 0, and if the series

converges for all .v. the radius of convergence is R = co. The set of all values

of A for which the power series converges is the interval of convergence of the

power series.
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STUDY TIP To determine the radius of

convergence of a power series, use tlie

Ratio Test, as denionsir.ited in Examples

2, -1. and 4.

Example 2 Finding tlie Radius of Convergence

Find llic radius of consercence of V /;!.v".

Solution For v = 0. you obtain

./(()) = ^ )?!()" = 1 + + + = 1.

Jl-O

For an\ fixed \aliic of a such that |.v| > 0. let /(„ = /i!.v". Then

liin = liin
(/; + l)!.v"

/i!.v

=
l-vl lini (;; + 1)

= CO.

Therefore, by the Ratio Test, the series diverges for |.v| > and converges only at its

center, 0. Hence, the radius of convergence i.s R = 0.

Example 3 Finding tlie I?adins of ('onvcrgence

Find the radius of con\'ergence ol

y 3(.v - 2)".

Solution For .V i^ 2. let i/,^ = ?<{x - 2)". Then

.^(.v - 2)"+'"„
1

-^-JL
11,^

= bin
Mx - 2)

bm JA
- 2

1

By the Ratio Test, the scries con\erges if
j
v - 2| < I and di\erges if |.i

— 2| > 1.

Therefore, the raduis of con\eruenee of the series \s R = 1.

Example 4 Finding the Radius of Convergence

Find the radius of convergence of

^ (- l)"v-"'
'

„^n r-n+ I)!

Solution Let /;„ = (- I )"a-"^ '/(2;( + I )!. Then

[(_]),M-i y2,M-^]/(2„ + 3)!
bm lim

bm

[(-|)".v=""']/(2;! + I)!

.V-

---- (2/( + 3)(2/; + 2)'

For any /mc(/ vahie of a. this bmit is 0. So. by the Ratio Test, ibe series converges for

ab .V. Tberel'ore. the radius of comergeiicc \s R = co. U*^:
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Endpoint Convergence

Note lliut for a power series whose radius ^)f convergence is a tlnilc nunilicr A',

Theorem 8.20 says nothing about the convergence ai the cndpoiius of the interval of

convergence. Each endpoint must be tested separatelx lor consergence or divergence.

As a result, the intcr\al of con\crgeiicc of a power scries can take any one of the six

foiiiis shown in Fiiiure 8.18.

R.kIius: Radius: X

Radius: R

(,'-R. c + Rt

lnli'r\;ils of coinLTgi.'iK'C

FiijiireS.lS

(c-R. c + R\ [.-«.<+ R)

R

[, -R. < +A'|

/f»^ Kxiimple S Finding tlu' iiilerval of Convcigfiici'

Find the interxal of conxergcnce of V ^—

.

Solution Letting /(„ = x" /n produces

lim
""

= lim
.v""/( ( + 1)

.V" ///

/( + 1

= lim

= \A-

Therefore. b\ the Ratio lest, ilie radius of coinergcncc \\ R = 1. Morco\cr. because

the series is centered at 0, it con\crgcs in the intcr\al (-1, 1), This interval,

however, is not necessarily the intcrwil c/i '""''''"''"' '' To determine this, you must

test for coiiNcrgence at each endpoint. When .\ = 1, you obtain the ilivcr'^ciii

harmonic series

1 1 1

^, ;; 1 2 3
Diverues wlien .v

~
I

i,= 1

When .V = — 1. \iiu obtain the coiner'^cin alternating harmonic scries

D" I I

3 4
Couverizes wheu .v

Therefore, the inter\al of convergence for the series is [- I. I), as shown in Figure

8,19.

liilerval: [-1, 1

1

Radius: /?= I

Figure 8.19
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liileival: (-3. I

)

Railiiis: R = 2

Kis-iire 8.2(1

Example 6 Finding the Interval of Convergence

Find the interval iif convergence of

^ (-1)"(a- + !)"

2j -III

Solution Letting //„ = ( - 1 )"(.v + 1 )"/2" produces

iiin lim
(-l)"+i(.v + 11"-^ 72"

(-l)"(.v + l)"/2"

l"(x + 1 )

A- +

1/, i 1

1

-)

By the Ratio Test, the series converges if |(.v + l)/2| < 1 or [a + l| < 2. So. the

radius of convergence is ^ = 2. Because the series is centered at .v = — 1. it v\ill

converge in the interval (-3. 1 ). Furthermore, at the endpoints you have

y ' " '
-' = V -= V 1

11 = - /i--^l) -
<i -Ml

and

>: l-\\n[1\<

Diverties when .v

Dueiiies w hen .v — 1

hotli ol which diverge. So. the interval of convergence is (-3. 1 ). as shown in Figure

S.2().

Example 7 Finding tlie Interval of Convergence

Find the interval of convergence of

Solution Letting ;/,,
= .x"/ii- produces

hm = lim

lim

A-"- '/(;; + 1)-

x"/n

;7"A
1 ,-

(ii + n-
1-^

So. the radius of convergence is /? = 1. Because the series is centered at v = 0. it

converges in the interval ( - 1. I ). When a = 1. vou obtain the <(</(r('/'s,'(7» /'-series

1 I 1 1 I

,:^,n- I- 2= 3= 4=
Converges when -V = 1

When .\ = — I. you tibtain the lonvcn^eiu ahernating series

• •
.

Conveiijes v\ hen .\ = —
1i^=-i.i-i.'

;;- 1- 2- 3- ' 4-

Thcrefore. the interval of convergence for the given series is [— 1. 1].
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James GR£Com (1638-1675)

One of the earliest mathematicians to work

with power series was a Scotsman. James

Gregory. He developed a power series method

for interpolating table values- -a method that

was later used by Brook Taylor in the develop-

ment of Taylor pohnomials and Taylor series.

Differentiation and Integration of Power Series

Power series representation of liuiclions has played an niiportant role in the develop-

ment of calculus. In fact, much of Newton's work with differentiation and integration

was done in the context of power series—especially his work with complicated alge-

braic functions and tiaiiscendental functions. Euler. Lagrange. Leibniz, and the

Bernoullis all used po\\'er series extensi\ely in calculus.

Once you ha\e defined a function with a power series, it is natural to wontler how

you can determine the characteristics of the function. Is it continuous? Differentitibie?

Theorem S.21. which we state without proof, answers these c|ticstions.

TTIKOHEM 8.71 Properties ol Fiuiclioiis Defined by Power Series

If the function given by

fh) = f fl„(.v - c)"

n =

= rt|, + ((|(.v - () + (/,(.v - ()- + <(,(.v - c)^ +

has a radius of convergence o\ R > 0, then, on the interval (c - R.v + R). f is

differentiable (and therefore continuous). Moteover. the derivative and antideriv-

ative of / are as follows.

1. /'(.v) = V „ci„(x - ()"-'

II- I

=
«i + 2(/,(.v - () + 3(i,(.v - c-)- + •

•

- (v -,)"+!
-> |/(.v)</.v = C + 2 <

II (I

= C + ((„(.v

/( + 1

(-V (.V

The nidiiis af c(imeri;i'iHc of the series oblained by dillcreiiliating or integrtit-

ing a power series is the same as that of the original power series. The Dtlcrvul

of convcriic'iue. however, may differ as a result of the behavior at the endpoints.

Theorem 8.21 states that, in many ways, a Itinclion defined by a power series

behaves like a polvnomitif It is continuous in its interval of convergence, and both its

deri\ati\e and its antideri\ati\e can be determined by differentiating and integrating

each term of the given power series. For instance, the derivative of the power series

-jz ,-11

1 + .V +
.V .V

H 1 h

3! 4!

fix) = 1 + (2)^ + (3)- + (4)- +

.V- .V .v
-t-vH H H 1-

2 3! 4!

./Iv).

Notice that /'(.v) =/(.v). Do you recognize this function?
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Example 8 Intervals of Convergence for /'(.v),/'(a'). and Jfix) dx

Consider the function given by

Find the intervals of convergence for each of the following.

a. J fix) dx b. fix) c. fix)

Sdhiliois By Theorem 8.21. you have

,r(-v)= f.v"-'

= 1 + .V + .V- + .v' + • • •

and

GO ,." + i

J

CO ,.11

,/( V) dx = C + 2 —

-

„=
I

inn

C + T^+ "
1-2 2-3 .^ • 4

By the Ratio Test, you can show that each series has a radius of convergence of R =

Considering the interval (—1. 1). you have the following.

a. For /./(.v) d.x. the series

> lnlLM"\:ii iif conN'er^ence: [— I. ll

n= I

/)(;; + 1)

converges for.v = ±1. and its inter\al of convergence is [- 1. 1]. See Figure 8.21(a).

b. For f(.v). the series

\ —
Interval of convergence; [- 1. 1)

'1 — I

n

couverges tor .v = —
1 and diverges for.v = 1. Hence, its interval of convergence

is[-l, 1). See Figure 8.21(h).

c. For/'(.v). the series

re

2^ .v"
"

Interval of con\ergence: (-1. 1)

diverges for.v = ±1. and its interval of convergence is (- 1. 1). See Figure

8.21(c).

Interval: (-1, 1] Interval: (-1. 1) Interval: (-1. 1)

Radius: R = 1 Radius: R = I Radius: R = I

-[ ]-'
[ ) -' { h-^

-I

(a) (b) (c)

Fifjurt S.21 35

From E.vample 8. it appears that ot the three series, the one for the derivative. |

fix), is the least likely to converge at the endpoints. In fact, it can be shown that if the
;

series for fix) converges at the endpoints .v = c ± R. the .series for fix) will also
|

converge there. i
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EXERCISES FOR SECTION 8.8

In Exercises 1—I, state where the power series is centered

1. fnx"
. ^ (-!)"! -.V -an- 1)

2- X ^' -'"

2"ii\

X Ir - ->V'^ ^A^__^ ^ ( - 1 )"(.v - tt)-"

In Exercises 5-10, find the radius of convergence of the power

series.

5. 2<-l)"^
11 + 1

9. y ^=^

6. ^J2x)"

8.
'!;'^!^

10. y
(2/i)!-v-"

In Exercises 11-34, find the inter\al of tiuuergence of the

power series. (Be sure to include a check for convergence at the

endpoints of the interval.)

" 2 ^

13. |i^=J^

12 V
, A >

14. y (-i)"*'(/i + i),v"

«!

17. V (2,,)'

,,|tii:v

''•1,(2.)!

18. y

20. V

(-1)"A-"

21- 2
(-l)"-'(-v- 5)"

;i5"

'„((! + 1)(. + 2)

(-l)"»!(.v - 4)"

3"

22 V
„4'„(" + 1)4"+'

23. V '-"""'---"""
24. V (-l)"+'(.v - r)"

nc"

.. ^ (a— d"-'
25- E ,..-1 ' > 26. y '

'

'

-'

,

27- y -
.,4', 'J + I

( -2a)"
-

'

28. 2
{-1)"A--"

In Exercises 35-38. find the intervals of convergence of (a)/(.r),

(b) / (a), (c) /"(a), and (d) //(a) rfx. Include a check for

convergence at the endpoints.

35. /Iv) = V ^

36. _/(ai = y (-1)"-"'(a - 5)"

n5"

37.,/lv)= 2-

38. /(a) = y

;; + 1

(-1)"*'(a - 2)"

Wriliii^ In Exercises 39-42, match the graph of the first ten

terms of the sequence of partial sums of the series

gM m
«ilh the indicated value of the function. | The graphs are labeled

(a), (b), (c), and (d).) Explaiji hou you made your choice.

(a) s„ (b)

12--

I0--

I M I I M M > " M I M I I I I
> "

(c) .s„ (d) s„

-+-I-

2 4 5 8

I I I M I I

39. dl)

41. ,i,'(,VI)

40. ,v(2)

42. g{-2)

29. y -^^^ 30. V -^^^

„ = o(2" +1)! „-^i (2/;)!

2j ^ k(k + \)\k + 2)- -[k + n- D.v" ^ ^ ^

32. 2

33. I

2 . 4 • 6 • -2)!

3.5.7- (2(! -I- 1)_

(-l)"+'3 • 7 . 11 • -(4/1 - 1)(a - 3)"

4"

,,4, 1 • 3 . 5 • • • (2/i

43. Define a power series centered al i

.

44. What is the radius of convergence of a power series? What

is the interval of convergence of a power series'^

45. What are the three basic forms of the domain of a power

series?

46. Describe how to differentiate and integrate a power series

with a radius of convergence R. Will the series resulting

from the operations of differentiation and integration have

a different radius of convergence? Explain.
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rp 57. Investigation In Exercise 1 I you found that the interval of

^-^.^^SW^SiSSl^SJii the geometric series

(a) Find the intervals <if con\ergence of / and ^i;.

(b) Show that /'(a) = ,i,'(.v).

(c) Show that ^t; '(.v) = -fix).

(d) Identify tlie functions / and i;.

48. Let,/lv) = f ^.

(a) Fintl the interval of convergence of/'.

(b) Show that/'fv) = /(a).

(c) Show that /(()) = I.

(d) hientify the function f.

In Exercisis 4^ and 50, show that the function represented by

the power series is a solution of the differential equation.

49. V = y -—
^. v"- Av' - V = I)

50. l + f^ '-""-'"'

.^, 2-"/)' 3 • 7 • II ^ (4;i
-

+ A-V =

rp 51. Bes.\il I'li nctioii The Besscl hniction of order (I is

,, , ^ (-I)'a-'

lal Show that the series converges for all a.

Ibl Show that the series is a solution of the dillerential ct|ualion

A-y„"+ a7„' + A-7„ = 0.

(CI L'se a graphing utility to graph the polynomial composed of

the first four terms of J,,.

Id) Approximate J,, ./|,i/a accurate to two decimal places.

rp 52. Bessel Function The Besscl lunclion ofoiilcr 1 is

7,(A) = a£ -.
(

- D'a-'

(-„- UK/.- + I)!

(a) Show that the series converges for all a.

(b) SliDW that the series is a solution of the ililfcrcntial equation

(-./,"+ A./,' + (a- - 1)./, = 0,

(c) Use a graphing utility to graph the polynomial composed of

the first four terms of ./,.

(d) Show that./,, '(a) = -7|(.v).

rp In Exercises 5.^-56. the series represents a well-known function.

Use a computer alyehra system to yraph the partial sum .S',,, and

identify the function from the };raph.

-V/lv)=i(-ir^ 54./(.v, = _V(-l,"^^

55. /(a) = f (-l)"A", -I <.v< 1

11 = i)

56. /tv)= f (-1)":;^-^. - I < .v < I

2 ^

IS (

(a)

(b)

(c)

(dl

Find the sum of the series when v = j. Use a graphing

utility to graph the first six terms of the sequence of partial

sums and the horizontal line representing the sum of the

series.

Repeat part (a) for a = -J.

Write a short paragraph comparing the rate of con\ergence

of the partial sums with the sum of the series in parts (a)

and (b). How do the plots of the partial sums differ as they

converge toward the sum of the series?

Given any positive real number M. there exists a positive

integer N such that the partial sum

2 (?)" > •'
/, = ()

\-'

Use a graphing utility to complete the table.

M 10 ino 1000 10,000

N

58. Write a series equivalent to

,.::" + I

,^„{2n + I)!

where the index of summation has been adjusted to begin at

// =
1

,

True or False? In Exercises 59-62, determine whether the

statement is true or false. If it is false, explain why or };ive an

example that shows it is false.

59. II the power sciies V <;„ .v" converges for a = 2. then it also

converges I'or a = — 2.

60. If the power series V <(„ v" converges for a = 2. then it also

converges for a = — I.

61. If the interval of convergence for ^ "„ v" is (- I. 1). then the

ii = (1

interval of convergence for V a^^ (a - I)- is (0. 2).

f
62. If /'(a) = V <'„ a" converges for [.v| < 2. then /(a)(/a =

u Jll

, Jl + I
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o

!-

Joseph Pot KitKd 768-1 S3U)

Some of the early work in representing I'linc-

tions by power series was done by the French

mathematician Joseph Fourier Fonriers work

is important in tlie history of calculus, partly

because it forced eighteenth century mathe-

maticians to question the then-prevailing nar-

row concept of a function. Both Cauchy and

Dirichlet were motivated by Fourier's work

with series, and in lUil Dirichlet published

the general definition of a function that is

used todav

Representation of Functions by Power Series

• Find ;i geometric power series that represents a function.

• Construct a power series using series operations.

Geometric Power Series

In this section and the next. \oti will siulK several lechnic|ues for finding a power

series that represents a given function.

Consider the function given by /(.v) = 1/(1 — v). The form of / closely resem-

bles the sum of a geometric series

In other words, if you let « = 1 and;- = .v. a power scries repicscntalion for 1/(1 — v).

centered at 0. is

1

= 1 + .V -t- .v' + .v' + • l-vl < 1.

Of course, this series ]cprescnts/(.v) = 1/(1 - .v) onl\ on the interval (-
1 . I). where-

as / IS defined for all t ^ I. as shown m Figure S.22. To represent / ni another

interval, vou must develop a dillcrenl scries. For instance, to obtain the power series

centered at - 1. vou could write

1 1 1/2

1 - .V 2 - (.V + 1 ) 1 - [(.V + 1 )/2] 1 - r

which implies that n =
2 •'i"^' ' = '-^ + ' '/2. So. tor |.v + 1 1

< 2. you have

1 ^ / 1 \/.v + 1
\"

1 - v

V

I
,

(-V + 1

)

,

(-V + 1

)-

,

(a- + 1 )'

V + 1 < 2

which converees on the interval (-.!. 1).

i
—->

/(A) = —!—
. Domain: all v ^ 1

H t

flx) = "^ a". Domain: -1 <a < 1

Figure S.22
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.J., n Ti,'; ,->^i-;.w7 .-, r'.,^.^,-.^+iv-^--. n... ...... f, ,..-;„,- o^„j ,,,.,, ,i ,.j (-i,

Liiiif; Di\'ision

2 - A- + iA- +

2 + .V ) 4

4 + 2a

-2v

-2v - A"

A-

A- + y

Find a power series tor /(a) = -, centered at 0.

Writing /'(v) in the form ^//(l - r) produces

4 2 (7

2 + V 1
- (-.v/2) 1 - /

winch imphes that n = 2 and ; = —.v/2. So, the power series for /(.v) is

4

= 21-^ + ^--^
I 2 4 8

This power series converges when

^ < 1

which implies ihal the niterval ot convergence is (
— 2. 2). cs

Another way to determine a power series for a rational function such as the one

in E.xample 1 is to use long division. For instance, by dividing 2 + .v into 4, you obtain

the result shown at the left.

L'; .,,]:,,,; .. f v.,-.^^,.^,.;,. rj, .,,..., Series Centered at 1

1

F'ind a power series for /(v) = -, centered at 1.

Writing /(a) in the form ((/(I - r) produces

1 1

.V 1
- (-.V + 1) 1

- r

which implies that n =
1 and / = 1

— .v = - (.v — 1 ). So, the power .series for /(.v) is

*
/! = (!

= i[-(.v-i)]"

= 2(-i)"(.v- ir
11 =

= 1
- (.V - I) + (.V - 1 )^ - (.V - 1 )' + • .

This power series con\erges when

|.v- 1| < 1

which implies that the interval of convergence is (0. 2).
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Operations with Power Scries

The versatility of geometric power series will be shov\n later in this section, lollow-

ing a discussion of power series operations. These operations, used w ith diflerentia-

tion and integration, provide a means of de\ek)ping power series tor a \ariet\ of

elementary functions. (For simplicity, the following properties are stated for a series

centered at 0.)

OpcnUioiis mil Powe; St' lies

Let fix) = -fl,,V' and ,e(.v)
= - &,,v".

1. /(tv k"x"

2. fW
11 =

.v'"^

3. ,/-(.v) ± ,t;(.v)
=

;/ - a

± h ,).v"

The operations descrihetl aho\e can change the interval ot convergence lor the

resulting series. For example, in the following addition, the interval of

convergence for the sum is the iiiu-iscciion ol the intervals of con\ergencc of the two

oriszinal series.

(-1.11 n 1-2. 2) = (-1. II

Example 3 .IddirgT-vn Pririxr Scrirs

-rv -
1

Find a power series, centered at 0, for /(.v) =
V- - r

Sohit'"" Using partial fractions, you can write /(a) as

3.V - 1 _ 2 I

.V- - 1

^
.V + I

^
.V - r

Bv adtling ihe two geometric power series

.V + 1 1

and

TiVl,,^'-"-'^

= ~ V ,-",

V - I 1
- V

you obtain the following power serie

3,v - I ^
-

1
" „=o
£ [2(- D" - l],v" = 1 - 3.V + .V- - 3.V-' + .V-*

.V

—

The interval of cimvergenee for this power series is (- 1. 1 ).
[g]
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Example 4 Finding a Power Scries by Integration

Find a power scries Tor fix) = In \. centered at 1.

Solution From Example 2. you know tlnai

1
'^'

-= y (-|)"(-V- I)". Interval of convergence: (0. 2)
V „^„

ntegrating this series produces

In A = - (/a + C

r 1

^
1 i)"'-^'"

'*""'

"^ „4' " "+l

3y letting a = 1 . you can conclude that C = 0. Therefore.

In. V , n"<-^-
""^'

k ' " + 1

(a- I) (a- 1)^ (a- I) ' (a- - 1
)-• Interval of

1 -)
^ I con\crL:ence: (0. 2]

Note that the series converges at a' = 2. This is consistent with the obser\'ation in the

preceding section that integration of a power series may alter the convergence at the

cnilpotnts ol the ititcrval of convergence. :23

TECHN()L()(;\ iti Section 8.7. the lourth-degree Taylor polynomial for the natural

logarithmic futictton

In.v = (A - I) ^ +^ ^—

was used to approximate ln( 1.1).

In(l.l) - (0.1) - ^(O.n- + ^(0.1)' - ^(O.I)-'

= O.IN.S.iOS.i

You now know from Fxaniplc 4 that this polynomial represents the fust foiu' terms

of the power series lor In a. Moreover, using the Alternating Series Remainder, you

can determine that the eiTor in this approximation is less than

\R.\ ^ \'h\

= ^(0.1)'

= (1.(10(10(12.

During the seventeenth and eighteenth centuries, mathematical tables tor logarithms

and \alues of other transcendental functions were computed in this manner. Such

numerical technic|ues are far from outdated, because it is preci.sely by such means

that many modern calculating de\ ices are programmed to evaluate tran.scendental

I'unctions.
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n»i Example S Finding a Power Scries by Integration

Srimvasa Ramanijan (1887-1920)

Series that can be used to approximate - have

interested mathematicians for the past 300

years. An amazing series for approximating

1/ 77 was discovered by the Indian mathe-

matician Srinivasa Ramanujan in 1914.

Each successive term of Ranianujan's series

adds roughly eight more correct digits to

the value of I/tt. For more information

about Ramanujans work, see the article

"Ramanujan and Pi" by Jonathan M.

Borwcin and Peter B. Borwein in Siicmifif

Amcriain. (To view this article, go to the

website mnuntitharticles.cnm.)

Find a power series for ,t;(-v) = atctaii .v, eentered at 0.

Soliitiiin Because Djarctan .v] = 1/(1 + .v-), you can use tlic series

fix) _^^(^,)".. Interval of conwrizence. (—1. 1)

Substituting .v- for .v produces

I

/(> )

+ \- 2 (-iV'.v-".

Finally, h\ integrating, \ou obtain

I

arctan .v

1 + .V-

dx + C

.v-"+'

2/; + I

2;; + 1

.V .V .V

V H h

3 5 7

Let X = 0. then C = 0.

Imer\;il i>f comcreencc: (-1. 1)

It can be shown that the power series developed for arctan .v in Example 5 also

converces (to aiclan .v) for .v = ± I. For instance, when .\ =
1 , voti can write

arctan 1 = 1
~

~ 4'

1 1

- + -
3 5

1

However, this series (dexeloped by James Gregory in 1671 ) does not give us a practi-

cal way of approximating n becau.se it converges so slowly that hundreds of terms

would have to be used to obtain reasonable accuracy. Example 6 shiiws how to use two

different arctangent series to obtain a very good approximation of u using only a few

terms. This approximation was developed by John Macliin in 17(16.

Example 6 Approximating tt witli a Series

Use the trigonometric identity

I 1 7T
4 arctan - - arctan —7 = —

to approximate the number - |see Exercise 48(b)].

Solution By using only five terms from each of the series for arctan! 1/5) and

arctan! 1/239). you obtain

4| 4 arctan - - arctan— 1
= 3.1415926

which agrees with the decimal representation of tt with an error of less than (J.UOO(.)(.)() 1

.
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EXERCISES FOR SECTION 8.9

In Exercises 1-4, find a geometric power series for the function,

centered at 0, (a) by the technique shown in Examples 1 and 2

and (b) bv long division.

1- fM = T^
2 — x

1

+ .V

3. /(-v) = -

2. fix)

4. /(.v)

S -

I + V

21. fix) = ln(.v + I) =

22. /(.v) = liid -.V") =

1

V + I

I

ilx

dx
1

</a

23. g(.v) =

25. hi\) =

A- + 1

1

4a- + 1

I + A J 1 - A

24. /(a) = ln(A- + 1

)

26. fix) = arctan 2a

In Exercises 5-16. find a power series for the function, centered

at c. and determine the interval of convergence.

5. fix) = —^, c = 5
2 - A

6. fix) = T^. c= -2
.1 - A

3

rp Graphical and Xtimerical Analysis In Exercises 27 and 28. let

,-: ,3 ,.-1

S„ = X

7. /(.v) = -

8. /(a I

9. ,?(A

10. /!(a

11. fix

12. fix

2x -
I

3

2a -
1

I

2a - 5"

1

2a - 5'

3

A + 2'

4

3a + 2'

f = - 3

13. a'(a)

14. gix)

15. fix]

16. fix)

3a-

4a - 7

2v- + 3a -

4

In Exercises 17-26. use the power series

—!— = V (-.i)".v"
1 + -v „^0

to determine a power series, centered at 0, for the function.

Identify the interval of convergence.

17. hix)

18. hix)

19. fix)
-~

20. fix) -

1 1

+
- 1 1 + A 1 - A

A I 1

A- -
1 2(1 + a) 2(1 - a)

I _ ^
"(a + I)-

~
(/a

2 J-

1

(a + 1)-' dx-

X + 1

I

A + 1

T+T-4+
Use a graphing utility to confirm the inequality graphically.

Then complete the table to confirm the inequality numerically.

X 0.0 0.2 0.4 0.6 0.8 1.0

s„

ln(x + 1)

s„.,

27. 5, < ln(A + 1) < 5, 28. 54 < ln(A + 1 ) < S,

In Exercises 29-32, match the polynomial approximation of the

function /(.v) = arctan .v with the correct graph. [The graphs

are labeled (a), (b), (c), and (d).|

(a) (b)

3- -

1

1
-

/
J

/
-.1-

_ 2 3

3- -

2 -

1 ^\ '

i

.

-3 -2 \y . V

'

_T -

-3 -

(c) (*)

+^-V

29, gix)

31. gix)

30. i;(a) = A

32.,(.v) = A-f + f-^

33. Think About It Use the results of Exercises 29-32 to make a

geometric argument for why the series appro.ximations of

fix) = arctan a have only odd powers of .v.
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34. Conjecture Use the results ot Exercises 29-32 to make a con-

jecture about the degree of series approximations of f(x) =

arctan a that have relative extrema.

In Exercises 35-38. use the scries for/(.v) = arctan .v to approx-

imate the value, using R^ < 0.001.

1

35. arctan

37.
I

^i^^^^^^,/v

36. arctan .v- dx

38. v' arctan v ilx

In Exercises 39-42. use the power series

1

= V .V". |.v| < 1.

39. Find the series representation of the fimction and determine its

interval of convereence.

<a)/(-v)

(c) fix)

1

(1 -.tF

1 + X

(b) ./(a)

(d) /(a)

(1 -a)-

x(\ +x)

(1-a-)- "" ""
(I - x)-

40. Adjust the index of summation for the series found in Exercise

39(a) to begin with n = 0,

41. Probability If a fair coin is tossed repeatedly, the probahiHty

that the first head occurs on the Hth toss is

47. Pro\e that

A + V' _

arctan a + arctan \' = arctan '— tor aa' t^ 1

I - AV

provided the value of the left side of the equation is between

- 77/2 and 7r/2.

48. Use the result of Exercise 47 to verify the identity.

12(1 1 TT

'-'> '"''•~'''"

TT9
" '""'-''^"

239
"

4

u ,
1 1 77

(b) 4 arctan - - arctan ::p— = —

[Hull: Use Exercise 47 twice to find 4 arctan ^. Then use part

(a),]

In Exercises 49 and 50. (a) verify the given eijuation and (bl use

the e(|uation and the series for the arctangent to approximate tt

to t«o-decimaI-plaee accuracy.

.01 ' ^ ^
49. J arctan - - arctan - = —

2 7 4

I I 77

^0. arclan - + arctan - = —

In Exercises 51-56. find the sum of the convergent series by

using a well-known function. Identify the function and explain

how \ou obtained the sum.

Pill)
I

When this game is repeated inan\ times, the average number of

tosses required until the first head occurs is

Ein) =
I;

iiPiii).

n= j

(This value is called the expected value of n.) Use the results of

E.xercises 39 and 40 to find £(/;). Is the answer v\hat you

expected? Why or why not?

42. Use the results of Exercises 39 and 40 to find the sum of each

of the follow ins! series.

»ii»(= -4J,"(^r

51. 2:^(-i)"'

52. V i-D-

53. V (-1)"^
^^
n 1

55. V (-1)"

yn
2"

5"ii

1

1

2-"+
'(2;! -I- 1)

1

-^^•S'-l)-'^^;-^
1)

In Exercises 43-46. explain how to use the geometric series

g(x) = -^= V.v". |a| < 1

* -*' 11= it

to find the series for the function. Do not find the series.

1 1

43. fix)

45. fix)

1 4- A

5

1 + X

44. ,/Xv)
1 - A-

46. fix) = ln(l - x)

rp 57. Writing One of the series in Exerci.ses 51-56 converges to its

sum at a much slower rate than the other five series. Which is

it? Explain why this series converges so slowly. U.se a graphing

utility to illustrate the rate of convergence.

?8. Prove that > —— : = —p.
„4!, 3"(2;i +1) 2v^

rF' 59. Use a graphing utility and 50 terms of the series

/(v)^i
'-"""'- ^'"

. 0<.v.2

to approximate /(0. 5). (The actual sum is In 0.5.)
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Tarjrior iwiaMacla^^

f-jnd a Taylor or Maclaurin scries for a function.

Find a binomial scries.

Use a basic list of Tavlor series lo find other Taylor series.

Colin \l«LURi\ (1698-1745)

The development of power series to represent

functions is credited to the combined work of

many seventeenth and eighteenth century

niathematiciiins. Gregory. Newton. John and

James Bernoulli. Leibniz. Euler, Lagrange,

Wallis, and Fourier all contributed to this

work. However, the two names that are most

commonly associated with power series are

Brook Taylor (1685- 1 7.M I and Colm

Maclaurin.

Taylor Series and Maclaurin Series

In Section 8.9, yoti derived power series for several ftinctions using geometric series

with terni-by-tertn differentiation or integration. In this section you will study a

iiciiernl piocedure for deriving the power series for a function that has derivatives of

all orders. The following theorem gives the form that t\'<r\ convergent power series

nitist lake.

THEOREM 8.22 The Form of a Convergent Power Scries

If/' is repi'esented by a power series /'(.v) = 2 (7„(.v — c)" for all .v in an open

interval / containing c. then </„ = /''"'(t)//;l and

fix) =f(c) + /'(c)(.v - C-) + ^(.v-c-) + —^(.v

ProoF Suppose the power series S ((„(.v — c)" has a radius of convergence R. Then,

by Theorem 8.2 1 , \nu know that the )(th derivative of / exists for |.v - ([ < R. and by

successive differentiation you obtain the following.

/""(.v) = ((„ + ((|(.v - (I + ((-.(.v - ()- + ,(,(.v - cV + a^{.\ - cY +

/'"(.v) = (/, + 2ii-.t\ - c) + 3((3(.v - cV^ + 4a^(.\ - c)'' +

/'-'(.v) = 2a-. + 3!<(,(.v - r) + 4 • }ci^(.\ - c)~ + •

/'"(-v) = V.a, + 4!(/j(.v -() +

NOTK Be sure you tinderstand

Theorem 8.22. The theorem says that //'(/

pawer scries converges to f(.\), the series

must he a Taylor series. The theorem does

not say that every series formed with the

Taylor coefficients ((„ =/'"'(<.)//!! will

converge to /(.v).

f"'(.x) = n'a„ + ill + 1 )'((„, |(.v -(! + •••

Evaluating each of these derivatives at v = c yields

/""(r) = ()!</„

,/"'((•) = !!</,

/'-'(() = 2!(/,

f''(c) = V.a,

and. in general, /'"'(c;) = 'i!«„. By solving for </„, voii find that the coefficients of the

power series representation of/(.v) are

Notice that the coefficients of the power series in Theorem 8.22 arc precisely the

coefficients of the Taylor polynomials for /(.v| at c as defined in Section 8.7. For this

reason, the series is called the Tavlor series for /(.\ ) at c.
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Definition of Taylor and Maclaurin Scries

If a function / has deri\'ati\es of all orders at v = i . then the series

£ ^^^(.v - c)" =/(<) + /'(c-)(.v - C-) +

is called the Taylor series f()ry(.v)at c. Moreover. iff = 0. then the series is

the Maclaurin series for/.

If yoLi know the pattern for the coefficients of the Taylor polynomials for a

fiHictioii. yoLi can extend the pattern easiU to lorni the corresponding Ta\ lor series.

For instance, in Example 4 ol Section S.7. \ou foiiml the loiirth Taylor poU nomial tor

In .V, centered at 1 . to be

P^ix] = ix - 1) - ^(.v - D- + -(.V - D' - -(a - 1)-*.

From this pattern, you can obtain the Taylor series lor In a centered at r = 1.

1 -, ( - I

)" '"

'

(a -
1 )

- -(a -
1
)- + ••• + (.V - 1 )" + .

Exawph' 1 Forming a Power Series

Use the function fix) = sin v to form the Maclaurin series

i: ^.v" = /(o) + r(())A + V-^- + ^'' + ^-^" + •

and determine the mtei"\al of comeiLience.

Solution Successive dillerenliation ot /(a) yields

fix) = sin.v /((I) = sin II =

/'(a) = cos A /'((I) = cosH = I

/"(a) = -sin A /"(O) = -sin" =

/'"(a) = -cos A f'-Hii) = -cos I) = -1

/'-"(a) = sin A /'"(!)) = sinii =

/'"(a) = cos A /'^'(<>) = cosO = 1

and so on. The pattern repeats after the third derivative. Hence, the power series is as

follows.

S^ A" ^ /,(.. . r,0,A . ^X^- .^.V . ^A^ ....

3! 4!' 3! 6!
1~~~ = + ( 1 )A + -.v: . ^x^ . -v^ . i,x^ . -V"

+— .v' + ...

a' a-"^ a^
V + +

.V .^' 7'

By the Ratio Test, you can conclude that this series converges for all a.
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/(-v) = <

Piyure 8.23

Notice thai in Example I \\e do not eoncliidc that the power series converges to

sin A for all .v. We simply conclude that the power series converges to some function,

but we are not sure what function it is. This is a subtle, but important, point in deal-

ing with Taylor or Maclaurin series. To persuade yourself that the series

f{c] + f'icHx - c) + f'V)
(.Y . ^(.v

might converge to a function other than /', remember that the derivatives are being

evaluated at a single point. It can easily happen that another tunction will agree with

the values of /'"'(.v) when .v = c and disagree at other .v-values. For instance, if you

formed the power series (centered at 0) for the function shown in Figure 8.23, you

would obtain the same series as in Example 1 . ^ ou know that the series converges for

all V. and yet it obviously cannot converge to both /'(.v) and sin .v for all v.

Let / have derivatives of all orders in an open interval / centered at < . The Taylor

series for / may fail to cimxerge for some v in /. Or. e\en if it is comergent. it may

fail to ha\e /(.v) as its sum. Nexertheless. Theorem X. IQ telK us that for each /;.

,/(.v) =/(<-) +/'(r)(.v - c) + f"U
+ ^—y-^i^- - c)" + /?„{.v).

where

ill + 1)!

Note that in this remainder formula the particular value of ,- that makes the

remainder formula true depends on the values of .v and ii. If /?,, ^0 then the following

tliciiicin tells us that the Taylor series for/ actually converges to /(.v) for all .v in /.

THEOREM 8.23 Convergence of Taylor Series

If lim /?„ = for

.

dl V in the interxal /. then the Ta\ lor series for/ con\ei-ges

and equals /(.v).

^(.v ^ .)".

Proof For a Ta\ lor series, the /;th partial sum coincides w ith the /ith Taylor polyno-

mial. That is. .S'„(.v) = P„(x). Moreoser. because

P„{x) =/(.v) - A'„(v)

it follows that

hm .S„(.v) = lim /^„(.v)

= hm [fix) - R,l\-)]

= fix) - hm R„(.x).
II
—-y^

Hence, for a given .v. the Taylor series (the sequence of partial sums) converges to/(.v)

if and only if R„{.\) —>^) as /; ^> -yi.
'"^

NOTE Stated anmlicr way. Theorem 8.23 says that a power series fornied with Taylor

coefficients a,, = /'"'(c)//)! converges to the limctiun from which il was derlxed at precisely

those values for which ihc remainder approaches as ;; —> zc.
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In Example 1. uiu derixcd the power series From the sine iLmction and you also

concluded that the series converges tii sonic lunction on the entire real line. In

Example 2. you will see that the series actually converges to sin .v. The key observa-

tion is that although the \ alue of ,- is not known, it is possible to obtain an upper bound

for|/'"+"(;)|.

Example 2 A Convergent Maclaurin Series

Show that the Maclaurin scries for /'(.v) = sin .v converges to sin v for all .v.

Solution L'sing the result in Example 1. \oii need to show that

V-' A X
sin .V

= \'
-- — + — — —

_!! s\ /!

( - 1
)" -V-" " '

(2;; + 1)!

is true for all v. Because

/'"^"(.v) = ±sin.v

/"'+"(.v) ±C0S .V

you know that |/'" "(r)] < 1 lor every real niuiiber r. Thererorc. lor any fixed v. you

can apply Tav lor's Theorem (Theorem S.l'^)) to conclude that

< |/?„(.v)|

/ (:)

(/; + 1)!"
A""

*

(n + I)!'

From the discussion in Section 8.1 regarding the relative rates ot coinergcnce ot

exponential and factorial seL|ucnces. it follows that lor a IixclI v

£"i(7TTlT
0.

Finally, by the Squeeze Theorem, it follows that lor all .v. R,y\) —>n as /; —>cc. Hence,

bv Theorem S.2,i. the Maclatirin series for sin v converges to sin x for all x. --—

Figure 8.24 visuallv illustrates the coinergcnce of the Maclaurin series lor sin .v

by comparing the graphs of the Maclatirin polynomials /^|(.\). f,,(.v). P^(.v), and P-i[x)

with the graph of the sine function. Notice that as the degree of the polynomial

increases, its graph more closely resembles that of the sine function.

4- - /
3- - /

-s,^ 1 ^ /^
-;r^*'^^^- k"'^^.

/-i-

/ "^" -
\ = sin -V/ -4-\

P,(.v)=.v

4- -

3- -
\' = sin -

T _

1
-'/-

L 4
_T _ -

;

-3-
p

-4- -

P,(.v) = .v-iy

As ;/ increases, the graph of /^, more closeK resembles the sine function.

Figure 8.24

4^L
I

3- -
/

2-

1

-

/fX"'

/ _2 -

s^.
/

-3-L \' = sin A

./

-4- -

/^(.v) = .v-^ + ^

.

4-
3-

-

V = sin .\

>i
1

-^^ /, V'>
-2 -

-3-
-4-

ym

P,(.V)=.V-^ + ^-fy
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The guidelines for finding a Taylor series for /(.v) at c are summarized below.

Guidelines for Finding a Taylor Series

1. Differentiate / (a) several times and evaluate each derivative at c.

f(c).fV)..f"(c).r(c). ,/"" (c).

Try to recognize a pattern in these numbers.

2. Use the sequence developed in the first step to form the Taylor coefficients

"„ = f"\c)/u\, and determine the interval of convergence for the resulting

power series

f"{c) f"Hc)
f(c) +/'(d(.v - c) + ^(.v - <•)- + • • + H-^(.v - c)" + • • .

2! n'.

3. Within this inter\al of con\ergence. determine whether or not the series

converges to /(.v).

The direct determination of Taylor or Maclaurin coefficients using successive

differentiation can be difficult, and the next example illustrates a shortcut for finding

the coefficients nulircctly

—

using the coefficients of a known Taylor or Maclaurin

series.

Exiiiiiple 3 Maclaurin Series for a Composite Function

Find the Maclaurin series for fix) = sin .v-.

Solutidi) To find the coefficients for this Maclaurin series directly, you must calcu-

late successive derivatives of /'(a) = sin a". By calculating just the first two,

fix) = 2a cos v^ and /'"(a) = — 4A"'sin.v^ + 2 cos a-

you can see that this task woukl be quite cumbersome. Fortunately, there is an alter-

native. Suppose you first consider the Maclaurin series for sin a found in Example 1.

,i,'(a) = sin A

a' .v'^ .v^= v 1

!-• • •

3! 5! 7!

Now, because sin .\
- = ,t,'(.v-), you can substitute .v^ for a in the series for sin ,v to obtain

sin .V- = g(.\-)

^.6 ^.1(1 ^.14

Be sure to understand ihc point illustrated m Example 3. Because direct computa-

tion of Taylor or Maclaurin coefficients can be tedious, the most practical way to find

a Taylor or Maclaurin series is to develop power series for a basic list of elementary

functions. From this list, you can determine power series for other functions by the

operations of addition, subtraction, multiplication, dixisiim, differentiation, integration.

or composition with known power series.
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Binomial Series

Before presenting the basic list for elementary functions, we develop one more

series—for a function of tlic form /l.v) =
( 1 + a)'. This produces the binomial scries.

Example 4 Binomial Scries

Find the Maciaurin series for/fv) = ( 1 + v)* and determine its radius of con\ergence.

Assume that R is not a positive integer.

Solution By successive dilferentiation. vou have

f(x) = (1 + .v)* /(O) = I

fix) = k(\ + xf '

f'(0) = k

/"(.v) = kik - IKI + .v)'-= /"(O) = kik - 1)

/'"(a) = kik - \){k - 2)(l + .v)*-' /'"(O) = kik - \)ik - 2)

/'"'(a) = k- ik ~ II + Dil + .\f " /i"'(0) = kik - 1) -{k - n + I)

which produces the series

kik - n.v- kik - !)• -ik - II + 1 Iv"
I + k\ + ; + +

, + •
.

2 ;;!

Because ('„f i/<'„—> I- you can apply the Ratio Test to conclude that the radius of

convergence is R = I. .So, the series converges to some Itmclion in the iiUcrva!

(-I.Tl.

Note that in Example 4 we show ed that the Taylor series for ( I + a)* converges

to same function in the interval (-1. I). However, we did not show that the series

actually converges to ( I + a)*. To do this, you could show that the remainder A'„(a)

converges to 0. as illustrated in Example 2.

Kxawi>le S Fiiuliiijj a Hinoniiiil Scries

Find the power series for /(a) = v 1 +

Solution Using the binomial series

,, , ,
kik - n.v- kik - \)ik - 2).v'

,

( I + a)^ = ] + Lx + + +

, >r
,—

^

i^
/rvi = VI + V

Figurc 8.25

let k =
^, and write

(1 +.v)'/-' = I +
A IX- 2 • 5.V' 2 • 5 • 8.v^

3 3"2! V?'\

which converses for - 1 < a < 1.

3-'4!

TECHNOLOGY Try using a graphing utility to confirm the result in Example 5.

When you graph the functions

fix) = (1 + a)'/' and P^ix) = 1 + T -'^ +
"^

81 2433 9

in the same viewing window, you should obtain the result show n in Figure 8.25.
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Deriving Taylor Scries from a Basic List

In the following list, we provide the power series for several elementary functions

with the con^esponding intervals of convergence.

Power Series for Elementary Functions

Funclion

- = 1 - (.V - 1) + (.V - 1)- - (.V - 1)-' + U - 1)-^ -•• + (- D" (.V - 1)

/iitenril of
Convergence

< A- < 2

1 + .V

.V + .V- - .v-^ + .v"* - .1-5 + • • • + (- 1 )".v" + 1 < .V < 1

I
,, (.V- D- ,

(.V- 1)-^ (.V - 1
)-*

,
,

(-l)"^'(.v- D" ,

In .V = [x - 1
) +

:;
; + + + < .V < 2

e'' = \ + X +
2! 3! 4! 5!

+ • + -oo < .V < CO

smA = .v-- + ^-~ +
^,

^°^-'^= 1-^+4!
6! 8!

(-l)".v-"+'
H h

(2ii + 1)!

,

(-I)".v="
,

oo < .r < oo

- CO < .V < oo

arctan.v = .v-y + y-y + - + -^^ +
2n + 1

1 < .V < 1

.v' 1 • 3.v' 1 • 3 • 5.v' (2/i)!.\-"+i

arcsin .v = .v + r—r + ^
: z + z :

:

—- + • • + ——rrr::: rr +2-3 2-4-5 2-4-6-7 (2";;!)-(2/! + 1)

< .V < 1

+ .v)* = 1 + k\ +
k{k - l).v- k(k - \){k - 2).v' k(k - \)(k - 2){k - 3U-'

* The convergence at .t = ± 1 depends on llic Vidiie of k.

NOTE The binomial series is valid for noninteger values of I:. Moreover, if k happens to he a

positive integer, the binomial series reduces to a simple binomial expansion.

Example 6 Deriving

.

Find the power series for /(.v) = cos V^-

Solulion Using the power series

.V- .V" .V" .V"

you can replace .v by v^v to obtain the series

/- , .V .V- .V .V

^"^ ^' = '
- 2T + 4i - 6i + ^

This series converges for all .v in the domain of cos v.v— that is, for .v > 0. i^
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Power series can be multiplied and divided like polynomials. After finding the

first few terms of the product (or quotient), you may be able to recognize a pattern.

Example 7 Multiplication and Division of Power Series

Find the first three non/ero terms in each of the Maclanrin series.

a. (•' arctan v b. tan .v

Solution

a. Using the Maclaurin series for e^ and arctan .v in the table, you have

A- .V- .V-' .V-t \/ .V' .V'

.> arctan.v =
\ ^ + y + y + y +

J.
+ ' ' 'j^-v - y +

3
;

Multiply these expressions and collect like terms as you would tor multiplying

polynomials.

1 + .V + iv- + s-v' + Yax' +

V -
3 V + 5-^^ ~

X + .v= + 3.V-' + iv-* + Yi-x' +

+ iv' + .

I

''
I ' ^ ' J.

I

-' S I

.V + X- + ix^ - ix^ + -^,x^ +

So, c' arctan x = x + .v- + ^.v' + .

b. Using the Maclaurin series for sin .v and cos v in the table. \cui ha\e

.1
' .V

''

sin .V '*
"

3!
"^

5!
~ ' '

'

tan .V
= =

:

cos X , X- .v"*

Divide usini: loiii! division.

1 - ^.v^ + -..-

1 , 2 ,

. + -.V + -x^ +

\

.V
-

/
-
i-'

-
I^-----

X -- i,. +
2

±e _ . . .

24

Iv' - ±,. + . . .

3 30

3

ix^ + . .
.

6

So. tan -v = -v + 3.V- + j^.v + - . \^\
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E.xawple 8 A Power Scries for sin^ .v

Find the povvei" series tor /(.v) = sin- .v.

Solution Consider rewritint: sin- v ;ts follows.

1 — eos 2.V

stn- .V

Now. use the series for eos .v.

cos .V = I

cos Iv = I - |y.v- + ^.v^

.\- .\2 -v^ .y^

~>2 14 -)6 -)H

— v" -I- — V^
6! 8!

] ]
-1 T-1 -|5 07

-^cos 2.V = -^ + f^.v^ - ^.v^ +
l^.v"

- ^.v« +

II 1 I
) >' of ov

I I
T T of

sin-.v =
2
"

2
^°^ -•^' =

2
"

2
^ fl''

" 4^'' "^
tl''

"
8!

'' ^

^^ T7— v-* H v" v'' -I-

4! 6! 8!

This series converses for -co < .v < oo. [Zl

As mentioned in the preceding section, power series can be used to obtain tables

of values of tran.scendental functions. They are also useful for estimating the values of

definite integrals for \\ hich antideri\ati\ es cannot be found. The next example demon-

strates this use.

ri^^ Exitmplc 9 Power Scries Apprnxinmiion ol ;i Delinile iiitciiral

Use a power series to appro\miate

with an error of less than 0.01.

Solution Replacing .v with — .v- in the series for c' produces the following.

£>-' = 1
- .V-

.V .V

e *"
d.x

2! 3! 4

.f_ .v"

3^5-2! 7 3! 9 • 4!

^2^J L + __L
3
^

10 42 ^ 216

Summing the tusl four terms, you have

I'-'' d\ = 0.74

which, by the Alternating Series Test, has an error of less than Tf^ == 0.005.
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EXERCISES FOR SECTION 8.10

In Exercises 1-10. use the dellnition to find the Taylor series

(centered at el lor the function.

1. fix) = c-\ c =

3. /(.v) = cos A. ( =

2. fix) = c'^

4. /"(.v) = sin A, (•

rp In Exercises 35-40. find (he first four nonzero terins of the

Maclaurin series for the function h\ niulti|)l\ in<i or dlvidini; the

appropriate power series. I se the lahle of power series for

elementary functions on pajje 63S. I se a };raphing utility to

ohtain a graph of the function and its corresponding polynomial

approximation.

5. fix) = \nx. ( =
I 6. fix) = c\ r = I

7. fix) = sin 2a-. c = 8. ,/lv) = hi(A- + 1 ). c =

9. fix) = sec A. ( = (fnst three nonzero terms)

10. fix) = tan A, ( = (tlrsl three nonzero terms)

35. fix) = <•' sni A

.^7. /((a) = cos A Ind + a)

sin A
39. .(A)

36. ,t;(A) = (' cos A

3S. fix) = c' Ind + a)

1 + A
40. fix)

1 + A-

In Exercises 11 and 12. prove that the Maclaurin scries for the

function converyes to the function for all x.

11. fix) = cos A n. fix) = t'-

In Exercises 13-lS. use the hinomial series to find the Maclaurin

series for the function.

13. fix)

15. fix)

I

d + a)-

1

74 + A--

17. fix) = yi + X-

14. fix)
V'l - A

16. ,/(a-) = i/\ +x

18. fix) = s/T + A-'

In Exercises 19-28. find the Maclaurin series fi)r the function.

(Use the table o( pouer scries for elementary functions.)

19. fix) = e'''- 20. .!,'(a) = £---"

21. .!,>(a) = sin 2a 22. fix) = cos 4a

23. fix) = cos A--'- 24. Kix) = 2 sin i

''

25. fix) = lie' - c-') = sinh A

26. fix) = e' + e ' = 2 cosh a

27. fix) = cos- A

[Him: cos- A = 5d -I- cos 2a)]

28. fix) = snih ' A = \n{x + Jx- + 1
)

Hull: Intesrate the series for
-VTi

In Exercises 29-32. find the Maclaurin series for the function.

(See Example 7.)

In Exercises 41—14. match the polynomial with its graph. [The

graphs are lahelcd (a). )b). (cl. and (dl.| factor a common
factor from each polynomial and identilx the function approxi-

mated by the remaining lay lor polynomial.

(a) (b)

f».v

(c) (d)

f-A-

y
} -;

f

-4 -2

-4-
:

r

2 4

41. 1 = A- -

43. \' = A -I- A- -I-
—

42. V = A - ^ + -

44. A-' + A--"

In Exercises 45 and 46. find a Maclaurin scries for/lx).

45. fix) =
I ic' - \)Ji 46. /(a) =

I ^1 + /',/;

29. fix) = X sin A

31. ,?(a)

A *

V =

30. /j(a ) = A cos A

arcsin a

32. fix) = A
A *

A =

rp In Exercises 47-50. \erif\ the sum. Then use a graphing utility

to approximate the sum with an error of less than 0.0001.

47. V (-1)"- ' - = In:

In Exercises 33 and 34. use a power series and the fact that

/- = - 1 to verify the formula.

33. dx)

34. g(A)

c ") = sin A

ie" + e-

48. 2 ( - 1

)

49. y ~

5o.j:(-i)"-'U

I

(2;; -I- U'
sin I
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In Exercises 51 and 52, use the series representation of the lune-

tion f to find lini /'(.v) (if it exists!.
,v—

0'

51. fix)
1 - cos .V

52. j(x)

69. Projectile Motion A prtijcclile fireJ from the ground

follows the trajectory given hy

kv,. cos HI k- \ r,, cos 9
V = tan ti

In Exercises 5.'-5S. use power series to approximate the ^ahle

of the intei;ral with an error of less than 0.0(101. (In Exercises 53

and 54, assume that the inteyrand is detlned as 1 when .v = 0.1

where i„ is the initial speed. (Vis the angle of pro|ection. i,' Is the

acceleration due to gravity, and k Is the drag factor caused hy

air resistance. Using the power series representation

53.

57.

- </.v

v cos v J.v

I + A- </a-

54.

?6.

58.

aretan i ln( I + a) = A- - -^ + ^ - ^ + 1 < A < 1

COS -Jx d\

4

A ln(v t I) (/a

verify that the trajectory can he rewritten as

kgx-^ k- !ix^
y = (tan e)x + —-r^—r- +

I'rolyiiltility In Exercises 59 and 60, approximate the normal

probahility with an error of less than 0.0001, where the proha-

hilit) is <;i\en l)\

2i „- cos- H M;, cos- H 4c„ cos-*

7(1. Projectile Motion Lise the result of Exercise 64 to determine

tlie series for the path of a projectile projected from ground

level at an angle of = 60°, with an Initial speed of \„ = 64

feet per second and a drag factor of k =
j^.

71. Investigation Consider the tunction / defined h\

P(a < X < b) = I

iJTj,,

59. PU) < V < 1)

-r-dx.

60. P(l < A <

fix)
0.

A t

A = 0.

rp In Exercises 61-64, use a computer algebra system to find the

tlfth-degree Taylor polynomial (centered at c) for the function.

Graph the function and the polynomial. Use the graph to

determine the largest interval on which the polynomial is a

reasonable approximation of the function.

61. ,/(a) = A COS 2a-, r =

62. fix) = sin - ln( 1 + a), c =

63. ,£;(a) = ^ A In v. c ~
I

64. /((a) = s' A aretan A, c =
I

'"'^c'.^^S#S-

65. State the gmdehncs lor fnuhiig a Taylor series.

66. If/ Is an even function, what must he true about the coeffi-

cients <;„ in the Maclaurin series

fix) = V(,,^A-"?

II

67. Explain how to use the series t;ix) = c* = T ^ '" '""-'

the series for the functions Do not find the series.

(a) fix) = e-' (b) fix) = e'""

(c) fix) = xe' (d) fix) = e-' + e"-'

68. Summarize the use of power series in approximating

elementary functions.

(a) Sketch a graph ol the function.

(b) Use the alternative form of the definition of the derivative

(Section 2.1) and L'Hopilal's Rule to show that / '(01 = 0.

|By continuing this process, it can be shown that /'"'(O) =

()for;( > l.|

(c) Using the result in part (hi. tmd the Maclaurin series for/.

Does the series converge to /'?

rp 72. Investigation

(a) Find the power series centered at lor the function

fix) ^ lli^^^.
A-

(b) Use a graphing utility to graph / ;ind the eighth-degree

Taylor polynomial PJiX) for /!

(e) Complete the lollowing table, where

Fix) "i^^^,/, and c;(Al= I P,(,),/,.

X 0.25 0.50 0.75 1.00 1.50 2.00

Fix)

G(x)

(d) Describe the relationship between the graphs of /' and P^

and the results given In the table In part (c).

73. Piove that lim — = (I lor anv real a.

74. Prove that c Is irrational

rational (/>. i/ integers) and consider

1

- + • +
n

1+ 1 +^+

Hull: .Assume that c = p/c/ Is

-J
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REVIEW EXERCISES FOR CHAPTER 8

,_
In Exercises 1 and 2, write an expression for the ;)tli

term of the sequence.

1. lKK^.^.
2 6 24 120 2' 5' !() !?

In Kxercises 3-6. match the sequence with its );raph. rriic

graphs are labeled (a), (bl. (cl, and (d).|

la) (b)

5-J-

4-

3-

2 4 6 8 10

6-^
4- h-

2 -

u

L •

_T -

- 2 4 • 8 10
•

-4-~ •

(c) (d)

4 J-

•

^ - - •
•

) - 1- •
•

1
- •

•

2 4 6 S»H1
-1- *

-^ • • • • • •

4 (1 ,S 10

3. a„ = 4 + -

5. (?„ = 10(0.3)"-

4. (/„ = 4

6. ((„ = 6(

rp In Exercises 7 and 8. use a graphing ulilil> to graph the first ten

terms of the sequence. I se the grapli !o make an inference

about the convergence or divergence of the sequence. \eril\

vour inference analvtically. and if the sequence converges, (ind

its limit.

7. a..

5n + 2
8. a.,

In Exercises 9-16. determine the con\crgencc or (h\crgeiice of

the sequence with the given /;th term. (/> and c are poslti\e real

numbers.)

9. u„

11. </„

;r + 1

13. i(,| = V" + 1 ~ %/"

sin ^/»
13. a., = ^—

10. ((„

V^

12. "n

II

In ;/

14. d/,, -h
16. d/„ = (/)" +

1 v

17. Coinpuiind Interest A deposit of $5000 is made in an account

dial earns 5'''i interest compounded quarterly. The balance in

the accoimt after ;; quarters is

5(X)0 I +
0.05

I,:

(a) Compute the first eight terms ol the sei|iiencc.

(b) Find the balance in the accoiinl alter 10 Ncars by cuniptil-

mg the 40th term of the sequence

18. Depreciation .\ company buss a machine lor M 20.000.

During the next 5 years the machine will depreciate at a rate of

30"^^ per year. (That is, at the end of each year, the depreciated

\alued will be 70' ( of what it was at the beginning ol ihe year. I

(a) Find a formula for the /ith term of the sequence that gi\es the

value \' of the machine / full years after it was purchased.

(bl Find the depreciated \aluc ol the niaehine al the end of .5

lull \ears.

p^ Numerical. Graphical, and Analytic Analyxi\ In

Exercises 19-22, (a) use a graphing uliiitv to lind the indicated

partial sum .Sj and complete the tabic, and (hi use the graph-

ing utility to graph the first ten terms ol the seipience of partial

sums.

k s 10 l.s 20 25

5.

3\"
19- S ^

-r- I _ 1 )" + I

20. y ^—^

22. 1
I

niii + I)

In Exercises 23-26. determine the convergence or divergence of

the series.

23. V(0.82)"

25. Vi^l^

24. 2(I.S2)"

„^n 3/( + 2

In Exercises 27-30. lind the sum of the series.

28- 1;—

30. V
ill + Din + 2)
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III flxercises 31 and 32. express the repeating; decimal as a

Keoiiietric series and « rite its sum as the ratio of two intesiers.

31. 0.09 32. 0.923076

33. lioiniciiig Ball A ball is Jmppcd from a height of 8 meters.

Each liiiie it drops /; meters, it rebounds 0,7/; meters. Find the

total distance traveled by the ball.

34. Total Compensation .Suppose you accept a job that pays a

salary of $32,001) the Inst yeai. Durini; the next 3'^) \eais. you

will receive a ^.5''/c i"aise each year. Find your total salary o\er

the 40-ycar period.

35. Citinpouud Iiileiest A deposit of S200 is made at the end of

each month for 2 years in an account that pays b'/r interest,

conipoiuided continuoiisK. Determine tlie balance in the account

at the end of 2 \ ears.

36. Compound Interest A deposit of SIOO is made at the end of

each month lor 10 years in an account that pays 6.5'7c.

compounded monthly. Determine the balance m the accoiuit at

the end of 10 \cars.

rp' Numerical, Graphical, and Analytic Analysis In Exercises 53

and 54, (a) verify that the series converges, (b) use a graphing

utility to find the indicated partial sum .S'„ and complete the

tahle. (c) use the graphing utility to graph the first ten terms of

the sequence of partial sums, and Id) use the table to estimate

the sum of the series.

37. y

39. V

In n

I I

38. V

40. V(l-I

41. V
:t^\ Jn' + 2h

.A 2 • 4 (T ^ ^ (2//I

42. V -
"+'

„^i "(" + -)

44. V
.^. y

n 5 10 15 20 25

S„

53. V„h: 54. V (-1 )'-'/,

.,^1 "' + 5

ry SS. Writinti L'se a yraphmy utility to complete the table for (a)

/' = 2 and lb) /> = 5. Write a short paragraph describing and

comparing the entries in the table.

In Kxercises 37

—

tl). determine the convergence or

divergence of the series.

In Kxercises 41—14, determine the convergence or

divergence of the scries.

A' 5 10 20 30 40

A' 1

jv .^"^

56. Wrilini; 'lou arc told that the terms of a positixe series appear

to approach zero very slowly as ;; approaches infinity. (In fact.

cijf = 0.7.) If you are given no other information, can you

conclude that the series di\erges' Support your answer with an

example,

}; :

:'
)

In p'.xercises 57 and 58. use the definition of Taylor

polynomial to find the third-degree Taylor polynomial centered

ate.

57. /(,v) = c 58. /(,v) tan ,v. c =

In Exercises 45—IS. determine the convergence or

divergence of the scries.

,. ^ (
-

1
)"»

4s. N —

;

1 )"/(

47- 1
,f^4 " - ^

•ft- s

48. V

(^1)" s/n

u + 1

(
-

1
)" In if'

II

riM In Exercises 49-52, determine the convergence or

divergence of the series.

49. t- 50. Y -
„^i

<'"

., ^ 1 -3 5- (2/1- I)

„4', 2 • 5 • 8- (3» - 1)

In Kxercises 59-62, use a Taylor poly noniial to approximate the

function with an error of less than 0.001.

59. sin 95°

61. Ind 75)

60. cos(0.75)

62. c-"~^

63. A Taylor polynomial centered at will be used to approximate

the cosine function. Find the degree of the polynomial required

to obtain the desired accuracv o\er the indicated mter\'al.

Ma.xinuiin Error liilcrvcil

(a) 0.001 [-0.5.0.5]

(b) 0.001 [- I, I]

(c) 0.0001 [-0.5,0.5]

(d) 0.0001 [ 2. 2]

n^ 64. L'se a graphing utility to graph the cosine tnnction and the

Taylor polynomials in Exercise 63.
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^2 In Exercises 65-70. find the interval of convergence of

the power series.

66. 2 (2.v)"

H =

3" (.V - 2)"

In Exercises 87-92, find the sum of the convergent series.

Explain how you obtained the sum. [Hint: Use the power series

for elementarv functions.)

69. £ /;!(.v - 2)"

68. 2

70. y ^^-^

In Exercises 71 and 72, show that the function defined by the

series is a solution of the differential equation.

x-y"+ .vy' + .v-y =

(-3)".v-"

87.|,-,r.^

9

t (-1)"^
I

5" n

90. V
3"»!

92. V (
-

1
)"

72. y = 2

3.vv' + 3v =V + J.vv + _-iv

ailM In Exercises 73 and 74, find the geometric power series

centered at for the function.

73. ,?(.v) =
3 - X

74. h(x]
2 + .V

75. Find the power series for the derivative of the function m
Exercise 73.

76. Find the power series for the integral of the function in

Exercise 74.

In Exercises 77 and 78, find a function represented by the series

and give the domain of the function.

">

4 8 .

77. I+|.v + ^.v^ + ^.r' + ---

78. 2U - 3) + ^(x - 3)- - ^(.v - 3)-' +

In Exercises 79-86, find the power series for the function

centered at c.

I + I)!

rp 93. Writing One of the series in Exercises 41 and 49 converges

to its sum at a much slower rate than the other series. Which

is it? Explain why this series converges so slowly. Use a

graphing utility to illustrate the rate of convergence.

94. Find the Maclaurin series for /l,v) = xc'. Integrate the series

term-by-term over the closed interval [(). 1], and show that

==
1

y —-— = 1

„ = „(" + 2)fi!

95. Forming Maclaurin Series Determine the first four terms of

the Maclaurin series for f~'

(a) hy using the definition of the Maclaurin series and the

formula for the coefficient of the ;(th term, a„ = /'"'(O)/;;!.

(b) by replacing .v by 2.v in the series for e''.

(c) by multipl_\ing the series for c' by itself, because t'-" =

96. Forming Maclaurin Series Follow the pattern of Exercise

95 to find the first four terms of the series for sin 2-\, {Hint:

sin 2.V = 2 sin .v cos .v. )

In Exercises 97-100. find the series representation of the func-

tion defined by the integral.

"•IT"'
98. I cos^ ill

79. /(.v) = sin .V. c
3tt 77

4

81. fix) = y. c =

83. f(x) -1

85. g(x) = 4/1 + .V. r =

80. f(x) = cos .V. (

82. /(.y) = CSC .V. c = ~

(first three terms)

84. f(x) = J~x. c = 4

86. /i(.v) = ,,
' ^„ c- =

(1 + .v)'

99. I

iH^^^,/,

100.

In Exercises 101 and 102. use power series to find the limit (if it

exists). Verify the result by using L'Hopital's Rule.

arctan x
101. lim 7=

—

102. lim
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k- 'Proble-m f>ol\//ng

1. The Cantor set (Georg Cantor, 1845-1918) is a subset of tile unit

interval [0, 1]. To construct the Cantor set, first remove the

middle third (3, f) of the interval, leaving two line segments. For

the second step, remove the middle third of each of the two

remaining segments, leaving four line segments. Continue this

procedure indefinitely, as indicated in the figure. The Cantor .set

consists of all numbers in the unit interval [0. 1] that still remain.

(a) Find the total length of all the line segments that are removed.

(b) Write down throe numbers that are in the Cantor set.

(c) Let C„ denote the total length of the remaining line segments

after 11 steps. Find lim C„.

Georg C4NT0R (1845-1918)

Cantor wa.s a German niatliemalitian

known for his work on the

development of set theory, which is the

basis of modern mathematical analysis.

This theory extends to the concept of

infinite (or transfinile) numbers.

2. It can be shown that

' (see Example 3. Section 8.3).

Use this fact to show that V -

—

.^, (2;; u-

Let T be an equilateral triangle with sides of length 1. Let ((„ be

the number of circles that can be packed tightly in 11 rows inside

the triangle. For example, a, = I. o, = 3, and a, = 6, as shown

in the figure. Let A„ be the combined area of the <(„ circles. Find

lim A„.

4. Identical blocks of unit length are stacked on top of each other at

the edge of a table. The center of gravity of the top block must

lie over the block below it, the center of gravity of the top two

blocks must lie over the block below them, and so on.

(a) If there are three blocks, show that it is possible to stack

them so that the left edge of the top block extends p unit

beyond the edge of the table.

(b) Is it possible to stack the blocks so that the right edge of the

top block extends beyond the edge of the table?

(c) How far beyond the table can the blocks he stacked?

5. (a) Consider the power series

^ a„.x" = 1 + 2.V + 3.V- + .V-' + + 3.v'^ + A-'- +

in which the coeftlcients o,, = 1. 2, 3, 1. 2. 3, 1, . . .are

periodic of period /> = 3. Find the radius of convergence and

the sum of this power series.

(b) Consider a power series

11 =

in which the coefficients are periodic. "„+ = ci Find the

radius of convergence and the sum of this power series.

6. For what values of the positive constants a and b does the

following series converge absolutely? For what values does it

converge conditionally?

bh a b a h a

2 3
4'^5

6 7

7. Find a power .series for the function

f(x) = xe-

cenlered at 0. Use this representation to find the sum of the

infinite series

y ——
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K
8. Find./

/(-v) =

i-'(O) if

[Him: Do not 1. alculate 12 derivatives!)

9. The gi aph of the function

'l. x =

f(x) = sin .V

X
A- >

is shown below. Use the Alternating Series Test to show that the

improper integral I /(.v) clx converges.

y

10. (a) Prove that
1

; dx converges if and only if p > 1

.

.v(ln.v)

(b) Determine the convergence or divergence of the series

y —-T-
^i n \nin-)

11. (a) Consider the following sequence of numbers defined

recursively.

a,

«2

= i

= 73

"3 = 73 + V3

n„+i = 73 + a„

Wnte the decimal appro.ximations for the first six terms of

this .sequence. Prove that the sequence converges and find

its limit.

(b) Consider the following sequence defined recursively by

<7| = v/a and (7„_^ ,
= Va + n„. where a > 2.

-/a. V" + 7a. \ a + -Ja + 7a. •

Prove that this sequence converges and find its limit.

12. Let {o,,} be a sequence of positive numbers satisfying

1
^

lim (a,)''" = L < -. r > 0. Prove that the series V a„r"

oo
J

13. Consider the infmite .series V
-^n + t-:

y

n= 1
'-

(a) Find the first five terms of the sequence of partial sums.

(b) Show that the Ratio Test is inconclusive for this series.

(c) Use the Root Test to test for the convergence or divergence

of this series.

14. Derive each identity using the appropriate geometric series.

1

0.99

1

(a) 1.01010101

(h)
0.98

1.0204081632.

15. Consider an idealized population with the characteristic that

each member of the population produces one offspring at the

end of every time period. If each member has a life span of

three time periods and the population begins with ten newborn

members, then the following table gives the population during

the first five time periods.

Age Bracket

Time Period

1 2 3 4 5

0-1 10 10 20 40 70

1-2 10 10 20 40

2-3 10 10 20

Total 10 20 40 70 130

The sequence for the total population has the property that

5„ = S„ n > 3.

Find the total population during the next five time periods.

16. Imagine you are stacking an infinite number of spheres of

decreasing radii on top of each other, as indicated in the figure.

The radii of the spheres are 1 m, 1/72 m, 1/73 m, etc. The

spheres are made of a material that weighs I newton per cubic

meter.

(a) How high is this infinite stack of spheres?

(b) What is the total surface area of all the spheres in the stack?

(c) Show that the weight of the stack is finite.



Exploring New Planets

Planets outside our own solar system are difficult to

find because they are so dim compared with their

parent stars. To discover these planets, astronomers

i"cl\' on the influence that the planet may have on the

star An orbiting planet's gravitational pull diags the

star back and forth as the planet rotates around it.

This wobbling results in a subtle red-blue shift in the

color of the star's light, known as the Doppler effect.

L'siiig a spectrometer, astronomers can monitor a star's

Doppler variations, and use the results to calculate

details pertaining to the orbiting body.

It was this lechnii|ue that allowed Geoffrey Marcy

and Paul Butler, of San Francisco State University, to

identify a body rotating around the star 70 Virginis.

They theorize that it is a large planet. 6.6 times as

riiassixe as Jupiter, although there is a small probability

that it is a brown ilwaif star. Marcy and Butler have

calculated that the planet, named 70 Vir B. completes

an orbit once every 1 16.6 days.

According to the astronomers, the planet's orbit

is an ellipse with an eccentricity of 0.4. and a major

axis length of 0.86 AU. (An astronomical unit, or AU.

is the mean distance from the earth to the sun. about

^J3 million miles.) Placed on a rectangular coordinate

system and centered at the origin, the equation for

this ellipse is

+
0. 1X4*-) O.L^.S.^

as shown in the graph.

QUESTIONS

= 1

Orbit

70 VirB

Rather than using Cartesian coordinates and center-

ing the orbit at the origin, however, astronomers find it

convenient to use polar coordinates. Using the sun as the

main reference point, or the pole, each point is defined

by its distance r from the sun and its angle 6 from the

hoinzontal. With the star 70 'Virginis as the pole, the new

planet's orbit is

0.3612

1
- 0.4 cos 0'

Pokir equation lor orbit of 70 Vir

Kepler's second lav\' of planetary motion allows you to

set up the proportion

t area of segment

period area of ellipse

0.36 1:

I
- 0.4 cos 0,

lie

0.5324

which you can solve to find the time t (in days) that it

takes this particular planet to mo\e in its orbit fiom

e = a 10 = p.

1. Set your graphing utility to polar mode and enter the polar equation for the orbit of 70 'Vir B.

Graph the equation using ;i window with H varying from to —
. Then graph the equation again

with H varying from to 2 7r. and again with H varying from to 4-. What do you observe?

2. When 9 varies from to n. the planet moves through half of its orbit. Starting w ith 9 = 0.

what value of 9 coiresponds to one-fourlh of the orbit'.' Explain.

3. Use the result of Question 2 to estimate the time it takes the planet to travel from 9 =

through one-quarter of its orbit. Then estimate the time it takes to travel through the second

quarter of its orbit. Are these times the same'? Describe the motion of this planet. When does

it have a maximum speed? When does it have a minimum speed?

The concepts pivsenictl here leill he expliireil Jiirther in lliis eluipler tor an extension of this

(ippliciition, see l.iil) /.i in llie loh scries ihiil aecoinpciiues this text HI college. hlllCO.com.
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Conies, Parametric Equations,

and Polar Coordinates

In April 2001. Geoffrey Marcy and Paul Butler

were awarded the Henry Draper Medal by the

National Academy of Sciences ""for their

pioneering investigations of planets orbiting

other stars via high-precision radial velocities."

With their colleagues. Marcy and Butler have

found 38 of 53 known extra-solar planets since

1995.

Geoffrey Marcy. left, and Paul Butler, right, used a technique known as

the Doppler effect to identify the new planet 70 Vir B.

FOR FLRTHER INFORMATION For more infonnation on the discover) of the new planet 70 Vir B. see

the article "Searchina for Other Worlds" in Time. To view this article, go to the website u'uw.iiuiilhinick's.coin.
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^.im^fmmmimmmmMms
Understand the definition of a conic section.

Analy/.e and write equations ol' parabolas using properties of parabolas.

Analyze and write equations of ellipses using properties of ellipses.

Analyze and write equation.s of hyperbolas using properties of hyperbolas.

Hvp\TH (.'70-415 ».!).)

Tile Greeks discovered conic sections sometime

between 600 and 300 B.C. By the beginning of

the Alexandrian period, enough was known

about conies for Apollonius (262-190 B.C.) to

produce an cight-\olunie work on the subject.

Later, toward the end of the Alexandrian

period. Hypatia wrote a textbook entitled On

the Conks of Apiilloniiis. Her death marked

the end of major mathematical discoveries in

Europe for several hundred years.

The early Greeks were largely con-

cerned with the geometric properties of

conies. It was not until 1900 years later, in

the early seventeenth century, that the

broader applicability of conies became

apparent. Conies then played a pioininenl

role in the development of calculus.

Conic Sections

Each conic section (or simply conic) can be described as the intersection of a plane

and a double-napped cone. Notice in Figure 9.1 that for the four basic conies, the

intersecting plane does not pass through the \ ertex of the cone. When the plane passes

through the xcrtcx. the resulting figuie is a degenerate conic, as show n in Figure 9.2.

/

Circle

Conic sections

Figure 9.1

Parabola Ellipsi Hyperbola

Poinl

Degenerate conies

Figure 9.2

Line Two intersectinsz lines

Thcie arc several ways to study conies. You could begin as the Greeks did by

defining the conies in lernis of the intersections of planes and cones, or you could

define them algebniicalK in terms of the general second-degree equation

Ax- + B.vv + Cv- Dx + Er + F = 0. General second-degree equation

FOR FURTHER INFORMATION To learn

more about the mathematical acti\ ities

of Hypatia, see the article "Hypatia and

Her Mathematics" hy Michael A. B.

Deakin in The Aiucrican Miillu'inarical

Monthly. To view this article, go to the

website www.inathcirticles.cinu.

However, a third approach, in which each of the conies is defined as a locus (col-

lection) of points satisfying a certain geometric property, suits our needs best. For

example, a circle can be detnied as the collection of all points (.v, v) that are equidis-

tant from a fixed point (/;, A). This locus definition easily produces the standard

equation of a circle.

(.V - /;)- + (v - k)- Slandai'd etiLialion ol a circle
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Axis

Directrix

Figure 9.3

Parabolas

A parabola is the set of all pmnts (.v. v) that arc cc|iiidistant IVoni a t~i\cil line callcLl

the directrix and a fixed point called the focus not on the line. The midpoint between

the focus and the directrix is the vertex, and the line passnig throngh the focus and the

vertex is the axis of the parabola. Note in Figure 9.3 that a parabola is symmetric with

respect to its axis.

THEOREM 9. 1 Standiird Equation of a Parabola

The standard form of the equation of a parabola w ith \ertex (/;. k) and

directrix \- = k ~ p is

(.V - /;)- = 4/>( V - A). Vertical axis

For (.lirectrix .v = /; — />. the c(.|tialion is

(v - k)- = 4/>(.v - /(). hlonzontal axis

The focus lies on the axis /> luiils iiluvil <(/ JiMiiiicc) from the \ertex. The coor-

dinates of the focus are as follows.

(/;. k + p) Vertical axis

(h + /'. k) Honzoiit.il axis

Parabola with a vertical axis. /) <

Figure 9.4

Example 1 Finding tlie l''ocus of a Parabola

Find the focus of the parabola given by y = — ^.v- — .v + i-

Solution To find the focus, convert to standard form by completing the sc|iiare.

1

,.i.i

1

Write ori'jin,il etltiation

Factor out -

2y = 1 - 2.V - .V- MullipK eacli siJe by 2

2y =
I — (.V-^ + 2.v) Group terms

2v = 2 — (x^ + 2.V + I ) .Add and suhtracl 1 on iiijlil side

.v^ + 2.V + 1 = - 2v + 2

(.V + 1)- = -2(y - 1) .Standard form

Comparing this eciuation with (v - /;)- = 4/)( y - k). you can conclude thtit

1

/; = -1, k = 1. and /'

Because /) is negative, the parabola opens downward, as shtiwn tn Figure 9,4,

Therefore, the focus of the paiabohi is /' units from the vertex, or

(/^A+/-) = (-l.^), Focu

A line segment that passes through the focus of a parabola and has endpoints on

the parabola is called a focal chord. The specific focal chord perpendicular to the axis

of the pai-abola is the latus rectum. The next example shows how to determine the

length of the latus rectum ;tnd the length of the corresponding intercepted arc.



652 CHAPTER 9 Conies. Paraiiietrii. Equations, and Polar Coordinates

(0.,;)

Lengtii ol lalns iccliim: 4/)

Arc length; 4 .^')/i

Fisure 9.5

Example 2 Focal Chord Length and Arc Length

Find tlie lengtii of the latus reettini of the parabola given by

A- = Apy.

Then find the length of the parabolic are intercepted by the latus rectum.

.Solution Because the latus rectum passes throtigh the focus (0, /') and is peipendic-

ular to the v-axis. the coordinates of its endpoints are (—.v./?) and (x.p). Substituting

p for ^ in the eL|iiation of the parabola produces

.1- = 4/.(/.) .V = ±lp.

So, the endpoints of the latus rectum are ( - 2/7. /)) and (2/). /)). and you can conclude

that its length is 4/;, as shown in Figure 9.5. In contrast, the length of the intercepted

arc is niven by the followiui;.

s =
I J\ + (y')- d.\

^1 </-V

'4p' + .v-i/.v

PJo

—
.v s '4/1 - + .V- + 4/)- Inl.v + v/4/)- + .v-

-P

— [^pJW- + -^/'- ln(2/> -I- , 8^) - 4/»- ln(2/))_

2p[s/2 + ln(l + 72)]

4.59p

Use circ length formula.

Simpliry.

Theorem 7.2

^
One widely used property of a parabola is its reflective property. In physics, a

surface is called reflective if the tangent line at any point on the surface makes equal

angles with an incoming ra\ aiul the restilting outgoing ray. The angle conesponding to

the incoming ray is the ansjle of incidence, and the angle correspimding to the outgoing

ray is tlie angle of reflection. One example of a reflective surface is a flat miiTor.

Another type of reflective surface is that formed by revolving a parabola about its

axis. A special property of parabolic reflectors is that they allow us to direct all incom-

ing rays parallel to the axis through the focus of the parabola—this is the principle

behind the design of the parabolic mirrors used in reflecting telescopes. Conversely,

all light rays emanating from the focus of a parabolic reflector tised in a flashlight are

parallel, as shown in Figure 9.6.

Light suurce

at locus

A.\is

THEORE.M 9.2 Reflective Propert}^ of a Parabola

Le t f be a point on a parabola 4 he taiiiient 1 nc to the par ibola at the point /'

m;ikes equal angles w itli the l< llowing tv\o lines.

1. The line passing through P and the focus

2. The line passing through P parallel to the axis of the p;irabol a

Paraholic ri'llctlor: light is rt'lletlcil in

parallel rays.

Fisure 9.6

^^P iiuliciitc.s llitil ill till' Interactive 3.0 CD-ROM mid Internet .i.O versions of this lt:\l

(available at college.hmco.coni ) \i>ii will find an Open Exploration, which further explores this

example using the computer algebra systems Maple. Mathcad. Mathematica, and Derive.
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:=a

NicoLAiis CoPERMCis (1473-1543)

Copernicus began lo sludy planetary motion

when asked to revise the calendar. At that

time, the exact length of the year could not be

accurately predicted using the theory that

earth was the center of the universe.

Ellipses

More than a thousand years alter the close of the Alexandrian period ol Cireek

mathematics. Western civilization rinally began a Renaissance o( mathematical and

scientific discovery. One of the principal figures in this rehirth was the Polish

astronomer Nicolaus Copernicus. In his work On the Rcvululioiis of the Heavenly

Spheres. Copernicus claimed that all of the planets, including earth, revolved about the

sun in circular orbits. Although some of Copernicus's claims were invalid, the

contro\et"sy set off by his heliocentric theor\ motivated astronomers to search for a

mathematical model to explain the observed movements of the sun and planets. The

first to find the correct model was the German astronomer Johannes Kepler

(1571-1630). Kepler discovered that the planets move about the sun in elliptical

orbits, with the sun not as the center but as a focal point of the orbit.

The use of ellipses to explain the movement of the planets is only one of many

practical and aesthetic uses, .As with parabolas, we begin our study of this second type

of conic by defining it as a locus of points. Now, however, we use nro focal points

rather than one.

An ellipse is the set of all points (v, y) the sum of whose distances from two

distinct fixed points called foci is constant. (See Figure 9.7.) The line through the fi)ci

intersects the ellipse at two points, called the vertices. The chord joining the vertices

is the major axis, and its midpoint is the center of the ellipse. The chord perpendic-

ular to the major axis at the center is the minor axis of the ellipse

(.V, V)

FOR FURTHER I.\F<)RMATIOi\ To

learn ahuut how an ellipse may be

"exploded" into a parabola, see the

article "Exploding the Ellipse" by

Arnold Good in Mallicmalics Tctuhcr.

To view this article, go to the website

wivw.iihillhirticlc.s.i iini.

Vertex Vertex

Fi"urt' y.7

THEOREM 9.3 Standard Equation of an Ellipse

The standard form of the equiition of an ell pse with ccMiter (/;. k) and major and

minor axes of lengths 2a and 2/', where a > /7, is

(.V - /;)- (v

11-

- k)-

b-
=

1 Major axis is lori/unlal.

or

(.V - /;)- (v -k)-

a-
= 1 Ma|or axis is \ertical.

The foci lie on the ma|or axis ( units from the center. with c~ = a- -- /;-.

Figure 9.8

NOTE You can visuali/.e the dellnition ol an ellipse by imagining two thumbtacks placed at

the foci, as shown in Figure 9.S. If the ends of a fixed length of string are fastened to the thanib-

tacks and the string is drawn taut with a pencil, the path traced by the pencil will be an ellipse.
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(A- I)
- (v + 2)-_

4 "^16 "'

Vertex

/
FoL-us \

-4

\

•

CeiKci

4

\ FOLLIS /

VlmIcx

tliipst witli a MTlical major axis

Figure 9.9

Example 3 Completing the Square

Find the center, vertices, and foci of the elhpse given by

4.V- + V- - 8.V + 4v -8 = 0.

Solution By completing the square, you can write the given equation in standard

form.

4v= + V- - 8.V + 4v - 8 =

4.v= - 8.V + y- + 4y = 8

4(.v- - 2.V + 1 ) + {}- + 4y + 4) = 8 + 4 + 4

4(,v - 1)^ + (y + 2)- = 16

(.V - II-
,

(v + 2)-

Write original equation.

16
I SlanJard lorm

So. the major axis is parallel to the y-a.xis, where /; = I. ^ = —2, a = 4. b = 2, and

c = Vl6 — 4 = 2s/,-i. Therefore, you obtain the following.

Center: (I. -2) (li,k)

Vertices: ( 1. -d) and (1.2) (/;. k ± a)

Foci: (I. -2 - 2. 3)and (l. -2 + 273) i/,.A±e)

The graph of the ellipse is shown in Figure 9.9. [2]

NOTE If the constant term F = - 8 in the equation in E.xample 3 had been greater than or

equal to 8, you would have obtained one of the following degenerate eases.

fv - I)' (v + 2)-
1. F = 8. sinale point. (I. -2): ^

, + ,^ =
4 16

-, E- o ,

(v- D- _, (v + 2)-
^^

2. r > 8. no soliilion poims: ; 1

—

'—— <
4 16

Example 4 I'lu' Orhit ol the Moon

The moon orbits earth in an elliptical path with the center of earth at one focus, a.s

shown in Figure 9. II). The tiiajor and minor axes of the orbit have lengths of 768.806

kilotiieters and 767.746 kilometers. Find the greatest and least distances (the apogee

and perigee) from earth's center to the moon's center.

Solution Begin by solving for a and /).

2(1 = 768,806 Length ol major axis

il = 384,403 Solve lor «.

2/' = 767,746 Lenglh ol minor axis

/) = 383,873 ,SoKe fo,h

Now. using these values, you can solve for c as follows.

c = Jcr - h" = 20, 1 79

The greatest distance between the center of earth and the center of the moon is

(/ + ( ~ 404,.'i82 kilometers, and the least distance is a - c ~ 3(>4,224 kilometers.

Figure 9.10
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FOR FURTHER INFORMATION For

more information on some uses of tlie

reflective properties of conies, see the

article "Parabolic Mirrors. Elliptic and

Hyperbolic Lenses" by Mohsen Maesiniii

in Tlie American Matlwiiuitical Moiitlily.

Also see the article "The Geometry of

Microwave Antennas" by William R.

Parzynski in MathemaUcs Teacher. To

view these articles, go to the website

www. matharticles.com.

Theorem 9.2 presented a relleetive property o\ parabohis. Ellipses have a similar

retleetive pioperty. You are asked to pro\e the follouiiii: theorem in Exercise I II).

THEOREM 9.4 Reflective Property of an Ellipse

Let P be a point on an ellipse. The tangent line to the ellipse at point f makes

equal angles with the lines through P and the foci.

One of the reasons that astronomers had difficulty in detecting that the orbits of

the planets are ellipses is that the foci of the planetary orbits are relatively close to the

center of the sun. making the orbits nearly circular. To measure the ovalnes.s of an

ellipse, we use the concept of eccentricity.

Definition of Eccentricity of an Ellipse

The eccentricity c of an elii 3se is given hy the ratio

c
e = -.

a

(a) - is small.

(b) - is close to I.

a

Eccentricity is the ratio
-

Figure 9.11

To see how this ratio is used to describe the shape of an ellipse, note that because

the foci of an ellipse are located along the major axis between the vertices and the

center, it follows that

< ( < a.

For an ellipse that is nearly circular, the foci are close to the center and the ratio c/a

is siTiall. and for an elongated ellipse, the foci are close tti the vertices and the ratio is

close to I. as shown m Figure 9. 1 I . Note that < c < I for every ellipse.

The orbit of the moon has an eccentricity of c = 0.(),S49. and the eccentricities of

the nine planetary orbits are as follows.

Mercury: (' = 0.2().';6 Saturn: e = 0.054.1

Venus: c = 0.0068 L'ranus: (' = 0.0460

Earth: e = 0.0167 Neptune: e = 0.00.S2

Mars: (• = 0.09.14 Pluto: e = 0.24SI

Jupiter: c = 0.0484

You can use integration to show that the area of an ellipse is A = mih. For

instance, the aiea of the ellipse

.V- Y-

is given by

.V- d\

Ah

a

a~ COS" 6 do. Triuonuiiietnc substitution v = n sin

However, it is not so simple to find the circumference of an ellipse. The next example

shows how to use eccentricity to set up an "elliptic integral" for the circumference of

an ellipse.
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Area and CiRriiMFERENCE of an Ellii^e

In his worii with elliptic orbits in the early

1600 s. Johannes Kepler successfully devel-

oped a formula for the area of an ellipse,

A = -nah. He was less successful in

developing a formula for the circumference

of an ellipse, however: the best he could do

was to give the approximate formula

C = TTiu + b).

f* V

C " 2S.36 units

Example S Finding tlie Circumference of an Ellipse

Show that the eircumfeiciicc of the ellipse (.v'/(r) + ( Y-/h-) = 1 i.s

Jo

4« J I - c-sm- diW.

Solution Because the given ellipse is synitnetric with respect to both the .v-axis

utid the A-axis, you ktiow that its circutiifetence C is four times the arc letigth of

y = (b/a)^/a- — x- in the t'trst quadrant. The function y is differentiable for all .v in the

interval [0. <(] except at x = a. So. the circuiiilerence is given hy the improper integral

C = Itm 4
I
yi + (y')- clx = 4

| Vl + (y')- dx = 4 l+V^./.v.
a-(a- - X-)

Using the trigonometric substitution .v = a sin H. you obtain

r = 4i
b- sin- 6

, ,, , ,

I + ^ 7- {" COS H) (IH
II- cos- 6

= 4| y^r cos- + b-sm- Hell)

r7T/2

= 4 I Jci-( I
- sin- 0) + b- sin- JO

= 4
I

Ja^^lcr - b-hm- clO.

Jo

Because f- = c-/a- = (tr — b-)/a-. you can rewrite this integial as

-/:

C = 4a J\ - c-sin- H clH.

A great deal of titne has been devoted to the study of elliptic integrals. Such

integrals generally do not have eletnentary antiderivatives. To find the circumference

of an ellipse, yon must tisiially resort to an approximation techniciiie.

Example 6 Appro.vimating the Value of an Elliptic Integral

Use the elliptic integral in Exatnple 5 to approximate the circtimleretice of the ellipse

25 1

6

Solution Because c- = c-/«- = (ir - b-)/a- = 9/25. you have

C = (4)(5)
9 sin-

25
dti.

Applying Simpson's Rule w ith /; = 4 produces

C = 20(^jl -j[l + 4(0.9733) + 2((l.9()55) + 4(0.8323) + 0.8]

== 28.36.

So. the ellipse has a circumference of about 28.36 units, as shown in Figure 9.12,

Figure 9.12
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Figure 9.13

Hyperbolas

The definition of a hyperhola is similar to tliat ot an ellipse. For an ellipse, the midi of

the distances between the foei and a point on the ellipse is fixed, whereas for a hvper-

bola, the absolute \alLie of the difference between these distances is fi.xed.

A hyperbola is the set of all points (.v. v) for which the absolnte \ahie ot the

difference between the distances from two distinct fixed points called foci is constant.

(See Figure 9.13.) The line through the two foci intersects a hyperbola at two points

called the vertices. The line segment connecting the vertices is the transverse axis,

and the midpoint of the transverse axis is the center of the hyperbola. One distin-

guishing feature of a hyperbola is that its graph has two separate branehes.

THEOREM 9. S Standard Equation of a H3T)erbola

The standard form of the eqtiation of a hyperbola with center at (/;. k) is

(.V - /!)- ( \ - k)-
Tr.ins\erse axis is hori/iiTnal,

or

(y - k)- (.V - /()-
1

Transserse a\is is \ertical.

The \ertices are o units from the cenler. ami the foci arc c units from the center.

Moreover, e- = cr + h".

NOTE The Cdiisianls n. />. and i do not have the same relationship lor iiyperholas as Ihcy do

for ellipses. For hyperbolas, i
- = (/- + /)-. hut for ellipses, c- = <;- - />-.

,-\ii important aid in sketching the graph of a hyperbola is the determination of its

asymptotes, as shown in Figure 9.14. Each hyperbola has two asymptotes that

intersect at the center of the hyperbola. The asymptotes pass through the vertices of a

rectangle of dimensions la by lb. with its center at (/;, k). The Imc segment of length

2b joining (/;. k + b) and (/;, k — b) is referred to as the conjugate axis of the

hyperbola.

Asympliile

THEOREM 9.6 .Vs)Tnptotes Of a Hyperbola

For a horizontal ti ansverse axis. he ec|uations of the asymptotes are

X = k + -(X
a

- /;) and .V = k
a

/;).

For a verrical transverse axis, the ei|uations of the asymptotes are

r = k + ^(.v
b

- /() and y = k - ;"
-

/;).

Figure 9.14

In Figure 9.14 you can see that the asymptotes coincide with the diagonals ot

the rectangle w ith dimensions la and lb. centered at (/?. k). This provides you with

a quick means of sketching the asymptotes, which in turn aids in sketching the

hyperbola.
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n^-i Example 7 Using Asymptotes to Sketch a Hyperbola

Sketch the graph oF the hyperbola whose equation is 4.v- — v- = 16.

TECHNOLOGY You can use a

graphing utility to verify the graph

obtained in Example 7 by solving the

original equation for y and graphing

tlie followina.

y4.v^ 16

- ./4a- 16

Solution Begin by rewriting the equation in standard form.

The transverse axis is horizontal and the veitices occur at (
— 2, 0) and (2. 0). The ends

of the conjugate axis occur at (0, —4) and (0,4). Using these four points, you can

sketch the rectangle shown in Figure 9.1.'i(a). By drawing the asytnptotes through the

corners of this rectangle, you can cotnplete the sketch as shown in Figure 9.13(b).

(-2. 0) '

(0,4)'

(2, 0)

(0,-4)

(a)

Fijiiirt 9.15

(b)

^1

Definition of Eccentricity of a Hyperbola

The eccentricity e of a hyperbola is given by the ratio

As with an ellipse, the eccentricity of a hyperbola is e = c/a. Because c > a

for hyperbolas, it follows that c > 1 for hyperbolas. If the eccentricity is large, the

branches of the hyperbola are nearly flat. If the eccentricity is close to 1 . the branches

of the hyperbola are more pointed, as shown in Figure 9.16.

Eccentricit}'

is lurae.

Eccentricity

is close to 1.

Focus
"^^-^~ ~ -' Vertex --i>^^^ ~~ -. „ - - ^^^^ ,^--'- ''~^

-§ a
1

J

f

Figure 9.16
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The lollovviiii; application was developed during World War II. Il shows hov\ the

properties of h\ pcrbolas can he used in radar and other detection s\ steins.

2c = .i2.S0

(/, - ,/, = 2« = 2200

Figure 9.17

Example 8 A Hyperbolic Detection System

Two microphones. 1 mile apart, record an e.xplo.sion. Microphone ,4 receives the

sound 2 secontls before microphone /)'. Where was the explo.sion?

Solution AssLnnuig that sounti travels at I 100 tcct per second, sou know that the

explo.sion took place 22(10 feet farther from />' than from A. as shown in Figure 9.17.

The locus of all points that are 2200 feet closer to A than to B is one branch of the

hyperbola (.v^/(/-) - {y-/h-) = 1. where

I mile 5280 ft

2(i40 ft

and

2200 ft

a = —-— =
1 100 It.

Because <- = ir + /'-. it follows that

b- = (- — ir

= .'^.7?'-).60()

and you can conckide that the explosion occurred somewhere on the right branch ol the

h\ perbola gi\en bv

1.210.000 5.759.600

^^^^m ^^^A11
^^^^^^^^^^m'^^jj' .-H ^^^H

^^^K ^M

mHfj^^fl r^^lA

B^I^^^E^m
C\ROUNrHERS(Htr (1750-1X48)

The first woman to be credited willi detecliiiii

a new comet was the English astronomer

Caroline Herschel. During her life.

Caroline Herschel discovered a total of eight

new comets.

In Example 8. you were able to determine only the hyperbola on which the

explosion occurred, but not the exact location of the explosion. If. however, you had

received the sound at a third position C. then two other hyperbolas would be

determined. The exact location of the explosion would he the point al which these

three hyperbolas inter.sect.

Another interesting application of conies involves the orbits of comets in our

solar system. Of the 610 comets identified prior to 1970, 245 have elliptical orbits.

295 have parabolic orbits, and 70 ha\c hyperbolic orbits. The cenler ol the sun is a

focus of each orbit, and each orbit has a vertex at the point at which the comet is

clo.sest to the sun. Undoubtedly, many comets with parabolic or hyperbolic orbits have

not been identified—such comets pass through our solar system once. Only comets

with elliptical orbits such as Halley's comet remain in our solar system.

The type of orbit lor a comet can be determined as follows.

1. Ellipse:

2. Parabola:

3. Hyperbola:

jlGM/pV <

V = JlGM/j.

V > 'IGM/j

In these three formulas, p is the distance between one \ertex and one focus of the

comet's orbit (in meters), v is the velocity o'i the comet at the \ertex (in meters per

second). M =
1 .991 Hy kilograms is the mass of the sun. and G ~ 6.67 - 10" '

'

cubic meters per kilogram-second squared is the gravitational constant.
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EXERCISES FOR SECTION 9.1

In Exercises 1-8, match the equation with its graph. [The rp In Exercises 17-20. find the vertex, focus, and directrix of the

graphs are labeled (a), (b), (c), (d). (e), (fl, (g), and (h)

(c)

w
I I I

%
(e)

(g)

(f)

2. A- = 8v

4.
(.V- 2)^

1

(v + D-

16 4

6.M-
8.

(-V - 2)- V- ,

9 4 '

parabola. Then use a graphing utility to graph the parabola.

17. y- + A- + y =

19. ^- - 4a- - 4 =

18. y = -^(a- - 8a + 6)

20. V" - 2a + 8a + 9 =

In Exercises 21-28, find an equation of the parabola.

22. Vertex: (-1.2)

Focus: (-1.0)

24. Focus: (2, 2)

Directrix: a' = —2

26. y

16

In Exercises 9-16, find the vertex, focus, and directrix of the

parabola, and sketch its graph.

9. y- = -6a

11. (a + 3) + (y - 2)- =

13. y- - 4y - 4v =

15. a' + 4v + 4\- - 4 =

10. A- + 8y =

12. (a - D- + 8(y + 2) =

14. y- + 6y + 8a- + 25 =

16. V- + 4v + 8a - 12 =

(2.01

27. Axis is parallel to y-axis; graph passes through (0. 3). (3.4),

and (4. 11).

28. Directrix: y = -2; endpoints of latus rectum are (0.2) and

(8.2).

In Exercises 29-34, find the center, foci, vertices, and eccentric-

ity of the ellipse, and sketch its graph.

29. A- + 4y- = 4

30. 5a-^ + 7^- = 70

31. ^^^ -f
i^^^ = 1

9 25

32. (A + 2)^ +i^ = I

33. 9a- + 4v- + 36a - 24^ + 36 =

34. 16a- + 25i-- - 64v + I5()y + 279 =

rp In Exercises 35-38, find the center, foci, and vertices of the

ellipse. Use a graphing utility to graph the ellipse.

35. 12a- -I- 20y- - I2v + 4(h- - 37 =

36. 36a-- + 9y- -I- 48v - 36\- + 43 =

37. A-- -I- 2\'- - 3a + 4y -I- 0.25 =

38. 2a- + y- + 4.8a - 6.4y -f 3.12 =

In Exercises 39-44, find an equation of the ellipse.

39. Center: (0. 0) 40. Vertices: (0. 2). (4, 2)

Focus: (2. 0) Eccentricity: i

Vertex: (3. 0)
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41. Vertices: (3, 1). (3.9)

Minor axis length: 6

43. Center: (0,01

Major axis: hon/nntal

Points on the ellipse:

(3. 1). (4. (1)

42. Foci: (0. ±5)

Major axis length: 14

44. Center: (1,2)

Major axis: vertical

Points on the ellipse:

(I. 6). (3. 2)

In Kxercises 45-52, find the cenliT. foci, and vertices of the

hvperhola, and sketch its )>raph usinj; asymptotes as an aid.

45.

47.
(v

4
1

(v + 2)

46.
25 9

48.
(v + D-

144

1 S =

,S(1 =

I

(.V - 4)=
=

I

4 1

49. 9.V- - y- - 36 V - 6y

50. y- - 9a- + 36a - 72

51. .V- - 9y- + 2a- - 54v

52. 9a-- - 4\- + 54v + Sy + 78 =

rp In Kxercises 53-56. find the center, foci, and vertices of the

hyperbola. I se a );raphin(; utility to jjraph the hyperbola and its

asymptotes.

53. 9y-- - a' + 2a + 54\- + 62 =

54. 9a- - y- + 34v + l()\- + 55 =

55. 3a-- - 2y- - 6a - I2y - 27 =

56. 3v- - A- + 6a - I2v =

In Exercises 57-64, find an equation of the hyperbola.

57. Vertices: (±1.(1)

Asymptotes: y = ±3a-

59. Vertices: (2. ±3)

Point on graph: (0, 5)

61. Center: (0.0)

Vertex: (0.2)

Focus: (0.4)

63. Vertices: (0.2). (6.2)

Asymptotes: v = ^.v

X = 4 - iv

58. Vertices: (0. ±3)

Asymptotes: y = ±3.v

60. Vertices: (2. ±3)

Foci: (2. ±5)

62. Center: (0, 0)

Vertex: (3.0)

Focus: (5. 0)

64. Focus: (10.0)

Asymptotes: v = ±%\

In I'xercises 65 and 66, find equations for (a) the tangent and (b)

the normal lines to the hyperbola for the given value of .v.

65. 1. 66. = I . V = 4

In Exercises 67-76, classify the graph of the equation as a

circle, a parabola, an ellipse, or a hyperbola.

67. A= + 4y-- - 6a + 16\ +

68. 4a= ~ y- - 4a -3 =

69. v- - 4\ - 4a =

:i

70. 25a- - lOv - 200y - 119 =

71. 4a- -I- 4y- - 16y + 15 =

72. y- - 4y = A + 5

73. 9.V- + 9y - - 36.v -I- 6y + 34 =

74. 2a(a - y) = \(3 - v - 2a)

75. 3(a - D- = 6 + 2(v -I- 1)-

76. 9(a + 3)- = 36 - 4(v - 2)-

il. Solar Collector A solar collector tor heating water is

conslructcil with a sheet of stainless steel thai is lormed into

the shape of a parabola (see figure). The water will How

through a pipe that is located at the locus of the parabola. At

what distance troni the vertex is the pipe'.'

Figure for 81 Figure for 82

82. Beam Deflection A simply supported bean-i that is 16 meters

long has a load concentrated at the center (see rigiire). The

deflection of the heam at its center is 3 centiiiieters. Assume

that the shape of the deflected beam is parabolic.

(a) Find an equation of the parabola. (Assume that the origin is

at the center of the beam.)

(b) Flow far from the center of the beam is the dellection

1 centimeter?

83. Find an etiuation of the tangent line to the parabola y = av- at

A =
.\,|. Prove that the v-intercept of this tangent line is (-v,|/2. 0).
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84. (a) Prove tliat any two distinet tangent lines to a parabola

intersect,

(b) Demonstrate the result in part (a) by finding the point of

intersection of the tangent lines to the parabola .v- - 4.v
-

4i' = at the points (0. 0) and (6. ?<).

85. (a) Prove that if any two tangent lines to a parabola intersect at

right angles, their point of intersection must lie on the

directrix.

(b) Demonstrate the result in part (a) by proving that the

tangent lines to the parabola .v- - 4a - 4v + 8 = at the

points ( - 2. .S) and (3. j) intersect at right angles, and that

the point of intersection lies on the directrix.

86. Find the point on the graph of .v- = 8y that is closest to the

focus of the parabola.

87. Radio and Television Reception In mountainous areas,

reception of radio and television is sometimes poor. Consider

an idealized case where a hill is represented by the graph of the

parabola i = .v - v". a transmitter is located at the point

(—1. 1). and a receiver is located on the other side of the hill at

the point (v,,. 0). What is the closest the receiver can be to the

hill so that the reception is unobstructed?

88. Modeling Data The per capita consumption C (in pounds) of

commercially produced fruits in the United States for selected

years is given in the table. (Source: U.S. Department of

Afiriciilture)

Year 1980 1985 1990 1995 1996 1997

C 262.4 269.4 273.5 285.4 289.8 294.7

(a) Use the regression capabilities of a graphing utility to find

a quadratic model for the data, where r is the time in years,

with t = corresponding to 1980.

(b) Use a grapliing utility to plot the data and graph the model.

(c) Find dC/dt and sketch its graph for < r < 17. What

information about the consumption of fruits is given by the

graph of the derivative?

89. Architecture A church window is bounded on top by a

parabola and below by the arc of a circle (.see figure). Find the

surface area of the window.

Parabolic

supporting cable

mm

(60. 2(.)|

Figure for 89 Figure for 91

90. Arc Length Find the arc length ot the parabola 4i - v^ =

over the interval < v < 4.

91. Bridge Design A cable of a suspension bridge is suspended

(in the shape of a parabola) between two towers that are 120

meters apart and 20 meters above the roadway (see figure). The

cables touch the roadway midway between the towers.

(a) Find an equation for the parabolic shape of each cable.

(h) Find the length of the parabolic supporting cable.

92. Surface Area A satellite-signal receiving dish is formed by

revolving the parabola given by the graph of

T- = 20y

about the y-axis. If the radius of the dish is /• feet, verify that the

surface area of the dish is given by

93. Investigation Sketch the graphs of x- = 4/iy for /' = 5, 3. 1

.

1. and 2 on the same coordinate axes. Discuss the change in the

graphs as p increases.

94. Area Find a formula for the area of the shaded region in the

figure.

95. Sketch the ellipse that consists of all points (.v, y) such that the

sum of the distances between (.v. y) and two fixed points is 16

units, and the foci are located at the centers of the two sets of

concentric circles in the figure. To print an enlarged copy of the

graph, go to the website www.niatligniphs.cimi.

96. Writing On page 653. it was noted that an ellipse can be

drawn using two thumbtacks, a string of fixed length (greater

than the distance between the tacks), and a pencil. If the ends

of the string are fastened at the tacks and the string is drawn taut

with a pencil, the path traced by the pencil will be an ellipse.

(a) What is the length of the string in terms of a?

(b) E.xplain why the path is an ellipse.
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97. Construction of a Semielliptical Arcli A fireplace arch is to

be constructed in the shape of a semiellipse. The opening is to

have a height of 2 feet at the center and a width of 5 feet along

the base (see figure). The contractor draws the outline of the

ellipse by the method shown in Exercise 96. Where should the

tacks be placed and what should be the length of the piece of

string?

98. Orbit ofthe Earth Earth moves in an elliptical orbit with the

sun at one of the foci. The length of half of the major axis is

149.570,000 kilometers, and the eccentricity is 0.(1167. Fmd
the minimum distance (perihelion) and the maximum distance

(aplielioii) of earth from the sun.

99. Satellite Orbit If the apogee and the perigee of an elliptical

orhit of an earth satellite are given by A and P. show that the

eccentricitv of the orbit is

,4 + P'

100. Explorer IS On No\ ember 2ti. I'-X-i},. the L'nited States

launched Explorer 18. Its low and high points abo\c the

surface of earth were I 19 miles and 122.0(10 miles. Find the

eccentricity of its elliptical orbit.

101. Halley's Comet Probably the most famous of all comets,

Halley's comet, has an elliptical orbit with the sun at the

focus. Its maximum distance from the sun is approximateh

35.34 AU (astronomical unit ~ 92.956 10" miles), and its

minimum distance is approximately 0.59 AU. Find the eccen-

tricity of the orbit.

102. The equation of an ellipse u itli its center at the origin can be

written as

1.

a-{]

In Exercises 105 and 106, determine the points at which dyjitx

is zero or does not exist to locate the endpoints of the major and

minor axes of the ellipse.

105. 16\- + ^h' + 96.V + 36v + 36

106. 9\- + 4i- + 36.V - 24^' + 36 =

Area and Volume In F'xcrcises 107 and 108, find (al the area of

the region honnded h\ the ellipse, (h) the volume and surface

area ol the solid generated by revolving the region about its

major axis (prolate spheroid), and (c) the volume and surface

area of the solid generated by revolving the region about its

minor axis (ohiate spheroid).

107. I 108.
16

I

rp 109. Arc Length Use the integration capabilities of a graphing

utility to approximate to Iwo-decimal-place accuracy the

elliptical integral representing the circumference of the ellipse.

4^)
I

110. Prove that the tangent line to an ellipse at a point f makes

equal angles with lines through P and the foci (see figure).

[Hint: ( 1 ) Fmd the slope of the tangent line at /'. (2) find the

slopes of the lines through P and each focus, and (3) use the

formula for the tauL'ent of the amjlc between twii lines.]

x^ y^ _ . t Tangent

(7- Ir ' lute

I), nil

(().-!())

Figure for 1 10 Figure for 1 1

1

Show that as e -^ 0. with u remaining fixed, the ellipse I'l- Geometry The area of the ellipse in the figure is twice the

approaches a circle
'"^'^ '^'^ ''^'^ circle. What is the length of the major axis?

rp 112, Conjecture103. Consider a particle traveling clockwise on the elliptical path

.V-/100 + y-/25 = 1. The particle leaves the orbit at the point

(-8, 3) and travels in a straight line tangent to the ellipse. At

what point will the particle cross the v-axis'

104. Volume The water tank on a fire truck is 16 feet long, and its

cross sections are ellipses. Find the volume of water in the

partially filled tank as shown in the figure.

(a) Show that the equation of an ellipse can be written as

U - h)-
^ (y - <.)-

J

a- a-{\ — e-)

(b) Use a graphing utility to graph the ellipse

(-V - 2)-
, (y - 31-

4 4(1

for e = 0.95. e

e-)

0.75,

I

0.5, ( = 0.25. and c = 0.

(c) Use the results in part (b) to make a conjecture about the

change in the shape of the ellipse as e approaches 0.

-9 ft
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113. Find an equation of liie liyperhola sueli that for any point on

the hyperbola, the difference between its distance from the

points (2,2) and (10,2) is 6.

114. Find an equation of the hyperbola such that for any point on

the hyperbola, the difference between its distances from the

points (-3,0) and (-3.3) is 2,

115. Sketch the hyperbola that consists of all points (a, y) such that

the difference of the distances between (a, \') and two fixed

points is 10 units, and the foci are located at the centers of the

two sets of concentric circles in the figure. To print an enlarged

copy of the graph, go to the website www.niathgmphs.coin.

116. Consider a hyperbola centered at the origin with a horizontal

transverse axis. Use the definition of a hyperbola to derive its

standard form:

s-g-
117. Sound Location A rifle pt)sitioned at pomt (-c, 0) is fired

at a target positioned at point (c, 0). A person hears the sound

of the rifle and the sound of the bullet hitting the target at the

same time. Prove that the person is positioned on one branch

of the hyperbola given by

1

c-v; /vl^ ''"(''i ^ ''^)/i'^„

where r„^ is the muzzle velocity of the rille and i\ is the speed

of sound, which is about I 100 feet per second.

118. Navigation LORAN (long distance radio navigation) for

aircraft and ships uses synchronized pulses transmitted by

widely separated transmitting stations. These pulses travel at

the speed of light (186,000 miles per second). The difference

in the times of anival of these pulses at an aircraft or ship is

constant on a hyperbola having the transmitting stations as

foci. Assume that two stations, 300 miles apart, are positioned

on the rectangular coordinate system at (-l?0, 0) and

( 150, 0) and that a ship is traveling on a path with coordinates

(.V, 75) (see figure). Find the .v-coordinate of the position of the

ship if the time difference between the pulses from the trans-

mitting stations is 1000 microseconds (0.001 second).

119. Hyperbolic Mirror A hyperbolic minor (used in some

telescopes) has the property that a light ray directed at the

focus will be reflected to the other focus. The mirror in the

figure has the equation (a-/36) ~ (y-/64) = 1. At which

point on the mirror will light from the point (0, 10) be reflected

to the other focus'.'

.

'

\
LSI) 1

- - 7.S -

-

L
\ -j

7
-7^ ~ -

''\ I.SO

\
Figure lor 118 Figure for 1 19

120. Show that the equation of the tangent line to

at the point (.A|j, Vq) is (xja-)x - (yjb-)y = 1.

121. Show that the graphs of the equations intersect at right angles:

ly-

h-
1 and 1.

r - Ir b-

122. Prove that the graph of the equation

Ax- + Cy- + Dx + Ey + F =

is one of the following (except in degenerate cases).

Come Ciiiiilitioii

(a) Circle

(b) Parabola

(c) Ellipse

Id) Hyperbola

A = C

A = or C = (but not both)

AC >

AC <

True in- False? In Exercises 123-129, determine whether the

statement is true or false. If it is false, explain why or give an

example that shows it is false.

123. It is possible for a parabola to intersect its directrix.

124. The point on a parabola closest to its focus is its vertex.

125. If C is the cuviuuference of the ellipse

^ + V^ = 1, /' < a,
II- h-

Ihen 2Trh < C < 2mi.

126. The graph of (.v-/4) + v"* = 1 is an ellipse.

127. If D i= or E * 0, then the graph of

,,: -
i-: + £)^- + £^. = (>

is a hyperbola.

128. If the asymptotes of the hyperbola {x- 1 ir) - [y-jb-) = 1

intersect at right angles, then a = b.

129. Every tangent line to a hyperbola intersects the hyperbola only

at the point of langency.
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Rectangular equation:

(24 V":. 24V'2 - 16)

Parametric equations:

A = 24 -Jit

v = -16r + 24 72/

Curvilinear motion: two variables for

position, one variable for time

Figure 9.18

Plane Curves and Parametric Equations

• Sketch the graph of a curve gi\'en by a set of paraniettnc equatiotis.

• Eliminate the parameter in a set of paiametric equations.

• Fmd a set of parainetric equations to represent a curve.

• Understand two classic calculus problems, the tautochrone and

bracbislochrone problems.

Plane Curves and Parametric Equations

L'ntil now. wc ha\c been representing a graph hv a single C(.|iiatioii in\(il\mg mo
variables. In this section voit will studv situations in which three \ariables arc usctl to

represent a cuive in the plane.

Consider the p:ith lollowed b\ an object that is propelled into the air at an angle

of 45 ". If the initial velocity of the object is 48 feet per second, the ob|cct tiavels the

parabolic path given by

72
+ .V Rectangular equ:uion

as shown in Figure '^MS. However, this ei.|Liation does not tell the whole stoiv.

Although it does tell you where the object has been, it doesn't tell sou when the

object was at a given point (v. v). To determine this time, vou can introduce a third

variable i. called a parameter. B\ writing both a and v as functions off. you obtain

the parametric equations

.V = 24s/2;

and

16/= + 24^ 2/.

Paranielnc equalmn In

Paranielnc ei-|u.iiinn tor .^

Frotn this set of equations, you can deterinine thai at time t = 0. the object is at the

point (0. 0). Siinilarly. at time / = 1. the ob|cct is at the point (24^ 2. 24^ 2 - 16).

and so on. (We will discuss a tiiclhod lor determining this particular set of p:irametric

equations—the equations of motion— later, in Section I l.vi

For this particular motion problem, v and a' are continuous lunctions ol t. and the

resulting path is called a plane cur\e.

Definition of a Plane Cuive

It',/ and V, are continuous functions '

; on an interv il /. then th e equations

X = f(\) and v = ^[\)

are called parametric equation.s and t IS called the parameter The setof

poi Its (.V. \ ) obtained as t varies over the interval / ts called the graph of the

parametrii equations. Taken together. the parametric equations and the graph

are called a plane curve, denoted by C.

NOTE At times it is important to distinguish between a graph (the set of points) and a curve

(the points together with their defining parametric equations). When it is important, we will

make the distinction evplicit. When it is not important, we will use C to represent the graph or

the cur\e.
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When sketching (by hand) a ciir\e represented by a pair of paraiiietric equations,

you can plot points in the .vv-plane. Each set of coordinates (.v. y) is determined from

a value chosen for the parameter I. By plotting the resulting points in order of

iiiciviisi)iii values of /, the curve is traced out in a specific direction. This is called the

orientation of the curve.

Example 1 Sketching a Cunv

Sketch the curve described by the parametric equations

.V = r- - 4 and v = -, -2 < / < ^.

':i

Parametric ec|Liations:

: r - 4 ami '

Figure y.l')

Solution For \aliies of / on the gi\en interxak the parametric equations yield the

points (.V. \) shown in the tabic.

/
— ~) -1

1

-1

3

X -3 -4 -3 5

3' -1 _i 1
1

By plotting these points in order of increasing / and using the continuity of/ and g,

you obtain the curve C shown in Figure 9.19. Note that the arrows on the curve

indicate its orientation as / increases from —2 to 3. [2]

NOTE From the \ertical line test. \c>ii can see that the graph shown in Figure 9.19 does not

define y as a tunelioii ol v. This poinls oiil one benefit of parametric equations—they ean he

used to represent graphs that are more general than graphs of functions.

Parametric eL|uati()ns:

V = 4r - 4 and \ = /

Figure 9.20

It often happens that two different sets of parametric equations have the same

graph. For example, the set of parametric ci.|uations

4f- - 4 and \' = ^ 1 < ' < T

has the same giaph as the set given in E.xampie I . However, comparing the \alues of

t m Figures 9.19 and 9.20. you can see tliat the second graph is traced out more

iiipicllv (considering / as time) than the first graph. So. in applications, different

parametric representations can be used to represent \arious speeds at which objects

travel along a given path.

TE(HNOLOG\ Most graphing utilities have a parametric graphing mode. If you

have access to such a utility, try using it to confirm the graphs shown in Figures 9. 19

and 9.20. Does the curve given by

.V = 4r- - 8; and y = \
- t. -3 < / < 2

represent the same graph as that shown in Figures 9.19 and 9.20? What do you

notice about the orientation of this curve?
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Eliminating the Parameter

Finding a leclangular equation that lepiesents the graph of a set of paiainetric

equations is called eliniinatini> the parameter. For Instance. \ou can cliniinatc the

parameter from the set ol parametric equations in Example I as follov\s.

Parametric

equations

Solve tor / in

one equation.
m- Substiuite into

second equation.

Rectangular

equation

.V = r- - 4

V = r/2

(2v)- .V = 4v- - 4

Once you ha\e eliminated the parameter. \ou can recogni/e that the equation .v =

4y- — 4 represents a parabola u itli a liori/onlal axis and \ertex at ( -4. 0). as shown

in Figure 9.19.

The range of .v and \ miphcd b\ tiic parametric equ.itimis may lie altered by the

change to rectangular form. In such instances the domain of the lectangular equation

must be adjusted so that its graph matches the graph of the parametric eqtiations. Such

a situation is demonstrated in the next example.

Example 2 .Adjusting (lie Domain Alter ElLminatiiij;' (lie Parami'lcr

Parametric equations;

.t>-\

Rectangular equation:

v= 1 -.V-. .v>0

Sketch the ciir\e represented b\ the et|tiatioiis

.V = — , and \ = . r > -
I

Jt + I

• r + I

b\ eliminating the parameter and ad|usting the domain ol the lesulting rectangular

equation.

Solution Begin by soh ing one of the par.inielric equations lor t. Foi' instance, you

can solve the lust equation lor / as follows.

1

Paraniclnc eiiualion lor.v

Jt + 1

/ +

/
=

/ + 1

.V-

1 1 - A-

Square hoih sides.

Sohc tor I

.V- .V-

Now. substituting into the parametric e(.|tiation for \ produces the follow ing.

t

^ ( I
- -v-l/.v-

-''

[( 1
- .v-)/.v-] + I

V = I
- .\-

Parametric CLjuation htr \

Sulisuuiic 1 1
- .v-)/.\ ' tor /.

Figure 9.21

SlIliplllN

The rectangular equation, y = 1
— .v-, is defined for all values of .v, but from the

parametric equation for .v you can see that the curve is defined only when / > -
I

.

This implies that you should restrict the domain of .v to positive \alues. as shtn\n in

Fiaure 9.21

.
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it is not necessary for the parameter in a set of parametric equations to represent

time. The next example uses an aiiiili' as the parameter.

Example 3 Using Trigoiioinetry to Eliminate a Parameter

Parametric CLjualions:

-V = 3 cos y. V = 4 sin (

Rectangular equation:

9 16
= 1

Figure 9.22

Sketch the curve represented by

.V = 3 cos H and \- = 4 sin 0. < < 2tt

by eliminating the parameter ami finding the conesponding rectangular equation.

Solution Begin b\ solving lor cos ^ and sin H in the gi\en equations.

.V ^'

cos = - and sin = ^ Sohe fur cos Hand sni II

.1 4

Next, make use of the identity sin- f) + cos- H = 1 to form an equation in\iil\ ing only

.V and \

.

- 9 + sm- = 1 Tngonomclnc identity

\
- Ivy

"^ ^
\aI

1 Subsiitule.

9+T^
=

1 Rectangular equation

From this rectangular equation \cui can see that the graph is an elhpse centered at

(0, 0). with vertices at (0, 4) and (11, -4) and minor axis of length 2/) = 6. as shown

in Figure 9.22. Note that the elliptic curve is traced out couiUenlnckwise as d varies

from to 2- [Z]

Using the tcchnit|ue shov\ n in Example .-!. you can conclude that the graph of the

parametric cc|uations

.V = /) + </ cos H and v = k + h sm H. Q < H < 2tt

is the ellipse (traced counterclockwise) gi\en by

(-V - h)-
^

(v - kf- ^
I

(/- /)-

The graph of the parametric equations

.V = /; + ,/ sin H and v = k + h cos 0. < B < Itt

IS also the ellipse (tiaced clockwise) given by

(-V - h)-
_^

(V - k)~ ^
I

Try using a graphing utilii\ m parametric mode to sketch several ellipses.

In Examples 2 and .'^. it is important to tealize that eliminating the parameter is

primarily an md in iiirvc skctchiiii;. If the parametric equations lepresent the path of

a moving object, the graph alone is not sufficient to describe the object's motion. You

still need the parametric equations to tell you the position, direction, and speed at a

civen time.
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Finding Parametric Equations

The first three examples in this section ilkisiraictl technK|ucs for sketching the graph

represented hy a set of parametric equations. We now h)ok at the reverse problem.

How can you determine a set of parametric ec|tialions for a given graph or a given

physical description? From the discussion following Example 1. you know that such

a representation is not unique. This is demonstrated further in the following example,

which fmds two different parametric representations for a given graph.

Example 4 Finding Parametric Equations for a Given Grapli

Find a set of parametric eqLialions to represent the graph of \' = 1
— .v-, using each of

the follownig parameters.

a. r = x b. the slope iii = -j al (he pomt (,v, \)
LlX

Rectangular equation: y

:

Parametric equations:

Figure 9.23

Solution

a. Letting .v = I produces the parametric equations

.V = t and \ - 1
- ,v- = 1 - /-.

b. To express .v ;ind \ m terms of the paraiiieter /;;, yoti etiii proceed as follows.

clx

111

l^it'teientiate v

Sohe for \

This produces ;i ptiiametnc equation for v. To obtain a parametric equation for y.

substitute —iii/2 lor.\ in ihc original et.|iiation.

1
- .V-

V = 1

V = \
-

4

Write ongmai rectanguhii" equation

.Substitute -in/2 lor .v.

Simplify.

So. the pttraiiicuic etiiitilions are

and \' = 1

In Figure ').2?-<. note that the resulting ctir\e litis ;t right-to-left orientation as

determined by the direction of increasing \ttlties of slope in. For part (a), the curve

wotild lKi\e the opposite orientation. „j£j

TECHNOLOGY To be eftlcient at using a graphing utility, it is important that you

develop skill in representing a graph by a set of parametric equations. The reason

for this is thtit mtiny graphing utilities have only three graphing modes—(1) func-

tions. (2) parametric equations, and (3) polar cqutilions. Most graphing utilities are

not programmed to sketch the graph of a general equation. For instance, suppose

you want to sketch the graph of the hyperbola .v- - y- = I. To sketch the graph in

function mode, you need two equations: y = ^/x- — 1 and y = — V-v- — 1 . In

parametric mode, you c;tn represent the graph by .v = sec t and y = tan t.
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CVCLOIDS

Galileo first called attention to the cycloid,

once recommending that it be used for the

arches of bridges. Pascal once spent 8 days

attempting to solve many of the problems of

cycloids, such as finding the area under one

arch, and the volume of the solid of revolu-

tion formed by revolving the curve about a

line. The cycloid has so many interesting

properties and has caused so many

quarrels among mathematicians that it has

been called"the Helen of geonietry"and

"the apple of discord."

Example 5 Parametric Equations for a Cycloid

FOR FLRTHER IXFORMATION For

more information on cycloids, see the

article "The Geometry of Rolling

Curves" by John Bloom and Lee Whitt

in The American Mathenmrical Mmithly.

To view this article, go to the website

www. iinilliarUclcs.com.

Determine the curve traced by a point P on the circumference of a circle of radius a

rolling along a .straight line in a plane. Such a curve is called a cycloid.

Solution Let the parameter f^ be the measure of the circle's rotation, and let the point

P = (.V. y) begin at the origin. When f* = 0. P is at the origin. When B = tt, P is at a

maximum point [ttu. la). When H = In. P is back on the .v-axis at {lira. 0). From

Figure 9.24, you can see that z_APC = 180° - H. Hence,

AC _ BD
a a

AP
— a

sin = sindSO' - H] = smiAAPC)

cos ft = -cos(180° - 61) = -COM./LAPC)

which implies that

AP = -a cos ft and BD = a sin ft.

Becau.se the circle rolls along the v-axis. you know that OD = PD = aft. Fuilhermore,

because BA = DC = a. you have

.V = OD - BD = aft - a sin ft

y = BA + AP = a - a cos ft.

Therefore, the parametric equations are

-V = aiO ~ sin ft) and \ = </( 1 — cos ft).

Cycloid:

.v = (i(9- sin 9)

y = (1(1- cos 9)

C^jTu. 2a)

{Ana. 0)

m

TECHNOLOG\ Some graphing

utilities allow you to simulate the

motion of an object that is moving

in the plane or in space. If you have

access to such a utility, try using it

to trace out the path of the cycloid

shown in Figure 9.24,

The cycloid in Figure 9.24 has sharp corners at the values .v = linra. Notice that

the derivatives .\'{ft) and y'(ft) arc both zero at the points for which ft = Inir.

.\(ft) = a(ft - sin ft] \(ft) = a{\ - cos ft)

x'(ft) = a - a cos ft \\ft) = a sin ft

x'duTT) = f) v'(2);7r) =

Between these points, the cycloid is called .smooth.

Detinition of a Siiiootli Curve

A curve C represented by .v = /(/) and y = t^it) on an interval / is called smooth

if /' and g

'

are continuous on / and not simultaneously 0, except possibly at the

endpoints of /, The curve C is called piecevvisc smooth if it is sinooth on each

subinterval of some partition of /,
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The tniic ici|iini'il Ui complete a full swing of

the peiidukim when startnig from pouit C is

only approximately the same as when startnig

from point ,4.

Figure 9.25

The Tautochrone and Brachistochrone Problems

The type of curve described in Example 5 is related to one of the most fumoiis pairs

of problems in the history of calculus. The first problem (called the tautochrone

problem) began with Galileo's discovery that the time required to complete a full

sv\nig of a given pendulum is approxiinatclx the same whether u makes a Ungc

movement at high speeds or a small movement at lower speeds (see Figure 9.25). Late

in his life. Galileo ( 1564-1642) realized that he could use this principle to construct

a clock. However, he was not able to conquer the mechanics of actual construction.

Christian Huygens (1629-1695) was the first to design and construct a working

model. In his work with pendulums. Huygens realized that a pendulum does not take

exiullx the same time to complete swings of varying lengths. (This doesn't affect a

pendulum clock, because the length of the circular arc is kept constant by giving the

pendulum a slight boost each time it passes its lowest point.) But. in studying the

problem, Huygens discovered that a ball rolling back and forth on an inverted cycloid

does complete each cycle in exactly the same time.

James Bernoulli (1654-1705)

James Bernoulli, also called Jacques, was the

older brother of John. He was one of several

accomplished mathematicians of the Swiss

Bernoulli family James's mathematical accom-

plishments have given him a prominent place

in the early development of calculus.

An inverted cycloid is the [xilh down which a hall will roll in the shortest time-

Figure 9.26

The second problem, posed bv John Bernoulli in 1696. is called the

brachistochrone problem— in Greek, hrnchw means shon and i hinnns means iiiiic.

The problem was to determine the path down which a particle will slide from point A

to point B in the .sliortcst tiiiw. Several mathematicians took up the challenge, and the

following year the problem was solved by Newton, Leibniz, L'Hopital. Jcdin

Bernoulli, and James Bernoulli. As it turns out, the solution is not a straight line from

A to B. but an inverted cycloid passing throtigh the points A and B. as shown in Figure

9.26. The amazing part of the solution is that .i particle starting at rest at any other

point C of the cycloid between A and B will take exactly the same time to reach B. as

indicated in Ficure 9.27.

A ball starting at point C takes the same time to reach point B as one that starts at point /I.

Figure 9.27

FOR FVRTHER INFORMATION To see a proof of the lanioiis brachistochrone problem, see the

article "A New Minimization Proof for the Brachistochrone" by Gary Lawlor in The Ainerican

Mathematical Mtmthlx. To view this article, go to the website www.matharticles.coin.
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EXERCISES FOR SECTION 9.2

I'y^ 1. Consider the parametric etiualions -V

(a) Complete tlie table.

= v// and \ = \
- t.

t 1 2 3 4

X

y

(b) Plot the points (.v. y) generated in the table, and sketch a

graph of the parametric equations. Indicate the orientation

of the graph.

(c) Use a graphing utility to confirm your graph in part (b).

(d) Find the rectangular equation by eliminating the parameter.

Compare the giaph m part (b) with the grapii ol the rectan-

gular equation.

rP 2. Consider the parametric equations .V = 4 cos -^ fy and y = 2 sin W.

(a) Complete the table.

e
77 IT

~4
77

4

77

2

X

y

(b) Plot the points (a,\) generated in the table, and sketch a

graph of the parametric equations Indicate ihc orientation

of the graph.

(c) Use a graphing utility to confirm your graph in part (b).

(d) Find the rectangular equation by eliminating the parameter.

Compare the graph in part (b) with the graph of the rectan-

gular equation.

(cl If values of H were selected from the interval [7t/2, .^77/2]

lor the table in part (a), would the graph in part (b) be

different? Explain.

In Exercises 3-20, sketch the curve represented by the

parametric equations (indicate the orientation of the curve),

and « rile the correspondin;; rectan};uiar etjuation by eliminat-

ing the parameter.

3. .V = 3t - I. y = 2/ +

5. .V
=

/ + I, y = 1'

7. .V
=

'' -I
9. v = J}, y = t - 2

11. -V
= , 1 . '

' ' ' 7-1

13. .V = 2/. y =
1/
-

2|

15. .V = e'. V = f" + I

4. X = 3 II. y 2 + 3/

6. .V
= 27-, y = 7^+1

8. v = t- + I. y = I- - I

10. .V = i/}. V = 3 - f

12. v =
1 + -, Y = I - \+ -,

I

14. .V

16. V

I'
Ij, y = 7 + 2

V = e-' -
\

In Exercises 21-32, use a graphing utility to sketch the curve

represented by the parametric equations (indicate the orienta-

tion of the curve). Eliminate the parameter and write the

corresponding rectangular equation.

21. .V
= 4 sin 2a y = : cos 20 22. .V

= cos e. y = 2 sin 2e

23.

V
_

4 + 2 cos «

-
I + sin f*

24. v

y

= 4 + 2 cos fl

-1+2 sin e

25. .V
= 4 + 2 cos 26. .V

= sec e

\' = -1+4 sin H A'
= tan e

27. -V
= 4 sec 0. y = 3 tan e 28. .V

= cos' 0, y = sin'

29. .V = r\ y = 3 In 30. ,V
= In 2/. V = 7-

31. V = ,'--'. V = r" 32. .V
= 1'-', » = e'

Coiiipaiiiiii Plane Curves In Exercises 33-36, determine any

differences between the curves of the parametric equations. .Are

the graphs the same? .Are the orientations the same? Are the

curves smooth?

33. (a) .V
=

/ (b) .V = cos e

y
= 2; + 1 y

= 2 cos (* + I

(c) .V = e^' (d) .V = e'

(a)

y

v
-

2e-' + 1

2 cos e (b)

y

.V
=

2c' + I

34. J^r-- \/\i\

y
= 2 sin H y = lA

(c) .V

y

=

v/4 - r

(d) .V

V

= - v/4 - e-'

e'

35. (a) .V
= cos (b) V = cos(-fl)

y = 2 sin- y
= 2sin-(-(y)

< < IT < < TT

36. (a) V =
t + 1, V = 7

' (b) -V = -1 + 1. V = (-/F

rp 37. Conjecture

(a) Use a graphing utility to sketch the curves represented by

the two sets of parametric equations.

.V = 4 cos t

V = 3 sin 7

.V = 4 cos( - 1)

V = 3 sin(-7)

17. .V = sec 0. y = cos 6, < < tt/2. tt/2 < < tt

18. .V = tan-e, y = sec-«

19. .V = 3 cos e. V = 3 sin 20. .v = 2 cos 0. v = 6 sin

(b) Describe the change in the graph when the sign of the

parameter is changed.

(c) Make a conjecture about the change in the graph of

parametric equations when the sign of the parameter is

changed.

(d) Test your eonjecture with another set of parametric

ec|uations.

38. Writing Review Exercises 33-36 and write a short paragraph

describing how the graphs of curves represented hy different

sets of parametric equations can differ even though eliminating

the parameter from each yields the same rectangular equation.
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In Exercises 39-42. tliniinate the p;ir;iineler and obtain the

standard form of the reetan<;iilar ec|iiati<)n.

39. Line thnuigh (v,, v,l and (-v,. v,):

.V = .V, + ;(a, - A|). V = V| + r(y, -
y,)

40. Circle: .v = /; + / cos H. y = k + rsin II

41. Ellipse: .v = h + a cos ti. y = k + h sin II

42. Hyperbola: .v = h + a sec H. y = k + h tan H

In Exercises 43-50. use the results of Exercises 39-42 to find a

set of parametric equations for the line or conic.

43. Line: Passes through ((I. 0) and l.-i. - 2)

44. Lnie: Passes through (1.4) and (."i. -2)

45. Circle: Center: (2. I ): Radius: 4

46. Circle: Center: (-3. I ); Radius: 3

47. Ellipse: Vertices: (±5. 0): Foci: (±4. 0)

48. Ellipse: Vertices: (4. 7). (4. -3); Foci: (4. 5). (4. -
1 I

49. Hyperbola: Vertices: (±4. 0): Foci: (±5. (1)

50. Hyperbola: Vertices: (0, ±1); Foci: (0. ±2)

In Exercises 51-54. tlnd Imo dilierent sets of parametric

equations for the given rectangular equation.

51.

53.

3.V 52. y

54. Y

rp In Exercises 55-62. use a graphins; utility to graph the curve rep-

resented by the parametric equations. Indicate the direction of

the curve. Identify anv points at which the curve is not smooth.

55. Cycloid: .v = 2(0 - sin H). v = 2(1 - cos H}

56. Cycloid: .\ = + sin 0. ^ = I
- cos

57. Prolate cycloid: .\ = 6 -
5 sin H. ^ =

1
-

: cos H

58. Prolate cycloid: .v = 10-4 sm 0. \ = 2 - 4 cos II

59. Hypocycloid: a = 3 cos' 0. v = 3 sin'

60. Curtate cycloid: x = 2H - sin 0. y = 2 - cos

61. Witch ot Agnesi: a = 2 cot 0. \ = 2 sin-

62. Foliumof Descartes: A = 3//(l + /'). y = 3(-/n + '")

mtt^::. . ----, :. .-.

.'.v.'i

63. State the definition of

equations.

i plane curve given by paraiiietric

64 Explain the process of sketching a plane curve given by

parametric equations. What is lie ant by the orientation of

the curve?

65 State the definition of a smooth curve

66. Match each graph with a set of parametric equations.

E.xplain your reasoning,

(i) A = /- -
1 (it) A = sin- H -

I

y = I + 2 y = sin 0+2
(a) > (b)

4

In Exercises 67-70. match the set of parametric equations with

the correct graph. 11 he graphs are labeled (a). Ih). (c). and (d).|

(b)

(d)

67. Lissa|ous curve: a = 4 cos 0. y = 2 sm 20

68. Evolute of ellipse: a = cos' 0. y = 2 sin'

69. Involute of circle: a = cos 0+0 sin 0. y = sm - 9 cos

70. Serpentine curve: a = cot 0. i = 4 sin Hcos

71. Curtate Cycloid A wheel of radius a rolls along a line with-

out slipping. The curve traced by a point P that is h units from

the center (/; < a] is called a curtate cycloid (see figure). Use

the angle to find a set of parametric equations for this curve.

Figure for 71 Figure for 72
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72. Epicycloid A circle ot radius I rolls arotind the outside ol a

circle of radius 2 without slipping. The curve traced hy a point

on the circumference of the smaller circle is called an epicycloid

(see figure on page 67.i). LNe the angle to find a set of para-

metric equations for this cur\e.

True or False? In P'xcrciscs 73 and 74. determine wlictiier tlie

statement is true or false. If it is false, explain wliy or give an

example tiiat shows it is false.

73. The graph of the parametric eqiialions v = ;- and \ = r is the

line \ ^ \.

74. If \ IS a lunctioii of / and v is a function of /, then y is a

function of .V.

Pivjcclile Motion In Kxercises 75 and 76, consider a projectile

launched at a heijiht /; feet ahove the ground and at an an^le f)

«ith the horizontal. If the initial \eli(city is in feet per second, the

path of the projectile is modeled by the parametric equations

.V = (r,|Cos 0)r and y = /; + (r,, sin 0)t - 16/-.

rp 75. Baseball The center field fence in a ballpark is lU feet high

and 400 feet from home plate. The ball is hit 3 feet above the

ground. It leaves the bat at an angle of degrees with the

horizontal at a speed of 100 miles per hour (see figurel.

(a) Write a set of parametric etiualions Im the path of the ball.

lb) Use a graphing utility to graph Ihc ]iath of the ball if

= \5°. Is the hit a home run'

(c) Use a graphing utility to graph the path ol the ball if

H = 23'
. Is Ihc hit a home run '

Id) Find the minimum angle for the hall to lea\e the bat in

order for the hit to be a home run

rp 76. A rectangular equation for the path of a projectile is

y = 5 -H .V - 0.005 .V-.

(a) Eliminate the parameter / from the position function for the

motion of a projectile to show that the rectangular equation is

16,sec-(^
V- + (tan H) X + h.

(b) Use the result in part (a) to find /;. v,,, and f). Find the

parametric equations of the path.

(c) Use a graphing utility to graph the rectangular equation lor

the path of the projectile. Confinn your answer in pan (b) by

sketching the curve represented by the parametric equations.

Id) Use a graphing utility to approximate the maximum height

of the projectile and its range.

SECTION PROJECT

In Greek, the word cycloid means wliccl. the word lixpocydoiil

means under llie wliecl. and the word epicycloid means upon

the wheel. Match the hypocycloid or epicycloid with its graph.

[The graphs are labeled (a), lb), (c). (d). le). and lf).|

Hypocycloid. H(A. B)

Path traced by a fixed point on a circle of radius B as it rolls

around the inside of a circle of radius A.

x = (A - B) cos t + B cosi
''

\t

y = (A - B]^mt - B sin(^-^— I'

Epicycloid, E(A, Bj

Path traced by a fixed point on a circle of radius B as it rolls

around the mitsidc of a circle of radius A.

X = {A + B) cos t - B cosf t 1^

y = lA + B) sin t

I. H(8. 3)

III. H(8. 7)

V. HI 24. 7)

(a) y

, . (
A + B

\

11. E(S.3)

IV. E(24. 3)

VI. E(24. 7)

(b)

(c) (d)

(f)

Exercises based on "Mathematical Discovery via Computer

Graphics: Hypocycloids and Epicycloids" by Florence S.

Gordon and Sheldon P. Gordon. The College Mathematics

Jonrnal. November 1984. p. 441. Used by permission of the

authors.
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Parametric Equations and Calculus

Find the slope ol' a tangent line to a curve given by a set of parametric equations.

Find the arc length of a curve given by a set of parametric equations. -

Find the area of a surface of revolution (paranielric form).

so- -

lo-
y = -16f--f- 24v5/

^^--' "1^'

10-

/v^"
10 20 30

At time l. the angle of elevation of the

projectile is i). the slope of (he laiigenl

line at that point.

Figure 9.28

Slope and Tangent Lines

Now that you can represent a graph in the plane by a set of parametric equations, it is

natural to ask how to use calculus to study plane cur\es. To begin, let's take another

look at the projectile represented by the paraiiictric equations

24v'2r and -16/- + 24v'2r

as shown in Figure 9.28. From Section 9.2, you know that these equations enable you

to locate the position of the projectile at a given time. You also know that the object is

initially projected at an angle of 45°. But how can you find the angle Q representing

the object's direction at some other time f ? The follow ing theorem answers this ques-

tion by giving a formula for the slope of the tangent line as a function of ?.

THEOREiM 9.7 Parametric Form of tlie Derivative

If a smooth curve C is given by the equations a = f(t) and ^
== i^it). then the

slope of C at (.v. y) is

dx dy/dt dx ^
dx dx/dt' dt

The slope of the seeanl line through

thepoints (/(/). ^s(r)) and (/(/ + A/)

git + Af))isAr/Av.

Figure 9.29

Proof In Figure 9.29. consider A/ > (I and let

^y = g(t + It) -
.iiit) and Ix = f(t + \t) - fit).

Because A.v -^ as A/ -^ 0. you can w rite

dx ,. Ax
-—- = lim -p-
dx A.i^oA.V

lim
git + At) - .i^it)

A,-o/(; + At) -fit)

Dividing both the numerator and denominator by At. you can use the differentiability

of/ and ^s; to conclude that

dy^y [,g(f + At) - git)]/At

dx A™, [/(r + At) -^ fit)]/At

git + At) - git)
lim
Ai— II At

fit + At) -fit)
lim
A(->0

gXH

f'U)

dy/dt

dx/dt
'

At
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STIDV TIP Tlic eur\e traced out in

E.xainple 1 is a cnclc. L'se llie lorniulu

i/.v

tan I

to lliid tlie slope at the points (1,0) and

(U. I).

Example 1 Differentiation and Parametric Form

Find Jy/iI.\ for the curve given by .v = sin / and \' = cos t.

Solution

Jy dy/dt - sin /

dx d.\/dt cos t

-tan /

Becatise dy/dx is a function of U you can use Theorem 9.7 repeatedly to find

luiihcr-oidcr derivatives. For instance.

d 'd\

/-v d 'd\ dl [dx\

Ix- dx _dx_ d.KJdt

d^y _ d

dx^
~ dx

d-x

dx-

d-y

dx-

dx/dl

Second derivative

Tliird deri\ative

Example 2 Finding Slope and Concanty

For the cur\e L'iven bv

V = Jt and V = -At- - A). ? >

[he graph is coni:a\e upward at (2. .!), when

( = 4.

Figure 9.30

tlnd ihc slope ant! concavity at the point (2. .-5).

Solution Because

(Av ^ dxidt ^ (1/2); ^ ,^,

dx
"

dxidt
"

(l/2)f I'- ''

'

you can find the second derivative to be

d^Jit^J^t^-^mil^-^
dx- dx/dt dx/dt (1/2)?-"- "'

At (v. y) = (2, .^). It follows that i = 4. and the slope is

,/v

P.iranielric form of llrsl derivative !

Parametric form of second

derivative

dx
= (4)' - = X.

Moreover, uhen t 4, the second derivative is

d-\

dx
-, = 3(4) = 12 >

and you can conclude that the graph is concave upward at (2. i). as shown in

Fiaure 9.30.

Because the parametric equations .v = f(t) and y = ii(t) need not define ^' as a

function of .v. it follows that a plane curve can loop and cross itself At such points the

curve may have more than one tangent line, as shown in the next example.



SECTION 9.3 Parametric Equations and Calculus 677

n^-i Example 3 A CiuTe with Two Tangent Lines at a Point

.v = 2;- ffsin /

^' = 2 - iicos. t

* Tangent line [i = kI2)

\ 6-

/

((0,2)

y "

-K / \

f

Tangent Inie (i = -n/2)

This prolate cycloid has two tangent lines at

the point (0.2).

Figure 9.31

The prolate eycloid given by

_; — 77 sin I and 77 co.s t

crosses itself at the point (0. 2). as shown in Fignre 9..^1. Find the equations of both

tangent lines at this point.

Solution Because .v = and ^' = 2 when t = ±tt/2. and

dy _ dy/dl _ 77 sin t

dx dx/dt 2-77 cos t

you have dy/dx = - 77/2 when t = - tt/I and dy/dx = 77/2 when t = tt/2. There-

fore, the two tanL'ent lines at ((), 2) are

Taneent line when ! — — —

Tangent line \\hen !

If dy/dl = and dx/dt r when / = /„, the curve represented by .v = f(r) and

y = i;(t) has a lionzoiiml tangent at ( /'(r„). i,'!/,,)). For instance, in Fxaniple 3. the

given curve has a horizontal tangent at the point (0, 2-77) (when 1 = 0). Similarly,

if dx/dt = and dy/dt i= when t = t„. the curve represented by x = f(i) and

y = ,(,'(/) has a vertical tangent at ( /(;,,). .i,'!?,,)).

Arc Length

You have seen how parametric eciuations can be used to describe the path of a particle

moving in the plane. We now develop a formula for determining the distuiice traveled

by the particle along its path.

Recall from Section 6.4 that the formula for the arc length of a curve C given by

V = /;(-v) over the inter\al [.Vi,. .v,] is

J\ + [//'(.v)]^/.v

,.,g=,„.

If C is represented by the parametric equations x = /(r) and y = ,t;(/). a < t < h. and

\i dx/dt = fit) > 0, you can write

l.l|l./.v^ ,
,
dx/dt Y ,

idx/dt)- + {dy/dty dx

dx/dt)- dt

dx\- ld\\-

dt dt

/[,/"(?)]- + k '('»]-'/'
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NOTE When applying tlie are length

fomiula to a etir\e. be sure that the eurve

is traced out only once on the interval of

integration. For instance, the circle given

by .V = cos I and y = sin r is traced out

once on the interval I) < r < 27t. but is

traced out twice on the intcr\al

< r < 47T.

Arch OF A CvcLoiD

The arc length of an arch of a cycloid was

first calculated in 1658 by British architect

and mathematician Christopher Wren, famous

for rebuilding many buildings and churches in

London, nicluding St. Paul's Cathedral.

THEOREM 9.8 Arc Length in Parametric Form

If a smooth curve C is given by .v = /(;) and y = ,i,'(/) such that Cdoes not

intersect itself on the interval a < t < b (except possibly at the cndpoints).

then the arc length of Cover the interval is given by

In the preceding section you saw that if a circle rolls along a line, a point on its

circumference will trace a path called a cycloid. If the circle rolls around the circum-

ference of another circle, the path of the point is an epicycloid. The ne.xt example

shows how to find the arc length of an epicycloid.

Example 4 Finding Arc Length

A circle of radius 1 rolls around the circumference of a larger circle of radius 4. as

shown in Figure 9.32. The epicycloid traced bv a point on the circumference of the

smaller circle is given by

.V = 5 cos / - cos 5t

and

y = ? sin / ^ sin 5f.

Find the distance traveled by the point in one complete trip about the larger circle.

.V = 5 cos ! - ce)s 5t

V = 5 sin / - sin 5i

An epicycloid is traced b\ a puint on the

smaller circle as it rolls aniuiul the larger

circle.

Figure 9.32

Stihilioii Before applying Theorem 9.X. note in Figure 9..i2 that the cur\c has sharp

points when I = and t = 7r/2. Between these two points, dx/dt and dy/dt arc not

simultaneously 0. So. the portion of the curve generated from / = to ; = tt/2 is

smooth. To find the total distance traveled by the point, you can find the arc length of

that portion K ing in the first c|uadranl and multiply by 4.

i = 4

= 4

(// Faianieliic lurm lui arc lenvilli

J(-f< sin / + .'; sin 5/)" + (^ cos / - 5 cos 5t]- dl

Tr/2

20
I v/2 - 2 sin / sin 5; - 2 cos / cos 5; dt

•tt/2

20

20

cos At dt

Tr/l

JA sin- 2/ dt 'rnyonomclnc ideiiuly

-tt/2

40 I sin 2/ dt

-20 cos 2/

40

For the epicycloid shown in Figure 9. .^2. an arc length of 40 seems about right because

the circumference of a circle of radius 6 is 2 77r = 12 7t = 37.7.
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0.5 in.

0.001 in.

Il takes approximately 182 feet of tape to fil

the reel.

Figure 93i

Example 5 Length of a Recording Tape

A recording tape 0.001 inch thick is wound around a reel whose inner radius is 0.5

inch and outer radius is 2 inches, as shown in Figure 9.33. How much tape is required

to fill the reel?

Solution To create a model for this problem, assume that as the tape is wound

around the reel its distance r from the center increa,ses linearly at a rate of 0.001 inch

per revolution, or

6
r = (0.001)

2 77 2000 it"

1 000 77 < 6 < 400077

where 6 is measured in radians. You can determine the coordinates of the point (.v. y)

corresponding to a gi\cn radius to be

.V = r cos 6

and

y = r sin 6^.

Substituting for /. you obtain the parametric ec|uations

\ -. . I 6
cos and sin 6.

v200077/ \ 200077/

You can use the arc length formula to determine the total length of the tape to be

del \cWl

200077 J,„„„,

r4mmn

Vi-Osmd + cos ef + (6 cos 6 + sin 6)- cW

200077 J ,

Ve- + 1 iio

2000 77 \ 2

11.781 in.

982 ft.

OjO- + I + In y + Jo- + I

Integrcicion tables

(Appendix C). Formula 26

FOR FURTHER INFORMATION For more information on the mathematics of recording

tape, see "Tape Counters" by Richard L. Roth in The American Mathenniliciil Miniihly. To view

this article, ao to the website wwnjihitlinrticles.ciiiii.

NOTE The graph of ;• = ad is called

the spiral of Archimedes. The graph of

/ = 6»/200077(in Example 5) is of this

form.

The length of the tape in Example .^ can be approximated by adding the circum-

ferences of circular pieces of tape. The smallest circle has a radius of 0.301 and the

largest has a radius of 2.

5 « 277(0.501) + 277(0.502) + 277(0.503) + • + 277(2.000)

I son

= ^ 277(0.5 + 0.001/)

= 277[1500(0.5) + 0.001(l500)(l.50l)/2]

« 11.786 in.
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Area of a Surface of Revolution

You can use the formula for the area of a surface of revolution in rectangular form to

develop a formula for surface area in parametric fomi.

THEOREM 9.9

If a smooth curve (

interval <; < ? < h.

revolving C about

-/'

1. S = 2tt ,(,'(/),

rh

2. S = 2tt fit)
^

Area of a Surface of Revo

" given by .v = /(?) and v =

then the area 5 of the surfa

he coordinate axes is niven

lution

ii(t) does not cross itself on

ce of revolution formed by

by the following.

Rc\'olutii)n Libout the .v-axis; ^[i]

Re\'olutinn about the \-aNLis; /'(/)

tn

>

> ()

dt 1

V \cltl \

dxV
,

dt 1

These formulas are easy to rciucmber if you think of the differential of arc length as

Then the formulas ate urillen as follows.

1. 5 = 277 :^(t)ds 1. S = 2-1 l{l)d.s

I? 3v/3

This surface of revolulKin has a surface area

of 9-17.

Figure 9.34

Example 6 Findinj* (lie Area of a Surface of Revolution

Let C be the arc of the circle

.V- + V- = 9

from (3, 0) to (3/2, 3 v^/2), as shown in Figure 9.34. Find the area of the surface

formed by revolving C about the .v-axis.

Solution You can represent C paramclrically by the equations

V = 3 cos / and y ~ 3 sin t. < t < 7r/3.

(Note that you can deternunc the intcr\al for / by obser\'ing that / = when .v = 3

and t = 7r/3 when .v = 3/2.) On this interval. C is smooth and v is nonnegative. and

you can apply Theoretn 9.9 to obtain a surface area of

Formula lor area of a surfaee
S = 2tt i (3 sin/)^ (-3 sin/)- + (3 cos /)-,//

T/-1

677 sin /v/9(sin- / + cos- /) dt

6-77 I 3 sill / ilt

llSn-

Stt T - I

ol revolution

TrieononietiTC iden[ily

977.
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EXERCISES FOR SECTION 9.3

III Exorcises 1—t, find rfv/rf.v

1. .V = /-. ,v = 3 - 4r

3. -V = sin- 0. V = cos-

In Exercises 5-14. find (tyjcl.x andrf-v/rf.\ -, and find tlie slope and

concavity (if possible) at the indicated \alue ol the parameter.

2. A- = ift. ^ = 4 - r

4. A- = 2('". . = ^->,/2

In Exercises 21 and 22. find the eifuations ol the lanfjent lines at

the point \vhere the cur\e crosses itself.

21. A = 2 sin It. \ = .1 sill I

22. A = ;--/. V = t' - -V -
I

Piiranietric Etjiuiridiis

5. A- = 2t. V = i! - I

6. A- = y?. A = M -
\

7. X = t + 1, A = ;- + ii

8. A- = r + 3r + 2. y = It

9. A = 2 cos H. y = 2 sin H

10. A = cos H. y = 3 sin

11. \ = 2 + sec f^. y = 1 + 2 tan II

12. A- = ^ 7, y = v'f -
1

13. A- = cos' a y = sin'(^

14. \ = 6 - sin 0. \ = ]
- cos H

Fdillt

t = 3

/ = 1

I = -]

t =

''=4

H =

In Exercises 23 and 24. find all points (if any ) of horizontal and

vertical tangency to the portion of the cnrve shown.

23. In\'iilLi(e ol a cnxlc;

A = cosH + HstnH

^• = sin H - H cos H

24. A = 2<*

V = 2(1 - cos 6]

TT

^=4

H = TT

In Exercises 15 and 16, find an equation of the tanfjent line at

the indicated points on the curve.

15. A = 2 cot H

A = 2 sin-«

16. A = 2 - 3 cos f>

V = 3 + 2 sin e

4-I-V3 ^\

|, .3

rp In Exercises 17-20. (a) use a nraphiny utility to graph the curve

represented by the parametric equations, (b) use a graphiii}; util-

ity to find (txjdt. dyjdt. and dyjilx at the indicated value of the

parameter, (c) find an equation of the tangent line to the cnr\e at

the indicated value of the parameter, and (d) confirm the result

in part (c) by using a graphing utility to graph the tangent line.

2 4 6 8 10 12

rp In Exercises 25-34. find all points (if any) of horizontal and

vertical tangency to the cur\e. Ise a graphing utility to confirm

your results.

25. A =
1
- t. V = t-

26. A = / + 1. V = f- -F 3f

27. V =
I
- r. y = t' - 3(

28. X = t- - t + 2. y = /' - 3/

29. A = 3 cos H. y = 3 sin H

30. A = cos H. V = 2 sin 29

31. A = 4 + 2 cos H. \ = -\ + sin 6

32. A = 4cos-«. A = 2 sin «

33. A = sec W, y = tan H

34. V = cos- 6. y = cos ti

Arc Length In Exercises 35-40. find the arc length of the given

curve on the indicated interval.

l-\iniiucti'ic Eiiiuiliiin.\

i5. X = r-. \ = 2r

36. A = /-+!. A = 4/' -f 3

37. A = e^' cos ;. v = c"' sin

hitcrvtd

(1 < / < 2

-
1 < / <

(1 t < -

PiU'iUttctric Ei/iiiiliims

17. A = 2t. y = /- -
I

18. X ^ t - I. X = - + I

t

19. X = t- - t + 2. V = t' - 3f

20. A = 4 cos ft \' = 3 sin

I'lii'LiiiictLr

38. A = arcsin i. y = hu/l - t-

39. A = v'r. y = 3/ - 1

/ = 1

40. A = /. ^

-1

3tt

4

ll JL
10

^ 6r'

< t <
j

{) < I < I

1 < ; < 2
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Arc Leiii^th lii Kxercises 41-44. find tlie iiix lon<;th ol'tlit' curve

on the interviil [0, Itt].

41. H\ piK->cKiid perinicler: v = a cos' H. y = a sin' H

42. Circle circumference: a = ii cos H. \ = « sin H

43. Cycloid arch: v = </(H - sin H). v = dd - cos H)

44. hnokite of a circle: v = cos + Own H. y = sin H — rtcos H

rp 45. I'alli (ifa I'rojectile Tlie path or a projeclile is modeled by die

parametric ci|ualions

if 48. Circumference of an Ellipse Use the integration capabilities of

a graphing utility to approximate the circumference of the ellipse

given by the parametric equations .v = 3 cos 6 and y = 4 sin f^.

Snrfacc Area In Kxercises 49-54, find the area of the surface

generated by revolving the curve about the given axis.

(90 cos 30°)/ and V = (90sm3(ri/ - 16/-

where v and \ arc measured in feet. Use a graphuig lUility to

perform the follow ing,

(a) (irapli ihc path ol the pro|cctile.

(b) /\|ipro\niiatc the range of the |iro|cclilc,

(c) Use the integration capabilities of the graphing utility to

approximate the arc length of the path. Compare this result

with the range of the projeclile.

(dl If the projectile is laiuiched at an angle // with the

hon/oulal. Its pai'amelric ei|iialioiis are

.V = (90 cos H}i and v = (90 sm IDi - Id/-.

What angle nia\mii/es its range' What angle maximizes

the arc length ot the traiectory''

ir 46. Itilium ojDescartes Gnen the parametric equations

4/
.

4/-

I + /-'
and

1 + /'

u.se a graphing ulility to perform the following.

(a) Sketch the cinxe described b\ the |iaranietnc equations.

(b) Find the points of hori/ontal laiigency to the cur\'e-

(c) Use the integration ca|iabilitics of the graphmg utility to

approximate the arc length ol ihe closed loop. {Him: Use

symmetry and integrate o\'er the mlcrsal < / < 1.)

rp 47. Writing

(al Use a graphing utility to gra|ih each set <if parametric

equations.

.V = 2/ - sinl2/)-V = / - sin /

y =
1
— cos

/

< / < 2-

y = \
- cos(2/)

< / < TT

(b) Compare the graphs of the two sets of parametric equations

in part (a). If the cur\e represents the motion of a particle

and / is time, what can you infer about the average speed of

the particle on the paths represented by the two sets of

parametric ei|uations,'

(c) Without graphing the curve, determine the time required for

a particle to traverse the same path as in parts (a) and (b) if

Ihe path is moileled by

49. /. \'

50. V = /. y = 4 - 2/. ()</•<

51. V = 4 cos H. 1 = 4 sm H. < « <

< / < 4. (a) .v-axis (b) y-axis

(a).v-axis (b) y-axis

TT

v-axis

52. v = j/\y = / -I- 1. I < / < 2, y-axis

53. V = II cos' 61. y = n sin' «. {) < < tt. .v-axis

54. .V = II cos 0. y = !> sin H, < < 2Tr.

(a) .v-axis (b) v-axis

55. Give the parametric form of the derixative.

56. Mentally determine tly/cl.\.

(a) .V = / (b) v = /

\' = 4 .v = 4/ - 3

57. Sketch a graph of a curve defined by the parametric equa-

tions v = ,i;(/) and > = /(/) such that d.\/df > and

ily/ill < for all real numbers /.

58. Sketch a graph of a curve dctined b\ the parametric equa-

tions v = ,;•(/! and \' = /I/I such that dx/ilt < and

dy/ch < for all real numbers /.

59. Give the integral formnia for arc length m parametric form.

60. Give the integral formulas for the area of a surface of

revolution formed when a smooth cui\e C is re\ol\ed about

(a) the .v-axis and (h) the y-axis.

61. Surface Area A portion of a sphere of radius /- is removed by

cutting out a circular cone with its vertex at the center of the

sphere. Find the surface area I'emoved from the sphere if the

\ertex of the cone forms an angle ol 2H.

62. L'se integration by substitution to shovi that if i' is a continuous

function of v on the inter\al u < .v < /). where .v = /(/) and

! = ,!,'(/). then

\' ,/.v ,!,(/)/"(/)(//.

where /I/, )
= </. /'(/,) = /;. and both i,' and /' are continuous on

[/,/J.

Centroid In Exercises 63 and 64, find Ihe centroid of the region

bounded by the graph of the parametric e(|uatiuns and Ihe

coordinate axes. (Use tlie resull in Exercise 62.)

63. V //, v = 4 64. V /4

and I
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Volume In Exercises 65 and 66. find the volume of the sohd

formed by revolving the region hounded by the graphs of the

given equations about the .v-axis. (Use the result in Exercise 62.)

65. .V = 3 cos ft V = 3 sin H 66. V = cos ft ^ = 3 sin

67. A = 2 sin-

y = 2 sin- H tan

68. A = 2 cot

y = 2 sui- H

< e < TT

H ] ^ 1

-2 -1 N 1 2

-I --
;

I h^-v

rp Areas of Simple Closed Curves In Exercises 6y-74, use a

computer algebra system and the result in Exercise 62 to match

the closed curve «ith its area. ( I'hese exercises were adapted

from the article "The Surveyor's Area Eormula" b> Bart

Braden in the September 1986 issue of The College Mathematies

Journal Used by permission of the author.)

(a) \ah (b) JjIto-

(d) TTflfc (e) lirab

69. Ellipse; (0 < t < Itt)

A = /) COS t

V = a sin r

(c) 2770-

(f) 67Tfl-

70. Asteroid; (0 < r < 2tt]

A = (( cos' t

V = CI sin'

;

71. Cardioid; (0 < r < 27r)

A = 2(7 COS / — a cos 2/

\' = la sin r - a sin 2r

72. Deltoid; (0 < r < lir)

X = 2(7 cos t + a cos 2;

V = 2u sin 1 - a sin 2r

73. Hourglass; (0 < t < Iv)

A = 1/ sin 2i

V = h sin t

74. Teardrop; (0 < / < 27t)

A = 2i( cos / — (( sin 2t

^• = /) sin ;

Area In Exercises 67 and 68, find the area of the region. (Use

the result in Exercise 62.)

rp 75. Use a graphing utility to graph the curve given by

1
- r- 2/

I -I- t' I -I- t-

- 2U < r < 2(J.

(a) Describe the graph and confirm your result analytically.

(b) Di-scuss the speed at which the curve is traced as r increases

from - 20 to 20.

Fv 76. Traelrix A person inoves from the origin along the positive

\-a\is pulling a weight at the end of a 12-meter rope. Initially,

the weight is located at the point ( 12. 0).

(a) In E.xeicise 75 ol Section 7.4. it was shown that the path of

the weight is modeled by the rectangular equation

where < a < 12. Use a graphing utility to graph the

rectangular equation.

(b) Use a graphing ulililv to graph the parametric equations

A = 12 sech - and f - 1 2 tanh
12

where / > 0. How does this graph compare with the graph

in part (a)? Which graph (if either) do you think is a better

representation of the path '

(c) Use the parametric equations lor the tractri.\ to verify that

the distance from the y-intercept of the tangent line to the

point of tangency is independent of the location of the point

of tangency.

True or False? In Exercises 77 and 78. determine whether the

statement is true or false. If it is false, explain why or give an

example that shows it is false.

77. If A = /(;) and y = ,i,'(/). then J-y/ilx- = g"{t)/f"{i).

78. The curve given by a = r\ y = t- has a horizontal tangent at

the origin because clv/clt = when ; = 0.
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Polar coordinates

Figure 9.35

Polar Cqordmates and Polar Graphs

• Under.sland the polar coordinate system.

• Rewrite rectangular equations in polar form and \ ice xersa.

• .Sketch the graph of an equation given in polar form.

• Find the slope of a tangent line to a polar graph.

• Identify several types of special polar graphs.

Polar Coordinates

So far. we have been representing graphs as collections of points {x, y) on the rectan-

gular coordinate system. The corresponding equations for these graphs have been in

either rectangular or parametric form. In this section we introduce a coordinate systetn

called the polar coordinate system.

To fortn the polar coordinate system in the plane, we fix a point O. called the pole

(or origin), and construct from O an initial ray called the polar axis, as shown in

Figure 9. .^5. Then each point P in the plane can be assigned polar coordinates (r, 6),

as follows.

/ = ilircclcd ilistiiiicc from O to P

6 = directed unfile, counterclockwise from polar axis to segment OP

Figure 9.36 shows three points on the polar coordinate system. Notice that in this

system, it is convenient to locate points with respect to a grid of concentric circles

intersected by radial lines through the pole.

(a)

Figure 9.36

(c)

PohrCoordi\ui;s

The mathematician credited with first using

polar coordinates was James Bernoulli, who

Introduced them in 1691. However, there is

some evidence that it may have heen Isaac

Newton who first used ihcm.

With rectangular coordinates, each point (.v, y) has a unique representation. This

is not true with polar coordinates. For instance, the coordinates (r, B) and (r, 2tt + H)

represent the same point [see parts (b) and (c) in Figure 9.36] . Also, because / is a

directed distance, the coordinates ir. H) and {-r. 6 + rr] represent the same point. In

general, the point {r. H) can be written as

(/•- 0) {r. H + 2/(71)

(r, 6) = i-r.O + (2)7 + \)tt)

where /; is anv integer. Moreover, the pole is represented by (0, 0). where ft is any

angle.
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Ri'hitinti pillar and rectangular LiHirdiiiates

Figure 9.37

2 -

ir.B) = (Vi-l)

(c, 91 = (2. ;r) U.,v. = (if)

-2 -1 1 2

(A. V) = (-2. 01

-1- -

-2- -

To convert troni polar to rectangular coordi-

nates, let .v = /cosf^andi = isin H.

Figure 9.38

Coordinate Conversion

To establish the relationship between polar and rectangular coordinates, let the polar

axis coincide with the positive .v-axis and the pole with the origin, as shown in Figure

9.37. Because {x,y) lies on a circle of radius r, it follows that r~ = .\- + y-. More-

over, for r > 0, the detlnition of the trigonometric functions implies that

tan = -, cos = '-, and sin ft = '-.

-V (• ;

If ; < 0. you can show that the same relationships hold.

SEM9.10 CooRf- version

The polar coordinates (r, ft) of a point are related to the rectangular cooidinates

(x, y) of the point as follows.

V
1. .V = /• cos ft

V = r sin ft

2. tan ft
=

X- + y-

a. For the pmnt ir. ft) = (2. 77).

.V = /-cos = 2 cos TT = —2 and y = /'sin ft = 2 sin it = 0.

So. the rectangular coordinates are (.v, y) = (- 2, 0).

b. For the point (r. ft) = (JJ. 77/6).

^ 77 3 /^ . TT 73
.V = V 3 cos — = - and v = ^3 sin — = —:—

.

6 2 6 2

So. the rectangular coordinates are (.v, y) = (3/2, V3/2).

(See Figure 9.38.)

2 -

o-.e) = (V2.f)
• 1

-

(.v,v) = (-l. 1)

^(,-.ei = (2.?)

(.V, v) = (0. 2)

-2 -1 1 2

To convert from rectangular to polar coordi -

nales, let tan ft = i/.vand c = Vv- + y-.

Figure 9.39

a. For the second c|uadrant point (x.y) = (—1. I),

3^
4

tan ft 1 ft

Because ft was chosen to be in the same quadrant as (v, y), you should use a posi-

tive value of /•.

'.V- + V-

v/FTFTTT?

This implies that one set of polar coordinates is {r. ft) =
( ^ -. 377-/4).

b. Because the point (.v. y) = (0. 2) lies on the positive \-axis. we choose = 7r/2

and / = 2. and one set of polar coordinates is {r. ft) = (2. 77/2).

(See Figure 9.39.) u£J
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(a) Circle: r = 2

Polar Graphs

One way to sketch the graph of a polar equation is to convert to rectangular coordi-

nates and then sketch the graph of the rectangular equation.

Example 3 Graphing Polar Equations

Describe the graph of each polar equation. Confirm each description by converting to

a rectangular equation.

a. r b. 6
IT

c. r sec B

(b) Radial line: « = T

(c) Vertical line: r = sec ^

Figure 9.40

Spiral ol .Arthimedos

Figure 9.41

Solution

a. The graph of the polar equation r = 1 consists of all points that are two units from

the pole. In other words, this graph is a circle centered at the origin with a radius of

2. (See Figure 9.40a.) You can confirm this by using the relationship /•- = .v- + y-

to obtain the rectangular equation

.v-^ + V- Reetansjular etiULition

b. The graph of the polar equation = ir/l' consists of all points on the line that makes

an angle of 7t/3 with the positive .v-axis. (See Figure 9.40b.) You can confirm this by

using the relationship tan B = y/x to obtain the rectangular equation

V = 73 .V. Reefaneular etniation

c. The graph of the polar equation / = sec 6 is not evident by simple inspection, so

you can begin by converting to rectangular form using the relationship r cos B = x.

r

I- cos B

X

sec B

1

Pi.ilai' equalmn

Rectanizular etuuilion

From the rectangular equation, you can see that the graph is a vertical line. (See

Figui-e 9.40c.) iJD

' TECHNOLOG\ Sketching the graphs of complicated polar equations by hand can

be tedious. With technology, however, the task is not difficult. If your graphing

utility has a polar mode, try using it to sketch the graphs in the exercise set. If your

graphing utility doesn't have a polar mode, but does have a parametric mode, you

S! can sketch the graph of r = f{B) by writing the equation as

.V = f(B) cos B

;. x=f{B)smB.

For instance, the graph of / = ^f shown in Figure 9.41 was produced with a

graphing calculator in parametric mode. To sketch the graph, we entered the

parametric equations

1

X = -B cos B

y = -Bsin B

and let the values of B vary from - 47t to 477. This curve is of the form ; = aO and

is called a spiral of Arcliiniedes.
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Example 4 Sketching a Polar Graph

NOTE One way to sketch the graph of

r = 2 cos 36) by hand is to make a table

ot values.

TT 77 77 277
H

6 3 3

r _T ->

Sketch the graph of v = 2 cos 3ft

Sohitioii Begin hy writing the polar equation in parametric form.

.V = 2 cos 3f* cos and \ = 1 cos ?>H sin H

After some experimentation, you will find that the entire curve, which is called a rose

curve, can be sketched by letting 61 vary from to 77. as shown in Figure 9.42. If you

try duplicating this graph with a graphing utility, you will llnd that b\ letling \ary

from to 2 77. you will actually trace the entire curxe twice.

By extending the table and plotting the

points, you will obtain the curve shown

in Example 4

^T"^ » n

{) < e < ~6^-'^--,

%

Figure y.42 i<^

Try using a graphing utility to experiment with other rose curves (they are of the

form r = a cos nO or r = a sin 116). For in.stance. Figure 9.43 shows the graphs ol two

other rose curves.

r = 2 sin 5

Rose curves

Figure 9.43

Cifiicntlc'il h\ Dfrivi
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r=/(9)

Tanucnl line

Tangent line lo polar curve

Fifjurt 9.44

Slope and Tangent Lines

Til find the slope of a tangent line to a polar graph, consider a ditterentiable iLinction

given by ; = fW). To find the slope in polar torin. use the parametric equations

X = r cos 8 = fie) cos 6 and v = / sin 6 = f{ti) sin 0.

Using the parametric form of tly/cl.\ given in Theorem 9.7, you have

dy _ dy/dti

dx
~

dx/de

f(0) COS + f'(6) sin 6

-f(e) sin e + f\e) cos e

which establishes the lollowinc theorem.

I Slope in Polar Form

If /' is a differentiable function of H. then the slope of the tangent line to the

graph of r = fW) at the point (/, 6) is

dy _ dy/de _ [(H) cos 6 + fW sin H

dx dx/dO -~f(e) sin 6 + f"(0) cos d

provided that dx/dH * at (;•. H). (.Sec Figure 9.44.

From Theorem 9.1 1, you can make the following observations.

1. .Solutions to ~ = yield horizontal tancents. provided that -— ^ 0.
dH - ' dH

2. Solutions to ^ = yield xertical tamzents. provided that ^ ^ 0.
do ' ^ ^

dH

if ilv/dH and dx/illi arc siiiiiiltdiwoiisly 0. no conclusion can be drawn about tangent

lines.

Find the hori/ontal and \ertical tanuent lines of r = sin 0. < 6 < tt.

Horizontal and vertical tangent lines of

/ = sin

Figure 9.45

Sokilio!! Begin by writing the ec|uation in parametric form.

X = r cos = sm 8 cos 6

and

y = r sin 9 = sin H sin = sin" 6

Next, differentiate .v and v with respect to H and set each derivative equal to 0.

^ = cos-^ - sin- W = cos 2H =
dH

6

dy

dd
2 sin Wcosfy = sin2f^ = 0,

77 ?<TT

4' T
77

So, the graph has vertical tangent lines at (v^/2, 7t/4) and (n/2/2, ?nT/4). and it has

horizontal tangent lines at (I), 0) and ( 1, tt/2). as shown in Figure 9.45.
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Horizontal and vertical tangent lines of

)• = 2( 1
- cos H)

Figure 9.46

Example 6 Finding Horizontal and Vertical Tangent Lines

Find the horizontal and vertical tangents to the graph of 2(1 cos B).

Solution Using y = r sin H. diffcrentialc and set Jy/ilH eqnal to

y = ;-sin f^ = 2(1 - cos H) sin H

dv

de
![(1 - cos W(cos H) + sin Msin fJ)]

2(2 cos B + l)(cos ~ 1) =

So. cos (J = -3 and cos 61 = 1, and you can conclude that dy/dO = i) when

61 = 2it/}. 47t/3. and 0. Similarly, using a = rcos H, you have

A = ) cos H = 2 cos H - 2 cos^

dx

dH
sin ^ + 4 cos H sin ^ = 2 sin f){2 cos H -

1 ) = 0.

So, sin ^ = or cos 0=2- ^"""^ y^"-' '-'^"i t-'onclude that dx/dH = when H = 0.

7T, —/}i. and >it/}i. From these results, and from the graph shown in Figure 9.46. you

can conclude that the graph has horizontal tangents at (3. 2-/.i) and (3, 4Tr/,^), and

has \ertical tangents at (1.7t/3). (1,.S77-/3), and (4,77). This graph is called a

cardioid. Note that both derivatives (dy/dO and dx/dfi) are when H = 0. Using this

information alone, you don't know whether the graph has a hon/ontal or vertical

tangent line at the pole. From Figure 9.46, however, you can see that the graph has a

cusp at the pole.

fid) = 2 cos .^

This rose curve has three tangent lines

{6= -n/d.e = 77/2.ande= i-n/b)

at the pole.

Figure 9.47

Theorem 9.11 has an important con.sequence. Suppose the graph of / = fiO)

passes through the pole when 6 = a and /'(a) ^ 0. Then the formula for d\/dx

simplifies as follows.

dy _ f'{a) sin a + fia] cos a _ f'ia) sin a + _ sin a

dx f'(tx) cos a — /(«) sin a f'(a) cos a — cos a

So. the line 6) = <ms tangent to the graph at the pole. (0. a).

tan a

THEOREM 9.1 2 Tangent Line"; at the Pole

If/(Q = ()and/'(Q ) ^ then the 1 lie (^ = a is tangent at the pole to the

graph of r = fW).

Theorem 9.12 is useful because it states that the zeros of r = f{d) can be used to

find the tangent lines at the pole. Note that because a polar curve can cross the pole

more than once, it can have more than one tangent line at the pule. For example, the

rose curve

f{H) = 2 cos 361

has three tangent lines at the pole, as shown in Figure 9.47. For this curve. / (6')
=

2 cos 3f^isO when f^is 77/6, tt/2. and S7t/6. Moreover, the derivative /'( 6*) = -6 sin 36*

is not for these values of f).
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Special Polar Graphs

Several imporlaiil lypes of graphs have equations that are simpler in polar form than

in rectangular form. For example, the polar equation of a circle having a radius of a

and centered at the origin is simply r = a. Later in the text you will come to appreci-

ate this benefit. For now. we summarize some other types of graphs that have simpler

equations in polar form. (Conies are considered in Section 'X6.)

Liiikniiiis

r = a ± h cos 8

r = a ± h sni H

(a > (I, /) > 0)

in

Linuifdn with

inner loop

I

11

/.

Cartlioid

(lu'art-shapcd)

"a"
Dimpled limai;on

h
~ '

Convex linia(;on

Ro.\c' Ciinc'.s

n petals il n is odd

2n petaK if ii is e\cn

in > 2)

) = a cos II

Rose curve

r = a cos II fl

Rose ctirve

/ = i/sin nt)

Rose curve

r = il sin iiH

Rose curve

Circles ami Lemniscates

^oo-°

) = CI COS

Circle

/ = (/ sin 6

(ircle

r = «- sin Id

Lemniscate

r = tt cos 10

Lemniscate

TECHNOLOCN The rose curves described above are of the form / = </ cos iiH

or r = II sin iiH. where /; is a positive integer that is greater than or ecpial to 2.

Try using a graphing utility to sketch the graph of r = a cos ndor r = a sin iiO for

some noninteger values of /;. Are these graphs also rose curves? For example, try

sketching the graph of / = cos ?W. < f) < 6tt.

FOR FVRTHER INFORMATION For more information on rose curves and related curves, see

the article "A Rose is a Rose . .

." by Peter M. Maurer in The Aiiicricaii Marhenuiliicil Mtintlily.

To view this article, go to the website wivw.iuatluirticles.cdiii. (The computer-generated graph

at the left is the result of an algorithm that Maurer calls "The Rose.")
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EXERCISES FOR SECTION 9.4

In Exercises 1-6, plot the point in polar coordinates and find

the corresponding rectanoular coordinates for the point.

1. (4, 37r/6)

3. (-4.-71/3)

5. L/2. 2.36)

2. (-2.777/4)

4. (0, -77r/6)

6. (-3. -1.57)

rp In Exercises 7-10. use the angle feature of a graphing utility to

find the rectangular coordinates for the point given in polar

coordinates. Plot the point.

7. (5.377/4)

9. (-3.5.2.5)

8. (-2. llTr/6)

10. (8.25. 1.3)

In Exercises 11-14, the rectangular coordinates of a point are

given. Plot the point and find ftro sets of polar coordinates for

the point for i) < < 2tt.

II. (I, II

13. (-3.4)

12. (0. -5)

14. (4. -2)

rp In Exercises 15-18, use the aiif>lc feature of a graphing utility to

find one set of polar coordinates for the point given in rectan-

gular coordinates.

16. (372.3^/2)15.

17.

(3.-2)

(5 i*
18. (0. -5)

21. .V- + y- = a-

23. y = 4

25. 3.V - y + 2 =

27. y- = 9x

28. (.V- + y^)" - 9(.v- - y-) =

\- - lax =

24. .V = 10

26. .vv = 4

In Exercises 29-36, convert the polar equation to rectangular

form and sketch its graph.

29. ) = 3

31. ) = sin H

iX r = H

35. r = 3 sec

30. r= -2

32. »• = 5 cos

5tt

6

36. /- = 2 CSC

34. 0:

rV In Exercises 37—16, u.se a graphing utility to graph the polar

equation. Eind an interval for ^over which the graph is traced

Diily once.

38. r = 5( 1
- 2 sin 0)

40. r = 4 + 3 cos

42. r

19. Plot the point (4. 3^1 if the point is given in (a) rectangtilar

coordinates and (b) polar coordinates.

rp' 20. Graphical Reasoning

(a) Set the window format of a graphing utility to rectangular

coordinates and locate the cursor at any position off the

coordinate axes. Mo\e the cursor hon/ontally and describe

any changes in the displayed coordinates ot the points-

Repeat the process moving the cursor vertically.

(b) Set the window format of a graphing utility to polar

coordinates and locate the cursor at any position off the

coordinate axes. Move the cursor horizontally and describe

any changes in the displayed coordinates of the points.

Repeat the process moving the cursor vertically.

(c) Why are the results in parts (a) and (b) different?

In Exercises 21-28, convert the rectangular equation to polar

form and sketch its graph.

37. r = 3 - 4 cos

39. r = 2 + sin

1

41.
1 + cos

43. r^2.,sm

3 sin

45. r 4sin2y

44. / = 3 sin ^

46. /
- =

47. Convert the equation

I- = nil cos + k sin 0)

to rectangular form and verify that it is the equation of a circle.

Find the radius and the rectangular coordinates of the center of

the circle,

48. Distance Formula

(a) Verify that the Distance Formula for the distance between

the two points (r,. W,) and (/,. 0,) m polar coordinates is

Ir + /-,- 2/-,)s cos(e. 0-,]

(b) Describe the position of the points relative to each other if

y, = ^2- Simplify the Distance Formula for this case. Is the

simplification what you expected? Explain.

(c) Simplify the Distance Formula if 0\ - 0^ = 90°. Is the

simplification what you expected? Explain.

(d) Choose two points on the polar coordinate system and lind

the distance between them. Then choose different polar

representations of the same two points and apply the

Distance Formula again. Discuss the result.

In Exercises 49-52, use the result of Exercise 48 to approximate

the distance between the two points in polar coordinates.

50. (ll'-— )• (3. 77)

52. (4. 2.51,(12. II51. (2. 0.5). (7. 1.2)
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In Exercises 53 and 54. find dyjclx and the slope of the tangent P^ In Exercises 87-90. use a graphing utility to graph the equation

lines shown on the graph of the polar e(|uation.

53. (=2 + 3 sin H 54. c = 2( I
- sin 9)

("V In Exercises 55-58, use a graphing utility to (a) graph the polar

equation, (b) dra« the tangent line at the given value of 0. and

(c) find dyjdx at the given value of 0. (Hint: Let the increment

between the values of ^ equal jt/24.)

55. r =3(1 - cos 0).

57. (=3 sin 0. = ^

56. / = 3 - 2 cos 0.0 =

58. r = 4.0
IT

4

In Exercises 59 and 60. find the points of horizontal and verti-

cal tangency (if any) to the polar curve.

59. r 1
- sni 60. r ii sill

In Elxercises 61 and 62. find the points of horizontal tangency

(if any) to the polar curve.

61. / = 2i H + 3 62. r a sin (K'os-

iy In Exercises 63-66, use a graphing utility to graph the polar

equation and find all points of horizontal tangency.

63. / = 4 sin 9 cos-

9

65. /• = 2 CSC 0+5
64. r = 3 cos 2 (^ sec

66. / = 2cos(36l - 2)

In Exercises 67-74, sketch the graph of the polar equation and

find the tangents at the pole.

67. (• = 3 sin

69. r = 2(1 - sin 0)

71. ;• = 2 cos 3 «

73. )• = 3 sin 20

68. / = 3 cos

70. (-=3(1 - cos 0)

11. r = -sin5(*

74. ; = 3 cos 20

In Exercises 75-86, sketch the graph of the polar equation.

75. ( = 5 76. y = 1

77. ( = 4(1 + cos 0) 78. /' =
1 + sin

79. /- = 3 - 2 cos 80. ;- = 5-4 sin

81. r = 3 CSC d 82.
6

2 sin « - 3 cos

83. r = 20 84. ) = 1

85. r- = 4cos2« 86. )- == 4 sin

r = 2 - sec x= -1

r = 2 + CSC V = 1

r = 2/0 y = 2

/ = 2 COS 2 sec v = -2

and show that the indicated line is an asymptote of the graph.

Name (ij Graph Polar Equation Asymptote

87. Conchoid

88. Conchoid

89. Hyperbolic spiral

90. Slrophoid

91. In your own words, describe the differences between the rec-

tangular coordinate system and the polar coordinate system. !

92. Give the equations for the coordinate conversion from
;

rectangular to polar coordinates and Mce \ersa.

93. For constants a and /), describe the graphs of the equations
i

(• = a and = h in polar coordinates.
|

94. How are the slopes of tangent lines determined in polar

coordniates^ What are tangent lines at the pole and how are 1

they delermined'.'
|

In Exercises 95-98, match the graph with its polar equatitm.

[The graphs are labeled (a), (b), (c), and (d).]

(a) J (b) 5

(c) (d) n

i h

95. /• = 2 sin

97. /- = 3( I + cos 0)

96. /- = 4 cos 26

98. / = 2 sec

99. .Skclch the graph of ; = 4 sin ft over each interval.

(a) < 6 (b) < < IT < 0<-

rV 100. Think About It Use a graphing utility to graph the polar

equation r = 6[l + cos(0 -
</>)] for (a) = 0. (b) </> = 7r/4.

and (c) </) = tt/2. Use the graphs to describe the effect of the

angle </). Write the equation as a function of sin ft lor part (c).
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101. Verify that if the curve whose polar equation is /- = f{H) is

rotated about the pole through an angle
<t>.

then an equation for

the rotated curve is r = f{ft -
</)).

102. The polar form of an equation for a curve is /• = /(sin f)).

Show that the form becomes

(a) ;=/( — cos 9) if the curve is rotated counterclockwise

tt/2 radians about tlie pole.

(b) / = /'( — sin 0) if the curve is rotated eoimlercloekwise n

radians about the pole.

(c) r = /{cos 0) if the curve is rotated cuiuilerclockwise

3 tt/2 radians aboiU the pole.

In Exercises 103-106. use the results of Exercises 101 and 102.

rp 103. Write an equation for the hmayon r = 2 - sin after it has

been rotated by the given amount. Verify the results by using

a graphing utility to graph the rotated limaij'on.

77 ^ 77 ,377
(a) - (b) - (c) 77 (d) —

rp 104. Write an equation for the rose curve /• = 2 sin 20 alter it has

been rotated by the given amount. Verify the results by using

a graphing utility to graph the rotated rose curve.

77 , 77 277
(a)

- (b) -
(c) — (d) 77

o 2 3

105. Sketch the graph of each equation.

(a) r = 1 - sin « (b) r =
1
- sinlH - -

106. Prove that the tangent of the angle i//(() < i// < 77/2) between

the radial line and the tangent line at the point (/•, 0) on the

graph of r = f(d) (see figure) is given by tan i/j = \r/{i.lr/i.l0)\.

Polar curve; Tangeni line

^ Radial line

P = (r.ei

Polar axis

rp In Exercises 107-112, use the result of Exercise 106 to tlnd the

angle i/j between the radial and tangent lines to the graph lor

the indicated value of 0. I se a graphing utility to graph the

polar equation, the radial line, and the tangent line for the indi-

cated value of 0. Identify the angle ip.

Polar Equation Value of

107. = 2(1 - cos 0) = TT

108. /•= 3(1 - cos 0) = 377/4

109. /- = 2 cos 30 = 77/6

110. r = 4 sin 2ft = 77/6

111.
6

= 277/3
1 - cos e

112. / = 5 = 77/6

True or False? In Exercises 113-116, determine whether the

statement is true or false. If it is false, explain why or give an

example that shows it is false.

113. If
(/'i,

ft|) and (/,. ft,) represent the same point on the polar

coordinate system, then [/-J
= ]r,|.

114. If (r, ft,) and (r. ft,) represent the same point on the polar

coordinate system, then ft, = ft, + 2 77)( lor some inieger /;,

115. If .V > 0. then the point (\. \) on the rectangular coordinate

system can be represented by (r, ft) on the polar coordinate

system, where / = -Jx- + y- and ft = arctan(y/.v).

116. The polar equations r = sin 2ft and ; = -sin 2ft have the

same graph.

SECTION PROJECT

Use the anamorphic transrormations

r = y + 16 and ft = ~^-V.

%

3 77 „ 3 77-- < ft < —

-

4 4

to sketch the transformed polar image of the rectangular graph.

When the reflection (in a cylindrical mirror centered at the

pole) of each polar image is viewed from the polar axis, the

viewer will see the original rectangular image.

(a) y = 3 (b) .v = 2

(c) V = .V + 5 (d) .V- + (y - 5)- = 5-

\

This example of anamorphic art is from the Museum of Science

and Industry in Manchester, England. When the reflection of the

transformed "polar painting"is viewed in the tiiirror, the viewer

sees faces.

FOR FURTHER INFORMATION For more information on

anamorphic art. see the article "Anamorphisms" by Philip

Hickin in the Mathematical Gazette. To view this article, go to

the website www.matharticles.com.
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Area andArc Length in Polar Coordinates

• Find the area of a rciiion bounded b\ a polar graph.

• Find the points ol intersection ol' two polar graphs.

• Find the arc length ol' a polar graph.

• Find the area of a smface of revolution (polar form).

The .niM of a sector of a circle is A = ^Or-

Figurc 9.48

Area of a Polar Region

The development of a formula for the area of a polar region parallels that for the area

of a region on the rectangular coordinate system, but uses sectors of a circle instead

of rectangles as the basic element of area. In Figure 9.48, note that the area of a

circular sector of radius / is given by nOr-. provided is measured in radians.

Consider the function given by /- = f{8), where / is continuous and nonnegative

in the interval given hy a < H < (3. The region bounded by the graph of / and the

radial lines = a and H = p is shown in Figure 9.49. To find the area of this region,

paitition the interval [<(. /3] into ii equal subinter\'als.

a =
0,, < H, < 0^ < < 0,,_, < 0„ = p.

Then, approximate the area of the region by the sum of the areas of the /; sectors.

Radius of /th sector = /(ftl,)

B - a
Central antile ol /th sector = ~ = \B

',,-1 '=/(9)

r=fle)

'4== E UM'^t/'*'^'']'

Taking the limit as /;
—>cxj produces

\f(n)]-im

which leads to the follov\ in*: theorem.

THE0REj\19.r] Area in Polai- Coordinates

If /" is continuous and nonnegative on the interval [a Ii] < 13 - a < 2tt.

then the arci of the region bounded by tht graph of /
=

f{0] between the radial

lines H = a and W = /3 IS I i\cn by

^-h
1

>- lie. < /3 - (t < T _

-J "

Figure 9.49

NOTF, You can use the same formula to find the area of a region bounded by the graph of a

continuous nonpositive function. However, the formula is not necessarily valid if/ takes on

both positive and negative values in the interval [a. fi].
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fl^-l Example 1 Finding the Area of a Polar Region

r= 3 cos 39 -

The area of one petal of the rose curve that

lies between the radial lines = - 7t/6

and 6 = 7r/6is 37t/4.

Figure 9.50

NOTE: To find the area of the region

lying inside all three petals of the rose

curve in Example 1, you could not

simply integrate between and 2-n:

In doing this you would obtain 9tt/2.

which is twice the area of the three

petals—the duplication occurs because

the rose curve is traced twice as

increases from to 2tt.

= 1 -2 sine

The area between the inner and outer loops

is approximately 8.34.

Figure 9.51

Find the area of (>;(( petal of the rose curve given by ; = 3 cos 3ft

Solution In Figure 9.50, you can see that the right petal is traced as increases from
— 7t/6 to 7r/6. So. the area is

A = -
I

/- cie (3 COS 30)- do
- J-7r/h

9 f"'" 1 + cos 60
do

Fo muk tor aiea in

po ar to ju'dinales

Tr Lioni met "ic

idL ntitv

9

4K 6 . -n/b

9/77 7r\

4I6 ^ b,

371

4

Example 2 Finding tlic Area Bounded by a Single Curve

Find the area of the region lying between the inner and outer loops of the lima^on

/ = 1
- 2 sin 6.

Solution In Figure 9.51. note that the inner loop is traced as increases from 77/6

to 57r/6. So. the area inside the miicr laop is

A, =-| ,-~do = -
(1 - 2 sin Of do

'/b

577/6

Fornuila liir .irea in

polar coi^idinates

(1-4 sin + 4 sin= 0) dO

-lb

77lb

1
- 4 sin (J + 4

1
- cos 10

do

- J 77/6

(3 - 4 sin - 2 cos 20) do

TiiL'nnometi"

idenlits'

.Simplify

i7r/6

r/6
30 + 4cos e - sin 29

277- 3V3)

3 73

In a similar way, you can integrate from 577/6 to 1 377/6 to find that the area of the

region lying inside the outer loop \s A2 = 2tt + (3^3/2). The area of the region

lying between the two loops is the difference of A, and A ,.

3./3\ / 373^
A = A, - A, 77+ 3V3 = 8.34
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Points of Intersection of Polar Grapiis

Because a point may be represented in different ways in polar coordinates, care must

be taken in deterinining the points of intersection of two polar graphs. For example,

consider the points of intersection of the graphs of

; = 1
— 2 cos 61 and r = 1

as shown in Figure 9.52. If, as with rectangular equations, you attempted to find the

points of intersection by solving the two equations simultaneously, you would obtain

the following.

1

cos f)

1
- 2 COS Hiisl equahiin

1
- 2 COS Siilnsiitute / =

Smiplih-

TT

9
.Siilve for H,

troiii 2nd eqiuitiDii into I si equatmii.

FOR FURTHER ISFORMATION For

more information on using technology to

find points of intersection, see the article

"Finding Points of Intersection of Polar-

Coordinate Graphs" by Warren W. Esty

in Mathematics Teacher. To view this

article, go to the website

www iiuilliiirticlcs.cdin.

The corresponding points of intersection are (I, tt/2) and (1, 37t/2). However, from

Figure 9. .52 you can see that there is a tliird point of intersection that did not show up

v\hen the two polar e(.|uations were solved simultaneously. (This is one reason we
stress sketching a graph when finding the area of a polar region.) The reason the third

point was not found is that it does not occur with the same coordinates in the two

graphs. On the graph of ; = 1, the point occurs with coordinates (1, tt). but on the

giaph of ;• = 1
- 2 cos W. the point occurs with coordinates (-1. 0).

You can compare the problem of finding points of intersection of two polar

graphs with that of finding collision points of two satellites in intersecting orbits about

earth, as shown in Figure 9.3.'^. The satellites will not collide as long as they reach the

points of intersection at different times (N-\alues). A collision will occur only

at the points of intersection that are "simultaneous p(iints"—those reached at the same

time (^- value).

NOTE Because the pole can be represented by (0. H). where 6 is any angle, you slioLild check

separately tor the pole when hunting for points of intersection.

Limavon: / = I - 2 cos 9

Three points of intersection: (1. 77/2),

(-l,l)),(l, 377/2)

Figure 9.52

J/'- A

The paths of satellites can cross without

causing a collision.

Figure 9.53
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C^'
de

Circle:

-6 cos 6

Cardioid:

/ = 2 - 2 cos (

Figure 9.54

Example 3 Finding the Area of a Region Between Two Cun es

Find the area of tlie region common to the two regions bonnded by the following

curves.

r = -6 cos 6 Circle

r = 2 - 2 cos Cardioid

Solution Because both curves are symmetric with respect to the .v-axis, you can

work with the upper half-plane, as shown in Figure 9..'i4. The gray shaded region lies

between the circle and the radial line 6 = 27r/3. Because the circle has coordinates

(0, 7r/2) at the pole, you can integrate between tt/2 and 27t/3 to obtain the area of this

region. The region that is shaded red is bounded by the radial lines H = 27r/3 and

6 = Trand the cardioid. So. you can find the area of this second region by integrating

between 27t/3 and tt. The sum of these two integrals gives the area of the

common region lying (iho\-c the radial line 0=77.

Region between circle Region hetween cardioid and

and radial line H = 277/.1 radial lines H - 277/.^ and 6 = tt

A _\^
7
~ o

(-6 cos 0)- do + -\ (2-2 cos 0)- eld

/2 - Jlrr/i

-II

cos- OdO + -
\ (4-8 cos 6> + 4 cos' 0] dti

)ttI2 - jln/i

9 (1 + cos 20) do + (3-4 cos + cos 20) JO
J-/2 Jln/i

+
sin 20

_h/.

+
2 "/;

3(V - 4sin y +
sin 20

^ ^Vl3.-2. 273 +

27T/3

4

_ 577
~

2

== 7.85

Finally, multiplying by 2. you can conclude that the total area is 57t.

NOTE To check the reasonableness of the result obtained in Example 3, note that the area of

the circular region is Trr- = 97r. So. it seems reasonable that the area of the region lying inside

the circle and the cardioid is 577.

To see the benefit of polar coordinates for finding the area in Example 3, consi-

der the following integral, which gives the comparable area in rectangular coordinates.

A --V2

y2yi - 2.V - .V- - 2.V + 2 dx 6.V dx

Try using the integration capabilities of a giaphing utility to show that you obtain the

same area as that found in Example 3.
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NOTE When applying the arc length

foniuila to a polar curve, he sure that the

curve is traced out only once on the

interval of integration. For instance, the

rose curve given by / = cos 3$ is traced

out once on the interval < H < tt, but

is traced out twice on the Inlcrxal

< H < 2-.

Arc Length in Polar Form

The formula for the length of a polar arc can be obtained from the arc length formula

for a curve described by parametric equations. (.See Exercise 65.)

THEOREM 9.14 Arc Length of a Polar Curve

Let/ be a function whose derivative is continuous on an interval a < 6 < (3.

The length of the graph of /• = fW) from 9 = a lo = fiis

^

</ft'[f(e)Y + [f'{H)fJH I- +

Example 4 Finding the Length of a Polar Curve

Find the length of the arc from 6 = Ci Ui = 2tt for the cardioid

/ = /( H) = 2 - 2 cos y

as shown in Fiuurc 9.55.

)-^n

1 he arc length of this cardioid is 16.

Flfiure 9.55

SoluUon Becau.se /'((*) = 2 sin 0. you can find the arc length as follows.

''H

s = AfiO)]- + [f'{H)]-dH Formula tor arc length of a polar curve

J{2 - 2 cos 0)- + (2 sin H)- JO

2V2 yi - cos 6 do

sm- - JH

4 sin-jy
Jo

Simplify.

TrLeonomelric identity

sin- > U fort) < « < 27

8 - COS -

=8(1 + 1)

= 16

In the fifth step of the solution, it is legitimate to write

s/2sin-(y/2) = v2sin(y/2)

rather than

v2sin=(y/2) = v'2|sin(y/2)|

because sin(y/2) > for < ^ < 27r. [Z]

NOTE Using Figure 9.55, you can determine the reasonableness of this answer by comparing

it with the circumference of a circle. For example, a circle of radius 5 has a circumference of

57r= 15.7.
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Area of a Surface of Revolution

The polar coordinate \ ersion of the fornuilas lor the area of a surface of re\dkitioii can

be obtained from the parametric \ersions given in Theorem ').'-). using the et|uations

.V = / cos H and \ = r sin 0.

NOTE When using Theorem 4,15,

check to see that the graph of ; = /(H)

is traced only once on the interval

a < < ji. For example, the circle

given hy ;• = cos B is traced once on the

interval < (^ < tt.

THEOREM 9. 1 S Area of a Surface of Revolution

Let / be a function whose derivative is continuous on an interval a < < (3.

The area of the surface formed by revolving the graph of ;• = f{H) from H = a

{o H = p about the indicated line is as follows.

I. S = 2tt
\

fW) sin Hj\fW)]- + [f'W)]- JH Aboul Ihc polar uxis

2. S = 2-
\ fW) cos 9n'[/(«)]- + [f'W)]- JH -AbiHil the line H = ^

Example "j Finding the .Area of a Siufate of Revolution

Find the area of the surface formed b\ rev cilving the circle / = f(H) = cos H about the

line 6 = n/'2. as shown in ["igure '•).56.

(a)

Figure 4.56

(b)

Solution W)u can use the second tornuila given m Theorem 9.15 with

fid) = - sin H. Because the circle is traced once as f) increases from to —
. we have

s = 277 m cos HJifio)]- + [fmy- cm j;'™',;',,

= 277 cos f^lcos H)s.'cos- + sin' HJO
Jo

= 277 cos= 0,10

Foinuila loi area of a sLirlaee nl

77
I

(1 + ms20)JO

sin2«r

Triionomelric identitv

Trmononietiie identitv

+ 77-
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EXERCISES FOR SECTION 9.5

In Exercises 1 and 2, find the urea of the region hounded by the

graph (il the polar equation using (a) a geometric I'ormula. and

(b) integration.

1. ( = 8 sin 3 cos

rp In Kxercises 23 and 24, use a graphing utility to approximate

the points of intersection of the graphs of the polar equations.

Confirm your results analytically.

In Flxercises 3-8, find the area of the region.

3. One petal of ; = 2 cos 3W 4. One petal of / = 6 sin 2H

5. One petal of ; = cos 2H 6. One petal ol r = cos 50

7. Inleiior of r = 1 - sin 6*

8. lmeriorofr= 1
- sin W (abiuc the polar axis)

Pp In Exercises 9-12, use a graphing utility to graph the polar

equation and find the area of the indicated region.

9. Inner loop of ; = 1 + 2 cos H

10. Inner loop of (=4-6 sin H

11. Bclween the loops of y- =
1 + 2 cos H

12. Bclween the loops of r = 2(1 +2 sin 8)

In Exercises 13-22, find the points of intersection of the graphs

of the equations.

13. ; =
1 + cos H

/- = 1 - cos

14. r = -^(1 + sin H]

r =3(1 - sni W

23. (=2 + 3 cos ti

sec

24. 3( 1 - cos 0)

6

1 - cos

rp Writing In Exercises 25 and 26, use a graphing utilit> to find

the points of intersection of the graphs of the polar equations.

Watch the graphs as they are traced in the viewing window.

Explain why the pole is not a point of intersection obtained by

solving the equations simultaneously.

H

- 3 sin

26. 4 sin

2( 1 + sin 0)

rp In Exercises 27-32, use a graphing utility to graph the polar

equations and find the area of the indicated region.

27. Common interior of ; = 4 sin 20 and /• = 2

28. Common interior of / = 3(1 + sin 0) and r =3(1 - sin 0)

29. Conniion niterior of / = 3 — 2 sin (* and i = — 3 + 2 sin W

30. Conniion interior of / = ."i — 3 sin and /" = 5 — 3 cos

31. Common interior of (=4 sin and r = 2

32. Inside r = 3 sin and outside / = 2 - sin t*

15. r = I + COS0

/ = 1 - sin «

17. r = 4 - S sin

r = 3 sin

19.,- =
^

1=2

21. /• = 4 sin 20

16. r = 2 - 3 cos

r = cos

18. / = 1 + cos

r = 3 cos

20. '-i
r = 2

22. /- = 3 + sin

1=2 CSC

In Exercises 33-36, find the area of the region.

33. Inside r = ci(\ + cos 0) and outside / = a cos

34. Inside / = 2ti cos and outside / = ci

35. Common interior of r = <<( 1 + cos 0] and r = n sin

36. Common interior of r = a cos and /• = a sin where a > 0.

rp .17. Antenna Radiation The radiation from a transmitting

antenna is not iinilorm m all diieclions- The intensity from a

p.irlieular antenna is modeled b\

/' = II cos- 0.

(a) Convert the polar equation to rectangular form.

(b) Use a graphing utility to graph the model for u = 4 and

(/ = 6.

(c) Find the area of the geographical region between the two

curves in part (b).

38. Area The area inside one or more of the three interlocking

circles

/" = 2i( cos 0. r = 2ii sin 0. and r = a

is di\ ided into seven regions. Find the area of each region.

39. Conjecture Find the area of the region enclosed by r =

cicos(n0) for ii = 1.2,3 Use the results to make a

conjecture about the area enclosed by the function if n is even

and if;; is odd.
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40. Area Sketch the strophoid

;• = sec d — 2 cos 0. -— < 6 < —.

Con\ert this equation to rectangular coordinates. Find the area

enclosed hy the loop.

In Kxerclses 41-44. fiiui the length ol' the curve over (he

indicated interval.

57. Cii\'c the nilegral tornuilas lor area and arc length nt polar

coordinates.

58. Explain why finding points of intersection of polar graphs

may require further analysis beyond solving two equations

snmiltancously

59. W Inch integral \ields the arc length of r =3(1 - cos 20)7

State uh\ the other nne>jrals are Incorrect.

Polar Equation

41. / = a

42. ; = 2a cos ft

Inlvrral

{) < ft < 2tt

~^<ft<^

43. ) = 1 + sin ft < ft < 2tt

44. )- =8(1 + cos ft) < ft < 2tt

rp In Exercises 45-50, use a f;ra|)liin<; utility to jirapli the polar

equation over the indicated interval. Use the inte<irati(Ui

capabilities of the <;raphin<; utility to approviniale the len<^th ol

the cur\e accurate to two decimal places.

Polar Ei/iuilioii Interval

45. r = 20

(a) 3 y( 1
- cos 2ft)- + 4 sin- 2ftilft

(h) 12 v(l - cos:(»- + 4sui- 2H,lft

(c) 3 ,.'(1 - cos2H)- + 4 sin- 2H,lft

(d) 6 ^(1 - cos2«)- -I- is\r\-2ftilO

60. Cii\e the Integral formulas for the area of the surface of

rc\nlutinn lormed when the grapli ol r = /(HI is re\ol\ed

about (a) the .v-axis and (b) the y-axis.

46. )- = sec

1

< <

< <

47.
ft

< < 27T

48. ( = e" < W < TT

49. / = sln(3 cos ft) < < -

50. )• = 2sln(2cos ft] < ft < tt

In Exercises 51-54. find the area of the surface formed hy

revolving the curve about the given line.

Polar El/nation Interval Av/.v of Revolmion

51. ) = 6 cos ft < < ~ Polar axis

61. Surface Area of a Torus find the snrlaee area ol the torus

generated hy rexolving the circle gixen by r = a about the line

) = /) sec ft. where < u < h.

rp 62. .Xpprnximatiiii- .Xrea Consider the circle / = 8 cos ft.

(a) Find the area of the circle.

(b) Complete the table giving the areas A of the sectors of the

circle between ft = and the values of ft In the table.

0.2 0.4 0.6 O.S 1.0 1.2 1.4

A

52. r = a cos ft 0<0<^ H = ?

53. ; = e"" < ft <

54. ; = a{ 1 -I- cos ft) < ft <

"=2

Polar axis

if In Exercises 55 and 56. use the integration capabilities of a

graphing utility to approximate to two decimal places the area of

the surface formed by revolving the curve about the polar axis.

Polar Equation Interval

55. /• = 4 cos 29

56. r =

< e < -
4

< y < 77

(c) Use the table In part (b) to approximate the values of for

which the sector of the circle composes j. ,, and j of the

total area ol the circle

(d) Use a graphing utility to approximate to two-decmial-placc

accuracy the angles ft for which the sector ol the circle

composes j, 3. and -^ of the total area of the circle.

(e) Do the results In part (d) depend on the radius of the circle?

Explain.

True or False'.' In Exercises 63 and 64, determine whether the

statement is true or false. If it is false, explain why or give an

example that shows it is false.

63. If f{ft) > for all H and i;(ft) < for all ft. then the graphs ol

/ = fift) and ) = ,i,'(H) do not intersect.

64. If f{ft) = Kift) for ft = 0. 77/2. and 3 77/2. then the graphs of

/ = fift) and ) = aiO) have at least four points of intersection.

65. Use the formula for the arc length of a curve m parametric form

to derive the formula for the arc length of a polar curve.
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Polar Equations of Conies and Kepler's Laws

Analyze and wnlc polar equations ot comes.

Understand and use Kepler's Law s of planetary motion.

EXPLORATION MH
Graphing Conies Set a graphing

utility to polar mode and enter polar

equations ol the form

1 ±bco?,d

1 ± t sin S

As long as 17 7^ 0. the graph should

be a conic. Describe the values of

() and b that produce parabolas. What

values produce ellipses' What values

produce hyperbolas?

Polar Equations of Conies

Iti this chapter you have seen that the lectaiigular equations of ellipses and hyperbo-

las take simple forms when the origin lies at their icnters. As it happens, there are

many important applications of conies in vv'hich it is more convenient to use one of the

foci as the reference point (the origin) for the coordinate system. For exatnple, the sun

lies at a focus of earth's orbit. Similarly, the light source of a parabolic reflector lies

at its focus. In this section you will see that polar equations of conies take simple

forms if one of the foci lies at the pole.

The following theoretn uses the concept of eccentricity', as defined in Section

9.1. to classify the three basic types of conies. A proof of this theorem is given in

Appendix B.

THEOREM 9. 16 Classification of Conies by Eccentricity

Let f be a fixed point
{
facus) and D be a fixed line (directrix) in the plane.

Let P be another point in the plane and let e (eccentricity) be the ratio of the

distance between /-" and /- to the distance between P and D. The collection of

all points P w ith a given eccentricity is a conic.

1. The conic is an ellipse if () < t' < 1.

2. The conic is a parabola if c = 1

.

3. The conic is a hyperbola if c > 1.

Directrix Directrix - Directrix

Fiyure 9.57

Parabola: e = I

pr = PO

P'i

Hyperbola: (

PO "
P'Q'

ItF=(0. 0)

> 1

In Figure 9.51. note that for each type of conic the pole corresponds to the fixed

point (locus) gi\en in the definilion. The benefit of this location can be seen in the

proof of the following theorem.
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P = {r.d)

' '' "
..

F = (0, 0)
;

[
Direclrix

Figure 9.5S

THEOREM 9.17 Polar Equations of Conies

The graph of a polar equation of the foini

ed cd

1 ± e cos sin

is a conic, where c > is the eccentricity and |(/| is the distance between the

focus at the pole and its coiTesponding directrix.

Proof We give a proof for r = ed/{\ + f cos Q) with d > 0. In Figure 9.58.

consider a veilical directrix d units to the right of the focus F = (0. 0). If P = (r. 6)

is a point on the graph of r = ed/{\ + f cos H). the distance between P and the

directrix can be shown to be

PQ = \d - x\ = \d - rcos6\
(•(I + f cos 0)

r cos H

Because the distance between /' and the pole is simply PF = [/]. the ratio of PF to

PQ\sPF/PQ = lr|/|/-/t'| = \e\ = t and. by Tlieorem 9.16. the graph of the equation

must be a conic. The proofs of the other cases are similar.

The four types of cijuations indicated m Theorem 9.17 can be classilied as

follows, where J > 0.

ed
a. Hori/onlal directrix above the pole: r

b. Horizontal directrix below the pole; /

c. Vertical directrix to the right of the pole: r

d. Vertical directrix to the left of the pole: ;•

1
— (• cos

Figure 9..S9 illustrates these four possibilities for a parabola.

1 + e sin

ed

H

1
-

(' sin

cd

1)

1 + e cos

ed

Directrix v = ii

1 + e sin 9

(a) (b)

The four types of polar eqaatioiis for a parabola

Figure 9.59

1
- ( sin t 1 + c cos 6

(0

Directrix
I

(dl



704 CHAPTER 9 Conies, Parametric Ht|uations, and Polar Coordinates

The graph ol tho conic is an ellipse with

t' — V

Figure 9.60

Example 1 Determining a Conic from Its Equation

Sketch the graph of the conic given by /
15

3-2 cos e'

Solution To detennine the type of conic, rewrite the et|Liation as

15

3-2 cos

5

1 - (2/3) cos ff

Divide numerator and

denominator bv 3

So. the graph is an ellipse with e = ?. You can sketch the upper half of the ellipse by

plotting points from B = 0{o d = tt. as shown in Figure 9.60. Then, using symmetry

with respect to the polar axis, you can sketch the lower half. 1^

For the ellipse in Figure 9.60. the nuijor axis is htiri/onttil and the sertices lie at

( 15. 0) and (3. tt). So. the length of the imtjov a.xis is la = l<S. To find the length of

the minor axis, you ctin tise the eciuations e = c/ii and /)- = ir - c- to conclude

[ea)- = cr(\ - e-). Kllipse

Because c = ';. you ha\e

h' = 9-[l - {\f] = 45

which implies thtit /' = y45 = 3^5. So. the length of the minor axis is 2h = 6^5.
A similar analysis for hyperbolas yields

b- u~ = {cu)~ - cr = Li'ic-^ — 1) H\perliola

//^y Example 2 Slsctiliiiig a Conie from It.s Polar Equation

Sketch the graph of the polar equation r
3 + 5 sin e'

Directrix « = 6

/i = 8

3 + ^ sin 9

The graph of the conic is a hyperbola with

'' = i
Figure 9.61

Solution Dividing the numerator and denominator by 3 produces

_ 32/3
' "

I + (5/3) sin m'

Because e = % > I . the graph is a hyperbola. Because d = y. the directrix is the line

•\' = '^. The transverse axis of the hyperbtila lies on the line H = 7r/2, and the veilices

occur at

(r. ^) = (4. fj and (r. W) = ( - 16. ^j.

Because the length of the transverse axis is 12. you can .see that a = 6. To find /;. write

/,; = ^,2(^,; „ I) = (V
3' -' 64.

Theief'ore. b = 8. Finally, you can use </ and b to determine the asymptotes of the

hyperbola tmd ohttiin the sketch shown in Figure 9.61. 1.^
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Johannes Kei'Lk.r (I5"1 Ih.MI)

Kepler formulated his three laws from the

extensive data recorded by Danish astronomer

Tycho Brahe. and from direct observation of

the orbit of Mars.

Kepler's Laws

Kepler's Liiws. named after the Geniian astiononier Johannes Kepler, can be used to

describe the orbits of the planets abotit the sun,

1. Each planet moves in an elliptical orbit with the sun as a focus.

2. The ray from the stm to the planet sweeps out equal areas of the ellipse in equal

titnes.

3. The square of the period is proportional to the cube of the mean distance between

the planet and the sun.

.Although Kepler deri\ed these laws empirically, they were later \'alidated b\ Newton.

In fact. Newton was able to show that each law can be detluced from a set of

universal laws of motion and giavitation that govern the iiiovemenl of all heavenly

bodies, including comets and satellites. This is illustrated in the next example,

involving the comet named after the English mathematician and physicist Edmund
Halley (1656-1742).

Examph' 3 Halley's Cornel

Sun

Figure 9.62

Halley's comet has an elliptical orbit with an eccentricity of c = 0.97. The length of the

ma|or axis of the orbit is approximately .Vi.l8 astronomical units. (An astronomical unit

IS defined to be the mean distance between earth and the sun. 93 million miles.) Find a

polar equation for the orbit. How close does Halley's comet come to the sun'.'

Solution Using a vertical axis, you can choose an equation ol the form

eel

' ~
(I + f sin OY

Because the vertices of the ellipse occur when H = 7r/2 and H = 37t/2, you can

determine the length of the nia|or axis to be the sum of the r-values of the vertices, as

shown in Figure 9.62. That is.

la
0.97i/ ().97(/

+ 0.97
"^

I
- 0.97

36.18 = 32.S3</. .V, I s

So. rf= 1.102 and (</ = (0.97)( 1 . 1021 = 1.069. Using this value in the equation

produces

1.069

1 + 0.97 sin 6

where r is measured in astronomical units. To find the closest point to the sun (the

focus), you can write c = ea ~ (0.971(18.09) == 17.55. Becau.se c is the distance

between the focus and the center, the closest point is

a - c= 18.09 - 17.55

== 0.54 AU
== 50,000,000 miles

If earth is used as a reference with a period of 1 year and a distance of 1 astronomical unit, tlie

proportionality- constant is 1. For example, because Mars has a mean distance to the sun of

D = 1.523 AU. its period P is i^iven by D' = P-. So. the period for Mars is P = l.N.S.
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Earth

Kepler's Second Law stales that as a planet moves about the sun, a ray from the

sun to the planet sweeps out equal areas in equal times. This law can also be applied

to comets or asteroids with elliptical orbits. For example. Figure 9.63 shows the orbit

of the asteroid Apollo about the stni. Applying Kepler's Second Law to this asteroid,

you know that the closer it is lo the sun. the greater its velocity, because a short ray

must be mo\'ing quickly to sweep out as much area as a long ray.

A ray Irom the sun to the asteroid sweep.s out equal areas in equal times.

Figure 9.63

Example 4 The Asteroid Apollo

The asteroid Apollo has a period of 478 earth days, and its orbit is approximated by

the ellipse

1 + (5/9) cos H 9 + 5 cos 6

where r is measured in astronomical units. How long does it take Apollo to move from

the position given by 6 = — 77/2 to ^ = 77/2, as shown in Figure 9.64?

Solution Begin by finding the area swept out as f) increases from - 77/2 to 77/2.

1

Formula i'or area of a polar graph

_ , \9 + 5 cos H
clO

Using the substitution /( = tan(W/2). as discussed in Section 7.6, yt)u obtain

7T/2

81

112

-5 sin 9 18 V56tan(e/2)
H ^= arctan -

9 + 5 cos H V 56 14
= 0.90429.

Because the major axis of the ellipse has length 2ci = 81/28 and the eccentricity is

e = 5/9. you can determine thai h = a-^'] - e- = 9/ JUb. So, the area of the

ellipse is

/'81\/ 9
Areaotellip.se = 77((/' = 77^ —;==

\56/\^'56
5.46507.

Because the time required to complete the orbit is 478 days, you can apply Kepler's

Second Law to conclude that the time ; required to move from the position = - tt/2

to H = 77/2 is given by

I _ area of elliptical segment __ 0.90429

478
~

area (if ellipse
~

5.46507

which implies that / == 79 days
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EXERCISES' FOR SECTION 9.6

rp Graphiciil Rcasaniiig In Exercises 1-4, use a niaphiiif;

utility to sraph the polar equation when (a) t' = 1. (b) f = 0.5,

and (c) p = 1.5. Identifv the conic.

1.

(e) (f)

3.

I + e cos

I - c sin H
4. /

1 — f cos

1 + e sin H

rp 5. Consider the polar eiiuatioi

I + e sin e

(a) Use a grapliing utility to graph the equation for < = 0.1.

c = 0.2?. c = O,.";. c = 0.75. and c = 0.4, identil> the come

and discuss the change in its shape as c ^ I ,aiil c -^
.

(b) L'se a graphing titility to graph the equation tor c = 1.

Identity the conic.

(c) Use a graphing utility to graph the equation for c = 1.1.

( = 1.5. and c = 2. Identify the conic and discuss the

change in its shape as c -h> 1
' and c -^ ~Ji.

6. Consider the polar ei.|uation

4

7.
1
- cos

9.
3

1 - 2 sin «

6

2 - sin H

10. ;

12. /
=

T ~ COS H

1 + sin

2 + 3 cos

rp In Exercises 13-22. sketch and identity the f;raph. I'se a

graphing utility to conllrm your results.

1 - 0.4 cos W

(al Identify the conic without graphing the equation.

(b) Without graphing the following polar equations, describe

how each differs from the polar equation above.

13.
1 - sin 6*

15.
6

2 + cos «

17. (2 + sin «) = 4

19.
5

-1+2 cos

->i
3

2 + (i sin H

14. /

16

1 + cos H

5

5 + 3 sin «

18. ((3 - 2 cos {)) = 6

-6
20. r

3 + 7 sin d

4

1 + 2 cos »

1 + 0.4 cos «'
1
- 0.4 sm «

(c) Verify the results m part (bl graphically.

In Exercises 7-12, match the polar equation with the correct

graph. [The graphs are labeled (al, (b). (c). (dl. le), and (1).]

rp In Exercises 23-26. use a uraphiiig utility to graph the poki

equation. Idenlil'y the graph.

23. ;

25.

-4 + 2 sin

-1

1 - cos i)

24. r =
-3

2 + 4 sin «

26.
2 + 3 sin «

(a) (b)

'-({^^)i\KlM-)'^^
(0 (d)

rp In Exercises 27-30, use a graphing utilil> (o graph the conic.

Describe how the graph diliers Ironi that in the indicated

exercise.

(See E.xercise 13.1

(See Exercise 14.)

(See Exercise 15.)

(See Exercise 20.)

27.
1 - sin(W - 7r/4)

28.
6

1 + C0S(« - 77/3)

29,
6

2 + cos((^ + n-/6)

30.

-6
— 7:r

3 + 7sin(H + 27t/3)

31. Write the equation lor the ellipse rotated tt/4 radians clockwise

from the ellipse ; = 5/(5 + 3 cosW).

32. Write the equation for the parabola rotated 7r/6 radians

counterclockwise from the parabola /• = 2/(1 + sin ti).
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In Exercises 33-44, find a polar equation for the conic with its

focus at the pole. (For convenience, the equation for the direc-

trix is given in rectangular form.)

CoiiiL- Eccentricin Directrix

33. Parabola e = 1 .V = - 1

34. Parabola e = 1 V = 1

35. Ellipse ^ = i y = 1

36. Ellipse y = -^

37. Hyperbola e = 2 A- = 1

38. Hyperbola f — T .V = -
1

Conic Vertex or Vertices

39. Parabola (1.-77/2)

40. Parabola (5. tt)

41. Ellipse (2.0). (8. tt)

42. Ellipse (2. n-/2). i-l.} 77/2)

43. Hyperbola {1.37T/2). (9, 377/2)

44. Hyperbola (2,0), (10,0)

rp' In Exercises 53 and 54, use the integration capabilities of a

graphing utility to approximate to two decimal places the area

of the region bounded by the graph of the polar equation.

3

' 45. Classify the conies by their eccentricities.

46. Explain how the graph of each conic differs from the graph

4

(b) r =

(d) r =

+ sin ff

(a) / = 4

1
- cos

(c) r =
4

1
-+ cos d

47. Identify the conic.

5

1 - sin e

4

(e) r

I
- 2 cos

5

3 - 3 cos e

1
- sin(f* - 77/4)

(h) /• =

(d) (- =

10 - sin e

5

1 - 3sin(e - 77/4)

48. (a) .Show that the polar equation for (.v-/<7-) + {y~/b-) = I is

1
— e- cos- 6

Ellipse

(h) Show that the polar equation for {x-fcr) — {y-/h-) = 1 is

Hyperbola
1 - e- cos- e

'

In Exercises 49-52, use the results of Exercise 4S to write the

polar form of the equation of the conic.

49. Ellipse: Focus at (4, 0); Vertices at (5, 0), (5, tt)

50. Hyperbola: Focus at (5, 0); Vertices at (4, 0), (4. 77)

51.
16

1 52.
'—

4
1

53.
cos

54.
; sin e

55. Explorer IS On November 26. 1963. the United States

launched Explorer 18. Its low and high points above the surface

of earth were 119 miles and 122.000 miles (see figure). The

center of earth is the focus of the orbit. Find the polar equation

for the orbit and find the distance between the surface of earth

and the satellite when H = 60°. (Assume that the radius of earth

is 4000 miles.)

56. Planetary Motion The planets travel in elliptical orbits with

the sun as a focus, as shown in the figure.

(a) Show that the polar equation of the orbit is given by

^ (1 - e-)a

I - e cos

where e is the eccentricity.

(b) Show that the minimum distance [pcrilielion distance)

from the sun to the planet is r =a(\ - e) and the maximum

distance lapliclion distance) is /• = a{] + e).

Planet

N'lf iliiiwu in scale

In Exercises 57-60, use Exercise 56 to find the polar equation of

the elliptical orbit of the planet, and the perihelion and aphelion

distances.

57. Earth a = 92.957 < 10" miles

e = 0.0167

58. Saturn (( = 1.427 10^' kilometers

e = 0.0543

59. Pluto a = 5.900 X 10" kilometers

e = 0.2481

60. Mercury a = 36.0 10" miles

e = 0.206
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rp 61. Planetary Motion In Exercise 59. the polar equation tor the

elliptical orbit of Pluto was found. Use the equation and a

computer algebra system to pertbrm each of the following.

(a) Approximate the area swept out by a ray from the sun to the

planet as increases from to Tr/9. Use this result to

detennine the number of years for the planet to move

through this arc if the period of one revolution around the

sun is 248 years.

(b) By trial and error, approximate the angle a such that the

area swept out by a ray from the sun to the planet as H

increases frorn Trto a equals the area found in part (a) (see

figure). Does the ray sweep through a larger or smaller

angle than in pan (al to generate the same area' Why is this

the case'

(c) Approximate the distances the planet traveled in parts (a) and

(b). Use these distances to approximate the average number

of kilometers per year the planet traveled in the two cases.

Fijjure for 61

62. What conic section does the follow ing polar eqiuition repiescnt

'

(" = a sin H + h cos H

63. Show that the graphs of the following equations intersect at

risht ancles.

fj

I + sin H
and /

cil

I - sin

REVIEW EXERCISES FOR CHAPTER 9

F In Kxercises 1—I, match the eqiiation with (he correct

gruph. 1 1 he graphs are labeled (a), (b). (el. and ldl.|

(c)

MM

1. 4.V-

3. V- =

y- = 4

-4.V

In Kxercises 1 1 and 12, find an equation of the parabola.

11. Vertex: (0.2); Directrix: \= -^

12. Vertex: (4.2); Focus: (4.0)

In Exercises 13 and 14, find an equation of the ellipse.

13. Vertices: (-3.0). (7.0); Foci: (0.0). (4.0)

14. Center: (0. 0): Solution points: ( 1 . 2). (2.01

In Kxercises 15 and 16, find an equation of the hyperbola.

15. Vertices: (±4.0); Foci: (±6.0)

16. Foci: (0. ±S); Asymptotes: \' = ±4v

rp In Kxercises 17 and IS. use a graphing utilil\ to approximate

the perimeter of the ellipse.

rp In Exercises 5-10, analyze each equation and sketch its graph.

Use a graphing utility to conlirni your results.

5. 16.V- + 16y- - 16.V + 24y - .^ =

6. y-- I2y - 8.v + 20 =

7. 3.V- - 2y- + 24.V + 12\ + 24 =

8. 4.V- + y- - 16.V + 1.5 =

9. 3.V- + 2y= - 12.V + I2y + 29 =

10. 4.V- - 4\- - 4.V + 8^ - 1 1 =

17.
9

.8.-± = 1

19. A line is tangent to the parabola ) = .v- - 2v + 2 and perpen-

dicular to the line y = ,v - 2, Find the equation of the line.

20. Satellite Antenna A cross section of a large parabolic antenna

IS modeled by the graph of v = .v7200. - 100 < .v < I(.)0. The

receiving and transmitting equipment is positioned at the focus.

(a) Find (he coordinates of the focus.

(b) Find the surface area of the antenna.

21. Consider a fire truck with a water tank Id led long whose

vertical cross sections are ellipses modeled by the equation

.V-/16 + i79 = I.

(a) Find the volume of the tank.

(b) Find the force on the end of the tank when it is full of water.

(The density of water is 62.4 pounds per cubic foot. I

(c) Find the depth of the water in the tank il it is j full (by

volume) and the truck is on level ground.

(d) Approximate the tank's surface area.
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22. Consider the region hounded by tlie ellipse

eecenlricity c = c/a.

(a) Show that the area of the region is -mih.

(b) Show that the solid (oblate spheroid) generated by revolv-

ing the region about the minor axis ol the ellipse has a

\olume of I' = 4-irh/?i and a surface area of

n=^ 34.

S = lira- + m'AJ^^^'

(c) Show that the solid (prolate spheroid) generated by revolv-

ing the region about the major axis ol the ellipse has a

\olume of \' = 47r(//)-73 and a surface area of

S = 2TTb- + 2Tr| — lar

par;

and

ing

23.

24.

25.

26.

27.

28.

In Exercises 23-28, sketch the curve represented by the

ametric equations (indicate the orientation of the curve).

\\ri(e the correspondiii}; rectangular equation by eliminat-

the parameter.

.V = I -I- 4(, y = 2 - 3r

.V = / -I- 4, y = t-

.V = 6 cos 9, y = 6 sin H

\ = 3 + 3 cos H. y = 2 + 5 sin

A = 2 -I- sec 0. y = 3 + tan H

\ = 5 sin-' 0. V = 5 cos' II

In Kxercises 29-32. lind a parametric representation of the hne

or conic.

29. Lnic: Passes thioLigh (
- 2. h) and (3, 2)

30. Circle: Center at (5. 3); Radius 2

31. Ellipse: Center at (-3,4); Horizontal major axis of length iS

and niHior axis of length h

.32. Hyperbola: Vertices at (0, ±4); Foci at (f), ±5)

It 33. Riitaiy Engine The rotary engine was developed by Felix

Wankcl in the l'^)5()s (see Chapter 4). It features a rotor, which

is a modified equilateral triangle. The mlur mo\es in a chLimber

that, in two dimensions, is an epitrochoid. Use a graphing

utility to graph the chamber modeled by the parametric

equations.

.V = cos 3fl + ,'i cos H

and

V = sin 3y + 5 sin 0.

Hypocycloids A hypocycloid has the parametric equations

and
III - h

(a - h) cos I + h cosi —
;

— t

b

y = (a - h) sin ; - h sin
b

b

Use a graphing utility to graph the hypocycloid for each of the

following values of a and /'.

^ 35.

(a) (( = 2. /) = 1 (b) a = 3. /) == 1 (c) a = 4. b = I

(d) a = 10. /. = (e) a = 3. /) =- -)

(f) a = 4. b = 3

36.

Serpentine Curve Consider the parametric equations

.V = 2 cot W and y = 4 sin $ cos H. < < n.

(a) U.se a graphing utility to sketch the curve.

(b) Eliminate the parameter to show that the rectangular

equation of the seipentine curve is (4 + x-)y = 8.v.

Involute of a Circle The involute of a circle is described by

the endpoint P of a string that is held taut as it is unwound from

a spool that does not turn (see figure). Show that a parametric

representalion of (he involute is

.V = j-(cos H + H sm H) and \' = r(sin - 6 con 0).

In Exercises 37-46. (a) find dy/dx and all points of

horizontal tangency. (b) eliminate the parameter where possi-

ble, and (c) sketch the curve represented by the parametric

equations.

37. A =
I

39. V =

4r. V = 2

V = 2/ -I- 3

3/

41. V
I

2? -I- 1

I

43. V = 3 + 2 cos H

y = 2 + 5 sin H

45. V = cos

'

H

V = 4 sin'

9

38. V
—

t + 4.

4(1. A = 1

t'

42. A = 2t- 1

1

t~ - 2t

44. A = 6 cos

\ = 6 sin

46.

'r In Exercises 47 and 48. (a) use a graphing utility to sketch the

curve represented by the parametric equations, (b) use a graph-

ing utility to find dx/dO. dyjdtt. and dyjdx for = ttJ(\. and

(c) use a graphing utility to graph the tangent line to the curve

when = 7t/6.

47. .V = cot

V = sin 20

48. A

y

20 - sin

2 - cos
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In Exercises 49 and 50. find the length of the curve represented

by the parametric equations over the given interval.

49. .V = r(cos e + (9 sin $) 50. a = 6 cos H

V = /'(sin - 9 cos 0) y = 6 sin

< e < IT < e < TT

In Exercises 51 and 52. the rectangular coordinates of

a point are given. Plot the point and find two sets of polar coor-

dinates for the point for < < 2tt.

51. (4. -4) 52. (-1.3)

In P^xercises 5.^-60, convert the polar equation to rectangular

form.

53. ( = 3 cos d

55. /- = -2(1 + cos d)

57./- = cos2ff

59. ; = 4 cos 2 « sec

54. ) = 10

56. /

cos

58. ) = 4 sec| -
^

60. =

61. (a- + y-)- = a.x-y

63. A- + V- = (V- arctan '

62. A- + \- - 4 V =

A'

64. (a- + V-) arclan

In Exercises 65-76, sketch a graph of the polar e(|uation.

65. / = 4 66.

67. / = - sec

69. /- = -2(1 + cos 0)

71. ; = 4 - 3 cos

73. /• = -3 con 20

75. /-- = 4sin'2«

12

68. I- = 3 CSC

70. r = 3 - 4 COS

72. / = 20

74. r = COS 50

76. (- = COS 20

rp In Exercises 77-80, use a graphing utility to graph the polar

equation.

cos(<^ - 7t/4)

79. /- = 4cos2y sec

78. 1=2 sin cos= 9

80. / = 4(sec « - cos 0)

83. Pmd the angle between the circle r = 3 sm and the liniac^on

I- = 4 - 5 sin at tlie punit of intersection (3/2. Tr/6).

84. True or False? There is a unique polar coordinate represen-

lalion tor each point in the plane. Hxpiain,

pp EBl I" Exercises 85 and 86, show that the graphs of the

polar equations arc orthogonal at the points of intersection. Use

a graphing utility to confirm your results graphically.

In Exercises 61-64, convert the rectangular equation to polar

form.

85. ; = 1 + cos

r = \ - cos

86. a sin

CI cos

rp In Exercises S7-94. use a graphing utility to graph the polar

equation. Set up an integral for finding the area of the indicated

region and use the integration capabilities of a graphing utility

to approximate the integral accurate to two decimal places.

87. Interior oty

88. Inleriorof;"

89. Interior of r

90. Interior of /

2 + cos

5(1 - sin 0)

sin cos- H

4 sin 3(^

91. Interior of r- = 4 sin 20

92. Common interior of r = 3 and r- = IS sin 2(*

93. Common interior of / = 4 cos Wand / - 2

94. Reiiion bounded by the polar axis and c = c" lor < < it

In Exercises 95 and 96. find the perimeter of the curve.

95. r = ciil - cos 0) 96. / ^ a cos 20

f^ ES^ In Exercises 97-102. sketch and identify the graph. Use

a graphing utilit\ to confirm your results.

9/.
1 - sin H

99.
6

'

3 + 2 cos

01
4

2-3 sin

98.
'

1 + cos H

4

' 5-3 sin

02.
X

5 cos

rV In Exercises 81 and 82, (a) find the tangents at the pole, (b) find

all points of horizontal and vertical tangency. and (c) use a

graphing utility to graph the polar equation and draw a tangent

line to the graph for = tjJ6.

51. )- = 1 - 2 cos 82. ;- = 4 sin 20

In Exercises 10.3-108, find a polar equation for the line or conic.

103. Circle 104. 1 ine

Center: (5, 7r/2) Solution point; (0,0)

Solution point: (0. 0) Slope; y3

105. Parabola 106. Parabola

Vertex; (2. n) Vertex: (2. tt/2)

Focus; (0, 0) Focus; (0. 0)

107. Ellipse 108. Hyperbola

Vertices; (5.0). (I.tt) Vertices: (1.0). (7.0)

One focus: (0. 0) One focus; (0, 0)
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Vrobl&m 'Solving

1. Consider the parabola a- = 4y and the focal chord a' = 4-v + 1.

(a) Sketch the graph of the parabola and the focal chord.

(b) Show that the tangent lines to the parabola at the endpoints

of the focal chord intersect at right angles.

(c) Show that the tangent lines to the parabola at the endpoints

of the focal chord intersect on the directrix of the parabola.

2. Consider the parabola .v- = 4pv and one of its focal chords.

(a) Show that the tangent lines to the parabola at the endpoints

of the focal chord intersect at right angles.

(b) Show that the tangent lines to the parabola at the endpoints

of the focal chord intersect on the directri,\ of the parabola.

3. Prove Theorem 9.2. the Retlectixe Property of a Parabola, as

illustrated in the fissure.

6. The curve given by the parametric equations

aJj'

B

(^. n

V\ y
c

Figure for 4 Figure for 5

-x(t)

1 - r-

1 + r-
and v(rt

t(\ - r-)

1 + f'

is called a strophoid.

(a) Find a rectangular equation of the strophoid.

(b) Find a polar equation of the strophoid.

(c) Sketch a graph of the strophoid.

(d) Find the equations of the two tangent lines at the origin.

(e) Find the points on the graph where the tangent lines are

horizontal.

7. Find the rectangular equation of the portion of the cycloid given

by the parametric equations .v = 0(6 — sin 6) and y = a(l — cos 8),

< ^ < TT. as indicated in the fiiiure.

2a"

4. Consider the hyperbola

with foci F| and f,. as indicated in the figure. Let T be the

tangent line at a point M on the hyperbola. Show that incoming

rays of light aimed at one focus are reflected by a hyperbolic

minor toward the other focus.

rp 8. Consider the cornu spiral given by

.v(/) ilu and \{t) ill,.

(a) Use a graphing utility to graph the spiral oxer the interval

- TT < t < 77.

(b) Show that the coniu spiral is symmetric with respect to the

origin.

(c) Find the length of the cornu spiral from t = Qlo 1 = n. What

is the length of the spiral from r = - tt to r = tt'

9. A particle is moving along the path described by the parametric

equations

1

and V
sin /

t

1 < f < 00,

as indicated in the figure. Find the length of this path.

5. Consider a circle of radius n tangent to the y-axis and the line

.V = 2a. as indicated in the figure. Let A be the point where the

segment OB intersects the circle. The cissoid of Diodes consists

of all points P such that OP = AB.

(a) Find a polar equation of the cissoid.

(b) Find a set of parametric equations for the cissoid that docs

not contain trigonometric functions.

(c) Find a rectangular equation of the cissoid.
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Pa
10.

(u sin d + b cos d)'
Q < $ <

11. Consider the rieht trianele in the fiaure.

Let n and Z) be positive constants. Find the area of the region in rp 14. Use a graphing utility to graph the polar equation r =

the first quadrant bounded by the graph of the polar equation 2 + k cos 6 for A' = 0, 1.2. and 3. Identify each graph.

ab „ . ,, .
•?] rp 15. A controller spots two planes at the same altitude flying toward

each other (see figure). Their flight paths are S 20° W and

S 45° E. One plane is 150 miles from point P with a speed of

375 miles per hour. The other is 190 miles from point P with a

speed of 450 miles per hour.

(a) Find parametric equations for the path of each plane where

; is the time in hours, with t = corresponding to the tune

at which the air traffic controller spots the planes.

(b) Use the result in part (a) to write the distance hetvxeen the

planes as a function of I.

(c) Use a graphing utility to graph the function in part (b).

When will the distance between the planes be minimum? If

the planes must keep a separation of at least 3 miles, is the

A{a) =
i:\ sec= e cW.

requirement met^^

(a) Show that the area of the triangle is

1

(b) Show that tan a sec- $ dft.

(c) Use part (h) to derive the formula for the derivative of the

tangent function.

12. Determine the polar equation of the set of all points (;, B). the

product of whose distances from the points (1.0) and( - 1, 0) is

equal to 1. as indicated in the figure.

rp 16. Use a graphing utility to produce the curve shown below. The

curve is given by

e
2 cos 46* + sin^

i:

Over what inter\al must 6 vary to produce the curve?

13. Four dogs are located at the comers of a square with sides of

length d. The dogs all move counterclockwise at the same

speed directly toward the ne,\t dog, as indicated in the figure.

Find the polar equation of a dog's path as it spirals toward the

center of the square.

FOR FURTHER INFORMATION For more information on this

curve, see the article "A Study in Step Size" by Temple H. Fay

in Mathematics Magazine. To view this article, go to the website

www.mathai-ticles.com.

Pf^ 17. Use a graphing utility to graph the polar equation

/ = cos 50 + n cos 6

for < 61 < 77 for the integers n = -5 to // = 5. What

values of n produce the "heart" portion of the curve? What values

of n produce the "beU" portion? (This curve, created by Michael

W. Chamberlin, appeared in Tlie Collei^e Mathematics Journal.}
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Additional Topics in

Differential Equations

• Use ;i slope field to sketch solutions of a diflereiitial equation.

• Use Euler's Method to approximate a solution of a differential equation.

• Solve a first-order linear differential equation.

\ \ -

\ \ ^

\ \ \

\ \ \

'2-- / /

^ ^- / /

-\lt I I

/ /

-K
—

\ \ \
-

\ \

\ \ \

\ \ \

\ \ \

X /

Slope lielii for

Figure .\.\

Particular solution for i'

through (I.I)

Figure .\.2

2.V + r passing

Slope Fields

in this appendix, you will study two techniques for approximating sokitions of differ-

ential equations of the form y
' = F(x. v). The first technique is a graphical approach

that uses slope fields, or direction ficUl.s. The second technique is a numerical

approach and is called Euler's method.

Consider a differential equation of the form

\' = Fix. \i. DiilcirnlLiI ,-,|ll:il)(in

\'ou can Hitciprct this differential eqtiation graphicallv to mean that the slope of the graph

of each solution at the point fv, y) is y
'. You can use a slope field to \ isualize the family

of .solutions. To sketch a slope field, pick several points (.v. v) and draw shoil line

segments with slope F(.v. y). The slope field shows the general shape of all the solutions.

An initial condition is needed to sketch a particular solution, as shown in Example 1.

Exaniplc I Skflching a Solulion Using a Slope Field

Sketch a slope field for the differential equation

\'
' = 2.V + V.

Use the slope field to sketch the solution that passes through the point (1, 1).

Solution Make a table showing the slope at se\eral points. The table shown is a small

sample. The slope at many other points shotild be calculated to get a representative slope

field. Next draw line segments at the points with their lespective slopes, as shown in

Fiiiure A.I.

X — -) _ -) -1 -1 1 1
1 2

y -1 1 -1
1

-
1 1 -1 1 -1 1

y' = 2x + y -3 -3 -3 -1 -1 1 1 3 3 5

After the slope field is drawn, start at the initial point (1.1) and move to the right in

the direction of the line segment. Continue to draw the solution curve so that it moves

parallel to the line segments. Do the same to the left of (I, I ). The resulting solution

is shown in Fiszure A. 2. [^

NOTE Drawing a slope field by hand is tedious. In piaclice. slope fields arc usually drawn

using a graphing utility.

A2
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Figure A.

3

Elder's Method

Euler's Method is a luimeiical approach to approximate the particular solution of the

differential equation v ' = flv, v) that passes through the point (.v,,, y„). From the given

information, you know that the graph of the solution passes through the point (v,,. \„)

and has a slope of F(.V||, v,,) at this point. This gives you a "starting point" for approx-

imating the solution.

From this starting point, you can proceed in the direction indicated by the slope.

Using a small step /;. move along the tangent line until you arrive at the point (.v,. y,),

where

V| = -V,, ^ /( and y, =
y,, + /jFf.v,,. y,,)

as shown in Figure A. 3. If you think of (.\ ,
. i

,
) as a new starting point, you can repeat

the process to obtain a second point (.v,. vj. The values of .v, and y, are as follows.

-v, = .v„ + /; y, = v„ + /(/•(.v„.y„)

.\s = .V, + /; ^^ = v, + liF{.\,. v.)

+ h y„ = y„-i + /'/^('•"„ -I •-*•„-

NOTE You can ulitaiii belter appi(i\iiiialions to the exact solution hy choosnig smaller and

snialk'i" step si/es.

loV

\
Exact

solution

0.8-

- "^ _^^^
0.6-

0.4-

Approvimale

.solution

0.2-

0.2 0.4 0.6 0.8 1 ,0

Figij re A.

4

Example 2 Approximating n Soliilioii Vsiriii Euler's Method

Use Euler's Method to approximate the particular solution of the dilTerential cc|uation

y
' = .V — y

passing through (0. 1 ). Use a step of/; = 0.1.

Solution Using h = 0.1. .v„ = 0. i,, = 1. and F(x.y) = x - v. \ihi ha\c .v,, = 0.

.v, = 0.1..V, = o'^^2, .V, = 0.3 and

y, = y„ + /(FU,,. v„) = 1 + (0.11(0 - 1) = 0.9

y, = y, -I- /;F{.V|.y|) = 0.9 + (0.1 )(().! - 0.9) = 0.82

y, =y, + hF(x,.\,) = 0.X2 + (0.1)((1.2 - 0.X2) = (1. 7.^8.

The first ten approximations are shown in the table. You cm plot ihcsc \ allies to see a

graph of the approximate solution, as shown in Figure A. 4.

n 1 2 3 4 5 6 7 8 9 10

Xn 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

y,, 1 0.900 0.820 0.758 0.712 0.681 0.663 0.657 0.661 0.675 0.697

Z]

NOTE For the differential equation in Example 2. you can find the exact solution to be

y = .V — 1 + 2c"', Figure A.4 compares this exact solution with the approximate solution

obtained in Example 2.
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First-Order Linear Differential Equations

As a final topic in this appendix, you will learn how to solve a very important class of

first-order differential equations—tlrst-order linear differential equations.

Definition of a First Order Linear Differential Equation

A first-order linear differential equation is an equation of the form

^ + P{x)y = Qix)

where P aud (J arc conlinuous functions of .v. This first-order linear differential

equation is said to be in standard form.

To solve a first-order linear differential equation, you can use an integrating

factor ti{-\). which converts the left side into the derivative of the product i/(A)v. That

is. you need a factor (((a) such that

(/[(((Ah]
//(a)^ + tii\]P(x)\

dx

ii(x)y' + u[x)P(x)\ = ii(x)\' + yn'ix)

ii{x)P{x)\ = yi('(x)

II l\)
Pix) = —

-

;((a)

lnl/((A)l = P(a)</a + r,

/((a) = Ce-<
'''"''.

Because you don't need the most general integrating factor, let C = 1 . Multiplying the

original equation y' + P{x)y = Q{x) by ii{x) = ff''*''' produces

d

dx
y^,/Plvl./A etAkJ" >''.

The general solution is given by

ygfi'Md. = (>(.v)(.i ''>''', /a + C.

THEOREM A 1 Solution of a First-Order Linear Differential Equation

An integrating factor for the first-order linear differential ciiuatioii

y
' + Pixh = ^(a)

is /((a) = e-f''"' '''. The solution of the differential equation is

yeJPM <'« = (?(A)ffi'i''w/A -1- C.

STUDY TIP Rather than lucmon/.ing this formula, just remember that multiplica-

tion by the integrating factor ^J''''' '' converts the left side of the differential equation

into the derivative of the product ye^^^'' '''.
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Example 3 Solving a Hrst Order Linear DilTeren(ial Eqiialion

Find the general solution of.vv' — 2v = .v-.

Solution The sUiiuUinl fonu of tlic given equation is

v' + P(x)y = Q(x)

SlancLird Imin\ - \- \\ = X.

So. P(v) = — 2/-V. and \ou ha\t

P(.\)iL\ = ~
I
-dx = -In.v-

Intesratiniz tactur

Figure A.5

Therel'ore, niultipJMng both sides of the standard form by l/.v- yields

y _2y _ \_

clx

V 1

clx

^ = liil-vl + C
X-

V = .v-(hlj.v| + C). General Miliiiion

Several solution cin\es (for C = —2, — 1, 0. 1. 2. 3, and 4) are shown in Figure A.5.

Exmtiple 4 Solving a FirstOrder Linear Dilierential Kquation

Find the general solution of v' - y tan / = 1.
~— < ^ < —

.

Figure A.6

Solution The equation is already in the standaid form v' + P{r)Y = Qit). So,

Pit) ell = -
\ tan nil = Injcos /|

which implies that the integrating factor is t'"'"' '" = c'"!"'"'! = |cos /|.

A quick cheek shows that cos? is also an integrating factor. So. multiplying

y' — y tan / = 1 by cos t produces

—
A' cos r = cos t

dt

V cos t = cos / (/;

Zl

V cos / = sin ? + C

V = tan / + C sec t. General sdkiuoii

Several solution curves are shown in Fiauie A.6.
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Figure A.7

Application

A simple electrical ciicuit consists of electric current / (in amperes), a resistance R (in

ohms), an inductance L (in henrys). and a constant electromotive force £ (in volts), as

shown in Figure A.7. According to Kirchhoffs Second Law. if the switch 5 is closed

when / = 0. the applied electromotive force (voltage) is equal to the sum of the

\oltage drops in the rest of the circuit. This in turn means that the cuirent / satisfies

the differential etjualion

l'^ + ri = e.
ell

ExampJe 5 An Llcctric Circuit Problem

Find the current / as a function of time / (in seconds), given that / satisfies the differ-

ential equation Liill/ill) + Rl = sin 2t. v\hcre R and £ are nonzero constants.

Solution In standard form, the given linear equation is

(// R
, 1 ,

(// L L

Let P(l) = R/L. so that (-f'"'" = ('"^'i". and. by Theorem A.l.

1
^{K/L)l — _ ''"'''-" sm It dl

AC- + R-
"(/?s]n2r - 2Lcos2?) + C.

So. the general solution is

1

1

/

e""'HRs\n2t ~ 2Z.cos2/) + C

AC + R

AL- + R-

(R sin It - 2L cos 2/) + Ce-"^/^". [Z

EXERCISES FOR APPENDIX A

In Exercises 1 and 2. a differential equation and its slope field r" In Exercises 3-6. (a) sketch an approximate solution of the

are given. Determine the slope (if possible) in the slope field at

the points given in the table.

X -4 _ -)

4 8

y
T 4 4 6 8

dyjdx

d\ X

dx y

\ \ \^ 8-

\ \ \\^-
\ \ \ \ 4-

\ \ \ \ \-

--^^ y y y— ^ y y /
-^y y / /
-^ y / / /
-y// 1 1

-//III

/-8 /-4 / -

/ / / /-4
/ / / y^-

-\ 4 \ 8 \

---\ \ \ \

(/V

dx

\ \ \ \ \ + / I I I I

12

/ / / / /

I I I I S

1111/

\ \ \ \

\ \ \ \\
\-8 \-4 \

/ / / / /

\ \ \ \ 1

\ \ \ 11
\ \ \ \ I

/ / / / ;

; I M !

--/ 4 / 8 /

--\ \ \ I 1

differential equation satisfving the initial condition by hand on

the slope field, (b) find the particular solution that satisfies the

initial condition, and (c) use a graphing utility to graph the

particular solution. Compare (he graph with the hand-drawn

graph of part (a).

Diljcrcntiiil Ktjiuitioii

3.
dv

e'

'

' -I- 2v

\ \ I \ -- \ / I I

\ \ \ 4-- \ / I I

\ \ \ \
----

/ I

\ \ \ 'l^ y I

\ \ X \ -

-+-t-
-4 y-2 / T- / ?

/ / /

/III
/II I

-.-
I I I 1

/ I I

Figure for 3

Initial Ccmditioii

(0. 1)

(0. 4)

V

\ \ \ 4- \ \ \ \

\ \ \ \
J - \ \ \ \

\ \ \ -2^ - \ \ \ \

\ \ \ \ ^ r \ \ \ \

-4 /-2 / , - / 2 / 4

/ / 1-1- -ill!
~ 1 1 i \

-4 - '-
1 1 1 1

Figure for 4
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Differential Equation

5. y
' = CSC .V + Y cot .V

6. \'
' = esc v — V cot .V

Initial Condition

(1.1)

(1.2)

I \ \ N-/--

; I / ~\ I

/ / /-\

I

I / /-\

\

/ / /'-

\

/ • ^
I I / ^ / I

ik-'ii /\
/ y / / I -1

-^ / / I
-^

^- y

I

I I

\-y

I

I I

\ ^'^ / / I

\ ^ ^ / / I

1

I \ \^/4- -\\^ I \ 1

1 I \ N / / \ \ '' / / 1

I \ \ N • /- -\ N / / / 1

1 \ \ N-- / \--y 1 \ 1

1 \ \v-2- -N •'- / / 1

1 \ \ v-^ ^-y / /

1

1 \ \ N ^ — ^ / / 1 \

1 \ \ \ N \
I . .1 . J ,

/ y / / 1
1

\ ' ) \ \ \ / //-)//
--- ~ \ \ V- -/ / / 7^-
/ -^N \ \ / / / ^-- \

\ /-x -2- -( / / -N \

Figure for 5 Figure for 6

rp In Fxercises 7 and 8. use a computer algebra system to sketcli

the slope field for the differential equation and graph the

solution satisfying the specified initial cimdition.

7. 4^ = 0.4\(3 - .v). v(0) = 1

i/.v

ax 2
.v(0)

Filler's Method In Exercise ')-14. use Euler's method to make

a table of values for the approximate solution of the differential

equation with the specified initial \alue. I'se /; steps of si/e //.

9. y = .V + y. y(0) = 2. n = 10, /( = 0.1

10. y = .V + y. y(0) = 2, n = 20. Ii = 0.05

11. V = 3.V - 2^. ^'(0) = 3, n = 10. /; = 0.0?

12. y' = 0.5.v(3 - yl. y(()) =1. n = 5. Ii = 0.4

13. y' = e". y(0) =1, n = 10. /; = 0.1

14. y' = cos.v + sin V. y(0) = ,5. ;; = 10. /; = 0.1

True or False? In Exercises 15 and 16. determine whether the

statement is true or false. If it is false, explain why or gi\e an

example that shows it is false.

15. v' + .vVv = -V- is a tlrst-order linear differential equation.

16. v' + .vv = e'\ is a tlrst-order linear differential equation.

In Exercises 17-32. solve the first-order linear differential

equation.

ch- r
17.

T. + [^>
^''^'

18. f . (=)v ^ 3.V . 1

19.
dx , ,
-; 3.V-V = e
i/.v

20.
dy 3y _ 1

dx X- X-

21. V '
— V = cos .V

22. V ' + 2.vy = 2,v

23. (A + \-) dx - .V dx =

24. (2y - f')dx + xdx =

25. (-3v + sin2.v)</.v - dy =

26. I A'
- Dsin.vJ.v - dy =

27. (A - Dy' + y = .a^ -
1

28. y + .5y = e'''

29. dy = (vtauA + 2;'') ,/.v

30. XX ' + y = sin .v

31. XX - ux = /u--'

32. v' = V + 2.a(v - <•')

In Exercises 33—tO, find the particular solution of the differen-

tial equation that satisfies the boundary condition.

Differential Equation Boundarx Condition

iX V ' cos- .A + y -
1
= y(0) = 5

34. aV + 2v ^ e'
'-"

y( 1 )
~ e

35. x' + X tan V = sec x + COS A v(0) = 1

36. y
' + y sec v = sec x y(0) = 4

37. v'+(i)v =
\ A-

/
.v(2)

— 1

38. \ + (2a - 1)\' = .v(l)
— T

39. xdx = (a + y + 2) Ix y( 1

)

= 10

40. 2.vv' - 1' = a' - A v(4)
— 1

rp In Exercises 41 and 42. (al use a graphing utility to graph the

slope field for the differential equation, (h) find the particular

solutions of the differential e(|uati(>n passing through the

specified points, and (c) use a graphing utility to graph the

particular solutions on the slope field.

Differential Equation Points

41.
dx 1

42. ~- + (cot a)v
(7.V

(-2.4). (2.8)

(1. 1), (3, -1)

Electrieal Cireuits In Exercises 43-46. use the differential

equation for electrical circuits gi\en by

/.^ + «/ = £.
dt

In this equatiim, / is the current. R is the resistance, /. is the

inductance, and E is the electromoti\e force (voltage),

43, Solve the differential equation given a constant voltage £,,.

44, Use the result of Exercise 43 to find the equation for the cuiTent

if /(O) = 0. £„ =
1 10 volts. R = 550 ohms, and Z. = 4 henrys.

When does the current reach 40'; of its limiting value?
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45. Solve the differential equation ai\en a periodic electromotive

force £„ sin mi.

46. Verify that the solution of Exercise 4? can be written in the

form

/ = ce-
JR- + co-L

== sinloj/ + <b)

where
(f>.

the phase angle, is given by arctani — uiL/R). (Note

that the exponential term approaches as t^'cc. This implies

that the current approaches a periodic lunction.)

47. I'opiilalidii (irowlli When predicting population growth,

demographers must consider birth and death rates as well as the

net change caused by the difference between the rates of immi-

gration and emigration. Let P be the population at time ; and let

N be the net increase per unit time resulting from the difference

between immigration and emigration. So, the rate of growth of

the population is gi\en b\

tip
kP + N. N is constant.

Sohe this dilferential eL|iialion tn lind /' as a liinctinn of time if

at time / = the size of the population is /'„,

48. Iiiveslineiit Growth A large coiporation starts at time I = to

continuousK unest part of its receipts at a rate of P dollars per

year in a fund for future corporate expansion. Assume that ihe

fund earns r percent interest per year compounded continuously.

So, the rate of growth ol the amount A in the fund is gi\en b\

dA
= rA + P

where A = i) when t = 0. Sohe litis differential equation for A

as a function of /,

Imestment Gnntlli In Kxercises 4') iind 50, use the result of

Exercise 48.

49. Kind A for ihe following.

(a) P = $100,000, r = ft'r, and / = 5 years

lb) P = S:.SO,000, r = 5%, and t = 10 years

50. Find t if the corporation needs $800,000 and it can invest

$75,000 per year m a fund earning %'^i interest compounded

continuously.

51. Imestment Let Ail) be the amount in a fund earning interest

at an annual rate r compounded continuously. If a continuous

cash flow of P dollars per year is withdrawn from the fund, the

rate of change of A is given by the differential equation

rp' 52. Iinestmeiit A retired couple plans to withdraw P dollars per

year from a retirement account of $500,000 earning lO'/r

compounded continuously. Use the result of E.xercise 51 and a

graphing utility to graph the function A for each of the follow-

ing continuous annual cash flows. L'se the graphs to describe

what happens to the balance in the fund for each of the cases,

(a) P = $40,000

(b) P = $50,000

(c) P = $60,000

5.1. liitraveiwiis Feeding Glucose is added intra\enously to the

bloodstream at the rale of t/ units per minute, and the body

removes glucose from the bloodstream at a rate proportional to

the amount present. Assume Qii) is the amount of glucose in

the bloodstream at time /.

(a) Determine the differential equation describing the rate of

change with respect to time of glucose in the bloodstream,

(b) Solve the differential equation from part (a), letting

O = G, when I = i).

(c) Find Ihe limit of (_>(/) as i—>2o.

54. Learning Curve The nianagemeiil at a certain factory has

found that the maximum number of units a worker can produce

in a day is .M), The rate of increase in the number of units N
produced with respect to time / in days b\ a new employee is

proportional to 30 - /V.

(a) Determine the differential equation describing the rate of

change of performance with respect to time.

(hi Sohe the differential equation from part (al.

(c) Find the particular solution for a new employee who

produced ten units on the first da\ at the factor\ and I*-)

units on the twentieth da\

In Kxercises 55-58, iiiytth the diflcrential equation with its

solution.

dA

dt

Differential Eciiiciiinii SnliitiDn

55. v' - 2.V = (a) v = Ce''

56. v' - 2v = (b) y = -3 + C

57. r' - 2.vy = (cl y = .v- -I- C

58. v' - 2.VV = .V (d) ^ = Ce-'

rA

where A = A„ when ; = 0. Solve ihis differential equation fur

/\ as a function of 1.



Proofs of
Selected Theorems

THEOREM 1.2 Proi)c rtics of Liinils (Properties 2, 3 4. and ';)(pagfS7)

Let h and c be real numbe rs. let ;; be a positive integer. an d let /'
;uid i; be

functions with the ollowing hniits.

Hm/lv) = L and Inn g( v) == A'

2. Sum or difference: lini [,/(.v) ± ,!,' A-)] = L± K

3. Product; lim [ /(_v),!,'( -V)] = LK

4. Quotient: hm =
v-^ gi\)

L

K'
provided K =^

5. Power: lim [ /Iv)]"
= L"

Proof To prove Property -. choose e > 0. Because e/2 > 0. you know that there

exists 5, > such that < |a - c\ < 5, implies \fl\) ~ L\ < e/2, ^bu afso know

that there exists 6, > such that () <
|
v - tj < 5, implies \i;{x) - K\ < e/1. Let 8

be the smaller of S, and iS,; then < |a - t| < tS implies that

L/lv) - L| < f and |,i,'(v) - K\ < |.

So. you can apply the Triangle Ineqtiality to conclude that

|[/(.v) + g(.x)] - (L + K)\ < \f(x) - L\ + \g(x) -
A'l < f + ^ = £

which implies that

lim [/(a) + ,t;(A-)] = L + K = lim/lv) + lim g(x).

The proof that

Imi [fix) - g(x)] = L- K

is similar.

To pro\'e Property 3. given that

lim fix) = L and lim gix) = K

you can write

fix)gix) = [fix) - L] [gix) - K] + [Lgix) + Kfix)] - LK.

Because the limit affix) is L. and the hniit of ,i,'(a) is K. you have

Imi [fix) - Z.] = and lim [.i,'(.v) - K] = 0.

A9
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Let < £ < 1. Then there exists 6 > such that if < |.v - c\ < S, then

|/(.v) - L - 0\ < e and \g(.\} - K - 0\ < e

v\hich iniplics that

|[/(.v) - L] L^'(a) - K] - 0| = |/(.v) - L\ \};{.x) - K\ < ss < s.

Hence.

hni
I
/(a) - L][g{x) - K] = 0.

Furthermore, by Priipertv 1. you have

hni Lii(.\) = LK and hni A'/(v) = KL.

Finally, hy Property 2. yon obtain

lim ,/( v),i;( v) = lim [ /(.v) - L] [ii(x) - K\ + Hm ^(x) + hm Kf(x) - hm LK

= + LK + KL - LK

= LK.

To proNC Property 4. note that it is sufficient to prove that

lim = —
>-, o{x) K

Then yoti can use Property 3 to write

lim —— = lim /( v)
-—- = lim fix) lim —— = —

>-< ,s,'(.v) I-,- g(x) >-. <-. i'l.v) K

Let £ > 0. Because hm tjiv) = K. there exists 6, > such that if

< |a- -
('I

< 5|. then |,..,'(a) - A'| < -LJ-

which miplies that

|A-| = \g{x} + [|A-| - ,o(.v)]| < |i,(.v)| + \\K\ - g{x)\ < \g(x)\ + ^,

That is. forO < Lv - el < S,.

V < l.'^'<-^'

Ia'(a)| |a1

Similarly, there exists a 5, > such that if < |a — c\ < 5,, then

\.K(x) - A-| <^ £.

Let S be the smaller of 5, and 3^,. For < |a - c\ < 8. vou have

J J_

l.dA) K

So. hm -r-, = T.
A^< ,t;(A) A

A' - g(x]

gMK
2 K

w\'wr~''''^ " wi'Wi^'^'^-

Finally, the proof of Property ."i can be obtained by a straightforward application of

mathematical induction coupled with Property 3. [Zl
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THEOREjM 1 .4 Tlie Limit of a Function Involving a Radical (page 58)

Let ;; be a positive integer. The foil

is valid for c > if n is even.

owing limit is valid for all , \\ 1 is (xld. and

liin 'Vx = ^

Proof Consider the case for which c > and ;; is any positive integer For a given

e > 0. yon need to find i5 > snch that

\i!Ay — Vr < r v\hene\'er < |.v - el < 5

which IS the same as saving

— f < v'.v - y c < e whene\'er - 6 < .v — c' < 5.

Assume s < Vc which implies that (I < ^c' — s < ii./c. Now. let 6 be the smaller

of the two numbers.

(' ~ (xV — £) and (^f + e) ~ c

Then you have

- 8 < .\ ~ c < 8

-[( - (yc -
,?)

J
< .V - ( < (y^- + e) - c

(y^ - ff) - c < .V - c- < (y^ + ff) - r

(y^ - e)" < .V < (y^ + e)"

~s < 'y.v - i/c < s. 2]

THEOREM 1.5 The Limit of a Composite Function (page 59)

If,/ and i; are functions such that im x'l.v) = L and Inn /(.v) = ,/(/J. then

hm /(,;,'(.v)) = /(hm ,!,'(.v))
=

I—

.

fiU.

Proof For a given £ > 0. you must find 6 > such that

|/(.t;(.v)) - f(L)\ < f whenever < |.v - li < 8.

Because the limit of /(.v) as x—fL is /(L). you know there exists 8, > such that

\fiit) - f{L)\ < e whenever \u - L\ < S,.

Moreover, because the limit of !,'(.v) as x—>c is L. you know there exists 8 > () such

that

|,i,'(.v) — L| < 5| whenever < |-v — f| < 5.

Finally, letting // = ,i,'(.v). you have

|/(,i,'(.v)) - f{L)\ < £ whenever < |.v - c\ < 8. [Z\
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THEOREM 1 7 Functions Thai Agree at All But One Point (page 60)

Let c be a real number and let /'(.v) =

containing c. If the limit of jj(.v) as .v

also exists and

= ,t;(.v) for all .\

approaches r

7^ f in an open interval

exists, then the limit of/(.v)

lim fix) = lim ,!,'(a).

Proof Let L be the limit of ,i;(a ) as x -^ c. Then, for each e > there exists a <5 >

such that /(a) = ,i,'(a) in the open intervals (c - 6, c) and (c. c + 3). and

|,!,'(a") — L\ < e \vhene\cr < |a" — cj < 6.

Because /(a) = ,t;(v) for all a m the open interval other than a = c. it follows that

|/(a) — L\ < s whenever < |a - c\ < 8.

So. the Innit of /(a) as x—>c is also L. 2j

THEOREM 1.8 The Squeeze Theorem (page 63)

If /((a) < fix) < g(x} for all a in an open interval containing c except possibly

at c itself, and if

lim /?(a) = L = lim vIa)

then lim fix) exists and is ccjual to L.
\ 't

Proof For e > there exist (^| and 6, such that

|/)(a) - L\ < e whenever < |a - c'| < 5,

and

],t,'(A) - L\ < e whenever < |a' - c\ < S,.

Because liix) < fix) < i;(a) for all a in an open interval containing c. except possibly

at c itself, there exists S, > such that /;(a) < fix) < ,t;(A) for < |a - c\ < S,. Let

S be the smallest of §,, 6,, and 5,. Then, if < |a - c\ < 8. it follows that

|/((a) — L\ < ,' and |,i,'(a) — L\ < c which implies that

— £ < /;(a) ~ L < f and - ,' < ,i;(a) - L < e

L — e < hix) and ,i,'(a) < L + s.

Now, because /;(a) < fix) < ,t;(A). it follows that L - i: < fix) < L + e. which

implies that \fix) - L\ < s. Therefore.

lim fix) [Z
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THEOREM 1.14 Vertical Asymptotes (page 82)

Let/ and g be continuous on an open iniei'val containing c. Vtfic) i= 0, g{c) == 0,

and there exists an open interval containing c such that g{.x) + for all .v + c in

the interval, then the graph of the function given by

/((a) -
g{.\)

has a vertical asymptote at .v = c.

Proof Consider the case for which fie) > 0. and there exists b > c such that

c < X < h implies i,'(a) > 0. Then for M > 0. choose 5, such that

< A- — f < 6| implies that —— < /(a) < —~

—

and St such that

f(c)
< A — c < 6, implies that < six) < ~ .

2M

Now let i5 be the smaller of 8, and 5,. Then it follows that

2M'
< A — c < imp les that > —^ —-^ = M.^

g(x) 2 ItW

Therefore, it follows that

hm —- = oo
>-' gix)

and the line a = c is a vertical asymptote of the graph of /(. [Z

j\ltcrnative Form of tlie Derivative (page 99)

The derivative of /'at c is given by

/(f) - hm
I— . A — c-

provided this limit exists.

Proof The derivative of / at c is given by

fie + Av) -fie]
f'ic] = hm

A\— II Aa

Let A = c + Av. Then A ^c as Av-^0, So, replacing c + Av by .v, you have

/'(c) = lim
Ai— (1

f{c + Av) -f{c)

Av
lim

fix) - f(c)

[Z
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THEOREM 2.10 The Chain Rule (page 128)

If V = /(!/) is a differentiable function of /(, and ii
= gix) is a differenti able

fumnion of V. then \ = /(i'(.v))isi differentiable function of .\ and

d\ (III

or. equivalent = /'(,<,'(-v)) l,''(A-).

Proof In Section 2.4. \\c let /((a) =
f(g{.\)) and used the alternative form of the

derivative to show that /;'(() = /'(,i,'(t)),? '(c). provided ,i;(.v) i^ gic) for values of .v

other than c. Now consider a more general proof. Begin by considering the derivative

off.

^..
, ,.

/(.v + A.v) -fix) Av
/ (.v) = lini : = lini -—

A,-n A.V A, -II A.V

For a fi.xed value of .v. define a function 7; such that

A.V =

7?(Av)
./'(.v). A.V ^ 0.

Because the limit of ijlA.v) as A\ ^0 doesn't depend on the \alue of 77(0). you have

Av
lim r7(A.v) = lim
Ai— II A.--II A.V

/'(a) =

and you can conclude thai r; is contiiiuotrs at 0. Moreover, because Av = when

A.V = II. the e(.|uation

A^' = A.vr7(Av) + Av/"(.v)

is valid whether A.v is zero or not. Now. by letting A;/ = ,i,'(.v + A.v) — gi-x). you can

use the continuity of ,i; to conclude that

hm 111 = lim [gix + A.V) - ii(.x)] =
Ai -11 A.— 11

which miplies that

lim 77(A;/) = 0.
Ai-.l)

Finally.

A.v = A//r7(A(/) + Infill)
111

and takinn the limit as A.v^O. vou have

iji 111)
111

A.V
/'(((). Av ^

i/v clll

d\^ d\
lim rilAii)
A>— II dx dx d-X

(III .„ , (/'/ dx

d-\ dx dii \z\
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Concavity Interpretation (page 184)

1. Let /' be differentiable on an open interval /. If the graph of/ is concave

iipwani on /. then the graph of /' lies above all of its tangent lines on /.

2. Let / be differentiable on an open inter\al /. If the graph of / is concave

dow/uvani on /. then the giiiph off lies below all of its tangent lines on /.

Proof Assume that / is concave upward on / = (<;, W. Then, /' is increasing on

{a. b). Let r be a point in the inter\al / = (</, b). The equation of the tangent line to

the graph of/ at c is given by

!iix) =f(c) + f'(c){x - c).

If .V is in the open interval d . h). then the directed distance from point (a./(.v)) (on the

graph of/) to the point (.v. .yl.v)) (on the tangent line) is given by

(/=/(.v) - [/(c) +/'(c)(a- - <)]

= /(.v) - f\c) - f'(c)(x- c).

Moreover, by the Mean Value Theorem there exists a number ,- in (c. a) such that

X — c

So. you have

cl =f{x) -,/(<•) - f'icHx - c)

= /'(c)(A - c) 'f'(c){x - c)

= [/'(:) -f'ic)]{x- c).

The second factor (.v - c) is positive because c < x. Moreover, because /' is increasing,

it follows that the first factor [/'(;) - fie)] is also positive. Therefore. </ > and you

can conclude that the graph of/ lies above the tangent line at a. If .v is in the open

interval {a. c). a similar argument can be given. This proves the first statement. The

proof of the second statement is snnilar. [^

THEOREM 3.10 Limits at Infinity (page 193)

If r is a positive rational number, and ( is any real numbei . then

hm - = 0.

Furthermore, if a' is defined when a < 0. then lim — =
1^-^ a'"

0.

Proof Begin by proving that

lim - = 0.

For e > 0. let M = l/e. Then, for a > M. you have

1 1

X > M = - ZZ - < e [Z>
e

'

X
1-0
.V
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Therefore, by the definition ot a hniit at intniiix. you can conckide that the limit of l/.v

as.v—»cc is 0. Now, using this result, and letting / = 111/ n. you can write the following.

Mm — = iim —

-

,^^- A-'' ^^'-r. .V"""

lini
1

\"'

C'x

c\ lim

( '7 lim

=

The proof of the second part iif the theorem is similar. [Z]

I'llEOKEM 4.2 SiiJiiiiiiiHon I'oi iniiliis (pajff 2S4)

/((/; + 1)

1- 2'- = '" 2. V/

, ^ ,, n{n + 1)(2;; +1)
, ^ ., "-(" + I

)'

^L'' =
1

*!'=—5

—

I'rool' The proof of Property 1 is straightforward. By adding c to itself;; times, you

obtain a sum of en.

To pnne Property 2. write the sum in mcreasing and decreasing order and add corre-

sponding terms as follows.

V / = 1 + 2 + 3 + + (;;-!)+ /;

/-
1

4' -^ -^ -^

V;= ;; +(;;- 1 ) + (;;- 2) + •• + 2 + 1

I" i

2 ^ ; = (;; + 1) + (;; + 1) + (;; + 1) + • • + (;; + I) + (;; + I)

Therefore.

^ . ;;(;; + 1)

z' = —^—
1=1

To prove Property .I. use matliematical induction. First, if ;; = 1. the result is true

because

^ ., ,, ,
1(1 + l)(2 + I)

> ;
- = 1

" = 1
= :

.
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Now, assuming the result is true for ;; = k. you ean show that it is true for ;; = /.+ 1.

as follows.

y i- = y i- + (k + n-
1= \ i=\

kik + l)(2A- + 1)

6
1 I K -r 1

k^ +

6
'(2.= + k + bk + 6)

k +

6
^[(2. + 3)(A- + 2)]

U + \){k + 2)[2(A- + 1) + 1]

6

Property 4 can be proved using a similar argument w ith matheniatieal intlnetion.

[Z]

THEOREM 4.8 Prfst-natlon of Inequ.ilily (page 272)

1. If/ is integrable and nonnegative on the closed interval [n. h]. then

< /(,v) </a.

2. If/' and ,!,' are intcgrahic on the closed inter\al Ik./'], and /(,\) < ,i,'(,v) for

every .v in [</. /'|. then

/(a),/.v < i;i\)Jx

Proof To princ Properly 1. suppose, on the contrary, that

fix) J.x = /<().

Then, let a = .v,, < a
,

< a, < • < .v„ = h be a partition of [a. h], and let

R = V/(r,)A.v,

be a Riemann suiu. Because /'(.v) > 0. it follows that R > 0. Now. for |JA|[ sufficiently

small, you have |/? — /| < -//2. which implies that

2/{f,)A.v, = /? < /- ^ <
1=1

uhich IS not possible. From this contradiction, you can conclude that

< /(a) clx.
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To prove Property 2 of the theorem, note that /(.v) < ^(.v) implies that

g(.\) - fix) > 0. Hence, you can apply the result of Property 1 to conclude that

< [,t;(A) - fix)] dx

< ,^(.v) dx - fix) dx

fix) dx < gix) dx
[Z

Properties of the Natural Logarithmic Function (page 315)

lim la.v = -co and lim In.v = oo

Proof To begin, show that hi 2 > t- From the Mean Value Theorem for Integrals,

you can write

ln2 = -J.v = (2 - I)- = -

Ji -> ' <-'

where c is in [1, 2]. This implies that

1 < f < 2

I > In 2 >
^.

Now. let N be any positive (large) number. Because In.v is increasing, it follows that

if .V > 2-'^'. then

In .V > In 2N In 2.

However, because In 2 > ,. it follows that

In.v > 2A'ln2 > 2/Vl-l = N.

This verifies the second Hmit. To verify the first limit, let c = I/.v. Then, c—»3o as

.V—>0*. and you can write

lim In v = lim — hi
-

1-^0' 1— (I' V .V

= lim (
- In ;)

= — lim In z

\Z}
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TIIEORKiM S.8 Contiiiuity and UifrcriM)(iiiI)ililj' ol Inverse runclions

Let / be a function whose domain is an interval /. If/ has an inverse function,

then the t'olkiwing statements are true.

1. If/ is continuous on its domain, then/"' is continuous on its domain.

2. If/ is increasing on its domain, then /"' is increasing on its domain.

3. If/ is decreasing on its domain, then/"' is decreasing on its domain.

4. If/ is differentiable at c and/'(t') ^ 0. then/"' is differentiable at /(c).

Proof To prove Property 1, first show that if/ is continuous on / and has an inverse

function, then/ is strictly monotonic on /. Suppose that/ were not strictly monoton-

ic. Then there would exist numbers .v,, .v^, .v, in / such that .v, < .v, < .t,, but/l.v,) is

not between /(.X|) and/(.v,). Without loss of generality, assume /'(.v,) < /(.v,) < /(.v,).

By the Intermediate Value Theorem, there exists a number .v,, between .v, and .v, such

that/(.Vo) =/(-V3). So./ is not one-to-one and cannot have an inverse function. Hence.

/ must be strictly monotonic.

Because/ is contmuous. the Intermediate Value Theorem impUes that the set of val-

ues of/.

{/U):.vG/l.

forms an interval J. Assume that a is an interior point of 7. From the previous argu-

ment, /~'(n) is an interior point of/. Let e > 0. There exists < s^ < s such that

/, = (/-'(</) - r,. r'(«) + £,) CI.

Because /is strictly monotonic on /,, the set of values j/(.v): .v E /, } forms an interval

J, C J. Let 8 > such that (« - 8.a + 8) C J,. Finally, if

\y
- ci\ < 8. then j/"'(y) -/"'((')| < e, < f.

Hence,/"' is continuous at ii. A similar proof can be given if d is an endpoint.

To prove Property 2, let y, and y-. be in the domain of /"
', with y, < y,. Then, there

exist .V| and .v, in the domain of/ such that

/{.Y|) = V, < V, =/(.V,).

Because/ is increasing. /(.v, I < /(.\s) holds precisely when .v, < .v^. Therefore.

/"'(y,) = .v, < .V, =/"'(v_,),

which implies that / ' is increasing. (Property 3 can be proved in a similar way.)
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Finally, to prove Property 4. consider the limit

,, ,,,, , ,- r'(v) -r'ia)
(J ') (a) = hm

v^a V — a

where a is in the domain of/"' and /'"'((/) = c. Because /is differentiable at r./is

continuous at c. and so is / ' at a. So. v—>(; implies that .v^c, and you have

(/-')'(«) = lim
,. V

- c

l'™/(.v)-

1

l-^^Z/lv) -.fM\

1

-c )

hm
- fie)

"
f'icY

Hence. (/"') '{a) exists, and/'"' is differentiable at/(r! [Z

THEOREM 5.9 The Derivative of an Inverse Function (page 336)

Let/ be a function that is differentiable on an interval /. If/ has an inverse

function g. then g is differentiable at any .v for which /'(gU)) i= 0. Moreover.

g'(.v)

1

f'igM)'
f'{gi\)) + 0.

Proof From the proof of Theorem 5.8. letting a = .v. you know that g is differen-

tiable. Using the Chain Rule, differentiate both sides of the equation v = f(g(x)) to

obtain

I = f'igix}) ^[gix)].
dx

Because /'(g(.v)) =^ 0. you can divide by this quantity to obtain

(/-V ./ {g(.\)) \Z\

THEOREM 5.15 A Limit Involving e (page 355)

s('-jrvs(—
)'-

Proof Let \' = lim (1 H— | . Taking the natLU'al logs of both sides, you have

In V = In lim 1 + -
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Because the natural luiiarithmic function is continuous, vou can write

V In 1 +V = lim
A—>:^

Lettinii a = -. vou have

,. ind + t)

\n \ = inn

\\n[\ + (l/.v)]
1111]

v^--c [ l/,\

lim
I— 0'

Ind + /) - In 1

</a

In V at V = 1

= - at V = 1

A"

= 1.

Finall\. because In v = 1. you knou that \' = e. and you can conclude that

lim (l + '

[Z

THEOREM 7.3 The Extended Mean Value Tlieorem (page 531)

If /' and ^i; are differenliable on an open interval {a h) and continuous on [". /']

such that g (a) i= for any V in {a. h). then there e xists a point c in [a. h such

that

/'(c) _ ,/(/')
-- fUi)

g'k) H(h)
-- gU'Y

Proof You can assume that g(ii) i^ g(h). because otherwise, by Rolle's Theorem, it

would follov. that t; '(a) = for some a in (<;, h). Now. define /;(a ) to be

hlx) =/(.v)

Then

//((/) =f{u)

f(b) - fUi)

gih) - g(a)

\f{b) -fia]

and

hib) = fib)
-

gib) - gia)

fib) - fill)

Igib) - g(a)

gi-^-'l

g(o) =

g(b)

fia)gib) -f{b)gia)

gib) - gia)

fia)gib) -fib)gia)

gib) - gia)

and by Rolle's Theorem there exists a point c in ia. /;) such that

b'io^m-m^^g'ic)
gib) - gia)

which implies that

f'ic) _ fib) - fia)

g'ic) gib) - gia)- [Z
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THEOREM 7.4 EMIopKiil's Rule (\>agv S 5 1

)

Let/ and g be functions that are differentiable on an open interval {a. b) con-

taining c, except possibly at v itself. Assume that g'{.\) ^ for all a in [a. b).

except possibly at c itself. If the limit of/(.v)/g(.v) as .v approaches c produces

the indeterminate form 0/0. then

hm -— = hm —

—

1^. g(x) v^r g ix)

provided the limit on the right exists (or is infinite). This result also applies if

the limit of /(.v)/^i?(.v) as .v approaches c produces any one of the indeterminate

forms oo/co, ( — oo)/cz3, co/{ — oo). or ( — co)/( — oc).

You can use the Extended Mean Value Theorem to prove UHopital's Rule. Of the

several different cases of this rule, the proof of only one case is illustrated. The

remaining cases where .\ —>c" and .v—>c are left for you to prove.

I'roi)!' Consider the case for which

iim /'(.v) = and lim g{x) =

Detlne the following new functions:

_ l/lv). .V ^ c
Fix)

0.
and Cix)

_ I.^(-v).

0.

X # f

.V = c

For any .v, c- < .v < b. F and G are differentiable on (c. .v] and continuous on [c. .v].

You can apply the Extended Mean Value Theorem to conclude that there exists a

number : ni (v. x) such that

F'(z) ^ F(x] - F(c) ^ FW^ rW ^ ./W

G(.v) - Gic) Gix) g '(C'( ,?(.v)

Finally, by letting a approach t from the right, .v-

c < z < X. and

>^' * gU)
". ~T~\'* g (z)

lim
.f(-v)

g '(-v)

we have z—^c^ because

[Z]

Til EOREM 8. 1 6 .VhsoliKc CoiivcTjSciuc (pjigc S9:3)

If the series w \ii„\ converges, then the series 2^ a„ also converges.

Proof Because < </,, +
|((,J

<
2|</,J for all /;. the series

11= I

converges by comparison with the convergent series

t 2|«„|.
i,= I

Furthermore, because o,, = (o,, + |(;,J)
-

|((„|, you can write

Qc GO :yi

!:««= iK + kD- S kl
n = I (1=1 .1=1

where both series on the rieht conversze. Hence it follows that 2 a,, converges. CZ]
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THEOREM 8.19 Taylor's Theorem (page 611)

If a function/ is differentiable through order /; + 1 in an interval / containing

c. then, for each v in /. there exists :: between a and c such that

fix) = fie) + ficUx - c) + ^-^ (.V - c)' + + -^^^ (.V - c)" + R„i\)
2! ;;!

where

Proof To find R„{-\). t"i\ a hi / (a t c) and write

RJx) = fix) - P„ix]

where P„ix) is tiie /;th Taylor polynomial for fix). Then let i; be a function of / defined

by

/'•'"(f) (v - /!"+'

git) = fix) - fU) - f'iDix - I) - - -'—^(A - t)" - RJ.x)j -—.
iv. (a — [) '

'

The reason for defining .t; iii this \\a\ is that differentiation with respect to / has a

telescoping effect. For example, you have

at '

= -f"{t)(x - t).

The result is thai the derivative i'V) simplifies to

g V) = --—r^
(a - tr + (/, + 1 )/?„(.v) -

*

ll'.
" (A-c-)""'

for all t between c and v. Moreover, for a fixed a,

g(c) = fix) - [P,fx) + RJx)] = fix) - fix) =

and

gix) = fix) - fix) -()--()= ,/(a) - _/'(.v) = 0.

Therefore, g satisfies the conditions of Rollers Theorem, and it follows that there is a

number ,- between c and a such that g '{:) = 0. Substituting ; for ; in the equation for

g 'it) and then solving for RJx). you obtain

/<"+"(-) (v - :)"

g'(z) = -^^^(-v - ;)" + (" + m,Mj^zr^ = "

Finally, because gic) = 0. you have

= fix) - fie) - f'iclix -€)- - ^-^ ix - c)" - R„ix)

fix) = fie) + f'{c)ix - c) + + ^^^^ (a - <)" + ;?„(a).
12]
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THEOREM 8.20 Convergence of a Power Series (page 617)

For a power series centered at f. precisely one of the following is true.

1. The series converges only at c.

2. There exists a real nnniher /? > such that the series converges absolutely for

|a - t
I

< R. and diverges for |.v - c\ > R.

3. The series converges absolutely lor all .y.

The number R is the radius of convergence of the power series. If the series

converges only at c. the radius of convergence is /? = 0. and if the series con-

verges for all .V, the radius of convergence is R = oo. The set of all values of x

for which the power series converges is the interval of convergence of the

power series.

Proof In order to simplify the notation, we will prove the theorem for the power

series — fl„.v" centered at .v = 0. The proof for a power series centered at .v = c follows

easily. A key step in this proof uses the Completeness Property of the set of real

numbers: If a nonempty set S of real numbers has an upper bound, then it must have

a least upper bound (see page 563).

We must show that if a power .series — ((„.v" converges at .v = J. d ^ U then it

converges for all h satisfying |/)j < |(/|. Because — (',,-v" converges, lim «„(/" = 0.

Hence, there exists A' > such that ci,,l" < 1 for all /; > ,V. Then for /; > N.

1",,' ,"|
= iij)

/"
=

=
i"„</" <

b"

d"

So. for |/)| < ,/|.

h
< which implies that

V

is a coii\ ergent geometric scries. By the Comparison Test, the series !l a,,/'" converges.

SimilarK. if the power series X ((,,.\" di\erges at .v = />. where /' = 0. then it dixerges

for all (/ satisfying |(/| > |/'|. If -<'„</" converged, then the abo\e argument would

imply that S »„/>" converged as well.

Finally, to prove the theorem, suppose that neither case I nor case 3 is true. Then there

exist points h and d such that ^ ((„.v" converges to /' and diverges at d. Let

S = l.v: ^ (;,,.\" converges]. S is nonempty because b ^ S. If ft G S then |.vj < |(/|.

which shows that |(/[ is an upper bound for the nonempty .set S. By the Completeness

Propertv. .S' has a least upper bound, R.

Now. if |.v| > R. then .v t S so - ('„.v" diverges. And if |a| < R. then |.v| is not an

upper bound for .S'. so there exists /) in S satisfying |/'| > j.vj. Since /' G S. — ((„/)"

converges, which implies that S (i„.v" converges. 2]
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Figure B.l

+ (?

-x = d

THEOREM 9.16 Classilicalioii of Coiiics by Eccentricity (page 702)

Let F be the fixed point
( fiiciis) and D be a fixed line (directrix) in tlie plane.

Let P be another point in the plane and let e (cciciuricity) be the ratio of the

distance between P and F to the distance between P and /). The collection of all

points P with a given eccentricity is a conic.

1. The conic IS an ellipse if < c < 1.

2. The conic is a parabola il' c = 1.

3. The conic is a h\perbola if c > 1.

Proof If ( = I. ihcn. by definilion. tlie conic must be a parabola. If c r 1. then von

can consider the focus F to he at the origin and the directrix a = </ to lie to the right

of the origin, as shown in Figure B.l. For the point P = (/, H) = (.v, y). you have

\PF\ = r and \PQ\ = </ - rcos H. Given that c = \PF\/\PQ\. it follows that

\PF\ = \PQ\e C^> r = ciJ ~ rcos tl).

By converting to rectangular coordinates and squaring both sides, you obtain

.V- + 1- = c-iJ - x)- = (-(</- - 2 i/.v + .\-').

Completing the sc|uarc produces

c-ii \- v' c-cl-
V + T I +

1 - c-/ 1 - (- (1 - ( = )-

If e < ]. this equation represents an ellipse. If c > 1. then 1 - c- < 0. and the

equation represents a Inperbola. l«u

TliEORKiVI 12.4 Siifficicnl Coi (lifioii for niffcrcnti ;il)ilil\ (p; J?c a 70)

If/ is

then /

I function ol

IS differenti;

.V and

ble on

V. where
/, and/, ire continuous in an open re ^lon R,

(.v.y)

(.V + A.v. v + Av)

(.v + A.v, V)

A: = fix + Av.r + Ar) - fix.v)

Figure B.2

Proof Let 5 be the surface defined by ; = /(.v. v), where /I/ . and f\ are continuous

at (.V, y). Let A. B. and C be points on surface S. as shown in Figure B.2. From this

figure, you can see that the change in / tVoiii point ,\ to point C is gi\en by

A: =/(.v + A.v. V + Ay) -/(.v. v)

= [fix + A.v.y) -/'(.v. v)] + [fix + A.v. V + Ix) -fix + A.v. v)]

= A,-, + A.-,.

Between .\ and />'. y is fixed and v changes. Hence, hy the Mean Value Theorem, there

is a value v, between v and \ ^ A.v such that

A;, = fix + A.V. v) - fix. y) = /.(.v,. \) A.v.

Similarly, between B and C .v is fixed and v changes, and there is a value y, between

v and y + Ay such that

A:, = fix + A.\. v + AvI -fix + A.V. v) =/,(.v + A.v.y,) Ay.

By combining these two restilts. you can write

Ac = A;, + A-, = /;(.V|.y)A.v +/;(.v + A.v.y,) Ay.
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,/;(.v + A.v,v,) -./;(a-.v)

If you define e, and e, as

e, = ,/',(.V|. v) - /,(-v. y) and

it follows that

^z = Ac, + Ac, = [e, + ,/;(.v. y)] A.v + [e, + /;(.v. v)] Ay

= [/.(-v.y) A.V +,/;(x, y) Av] + e,AA- + e,Ay.

By the continuity of /'^ and/, and the fact that.V < .v, < a + AAandy < y, < y + Ay.

it follows that Ej^O and e, ^0 as Aa ^0 and Ay ^0. Therefore, by definition./ is

differentiahle. IZl

THEOREM 12.6 Chain Rule: One Independent Variable (page 876)

Let \v = f{.\. y . where/ is a differentiahle function of x and A' If A = g{t) and

y = hit), where ,? and /; are differentiahle functions of t then ir is a differen-

tiable function of /. and

(/ir (hv

dl f'lv

d\ r'hr

cIt r)\

dy

dt'

Proof Because ,i; and /; are differentiahle functions of f. you know that hoth Av and

Ay approach zero as \t approaches zero. Moreover, hecause /' is a differentiahle

function of .v and ^. vou know that

fill-

\w Av
<)\v

Av ff, Av + f,Av
f).v fly

where hoth r, and f\^>{) as (Av. A>)—>((). 0). So. for \t + 0. we have

Air _ i\w Av r')ir Ay

Ar fiA A/ rh' A?

Av Av

A; ^ Ar

from which it follows that

d\v Air-— = hm -—
dt A/-(i Ar

i)w d\ 'dw d\

cl.\ dt c)y dt

r)ii' d.x clw dy

Av dt (>y dt'

dl

\Zl



Integration Tables

Forms Involving ii"

II"*
1. II" till

n + 1

2- I -dii = ln\ii\ + C

Forms Involving a + hu

+ C. II * -I

4.

6.

7.

9.

10.

11.

12.

13.

(/ + hu
till = j-Mni - a\n\u + hii\] + C

'—T^ciii = -^ —^ + ln|« + /);(j
I

+ C
id + hii)~ b-\ii + hu ' V

"
,

1

Ui + hu)" h-

— (/» = TT
CI + hu h'

ir

1

(ii - 2)((i + hu)"-- in - \)(a + hu)"

hu— (2(1 - hu) + II- lnj(; + hii\ + C

T (//( = T^l /'/(

((( + /)/()- h

(a + hu)' b'

du

a + hu
la \n\a + hii\ + C

a + hu 2{ci + hu)

-1

^ + ln|(; + /)»|

C. /; # 1,

((( + /)//)" h'

—
;
—

- illl = - In
uiii + hu) a

(n - 3)(a + hu)"-' (n - 2)(ci + hu)"-- (n - l){a + hu)"~

u

+ C n i= 1,2.3

-,du

a + hu

1 1

C

a \a + hu CIu(u + hu)

I

u-(u + hu) ci \u a

1

;(

ci + /);(

C

1/1 />,
+ - In

(/ + hu
+ C

u-{a + /;;/)-

a + 2hu 2h
,+ — In

;(((( + hu) (I CI + I'll

A27
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Forms Involvina a + bu + cir. b- ^ 4ac

14.

15.

a + bu + ci(
^ (/;/ = -

2ai + b
arctan —

.

;

+ C,
^4ac — b- jAac — b-

1 leu + b - Jh- - Aac

leu + b + ^'b- - Aac. Jb- - A(H

-^
;<//( = — flnlrt + /'/( + ar\ - /' -

J (/ + bu + CH- 2r\ '

'

] a + bu + cu

b- < Aac

+ C, b- > Aac

-du]

Forms Involvina ^Ui + bu

16. /(" N (' + /'" (/"
b(lu + 3)

//"((( + /'/()''' — na u" \/a + bii du

f I

17.

18.

19.

20.

21.

22,

u -Jii + bu
du

— In
^ a + bu — v' ('

(( + /)(( + Ja
+ C. « >

1

du

1 a + hii-= arctan - / h C. <; <
/-(, V -(/

-1

u'\' a + bu a(n — I

)

/a + bu (In - 3)/)

;/" s (' + bu
du . n 7t

I

V (/ + /);/

//

N (/ + /);(

u

X

(/(( = iJa + bu + a
u^/a + bu

du

du =
aiu - I)

((( + /;;()''- (2/; - ?)/> v« + bu ,

^ I

:—,— du . u ^ I

du

du

-2(2a - bu]

3/)-
Va + bii + C

Ja + bu ilu + \)b

Forms Involvina </- ± »-, <; >

u'Wci + bu — na
/a + bu

du

23.
1,1 II ^—^ ; ilu = - arctan—\- C

tr + (r (( a

1

24. I
^^^ du = -

I

^-^ ./,, = -*-
In

"

u cr I cr - u- la u + a

I

(a- ± u-y
'"

la~(n - 1)

Forms Involvina >/;r ± a-, a >

ia- ± (/-)"-!
+ (In - 3)

((r ± ((-)"
du . n =^ \

26. v'/r ± a-du = -{uju~ ± a~ ± a- \n\u + Vfr ± a-\] + C

27. ;r v'(r ± a" du = -[uilu- ± a-)Ju- ± a- - a'' \n\u + Ju" ± a-\] + C

28.
v/;r + cr

'.III = v/(r + a- — a In
(I + v^"^ + ""

+ C
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29.
../V^

dii = ^ir — a- — a arcsec —^ + C
a

30. ^ (/(/ = ^ + In /( + Jir ± a-\ + C

31. / , T dii = \n\ii + V II' ± cr\ + C
'ir ± ir

32. —
, T ^ (/((

= In
»v !r + cr ci

a + V »" + ir
C

33.

34.

.A
11^ U (/

? dii = - arcsec -—
^ + C

v' ir ± a
"^ du = —[ii^'ir ± cr + (/- hi|(( + ^'ir±cr\) + C

35. dit + C
ir J ir ± cr

36.
,

, \,^,. du= , p^^-. + C
[ir ± cr) - crjir ± cr

Forms Involving v'<'" — "". " >

37. V c' ~ "" dit = - Hsj'cr — ir + cr arcsin — + C
J -\ a)

39.

40.

38.
I
irja- — ir dii = - u{2ir — irlv cr - ir + d^ arcsin

'

C

Per — ir

dii = v^'" ~ " ~ " In
(/ + VC II'

dlt
ir

'cr ~ ir "
, ^

arcsin—He
u a

+ C

41. , (/(( = arcsin—He
a— ir a

42.
1 -1—

, T (/(/
= In

/( ^ cr — ir ci

+ ~Ja- — ir
+ C

43.
ir

' cr — ir
, dii = -\ - II ^ cr - ir + cr arcsin - + C

- — II- > \ n

44.

45.

u'Pa- — ir

r.l _ „2U/:"'"

uu =
-^":~"'

+ c
cm

II

crs/a— ir
^ + C
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Forms Involviiiu siii u or cos u

46. sill (( (hi = —cos II + C

47. cos ;/ (/;( = sin u + C

48. sin- /( (/;( = -(» — sin ii cos ii) + C

49.
I
cos- II (III = -{ii + sin ;/ cos //) + C

.„ , .
,

sin" (( cos II " — I , . _ 1 ,

^0.
I
sm" II (III

= 1

I
sin" - u an

n II

^, ,
,

cos" "
' ;/ sin ;,/ n ~

\ ,

51.
I
cos" ;( (III

=
1

I
cos" - II (III

II II

52. (( sin II (III = sin u — ii cos ii + C

Si. II cos (/ (hi = cos II + II sin ii + C

54. ((" sin (( (/(( = —ii" cos ii + ii \ ii" ' cos /( di

55. /(" cos (( (/(/ = ((" sin u — n ii"" sin (( dii

56.
I

(/;( = tan ii + sec ii + C
I ± sm /(

57.
I

(III = — cot /( ± CSC II + C
I ± COS ;(

58.
I

(III = Inltanz/I + C
sin II cos /(

Forms Involving tan ii. cot ;/, sec ii. esc //

59. tan /( (//( = -in|cos;/| + C

60. I co{ II (III = ln|sin ;(| + C

61. sec II (III = Inlsec ii + tan ii\ + C

62. CSC // (/(( = Inlcsc ii — cot ii\ + C
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63. tan- u ilii = — ii + tan // + C

64.
I
cot- (( du = — II — L'ot II + C

65. sec- (/ (/(( = tan ii + C

66. CSC- ;( ilii = — cot II + C

,
tan ' ((

I

67. I tan" ii an =
:

| tan" - /( Jii. n ^ 1

68. I cot" ;(</// = (cot" -ii)dii. 11 ^
" -

1 J

sec""- /( tan /( /i - 2

/( -
1 /( -

1

esc"'- (/ cot II II -

69. sec" ;( Jii = sec" - /( <lii. II ^ I

70.
I
esc" /( (/((

i

71.
1 + tan ;(

1

II - I II -
\

du = -(ii ± Inleos II ± sin ii\) + C

' -II du. II r 1

72.
I

'-

du = "\u + In
I

sin u ± cos //I) + C
I ± cot /( 2

73.

74.

1

I ± sec ((

1

(/(( = II + col U + CSC II + C

III = II - tan ;( ± sec ii + C
1 ± CSC ;/

Forms Involvmg Inverse Trigonometric Functions

75. arcsin /( du = u arcsin ii + ^ \
— ir + C

76. arccos u du = ii arccos ;/ — VI ~ ir + C

77. arctan // du = ii arctan ;( — In ^ 1 + ir + C

78. arccot ;/ (//( = // arccot » -I- In v I + ii- + C

79. arcsec ii du = u arcsec /( — In » + ^hr —
\\ + C

80. arccsc ;; (/(( = ;( arccsc u + \vi\u + Jir — 1 -I- C
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Foniis lii\ol\ iiic

81. c" dii = e" + C

82. Hc" dii = (it - \)e" + C

3. ii"c" till = u"i'" — u u" 'e" du

84. (//( = // - ln( 1 + (•") + C
I

1 + c"

85.
I

("" sm I'll dii = -^ -^{ci sin ln{ - h cos hu) + C
a- + b-

86.
I

('"" cos /'(/ dii = -r, —(ii cos /)// + h sill hu) + C
ir + b-

Foinis linoh iiit! In u

87. In /(<//( = u(-\ + \x\u) + C

88.
I
t,\niidii = t'^' + - 111") + C

I if '
'

89. /(" In ;/ du = ~[-
I + (;( + 1 ) In ii] + C. it ^ - \

ill + \)-

9(1. (In iiV-dii = II [2 - 2 In /( + (In (/)-] + C

91. (In (()"</(/ = i((ln;/)" - ii {In u)" ' ,/((



Answers to Odd-Numbered Exercises

Chapter P

Section P. I (page 8)

I. b 2. d 3. a 4.

5. Aiisweis iiiav \ar\.

11. Answers may vary.

X -4 -2 T 4

y -5 _ -)

1 4 7

7. Answers mav varv.

X -3 _ 1 T 3

y -5 4 -5

9. Answers nia\ \arv.

X -5 -4 -3 _ "> -1 1

y 3
->

1 1
t 3

X 1 4 9 16

y -4 -3 -2 -1

13.
X 111 in = -3

\nia\ = 5

Xsel =

Ymin = -3

Yniax = 5

'iscl = 1

(1. -2).
I

_ T
(11. 1

15. V = J5 - .V

(-4I)(I, .^)

17. ((I. -:
). (-2.01. (1.0) 19 10.0). (.";.( )).{->.())

21. (4.01 23. ((I. 01

25. ,S\ninielne uiili respeel li the -a\is

27. Synmietrie u itli respeel ti the v-axis

29. Synimetrle with respeel u the irigin

31. No symiiieti y

33. Synmietrie w itli respeel u the iriyiii

35. Synimelrie with respeel li the -axis

37. \' = - 3a + 2 39. V = 3-v - 4

Syiiimetry: none Syninielry: none

41 V = I
- .V-

Symnietry: y-axis

43. y = (v + 3)-

Symiiielry; none

A33
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45. V = A-' + 2

S\mmelr\: none

49. A = v'

Svmnietrv: oriein

53. y = 6 -
IaI

Symmetry: y-axis

57. V, =

47. y = A-^/v + 2

Svnimcli \ : none

51.

Syninietrv: orisin

55. y, = Va + 9

\s = - ./a + 9

Svmnietrv: v-axis

Symmetry: v-axis
'

59. y = (a + 2)(a - 4)(v - 6) 61. y = a 63. (1.1)

65.(5,21 67. (- 1.5). (2.2) 69. (
- 1. -2). (2. 1

)

71. (- I. - I), (0,0). (I. II

73. (-1.-5), (0. - I), (2, I I 75. A -= .">1.V> umis

J^'"

(-1 -?l/

\
\

.>^.1>-1

77. (a) y = -O.OI53r + 4.997 W + .^4.9405

(b) =50 (e) 1S7.2

79. 400

Approximately j

81. False: (- 1. -2) is not a pomt on the graph of a = jy^

83. True

85. ( I
- K-}\- 4(1- K-)x- + 4A'-A - 4A'- =

Section P.2 (page 16)

1. II! = 1 3. Ill = 5. ;» - - 12

7. • 9. Ill = 3

11. Ill is undetmed. 13. Ill

H 1
i—H>"-

15. (0. II. (I. I).(.^. II 17. (0. 101. (2.4I,(.\ 1)

19. Any tun points can he used because the rate ot change remains

constant.

21. (a) I (b) Population increased most

rapidly: 1991-1992

: 1 J 5 ^ 7 s y

Year 10^ I WO)

23. m = —
5, (0, 4) 25. in is inulenned, no y-intercept
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27. 3a - 4x + 12 = 29. 2a - 3\- = 57. (a) (h)

31. 3a - V - 1 1 =

35. 2a - > - 3 =

39. A -3 =

15. S]

(5. 11

.12 3 4 ft 7 S ^1

-:-

37. 8a + 3v - 40 =

41. 22a - 4v + 3 =

1 2 .3 4

43. A -3 = 45. 3.V + 2y -6 = 47. a + v -3 =

49. 51.

1:34

55.

\

The lines in (a) do not appear peipendicular. hut they do in (b)

because a square setting is used. The lines are perpendicular.

59. (a) 2a - y -3 = (b) a + 2\' - 4 =

61. (al 4I)A - 24v -9 = (b) 24a + 40v - 53 =

63. la) A - 2 = (h) ! -5 = 1)

65. V'(/) = 125/ + 2415 67. V'(() = -2000/ + 22.400

69. ^ = Iv

\

f/l''^
71. Not colhnear. because in. + iii^

73.
'U- + h- +

75. I.

CI- - h~

77. 5F - 9C - 160 =

1~>°P ^ 22 2°C

79. (a) W, = 12.50 + 0.75a

W\ = 4.20 + 1.30.V

(b) 50

(c) When 6 units are produced, wages are $17.00 per hour with

either option. Choose position I when less than six units are

produced and position 2 otherwise.

1330 - />

81. lal a(/)

( b ) 50

15

(c) .v(5Q5) = 40 units

a(655) = 45 units

83. 2 85. ^^ 87. 2v2 89. Proof 91. Prool

93. Proof 95. Trtie

Section P.3 (page 27)

1. (a) -3 (b) -9 (c) 2/; - 3 (d) 2a - 5

3. (a) 3 (b) (c) -
I (d) 2 + 2r - /-

5. (a) 1 (b) (e) ~\
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7. 3.V- + 3.V A.v + (Aa)-, a V +

Jx- 1(1 + Jx - \)'

11. Domain: [-3, oc)

Range: (-cc. 0]

13. Domain: All real numbers / such that / ?= 4/; + 2, where n is

an integer.

Range: (-oc, -l] U [l.oc-)

15. Domain: (
- cc. (1) u (0, cz;)

Range: (-cc.OI u(0. cc)

17. (a) - 1 (b) 2 (c) 6 (d) It- + 4

Domain: (
— •:/:j. cc)

Range: (-oc. 1) u [2. cxo)

19. (a) 4 (b) (c) -2 (d) -/>-

Domain: (-cc. o:)

Range: (-cc. 0]u[l, zr.)

21. /Iv) = 4 - .V

Domain: (
- oc, oo)

Ranee: ( — oc, oo)

23. /i(.v) = Jx - 1

Domain: [1, oo)

Range: [H, cc)

25. ,/(.v) = 79 - A-

Domain: [- 3. 3]

Range: [0, 3]

27. ,(;{r) = 2 sui nt

Domain: (
- oc. oc)

Range: [-2,2]

29. 1' is not a function of a. 31. \ is a function of a.

33. )' is not a function of a. 35. \ is not a Itinction of a.

r-2A + 2, A<0
37. /(a) =2, < A < 2

[2a - 2, A > 2

39. /;. r = - 2 40. /, c =
\

41. iv. c = 32 42. /(;, c = 3

43. (a) For each time i there corresponds one depth (/.

(b) Domain: [0, 5]: Range: [0, 3U]

45.

47. (a)

(c)

i

49. (a) Vertical translatioi (b) Reflection about the A-axis
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(c) Horizontal translation (d) 4 Id 16 centimeters

51. (a) 7(4) = 16, 7(15) = 23

(b) The changes in temperature would occur 1 liour later

(c) The temperatures are 1 lower.

53.{f-'g){x} = A

Domain: [0. cc)

(S °/)(.v) =
l-vl

Domain: ( — cc, co)

No. their domains are dilTercnt.

55. if'gKx) = -T^
v 1

Domain; ( -co, - 1) U (- 1. 1 ) U ( i, oc)

(g'tlix) = -^- \

X-

Doinain: ( - cc. 0) U (0, oc)

No

57. U =))(/) = 0..367Tr-

A = r represents the area of the circle at time t.

59. Even 61. Odd 63. (a)(i 4) (b) (i -4)

65. Proof 67. Proof

69. (a)_/'(A-) = A-(4 - A-) (h) /Iv) = a(4 - A-)

1

V
1

71. (a)

Height. X

1

2

3

4

5

6

Length unci

Width

2(1)

Vohime. V

1[24 - 2(1)]- = 48424

24 - 2(2) 2[24 - 2(2)]- = SOO

24 - 2(3) 3[24 - 2(3)]- = 472

24 - 2(4) 4[24 - 2(4)]- = 1024

24 - 2(5) .^[24 - 2(5)]- = 980

24 - 2(6) 6[24 - 2(6)]- = 864

Guess of maximum \olume: 1024 cubic centimeters

(b) '2m (c) \' = 4.v(l2 - a)-

Domain: (0, 12)

73. False; if /Iv) = v-, then /( - 1 ) = /( 1 ), 75. True

Section P.-f (page 33)

1. Quadratic 3. Linear

5. (a) and (b) 7. (a) FU) = 15. 1</ + 0.1

(b(

Answers will vary.

(c) 3,6 centimeters

Approximately linear

(c) 136

9. (a) \ = 0.()8a + 5.0

; = 0.705

(h) JO

I

y = OS-t + 5.0
[

(c) Greater per capita energy usage by a country tends to relate

to greater per capita gross national product of the country.

Japan, Denmark, Canada

(d) y = O.IOa + 1.1

r = 0.9202

11. (a) y, = 0.()3434r-- - ().345lr- + ().SS4f + 5.61

y, = 0.1 1 Or -I- 2.07

y, = 0.092? + 0.79

(b) y, + y, + y, = 0.034.34?' - 0.3451/- + 1.086/ + 8.47

31-1 cents per mile

Visa function of .v.
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13. (a) Linear: v, = 4.04/ + 29.0

Cubic: y, = -O.OlOf' + 0.549/- + 0.24; + 33.1

(b)

11.

(c) Cubic

(d) y = 0.430/- -I- 0.60/ -I- 33.0

(c) The slope represents tlie average increase per year in Ihe

number ot people receix iiig care in HMOs.

(f) Linear: 69.4 million

Cubic: 80.4 million

15. (a) V = - I.SLv' + I4.58.V- + I6.39.V + 10

(b) 3«i

(c) 214

17. (a) Yes. At time / there is one and only one displacement v.

(b) Amplitude: 0.3.'i; Period: O.f^

(c) y = 0.35 sm(4-/l + 2

(d)

19. Answers will vary.

Review Exercises for Chapter P (page 36)

1. (io).(O, -3) 3. (1.0). (().') 5. v-a,\is symmetry

9.

15.
Xmin = -5

Xmax = 5

X.scI =
1

Ymin = -30

Ymax = 10

YscI = s

21. /// =
J

25. y = ^.v — 5 or

3.V - 2v - 10 =

29. (a) 7.V - 16y + 78 =

(b) .5.V - 3v + 22 =

(c) 2.V -I- V =

(d) .\ + 2 =

31. V = 12.500 - 850/

$9950

33. Not a tunction

23. / = i

27. y = -i.v- 2 or

2.V -I- 3v + 6 =

35. Function

37. (a) Undefined (h) —
. A.v #0,-1

1 -I- A.v
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39. (a) D: [-6.6]; R. [0.6]

(b) D:{~zc.5)\j[S.'^): /?: (-cc. 0) u (0. oo)

(c) 0:(-oo. D=); /?:(-c». co)

41. (u)
;

, =(i (b)

(c) (di

43. (a)

/
;/' u

45. la)

(bl

All the graphs pass through the origin. The graphs of the odd

powers of A are syiiiiiietric with respect to the origin and the

graphs of the even powers arc s\ninietnc w ith respect to the

v-axis. As the powers increase, the graphs become Hatter ni

the interval ~
I < ,v < 1. Graphs of these equations with

odd powers pass through Quadrants I and III. Graphs of these

equations with even powers pass through Quadrants I and II.

The graph of \ = v" should pass through the origin and

Quadrants I and III it shouki be svniiiictnc witii respect to

the origin and be fairK flal in tiic inlcr\al |-1. I). The

graph of V = ,v^ should pass through the origin and

Quadrants I and 11. It should be symmetric with respect to

the v-axis and be fairh Hat in the interval (-1. 1 ).

A =,v(12 - .v)

Domain: (0. 12)

(c) Maximum area; .^6; 6 • 6 inches

47. (a) Minimum degree: .^; Leading coefficient: negative

(b) Minimum degree: 4; Leading coefficient: positive

(c) Minimum degree: 2; Leading coefficient: negative

(d) Minimum degree: ."i; Leading coefficient: positive

49. (a) Yes. For e;ich tune / there corresponds one and only one

displacement i

,

(b) Amplitude: 0. 2.^1; Period: 1.1

(c) V = jcosl.^i.?;)

(d) 05

>i
' »'

P.S. Problem Solving (page 38)

I. (a) Center: (.1. 4); Radius: .S

(b) y = -j.v (c) y = j.v - ^ (d)

3.

H \ \
h-

l-l. A >
(a) Hi\) - 2 = lb) H{\

[-2. A <
- 2)

I

I . A > 2

(). A < 2

(c) -H{x) _ [- 1. A > n

[ 0. A <
Id) W(-v)

[I. » <

[o. A >

(e) mx)
U. A >

(). X <

H \
\ h*
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(f) -H{x - 2) + 2
I . A- > 2

l2. .V

H \

1 h-i

Domain: (0. 1 01))

Dimensions 50 iii 25 m yield maximum area of 1250

square meters.

(cl 50 m 25 m; Area = 1250 square meters

7. riv)
2x'4 + A- + .,'(3 - A-)- + 1

4

9. la) 5. less (b) 3, greater (c) 4.1, less (d) 4 + /;

(e) 4; Answers will \'ary.

11. la) A = I. A = -3 13. .Answers will \ary.

(b) (a + 1
)- + V- = 4

(-7!. "I (n/;.iii

oe^

Chapter 1

Section 1.1 (page 47)

1. Precalculus: 300 feel

3. Calculus: Slope of the tangent line at a = 2 is 0.16.

5. Precalculus: y square inius

7. Precalculus: 24 cubic units

9. (a)

^

11. (a) 5.66 (h) 6.1 1

(c) Increase the number of line segments.

Section 1.2 (page 5-t)

1.

X 1.9 1.99 1.999 2.001 2.01 2.1

fix) 0.3448 0.3344 0.3334 0.3332 0.3322 0.3226

lim - * 0.3333 I Actual limit is -.

3.

X -0.1 -0.01 -0.001 0.001 0.0

1

0.1

fix) 0.2911 0.2889 0.2887 0.2887 0.2884 0.2863

N V + ^ - v'3 / 1

lim = 0.2887 Actual limit is ^.
A \ 2v3

-V 2.9 2.99 2.999

fix) -0.0641 -0.0627 -0.0625

X 3.001 3.01 3.1

fix) -0.0625 -0.0623 -0.0610

lim
['/'-""^-"/^' » -0.0625 (Actual limit ,s

-^
\^^ A - 3 \ 16

7.

x -0.1 -0.01 -0.001 0.001 0.01 0.1

fix) 0.9983 0.99998 1 .0000 1 .0000 0.99998 0.9983

lim ^^^ ~ 1.0000 (Actual limit is 1.)
V— II A

9. I 11. 2

13. Limit docs not exist. The function approaches 1 Irom the right

side of 5 hut it approaches -
1 tiom the left side ot 5.

15. Limit docs not exist. The function increases without bound as

.V approaches — from the left and decreases without bound as .v

approaches — from the right.

17. Limit does not exist. The lunctlon oscillates between 1 and -
1

as .V approaches 0. '

19. (a) 3

(b) The graphs of ^, approach the tangent line to y, at a = 1.

(c) 2; Use numbers increasingly closer to zero such as 0.2. 0.01

,

0.001

(b)
t 3 3.3 3.4 3.5 3.6 3.7 4

c 1.75 2.25 2.25 2.25 2.25 2.25 2.25

lim C(l) = 2.25
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(c)
/ 2 2.5 2.9 3 3.1 3.5 4

C 1.25 1.75 1.75 1.75 2.25 2.25 2.25

47.

The limit does not exist, heeausc the limits trum the right

and left are not equal.

21. 5 = -p- = 0.91 23. L = 8. Let (1 =^ = 0.0033.

25. L = 1 . Assume 1 < .v < 3 and let 5
).01

0.002.

27. 5 29. -3 31. 3 33. ll 35. 4 37. 2

39. Answers v\ill \ar\. 41. .\nsv\ers u ill \ar\

lim/(.v) =
I

hni /(.v) = 6

Domain: [-5. 4) U (4. ^) Domain: [O. 9) U (9. ^)

The graph has a hole The graph has a hole

at .V = 4. at ,v = 4.

43. Answers will vary. Sample answer: As .\ approaches S from

either side, /'(.v) becomes arbitrarily close to 25.

45. Examples will vary.

Type l:/(.v) approaches a

different number from the

right of c than it approaches

from the left.

liin
V— (1 .V

Type 2: fix) increases--'

or decreases without

bound as \ approaches c.

lini
1

H 1 1 h-
-4 -.1 -: -1

H i
\

h-»-

Type 3:/(.v) oscillates between

two fixed values as .v approaches r.

lim 2 cos
..-»oV \.v

X -0.001 -0.0001 -0.00001

m 2.719ft 2.7IS4 2.7183

X 0.00001 0.0001 0.001

f(x) 2.7183 2.71SI 2.7169

lim/(.vl = 2.7183

49. False; the existence or nonexistence of /(.v) at .v = i has nt)

bearing on the existence ol ihc limit of /( v) a^ v^c.

51. False: see Exercise I I.

53. Answers will \ary. 55. Proof 57. I'rool

Section 1.3 (page 65)

1.

(a) (b) 6

5. I ft

(a) lb) =0.52 or

-

ft

7.-1 9. 11. 7 13.
3

15. -? 17. f 19. 2 21. 1

23. (a) 4 (b) ft4 (c) ft4 25. (a) 3 (b) 2 (c) 2

27. 1 29. -' 31. I 33. ' 35. - 1

37. (a) 15 (b) 5 (cl ft (d) ;

39. (al ft4 (b) 2 (c) 12 (d) 8

41. (al I (b) 3

gM

43. (a) 2 (bi

.v' — .V

SM

and fix) = - 2-V + 1 agree except at .v = 0.

nd /(-v) = .V- + -V agree except at .v = 1

.
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45.

fix) = '

;ind o(.v) = .v - I aeree except at v = - I.

.V + I

The i]raph has a hole at a = - 1.

47.

.v-^ - X
fix) =

'

:^ and ,t!(.v) = x- + 2x + 4 agree except at .v

79.

:. '' .
'-\

-

1

The graph has a hole at i = 0.

Answers will vary. Example:

t -OT -0.01 0.01 0.1

m 2.96 2.99% >
2.9996 2.96

sin .V
Inn = 3

The graph has a hole at v = 2.

49. 51.
10 ' " 6

57. -i 59.

63.

53. ^ 55. -
10 6

61. 2v - 2

The graph has a hole Lit v = 0.

Answers will vary. Example:

.V -OT -0.01 -0.001 0,001 0.01 0,1

/U) 035H 0.3-^4 ()..\S4 0.354 0.3.53 0,349

/y + 2 - ^/2 / 1

lim ^^^ ^— = 0,354 | Acttial limil is
-

—

-
-N 2 4

h.-'.

The graph has a hole at \ = 0,

Answers will vary. Example:

X -0.1 -0,01 -0.001 0,001 0,01 0,1

fix) -0.263 -0,251 -0,250 -0.250 -0.249 -0.238

i„J'/'^
+ -v']-n/2) _„33„ 1^^,^,^ ^,„,^__

67. \ 69. 71. 7,^. 75. 77.

81.

mi\it -VvWw'

The graph has a hole at .v = 0,

Answers will vary. Example:

X -0,1 -0,01 -0,001 0,001 0,01 0,1

Ax) - 0,

1

-0,01 -0.001 9 0,001 0,01 0.1

sin .V-

lim =

83. 2 85.

89.

87. 4

91.

/ v--„.

,--'

,..-'"

^^

X
93.

if' il
'r

:

'

The graph has a hole at v = 0,

95. /and i; agree at all but one point if c is a real niunber such that

/(,v) = ,t,'(v) torali.i * c.

97. An indeterminate Ibrm is obtained when exaluating a limit using

direct substitution produces a meaningless tractional form, such

as ,1.
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99.

.^ h

1 /

~x ^-^ /""^
.

.

-y ^

The magnitudes ot /(.v) and g(x) are approximately equal when

.V is "close to" 0. Therefore, their ratio is approximately I.

101. 160 feet per second 1(1.1. - 24,4 meters per second

105. Let/iv) = -and i;(.v)
=

.

A -V

lim/(.v) and iim ,i,'(.v) do not exist.

However. Inn [fix) + .i;(-v)] = Hm = lim (1 = (I

and therefore does exist.

107. Proof 109. Proof 111. Proof

113. False. The limit does not exist because the function approaches

1 from the right side of and approaches -
I from the left side

of 0. (See graph helow.

)

115. True. Theorem 1,7

117. False. The limit does not exist because /(.v) approaches 3 from

the left side of 2 and approaches from the right side of 2.

(See graph below.)

119. Let/(.v)
4, if.v >

[-4, if.v <

lim |/(,v)| = lim4 = 4

lim /(,v) does not exist because for ,v < 0. /(.v) = -4 and for

X > 0. /(,v) = 4,

121. Iim/(.v) does not exist because fix) oscillates between two

fixed values as .v approaches 0.

hm g(.v) = because, as .v gets increasingly closer to U, the

values of g(,v) become increasingly closer to 0,

1

123. (a)

1 - cos X 1 ,. ,,

(b) Because ^ ~ -. it follows that

cos .Y ~ 1
- -.V- when ,v =

(c) 0,99,'i

(d) Calculator: cos((),l I

-^ WSO

Section 1.4 {page 76)

(a) 1 (b) I (CI I

fix) is continuous on (
— oo, co),

(a) (hi (c) U

Discontinuity at .v = 3

(al 2 (b) -2 (c) Limit does not exist.

Discontinuity at .v = 4

3.

7.

9.

11.

19.

21.

23.

25.

27.

29.

33.

37.

39.

41.

43.

45.

47.

49.

51.

53.

55.

Limit does not exist. The function decreases withoiil bound as x

approaches -3 from the lelt.

1 13. -- 15. 17.

Limit does not exist. The function decreases without bound as ,v

approaches 77 from the left and increases without bound as ,v

approaches 77 from the right,

4

Limit does not exist. The function approaches .'i trom the left

side of 3 but approaches (1 Irom tlie right side of 3,

Discontinuous at \ = 2 and x = 1

Discontinuous at every integer

Continuous on [- ."i, ?] 31. Continuous on [~ I, 4]

Continuous for all real .v 35. Continuous for all real v

Nonremovable discontinuity at v = 1

Removable discontinuity at .v =

Continuous for all real .v

Removable discontinuity at ,v = - 2

Nonremovable discontinuity at .v = ."i

Nonremovable discontinuit\ at v = -2

Continuous for all real .v

Nonremovable discontinuity at .v = 2

Continuous for all real v

Nonremovable discontinuities at integer multiples of —

Nonremovable discontiniiily at each integer

\
\

/

/
y

.yH

lim fix) =

lim fix) =

Discontinuity at x = -_ T

57. a = 2 59. t; = -
1. /)

61. Continuous for all rea .V
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63. Nonremm able discontinuities at -V = 1 and v = — 1

65. Nonremovable disconlmuilv al each inteiier

\\\\\\

67. Discontinuous at v = 3

69. Continuous on ( - a:, oc)

71. /(.v) is continuous on tlie open intervals

. . . (-6. -2).(-2.2).(2.6)

73. 3

The graph has a hole at v = 0.

The graph appears continuous but the function is not continuous

on [-4. 4].

It IS not obvi<ius from the graph that the liniction has a

discontinuity at v = 0.

75. Because fix) is continuous on liic intcrxal [1.2] and

/(l)=2J)h25 and /(2) = -4, by the Intermediate Value

Theorem there exists a real number c in [1,2] such that

/(c) = (f

77. Because /(a) is continuous on the interval [0. 77] and /(O) = -3

and /(tt) ~ 8.87, by the Intermediate Value Theorem there

exists a real number c in [(), tt] such that /'(c) = 0.

79. 0.68, fj.6823 81. 0.,=i6, 0,^636

83. /(3) = 11 85. /(2) = 4

87. (a) The Hmit does not exist at v = c.

(b) The ftmction is not defined at .v = c.

(c) The limit exists, but il is not equal to the value of the

function at .v = c

.

Id) The limit does not exist at .v = c.

89.

Not continuous because lim/l.v) does not exist.

91. g(x) = j\x) where .V is an integer, but }>(x) = fix) + 1 elsewhere.

93. The function is discontinuous at e\ery e\en positive integer.

The company must replenish every two months.

Time lin lnorllll^^

95. Because Vd) = ^77, Vi5) = 523.6, and \' is continuous, there

is at least one real number 1: 1 < ; < 5, such that V(r) = 275.

97. If c is an element of the real numbers, then lim /"(.v) does not

exist since there are both rational and irrational numbers

arbitrarily close to c. Therefore, / is not continuous at c.

99.
:

(a) -
1

(b) 1

(c) Limit does not exist.

H 1 1 h>" '

1 2 ,1 4

Ktl. True

103. False, /(a I is not defined at a = 1.

[0, < A < h
105. (a) fix)

h. h < A < 2/)

/(.\) is not coiuinuous. There is a discontinuity at a = b.

iw < A < /)

(b) f^ix)

h - iA, /) < A < 2/'

g{x) is continuous on [0. 2/;] because g{x] is continuous on

[0. b] and on [/), 2b]. and lim g(x] = g(b).
A—»/»

107. Doiuain: [-(-. 0) u (0, ^); Let /(O) = —

.
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109. /i(-v) has a nonremovable discontinuity at every integer except U. 57.

•'"

5—^

Section 1.5 (page 85)

1. Um

lim tan —- = — co
L^ - 2

'

4

lim

lim tan

7.

X -3.5 -3.1 -3.01 -3.001

fM 0.31 1.64 16.6 167

X -2.999 -2.99 -2.9 -2.5

f(x) -167 -16.6 -1.7 -0.36

lini ./ (-v) = -00 lim fix) = oc

-V -3.5 -3.1 -3.01 -3.001

fix) 3.8 16 151 1501

X -2.999 -2.99 -2.9 -2.5

f(x) -1499 -149 -14 -2.3

lim /(.v) = -cc lim /(.v) = co

9. .V = 11. v = 2. .V = - 1 13. .V = ±2

15. No vertical asymptote

"'"'.-.
17. .V = 1

, n IS an integer. 19. ; =
4 2

21. x= —2, x= 1 23. No vertical asymptote

25. No vertical asymptote 27. t = utt. n is a nonzero integer.

29. Removable discontinuity at .v = - 1

31. Vertical asymptote at v = - 1

33. -co 35. CO: 37. ^ 39. \

41. - 'oo 43. CO 45. 47. Does not exist

49. 3 51.

^
\

^

53.

55.

lim fix) ~ CO

Answers will vary.

Answers will vary. Example: /(.v)

lim /(.v) = -CO

V - 3

.V- - 4.V - i:

59. oo

61. (a) SI 76 million (bi $528 million (c) $1584 million

(d) co; As the percentage of drugs seized increases and

approaches 100%, the cost to the government increases

without bound.

63. (a) j^ foot per second (b) 3 feel per second (c) co

65. (a)
X 1 0.5 0.2 0.1

/U) 0.1585 0.0411 0.0067 0.0017

X 0.01 0.001 0.0001

fix) 1.7
10---^ 1.7 V 10-' 1.7 10""

(b)

(c)

The graph has a hole at x = 0.

-V 1 0.5 0.2 0.1

fix) 0.1585 0.0823 0.0333 0.0167

X 0.01 0.001 0.0001

fix) 0.0017 1.7 lO-* 1.7 . lO'-"^

-•''

^/

The graph has a hole at v = 0.

X 1 0.5 0.2 0.1

fix) 0.1585 0.1646 0.1663 0.1666

X 0.01 0.001 0.0001

fix) 0.1667 0.1667 0.1667

25 The graph has a hole at .v = 0.



A46 Answers to Odd-Numbered Exercises

(d)
X 1 0.5 0.2 0.1

fix) 0.1585 0.3292 0.8317 1.666

X 0.01 0.001 0.0001

fix) 16.67 166.7 1667

The value of the limit when

the power on .v in the denomi-

nator is greater than 3 is co.

67. (a) S50 revolutions per minnte

(bl Re\erse direction

(c) L = 60 cot ip + 30(77 + 2</))

Domain: 0,
—

(d)

(e) J50

</> 0.3 0.6 0.9 1.2 1.5

L 306.2 217.9 195.9 189.6 188.5

(f) 607r * 188.5

(g) oo

69. False: let /Iv) = ^
1

1

71. False: let /(.v)
v- -I- 1

73. Proof 75. Proof

Review Exercises for Chapter 1 (page 88)

1. Calculus

'l

I

1

1

4

Estimate: 8.261

3.

X 0.01 0.1

fix) - 0.9950 -0.9524

.V it

0. V =

X -0.1 -0.01 -0.001 0.001

fix) -
1 .0526 - 1 .0050 -

1 .0005 -0.9995

The estimate of the limit of/(.v). as .v approaches zero, is - 1.00.

5. (a) -2 (b) -3

7. 2; Proof 9. 1 ; Proof 11. 76^2.45 13. -j

15.
I

4

27. (a

17. -1 19. 75 21. 23.
yi

25.

X 1.1 1.01 1.001 1.0001

fix) 0.5680 0.5764 0.5773 0.5773

(b) The graph has a hole at .v = 1.

(c) lim
^^^:*

:

—^^ ~ 0.577 Actual limit is
^ii:

29.

35.

37.

39.

41.

43.

45.

47.

51.

53.

61.

69.

.V - 1

-39.2 meters per second 31. -1 33.

Limit docs not e.\ist. The limit as t approaches I from the left is

2 whereas the limit as r approaches 1 from the right is 1.

Nonremovable discontiniiit\ at each integer

Continuous on ik. A- + I ) lor all integers k

Removable discontinuity at .v = I

Continuous on (
- co, 1 ) U ( I , oo)

Nonrenio\able discontinuity at .\ = 2

Continuous on (-co, 2) U (2, co)

Nonremovable discontinuity at .v = —
I

Continuous on ( — co. —
1 ) U ( — 1 , co)

Nonremovable discontinuity at each even integer

Continuous on (2A-, 2A- -I- 2) for all mtegers A

( = -5 49. Proof

(a) -4 (bl 4 (c) Limit does not exist.

I = 55. V - 10 57. -:o 59. T

- -jz 63. - CO 65. ^ 67. DO

(a) S14.I 17.65 (hi $8().(I()()(MI (c) $720.0(1(1.(X) (d):>:

P.S. Problem Solving (page 90)

1. (a) Perimeter AP/U) =
I + vXv- - I)- + .v- + V.v^ + .v-

Pcrmieter A/'BO = I + vV + (.v - 1
)- + vV + .v-

(b)
X 4 2 1

Perimeter APAO 33.0166 9.0777 3.4142

Perimeter APBO 33.7712 9.5952 3.4142

rix) 0.9777 0.9461 1.0000

X O.I 0.01

Perimeter APAO 2.0955 2.0100

Perimeter APBO 2.0006 2.0000

rix) 1.0475 1.005

(c) 1
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3. (a) Area (hexagon) = ^^ = 2.598!

Area (circle) = n ~ 3J4I6

Area (circle) - Area (hexagon) = 0.5435

(b) A„ = -sin —
2 \ ;i

(c)

(d)

5. (a)

n 6 12 24 48 96

A„ 2.5981 3.0000 3.1058 3.1326 3.1394

3.1416 or 7T

ni = -J- (b) ^• = 73.V
-

169 - .\- + 12
(C) 111

=
.V - ^

(d)

7. (a)

(hi

j^: It is the same as the slope of the tangent line found in (b)

Domain: [-27. l)U(l.>co)

The graph has a hole at v = 1.

(c) -u (d) II

9. (a) g|,gj (b) g, (c) i'|.,?,. §4

11.

The graph jumps at every integer.

(a) /(I) = 0. /(O) = 0, f(\_)
= - 1. /(-2.7) = - 1

(b) lim fix) = -1, lim fix) = -1. lim fix) = -1
1-1 >— I

.1—1/2'

(c) There is a discontinuity at each integer.

13. (a)

(b) (i) lim P„ ,,(.v) = 1 <ii) Hm P
,

,,(.v) =

(iii) lim P, ,,(.v) = (iv) mn P, ,,(.v) = 1

(c) Continuous for all positive real numbers except 11 and /'

(d) The area under the curve gives a value of 1

.

Chapter 2

Section 2.1 (page 101)

1. (a) 111 = (b) III = -3

5. Ill = -2 7. Ill = 2 9. Ill = 3

11. fix) = 13. fix) = -5 15. /i'(,v)

17. fix) = 4.V + 1 19. fix) = 3.V- - 12

21. fix) =
,

"'
, 23. fix) =

'

(-V - 1

)- -
'

• 2 v'' V + 1

5. (a) Tangent line: v = 4.v — 3

Ibl

'l

', /

/'

27. (al Tangent line: V = I2.v — 16

(b)

r
..•1

1

1

29. (a) Tangent line: y = ^.v +

(b) ^

31. (al Tangent line: \' = j.v+ 2

Ibl

/>!

33. y = 3.V - 2; V = 3.v + 2

35. .* = ~2-^'+
2



A48 Answers to Odd-Nuiiihercd Exercises

37. ,i,.(5) = 2; ,(;'(?) = -\

39. b 40. d 41. a 42. c

43. Answers will \ar\. Sample answer: v

59. (a)

45. (a)

47. V =

49. (al

(b)

(e)

(dl

le)

(f)

51.

/'(-() = 3 (h) /'(-<) = -3

2.V + I ;
1- = - 2.V + 9

The graph is nuwinL; downward lo the right when .v = I.

The graph is moving upward lo the right when v = -4.

Positive. Beeanse ,i,''(.v) > on [3.6], the graph of i'
is

moving upv\ard to the right.

No. Knowing only ,i,''(2) is not sufficient information. ,!;'(2)

remains the same for any vertical translation of t;.

..-"

/
X — 1 -l..'i -1 -0.5 0.5 1 1.5 1

fix) _9 :7

.12

]

4

1

\2

1

.12

1

4

27

.12
T

fix) 3
27

16 4

3

Ih

.1

4

27
3

53.

I^ix) = fix]

55. /'(2) = 4;/(2.1) = 3.W; n2) =

57.

-0.1; E,\aetn2) =

1^
,

—i

—

—

As .V approaches iiinnily. the graph of / appinachcs a line of

slope 0. Thus /"( vl approaches 0.

./
^./V??

r\

(b) The graphs of .S' for decreasing values of A.\ are secant lines

approaching the tangent line to the graph of f at the point

(2./(2)).

61. 4 63. 4

65. ,i,'(.v) is not differentiable at v = 0.

67. /(v) is not differentiable at v = 6.

69. Ii{\) is not ddlcrenliable at v = -5.

71. (-^. -3)U(-3.ocO 73. (-CC,

75. (-O0. 3)U(3. ^) 77. (1. cc)

l)U(-l.oc)

79. (-OC, 0)u(0. oo)

81. The derivative from the left is -
1 and from the right is 1, so/

is not differcniiable at .v = I

.

83. The derixativc from both the right and left is 0. so /"(I) = 0.

85. / is differentiable at .v = 2.

3|/» + 1|

87. (a) </
=

(b)

m- + 1

X.'

Not differcniiable al iii = - 1

/(2 + Av) -/(2)
89. false. It is lim

91. False. For example: /(.v) =
|.\|. The deri\alive from the left and

the derivalisc from the right both exist but are not equal.

93. Proof

Section 2.2 (page 113)

1. (a) i (b) ^ (c) 2 (d) 3

3. 5. 6.\" 7. -— 9.
.\v"

II. I

13. -4/ + 3 15. 2.V + I2.V- 17. 3/- - 2

1

19. - cos e + sin y 21. 2.V + - sin .v 23. -— - 3 cos .v

Function Rewrite Derivative Simplify

25. .>' = ^r-. y = ::.v - y = -5.v-

27.

29. \>

5 5 ,

V = ^.v-

3
'' =

(2.V)'

3 ,

v'^^

5

_9_

I

31. -6 33. 35. 4 37. 3 39. 2.v +
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41. 2; 43. 45. 3a-- + I

79. (;il

47.
I

49.
3.?'

- 51.
3

5 sin .V

53. (Lil 2.V + V - 2 =

(bl

J. x

55. lal 3a- + 2i' -7 =

(b)

'l

1

(3>X7.7()U)|..V(a) = 2.9SIA - 3.924

(b) riA) = 3(a - 4) + S = 3a - 4

The slope (and cqualioii I of the secant hue apprnaches that of

tlie tangent Hi-ie at (4, X) as you clioose ponils closer lo (4. X).

(e) It becomes less accinaie.

57. (0. 2). (-2. - 14). (2. - 14) 59. No hon/ontal tangents

61. (77. -) 63. k = 2. k = - 1(1 65. k = 3

67. (a) A andB (b) Greater

(e)
:

^ (d)

tJ^i

69.
i'

'(.v) = /'(.v)

71.

A.V -3 _ 1 -1 -0.^ -0.1

/(4 + Xx) 1 2.X28 5.196 6.45X 7.702 8

T{4 + Ax) -1 T 5 b.5 7.7 8

A.r 0.1 0.5 1
-)

3

/(4 + A.V-) 8.302 9.546 11.180 14.697 18.520

r(4 + Ax) 8.3 9.5 11 14 17

81. False: let /(a) = .v and '^.x) = .x + 1.

83. False: Jy/dx = 0. 85. True

The rate of change of/' is constant and therefore /' is a constant }j7. A\erai;e rate: 2 89. Averaee rate: \

Instantaneous rates: Instantaneous rates:
function.

73. y = 2.V - I »• = 4v - 4

1 '

4- '/^X

1-
/̂
1

"i'

\l
: 3

5- /
4-

//^^
1- /

-1 - f{\.
(1)

:

3

-2-
7

/
'( I I

= 2

/'(2) = 2

91. (a) s\t) = - I6r + 1362

r(/) = -32f

(b) -4S feet per second

(c) .v'(l) = -32 feet per second

.v'(2) = -64 feet per second

V1362
(d) ;

= -— ~ 9.226 seconds
4

( e

)

- 295 , 242 feet per second

93. r{5) = 71 meters per second

i'( 10) = 22 meters per second

95. 97.

/'(
1 )

= I

fV-) = i

/'(I) appears to be close to - 1.

/'(1)= -1

60 --

"i- 50 --

,= 40 -

in-

s
8-

(10.6)

1 4-
r(\ 4ly

Q
:-^^ tS. 4)

({ 111 ' 4 h S 10

Time (in minuic^l
Tunc (m niinuie:^)
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99. (;il «(r) = I),l(i7r - 0.02

(h) B{v) = 0.0()6r- - 0.()24v + 0.460

(c) 7"(r) = 0.006\~ + 0.143r + 0.440

(d)

(c) /"|i) = 0.012i- + 0.143

7"'(40) = 0.623

TKO) = 1.103

7"(100) = 1.343

(f) Stopping distance increases at an nicreasing rate.

101. 8 square meters per meter change in .v

103. -Sl.m. -$1.93

11)5. la) The rale ol change ol gallons of gasoline sold when the

price IS .SI .479

(bl In geneial. the rate of change when p = 1.479 should be

107. V = 2.V- - 3.V + 1 109. V = -9v. v = -^.v - y
111. ,( = \.h = -i 113. Proof

Section 2.3 (page 124)

1. 2(2.v"' - 3.V- + .V - I) 3.
lt-+ 4

5. .v-(3 cos .V — .vsin.v) 7.

1
- 8.v'

9. 11.

(.V- + D-

V COS .V — 2 sin .v

3.V- -'(.v-' + 1

)-
.V--

13. t"(x) = (.r' - .3.v)(4.v + 3) + (2.v- + 3.v + 5)(3.v- - 3)

= lO.v^ + 12.v'' - 3.V- - 18.V - 15

./"(O) = -15

15. /'(.v) = '—; —-^

—

17. fix) = cos.v - .vsin.v

ni)

(.V - 3)-

1

'lj-) = f»-"
Fidutidii Rewrite Differentiate Siiiiplify

19. V

21. V

23. 1'

^ v4(.v: + 2.v) v'=i(2.v^-2) v'=^
J_
3.v'

4.vV^

7 ,

v = -.v '

V = 4x"-.

x>Q

-7.V-

.V >

25.
(.V- - l)(-2 - 2.v) - (3 - 2.V - .v-)(2.v)

27. 1

(.V- - n-

12 .V- + 6v - 3

(.v+ D-
. X ^ \

v^(2) - (2.V + 5h
29.

31.

35.

37.

39.

43.

47.

49.

53.

55.

2.V - 5

<\s-i\' - 21 33.
2.V + 3

v-(.v - 3)-

(3.v'' + 4.v)[(.v - 5) •
1 + (.v+ 1) 1]

+ [(.V- 5)(.v + l)](9.v- + 4)

=
1 S.v-" - 48.v' - 33.V" - 32.V - 20

(.V- - c-)(2.v) - (.V- + c-)(2.v) ^ 4.YC-

(.V- - e-f-

tit cos / + 2 sin /) 41.

(.V- - r-

t sin / + cos t

t-

1

-
1 + sec- V = tan-.v 45. -—rr -I- 8 sec ; tan /

4r"'

-6cos-.v -f 6 sin .\ - 6 sin-.v 3,= -(-
1 + tan .V sec .v - tan-.v)

4 cos- -V

T" sec .vitan \ - sec .v)

CSC .V cot .V — cos.v = cos .V cot- .V 51. .v(.vsec-.v + 2 tan .v)

2.V cos .V + 2 sin .v — v- sin .v -I- 2.v cos .v

= 4.V cos .V -^ (2 — .v-)sin.v

X + 2
(2) + (2.V - 5)

(v + 2)(1) - (.V + IKl)

(v -1-2)-

2.V- + S.v - 1

(.V + 2)-

57.
1
- sin « + WcosW . , -2csc.vcot.v

(1 - sm H)-
" ' ~ (1 - csc.v)-

61.
sec t{t tan ; - 1 ) 1

/' (') =
^ . ^

;- 7T-

63. (a) V = - V - 2 65. (a) » = - v + 4

(b) 10 (b) 6

^,.
'"I^J

67. (a) 4v - 2y - 77 -I- 2 =

I hi

/'ii:
r,

/ '

!
1

.-"

:
1

69.

73.

(0.0). (2. 4) 71. 7(.v) + 2 = g{x)

II = l./'(.v) = .V cos.v -I- sin.v

It = 2. fix) = .V- cos.v + 2.V sin v

); = 3. / "(.v) = .v' cos X + 3.V- sin .v

;; = 4. /'(.v) = .v* cos v + 4v' sin.v

/ '(.v) = -v" cos v + iix" -
' sin .v

(.V + 3)- (x + 3)-
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75. ^- square centimeters per second
2s r ^

77. (;i) -.S3,S.I3 (b) -$10.37 (c) -$3.S0

The costs decrease with increasing order size.

79. 31.5? bacteria per lioiir SI. Proof S3.

(b)

85. ^ 87. -3sin.v 89. 2.v 91. —

^

(-V - 1

)-'

V-v

93. Answers will vary. For example: (v - 2)-

J-

101. r(3) = 27 meters per second

fl(3) = -6 meters per second per second

The speed of the object is decreasmg. but the rate of that

decrease is increasing.

103. (a) 2.4 ft/sec- (b) 1.2lt/scc- (c) 0.5 ft/sec-

105. (a) /"(.v) = !;(.v)/n.v) + 2,i,' 'I v)/; tv) + ,!,-"( .v)/;(.v)

/'"(.v) = g(.v)/( "'(.V) + 3,u'(.v)/("(.v) +

3,?"(.v)/;'(.v) + ,t;"'(.v)/((.v)

^-"(.v) = ,?(.v)/7'-"(.v) + 4i,.'(.v)/r"(.v) + 6g"{x)h"ix) +

4,1,. "'(.v)/i '( v) + g'^'ix)li(x)

(b) f'"H.x) = gixW'M + ,„
"'

,,, ,.; '(.vW"-"(.v) +
I '(/( - 1 )I

,i;"(.v)/i'"~-'(.v) + • • +
2!(/( - 2)!

in - l)!l'
,i;'"-'i(.v)/i'(.v) + g""(.v)//(.v)

107. (a) P,
V3,., _ .) , I

...i = 4(.-f)"-f(-i)-3

-NT

(c) P,

(d) P| and P, become less accurate as you move farther from

.V = a.

109. False: Jy/dx = flx)glx) + .i,'(v)/'(vl 111. True

113. True 115. /'(vl = 2|v|; /"(O) does not exist.

Section 2.4 (page 133)

y=f{gU-)) u = six)

V = (6.V - 5)-" u = 6.V - 5

^ = v'.v- -
1 II = .V- - I

y = CSC' -V /( = CSC A

(i(2.v - 7)' 9. - I0K(4 - y.v)'

4.V

./'(")

11. -i9 - .v-)-"'(-2.v)
.1 3(9 - .V-)''-'

13. ^(1 - ;)-'''"(-!) = 1

2^1 -t

15. ^(9.v- + 4)--/-'(IS.v)
6.V

(y.x- + 4)-''-'

17. ^14 -.v^)-W(-2.v)
-.V

i/{4 - .x'-)-'

19.
1 ., -2{r - 3)-'(l) =

(.V - 2F
-'

>^ 1

(/ - 3)-

27.

29.

31.

35.

2(.v + 2)-"-

.v-[4(.v - 2)'(l)] + (v - 2)-'(2.v) = 2.v(.v - 2)'(3v - 2)

I \ , I
- 2 V-

- (1 -.V-) '^^(-2v| + (I -.v-)'.'-(l) =

(.V- + U'^-d) - .v(l/2)(.v- + l)-'''-(2.v) ^ I

(.v= + 1
)-'/-

.V- + I

-2(.v + 5)(.v- + lO.v - 2)

i.x' + 2)-'

I
- 3.V- - 4.v''-

33.
-9(2f- D-

(r + 1)-*

.v(.v- + n- r\

The zero of v' corresponds to the point on the graph of the

function where the tangent line is horizontal.

37.
^' + ^' - -'

{(-+ It - \?'- --J

^'^-

._--
1

The zeros of i; '(/) correspond to the points on the graph of the

function where the tani;ent line is horizontal.



A52 Answers to Odd-Numbered Exercises

39.

V + 1

2.v(a + 1)

85.

41.

V ' has no zeros.

t

1 + t

The zero of s\l) corresponds to the point on the graph of the

function where the tanaent Hne is horizontal.

43.
7T-V sin 77.V + COS TT-V + I

.-. I I %^
I

'

45.

47.

S3.

57.

61.

65.

The zeros of y' correspond to the points on the graph ol the

lunctiun where the tangent Inics are hnri/onlal.

(a) I (h) 2; The slope of sin (i.i al tlie origin is ((.

— ,isin.\\ 49. 12sec-4.v 51. 2 tt' -vcos(7T-v)'

I — cos-.v
2 cos(4.v) 55.

8 sec- .V tan .v

sin- .V

S sin .V

677sin(77r -
1

)

eOs'( TTt - \)

— sin .V cos(cos \)

59. sin 2f*cos29 = - sin 4(9

63. + 2.vcos(2.v)-

69. r(.v)

73.

75.

67. sV)

71. f'U

I + 1 3

Jf + 2; + K" 4

-5
-5

-9.V- 9

U^^^--25 "•/'" = „-,):

y' = -6sec'(2.v)tan(2.v),

(a) 9.V - 5y -2 = 77. (a) 2v - v - 2- =

lb) ,— ^ lb)

\
',_ / -\ 1

The zeros of /
' correspond to the

points wliere the graph of / has

horizontal tanaents.

87. The rate of change of , will be three times as fast as the rate of

change of /!

89. la) 24 lb) Not possible because ,s;'(/i(5)) is not known.

(c) T idl 162

91. la) 1.401 lb) - 1.016

93. 0.2 Indian, 1.45 radians per second 95. 0.04224

97. la) .V = - 1.6.^7/- + 19.3U- - 0.5r -
1

lb) — = -294.fi(v- + 2.M7,2/ - 30
til

Ic) Because v. the number ot units produced in t hours, is not

a linear function, and therefore the cost with respect to time

t is not linear.

99. la) /'(.v) = /3COS/3.V

fix) = -/3-sin/3.v

/'"(-v) = -;S'cos/3.v

/'-"(.v) = /5-'sin/3.v

(h) /"(.v) + p-fU) = -/3- sin /3.V -I- fi- sm /3.v =

(c) /'-"(.v) = ( - 1 )' /5-' sin /3.V

/'-' "(.v) = (-1)'"' (3-' -
' cos /3.V

5 2(2v - ^) 1
101. (a) (b) - 103. Proof 105. .^ _ ^. . .v 9^ -

107. - |.v| sin A + -p-rcos.v, .v ^

109. la) P,(.v) = ^(.v - 1) + 1

PM = ~{x - \)- + f(v - 1) + 1

O _

(b)

,.,

/''

^/

(C) P,

(d) I', and l\ become less accu-

rate as you mine farther from

.V = 1

.

79.

83.

12(.S.v- - l)(.v- - 1) 81. 2(cos,v- - 2.v-sin A-i
111. False, a' = -3(1 - -v)''''

Section 2.5 (page 142)

A
3. -VJ 5.

! - .IV-

y 2y - .V

6A^ -- 3.V- - 2v-
1

1

eos A

113. True

7.
1 - .Iv-y'

3a-'v- - 1

Ax\ - 3.V- 4 sin 2v

The zeros of /' correspond to the points where the graph of / has

horizontal tangents.
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13.
cos .V - tan v -

1

15.
y cos(-vv)

1 - .V cos(.vv)

9.V

16v

2 1 + A-

35. -^ 37. -A^ 39. ^y-' y

'

4y

41. -Y + 3v - 12 =

43. At (4.3):

Tangent line: 4a + 3y - 25 =

Normal line: 3a - 4i =

^ X 9l,".x

/<- ,'

-6

At (-3.4):

Tangent line: 3a - 4y + 2.'i
---

Normal line: 4a + 3y =

(Clintinued)

-''K'

45. A- + 1- = slope of normal line. Then

47.

49.

for (.v,,. y,,) on the circle, a,, == 0. an eL|Lialiiin of llic nnrmal line is

V = —A. which passes thiouijh the oritiin. If v„ = 0. llic normal
.V|,

line is vertical and passes lliroiigh the origin.

Horizontal tangents: (-4. (1). (-4. 10)

Vertical tangents: (0. 5}.i- S. 5)

,
UTTJ71 51.

ff
F^A^.

Nr'
iii.ih /

;\
^

At 1 1. 2):

.Slope of ellipse: — 1

Slope of parabola: 1

At(l, -2):

Slope of ellipse: I

Slope of parabola: -

At (0. 0):

Slope of line: -
I

Slope of sine ciir\'c: I

53.

,/v X clx V
Derivatives:

</.v .v' ,/.v
\'

55. la) 4v
Jx

57. (a) — 77 sin ttx

lb)

<b)4v^-l2.v4 =

3 77 COS 77-V = (.)

dx
-sm77\' -^ — .>7rCOS77A, ,

ell I \ tit

59. Answers will vary. In the explicit form of a function, the

variable is explicitly written as a function of a. In an implicit

equation, the function !> only implied by an equation. An

example of an implicu fiuiclion is v- + .vy = 5. In explicit form

.5 - x~
it would be \' = .

61. (a) .v-* = 4(4.v- - !')

4^-t-
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(b)

XLV
XA

^^

a-. 1^.5
29. Rate of \ertical change: ^ meter per second

V, =-[(s 7 + 7).v + (S,'7 + 23)]

V, = -^[(-./7 + 7)v-(23-X.7);

V, = -^[(.^-7).v-(23-8.7)]

vj= -^[(. 7 + 7).v-(8v'7 + 23)]

63. Prool

Section 2.6 (page 149)

9.

11.

13.

15.

17.

(a) J (bl 20 3. (a) --^ (b) 5

(a) —4 centimeters per second

(b) (I centimeter per second

(c) 4 centimeters per second

la) S ccntimclcrs per second

(bl 4 centimeters per second

(cl 2 centimeters per second

(al Positi\e (b) Negative

In a linear (unction, it v changes at a constant rate, so does v.

However, unless n - \. v does not change at the same rate as .v.

2(2.v' + 3.v)

Jx* + 3.V- + 1

(a I
36— square centimeters per minute

(bl 144 77 square centimeters per minute

(a) Proof

7T liA 73 ,

(bl When H = -.— = .y-.

6 (/; 8

^ 'M I .When H = -. — = -v-.
3 ,lt 8

(CI n A and ill)/Jt are constant. d.A/ill is proportional to cos 0.

-I

19. (al — centimeter per muuite

(b)
-—— centimeter per minute
1 o n

21. (al 36 square centimeters per second

(b) 360 square centimeters per second

23. ——— foot per nnnute
405 77

25. (a) 12.5% (b) jjj meter per minute

27. (a) —
j3 foot per second; -^ fee't per second;

— y feet per second

(b) 3j- square feet per second (cl ji radian per second

Rate of horizontal channe;
15

meter per second

31.

33.

35.

37.

(a) - 750 miles per hour (hi 20 minutes

28

MO
-8.85 feet per .second

(a) y feet per second (h) y feet per second

(a) 12 seconds

(bl - N 3 meter

vTtt
(c) ——— meter per second

39. Evaporation rate proportional to

5^ ~ = ^-(477/--)

clt

dt
477/-

itt

Sok
i/7

ilt'

41.

45.

'
(// ill

1

47. (al

43. ^ radian per second

(al J radian per minute (b) , radians per minute

(c) 1.87 radians per minute

rfv ^
dr

'

(b) 2°™

-600 77 sin H

-W-

(c) = 9(f + II 180"; = 0° + II 180°

(dl — 30077 centimeters per second;

- 300 v'377 centimeters per second

... 1 1
" "

49. — cos- 0. -- < < -
2.1 4 4

51. -0.1808 foot per second per second

53. (al /»(,v) = -0.881.V- -I- 29.10v - 206.2

(b) (-1.762.V -I- 29.101— (c) 2.15 million
dt

Review Exercises for Chapter 2 (page 153)

1. fix) = 2.V - 2 3. ,/'(.v) 2^
5. / is diffcrentiable at all x i^ - 1.
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39. (a) A- '(f) = 2; - 3 (b)(-:c.l.5) (c) .v

41. 2(6a-' - 9.V- + 16a- - 7) 43. v a cos a +

A- +1 .„ 6a

(d) 1

;y.v

45.

51.

1 + ^ 47.
a'

2a cos a + A- sin a'

(a- -
1
y-

49.
(4 - 3a--)-

(a) Yes

cos- A

55. -A sec- A - tan

53. 3a-- sec a- tai-i v + 6a sec -

57. — V sin \ 59. br

(b) No. because the deri\ati\es from the left and right aic f>l. 6 sec- W tan W

not equal.

9- -2

1. (a) V == 3a -1- 1

(bi J ,

13. 8

15. /'(a)

17.

25.

31.

33.

35.

37.

/' > where the slopes ol tangent lines to the giapli ol /

;iie positi\e.

19. 8a' 21. I2r'' 23. 3a(a - 2)

43 1

- 3 sin e

27.

cos

4

3r'
29. 2-3 cos e

(a) 50 vibiations per second per pound

lb) 33.33 \ ibrations per second per pound

414.74 meters or 1,354 tcct

(a)

X 10 25 30 50

y' 1 0.6 -0.2 -1

(ej y'l25) =

63. v" -I- V = - (2 sin a -f 3 cos a) + (2 sin a -I- 3 cos ,v) =

3.V- ,_ 2(a - 3)(-.v- + 6a + 1)

65 67.
2v'l -A^ (-V- + 1)-'

69. s{s- - l)-'''-(8.v-' - 3.V + 25) 71. -9sin(3A + 1)

73. -CSC 2a cot 2a 75. 3(1 - cos 2.v) = sin- a

77. sin' --VC0SA — sin^'-ACosA = cos-'.vVsinA

(a + 2)[7rcos(7rA)] - sin(77A)

(A + 2)-

81. t[t - \V[li - 2)

The zeros of /' coiTcspond to the

points on the graph ot the I unc-

tion where the tangent line is

horizontal.

79.

1
/'

83.
A +

(A + 1
)-''-

85.
6(f -I-

1)''''"'

i; ' is not equal to zero tor

anv .1.

/
' has no zeros.

87.
S ec^ V 1

~
.V

2.''1 -A

-20

.1

1

/•
"\\ "1

y' has no zei-os.

89. 4 - 4 sin 2a 91. 2 esc- a cot a

2(f + 2)
93.

(I - tV

97. (a) - 18.667 degrees per hour

(bl -7.284 degrees per hour

(c) -3.240 degiees per hour

(d) -0.747 degree per hour

95. I8sec-(3W tan(3e) + sin(« - 1)
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99.
2.V + 3i'

101.
iv-

3(.v + V-) 2.vs/v-.vv^

105. Tangent line; a + 2v - 10 =

Normal line: 2.v — v =

103.
y sin.v + sin

y

cos A — A" cos V

107. (a) 2s'2 units/sec <b) 4 unils/sec (e) S units/sec

109. f^ meter per miniile 111. - 3X34 meters per second

P.S. Problem Solving (page 156)

1. (a) ( = (b) Center: {{).])

\ r
H y

3. (a) F|(a) =
I

(h) P,(v) =
1
- -^A-

(c) X -1.0 -0.1 -0.001 0.001

cosjr 0.5403 0.y950 1 .000 1 1

PAx) 0.5000 0.9950 1.000 1 1

X 0.1 1.0

COS.V 0.9950 0.5403

P.(x) 0.9950 0.5000

P,(a) is u good approximation of/(.v) = cos a when a is

very close to 0.

(d) P,(a) = A -
s-v-'

5. />(.v) = 2.v'' + 4a- - 5

7. (a) Graph

1

V, - - ./A-(«- - A-

as separate equations.

Va-(,/- - A-)

(b) Answers will vary.

I
\yO\

I

The intercepts will always be (0, 0), [a. 0), and (
— a. 0). and

the muxinuim and mininunn y- values appear to be ±^a.

(c)
v-^ <^\ i'v2 i/v'2 ir

(al When the man is 90 feet from the light, the tip of his shadow

is 1 123 feet from the light. The tip of the child's shadow is

\\\-, feet from the light, so the man's shadow extends Ij^

feet beyond the child's shadow.

(b) When the man is 60 feet from the light, the tip of his shadow

is 75 feet from the light. The tip of the child's shadow is 77^

feet from the light, so the child's shadow extends 2g feet

beyond the man's shadow.

(c) (/ = SO feet

idl Let A be the distance of the man from the light and .v be the

distance from the light to the tip of the shadow.

ih 50
If < .V < 80,

h 9

If A > 80,
ch

di 4'

There is a discontinuity at a = 80.

11. Proof. The graph of L is a line passing through the origin (0, 0).

13. (; ,0
0.1 0.01 0.0001

sinz

z
0.01745241 0.0174532924 0.0174532925

'^'T8o""-" '''m^'^'-'

(e) Ansvvers will \ary.

15. (a) / wotild be the rate of change of acceleration/deceleration.

(b) /
= 0. DeceleratLon is constant, so there is no change in

deceleration.

Chapter 3

Section 3.1 (page 165)

/'(O) = 3. /'(3)

/
( 2) is undefined. 7. 2. absolute maximum

9.

II.

17.

21.

I, absoltite maximimi; 2. absolute minimum;

3, ahsoltile maximum

0. A 13. I

8

Minimum: (2. 21

Maximum: (-1.8)

Minimum: (
— 1, - s)

Ma\imtim: (2, 2)

Minimum: (0, 01

Maximtim: ( - 1. j) and ( 1, j)

29. Minimum: |
-,
6

Ma\mium: (0, 1)

33. (a) Mmimum: (0, -3);

Maximum: (2, 1

)

(b) Minimum: (0, -3)

Id Maximum: (2, 1

)

(d) No extrema

15. A = - ,T.y

19. Muumum: (0. 0) and (3, 0)

Maximum: (;J, j)

23. Minimum: (0.0)

Maximum: (
- 1.51

27. Mmmuini: ( 1. -
1

1

Maximum: (O, --)

31. Minimum: (2, 3)

Maximum: (l, s^ + 3)

35. (a) Minimum: (1,-1);

Maximum: (-1,3)

(b) Minimum: (3, 3)

(c) Minimum: (1, - 1)

(d) Minimum: (1, - I)
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37.

/

39.

Minimiiiii: (0, 2)

Maximum: (3, 36)

41. (a)

Minimum: (4.

(b) Minimum: ((I.434S, - 1.0613)

43. Maximum: |/"(</-l() + v'^T08)j = /"( s''3 - l) = 1.47

45. Maximum: |/'-"(0)| =
sj

7T

47. Because/ is eonliiuiniis on 0.

49. Answers will \arv. lixaniple

Imt not eontiiumus on [0.

51. (a) "I'es (b) No 53. (a) No (b) \es

55. Maximum: P(I2) = 72

No. P is decreasing for / > 12.

57. 0.9553 radian

59. (a) V

(b

3 , _ J_ 75

4().(.)0()
^ 200 ^ 4

-^ -500 -400 - 300 -200 - 1(.)0

d 0.75 3 6.75 12 18.75

X 100 200 300 400 500

d 12 6.75 3 0.75

(e) Lowest point = (100, 18); No

61. True 63. True

Section 3.2 (page 172)

I. /(()) = /(2) = 0; / IS not dilTerentiable on (0. 2).

3. (2.01. I- l.());/'(3) = 5. 10.0). ( -4. ()):/'( -^) =

^6
7. /'(I) = 9.

/''
^^3^ 0;r(^^l =

11. Not dillei-entiable at .v = 13. /'(-2 + v/5) =

15. f'i^] = 0; /'(^) = 17. /'(0.249) -

19. Not continuous on [O,

21.

Rolle's Tlieorein does not apply.

23.

/U0.1533) =

(a) /(I) = /(2) = M
(bl Velocity = tor some ; in I

- 1. 2). / = ^ seconds

27.

\

uin^oni inc

1. ,./(. ,1)

s^ --.^(''../t/'iA

n.,ju
'"T'^Tr-

Uingcni lie sL-L';Lnt line

29.

31.

35. /'

39,

The function is ilisconliiuious on [O. 6]

r(-\) = -\ 33. /i^) = i

.Secant line: 2,v - .3\- -2 =

TanL>enl line: c = -^-. 2.v - 3v + 5 - 2^''6 =

37. /' - =

•—:7?«*^-——rr*''^^-

—

I--''

41. .Secant line: .v - 4\ + 3 =

Taiment line: c = 4, .v - 4i' + 4 =

43. (a) - 14.7 meters per second (b) 1.5 seconds

45. No. Let/lv) = .v-on[- 1,2].

47. By the Mean Value Theorem, there is a time when the speed of

the plane must equal the average speed of 454,5 miles per hour.

The speed was 400 miles per hotir when the plane was acceler-

ating to 454.5 miles per hour and decelerating from 454.5 miles

per hour
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49. (a) / is continuous and changes signs in [- 10. 4] (Intermediate

Value Theorem).

(h) There e.xist real numbers a and /) such that - 10 < <; <

/) < 4 and /"((() = /(/;) = 2. Therefore. /' has a zero in the

nilcr\al hv Rolle's Theorem.

(e) No. hy Theorem 2.1.

51.

53. False. /' is not continuous on [- 1. 1].

55. True 57. Proof 59. Proof 61. Proof

Section 3.3 (page ISI)

1. increasing on (3. tc ); Decreasing on (-^z. })

3. Increasing on ( - cc. -2) and (2, cc); Dccrcasmg on (-2, 2)

5. Incieasing on (
— cc, 0); Dccrcasmg on (0. cc

)

7. Increasing on ( I, cc); Decreasing on (- ^c. I

)

9. Increasing on (-2v^. 272)

Decreasing on (-4. -2^^). (272.4)

11. CrUical number: A = .^

Increasing on (-^. zc)

Decreasing on (
— cc. .i)

Rclali\e minimum: {?<. -4|

13. CrUical number: a =
I

Increasmg on ( -cc. I

)

Decreasing on ( 1. ^c)

Rclalise maximum: ( 1. .'i)

15. Critical numbers: 1

Increasing on (- cc, - 2) and ( 1. co)

Decreasing on (
— 2, I

)

Relati\c maximum: (-2. 20)

Relative inmimuin: (I, -7)

17. Critical numbers: x = 0. 2

Increasing on (0, 2)

Decreasing on ( — cc, 0), (2, oo)

Relative maximum: (2. 4)

Relative minimum: (0, 0)

19. Critical numbers: a = -1.1

Increasing on ( - oc. -
1 ) and ( 1 , oc)

Decreasing on (
—

I . I

)

Relative maximum: (- 1, j)

Relative minnnum: (l, -5)

21. Critical niniiber: .v =

Increasing on ( — oc. co)

No relative extrenia

23. Critical number: a = I

Increasing on ( I , cc)

Decreasmg on ( — oc. I

)

Relative miniinum: (1, 0)

27. Critical numbers: a = —1.1

Discontinuity: a =

Increasing on (
- ^, -

I ) and ( I , cc

)

Decreasing on (- I, 01 and (0. I)

Relative maximum: (-1.-21

Relative minimum: (1.2)

29. Critical ninnbcr: .v =

Discontinuities: a = -3. 3

Increasing on (
— cc. — 3) and (

— 3. 0)

Decreasing on (0, 3) and (3. ^)

Relative maximum: (0, 0)

31. Critical numbers: a = -3, 1

Discontinuity: -V = —
1

Increasing on (
- cc. - 3) and ( 1 . :c

)

Decreasing on (
- 3. - I ) and (

-
1 . 1

)

Relative maximum: (-3. -<S)

Relative minimum: (1,0)

25. Critical number: a = 5

Increasing on ( - cc. 5)

Increasing on ( - cc. 5)

Relative maximum: (5. 5)

}}. Critical numbers: a
6" 6

Increasint! on 0, — ,
^^, 2;

\ (1/ \ (J

Decreasing on
TT 5tT

6'
ft

Relative maximum

Relati\c minimum

35. Critical numbers: v

/ TT
Increasine on 0,

—

' - 7-
Decreasini: on (

—
,

—
6

TT [tT + 6v^
6' 12

5tt [577- 6s '3

6 12

_ TT JtT ?^ UjT
2' 6 ' 2 6

Tit 37r\ 1 ] \ tt

6 2 /
\ 6

377 m
2 6

Relatixe maxima:

Relative minima:

¥.0

777 II77

6 "



Answers to Odd-Numbered Exercises A59

37. (a) fix)
2(9 - 2v-)

v/9 - .V-

(c) A- = +-3./

39. (a) fit) = t(t cos / + 2 sin r)

(b)

(c) Critical numbers: t = 2.2SH9. 3.(),S70

(d) /' > Oon (0, 2.2SS9). (5.087(1. 2;7)

/' < Oon (2.2889. 5.0870)

41. fix) is symmetric with respect to the origin.

Zeros: (0. 0). (+ V3. O)

43.

(.v) is continuous on ( - cc. cc) and fix) has holes at .v

= -i.

45.

I and

47.

4

_
/'

-4 -2

-2-

_4-

4

49. ,i,''(0) < 51. ,i,''(-6) < 53. ,(;'(0) >

55. 57.

Muimiinii al liie approxiniale

critical number I = -(1.40

Maximum al the appro\iniate

critical number I = (1.48

59. (a)
X 0.5 I 1.5

-)

2.5 3

fix) 0.5 1 1.5
-)

2.5 3

gU) 0.48 0.84 1.00 0.91 0.60 0.14

fix) > ,i,'(.v)

(b) (c) Proof

fix] > nix)

2R
61. / = ^ 63. MaMiiuim when R, = R,

65. (a) B ^ (1,1 \^Ki)i' - 4.487'-);' + 5(i.991;- - 223.02; + 580.0

(b) 1500 (c) (2.8.31 1.2)

67. (a) 3

(b) <(,(0)' + (;,(0)- + (/|(0) + ,/„ =

<;,(2)' + <;,(2)- + <(|(2) + <;„ = 2

3</,(0)- + 2((,(0) + <;, =

3((,(2)- + 2(v,(2) + <;, =

(c) fix) = -iv' + 5.V-

69. (a) 4

(b) <;j(0)-' + ((,,(())"' + <(,(())- + (/|(0) + <(„ =

ajl)-' + «,(2)' + <(,(2)- + <;,(2) + a„ = 4

aJ4)^ + <;,(4)' + <(,(4)- + </|(4) + <;„ =

Aciji)]' + 3((,(0)- + 2<(,(0) + ((, =

4<;_,(2)'- + 3n,(2)- + 2i/,(2) + <;, =

(c) fix) = \x-* - 2.v' + 4.V-

71. True 73. False. Let fix) = x\

75. False. Let fix) = v\ There is a critical number at .\ = 0. but not

a relative extreniuni.

77. Proof 79. Proof
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Section 3.4 (page 189)

1. Coneaxe upward: (
- jc, zr.)

3. Concave upward: (-co, -2). (2, cc)

Conca\e downward: (
— 2. 2)

5. Conca\ e upward: (
- cc, -

I ), ( 1 . co)

Cimcax e dow nward: I
-

I . I

)

7. Concave upward: (-^, I)

Conca\e downward: 1 1, cc)

9. Conca\e upward: 7."

Concave downward: 0.

11

13.

Ponil of mnection: (2, <S)

Conca\e downward: (
- ^. 2)

Conca\e upward: (2. ^)

/ 2 20
Points ol inllection: ±—^. —

-

\ v^ 9

Conca\e upward

Concave downward:

15.

17.

19.

21.

23.

27.

29.

31.

33.

35.

37.

39.

.z^--

sAV .''3y

Points of inflection: (2. - 16). (4. 0)

Concave upward: (-cc, 2), (4, oo)

Conca\c downwLird: (2. 41

Conca\e upward: (
— 3, cc)

Points of inflection:
(
- v''3. -^). W. 0), ( v/3. ^)

Concave upward: (
— v''3. O). ( vO, co)

Concave downward: (-cc, - s/3), (O. v^)

Point of inflection: (2 jr. 0)

Concave upward: (2 77, 4 77)

Concave downw:ird: (0. 2 77)

Concave upward: (0, n). (2tt. ?>tt]

Concave downward: ( 77, 2 7r), Ott, 477)

Pouitsof uiflection: ( 77, ()), ( ) ,S23, i, 4.^2), (4,46, -],4.^2)

Concave upward: 0,823, 77), (4.46, 277)

Concave downward: (0. 1.823), (77, 4.46)

Relative mniinunii: (3, — 2,'i)

Relative niininuuii: (.*i, 0)

Relative maxmunii: (0, 3)

Relative niininuini: (2, -
I

)

Relative niaxinuini: (2.4, 268.74)

Relative minimum: (0. 0)

Relative minimum: (0, -3)

Relative maximum: (-2, -4)

Relative minimum: (2. 4)

No relative extrema, because /' is nonincreasing.

41. (a) ./"(.v) = ().2.v(.v - 3)-(5.v - 6)

/"(.v) = 0.4(.v - 3)(in.v- - 24.V + 9)

(bl Relative maximum: (0.0)

Relative minimum: (1.2, - 1,6796)

Points of inflection: (0,46.^2, -().7()4S),

{f.9348, -0,9048), (3,0)

/ is increasing when /' is positive, and decreasing when /' is

negative. / is concave upward when /" is positive, and

concave ilow nward when /"is negative,

43. (a) /'(.v) = cos .V — cos 3.v + cos ."i.v

/ "(v) = - sin -V + 3 sin 3-v - ."i sin ."i.v

(b) Relative maximum: (77/2. 1,53333)

Points of inncction:

(0,5236, 0,2667). (1.1731,0,9637).

(1,9685, 0,9637), (2,6180, 0,2667)

(c)

45. (a

/ is increasing when/' is positive, and decreasing when /' is

negative, / is concave upwarti when /" is positive, and

concave downward when /"is negative,

(b)

47. Answers will vary. Example: /(.v) = .v"" /"(O) = 0, but (0, 0) is

not point of inflection.
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49.

/' Y/ y

/ '

51.

- / / -

/ ' '

/ '

/ f

/ , /

53.

57. Example

59. (a) f(x) = (a - 2)" has a point of mtleetion at 12. 0) if/; is odd

and u > 3.

/

' ^'

1

1

,''' '

lIlilLYllnn

l

-6

1

1

1 1

(b) Proof

61. /(a) = \x^ - 6a- -I- yA - 24

63. (a) /(a) = ;^A-'' -I- jTjA- (b) Two miles from touchdown

15 - v/33\
65.

16
L = 0.57SZ, 67. A = 100 units

69. r = v'j ~ \-^'i'> years

71. P,(a) = 2../2

P,(a) = 2v'2 /.,A-- V^
;u
Vi

The values of/. Z^,. and A and their first derivatives are equal

when .V = irj-X. The approximations worsen as you mo\e away

from A = 7t/4.

73. PAx] = 1

l\(x) = 1

2 8 >-,

y'r

,

\.

The values of /' P,. and P, and then" fust deri\ati\es are equal

uhen A = 0. The approximations worsen as you move away

Irom A" = 0.

75.

""""X

.--"""

77. Proof 79. True

81. l-'alse. The maximum \alue is ^/13 = 3.60555.

83. False. / is concave upward at a = c if /"(c) > 0.

Section 3.5 (page 199)

4.1. f 2. c 3,

7.

5. b 6.

A- 10" l()i 10- 10- HH

m 7 2.2632 2.0251 2.0025 2.0003

X UP 10"

fix) 2.0000 2.0000

10

\

lim
4a + 3

2a -
1

9.
X 10" 10' 10- 10' 10^

Ax) — 1 -2.9814 -2.9998 -3.0000 -3.0000

X 10' 10"

fix) -3.0000 -3.0000

-10

lim
,
—

^

•—-c V4a- -I- 5
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11.
X 10" 10' 10- 10' 10-"

fix) 4.5000 4.9901 4.9999 5.0000 5.0000

45. (a)

-V 10' 10"

fix) 5.0000 5.0000

lim .1

I

.V- -I- 1 .

13. (al zr- (b) 5 (c) 15. (a) (h) I

17. (al I) ihl -? (e) -oo

19. ; 21. 23. -cc

25. -
1 27.-2 29. 31.

33.

^\

35. 1 37. 39.

41.

.V 10" 10' 10- 10' 10-* 10' 10"

fix) 1.000 0.513 0.501 0.500 0.500 0.500 0.500

/

lim Lv - s'aIv - I) = ^

43.

X 10" 10' 10- 10' 10-^ 10' 10"

fix) 0.479 0.500 0.500 0.500 0.500 0.500 0.500

Lj! . ,

The graph has a hole al x = 0.

hm .V sin :— = -

(b) Hm /(.v) = 3. lim fix) =

(c) y = 3 is a horizontal asymptote. The rate of increase of the

finiction approaches as the graph approaches y = 3.

6|.v -
2i

47. Yes. For example, let fix)

49.

-I 1 1

—

\—

H

4.

•}.

AX - 2)= -H 1

51.

55.

59.

63.
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65.

ra

\j

t>7.

I
I

I
I

I
»

69.

I :\,_

1
'",

:

7X

-3f r
,)-3

77.

f I

(b) Proiif

79. \

81. (a) (/

(b)

1
3m + 3

1

1-^

1

1

1' = "

.-

\

1

1

1 1

71.

75.

k^f-.
--

-- . ; \ : 1^ =
1

1 2 (*')

.--

'
[
V = sin( 1

1

c

70

,.'

y'"'

The slant as\niptote y = A

(c) lim </("i) = 3; lini dim] = 3

As m^tzr^. the hne approaches the vertical line .v = 0.

Therefore, the distance approaches 3.

83. (a) r, = -0.003/- + 0.68/ + 26.6

(b) ja ,
(c)

(d) r,(0) = 26.6°. 7-;(0) = 25.0° (e) 86

(f ) The limiting temperature is 86°.

No. 7| has no horizontal asymptote.

85. Answers will vary. See "Guidelines tor Finding Limits at Infinity

of Rational Functions" on page 193. Examples:

(a) lull T-^—^— = since the detirce oT the niniierator is

I — '^- \ .i-V— 4 /

less than the degree of the denominator

^2.v - P
(b) lim

(c) lim

-=- \3.v +

equal to the degree of the denominate

V- +

since the deijrec ol the numerator is

= zo since the deerce of the luinicrator is

I—^ \ .V
—

greater than the detuec <if the denominator.

87. False. Let /(.v) = /

. -V- + 2

/'(-v) > for all real numbers.

Section 3.6 (page 208)

1. d 3. a 4. b

5. (a) fix) = Ofor.v = ±2

/'(.v) > Ofor (-3C. -2). (2, cc)

ri.v) < Ofor (-2.2)

(b) /"(.v) = Ofor.v =

/"(.v) > Ofor (0, -J-.)

f"(.v) < lor (-00,0)

(c) m.^)

(d) /' is minimum tor v = 0.

/ is decreasing at the fastest rate.

11. 13. (0 i:'):. 4IIMI



A64 Answers to Odd-Nuniheicd Exercises

15. 17.

/^
H \

(—

H

31.

35.

39.

(0. -3)

feE3

21.

25.

^n^ a7 4

t
V

(I 347.111

-h

29.

33.

37.

41.

43. 45.

47.

r\

Mininiuiii: l- 1,1(1. -^),()5)

Ma\inuim: (1.10. 4,051

Points ot inflection

:

(- 1.S4. -7.S6). (1.84.7.86)

Vertical asymptote: .v =

Horizontal asymptote: \' =

49. 51.

Ponit olnitlection: (0.0)

Horizontal asymptotes: y = ± 1
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57. / is decreasing on (2, SI and tlierefore/(3) > /(5).

59.

I

Tlie grapli crosses the liorizontal asymptote v = 4. The graph of

/ does not cross its vertical asymptote .v = c' because /(c) does

not exist.

61.

The graph has a hole at .v = 3. The ralmnal tunclion is nol

reduced to lowest terms.

63.

The graph appears to approach the line \' = -.v + 1. which is

the slant asymptote.

65.

The graph has a hole at .v = (I and at .v = 4.

\ } 5 1
Visual appiovuiiate critical numbers; ..^, 1. -. 2. -. .V

-

(b) fix)
- cos-( — \ ) 2 — sni( —.v) cos( ;7-v)

(.v^ + 1
)^ '-

v'.v- + 1

1 3 .'^ 7
Approximate critical numbers: -, t).97. -. 1.98. -. 2.98. -

The critical numbers where maxima occur appear to he integers

in part (a), but approxmialing them using /
' you see that they are

not integers.

1

67. Answers will var\, Example: y

3.V- - I3.V
69. .Answers will vary. Example: y

71. (a) Rate of change of /' changes as u varies. If the sign of </ is

changed, the graph is reHecled through the .v-axis.

(b) The locations of the vertical asymptote and the minimum

(if <! > 0) or maximum {i( a < 0) are changed.

73. (a) If u is even. /' is symmetric w ith respect to the v-axis.

If ;i is odd. / is symmetric with respect to the origin.

(b) /; = 0. 1.2.3 (c) /I = 4

(d) When ;( = 5. the slant asymptote is y = 3.v.

(e)

75. (a) 2750

H 1
1 3 4 5

M
1

-)
3 2 1

N -)

3 4 5 T 3

(b) 24.^4

(c) The number ol h.Lclcn.i re.iched its maximum carh on the

seventh day.

(dl The rale of increase in the number ol bacteria was greatest

approximalel\ m the middle of the third day.

(e)
13,230

Section 3.7 (page 216)

1. (al and (b)

Fust

Number, .v

10

20

30

40

30

60

70

80

90

100

(c) P = id 10

(d) 3500

Second

Number

10 - 10

10 - 20

10 - 30

M) - 40

10 - 30

10 - (lO

10 - 70

10 - 80

10 - 90

10 - 100

Prothut P

10(110 - 10) = 1000

20(1 10 - 20) = ISOO

30(1 10 - 30) -- 2400

40(1 10 - 40) = 2800

30(1 10 - 50) = 3000

60(1 10 - 60) = 3000

7011 10 - 70) = 2800

80(1 10 - SO) = 2400

40(1 10 - 90) = 1800

100(110 100) 1000

l)

(e) 33 and 33

3. s T92 and ^ T9

9. / = ir = 8 (eet

5. 1 and I 7. / ^ u = 23 meters

13. (1,1)

17. 600 300 meters15. .V

19. (a) Proof

(h) \', = ')') cubic inches

V, = 123 cubic inches

V, = 117 cubic inches

(c) 3 3 • 3 inches
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21. (a) V = .v(.v - 2.v)-. < .V < ^

/ -^ ^ -S-'

Maxinuiin: V\-j = —
(b) Increased bv a factor of 8

23. Rectangular portion:
16

77+4 TT + 4
feet

25. (a) L

(b) :£.

8 4
V- + 4 +

r + : 77^. -V > 1

A- - 1 (.V - 1

)

Mniiiniini whcn.v ~ 2.5<S7

(c) (0.01. (2.01.(0.4)

27. Width: ^^: Lenglii: 5J'2

29. f)imensions of page: (2 + x'30) inches (2 + n'30) inches

31. (a) and (bl

Riuliiis. r Height Siiiface Areii, S

0.:

7T

7t(0.2)-

n A

T1

°-*
77(0.4)^

O.t

-)->

77(0.6)^

0.8

TT

71(0.8)-

l.C

11

77(1.0)-

1.2

11

77-(l.2)'

-)-)

1.4
77(1,4)-

-)-)

l.(
77(1.6)-

)T

l.f
77(1.8)-

22
2.C

77(2.0)^

(c) S
/ IT \

= 277r ; + ^
(d) 100

0.2)

0,4)

IS)

0,2 +
77(0.2)-

= 220,,^

0.4 +
7(0.4)-

h +
77(().6)-

,0) 1,0 -t-

->i 1
-I

4) 1.4 +

1,(1) 1.6 -I-

,S1 I.S +

1

(1 ^2 4- 4fii

:.() 4-

(e) / =

77(0.8)-

~>1

77(1,0)-

11

77(1,2)-

ft

77(1,4)-

-)-)

77(1.6)-

n
77(1.8)-

T")

77(2.0)-

-'" 111.0

= 7.S.6

== ,^4,0

= -^0.3

= 45.7

= 4.v7

= 43.6

= 44,

S

= 47,1

-. /; = 2/-

33.

35.

37.

39.

41.

43.

47.

49.

51.

53.

IS 18 36 inches

3277)-''

81

Answers will vary. If area is expressed as a function of either

length or width, the feasible domain is the inter\al (0. 10), No

dimensions will yield a minimum area because the second

derivative on this open interval is always negative.

q
== 1.42 cm

IOv'3
.Side of square:

Side of trianele

4 + 4., 3

30

9 + 4^/3

8 s 3 inches, h = 8n/6 inches 45. -

h = ^1 feet

One mile from Ihe nearcsl |ioini on the coast

Proof

(a) Origin to \-inlcicept: 2

Origin to .v-intercept:
—

(bl </ = v.v- + (2 - 2sin.v)-

(II I'-H-n . I)47'1S|

(c) Minimum distance is 0.'-)7y,'i when .v
~ 0.7967.

AH'
55. F

57. (a)

<k- + r
it = arctan k

Base 1 Base 2 Altitude Area

8 8 + 16 cos 10' 8 sin 10° = 22.1

8 8 -1- 16 cos 20° 8 sin 20° = 42.5

8 8 -f 16cos.W° 8 sin 30° = 59.7

8 8 -1- 16 cos 40° 8 sin 40° = 72.7

8 8 -1- 16 cos ,50° 8 sin ,50° = 80.5

8 8 + 1 6 cos 60° 8 sin 60° = 83.1

Minimum area of 43.46 square inches v\hen i = 1.52
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(b)
Basel Basel Altitude Area

8 8 + 1 6 cos 10° 8 sin 10° = 22.1

8 8 + 16 cos 20° 8 sin 20° = 42.5

8 8 + 16 cos 30° 8 sin 30° = 59.7

8 8 + 16 cos 40° 8 sin 40° = 72.7

8 8 + 16 cos 50° 8 sin 50° = 80.5

8 8 + 16 cos 60° 8 sin 60° = 83.1

8 8 + 16 cos 70° 8 sin 70° = 80.7

8 8 + 16 cos 80° 8 sin 80° = 74.0

8 8 + 16 cos 90° 8 sin 90° = 64.0

The miiximimi cross-sectional area is approximately 83.

1

square feet.

(c) ,4 = l<; + /))^

r t8 sin
= [» + (8 + 16 cos H)]-^—
= 64( 1 + co> W)sin 6. If < H < 90°

(d)
64( 1 -I- cos «)cos H + (

-64 sin HIsm

= 64(cos H + cos- 6 - sur H)

= 64(2 cos- H + cos H - ]]

= 64(2 cos H - IKcos H + \)

= Ovvhen H = HY . 180 .
300°

The niaxiniuni occurs when = 60"

59. 4045 units

61. V =
Yjf.v: S| =6.1 miles

63. y =
-jTj.v; 5, = 4.50 miles

Section 3.8 (page 226)

1.

n x„ f(x„) f'(x„)
fix,,)

fix,,)

fx„)
'"

fix,,)

1 1.7000 -0.1100 3.40(J0 - 0.0324 1.7324

~>

1 .7324 0.0012 3.4648 0.0003 1.7321

i.

n x„ fix,) fix,.)
fix,,)

fix,,) " fix,,)

1 3 0.1411 -0.9900 -0.1425 3.1425

">
3.1425 -0.0009 -

1 .0000 0.0009 3.1416

5.0.682 7. 1.146. 7.854 9. -1.442

11.0.900.1.100.1.900 13. -0.48M 15.0.569

17. 4.4M3 19. 21. 2.646

23. 1.565 25.3.141 27. /'(.V|) =

29. 2 = .V, = .V, = . . .

I = .V, = .V, = . . .

31. It/' is a function continuous on [n. h] and differentiable on {a. b).

ulicrc 1 £ [</. h] and /dl = 0. Newton's Method uses tangent

lines to approximate i . First, estimate an initial v, close to c.

/(v.)
(See graph ) Then determine .v, by .v, = .v, - ——

-. Calculate a
7 '-^1

'

third estimate bv .v, = .v.

r(-v,)'

Continue this process until

|.v„ — .v„,|| is within the desired accuracy and let a„
. ,

be the

final approximation of c.

3X 0.74

35. (a)

(b) 1.347

(c) 2.532

(d) rT~ .v-intercepl of i = - 3.v + 4 is 3.

.v-intercept of v = - 1.313.V + 3.156

IS approximately 2.404.

-^ \J ..

1

\
1

I = -L.II.V + .^ 1.%]

(el It the initial estimate .v = .v, is not suliicienth close to the

desired zero of a function, the v-intercept of the conesponding

tangent line to the function may approximate a second zero of

the lunction.

37. Proof
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39. 0.860

41. (1.939.0.240) 43. .v = 1.563 miles

.V- - 1

47. False: kx fix)
.V - 1

Section 3.9 (page 233)

1. 7lv) = 4.V - 4

49. True

45. $384,356

51. .V = 11.803

X 1.9 1 .99 2 2.01 2.1

f(x) 3.610 3.960 ^ 4.040 4.410

T(x) 3.600 3.960 4 4.040 4.400

3. T(.\-) = 80.V - 128

X 1.9 1.99 1 2.01 2.1

/(-v) 24.761 31.208 32 32.808 40.841

Tix) 24.000 3 1 .200 32 32.800 40.000

5. 7(.v) = (cos2)(.v - 2) + sin 2

X 1.9 1.99 2.01 2.1

fix) 0.946 0.913 0.909 0.905 0.863

Tix) 0.951 0.913 0.909 0.905 0.868

7.

11.

17.

21.

25.

29.

33.

35.

37.

39.

41.

Ay = 0.6305; ily = 0.6000

3
6.V (/,v 13.

(2.V - D-

(2 + 2col.v + 2cot-\v)(/.v

9. Av

15.

-0.039; t/v -0.040

./l -x-

19. -.sm('^^^|,/.v

(a) 0.9 (hi 1.04 23. (a) 1.05 (h) 0.98

(a) 8.035 (h) 7.95 27. (a) 8 (h) 8

±1 square inch 31. ±777 square inches

(a) 5% (b) 1.259f

(a) ±2.8877 cubic inches (b) ±0.9677 square inches

(c) 1%. f%

SOtt cubic centimeters

(a) 4% (b) 216 seconds = 3.6 minutes

(a) 0.87% (b) 2.16% 43. 4961 feet

1

45. fix) /.v. ch

/(99.4) = VIOO

Calculator: 9.97

dx

1

'100
(-0.6) = 9.97

47. /( v) = iG. dr = -—777 dx
4x-''

/(624) = y625 + —4^(-l) = 4.998

Calculator: 4.998

4(625)

1

49. fix) = sA-; </v = z^ dx
— N

1

f(4.02) 4 + —^(0.02)
v4 4

(0.02)

51. The value of dy becomes closer to the value of Ay as A.v

decreases.

53. True 55. True

Review Exercises for Chapter 3 (page 235)

1. Let /' be defined at c. If/''(c) = or if/" is undetuied at c. then

c is a critical number of/

/in IS

undelined

3. Maximum: (277. 17.57)

Minimum: (2.73.0.88)

(6:S. 17 57|,.J

..-'-'

_J 2 73.0 88)/

5. ,r(^) =

7. (a)

(b) / is not differentiable at .v = 4.

/2744\ ^

15. Critical numbers: .v =1,^

Increasing on (-oo, 1), (t. co)

Decreasing on (l. ^)

17. Critical number: .v = 1

Increasing on ( 1, co)

Decreasing on (0, I

)

19. Minimum: (2, - 12)

13. c =
X, + .V,
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21. (a) V =
J
inch; r = 4 inclies per second

(b) Proof

rr 6
(c) Period: — ; Frequencv: —

' 77

43.

23.
*

\ T * "> /' \ ") ")

377 377

25.

Relati\c maxima: ^1

Relati\c minmium: (d. 0)

27.

29. Increasing and conca\c dow

n

31. (a) D = 0.00340;' - ().2352r"' + 4.942/- - 20.86/ + 94,4

(h) J69

(c) Maximum occurs m 1991; Minmium occurs m 1972.

(d) 1979

33. ? 35.

37. Vertical asymptote: .v = 4

Hori/ontal a.symptote: y = 2

39. Vertical asymptote: .v =

Horizontal asymptote: v = -2

41.

Vertical asymptote: .\ =

Relative minimum: (3. 108)

Relative maximum: (-3. ^ 108)

I

Horizontal asymptote: y =

Relatixe niinmuim: (-0.1?.'i. - 1.077)

Relati\e maximum: (2, 15,^, ()77)

45. 47.

49.

53.

57.

-1.-61 _,

w

61.
i (27r. 277+11

51.

59.

63. Maximum: (1,3)

Minimum: (1.1)

65. / = 4.92 = 4:55 p.m.; rf = 64 kilometers

67. (0.0). (5.0), (0. 10) 69. Proof 71. 14.05 feet
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73. 3(3-''-' + 2-'')'''- = 21.07 feet

75. r = 54.77 miles per hour

77. - l.?32. -0.347, 1.879 79. -1.164.1.453

81. J\ =
( 1

— cos X + -V sin -v) (/.v

S3, lis = ± 1.8 77 square centmieters. ~r 100 = ±0.56%

(/V = ±8.1 TTCul-iic centimeters. ^ 100 ~ ±0.83%

P.S. Problem Solving (page 238)

1. Proof

3. (a)

u = -3SI + tfu =

Relative ina.ximinn for all ii at (0, 0)

Two relative minima for t: = 1, 2, 3

(h) /) = («-* - 6\-

p' = 4ax' — 12-v has critical points at ,v = and

.V = ± JJ/7i. a >

p"= \2ax~ - 12. /J "(0) = -12

Therefore, by the Second Derivative Test. /' has a relative

maximuiu for all a at v = 0.

(c) /)"(±v'3/") = -4. Therefore, by the Second Denvatne

Test, p has a relative minimum when .v = ± n/3/i(, a > 0.

(d) Relative extrema of p occur at .v = 0, ± s''3/(/. u > 0.

If .V = 0. /)(.v) = and (0, 0) also lies on the

graph of y = -3.v-. If v = ±~,'}/a. /)(.vl = -y/n

and (± J^/a. -91a) also lies on the graph of y = -3.v-.

5. Choices of a may vary.

„= 1 „ = .1 ' = 2 11 = 11

(a) One relative minimum at (0. 1 ) for a >

(b) One relative maximum at (0. 1 ) for <; <

(c) Two relative minima for u < when x = :

(d) If II < 0. there arc three critical points; if a > 0, there is

only one critical point.

7. All c where < is a real number

9. Proof 11. = 42. 1° or 0.736 radian,s

77 377
13. = — + 2h7t and = — + 2/i77. where n is an integer.

15. Rectangle: 3 2

Circle: r = 1

Semicircle: r = ^
Calculus was helpful for the rectangle.

/ v'''3 3 \ / ^/'3 3
17. Greatest slope at I

—
, -I; Least slope at

I ^-. -

19. (a) Proof (b) Proof

Chapter 4

Section 4.1 (page 249)

II.

13.

15.

21.

27.

31.

37.

43.

Proof 3. Proof 5. y = ;' + C

y = iv^'- + C

On^iiHil liucgrcil Rewrite lutegmre Siinplifi

3

1

.'-,x ^ + C -.v-'±C

dx

1 ,

-''-dx

X-' dx

-1/2

1 Ix--
C --^ + C

4.V-

Ix- + 3.V + C 17. .V- - .v' + C 19. J.V-* + 2.V + C

-x^'- + X- + x + C 23. 7.v''-' + C 25. --^ + C
5 5 2.V-

-j^.v'''-(3.v- + 5.V + 15) + C 29. .v-' + \x- - 2x + C

f
!•"/- + C iX X + C 35. -2 cos .V + 3 sin .v + C

I + CSC / + C 39. tan « + cos 9 + C 41. tan y + C

45. Answers will vary. Example:

^ r

47. Answers will \;uy'. Example:

49. ^ .V + 1 51. v = sin .V + 4
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53. (a) Answers will vary.

Example:

(b) V A- + 2

\

55. fix

59. fix

63. (a)

65. (a)

(b)

(c)

(d)

(e)

= :.v- + 6 57. /;(/) = 2f-' + 5/ - 11

= T" + .V + 4 61. /(v) = -4^ A + Av

/((/) = jr + 5r + 12 <b) 69 centimeters

-
1 ; /''(4I represents the slope of / at .v = 4.

No. The slope ol the tangent lines are greater than 2 on [0. 2]

Therefore. / must increase more than four units on [0. 2].

No. The function is decreasmg on [4. 5].

,^.,^; f'(^.5} =

Concaxe upward: {-^/z. 1 ). (?. z^)

Concase downward: ( 1, .^)

Poults of mllcction at a ~
I and a ~ 5

(fl

67. 62.2.^ teet 69. r,, = 1X7,617 feet per second

71. r(/) = -9.8f + C, = -9.S( ^ i„ 73. 7.1 meters

f(i) = -4.9r + r„r + C_, = -4.9r- + r,,/ + ,v„

75. 320 meters: - .^2 meters per second

77. (a) r(;l = 3f- - 12f + 9;((l/ )
= 6( - 12

(h) (0. 1). (3. .-^l (c) -3

79. ci(r} = zP^.sli) = 2-, / + 2

81. (a) 1. IS meters per second per second (b) 190 meters

83. (a) 300 feet (b) 60 feet per .second = 41 miles per hour

85. (a)
t 5 10 15 20 25 30

^l 3.67 10.27 23.47 42.53 66.00 95.33

v. 30.80 55.73 74.80 88.00 93.87 95.33

(b) v,{t) = 0.1068/- - 0.042; + 0.37

is(f) = -0.1208f- + 6.799f - 0.07

(c) Distance of car 1 ~ 953 feet

Distance of car 2 = 1970 feet

Car 2 traveled farther because it accelerated faster for

about the fust 15 seconds.

87. 7.45 feet per second per second

89. True 91. True

93. False. Let/lv) = Aand,i;(A) = a + 1.

.V -1-2. < .\ < 2

V- - 2, 2 < .V < 5
95. fix)

f is not diftcrentiable at a = 2 because the left- and right-hand

dcrivati\cs at a = 2 do not aeree.

Section 4.2 (page 261)

-. 158
1. 5. 4r 7. V

13. - V 2 1 +
3A-

c ./'
+ 3

11. =^
" r

15. 420 17. 2470 19. 12.040 21. 2930

23. The area of the shaded region falls between 12.5 square units

and 16.5 square units.

25. The area of the shaded region falls between 7 square units and

1 1 square units.

27. A = 5 = 0.768 29. A = S ^ 0,746

A = s = 0.518 A = s == 0.646

31. ^ 33. 9

; -I- 2
35 37.

II

n = 10:5 = 1.2

n = 100: .V = 1.02

/( = 1000: i' = 1.002

)( = 10.000:5 = 1.0002

I ir + ii\

2(» + l){„ - 1)

ir

n = 10: S = 1.98

// = 100:.S' = 1.9998

// = 100():.V = 1.999998

n = 10.0OO:.V = 1.99999998

1 / 2if' - 3;r + ii \ _ \_

n' J
"

3
41. hm ^

(b) Aa = =
It 11

(C) ,s(/l) = '^fix,- ,)^v

= V
,^i

(/
-- 1)

-

(dl sin) = V /'(a-) A.V

(e)
n 5 10 50 100

s(n) 1.6 1.8 1.96 1.98

S(n) 2.4 T 1 2.04 2.02

(f) lim V a -
\ii /

['P]"
I

T \

LlWj \nj
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47. A = 2 49. A =
1

51. ,-\ =*

55. A =
J

59. I = 9

63. -; 65. 0.345

67.

57. A = b

61. A

i

n 4 8 12 16 20

Approximate

area
5.3838 3.3523

1

5.3439 5.3403 5.3384

69.

It 4 8 12 16 20

.Approximate

area

") 1 IT^ 2.2387 2.2418 2.2430 2.2435

71. We can use the line y = .v bounded hy .v = a and .v = h. The

sum ot the areas ol liie inscribed rectangles in the figure below

IS the lower sum.

The Sinn ol the areas of the circumscribed rectangles in the

figure belou is the upper sum.

The rectangles in the tnst graph do not contain all of the area of

the region, and the rectangles in the second graph co\er more

than the area of the region. The exact \alue of the area lies

between these Ivmi sums,

7X (a)

5(4) =

(d) Proof

M{4)

(e)
n 4 8 20 100 200

s(») 15.333 17.368 1 8.459 18.995 19.060

S(n) 21.733 20.568 19.739 19.251 19.188

M(n) 19.403 19.201 19.137 19.125 19.125

(f) / is an increasing function.

75. b 77. Tiiic 79. .Answers w ill \ary.
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81. Suppose ihere are // riiws in the fii^iire The stars on the left total

1 + 2 + + /;. as do the ^lars on the right. TheiX' are

;;(/) + I ) stars in total. So.

2[1 + 2 +

1 + 2 + •

+ /;] = ;;(/; + I)

uin + 11

83. (a) \ = (-4,(W l()-').v' + O.OlOv" - 2.h7.v + 4.s2.y

(h) 500 (e) 7(1.S97 square feet

Section 4.3 {page 272)

1. 273 = .^464 3. 3(1 5. (I 7. T

9. I3v + l()),/.v 11. X A- + 4</.v

13. 3i/.v 15. (4-j.v|)c/.v 17. (4-.v-)</.v

19. sinv(/» 21. v',/v

23. /\ = 12 25. ,4 = 8

27. A = \4 29. .4 = 1

31. A
97J-

ii. -6 35. 24 37. - 10 39. 16

41. (a) 13 (h) - 10 (e) (d) 30

43. (a) S (b) - 12 (e) -4 (d) 30

45. (a) -77 (b) 4 (e) -(1 +2 77) (d) 3 - 27r

(e) 5 + 277 (f) 23 - 277

47. V/(a-)A.v> /111, /a 49. V/(.vjA.v< /(a1,/.v

. = I J

I

^\ ]\

51. No. There is a discontinuity at .v = 4.

53. a 55. d

57.
n 4 8 12 16 20

L(n) 3.6S30 3.9956 4.0707 4.1016 4.1177

M(ii) 4.3082 4.2076 4.1838 4.1740 4.16*90

R{n) 3.6830 3.9956 4.0707 4.1016 4.1177

59.
II 4 8 12 16 20

L{n) O..S890 0.6872 0.7199 0.7363 0.7461

MM 0.7854 0.7854 0.7854 0.7854 0.7854

R(") 0.9817 0.S836 0.8508 0.8345 0.8247

61. True 63. True

65. False: i-x)d\ = -2 67. 272

69. No. No matter how small the subinter\als, the number of

both rational and irrational numbers within each suhinteival is

mtinite and /(c, )
= or /(c, )

= 1.

71. \

Section 4.4 (page 284)

1.

Positive

5. 1 7. -5

17. -4 19.

27. 77 + 29.

Zero

9. -^ 11. { 13. i 15.

^, _ 21. -g 23. 3 25. t

2 s'

3

3
31.

33. lO.OOOl? - 6) (//= -$135,000 35. ^

Jn

37. -^-^^^ 39. I 41. 10 43. 6
5

= ±0.4817

51. Average value

45. 0.4380. 1.7908 47. ±arccos-

8
49. Averase value

2V3
±1.155 .V = 0.690. v = 2.451

53. The Fundamental Theorem of Calculus states that if a function

/" is continuous on [<(, h] and F is an antiderivatixe of / on [</, /'].

then /,';/(.v) dx = F(h) - Fiu).
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55.

61.

63.

65.

- 1.5 57. 6.5 59. 1.5. .5

(;i) Fix) = 500 sec- .V (b) 827 newlons

-0.5.^8 liler

(a)

The average \alue of /(/) over the inter\al < r < 24 is

represented by 0.5 sinl "7" = 0-

(h) '0

67.

Even though the average value ol' fit) = 0. the trend

represented hy i; increases over the inter\al < ; < 24 as

does 5(r).

la) V = -().l)()0S6r' + 0.0782r- - 0.208; + 0.10

(h

.*

..^^il

69.

73.

75.

81.

89.

93.

71. f(.v) =

F(2) = 5

F(5) = 8

F(8) = 8^

10

(cl 2475.6 nieters

F(a) = :^.v- - 5.V

f(2l = -S

f(5) = -\l\

Fm = -8

F(x) = sin .V - sin 1

f(2) = sin 2 - sin I = 0.0678

f(5) = sin 5 - sin 1 = -1.8004

f(8) = sin 8 - sin 1 = 0.1479

\x- + 2.V 77. j.v-''- - 12 79. tan .v - I

.V- - 2.V 83. y.v* -I- 1 85. A cos .v 87. 8

cos.v^/sin.v 91. 3.v- sin .v''

10

95. (a) n.v) = 10()0(12.v^''J -I- 125)

(b) nn = $137,000

C(5) = $214,721

C(10) = $338,394

97. True

99. False: /'(.v) = .v"- has a nonrenio\ahle discoiilinuity at v = 0.

101. fix)
1

(l/.v)- -1-
1 \ x-l X- + 1

Since /'(.v) = 0. fix) is constant.

103. 28 units 105. 2 tinits

Section 4.5 {page 297)

/(i>(.v)).I,''(.v),/.V

=

» = j.'(.v) dii = ,i; '(.v) t/-v

1. (5.V- + l)-(lO.v) J.v 5.V- + 1

3.

./^^TT
: ,/.V .V- -1-

1

5. tan- V sec- v i/.v

IO.k/.v

2.V </.v

sec' .V dx

7.
(1 +2.VP

5 '

^

11.

"' + -'"'
1 r

3 '

^

19.
I

, f
4(1 -.v^F ' ^

9. 7(9 - X-)''- + C

,,,.
t^ . c

17. -— (1 -.V-
O

I

3(1 + -V')

23. - ^/r^^ + C 25. -\i] + -
4\ I

—. + C

c

27. J2x + C

29. i\''- + 2.v'/- + 14.v''- + C = ^v(v(.v- + 5.V + 35) + C

31. \f' - t- + C

33. 6y-'''- - ?v^'- + C = iv"-(15 - v) + C

1

35. 2.V- - 4v'T6 - .V- + C 37. -—-r + C
(x- + 2.V - 3)

39. (a) Answers will vary. (b) v = -^(4 - .v-)''- -I- 2

E.xaniple;

An extremuni ot ,!,' occurs at .v
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41.

47.

49.

53.

57.

59.

61.

63.

65.

75.

83.

eos(jTA) + C 43. - cos 2a + C 45. - sin - + C Section 4.6 {page 305)

4 sin- 2a' + C| or -
j cos- 2a + C, or -

^ cos 4a' -I- C,

5 tan" A- -I- C 51. ^ tiin- a -I- C or i sec- a -f C,

-cot A - X + C S5. /(a) = 2 sin ;^ + 3

f-f(x + 2)''-{\x - 4) + C

j^d - a)-"-(15a-- + 12a + >i) + C

,Au 1

15
-(3a- + 2a - 13) + C

A -
1
- 2v/7TT + C or -(a + 2s A- + 1 ) + C,

67. 12 - —

-

69. 2 71. ^ 73. ~
^> 2 15

373
4

77.
1209

79. 4 SI. 2(s/3 - 1)

85. ^

87. 7.3S

89. -J2x - 1)-' -I- C| = iv' - 2a- + a -
i

or 5 a'- - 2a- -I- A + C_,

Answers difter by a constant: C\ = C,

+ C,

91.
15

93.

1(1

95. (a) ^ (b) T (c) -^

97. 2
I

(6a- - 3) (/a = 232

(d) 8

99. Answers will vary. See "Guidelines tor Making a Change ot

Variables" on page 292.

1(11. It IS an odd function.

,03. V'(,) = ^52:°50 ^ 3,0.000
t + 1

$340,000

105. (a) 102.352 thousand units (b) 102 352 thousand units

(c) 74.5 thousand unns

107. (a) 1.273 amperes (b) 1.3S2 amperes

(c) amperes

109. False. (2a + 1

)-
</a = i{2x + iV' + C

111. True 113. True 115. Proof

TrapezDidal Sinipsdii's Exacl

1. 2.7500 2.6667 2.6667

3. 4.25(.)0 4.0000 4.0000

5. 4.0625 4.0000 4.0000

7. 12.6640 12.6667 12.6667

9. 0.1676 0.1667 0.1667

Trapczoiiliil Siiupsoii's Gniphing utility

11. 3.2S33 3.2396 3.2413

13. 0.3415 0.3720 0.3927

15. 0.9,sfi7 0.977K 0.9775

17. 0()S9I O.OSXS 0.0K91

19. 0.1940 0. ISdO 0,1 S5S

21.

23.

27.

29.

33.

The Trapezoidal Rule « ill \ icid a result greater than ),,' /( \ I </»

if / IS concave upward on [a. />] because the graph ol / will lie

u ithin the trapezoids.

(al 0.500 (b) 000 25. lal // = 366 lb) ;i = 2(i

(al II = 130 (b) /; = 12

(a) II = 643 lb) ;i = 4S 31. Proof

n Lin) M(n] RM r(«) Sin)

4 12.7771 15.3965 18.4340 15.6055 15.4845

8 14.0868 15.4480 16.9152 15.5010 15.4662

10 14.3569 15.4544 16.6197 15.4883 15.4658

12 14.5386 15.4578 16.4242 15.4814 15.4657

16 14.7674 15.4613 16.1816 15.4745 15.4657

20 14.9056 15.4628 16.0370 15.4713 15.4657

35.
n Lin) Min) Rin) Tin) Sin)

4 2.8163 3,5456 3.7256 3.2709 3.3996

8 3.1809 3.5(J53 3.6356 3.4083 3.4541

10 3.2478 3.4990 3.6115 3.4296 3.4624

12 3.2909 3.4952 3.5940 3.4425 3.4674

16 3.3431 3.4910 3.5704 3.4568 3.4730

20 3.3734 3.4888 3.5552 3.4643 3.4759

37. 0.701

39. 10.233.58 foot-pounds 41. 3.1416

43. 89,250 square meters 45. 2.477
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Review Exercises for Chapter 4 (page 307)

1. 1 3. ir' + iv- - .V + C

45. A 47. A = [6

5. -A- ~ - + C 7. 2.x- + 3 cos .V + C 9. ! = 2 - .v-

2 A

11. 240 feet per second

13. (a) 3 seconds (h) 144 feet (c) 'seconds (d) I OS feet

10 „ III

IS. (a) 2 (2/ - 1) (b) V /-^ (c) V (4/ + 2)

J^ I (=1 ;- I

17. 9.038 < (Area of Region) < 13.038

19. A = lb 21. A = 12

23. y 25.
I

(2a - 3) </a

27. A = T

29. (a) 13 (b) 7 (ci I 1

31. c 33. Id 35.

39.^
41. A = 6

(dl .SO

37. ir

43. A

49. A\'erage \aluo = ^. a

51. .v-v'l + .v' 53. .X- + 3a + 2

55. |a^ + ^.v-' + .V-' + .V + C 57. 5v'a-' + 3 + C

61. - sin^v + C 63. 2 s I
- cos (i + C

4

tan" '
' .V 1

6^. + C, /(
9t -

1 67. ^ ( I + sec tta)' + C
n + \ ,177

69. ~- 71. 73.
28-

15
75. 2

77. (al 0.353 (h) .^,S.6'<

24,300 , 27.300
79. ,a, -^^ ,b, ^^
81. Trape/oidal Rule: 0.257

Simpson's Rule: 0.254

Graphing Utility: 0.254

85. lal Rtii). I. Tin). Kit]

(b) .M4) = '[/((» + 4/(1) + 2/(2) + 4/(3) +/(4)] = 5.42

83. Trape/oidal Rule: 0.(i37

.Simpson's Rule: 0.685

Graphing L'tility: 0.704

P.S. Problem Solving [page 310)

1. (a) L{\} = (bl L'{.\) = -.L\\) = 1

.V

(c) X = 2.718 (d) Proof

3. (a)
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(b) 11. DoiiKun: v > 13. Domain: v >

1 Vl v'.l 2 -/^ -je v/7 2/2 3

(c) Relative maxima at a = ^/2. V6

Relative minima at .v = 2. 2^'2

(d) Points of mtlection at .V = 1. 73, ^5, Jl

5. (a)

(b)

X 1
T 3 4 5 6 7 8

F(x) _i
-

— 2
_7 -4 _7 _2 1

4 3

(c) .V = 4.8 (d) -v = 2

7. (a) 1,6758: EiTorot approximation ~ 0.0071

(h) 3 (c) Proof

9. Proof

'i.„n^^l(;n;)4 .3. ,.[yTT:?.v.y2

15. Proof 17. lOO.UOO pounds

Chapter 5

Section 5.1 (page 321)

1.

X 0.5 1.5 2 2.5 3

St Hit) at -0.6932 0.4055 0.6932 0.9163 1.0987

X 3.5 4

StWdt 1.2529 1.3865

3. (a) 3.8067 (bl In 45 =
| -rfr = 3.8067

5. (a) -0.2231 (b) In 0,8 =
| - <// = -0.2231

7. b 9. a 10.

15. Domain: .v > 1

17. (a) 1,7917 lb) -0,4055 (c) 4,3444 (d) 0,5493

19. In 2 - In 3 21. In.v + In v - In .- 23. ' ln(tr + 1)

25. 3[ln(.v + I) + Inl.v - 1) - 3 In.v] 27. In ,- + 2 ln(" - 1)

9
29. In-

.v + 2
31. In ^

35.

v(-v + 3)^

v^ -
1

37. -:

33. In

-'.v^ + 1

39. In 4 41.

2.V- - 1

43. 2 45. - 47.
4(ln v)-'

49.

55.

61.

67.

-V(.V" - 1)
51.

1 - .V-

.v(.v- + 1 )

53.

1

57.
1

.V In .V- v In -V

63. cot .V 65. - t;in v
v/.v- + 1

,v

1

_ 1 In/

;-'

59.
-4

-V(V + 4)

n V + - sin ,v

.\-

3 cos

.

(sin.v - l)(sin,v + 2)

71. VJi) 5v - v - 2 =

(h)

cos .V — 1

2
69. —(sin 2.V + .v cos 2,v In ,v-)

73. 75. vv" + v' = V
3 - 2v- • \ .V-

77. Relative minimum: (I.5)

79. Relative minimum: (e~',—e^')

=
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81. Relative niinimum: (c, c)

t'

Point 111 inriection: I c-,
-

83. P, = .\
- \: P. = \ -

I
- ^(.v -

I

)-

—.^~-'-..

—

—

The values of /, P^. and f, and their first derivatives agree at

A- = I

,

- 1

85. A- = 0.5(i7 87.
/ 1

89.

93.

Ja
2(.v

I5.V- + 8a
91.

(2a- + 2a - l)v^ - 1

1)"-v/3a- 2
"

(a + 1)'-

The domain of the natural log;irithmie finietion is ((I. a;)

and the range is {-y^.zc). The junction is continuous,

increasing, and one-to-one and its graph is concave downward.

In addition, if a and h are positive numbers and n is rational,

then Inl I )
= 0. Init; • />) = In k -I In/), Ind/") - iilnn. and

In
W)

In (/ — In />.

95.

97.

99.

101.

103.

Using properties of logarithms. In e' can be rewritten as a In c.

Then, since In c = 1 hy the det'inition of c, a In c = a( I ) = a.

(a) Rolle's Theorem does not apply because /( I ) =f= /(.i).

(b) Yes. /"(2) = (land 2 e [l..^].

li = Hid + in log,,, I. p = 6(1 decibels

(at // - IS not 111 the ilomain of the function.

(bl /) = 0.S6 - 6.447 In/)

(CI

(1.(100

As the altitude increases.

the pressure decreases at a

slower rate.

For large values of a, ,1; increa.ses at a faster rate than /' in both

cases. The natural logarithmic function increases very slowly

for larite values of i.

(dl 2.7 kilometers

(el (1. LS atmospheie

(II

/, = 2(l:^=-
dh

(a) (b)

105. False: In a + \nl5 = In 2.'Sa.

Section 5.2 (page 330)

1.

5.

9.

13.

17.

21.

25.

27.

31.

35.

37.

.^ ln|A| -f C 3. ln|A -I- 1| -f C

~\ \n\?~ - 2a| + C 7. In. -V" + 1 + C

^ - IniA-*) + C 11. -1: InLv' -I- 3a- + 9a| + C

— - 4a -I- 6 ln|A +
1 1 + C 15. - -I- .S ln|A - 3\ + C

— - 2a -I- ln„ A- -I- 2 -I- C 19. -(In a)' -I- C

2^ X + I + C 23. 2 ln|A - l| - ^^ -I- C

v'2a- - In
1

1 + v/2a| -I- C

A + 6v'A + IS Inl Va - 3| + C 29. In|sin 0\ + C

-\ ln|csc 2a + cot 2a| + C 33. ln| 1 -I- sin r| -I- C

In
I

sec A - l| -I- C

V = -.^ ln|2 - aI -I- C 39. v = -\ Inlcos 2o\ + C

ik

::^^'''''-^$---

A A k !\

i\ ii /i

.^'^ ..'K. ..'::. J'--.

aJk. A. .A

The graph has a hole at a = 2.

41. (b) V' = In

(11.11 *

V + 2
+ 1

43. T In 13 = 4.27.=; 45. } 47. -In 3 = - 1.099

- sin 2
49. In

sin I

= 1.929

1

51. - Inlcos aI -F C = In

53. ln|secA + tan.v| -(- C = In

+ C = InlsecAl -I- C

sec- A - tan- a
+ C

sec .V - tan .v

= - ln|sec A ~ tan a| + C

55. 2[, A - ln(l + , .v)] + C 51. -sind - a1 -I- C

59. In( v'2 + l) - — = 0.174 61.
-'-

63. 65. d
2 .V

67. ^ + 81n2 = I.V04.^
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69. — [2 1n(^ 3 + l) - In2] = 5.03

71. Power Rule 73. Loy rule

75. Use Ions di\ision to ivwrite the intet;r;ind.

77. 1 79. 0.241
2{f - I)

81. Pit) = 1000(1 2 ln|l -^ 0.251] + 1); P(3) « 7715

83. $168.27

85. (a)

\ .'*

/

(b) Answers will \arv. Example: v- = e' "-In > + lii4 — _

\. ,

87. Ealse. idn.v) = In v' - 89. True

Section 5.3 (page 33S)

1. (a) f(g{.x}) = 5 -I- 1 = .V

.?(.A-v))

(5.V +11-1

(b)

3. (a) figlx)} = (i/^)' = x: gifix)) = y? = .V

(b)
;

5. (a) figix)) = v.v- + 4 - 4 = .v:

g(f(x)) =
( Jx - 4)' + 4 = x

(b)

4 ^ s 111 i;

7. (a) figix)) = Y^ = .v; ,.,'{/( v)) = t^ = -v

1 /-v 1 /.v

(b)

9. e 10. b 11. a 12. d

13. Inverse exists. 15. Inverse does not e.xist.

17. One-to-one 19. One-to-one

-U

21. One-to-one

23. Inverse exists. 25. ln\ersc does not exist.

27. ln\erse exists.

.V + 3
29. r'(-v) 31. /-'(.v) =-v"--

/ and /' ' are symmetric

about \ = -V.

/ and f ' are symnieiiie

about V = X.
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33. fix) = .V-. A > 35. f '(a) = 74 - X-. < a < 2 'l ~ Vl + 16a-

/' and / ' are sMiiiiielrie / and / ' are symmetric

about \ = A. about \ = a.

37. /-'(a) = A- + I 39. / '(a) = a'/-, a >

--t-

f and / ' are symmetric / and / ' arc symmetric

about 1 = A. aboiil \- = v.

41. / '(a)
Jlx

J\ - x'-

:. -I < A < I

/ ;ind / ' are symmetric about y = a.

43.
X 1 2 3 4

f-\x) I
~f 4

45. la) Proot"

(b) y = y(8() - a)

a: total cost

\: number ol pounds of the less expensixe commodity

(c) [62.5. SO]

(d) 2(1 pounds

47. /'(a) = 2(a - 4) > on (4, ^)

8
49. /'(a) = -— < Oon (0, oo)

a'

51. /'(a) = -sin A < Oon (0, n)

53. / '(\) =
• if A *

if A =

——=-- ^=::^ ' '

55. (a) and (b)

The graph of,/ ' is a reflection of the

graph of / in the hne y = A-

57. la) and (b)

1

/
'

-+1
1

—~~"

(c) /' is one-to-one and

has an inverse junction

59.

63.

67.

69.

77.

One-to-one

/-'(a) = A- -I- 2, A- >

(c) g is not one-to-one and

does not have an inverse

function.

61. One-to-one

f '(a) = 2 - A. A >

/ '(a) = v-A -I- ,\ A > 65. / '(a) = A - ,\ A >

(,'\ns\ver is not unique.) (Answer is not unique.)

Inxersc exists. Volume is an increasing function, therefore

one-to-one. The in\erse function gi\es the time I coiresponding

to the \'oliime \'.

1 2s ?
In\erse does not exist. 71. _- 73. —;— 75.

I

.^

"
13

la) Domain of/: (-OC. co) (b) Range of/: (-cz:, oo)

Domain of/' ':(-^:..co) Range of/': (
— oo. oo)

(c)

r'
-H h-

(d)/-(0 = i(/ ')'(i)
= i

79. la) Domain of /:[4. -y^)

Domain of/' ' :[0. do)

(c)

//"

(bl Range of/: [(). -j:)

Range of /
"':

[4. co)

(d) /"(.5) = J;,

(/ ')'(l) = 2
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81. -fi

89. {f'g^'ix

83. 32 85. 600 87. (,£;-' ",/-')(.v)

,v + 1

-v + 1 29.

91. Let V = /'(.v) he one-to-one. Solve for .v as a function of y.

Interchange .v and y to get y = /'"
'(-v). Lei the domain of /'"

' he

the range of/. Verify that /(/"'(.v)) = v and/' '(/(.vl) = .v.

Example: fix) = .v'

y = .r'

f-Hx)=i/:x

93. Answers will vary. Example: v = .v"" — Iv'

95. Many .v-values yield the same y-value.

For example, /'( -) = = /(0|.

(2/; - IItt
The graph is not continuous at .v

=
.

integer.

97. Proof 99. Proof

101. False. Let/(.v) = .\-. 103. True

'.V. < X < I

1
- v. I.v < 2

105. No. Let/(.v 107. v'l7

Section 5.4 (page 347)

I. In 1
= II 3. e"""" =2 5. ,v = 4

7. .V « 2.485 9. A = 11. .v = 0.51 I

13. X = 7.389 15. .V = 10.389 17. .v = 5.389

19. 21.

23. (a) lb)

Translation 2 units

to the rishl

Reflection in the v-axis

and a vertical shrink

(c)

\

1/

.1

Reflection in the y-axis and

a translation 3 units upward

25. c 26. d 27. a 28. b

31.

33.

lim fix) = lim ^i;(.v) = e"-^

35. 2.7182805 < c 37. (a) 3 Ih) -3

where n is an }i) 2c-' 41. 2( v
- l)f 43.

45. Me-' + e')'{e' - e'') 47. 2v 49. r
1 + ('-'

., -2U--.-M ., ,.,
55. e-'l- - In.v

\.v
^1-

(,.. + ,-.p 53. ,^.

57. 2e ' cos .v 59. -—^^ 61. 3(6.v -f 5)£'--''

2 72 sin 72 .V + 2, 'T rns,/"'

.ve-' + 3

63. y"- 2y' -f 3y =

e''[ — cosv2.v— sinv2.v

2e'[- V2 siny2.v -I- y2cosV2.v -I- cosv^.v -I- sinv'

3f'[cosx/2.v + sinv'2.vj

=

=

65. Relative minuiuiiii: (0. 1)

V +

67. Relalixc maximum: 12.-^=
. 27T

Points of inflection: |
I,
—^= 1. |

3.

1

8
\/2ff

\

,_,is
\ /, ,.-".)

('
-Jin ) / l-'-vsi)

i^ ^
V.
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69. Relative niiniiiuini; (0,0)

Relative maximum: (2, 4c"-)

Points of inflection: (2 ± v"^. (6 ± 4^2 je"

85. (a

I

71. Rclati\'e niaxmuini: (-1,1 + c)

Point of inflection: (0, 3)

-I. I + (')

I

73. ,4 = ^^c-''- 75. Proof 77. 0.567

79. (a

I

(b) When .v increases without bound, l/.v approaches zero and

c'" approaches I. Therefore, fi.x) approaches
,
; ,

= 1,

Thus, /(a) has a liori/onl:il asunptolc at v = 1. As v

approaches zero from the right, l/.i approaches cc. c'
'

approaches oc. and /(\) approaches 0. As ,v approaches zero

from the left, l/.v approaches — oo. c''' approaches 0, and

f{.\) appniaches 2. The limit does not exist, because the limit

from the left does not equal the limit from the right.

Therefore. .\ = is a nonremovable discontinuitv.

81. (a) \nF 0.141)1)/; + <-).iOI,S (b) P = ]0})57Jc'

(C) 12,000 (d) /( = ."i: -776

h = KS: - 111

S3. P, = \+~: P,= ] +^ + j
The \alues of/, P ^. and P, and then

lirsl ilcrivatives acree at .v = 0.

(b)

._.,
/

(c)

T

1

87. <:•' + C 89.
ic-

91. -\c ' + C 93. 2c- ^ + C

95. .V - ln(('' + 1) + C, or -ln(l + c"' ) + C

97. Uc- - I) 99. -^(1 - f ')'''- + C

101. Inlc' - c'l + C 103. -\L'--' + L'-' + C

+ C 107. Inlcosd"-'
I

+ C105.
i

' + c '

)

(b) V = -Ae'^l- + 5

115. I = 147.413 117. 2(1 - c--'/-) = l..'S54

_.. . .
• .T

119. (al /Iv) = e'

fill - v) = e"-

_ ^"

(b) /(.v) = c'

/(A.v) = c"

= [,/lv)]'

^ fill)

f(v)

121. The probability that a given battery will last between 48

months and 60 months is approximately 47.72%.

123. c' di > 1 (//: c' -
I > .v; c' > .v + I for.v >
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125. ,/lv) = e'

The domain ot" /(.v) is (-00.00) and tlie ranye ot /(.v) is

(0, co). /(.v) is continuous, increasing, one-lo-nne. and concave

upward on its entire domain.

lim e' = and lim c' = 00

127. /(.v) = <> =/'(.v)

129. e-' > implies
|

i--' d\ >

131. (a) /'(a) = T^ = Owlien.v = e.
A-

On (0. e). fix) > => / is increasing.

On (['. ^'). /'(a) < => / is decreasing.

35. 30

(b) Fore < A < B. \vc have:

in/t Ing

A ^ B

B\nA > A\nB

In /A" > hiB'

A" > B\

(c) Since c < tt. from part (h) we have c" > tt''.

Section 5.5 {page 357)

1. v(,) = (M'\i 3. v(,) = (!)'". a)'"- = 0,371

5. -.1 7. 9. (a) log_,8 = .3 (b) log,(l/3

11. (a) 10 ' = 0.01 "(h) (3)"' = X

13. 15.

)
= -1

17. 19. (a) A = 3 (b) A = -1

21. (a) A = i (b) A = -j^ 23. (a) a

25. 1.965 27. -6.288 29. 12.2.53

31. 33.000 33. ± 11.845

= -1.2 (b) A = -;

T
—"""

37.

i

39.

41. Ihi 4)4' 4.3. (hi 5)5'"-

45. r2'(/ln2 + 2) 47. -2 " [(In 2) cos n-» + n- sm ttW]

49.
1

.v(ln3)

5

51.
(ln2)A(A - 1)

53.
(hi5)(A- - 11

?S. ,, r-^d - In/) 57. 2(1 InAl.v'''''
(In 2)1-

59. (a - 2)'
.V + 1

ln(A

61.
-'- + C 63. ~ 65. "7^(5 ') + C
In 3 In 4 2 In 5

, lii(3-' + I)
67. ^^-^— + C

2 In 3

69. (a) (b) 1

3(1 - 0.4'/-')
1

In 2.5

^__---"

..

71. .Answers wdl vary. Example: Growth and decay problems

73. 1,0 False, y = n' => = ci' => (/ = 0. but exponential lunc-

lions arc not detlncd lor n = 0.

(b) True: y - log-,.\

(c) True: 2' = a

(d) False. (1, 0), (2, 1 ). and (8, 3) are nol collinear.

75. ,i,'(i) = a'.AIa) = 2'./;(a) = x-.fix) = log, a

77. (a) S4().64 (b) C'(l) = ().i)5\F, C'(8) ^ 0.072/^

(c) In 1.05

79.
n 1 2 4 12

A $1410.60 $1414.78 $1416.91 $1418.34

n 365 Continuous

A $1419.04 $1419.07
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81.
n 1

}
4 12

A $432 1 .94 $4399.79 $4440.21 $4467.74

II 365 Continuous

A $4481.23 $4481.69

83.
t 1 10 20 30

p $95,122.94 $60,653.07 $36,787.94 $22,313.02

/ 40 50

P $13,533.53 $8208.50

85.
/ 1 10 20 30

p $95,132.82 $60,716.10 $36,864.45 $22,382.66

/ 40 50

P $13,589.88 $8251.24

87.

89. (a) 6.7 niilliiin uubic feet per acre

(b) / = 20:— = 0.073
[//

t = 60: — = 0.040
ill

91. (a) 100 (b) 16.7';-'r

(c) .V = 38.8 or 38.800 egg

masses

(d) .\
~ 2.78 or 27.800 egg

masses

9.^. (a) B = 4.75(6.774)''

<bl i£0

(c) When </ = 0.8. the iiite of growth is 41.99.

When (/ = 1.5. the rate of growth is 160.21.

95. (a) 5.67

(b)

(c) fit) = ii(t) = hil). No. because the delinite integrals of two

functions over a given intci val may be equal e\en though the

functions are not equal.

97. $15,039.61 99. v = 1200(0.6')

101. False: c is an iiTatioiial niuiiber

103. True 105. True 107. Proof

Section 5.6 (page 366)

1. y = ~ + 2.V + C 3. v = Cf > - 2

5. v' - 5.\- = C 7. V = Cf'-"""'/' 9. V = C(l + .v-)

11.

Q= -- + C

13. ^ = A(250 - s)
(Is

N= --(250 - .v)- + C

15. (a) (b) V = 6 - 6e"-''-

\^
"7

i

1

i i ;
i -6 \ /

^ (0,0)

17. V = \t- + 10 19. V = \0e-'^'-

21.

25.

29.

h

v(6) = 25

V = !<,"«. .'5,

\
V ((I 11)1

ii!

= kV23.
clt

V = 20,000c' """'

V(6) =^ 9882

27. V = 0.6687f"^"--"

A differential equation in v and \ is an equation tlial inxoives

.V, v. and derivatives ot a .

E.xample: v' =
3.V

31.

33.

35.

37.

39.

41.

43.

45.

Quadrants 1 and III: lA/i/.v is positi\e when both i and v are

positive (Quadrant ll or when both v and v aie negative

(Quadrant Oil.

Amount after 1000 years: 6.52 grams

Amount after 10,000 years: 0.14 grant

Initial quantity: 36.07 grams

Amoiuit after lOOO years: 23.65 grams

Auicnnit after 1000 years: 4.43 grams

.Amotuit after 10,000 years: 1.49 grams

Inuial quantity: 2. 16 grams

Amount after 10.000 years: 1.63 grams

95.81?,

Time to double: I 1 .55 years

Amount after 10 years: $1822.12

Annual rate: 8.94%

Aiuounl after 10 years: $1833.67
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47. Aniuiiil rate: 9.50*

Time ti) doLihle: 7.30 years

49. $112.0X7.09 51. $30,688.87

53. (a) 10.24 years 55. (a) 8.30 years

(b) 9.93 years (b) S.I 8 years

(c) 9.90 years (c) 8.16 years

(d) 9.90 years (d) 8.1? years

57. 7.43 million 59. 6.83 million

61. When A > 0. ihc population is increasing.

When k < (I, the population is decreasing:

63. 527.06 millimeters ot inercury

65. (a) N => 30(1 - (.-""sn:,
) ,|,| 35 j.,y^

67. (a) S == iOe- '''""'"
(b) 20.465 units

(c)

69. 2014 (/ = 16)

71. (a) 20 decibels (bl 70 decibels

(c) 95 decibels (d) 120 decibels

73. (a) lO'^'- 194,526,231.5 lb) I0'>' (c)
I

/In 10

75. False. The rate of erowth -p is proportional to ^.

77. Trtie

Section 5.7 (page 377)

1. Proof 3. Proof 5. Proof 7. Not a solution

9. Solution II. .Solution 13. Not a solution

15. Solution 17. Not a solution 19. k = (1.07

21. 4v- = .('

23.

--._
_..--

—

.

—i« .
^''

.

—

' ' ' T « ' ' '

• '—5- ^ ' ' '

25.

29.

ii.

35.

39.

43.

49.

53.

59.

65.

69.

73.

77.

81.

87.

= 3^"-' 27. V = 2 sin 3.v -
5 cos 3.v

= -2.V + 3.v' 31. V = .V-' + C

= \M[ + .V-) + C

= .V - In .v^ + C 37. V = -3 cos 2.v + C

= lix - 3h' - + 2(.v - 3)-'''- + C 41. y = {c'' + C

- .V- = C 45. / = Cf'""' 47. y = C(.v + 2)'

= C - 2 cos .V 51. 1 = -
J , I

- 4.V- + C

= a-"" '''/= 55. ^'- = 2e' + 14 57. v = <.-i>- + lo/2

- = 4.V- + 3 61. -1/;
63. P = P,,e'-

9.V- + 16v- = 25 67. /(.v) = Cf-''-

Homogeneous of degree 3 71. Homogeneous of degree 3

Not homogeneous 75. Homogeneous of degree

|.v| = C(v -y)- 79. |v- + 2.VV - X'\=C

V = Cf -"'/=''
83. f' = \ + In.v- 85. .v = e-'"^'''^

89.

4 + Cc

91. 93.
^ ^ . \ \ \ ^ •.-.•.-. y \

/ / / / /jf/ //////
.' / .' / // ///////
' . '//////////

: ^ ..,.-.., ;s...i

95. 48. 9'; of the original amount

97. (a) V = '^(v " 41 (bl a (c) Proof
</.v

98. (a) ^ = itv - 41 (bl b (c) Proot
i/.v

99. (al — = A'v(v - 41 (b) c (cl Proof
ax

100. (a) -r = k\^-
dx

101. (al ir = 1200 -
1 I4()c"

1 400

(b) d (c) Protif

w - 1200 - ll40t'-

1400
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(b) 1.31 years: 1.16 years; 1.05 years

ic) 120()piHinds

103. (a) ^ = k(W - v): v = 20(1 - (-»:«"')
ill

(b) .V = 20r + 6'-).5((' "="'' - 1)

105. Circles: .V- + v- = C 107. Parabolas: .v" = Cv

Lines: y = A'.v

Graphs w ill vary.

Ellipses:.!- + 2y- = K

Graphs will vary.

109. Curves: y- = Cv'

Ellipses: 2.v- + 3.v- = K

Graphs will vary.

111. The general sciliilion is a family ol curves thai satisfies the

differential cquatuin. A particular solution is one member of

the family that satisfies given conditions.

Example: (.v"' + y')</.v - (.vv-) </v =

113. ,\ homogeneous differentuil equation is an ec|iiation of the

form M(x. y) clx + N(.\, y) </y = 0, where A/ and N are homo-

geneous functions of the same degree.

1 15. False: y = .v' is a solution to vy '
— 3y = 0. but y = .v' + I is

not a solution.

117. false: /(M.n) * t" f{x.y).

Section 5.8 (page 386)

1. (a)
X -I -0.8 -0.6 -0.4 -0.2

y -1.57 -0.93 - 0.64 -0.41 -0.20

X 0.2 0.4 0.6 0.8 1

y 0.20 0.41 0.64 0.93 1.57

(c)

3. False: the range of v = arccos .v is [0. tt]. 5. — 7. —
6 3

"•6 11.-- 13.2.50 15. arccos^^j,^^ 0.66

17. (a) ^ (b) 5 19. (a) - 73 (b)

21. yi - 4.V- 23.
'.V- -

1

l-v|

25.

29.

y^^^
27.

J^^Ti

g is the algebraic form off.

Horizontal asymptotes: y = —
1 , y =

1

35. Proof

5 1 . arccos .v 53,
1 - .V

57. 59.
yi6 - .V- ' ( 1 + .V-)-

(d) Intercept: (0. 0); Symmetry: origin

63. Relative maximum: ( 1.272. -0.606)

Relative minimum: (- 1.272. 3.747)

65. Relative minimum: (2. 2.214)

67. If the di>niains were not restricted, then the trigonometric func-

tions would not be one-to-one and hence would have no inverses.
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69. If A- > 0, V = arccot .v = aretan -; If a < 0. \ = aretan—

r

A A

71. (a) $ = arccot

-

(b) A= 10: 16 radians per hour

A = 3: 58.824 radians per hour

73. (a) Ml) = -\bi- + 256

; = 4 seconds

(h) r= I; -0.0520 radian per second

f = 2: -0.1 1 Ifi radian per second

75. Proof 77. k < -\ or A > I 79. True 81. True

Section 5.9 (page 393)

5 arcsin T + C
IS

~ arctan —K c 7.
—

4 4 6

9.

13.

17.

arcsec|2A| + C 11. iv- - \ ln{A- + 1) + C

arcsinl.v + 1 ) + C 15. I arcsin /- + C

= 0.308 19.

1

arctan -r- + C -^- T
4 2 4

21.

27.

29. 8 arcsin

= -0.134

25. 2 arcsin ^^ + C

hix A" +1—3 arctan a + C

J6x - .V- + C

31.

35.

39.

43.

45.

47.

51.

V - 3

^ 33. hi|A- + 6a + 13| - 3 arctan! -^^ + C

'

V + 2 \ ^

Y- + C 37. - V -A- - 4a + C

4 - 2^/^ + -^ = 1.059 41. - arctan(A- + 1 ) + C
6 2

3 - 2 V -I arctan + C

A trHKiniial of the form a- + 2/'a + /'-

a and b 49. a, h. and c

(a) ' (b) \' = 3 arctan \

53.

;y:^^^rr::

^"- \ 1

-. -v \ 1

----\
1

-.^\
1

-- V \ 1 !§M

55. — 57. c
S

59. (a)
4 - </-v = 4 arctan .v

J(, 1 + v-

(bl 3.1415918 (c) 3.1415927

61. (a)-(c) Proof

63. (a) v{r) = -32/ + 500

= 4 arctan 1
- 4 arctan = tt

(b) sit) = - I6r- + 500r; 3906.25 feet

V 32A7

6.86 seconds

(el 1088 leet

(f) When air resistance is taken into account, the maximum

height of the object is not as great.

Section 5.10 (page 403)

1. la) lOOlS (bl -0.9(i4 3. (a) ;; (hi 73

5. (a) 1.317 (bl 0,9(i2

7. Proof 9. Pioof 11. Proof

sT3
13. coshA = ^::;— 15. -2Acosh(l -a-) 17. coth ,v

3vT3
tanh A

13

csch A =
3

sech A = 2v'l3

13

coth A = v'T3

3

19. csch A 21. sinh-A 23. sech r

25. "-[cosh A + A(sinhA) In a] = '

[cosh v + Aisinh v) In .v]

27. -2(cosh A - sinh .V)-
-9„-2i

29. Rclati\e ma.xima: (± - cosh -)

Relative niininiuni: (0. - 1)

-jr.ci'sh.Ti 1 , «, iMshm

1 1

1 \

1

\

,1 1

/ 1

f - ill. -Ill
1
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31. Relalixf nia\inuim: ( I JO. (),(i(i)

Rclainc niiiiimuni: (- 1.2(1. -0.66)

( 1 211, n(i6)

^-^-/

33. 1 = II sinli .V

y
' = (( cosh .V

v" = (( sinh.v

\- '" = ( / cosh -V

Thcrcloic. }'" — y' = 0.

35. l\\x] = 0.76 + 0.42(.v - I)

PX\) = 0.76 + ().42(.v - I) - 0.32(.v - 1)

...

<'
...--"" ,./

37. (a)

^—I—!
1—I

—

\—

M

39.

43.

49.

57.

63.

65.

67.

69.

71.

75.

77.

79.

83.

(h) .Vv 146 units; 2.S mills Id iii = sinli(l) = 1.17.^

-icosiid - 2.v) + C 41. U'osh'(-v - I) + C

Injsinh vl + C 45. - colli ^ + C 47. csch - + C

1 77 1 , 3
In ,1 51. - 53. arctan V- + C 55. —^^^=

.-^ 4 2 v'9.v- -
1

scc.v| 59. 2scc2v 61. 2 sinh '(2.v)

.See "Detlnition of the Hvpcrbolic Fiiiictioiis" on page 39,'i.

'<( -V-

-csch-'(.") + C= -ln| '
"^ "^^'/ —

l
+ C

nil ' J.\ + C = 2 ln( y.v + Vl + x ) + C

X

4x - 1

+ C 73. —p In

2v^

y2(.v + 1 ) + v-^

v'2(.v+ I) - v/3

^ai-csin^
y

y-4,v-yln

C

V - 5

1

C
.V + 1

1

S arctan(<-) - 27r = 5.207 81. ? In( ^ T? + 4) = 5.237

j7 kiloi^iams

85. If k were increased, the time of descent would increase,

87. Proof 89. Proof 91. Proof

Review Exercises for Chapter 5 (page 405)

1. Vertical asymptote: .v =

3. i;[ln(2.v + I) + ln(2.v - 1) - ln(4.v- + I)]

5. Inl

^''''^ ~ ^

\ 7. c^ -
I = 53.598

13.9. — 11.
I + 2 In .V

15.
!

2s'ln.v ((' + l'x)~ xiii + bx}

17. 7ln|7.v - 2| + C 19. -|n|l + cos,v| + C

21. 3 + In 4 23. In(2 + v'3 )

25. (a) /- 'l.v) = 2.V + 6

(b) I (c) Proof

27. lal f-'{x) = X- - I. .V >

lb) -I (c) Proof

^ / ....
r

29. (a) / '(v) - v' -
I

(b) (c) Proof

I

I __

31. , ,}— ,, = 0.160 33. 7
3( i,^)- 4

35. lal f-Hx) = e-'

(b)

37.

y

i'

(c) Proof
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39. 41. ic'ii + 2) 43.
e — e -'

45. ^11^ 47.
V

e' .v(2y + In.v)

I , , f^' - ^i'-' - ^
49. —1--<- + C 51. ; + C

6 ii'

'

53. -5t'i-'' + C 55. Injc' - l| + C

57. V = (''(() cos 3-V + /) sin 3-v)

y' = (''[(-3(( + /'I sin 3.V + {a + 3/)) cos 3.v]

v" = c'[( -6<( - S/>) sin 3,v + (
- S<( + 6/7) cos 3.v]

y"- 2y' + lOv

= (-•>{[(-6<( - 8/)) - 2(-3« + /)) + l()/)]sm3( +

[(-S</ + 6/>) - 2(<( + 3/)) + 10,/] cos 3.V| =

59. I) <= 0.5011

63.

M

-

-1 ^ '/
3 4 > 1

-2-
/

-4-il

71. ^rr^ + C
in 3(2 - 2a) 2 In 5

73. (al K.v"""' (b) (In (ill/' (c) \'[\ + in i) (d)

75. ^$3499. 3X 77. = 7.79 niches 79. .About 46.2 years

81. \' = ^ + 3 Inl.vl + C 83. v = Ce'''

85. ^^ ^ = C 87. Pioof; i = -2.v + -.v'
-\ V- 2

89.
1 J^

91. (a) - (b) ^

93. (I - X-)-''- 95. + arcsec .v

97. (arcsin.v)- 99. 3 arctan(£'-') + C

101. i arcsin.v- + C 103. Inv^l6 + .v- + C

105. -^arctan-

109. 2 -^
C 107. V = A sin

111. -Inl^V - 1 + .V-) + C

P.S. Problem Solving (page 408)

1. il = I.72(i3 orMS.y

3. (a) (0. cr_)

(h) .Answers will \'ary.

Example: e" - = 4.S10S and c^-'- = 2575.9705

(c) Answers will vary.

Example: i'-"- = 0.2079 and f'-- = 11I.317S

(d) [-1. 1]

eos(ln.v)
(e) / (.v) = ; Maxniunn \aiiie is 1

.\

(f) i

L/"

Limit docs not exist,

(g) Limit does not exist.

5. (a) Area of sector = -

(b) A{t) = \ base • height -

Ail) = 3 cosli I Mnh /

Ait) = \t

7. Tanaeni Inie: t = -v + (/' - I)

(/

Passes through (0. rl, Iherclore c = h — I.

Distance between /> and i is h - c = I.

9. 2 Inl^) == OS 109

I

Jx- - 1 dx

Jx- -
1 </.v

(1 - O.OIr)'"

1

;;
7"= 100

"YjT. : Answers will vary.

11. (a) V =

(b) y =

13. 22.35°F

15. .a)f = A-S(L-5);S = -p^^^^^

- *<•;

(b) 2.7 months

(e) '::5 (d)

(e) Sales will decrease toward the line i' = L.
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Chapter 6

Section 6.1 (page 418)

27. 6 29. 16.094

1. - (x--bx)dx 3. (
- 2.V- + 6.v) </.v

5. -h (a' - a)</.v

11.

15.

19.

23.

13. d

17.

21. 1

25.?

31. f^

35. S

\ f'\t
39. = 1.759

/

43. 4n-= 12.566

47. 4

/
:'Vo, 0>

33. ?

37. f-U 1.237

(1
').'

41. 2(1 - In 2) = 0.614

.1,'

J
(v-)

1-

/
J >. /

y (0, 0} ?

^

:

l(-

,T

--')

1

-'

»5. :!:(l --'l = 0.316

h ')

49. = 1.323
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51. (a)

53. Fix) = iv- + .V

(a) F{Q) =

(b)
4 - v

- </.v; No

(c) ^4.772

(b) F(2) = 3

65. Offer 2 rs belter because Ihc cumulative salary (area under the

curve) is greater

1

71. Sl,(i25 billion

67. h = 9\\ - -jy^\ = 3.330

(0. ni

73. (a) V = 273.1)675(l.ll?37l'orv = 27'i.(lh75c""-'-"

4&0

(c) F{6] = 15

55. Fia) = - sin^ + 1

77\ 2

(a) /(-!) = (b) F(0) = - = O.Ci3Wi
n

57.30c 59. [a' - (3.V - 2)]</a = ^ 61. V

63. Answers will vary. Example: .v"" - 2.v- + 1 < 1
^ .v^ on [- 1. 1]

I

[( 1
- .V-) - i.x^ - 2.v= + 1 )] ,/.v =

j-i

(b) V = 2.W,i)4(l7( 1.0417)' or V = 23y.W07c" ""''"'

460

(c) $649.5 billion

(d) No. The model For total receipts is increasing at a faster rate

than the model lor total cxpendiliircs No.

75. t(4V2 - 5) = 3.5

77. (a) 6,031 square meters (h) 1 2. 0(i2 cubic meters

(cl 60.310 pounds

79. True

81. False. Let fix) = v and .^'l.v) = 2.v - .v- on the interval [0. 2].

Section 6.2 (page 428)

1. 77
I

(-V + l)-,/.V = - 3. 77
I

(sO)"</.V
1577

5.77 [(.V^)- - (.V-')-](/.V = ^ 7. 77
I

(yv)-,/v=X77

9. 77 (v--''-)-</v = T

12S77 25h77
,

19277
11. (a) 877 (h) —^- (c) -—^ (d) —r-

MtT 6477
13. (a)

~Y-
(h) ^-

15. 1877 17. 77(16 In 2 -
5) = 32.485

,n 2O877 ,, 38477 ,,
, ,

,- 377
19. —,— 21. -—- 23. 77 In 4 2.-'.

—

27. ^(l-^)»1..158 29.^ 31.877
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33.^ = 4.035 35.1.969 37.49.022 39. a

41. (a) See page 422 for the disk nietliod.

(bl Horizontal a.\is of revolution:

V'= - {[R{x)y - [(lv)]-|t/v

Vertical a.xis of revolution;

V= -\ ([K(v)]- - [r(v)]-)£/y

43. The parabola y = 4.v - .v- is a horizontal translation of the

parabola \ = 4 - x-^. Therefore, their volumes are equal.

45. 18 77 47. Proof 49. .,M ^-^.^ ''
X)

53.

55.

57.

(a) 60-n- (b) 5()7t

One-fourth: .i2.h4 feet: Three-fourths: 67.36 feet

(a) ii; right circular cylinder of radius r and height /)

(b) iv; ellipsoid whose underlying ellipse has the equation

= 1

59.

61.

63,

67,

(c) iii; sphere of radius r

(d) i; right circular cone of radius / and licighl /(

(e) V, torus of cross-sectional radius r and other radnis R

(a) 771 (b) 3

(a)
10

, 77 v/3

'^'80 "•^ (d)
20

Proof 65. 5v I
- 2-^'-' = 3.0415

2r' tan H
(a) ^ (b) -, lini V = oo

Section 6.3 (page 437)

1. 277
I

.V^ </v = —

—

3. 2 77 X^'XdX = —Z

—

5.277 .V'(/.V = 8 77 7. 2 7T .v(4.v - 2.V-) </.

1677

3

9. 2 77
I

.i(.v- - 4.V + 4),/.v = ^
11. 277 -L=c'-'-"/-j(/.v = ^/irri 1

L
1
= 0.986

877
13. 2 77

I
y(2 - y]dy = —

15. 277 I
v</v -I- y(-7 - Udy

17. I677 19. 6477

12X77
,

6477 9677
21. (a)

—— (b) ^- (c) -^

77<(' , 770' 477n-'
23. ,a,— ,b)— ,0 —

25. V /)(y)/?(y) ily for horizontal axis of revolution

V = 277
I

/)(.v)/i(.vl </.v for vertical axis of revolution

27. Both integrals yield the volume of the solid generated by revolv-

ing the region boimded by the graphs of y = ^/x - 1, y = 0,

and .V = 5 about the .v-axis.

29. (a)

.=0- ,"i"\

-0 25

"^

\

1

(b) 1.506

31. (a)

= ^l\'2)-i\-bi

vX^'-^V^v ..'"

(b) 187.25

33. d 35. Diameter = 2^4 - 2^3 = 1.464

37. 4 77- 39. Proof

41. (a) ii; right circular cone of radius ; and height /;

(b) v; torus of ci-oss-sectional radius r and other radius R

(c) iii; sphere of radius r

(d) i; right circular cyhndcr of radius r and height h

(e) iv; ellipsoid whose underlying ellipse has the equation

43. (al 1.366.593 cubic feet

(b) (/ = -0.0()0561.v- + 0.0189.V + 19.39

(c) 1,343,345 cubic feet

(d) 10,048,221 gallons

Section 6.4 (page 447)

1. 13 3. 5(2v'2 - 1) = 1.219

5. 5 75 - 2 72 = 8.352 7. 7;^ 9. 1.763

11. (a)
, \ ,

13. (al

(b) I v'l + 4.v-f/.v

(c) ^4.647

(b)

(c) =2.147

.^^v
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15. (a)

r\
.

'•:

(b) v' 1 + cos-.vJ.v

(c) =3.820

17. (a)

. J.v

21. b

23. (a) MA25 (b) 64.525 (e) 64.666 (d) 64.672

25. (a) (h) \|. V-,. V,. Vj

(c) .s, = 5.657; .v, = 5.759;

.V, = 5.916; .vj = 6.063

27. Fleeing object: , unit

Pursuer: - -^</.v -V-"- + 2.v'

_ 4 _
~

3
"

29. 20[sinh 1
- sinh( - 1)] = 47.0 meters

31. 3arcsin5 = 2.1892

33. 27r| ^.v\,/TT7' </.v = -^(82782 - l) = 258.85

35. 2 77

1 W.v- 1 \ , 4771

37. 2 77 .V 1 + —rrrrfv = ^(1457145 - lO^lO) = 199.48
9.V""' 27

39. 14.424

41. .\ rectifiable curve is a cur\e with a finite arc length.

43. The integral formula for the area of a surface of revolution is

derived from the formula for the lateral surface area of the frus-

tum of a right circular cone. The formula is 5 = IttiL where

; = n
(/'i

+ ;•,), which is the average radius of the frustum, and

L is the length of a line segment on the frustum.

45. Proof 47. 677(3 - s/5 = 14.40

49. Sinlace area = — square feet = 16.8 square inches

7t/0.()15\
Amount ol ulass = —-

——- culiic tool
27 \ 1;

~ 0.0(1015 cubic foot

= 0.25 cubic inch

51. (a) V = (1.953 IQ-'l.v^ - (1.804 10 <).»'

+ 0.04961- - 4.8323.V + 536.927

(b) 131.734.5 square feci = 3 acres

(c) 794.9 feet

r
53. (al 77 1

/)

,b, 277r^^^.v

(c) lim V = lim 77 1

(dl .Since
^-—5 > —T- = - > on [l, /)].

we h;i\e
s'.V^ + 1

/v > In ,v In />

(""
v'v-* + 1

and lim ln/)^;c. fhus. lim 277] ; (/.v = 00.

55. (a) Area of circle with radius Z.: ,A = 7tZ.-

Area of sector with central angle H (in radians):

« H , I ,

5 = —A = — (77L-) = -L-H
277 277 2

(b) Lei \ be the arc length of the sector, which is the circumfer-

ence of the base of the cone. Here, .v = L$ = 277/", and you

have

S = \l-0 = ^L-ij] = ]^Ls = ^-LMtii] = nrL.

(c) The lateral surface area of the Iruslum is ihc dilTcrence

between the large cone and the small one.

5 = 7rr,(Z. + Z.|) - Tn^L^

= 77/'iZ, + 77Z,|(r, — ;,)

/. + L, L,
By similar triangles.

Hence.

Lr. = LAi\ - /,).

5 = 77riL + TrLfir-, — c,) = 77;",/, + irLr^

= TTtir, + r,).
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Section 6.5 (page 456} 29. 400

7.

11.

13.

15.

17.

19.

21.

12>.

11.

31.

35.

39.

43.

1000 root-pounds 3. 44S neuton-nieters

11 an object is nuucd a distance /) in the direction of an applied

constant force / . then the work IV done h\ the lorcc is defined

as W = FD.

c. d. a. h 9. 30.(iJ!5 inch-potnids = 2.?5 root-pomids

S750 nevvton-eentimeters = 87.5 nevvton-nieters

160 inch-ponnds = 13.3 foot-pounds

37. 125 loot-pounds

(a) 4S7.iS()5 mile-tons = 5.151(10") Ibot-poiuids

(h) 1395.344 mile-tons = 1.473( 10'") foot-pounds

(a) 2.93 U)-* mile-tons = 3.10 10" foot-pounds

(h) 3.38 10' mile-tons = .^.57 10" foot-poinids

(a) 2490 foot-pounds (b) 9984 foot-pounds

470.40()7r newton-meters 25. 2995.2 tt foot-pounds

20.217.677 foot-pounds 29. 2457 77 foot-pounds

.V^7.5 foot-pountls 33. 300 loot-pounds

1 68.75 foot-pounds 37. 7987.5 foot-pounds

3/.

2000 In 810.9.". toot-pounds 41.

31.

i

\

(a-.v) = (3.0. 126.0) (.v.v) = (0. 16.2)

((7 + 2/))c a- + ah + h-
ii. (v. v) =

I

-. -I 35. (v. v) =
,\y ?.l \Ma + />) 3((/ -I- h)

4/)

(b) .V = by syminetry

37. (.v.v) = (),—
\ 3 77

39. (a)

.249.4 foot-poLuids 45. 10.330.3 fool-pounds

(e) M^ = x{h - v-) (/.v = becatise .v(/j - .v-) is an odd

function.

/' b
(d) V > - because the area is areater tor v > —

.

Section 6.6 (page 467)

1.

7.

13.

15.

17.

19.

21.

23.

3. .V = 12 5. (a) .V = 17 (b) x = -3

v = 6 feet 9. (.v.v) 11. (.T. v) =

A-/,

A/,

A/,

A/,

A^,

M.

£-^ = 5-'-^' = (5-s

256/j / 8
O.A/, =-^. (.v,v) = [-,0

27p
, A/,

27p
10"

3 3

"5'

2

25. .\ =

A/,

A/,

27. A =

A/,

A'/,

(.v - .v-)</.v

v + .v-'\. I

v-v-)</.v = -

VIA - V-)</.v =
12

(2.V + 4)</.v = 21

2.V + 4 \

(2.V + 4),/.v = 78

.v(2.v + 4) J.v = 36

(e) V = '-b

41. (a) (v. i) = (0. 12 9SI

(b) V = (-1.02 10 "Iv-" - 0.0019.V- -I- 29.28

(c) (.v.v) = (0, 12.85)

43. 45.

H—hH

—

\ \—hH—

h

.
/4 -I- 377

\ 4 -I- 77

(.v.v) = 0,
135

34

47. (.v.v) =
I

•; "*" '^
.o) 49. 16077^ = 1579.14

2-1-77 /

51.^=134.04

_ _ _ M^ _ M^
53. The center of mass (.v, v) is .v = — and v = where:

(a) 1)1 = /);, + iiu + + 111, is the total mass of the system.

(b) A/j = /'/|.V| + /«-,.v, -I- -I- /»„ .v„ is the moment about

the y-axis.

(c) A'/, = /»! y, + ;)(, _v, -I- • • • -I- »;„ y„ is the moment about

the v-axis.
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55. (a) (;;. 27^); The plane region has been translated 2 units up

(b) (2^. fs); The plane region has been translated 2 unUs to tlic

right.

(c) (^, — f^); The plane region lias been reflected across the

X-axis.

(d) Not possible

57. (.v,v) =

59. (.V. 1) = -. r ; As/!-^cc. the reaion shrinks
\ II + 2 4ii + 1

1

towards the luie seL'ments > = for < .v < 1 and .v = 1 tor

< V < 1: (.V. v)^| 1
-

Section 6. 7 (page 474)

1. 936 pomids 3. 748. N pounds 5. I 123.2 pounds

7. 748.8 pounds 9. 1064.% pounds

11. I 17.6(10 new tons 13. 2..W1 .400 ncwlons

15. 2814poLUids 17. 67ri3, 6 pounds 19. 04..'i poinids

21. /;(v) = A- - y

L(y) = 2j,~ - Y-

F = u\ ik - y)Ji~ - v-(2)i/v

2k ^ r - y- ,/v + ^/y- - x-{-2v} ih

The second integral is zero since its Integrand i^ odd and the

limits of integration are symmetric with respect to the origm.

Thc first integral is the area of a semicircle of radius r.

F = u (2i-)-— + wkni'-

23. h{y) = /.- - y

Liy) = h

0,2
F = m\ {k ~ v)/)</v

J-h/2

k\ = uMhk) = wkhh

25. 960 pounds 27. 3010. S pounds 29. 6448.7 pounds

31. (a) ^^ = 2.12 feet

(b) The pressure increases with increasing depth.

3i. The fluid force F of constant weight-density 11 (per unit of

\olumel against a submerged \'enical plane region fixmi i' = c

to y = (/ is

f = ir lim y /)(v)/.(v )Av = ir /;( v)L( v) </i'

where h[\] is the depth of the tluid at \' and /.(^) is the hori/on-

lal length of the region at w

Review Exercises for Chapter 6 (page 476)

4
1.

5. i

9. 2,

13. i

3.
-

15. [0 - (y- - 2y)]</v = 2v.v + 1 </-V = -

7. c- + 1

11. H^

(S M/

^^
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17.

19.

21.

Ja- +
I

[I - (v - 2)]</.i-

3
[(v + 2) - (2 - 2v)]</v = ^

Jn

Job I . The salary for job I is greater than the salary for job 2 for

all the years except the first and tenth years.

MiT
,

I287T MtT
,

16071
(a) -— (h) ^^ (c)

—— (d) -^--
^ ^ 3 J

23. (a) M- (b) 4S- 25. —

27. ^(21) - 4 hi 31 = 42.359

29. ]i 31. 1.938 feet

33. -p;(l + b^''3) = 6.076 35. 40 IS. 2 feet 37. \^tt

39. so inch-poimds = 4.1(i7 loot-pounds

41. 1 04.000 77 foot-pounds = 163.4 fool-tons

43. 2,50 foot-poimds

45.,, = ^ 47. (^.vl=^.^
4 - \5 ^

49. (.V. v) = ().

51.

53.

\ 3(7T+ 9)

Let D = surface of liquid; p = weight per cubic volume.

F = p\ (D -.v)[/(y) - ,t!(y)]</y

D[/(v) - ,i;(y)],/v -
| v[/-( v) -

.i;( v)] ,/v

v[/(i') -.i;(v)]<A

[/(y) - ,dv)]</v

[/•(v) - .i;(.v)]</y

p(area)(D - v)

p(area)(depth of centroid)

^,--

P.S. Problem Solving (page 478)

1. 3 3. (a) 477-^ (h) 27r--r-R 5.

7. (a) Area S is 16 times area R.

7t/)-'

(b) Let point /4 be (a. <('). The equation of the tangent line to the

curve y = .v' at A is v = itr x - 2tr\ and point B is

(-2(7. -8t7'). Areaffis

U-' - 3(7- .V + 2«-')(/.v = ——

.

Then, the equation of the tangent line to the curve

y = x^ at B is v = \2a- x + 16d7\ and point C is (4i7, 64a^).

Area 5 is

(12i7-.v + I677-' - .v-')<-/.v = lOSo-*.

Therefore, area 5 is 16 tiines area R.

9. (a) ^ = vT+TrwP

(b) </.v = vTTXfuTF</.v:(./,v)- = (</.v)- -I- idy)-

(c) v' I + 5''''

Id) ,s-|2l = 2.08,58. This is the arc length of the curve,

11.

1 4 5 ft

(a) ly.O

(c) (2,01

13. (a) 12 (b) 7.5

15. Consumer surplus: 1600; Producer surplus: 400

17. Wall at shallow end: 9984 pounds

Wall at deep end: 39,936 pounds

Side wall: 19.968 + 26,624 = 46,592 pounds

Chapter 7

Section 7.1 (page 486)

1. b 3.

5. II" Ju 7.
,/77

3v - 2, H = 4 « = 1 - 2^/x

till

/ir — ir

II = l.a = 1

11. sin 77 till

13. c" Ju 15. -i(-2x + 5)^'- + C

17.

II = sin .V

5 1
, ,

4„-4)^^^ 19.-(,-l)- + C

-'-!•- ' ^ + C 23. -Tln|-r' + 9r + ll -f C
2 6(3r - D- 3 '

'

21.

25. \x- + X -f Inl.v - 11 + C 27. ln(l + e') + C
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29. T^d^v-* + 20a- + 13) + C 31. -^sin 27rv- + C

33. -- CSC nx + C 35. -t-^' + C 37. 2 ln( I
+<•') + C

39. (In v)- + C 41. In|sec v(sec.v + tanA)[ + C

^ -, 2 -

43. CSC H + cot H + C 45. - ln(,-- + 9) + - arctan ^ + C

47. --arcsin(2/ - 1) + C 49. - In + C

3 ^ .,1 2a- + 1

+ C ?3. - arctan ^— + C
4 8

(b) , arcsin t~
~

57. -r = 0.:

i/v

m y y y Ji t ,

'' y yj f / i

:;:::,

59. r = K-' + 2e' + .\ + C 61. \'

I tan A
- arctan —; H C

63. - 65. -d 0.316 67. 4 69. —
IK

71. - arctan^^—— I
+ C 73. tan II - sec H + C

One i:raph is a \crtical One graph is a \crlical

translation of the other. translation ot the other.

75. Power rule; ii" ilii
= V C : u = x- + 1. ilii = 2x. n = 3

(1 + 1

77. Los; rnleg rnle: — = ln|i/] + C: ii = x- + \.ilii = 2.v

79. Using laws of logarithms, x, = e'*'~' = e' e"^' where c' ' is a

constant. Therefore, e'-' can he replaced by C resniting In

V, = Ce\

81. n = v^2. h

L-sc|.v + 7 + cot v + —

83. a 85. ^ 87. a =
{

89. (a) 7t(I - c') = 1.986

(b) b = ^/In
37T

= 0,743

91.

37T - 41

= 2.I.S7 93. 1.0320
arcsni(4/5)

Section 7.2 (pciiie 494)

1. b 2. lI 3. c 4. a

5. (( = x.ilv = d'-'(/\ 7. /( = (InA)-. i/r = dx

9. (( = x.ilv = sec- I i/a 11. ---^(2a + I) + C
4('-'

13. t'(A' - .3v- + 6a - 6) + C 15. T,->' -I- C

17. 3[2(/- - I) Inl/ + ll - ;- + 2/1 + C

19. li^ + C 21.
4(2a + 1)

C 23. (a - !)-<' + C

25. — !

—

^(3a -I- 2) + C 27. a sin a + cos a + C
Li

29. (6v - a"') cos A + (3a- - 61 sin a + C

31. -/cscf - Injcsc/ + cot/| -I- C

33. A arctan A - ^Inll + v-) + C

35. =<-' (2 sin A - cos v) + C 37. v = \c'' + C

39. V = Wf{21t- - 24/ + 321^ 2 + 3/ + C

41. sin 1- = X- + C

43. (a) (b) 2s V ~ cos A — A sin A = 3

45.

^ y y y/i I i^ y y/ 1 1 ,

^ />/ / I >

-10 55^

47. 4 - ^4 49. ^
TT - 3 73 -I- 6

51. ^^ = 0.6.SS

53.
^"""'- ""'"]+ '

^0.90.
24 In 2 - 7

55. =
1 .07

1

57. 8 arcsec 4
V^ v'l^ = 7.38(1

59. —(2a- - Ix + I) + C
4

61. (3a- - 6) sin A - (a' - 6a) cos a + C

63. A tan A + InjcosA] + C 65. Product Rule

67. No 69. Yes. Let u = x- and dv = c-' dx.
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71. Yes. Let ii = .v. </r

y.v +

1

i/.v. (Substitution also works.
(c) You obtain tlie following points.

Let II = y.v + 1

)

73. -—^(}2r + 241- + \2t + 3) + C

75. 13(2^-'^ + 3) = 0.2374 77. 5(2.v - 3)-'/-(,v + 1) + C

79. W4 + xHx" - 8) + C

81. II = 0: .vdn.v - I) + C

/( = 1: j(2 In.v - I) + C

= 2: -;-(3 In V - I) + C

;; = 3: — (4 1n v - \) + C
16

/; = 4: —(3 In v - 1) + C
2,'i

.v" In .V(/.v = [ill + 1) In.v - I] + C
(/; + I)

83. Proof 85. Proof 87. Proof

89. - 14 In .V - I ) + C 91. —(2 cos 3.v + 3 sin 3.v) + C
I h 13

93.

/

95.

.•

,'*

•^^

/ \
/

,
x

1 - ^ = 0.908

97. (a) 1 (h) nic - 2) = 2.257

1 + TT-

+ 1 == 0.395

(d)

(- + 1 f

IOtt

103. Proof 1(15. h

1(17. Shell; \' = tt

(2.097,0.35'-))

-^'') = 0.223 101. $931,265

8/1 / IITT

(«7t)-

h'f(h) - u-fia) -
I

.v-/'(v),/a

Disk: V = TT h-f{h) - crfUi) - Lr'(v)p(/y

Bolh methods yield the same voknne because -V = /'
'(v),

/'fvlt/.v = i/v, if y = fill) then .v = </. a)id if y = /'(/>) then

.V = h.

n jr„ 3",,

1 0.05

2 0.10 2.378 •
10--'

3 0.15 0.0069

4 0.20 0.0134

80 4.0 0.9064

(d) You obtain the following points.

/; A-„ y„

1 0.1

0.2 0.0090484

3 0.3 0.025423

4 0.4 0.047648

•

40 4.0 0.9039

(e) /'(4) = 0.4084

The approximations are tangent line approximations. The

result in (c) is better because Av is smaller

Section 7.3 (page 503)

1. (a) 5(3 + cos4.v)

(b) 2 cos-'.v - 2 cos-.v + I

(c) I
- 2 sin- .V cos- -V (d) 1

-
3 sin- 2.v

(e) Four No; there is often more than one way to rewrite a

trigonometric expression.

3. -j cos-'.v + C 5. ]3sin"2.v + C

7. —-; cos-'.v + 5 cos-'' .V ~ 7 cos' .V + C

9. I
sin-'/- B -

f sin'/- + C 11. ]3(6.v + sin 6.v) -I- C
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a - (1/4) sin 4« a 1
, , ^13. h C or — - — sin 4n- + C

15. s(2a- - 2a sin 2a - cos 2a) + C

17. Proof 19. Proof 21. ; ln|sec ,\v + tan 3a| + C

23. ]i t;Mi riv(3 + tan- .^a ) + C

25. ^(sec TTA tan ttv -I- Inlsec tta + tan ttaI) + C

11. tanV-^j - 2 tan-f^ - 4 in cos '\ + C

29. Itan^A + C 31. "^ + C 33.^ + C

35. TsecVv + C 37. ln]sec a -t tan aJ
- sin a + C

47. -]t;(cos ."iA -I- 5 cos a) -1- C 49. ^(2 sm 2t> - sin 4^*) + C

51. idnjcsc- Zv] - cot- 2a) + C 53. -cot H - \co{> H + C

55. ln|csc / - cot /| -l-.cos i + C

57. Injcsc v - cot a| + cos v + C 59. c - 2 tan i + C

61. - 63. 3(1 - In 21 65. In 2 67. ^

69. ]7;(6a + 8 sin A + sin Zv) + C

Graphs will \ary Example:

71. -— sec' TTA tan tta -I-

4lT

^(sec TTA tan nx + ln|sec tta + tan ttaPJ + C

Graphs will \ai"\. Example:

lU m

73. — sec^ TTV -I- C
3 7T

Graphs will vary.

Example:

75.
3./2

77.
377

16

I
i

'\ \ i f'\ <

79. (a) Save one sme laclor and convert the remainint: factors lo

cosine. Then, expand and integrate.

(b) Save one cosine laclor and comerl the remainini; taclors lo

sine. Then, expand and integrate.

(c) Make repealetl use ol the power-rediicint; formulas to

converl the inleyranii lo odd powers of the cosine. Then,

proceed as in part (hi

tan'',iA tan'.iA sec''.iA see^ 3a

'^'•'^"nr + n^ + ^'-^s 1^ c.

(hi (cl Proof

1 TT-
83. - 85. (a)

—
(b) (v.v)

S

87. Proof 89. Proof

91. -75 cos.v(3 siii-'a + 4 sin-A + H) + C

93. ^tan^fsec-'^ + 2) + C

95. (a) Hil) = 53.46 - 23.S,S cos ~ - 3.34 sin ^
6 6

(bl Lit) = 34.-34 - 20.78 cos— - 4.33 sin —
6 6

(c) Summer

97. Proof

Section 7.4 {page 512)

1. h

7. 5 In

.:. u J. a 4.
25 725 - A-

+ C

5- yzs
-I- 725 - A- + C

9. In .V + v''.v- - 4 -I- C 11. 75(a- - 4)'/-(3a- 4- 8) 4- C

13. ^(1 + A-)'/- -I- C 15. -(arctan A +
,

' J
3 2 \ ] + A-/

^ +C

17. i\V4 + 9.V- +
I

In] 3a + ^'4 + yA-| -t- C

19. v/a- + 9 -I- C 21. arcsinf^j + C
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23.

27.

31.

35.

37.

39.

41.

43.

45.

47

49

4 arcsin(:^j + \J4 - .\- + C 25. ln|.v + V.v- - 9[ + C

(1 -.V-)'

-I.V

5 s 'v' + 5

C 29. -Tin

1

4v- + 9 + 3
+ C

A- ^ ^
+ C 33. -d + e-'V- + C

^(arcsin r' + l'\'\ — ('-'
) + C

1 / -v 1 V \ ^
7 -7 r + —^ arctan^ + C
4\-v- + 2 ^2 v'2/

V aresec 2x - 3 ln|2.v + V4x- -
1

1 + C

arcsini —^-^ + C

s. A- + 4x + S - 2 ln|v^- + 4a + S + (a +

(a) and (b) x/3 - ^ = 0.685

. lal and ih) 9(2 - v^) = 5.272

(a)and<b) -^_^—^ ^ ^ +
3

+ 9v^ - 2v'7 = I2.b44

51. k-x - 15)y.v- + lO.v + 9

+ 33 ln| y.v- + lO.v + 9 + (a + 5)| + C

53. ^(av'a- - 1 + InLv + J.\- -
1 1

) + C

(a) Lcl /( = a sin (i. Jcr — ir = a cos H. where

77 77

(b) Let II = a tan H. ^'ir + 11- = ii sec (', where

(c) Let II = a sec W, ^hr — a- = tan H il » > </ and

JII- — a- = —tan ti if « < -<;, where < W <

or — < 9 < 77.

57. 771;/' 59. — d- arcsin hjo- — It- 61. 677-

63.

65.

hi + s/26 - v'^ = 4.367
5(s_j + 1) 1

s 26 + 1 _

Leniith of one arch of sine cur\c; \' - sin a, x' = cos .v

Z- ,

= s 1 + cos- .V clx

Lenmh of one arch of cosine curve: v = cos a. x' = — sin a

L, = s/T+siirA </.v

I + COS-| .A — — </a. II = -A - — . (/(( = (/a

Vl + cos- II till

v' I + cos- /( (//( = L,

67. (a) 60

1.

(b) 20(1 (c) 100^2 + 50 In = 229.559
/2 - W

69. (0,0,422) 71. ^[l02s 2 - ln(.^ + 2^''!)] = 13.989

73. (a) 1X7.277 pounds (b) 62.4 77(/ pounds

ilx X - (v + X -144 - A-)
7?. (a) /» = — = ^

ilx X -

7144 - A-

,„,_„„,ll^.^iiZZ _,,44_,.

(c) .V = (d) 5.2 meters

77. True

clx

(1 + V-)'-
79. 1-, cos HilO 81. Proof

Section 7.5 (page 522)

1.^ +
10

7. ! in
V - 1

V + 1

A Bx + C
X X- + 10

V - I

A X- X - 10

C 9. In + C
.V +

11. 3lnj2A - 1|
- 2 1n[A + l| + C

13. 5 In |a - 2j - ln|A + 2| - 3 ln|A| + C

15. A= + lln|A - 4| - 3ln|A + 2| + C

17. -'; + Inl.!-* + A' I + C

19. 2 InLv - 21 - InLvl ^ + C

21. In
.V- + 1

+ (

-V

23.
1

6
In

A - 2

A + 2

25.
1

16
In

4.V-

4v- +

I

1

+ s' 2 arctan

+ C

27. ln|v + l| + V'2 arctan
.V - I

29. In 2 31. l^ Ini^] ^ j + arctan 2 = 0.557
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33. V = 3 Inl.v - 31
A- - 3

'f
'

'

,

'

.; ' '

n/2 a 1 5
35. V = -r- arctan —^ - ——^ — + -

2 ^/2 2(a- + 2) 4

_.J
'"'

37. V = Inlv - 21 + -IiiIa- + a + ll

v3 arctan =— - - In

+ V3 arctan^ + 10

" -—-_ -*—

~

39. y = - In
V +

+ -in:

1^ -t

41. In
cos V

+
ens A - 1

45. 4 In

(' -
1

+
<•' + 4

51. y =
T

In
2 + a|

1 --.v|

+ C 43. In
1 + sin A

sin A
+ C

+ C 47. Pmiif 49. Pninf

53. First divide a"' by (a - 5).

Section 7.6 (page 528)

1.

5. -

-3a(2 - a) + ln|l + a| + C

v'f-' + I + ln(t' + Vt-' + 1
)J
+ C

- + C
M

7.

9.

11.

15.

j7;(6a — 3 sin 2a cos 2a — 2 sin' 2a cos 2a) + C

-2(cotv^ + cscx/v) + C

V -
3 ln( I + c- ') + C 13. n;A^(4 In a -

I ) + C

(al and (b) c'(x- - 2a + 2) + C

17. (a) and ibl In

21.

23.

A + I i . C 19. 1. C

27.

29.

31.

\\{.\^ + l)arcsee(A^ + I) - ln[(A- + I) + ^A-" + 2a-]
|
+ C

^A-'(- I + 3 In a) + C 25.
^'^" ~ "*

+ C
9 4a

I \

C^i'nl>-3A|+y^

'' arccosd'') - s/l - t'-' + C

|(a- + cot A- + CSCA-) + C 33. aidant sin a) + C

1 + sin H\
35. —r- arctan

./^
+ C 37. - ^ - ^'

+ C

39.

41.

43.

45.

47.

(/"' - 6;) sin I + Sir- - 2) cos / + C

i(2ln|AJ - 3 1n|3 + 2 1n|A||) + C

3v - 10 ^
——, -7- + - arctan(A- - 3) + C
2 A- - 6a + 10) 2

^In A- - 3 + Jx^ - 6a- + 5 M- C

-5v4 - a-(a- + H) + C

2 l_

I + e 2(1
-I- ln(l + £') -I- C49.

51. Proof 53. Piool 55. Proof

(
I

59.
V- - 6a -1-10

+ arctaniv - 3)

55. (al Log Rnle (b) Panial fractions

(c) Inverse Tangent Rule

57. 4.90 or S490.000 59. c

,1. , .
"['-'-':"-]

63. ?
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61. V CSC fl + ^^ + 2 21. 1 23. i 25. oo

63. ^In :tan(e/2) - 3-75
C 65. In 2

2tan(S/2) - 3 + ^'5

67. ^ ln(3 - 2 cos 6) + C 69. 2 siiiv^ + C 71. f
73. Use Foniuila 23 and let ii = \. ii = c\ and chi = e' dx.

75. Use Fornitila SI and let /( = .v- and ilii = 2x ilx,

77. Impossible

79. .Answers v\ill \'ary. For example: J .r' cos .v Jv can be integrated

using Formula 55 where u = x. ilti = dx. and n = 3.

81. 1919.145 foot-pounds

83. (a) V = 80 ln( s'To + 3) = 145.5 cubic feet

W = 11.840 ln(v^ + 3) = 21.530.4 pounds

(b) (0. 1.19)

85. (al /. = —-= 15.42
In 7

(bl

87. False. .Substitutions niav first ha\e to be made to rewrite the

integral in a form that appears in the table.

Section 7.7 (page 537)

1.

X -0.1 -0.01 -0.001

fix) 2.4132 2.4991 2.500

X 0.001 0.01 0.1

fix) 2.500 2.4991 2.4132

X 1 10 10-

fix) 0.9900 90.483.7 3.7 . 10"

X 10' lO-t 10'

fix) 4.5 ' 10'"

5.
i

9. i 11. 3 13. 15. 2

17. n = 1:0 19.

,1 = 2:^

/I > 3: CO

27. 29. 1 31. 33. 35. oo

37. (a) • oo (b) 39. (a) cc lb) 1

(c) 2
,

(c)

[- '

N
\

\

\ -^

41. (a) Not indeterminate (b)

(c)

43. (a) go" (b) 1

(c)

r^

45. (a) r

(c)

(b) e

47. (a) 0" (b) 3

(c)

49. (a) 0" (b) 1

(c)

51. (a) oo - CO (b)

(c)

53. (a) ::x) - oo (b) co

(c)

57. (a)

*

(b) 5
(b) 5

59. -. —
, • oo, 1 =, 0°, oo - oo

CO

61. Answers will vary. Examples:

(a)/(.v) = .v- - 25,,i;(.v) = .v- 5

(b)/(.v) = (.V - 5)-.g{.x) =.v- - 25

(c)/(.v) =.v- - 25..?(.v) = (.V- 5)-'



Answers to Odd-Numbered Exercises A 103

63. 65. 67.

69.
X 10 10= 10^ 10" 10' 10'"

HnxV
X

2.S11 4.498 0.720 0.036 0.001 0.000

71. Horizontal asymptote: v = 1

Relative maxiniimi: {c. f "')

73. Horizontal asymptote: v =

Relative minimum: 1.
-

.-— •

1

•' —

1
1 :

1

75. Limit IS not of the lorm 0/0 or ^:/tc

77. Limit IS not ol the lorm 0/0 or ^:/cc

79. (a) 1

.V

(b) lim
Va- + 1 ,.

ini = lim
'^'^-

J.x~ + 1
'->- A- .-.--

v'-v- + 1

Applying L'Hopital's Rule twice results in the original limit,

so L'Hopital's Rule Tails.

(c)

81. r = 32/ 83. - 85. ^ 87. c = -

89. False: LHopilal's Rule does not apply, because

lim(.\- + .V + \) ^ 0.
v^ll

91. True

93. (a) -sin - -sin 9 cos H (b) -H - -sin Wcos B

sin - sin Sees H
,

3
(c)

- sin «cos 4

95. Proof 97. Proof

Section 7.8 (page 547}

1. Infinite disconlmuity al .v = 0; 4

3. Infinite discontinuity at .V = 1; diverges

5. Infinite limit of integration; 1

7. Infinite discontinuity at .v = 0; diverges

9. I U. Diverges

1 I

13. Diverses 15. 2 17. - 19.

21. TT 23. — 25. niverges 27. Diverges

29. (1 31. -- 33. Diverges 35. -

37. In .W. (I 41.
!-v'6

43. /) > 1

45. Proof 47. Di\ciges 49. Converges

51. Converges 53. Diverges 55. Converges

57. An integral with infinite integration limits, an integral with an

infinite disconlmuity at or between the integration limits

59. The improper integral diverges.

61. -. .s > 63. -. .V > 65. —
,s- + a-

>

67. ^^—^. s > |((| 69. (a) 1 (b) - (c) 27t

71.

Perimeter = 4S

73. (a) ni) = l.r(2) = l.r(3) = 2 (b) Proof

ic) Viii} = l» - D'

75. (a) Proof (b) /' = 43. 53'/? (c) f(.v) = 7

77. (a) :s757.M42.41 (bl 'sS37,'-W?, 15 (c) SI .0(i6.666.67

79. -—''

, ^
- 81. Three. All three must converge.

a- ^'cr + I

83. (a) i (b) y, (c) ^,

1

85. False. Let fix)
X + 1

87. Iriie

Review Exercises for Chapter 7 (page 550)

1.
-
'''""'

+ C 3. ^Inl.v^- 11 + C

, (ln(2Y))= ^ „ _
,

,

.V, „
5. 1- C 7. 1 b arcsm - + C

2 4

9. —-(2 sin 3.V - 3 cos 3.v) + C

11. Y^(.v
- 5)-'-(,3.v + 10) + C

13. — -v= cos 2.( + - sin 2.\ + - cos 2.v + C

15. Ts[(8.v=
- 1) arcsm 2.v + 2.Vs/l - 4.v=] + C

17. ^sin(77.v - l)[cos=(-v - 1) + 2] + C

19.

(In 4)=

tan- T + 3 tan
- + C 21. tan H + sec « + r
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23.
^^^^-^!^ + C 25. -(.V- + 4)i''-(.v- - S) + C

.V 3

C27. -!^(4arcsiii^ + xj4 - .v-j +

29. (;i). (b). aiid(c) { v 4 + .v-(.v- - 8) + C

31. bhijv + 2| - .'^ Inl.v - 3] + C

33. i[6 1n|.v - l| - ln(\- + I) + b aretan a] + C

35. A + 5 ln|A - 3|-v ln|A + 5| + C

1 /

37.
9\2 + 3v

+ ln|2 + 3a I + C 39. - tan a- - sec a- I + C

41. - InLv- + 4a + Si - aictan
A- +

+ C

43. [-2] ln|tan -v| + C

45. Proof 47. jlsin 2H - 2Hcos2rt) + C

49. ^[a-'^ - 3a' ^ + 3 arctanlv' ')] + C

?1. 2
X

' 1
— cos A + C 53. sill A ln(sin a) - sm a + C

??. V = -r In
V - 3

,v + 3
+ C

57. \ = V InJA- + a| ~ 2a- + ln|A + \\ + C 59. 5

61. '(In 41- ---- O.WI 63. 7T 65. -^j

67. (A. v) = (1. —
I

ft^- -^>!- 'I- " 73. -v: 75. I

77. lOODc""" -= I(W4,I7 79. Conxerges; t 81. Diverges

83. (a) $b.321.2(l? 5^) (b) SI (!,()( )().()()()

85. (a) ()45S1 (b) (I,(1I3,^

P.S. Problem ,S'o/i'/«sj (page 552)

1. (a) i li lb) Proof }. In 3

5. Let P be represented by (c. ^ I
- r-). Then

S I + </a arcsin c. Then O is

V I - .x'l

represented b\ I
1.— - arcsin i I and line PO is represented

by V - ./I

— — arcsin c — V 1

I

(A - C).

Since R is on the i-a\is, set v = 0- Then simplify and tind

This limit is — 2 andlim I (

(I - c)v'l - c-

— — arcsin c '\

therefore the length ol segment OR is 2.

7. (a) Area = 0.2986 (b) In 3 -
^

(cl In 3-5

9. In 3 - W n.5'-m-) 11. Proof

13. A-^ + I = (a- -t- x/2a + |)(a- - v-^A + 1)

A = ~[arctan(v'^ + l) + arctan( 72 - l)]

+ ^[ln(2 + v'^) - ln(2 - .^)]

A = 0.8670

15. (a) cc (b) (c) -?

The indelermniate torni -yi does not determine the vakie of

the limit or e\en w hetlicr the limit exists.

,, / 2 / 40 /42 l/IO
17. —— + + — + —

.V A + 4 A - 3 .V - 1

19. Proof

Chapter 8

Section 8. 1 (page 564)

1.2.4.8.16.32 X - 1.^.-7,. Y^.-ji 5. l.O.-I.O.l

-I _l _ii-L_-L o - m 4j 77 121
/• '• 4- »• Id- 2^ ^- -^- 4 • M- Ih- 25

11. 3.]. =7. 55, t3il 13. 3.4. 6. 10. 18 15.32.16.8.4.2

17. d 18. a 19. c 20. h

21. ^j
,

23.

27. 14. 17; add 3 to preceding term

29. jj;. -fi; multiply preceding term by

31. Id • ^) - "-lO 33. n + I 35.
1

(2/( + 11(2;;)

.^7. ,S 39. 2 41. II

43. 45.

• • •

Converges to I Diverges

47. Diverges 49. Converges to
5

51. Converges to 53. Converges to

55. Converges to 57. Diverges

59. Con\cigestoO 61. Converges to

63. Conxcpjcs to c' 65. Converses to
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Answers nia\ \ary in 67-79.

67. :vi - 2 69. n- - 2 71.

(h)

II + 1

n + 2
73.

1)"-

75.

79.

77.
II

II ill + !)(;; + 2)

(-!)"-' (-1)" '2"h!

I
• 3 5 (2;; - 1) {2ii)'

81. Monotonic, bounded S3. Monotonic. bounded

85. Not monotonic. hounded 87. Monotonic. bounded

89. Not nuinolonic. bounded

- < 6 => bounded

",i > ".rn =* monotonic

So, |((„ I
converges.

91. (a) ,-1 + (b)

Lniiit = ."i

93. (a) '^-^ bounded

"., < "n + i

=^ monotonic

So. l</„ I

conxcr'jcs.

(b)

Limit =
;

95. (a) No; lim <(„ docs not exist

(b
n 1

1
3 4

K S9086.25 S9 173.33 S9261.24 $9349.99

n 5 6 7 8

A„ S9439.60 $9530.06 S9621.39 $9713.59

n 9 10

A„ $9806.68 $9900.66

97. (a) A sequence is a function whose domain is the set of

positive integers.

(b) A sequence converges if it has a limil.

(c) A bounded munotonic sequence is a sequence that has

nondecreasing or nonincicasing terms and an upper antl

lower bound.

10;i
99. Answers will vary. Example; «(„

101. Answers will vary. Example; «„

103. (a) 52.5(10.000.000(0.8)"

II + 1

?>ir - II

ill- + 1

)

Year 1

>

Budget $2,000,000,000 $1,600,000,000

Year 3 4

Budget $1,280,000,000 $1,024,000,000

(c) Conxerges to

105. (a) (i„ = -3.73;?- + lyMn + 084

(b) $1016

107. (a) ((„ = a,
,562,500

567

(b) Decreasing

(c) Factorials incrcLisc more rapidlx than evponenlials

109. I. 1 4142. 1.4422, 1.4142, 1.37i)7.
I ..^480; Converges u> 1

111. (al 1.1.2.3.5.8.13.21.34.55.84.144

(b) 1.2. 15. l.(-.667. 1 (1. I,(i25l>. IM54. 1.6140. 1.617(i. 1.6182

(c) Prool

1 + v'5
(d) p 1.6180

113. True 115. True

117. I 4142. I S478. I,4(il6, 1.4404, 1.4476

lim (/„ = 2

Section <S.2 {page 573)

1. I. 1.25. 1 3<il. 1,424. 1 4(14

3. 3, - 1.5. 5,25. -4,875. 10.3125

5. 3,4.5,5.25.5.625,5.8125

7. Geometric series: r = ^ > 1

9. Geometric series; r = l.(.)55 > I 11. lim <;„ = I
9^=

13. lim a„ =1^0 15. lim a,, = 5 *

17. c; 3 18. b; 3 19. a; 3 20. d; 3

l\. Telescoping series; <;„

1 I

11 n + I

23. Geometric series; r = j < 1

25. Geometric series; r = 0.9 < 1

27. (a) V

(b)

; Con\ eraes to 1

.

11 5 10 20 50 100

s„ 2.7976 3.1643 3.3936 3.5513 3.6078
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(C) 5 69.

(d) The terms of the series decrease in magnitude relatively

slov\ly. and the sequence of partial sums approaches the sum

ol the series relatnelv slowlv.

29. (a) 21)

(b

(c)

II 5 10 20 50 100

s„ 8.1902 13.0264 n.5(-,S5 19.8969 19.9995

(d) The terms ol the series decrease in magnitude relatively

slowly, and the sei.|uence of partial sums approaches the sum

of the series relatively slowly,

31. (a) f
(b)

" 5 10 20 50 100

s.. 13.3203 13.3333 13.3333 13.3333 13.3333

33.

45.

51.

57.

63.

65.

(d) The terms ol the series decrease m iiiagnUude relatively

rapidly, and the set|uence olpailial sums approaches the simi

ol the series relali\ely rapidly.

J 35. 4 37. 2 39. 5 41. ^ 43.
'i

\ 47. \ -(0.1)" = -
2 „^„ 10 9

Diverges 53. Coiixerges

Con\erges 59. Di\erges

See defmitioii on page 567.

The series given hy

V </)"" = (( + III' + tir- +

49. V —(0.01
„'^„4()

55. Dixerges

61. Di\er!;es

5

66

9i

is a geometric series with ratio ;". When < |("| < 1, the series

convertics to the su)ii V ((;'

67. (al .V

(b) /(v)

1
- /

(c)

v < 1

7 1—

^

^

I

Horizontal asymptote: y = 6

The horizontal asymptote is the

sura of the series.

71.

73.

75.

77.

79.

81.

83.

85.

87.

89.

91.

The rei|iured terms loi the luo series are n = 100 and 11 = 5.

respectively. The second series converges at a faster rate.

80,000(1 - 0.9") units

400(1 - 0.75") million dollars; Sum = $400 million

152.42 feet

1/2

(a) -1 + V

1
- 1/2

1

— rh--T^
(b) No (c) 2

$557,905.82; The $1,000,000 sweepstakes has a present value

of $557,905.82. After accruing interest over the 20-year period.

It attains its full value.

(a) $5,368.70'-) I I (b) $10,737,418.23

(CI $21,474,83(147

(a) $1(1.415,10 (b) $1(1,421.83

(a) $118,19(1.13 (b) $118,343.43

01) «„ = 6I10.18326'""-''"" (b) $78,530 million

10000 (c) $78,461 million

9i. Proof 95. Proof

97. Answers will varv. Example: ^ I, ^ (— 1)

99. False, lim - = 0, hut ^ - diveraes.

101. Ealse

V ,„" =
I
- r.

The formuki requires that the geometric series begins w ith /; = 0.

1(13. // - half-hte oflhe drug

// = number of equal doses

F = number of units of the drug

r = equal time intervals

The total amount of the drug In the patient's system al the time

the last dose is given is

T^^ = P + Pc'-' + Pf-*' + + />(.!"' 11"

where k = —(In 2)/H. One lime inter\al after the lasi dose is

given is

'/"„
, I

= Pc" + Pc-" -t- Pc"' + + Pc""

and so on. Because/.' < 0, P.
, ,

—>0 as .v—>cc.
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Section 8.3 (page 580) (c) ((„ - ((„_^ ,
= [S„ - In ii] - [5„ ;

,

- Mil + I )]

1.

7.

13.

19.

23.

25.

27.

Diverges 3. Converges 5. Converges

Diverges 9. Diverges II. Converges

Diverges 15. Diverges 17. Converges

Converges 21. :i; Diverges 22. d; Diverges

b; Converges 24. c; Converges

No. For some series the terms decrease toward (I loo slowly for

the series to converge.

(a) M 1 4 6 8

N 4 31 227 1674

(b) No. Because the magnitude ol the terms of the series is

approaching zero, it requires more and more terms to

increase the partial sum bv 2.

/. > I

See Theorem K. 10 on page 577. Answers will vary. For example,

convergence or divergence can be determined lor the series

.:^, 11- + r

33. N

35.

37.

43.

49.

o. Because V - diverges. V - also diversies. The con-

„'-'i
" " „=m,m„"

vergence or divergence of a series is not delermmcd bv the tirsi

finite number of terms of the series.

Proof

Sf, = l.nSU 39. .S,„ = ()»SIS 41. .V, = 04044

ft,, = 0.0015 ft|„ = o.oy-)? «4 = 5.6 10"

N > 1 45. N > 2 47. ;V > 1004

(a) V —j-j- converges by the /'-Series Test since 1.1 > 1.

y diverges hv the Integral Test since —— i/.v

,~, II In II '. "

"

J, V In V

diverges.

(b) y -!t = 0.4665 + 0.29S7 + 0.2176 + 0.1703

+ 0. 1 393 + •

y = 0.7213 + 0.3034 + 0.1 S03 + 0.1243
„-~2 " In "

+ 0.0930 + •

(c) II > 3.431 10"

51. (a) Let/(.v) =
1 /.v. / is positive, continuous, and decreasing on

fl.co).

1 <
f;

;/.V = In II

S.. > -tl.x = InOi + I)

So, Indi + 1) < S„ < 1 + In II.

(h) Indi + I) - In II < S„ - In ii < 1.

Also, ln(ii + 1) - In i; > for ii > 1. So, < 5„ - Ini; < I

and the sequence | a„ \ is bounded.

- ,/.v >
,V II + I

So. II,, > ii„
. |.

(dl Because the sequence is bounded and monolonic, it

converges to a limit, y.

(e) 0.5822

53. Diverges 55. Converges 57. Converges

59. Diverges 61. Diverges 63. Converges

Section 8.4 {page 587)

I. (a)

t
,>'-^

< 1

h /A "

6
4 -

V/J^ + O-.T

- V, <

t
X l.:„

6

i *'^^.
rf 1

^.M

3.

9.

15.

21.

27.

31.

33.

37.

I I I I 1 I

(h) V ^r^; Converges

(c) Magnitudes of terms are less than magnitudes ol lerms of

/i-series. Therefore, series converges.

(d) The smaller the magnitudes of the ternis. Ihc smaller the

magnitudes of the terms of the sequence of partial sums.

Converges 5. Diverges 7. Converges

Diverges 11. Converges 13. Converges

Diverges 17. Diverges 19. Converges

Diverges 23. Converges 25. Diverges

Diverges 29. Diverges; /i-Series Test

39.

43.

45.

Converges; Direct Comparison Test with ^ (^)

Diverges; iith-Tcrm Test 35. Converges; Integral Test

lim —f- = liin /III,,

„_» \/ii „ . .-

lim iiti^^ ^ 0. but is finite

The series diverges by the Limit Comparison Test.

Diverges 41. Converges

1

Inn II

5ii^ + 3

So, ŷ
, 5ii-* + 3

*

diverges.

See Theorem S. 1 2 on page 583. Answers will vary , For example,

convergence or divergence of the series

V —^ can be determined bv coniparinu it to the series

3 ^, ir
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47.
Termsor

—
V Tltiiis of

.\y i"/,'
• ^ '—

.

1

•••^

49.

53.

61.

65.

Because < «„ < 1 . < <;„- < <;„ < I

.

Diverges 51. Converges

Convergence or divergence is dependenl on Ihe lorni ol Ihe

general icrni tor ihe series and not necessarily the niagnitnde ot

the terms.

False. Let a = ^ and /i = —;. 57. True 59. Proof
II' ir

y ^. y — 6.^ (a) Proof (b) Proof

lSs/3 „ .

Area = —;:— ; Permieter is mtniite.

Section 8.5 (page 595)

1. b

5. (a)

2. d 3. 4. a

II 1 2 3 4 5

s„ l.UOtK) 0.6667 0.8667 0.7238 0.8349

II 6 7 8 9 10

s„ 0.7440 0.8209 0.7543 0.8131 0.7603

(bl

(c)

(d)

7. (a)

The points alternate sides of the horizontal line y = -/4

that represents the sum of the series. The distances between

the successi\c points and the line decrease.

The distance in part (c) is always less than the magnitude of

the next term of the series.

;; 1

o 3 4 5

S„ 1.0000 0.7500 0.8611 0.7986 0.8386

n 6 7 8 9 10

s„ 0.8108 0.8312 0.8156 0.8280 0.8180

(b)

(c) The points alternate sides of the horizontal line \ = 7J--/12

that represents the sum of the series. The distances betu ecn

the successive points and the line decrease.

(d) The distance in part (cl is always less than the magnitude of

the next term of the series.

13. Diverges

19. Diverges

25. Converses

9. Converges 11. Converges

15. Converges 17. Diverges

21. Diverges 23. Converges

27. Converges

29. 2,3713 < ,S < 2,4937 31. 07305 < S < 0.7361

33. (a) 7 terms (Note thai the sum begins with N = 0.)

(b) 0.368

35. (a) 3 terms (Note that the sum begins with N = 0.)

(b) 0,842

37. (a) 100(1 terms (b) 0.693

39. 7 41. Converges absolutely

43. Con\erges conditionally 45. Diverges

47. Converges conditionally 49. Converges absolutely

51. Converges absolutely 53. Converges conditionally

55. Converges absolutely

57. An alternating series is a .series whose terms alternate in sign.

See Theorem 8,14 on page 5'-tO for the .Alternating Series Test.

59. A series ^ </,, is absolutely convergent il ll! |(i,J converges. A
scries ]£ «„ is conditionally convergent if i^ «„ converges and

- |(i,J diverges.

61. Graph (b) represents the partial sums ol an alternating series

because, by definilion of an alternating scries, either the exen or

the odd terms are negati\e. In this example, the e\cn terms arc

negative.

63. (a) Proof

(h) The con\erse is talse. For e.xample: Let <;„ = \/ii.

65. V ^ com erues, hence so docs V —

,

„-', "- ^ ,r,
"'

67. False. Let ii, = .

II

69. Converges; /)-Series Test 71. Di\erges; (;th-Term Test

73. Converges; Geometric Series 75. Coinerges; Integral Test

77. Con\erges; Alternating Series Test

79. The fnsi lerm of the series is zero. n<it one, ^'ou cannot regroup

series terms arbitrarih'.

Section 8.6 (page 603)

1. Proof 3. Proof

5. d 6. c 7. 1

II. (a) Prool

(b)

8. b 9. a 10. e

H 5 10 15 20 25

s„ 9.2104 16.7598 18.8016 19.1878 19.2491
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Table for 9

(d) 19.26

(e) The more rapidh the termx nt the series approach (). the

more rapidly the sequence of partial sums approaches the

sum of the series.

13. Diverges

19. Diverges

25. Converges

31. Converges

37. Converses

15. Con\erges

21. Converges

27. Converses

17. Con\erges

23. Di\erges

29. Di\erses

33. Proof 35. Converges

39. Diverges 41. Conxerges

43. Converges; Alternating Series Test

45. Converges; /)-Series Test 47. Dixerges; «th-Tcrm Test

49. Diverges; Ratio Test

51. Con\erges; Limit Comparison Test with />,,
= 1/2"

53. Con\erges; Direct Comparison Test with />„ = 1/2"

55. Converges; Ratio Test 57. Converges; Ratio Test

59. Converses; Ratio Test 61. a and c 63. a and b

- ,ll^ 67. (a) 9 (b) -0.7769

69. See Theorem .S.I 7 on page 597.

•^ 1

71. No; the series

73. .Absokitclv

,4^1 II + lo.not

75. Proof

diverses.

Section 8.7 (page 613)

1. d 2. c 3. a 4. b

5. P, = b - 2,v

../^,

7. P,
(4

Pi is the tangent line to the

curve /'(.v) = 4/^ .v at the

point (1.4).

Pi is the tangent Inie to the

curve /(.v) = sec .v at the point

IT ^\
4-"

9. P, 1 ) + ^(.v

\
\.] 4i

X O.S 0.9 1 1.1

f(x) EiTor 4.4721 4.2164 4.0000 3.SI-19

P2ix) 7.5000 4.4600 4.2150 4.0000 3.8150

X 1.2 T

f(x) 3.6515 2.8284

PzM 3.6600 3.5000

11. (a)

"X ';

1 ,.

X
''-\

(b) /i-HO) = -1

/'-"(O) = 1

/""(O) = -
I

(c)./'"'(0) = P„"

P,'-'(0) = -
I

Pj"' (0) = 1

P, "'{()) = -
I

'(0)

13. I
- .V + iv- -

s-^-'
15. I + 2.V + 2.v' + V + t-v*

17. A - ^.r' + j^r^v^ 19. .V + .V- + Iv' + /,v*

21. I
- .V + .1- - .V-' + .v* 23. I + i\-

25. I
- (.V - 1 ) + (.V - I )^ - (.V - I

)•' + (.V -
1
)•

27. I + i(.v - 1) - s(v - n- + irM - 1)-' - T5;(.v - 1)^

29. (.V- 1) -kx- ])- + }U- D' -i(.v - 1)^

I , 1,2-
31. (a) P.(.v) = .V + -V' (b) P,{x) = .V + -.v' + — v"

.1 3 1?

(c)0,(.v)=l+2(.v-f) + 2(.v-f)^|(.v-^y

.J
^Ta

33. (a)
X 0.25 0.50 0.75 1.00

sin.r 0.2474 0.4794 (16816 0.8415

fiCv) 0.25 0.50 0.75 1.00

Pyix) 0.2474 0.4792 0.6797 0.8333

PAx) 0.2474 0.4794 0.6817 0.8417

Pjix) 0.2474 0.4794 0.6816 0.8415

(b)
i;y

i

-ly

(c) As the distance increases, the polynomial approximation

heconies less accurate.
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35. (a) P,(A-) = A- + ^A-'

(b)

X -0.75 -O.SO -0.25 0.25

/(x) -0.848 -0.524 -0.253 0.253

Piix) -0.820 -0.521 -0.253 0.253

X 0.50 0.75

f(x) 0.524 0.848

P,(x) 0.521 0.820

(c)

V

37. 3*).

41.

47.

53.

57.

59.

61.

0.6042 43. 0.182.^ 45. R^ < 2.03 Ur-^

R, < 7.82 10 " 49. 3 51. 4: 0.4055

-0.3'-)36 < A <

The graph of the approximating polynomial P and the elemen-

tary function / both pass through the point (c.f(c)). and llic

slope of P is the same as the slope of the graph of / at the point

((-',/(c')). If P is of degree ii. then the first ;; deri\ati\es of/ and

p agree at c. Tliis allows for the graph of I' to resemble the graph

of/ near the point (c. /'I<)l,

See "Definition ol ;(th Ta\loi Polynomial and //ih .Maclaiuin

Polynomial" on page 607.

As the degree of the polynomial increases, the graph of the

Taylor polynomial becomes a better and better approximation of

the function within the interval of convergence. Therefore, the

accuracy is increased.

(a) fix) = PjIa) = 1 -I- a -I- -V- + -V' +
1 , 1 ,

' -V

'

6

Q4.X} = xP.ix)

(h) ,i,'(v) = P„(a) = A-

V -I- A- -I- -V-' -1- -V*
2 6

1

24"
+ rr.v-''

3! 5!

(c) ,i,'(A) = P,(x) = I - ^ + ^

63. (a) Q,(x) 1 + -(A + 2)^

(b) RAx) = -1 +— (a - 6)-

(c) No. Horizontal translations of the result in part (a) are

possible only at a= -2 + S;i (where /; is an integer)

because the period of/ is 8.

65. Proof

67. As you move away from a = c\ the Taylor polynomial becomes

less and less accurate.

Section 8.8 (page 623)

1.

11.

19.

27.

35.

37.

39.

41.

43.

45.

47.

(I 3. 2 5. « =
I 1. R = \ 9. R = -^

(-2,2) 13. (-1.1] 15. (-OC, oc) 17. A =

(-4.4) 21. (0, 10] 23. (0, 2] 25. (0. 2c)

(-3.3) 29. (-^.^) 31. (-1.1) 33. A = 3

(a) (-2.2) (b)(-2.2) (c) 1-2.2) (d)[-2.2)

(a) (0.2] (hi (0,2) (c) (0,2) (d) [0.2]

c; ,S, = 1, i\ = 1.33 40. a; 5, = 1, 5, = 1.67

b; diverges 42. d; alternating

A series of the form

V i,Ja - c)" = <;„ + (/|(a - c] + <(,(a - ()- +
II - u

-I- ajx - c)" +

is called a power series centered at i . where 1 is a constant.

1

.

A single poml

2. An interval ccnteretl at c

3. The entnv real line

(a) For /(a): (-^, zc): For o(a): (-ccoc)

, ,,,, , ^ (-1)"(2» + D.v-" ^ (-1)".v-"
,

,

;/ = ()
y-"'-

49.

„ ^

^(-1)"2/;a-"-'
(c),^.'(.v) = ^V^

2;;^

=

(dl fix) = sin a; gix) = cos a

^ 2;M2» - 1)a-

y - -^3- - y = 1 ^^;r-

^ (-l)"v-"-' _ ^.,
,

2"»!

^ 2(n + l).v-"[(2/i + 1) - (2/1 + D] ^ ^
2"' '(;; + 1)!

51. (a) lim

(_,)i+i^.2t + :
2-'(/l-!)-

lim
-"-[(A- + 1)!]= (-l)*.v-'

The interval of convercence is (
— re, dc).

(-l).v-

Mk + 1
)-

V(- 1)^-^1
"

+

V ( - I
)*

+
'

——
-I- Y ( - 1

)' -^

,4',, 4'*'(A+1)!A! ,4 4MA-!)-

-4A - 2 2^ (-l)V-
ki 4'(i-!)-^

Ak + 4

Xk -1-4 4/.- -(- 4 Xk + A
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(c)

,..

/
1

27.

(d) 0.42

53. /(a I
= cos.v 55. fix)

1 + -V

57. (a) :^

(c) The alternating series con\erges more rapidly. The partial

sums of the series of positive terms approach the sum from

below. The partial stims of the alternating series alternate

sides of the horizontal line representing the smn.

(d) M 10 100 1000 10,000

A' 4 9 15 21

59. False. Let (/ = —:;— . 61. True
111"

Section 8.9 (page 630)

1 y ^1. :, f
'-1'"-^"

* Zj 1"*I Zj T'-I

(2.8)

9. J-V

13. y

-(.V + ?,) II. - y

(-2.2)

15. V,-„[, +(-|)"] = 2 2.v^"

(-1.1) (-1.1)

17. 2i.v- 19. liii-W.-' 21. Vi^l^

(-1.1) (-1.1) (-1.1]

23. y (-l)".v-" 25. V (- i|"(2.v)-"

(-1.1) (-\A)

X 0.0 0.2 0.4 0.6 0.8 1.0

^2 0.00(1 0.1 so 0..^20 0.420 0.480 0.500

ln(.v + 1) 0.000 0. 1 .S2 0.336 0.470 0.588 0.693

5. 0.000 0.18? 0..?4I 0.492 0.65

1

O.S33

l'
S

/ ''V:

29.

33.

35.

39.

c 30. d 31. a 32. h

/Ivl = arctan \ is ,in odd lunction (symmetric to the origin).

(1245 37. (I 125

(a) y iL\" '. -
I < .V < I

(b) 2 iix". -
I < .V < 1

(c) y (2/1 + Da". -
1 < .V < 1

(d) V (2« + Da -
I < A < I

41 Fill) = 2. Because the probability of obtaining a head on a

single toss IS 1. it is expected ihal. on a\crage. a head will be

obtained in iwo tosses.

43. .Since

45. Since

1 1

I + .

= 5

I - (-A)

1

-. substitute (-a) into the ecomclnc

subslilLile (-a) into the i;coniet-

47.

51.

53.

55.

57.

I + A \ I - {-X)l

ric series and Ihcn multiply the series by 5.

Proof 49. (a) Proof (b) 3,14

In
;^
~ 0.4055. See [ixercise 21.

In ? = 0.3365; See Exercise 51.

arctan t = 4636; See Exercise 54.

The series in Exercise 54 converges to its sum at a slower rate

because its terms approach at a much slower rate.

59. -0.6931

Section 8.10 (page 641)

1. y

5- 1

(2.v)"
3. ^^ y

(-1)"(A - 1)""

/; + I

(_l)n,„+l

^ ^ (-1)"(2a)^"^

(2;j + D!

"•
'
+ 2T + ^ +

13. y (~i)"(/i + D.v'^

11. Proof

15. 1 +
(-l)"l 3 • 5- -(2/1 - n.v-
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17.
1 + ^ + 2

(-1)""1 3 5 • -i:;; - 3)a-"

21. V<-""'--^'"^
(2» +1)!

[
1. v =

33. Proof

35. /%(.v) = A- + A-' + iv' - j^y\^ +

(2» + 1)!

„-t'„ (2/) + 1)!

1

1

1

1

\
-'

J 1

.

1 1

37. F,{x) = A- - Iv- - sa' + iv"^ +

1''

/

\XI = A- - V- + TA- - TA

/

"""

/
/',

41. ;i; A ~ A sm a 42. b; y ~ a cos a' 43. c; v = .xe'

44. d; \= A-
1

45. V
,_l)(-Mii^-:„ + ^

,A -
1 / „'-^„(2/i + ^){ll + D!

47. I)W3I 49. 7.3Ni)| 51. I) 53. I)»46l

55. 0.7040 57. 0.2010 59. 0.3413

61. P^tx} = .V - 2.v' + ix^

-hP^

63. P,(a) = (a - 1) - ^(a - !)' + ^,(x - \y - i^lA - 1)5

65. See "Guidelines for Finding a Taylor Series" on page 636.

67. (al Replace A witli -,vin the series for f'.

(h) Replace a with 3v in the series lor e\

(c) Multiply the series for e' by a.

(d) Replace a with 2a in the series for e\ Then replace a with

69. Proof

71. (a)

'2a in the series for i-'. Then add the two together.

(b) Proof

't (c) 2 ''-^"" = 0*/(a)

73. Proof

Review Exercises for Chapter 8 (page 643)

5. d 6. b

Converges to 5

9. Converges to 11. Dixerges

13. Converges to 15. Converges to

7. (a)

n 1
1 3 4

A„ $5062.50 $5125.78 $5189.85 $5254.73

n 5 6 7 8

K $5320.41 $5386.92 $5454.25 $5522.43

(b) S821S 10

9. (al

k 3 10 15 20 25

s* 13.2 113.3 873.8 6648.5 50.500.3
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21. (a)
A- 5 10 15 20 25

s, U.4597 0.4597 0.4597 0.4597 0.4597

(h) 1_

23. Converges 25. Di\erges 27. 3 29. 3

31. 2(0-09)(0.0ir = 77 33. 457 meters 35. S50S7.14

37. Converges 39. Di\erges 41. Converges

43. Di\erges 45. Converges 47. Di\'erges

49. Converges 51. Di\erges

53. (a) Proof

(h))

n 5 10 15 20 25

s„ 2.8752 3.6366 3.7377 3.7488 3.7499

(c) 4
,

(U) 3.75

55. (a)

N 5 10 20 30 40

1 .4636 1.5498 1.5962 1.6122 1.6202

0.2000 o.iono 0.0500 0.0333 0.0250

(b)

N 5 10 20 30 40

1.0367 1.0369 1.0369 1 .0369 1 .0369

— dx
J.v -v"

0.0004 0.0000 0.0000 0.0000 0.0000

The series in part (h) converges more rapidly. This is evident

from the integrals that give the remainders of the partial sums.

57. P,(.v) = 1
- ^ + — - 77 5^- '-).996 61. 0.560

63. (a) 4 (h) 6 (c) 5 (d) 10

65. (-10. 10) 67. [1.3] 69. converges only at .v = 2

71. .v-y" + .vv' + .v-y

^ ^ (-1)""'(2» + 2)(2» + l).v-" + -

„4 4"*'[(» + 1)!]-

^(-l)-'(2» + 2).v^--^

f ,_i)„^^:^ = o
„4 4"-'[(„+ I)']- „4',, 4"(„!)-

73.

77.

79.

81.

85.

87.

91.

93.

95.

99.

Sti^i ''^^" 1 < .V < 1

fix)
3 3

T 1

72 - (-1 )"'"""-'-

-I 2j ,,i

f^^ 83. -y(.v+ir

a; _ 2Af 6a^ _ 2Lr|
^

5 25 ^ 125 625

In J
= 0.2231 S9. c''- = 1.6487

cos I
= 0.7859

The series for Exercise 41 converges to its sum at a slower rate

because its terms approadi at a slower rate.

^v + 2.V- + -v'
„^„(2/i + 1)(2/; + 1)!

^ (-l)"v"-

(/i + D-
1(11. (I

P.S. Problem Solving (page 646)

I. (a) 1 ibl .Answers u ill vary. Example: 0, 7. ^ (c)

3.
8

5. (ai R = \: .Sum =

(h) R =
\ . .Sum

3.V- + 2.V + 1

1
- .v'

1 - .V''

7. y

9. Let,

'Jl

i\ '

.f-'^ n'Aii + 2)

sin .\

l.\ = 1,8519
-V

-</.v = -0.4338

ilx = 0.2566

"j
sm .V

</.v = -0.1826.
.V

It follows tliat the total area is

sin v

v

i/.v = [(, — (;, + (/, — ((4

Also, lim ;/„ = and < i/,,
, ,

< «„, Therefore, it follows by

the Alternating Series Test that f,^' f(-\) d\ converges.

11. (a) <;, = 3. «, = 1.7321,,(, = 2.1753.04 = 2.2749,

c(5 = 2.2967. ((,, = 2.,3()15

1 + yT3
Proof; L = r

(b) Proof; L
I + VI + 4£V
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13. (a) l-s. y.33. ^

(b) lull \-^

1

-)(/:+ 11 +

(

-11"-'

r—.3C
1

2" + (- 11"

lim

-).. + (- II"

Tl;i+ ll + l-ir

Therefore, the Ratio Test is inconclusive

Does not exist

(c) liiii i' |((„|
= hill W — I 1

I
-

1

1"
-I

-. Therefore, bv the Root

Test, this series converges.

15. S„ = 24(1: S, = 440; 5^ = SIO; 5„ = 1490; 5,,, = 2740

29. Center: (0,0)

Foci: (±y3,0)

Vertices: (±2.0)

31. Center: (1,5)

Foci: (1,9), (1, 1)

Vertices: (1, 10), (1,0)

4

Chapter 9

Section 9.1 (page 660)

1. h 2. a 3. e

5. f 6. g 7. c

9. Vertex: (0.0)

Focus: (-io)

Directrix: .v = i

4. b

8. d

13. Vertex: (-1,2)

Focus: (0,2)

Directrix: v = - 2

17. Vertex: (j, ~\)

Focus: (O, -\)

Directrix: .v = ^

—

•—•———

'

11. Vertex: (-3,2)

Focus: ( — ^, 2)

Directrix: .v
=

15. Vertex: (-2,2)

Focus: (
— 2, 1)

Directrix: x - 3

19. Vertex: (-1,(1)

Focus: (0,0)

Directrix: .v = -2

21. V- - 4\' + S.v - 20 = 23. .V" - 24y + 96 =

25. .V- + V - 4 = 27. 5.v= - 14.v - 3v + 9 =

33. Center: (-2,3)

Foci: (-2, 3 ± v/5)

Vertices: (-2, 6), (-2, 0)

75

35. Center: -,

Foci:

Vertices: I
- ± v 5- -

1

To obtain the graph, solve for v and get

V, = -
1 +

/57 + 12v - 12.V-

20
and

1

/57 + 12.V - 12,v-

20

Graph these equations in the same MCWing window.

37. Center:
( t,

-
1

'3

Foci: v/2, - 1 2, -
1

Vertices: I -;!:, -1 |,(?, -1

To obtain the graph, soke for v and get

V, = - 1 +
/7 + 12.V - 4.v^

and

V, = -
1

- h + 12.V - 4.V-

Graph these equations in the same viewing window.
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45. Center: (0.0)

Foci; (0,±v/5)

Vertices: (0. ± 1

)

(v - 3)- (y - 5P
M 16

49. Center; (2. -3)

Foci: (2 ± v'To. -3)

Vertices; ( 1. -3). (3. -3)

53. Center; (I. -3)

Foci; (l, -3 ± 2^^5)

Vertices: (l. -3 ± s 2)

47. Center: (1.-2)

Foci; (l ± v'5. -2)

Vertices: (-1. -2). (3.

51. Degenerate liypcrbula

Graph is two hncs

V = - 3 ± \{.\ + 1

)

intersectini; at (- 1. -3).

55. Center: (1.-3)

Foci: (l ± -. To. -3)

Vertices: (-1. -31.(3.-3)

1 1

65. (a) (6. v'3); 2.v - 3y3y -3 =

(6. - ^/3); 2.V + 3v^3y - 3 =

(h) (6. J3): 9.V + 2y3y - 60 =

(6. - y3): 9,v - 2^/31- - 60 =

67. Ellipse 69. Parabola 71. Circle

73. Circle 75. Hyperbola

77. (a) A parabola is the set of all points (a. y] that are cqnidistant

from a fixed line and a fixed point nut on the line

(b) For directrix y = k - p: (v - /;)- = 4/>( \' - k]

For directrix .v = h - p: (y - k)- = 4p{x - /;)

(c) If P is a point nn a parabola, ihcn ihc tanyenl line to the

parabola al /- makes ciiiial angles « itli ihc Ime passing

through H and the focns, and with the Ime passing through

P parallel to the axis of the parabola.

79. (a) A hyperbola is the set of all points (a. v) for which the

absolute value of the difference between the distances from

two distinct fixed points is constant-

(X - h)- ( V - k)-
(b) Trans\erse axis is hori/onlal: ^

p, — 1

Ti"ans\erse axis is \ertical
( V - kf (.V - /))-

/>-

(c) Transverse axis is hon/onlal:

/> /'

y = k + -(a - h) and v = k - -{\ - /;)

(/ II

Transverse axis is \erlical:

V = A + 7(v - /() and y = k ~ j{.\ - h)

81. J meters 83. \ = 2((a,|A — <(a„-

85. (a) Proof (b) Proof

2 v'3 2 s 1

87. .V|, = -4—; Distance liom hill: ^^ ^
'

89.
16(4 + 3v'3 - 2tt}

l.'i.-S36 si|uai"c led

91. (a) V =

<b) 10

93.

As /' increases, the graph of

A- = 4/M gets wider.

97. The tacks should be placed E.^i feel from the center. The string

should be 2(1 = 5 feet lom.',

99.

A + P = 2a

A + P
a =

A + P „ A - P
a- P = —^ P = -^

(A - P)

2 _ A - P

{A + P)
~ A + P

101. c = 0,%72 103. (0. t)

105. Minor-axis endpoints: (-6. -2). (0. -2)

Major-axis endpoints; (-3, -6), (-3. 2)
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107. (a) Area = 2it 3. 2.x ~ }x + 5 = 5. v= (.V- D-

8?
(h) Volume = —

^,f M ,

^'^(9 + 4v'377) _

(c) Volume -

47t[6 + y? In(2 + v/3)

^-)r 111 ai) 111 '' " ^'' ^' ~ -''
1109.

115. _^ ^

117. Proof

11.. . = ^^^^^^^ = 6.538

V = '^"7^- . 3.462

121. There are lour points of intersection.

lac h-
At

.-'2,r - /)- ^/'2^/2^

are i' ' = — and v ',,

tlie slopes ol the tangent

Since the slopes are negative reciprocals, the tangent lines are

perpendicular. Similarly, the curves are perpendicular at the

other three points of intersection.

123. False. See the definition ol a parabola. 125. True

127. false, y- — .v- + 2.v + 2y = yields tw,'o niterscctmg lines.

129. Trtie

Section 9.2 (page 672)

1. (a)
t 1

T 3 4

X 1) 1 Jl v'3
1

y 1 -1 — 2 -3

(b)and(c)

7. V = kx-'^

11. V
.V + 1

15. y = -v' + 1. .V >

19. .V- + V- = 9

9. \' = .V- - 2, .V >

.^ 4 ^ 6

13.
V - 4

17. V = -, l.vl > I

.V

21. ^ + ^ = 1

16 4

^-_ _--'

(d) \ = \
- X-. .V >
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4 16 -fs-^'

A
u

,
-y

~-v

29. V = In .V 31. V = — v >

33. Each curve represents a portion ot tiie line »' = 2.v + I.

Doiiuiiii Onciiliilitii] Siiiimlh

(a) — cc < .V < CO Up Yes

(b) - 1 < .V < 1 Oscillates No. ^, = ^. =
ell) ilH

when

= 0, ±TT. +27r

(C) < A < ^ Down Yes

(d) < .V < DC Up '^es

35. (a) and (b) represent the parabola v = 2( I
- V") for

— 1 < .V < 1. The curve is smooth. The orientation is trom

right to left in part (a) and in part (b).

37. (a)

(h) The orientation is reversed.

(c) The orientation is reversed.

(d) Answers will vary. For example.

.V = 2 sec f A = 2 sec(-r)

v = 5 sin r y = ."i sin(-r)

have the same graphs, but their orientation is reversed.

39. y -
y,

43. A = 5r

Ma

(.Solution is not unique)

47. A = .S cos

y = 3 sin «

(Solution is not unique.)

,, (a-/))-
,

(v -/.-)- _
41. ^ I- , -

(/- h~

45. A = 2 + 4 cos

y = 1 + 4 sin

(Solution IS not unique.)

49. A = 4 sec H

y = 3 tan

(Solution is not unique.)

51. A = /

y = 3i - 2;

.\ = I - -1

\' = 3? -
1 I

(Solution is nol unK|iie.)

55. ^

53. .V = r

y = t\

A = tan t

y = tail'/

(Solution IS not unique.)

57.

Nol smooth ulien = Ziitt

59. i 61.

V.
_..--"' ""v__

Not smooth when = ^iin

63. See page bb5. 65. See page 670.

67. d 68. a 69. b 70. c

71. A = 1.10 — h sin (*: y = u — b cos

73. False. The graph of ihe parametric equations is the portion of the

line 1- = A when » > 0.

75. la) A = (^'cos 0)r. v = 3 + (^' sin ())/ - l(v-

(b) 30 (e)

Not a lioiiic run

idl 14 4

Section 9.3 (page 681)

Home run

1. 3. -I

d\ _ 3 d-y

dA
" 2" dx-

0; neither concave upw.iid nor concave downward

7.f^2,.3.f^^2d\ dx-

d\ d-y
At / = — 1,

-^ = I. —^ = 2; concave upward
(/a dx-

„ d\ d-\ CSC'
9. -= -cotR — = ^dx dx- 2

At(^ = -.^= -I. —; =
4 dx dx-

11. — = 2cscf^. ^'= -2eot'tt
</a </.v-

77 (l\
,

d-Y , A" J I

At M = — .
^ = 4. —T = — 6V3: concave downward

6 dx dx-

'2; concave downward
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,
, dv tl-Y sec^ e CSC 8

13. -j- = -tan H. — =
I /a i:/.v- 3

77 (Ix il-\ 4s/2
At (^ = —

.
^ = —

1

.

—^ = —:,— ; concave npv\ ard
4 (/a il\- 3

15. (-^. ^): 3y3A- - 8v +18 =

(0. 2): V - 2 =

(2v'3, :^): ^/3a + .S\' - 10 =

17. (a) and (d)

\,

(h) At ; = 2. — = 2, -7 = 4. and -7-

Jt JI I /a

(c) V = 2a - .T

IM. (al and (dl

*

ilx , (/\ (/\'

(b) At ; = - 1. — = -3. "T = 0. and -j- = 0.
lit cit d\

(c) V = 2

21. V = ±]\-

23. Hon/onlal: (1.0), (
- 1. 77), 1 1. - 2 7r)

Vertical: I ^. I 1. I
- l- - 1 1 (^, 1

25. Hori/ontal: (1.0)

Vertical: none

27. Horizontal: (0, -2), (2. 2)

Vertical: none

29. Hon/onlal: (0. 3). (0. - .M

Vertical: (3.0), (-3,0)

31. Horizontal: (4.0), (4, -2)

Vertical: (2, - I), (6. - I)

^ }(.\iii t'--" %<.

ii. Horizontal: none

Vertical: (1.0), (- 1,0)

ttrv,

35. 275 + ln(2 + 7?)= 5.916 37. ^/2( 1 - f/-) * 1.

39. ]3[ln( v^ + 6) + 6^37] = 3.244 41. 6<; 43. 8((

45. (a) 35 (b) 219.2 teet

(c) 230.8 feet/
--

x^

/
'l

(d) Tlie range is maxiniized when H = 4.1 ; the arc length is

niaxiniized when H = 90".

47. (a)

(b) The average speed of the particle on the second path is twice

the average speed of the particle on the first path.

(C) 477

49. (a) 3277v'5 (b) I677v^ 51. 327r 53.
-'^^

55. See Theorem 9.7. Parametric Form of the Derivative, on page

675.

57. Answers will vary. Example:

59. Sec Theorem 9.8, Arc Length in Parametric Form, on page 678.

61. 2 77/-(l - cos «) ''-^- (t-^!
'" ~'

69. d 7(1. b 71. f 72.

75.

65. M^TT 67. ^^

73. a 74. e

(a) Circle of radius 1 and center at (0. 0) except the point

(-1,0)

(b) As I increases from -20 to 0, the speed increases, and as t

increases from to 20, the speed decreases.
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77. Pais
</-v dt

«'(')

[/'(')

dx- fll)

Section 9.4 {page 691)

f(t)g"(t) - g'(t)f"(i)

(0.4)

(V2,2 36)

(- 1.(104.0.9%)

H \
1-

11. v/2.-

(:s{u, -:(».si

,"^7^

15. (,\606. -0..iS8)

19. (a)

(4. 3.5)

H 1 h-

1-2.2. .^) = (-2. .r464)

(-.1 54. .1 541 .1

H \ \ Y-

13. (5. 2.214). (-.^. .^.3.^(1)

-A—I

—

\—

I

1—

17. (2.833. 0.4'-)())

(b)

21.

25.
3 co.s y — sin W

29.

a. y.v- + \'- = arclan

'

37. i) < < 2-

H 1
i h-

H ft-

41. - - < « < ;t

23. ) = 4 CSC e

27. r = 9 CSC- cos B

H 1

—

\ ! i—K-

1 4 5 (. 7

31. .v= + V- - V =

35. .V -3 =

39. < f* < 27

43. < « < 477

H 1 1 1-
m-y
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45. < H < -/2

47.

49. 2

(V - /))- + (v - kf = If + /.-

Ccnlci: III. k)

Radius: ^ If + k-

51. 5.6

</v _ 2 cos (^(3 sin ^ + 1)

d\
~

6 cos- rt - 2 sin 9-3

/. -\ </v

(2. 77):

</.v

=

2 / d\

55. la) and (b) 57. (a) and (h)

~\

(c) -
1

59. Hori/nntal: 2.

(c) - v3

37T\ /I 77\ / I 57T

Vertical:

61.

63.

3 l-\ /3 II-

377

10.0). I 1.4142. 0.7,S54),

11.4142. 2. 3.5h2)

65. (7. 1.57()S). (3. 4.7124)

67. (< = 69. = -

71. B

79.

83.

87. 77771

73. (9 = 0,

^-
77.

81.

85.

89.

\
'1

"4*7

91.

93.

95.

The rectangular coordinate system is a collection of points of the

form (.V. \). where .v is the directed distance from the v-axis to

the point and y is the directed distance from the .v-axis to the

point. I:\cry point has a unique representation.

The polar coordinate system is a collection of points of the form

(/, 9), where r is the directed distance from the origin O to a

point P and is the directed angle, measured counterclockwise,

from the polar axis to the segment OP. Polar coordinates do not

ha\e unic|ue representations.

/ = I/: Circle of radius <; centered at the pole

W = />: Line passing through the pole

c 96. b 97. a 98. d
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99. (a)

111. (//= -60°

A "y

;

113. Tiiic 115. True

(c)

101. Proof

103. (a) r = 2 ~ sin| W - -

v/2(sin H- cos«)

(c» ; = 2 + sin

(b) 1=2+ cos H

105. (a)

(d) 1=2- cos H

(b)

Section 9.5 (pai>e 700)

1. 1(1- 3. T 5. - 7. ^

9.

!--3.'3
II. 77 + 3^/3

13. II.?. I. ^''l (0,01

15.
37t\ 2 + J2 In

10.0)

''•
irbl-if-i:'^-*"-'" •'^-

•-•^'•'-•-^'

n.
,:,-,-^).(^.Tf).(=.^

23. (-o,.SX I. ±2,0(17). (2.,-iSI. ± 1.376)

4

,- = :fii!

1

1

1

"
/ ^ : + .1 u>s

25. ((I. 0). (0,935.0.363), (0,535. -1.006)

The graplis rcacli tlie [lole al dilTcrciit times (W-values)

107. 4' = - 109. i/- =

[^

27. 1(477- 3V3)

^4-
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29. II; 31. |(47T- 373) It follows that

^^

33.

37.

^ 35. ^,.-2,

(a) (,v" + y-)-'- = ((.V-

Ih)
I57T

39. The area enclosed by the function is
—— if ;/ is odd and is

—

—

4 _

47.

it 1! IS c\cn.

41. 2 77,/ 43. 8

4S. 4

_y

= 4 10 = (J.7I

49.

,"")

C)

= 4.39

51. 367T
I + 4,/-

;</) 55. 21.H7

57. Area = - r,/«; Arc Icnttth =
•-'ir-

59. The integral (al yields the correct arc length.

61. 477-,//)

63. False. The graphs of /(fy) = I and,i,'(fi) = -1 coincide.

65. In parametric form.

Using H instead of ; gives .v = /cos (^ and y = csin ii. Let

/ = /( H). Now we have .v = /'( d) cos % and y =' f{ H] sin f).

So. — = f'iO) cos e - J{<n sin (I and

ih

(contiiiiii'ilj

ne)sin +/(Wcos H.

+ IjlH) sin + f{H) cos H]-

Therefore, ,v = v/[./'(«)]- + [,/"(«)]- 'IH-

Section 9.6 (page 707)

1. J

61

<=
1 <1 ,

.=05

N \ ./
,-

1

\\/^ /:-

,:t
--..,

(a) Parabola (al Parabola

(b) Ellipse (b) Ellipse

(c) Hyperbola (c) Hyperbola

5. (a) Ellipse

As f—>l . the ellipse becomes more elliptical, and as

t'~^0\ it becomes more circular

(b) Parabola

(c) Hyperbola

As t' -^ 1 \ the hyperbola opens more slowly, and as e^ca.

it opens more lapidly.

so .=11
^ . = 1 .s

"^
/' ..--

.^IV.,

7. c 8. f 9. a 10. e 11. b 12. d

13. Parabola 15. Ellipse
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17. Ellipse

21. Hyperbola

25. Parabola

27. Rotated 7r/4 radians

eounterclockw ise

31. /
=

33.

5 + 3 cosl e +

I

I
- cos

23. Ellipse

£_J
N

29. Rotated 7r/6 radians

clockwise

^^

I

2 + sin e

37. /- =

41. ;

I + 2 cos e 1 - sin ft

5 + 3 cos « " ' 4 - 5 sin d

45. If < (' < I. the conic is an ellipse.

II c =
I , the conic is a parabola.

If c > 1. the conic is a hyperbola.

47. (a) Hyperbola (b) Ellipse

(c) Parabola (d) Hyperbola

9
49. /•- =

53. 10.88 55. /

51. )-
16

I - (16/25) cos= ft ' 1 - (2.'S/9)cos-ft

345.996.(X10

43,373 - 40.627 cos ft'

I 1,004 mile

57. /• =
92,931.075.2223

1
- 0.0167 cos ft

Perihelion; 91.404,618 miles

Aphelion: 94,509,382 miles

59.,-=
^^^^'""

I
- 0.2481 cos ft

Perihelion: 4.436 10" kilometers

Aphelion: 7..V-i4 10'' kilometers

61. (al ^>.?41 10'^ square kilometers: 2 I 867 years

(b) 0.89'-'5 radians. Larger angle with the smaller ray to gener-

ate an equal area

(c) Part (a): 2.5,5q lo" kilometers: 1,17 lO'^ kilometers

per year

Part(h): 4.1 |M • 10" kilometers; 1.88 lO'' kilometers

per year

cd
,

ed
63. Let and /,

1 -f sin ft
"

-
I
- sin ft'

The points of intersection of r, and /, are (cd. 0) and (ed, it).

The slope of the tangent line to ;, at (cd. 0) is - 1 and at (cd. tt)

is 1 The slope of the tangent line to /-, at ((</, 0) is I and al

(cil. 7t) IS - 1. Therefore, at (<</, 0), ni^iiir = -
I and at [cd. tt),

;»i»!t = —
1 and the cur\cs intersect at right ;ingles.

Review Exercises for Chapter 9 (page 709} ^ ^

1. d 2. h 3. .1 4. c

5. Circle 7. Hyperbola

Center: (\. -\) Center: (-4,3)

Radius; I Vertices: (-4 + ^2,3)

9. Ellipse

Center: (2,-3)

Vertices:

-H 1
1-

11. y- - 4v - 12.V + 4 =

13.^:^-^ + ^=1
2.5 21

15. ^ - ^
16 20

I

17. 15.87 19. 4v + 4y - 7 =

21. (a) 1 92 77 cubic feet (b) 7057..^ pounds

(c) 4.212 feet (d) 42^). 105 square feet
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23. 4x + X\ -11=0 (c)

31. v = 4 cos 0-3

V = 4 + 3 sin H

i5. id)

33.

/^-,,^__

~~~^—
-1^ _,'

(b) From v = 2 cot H. it follows that cot (* = -.

.Substitutmg into y = 4 sin 9 cos H results in

r = 4
V- + 4/\ V-V- + 4

This siniphties to ^ = —r"^

—

~ or S.v = (4 + .\-)\.

x~ + 4

cl\ 3
37. Ici) -p = —

; Horizontal tansents: none
ilx 4

- 3.V + 1

1

(b) V = ; (c)

39. (a) -r- = —2i~: Hori/onlal taneents; none

(b) y = 3 +

H 1 1 h\ 1 1—(—

H

,/v ll - ])l2i + 1)^ ^
,

/I ,

41. (a) — = ; ^
; Horizontal tans^ents: -. —

I

cLx t-(l - 2}-
"

\3

(b) y
4.V-

(5.V - 1 )(a -
I

)

(c)

(\

43. (a)
"— = -^cot il-. Honzonuil lan"ents: (3, 7), (3, -3)
(/\ 2

,

( V - 3)- ^ (V - 2)^
,

<b) : + -^r-— = 1

45. (a) -p = -4tanM; Horizontal tanszents: none
i/v

(b) A-/-' + (y/4)-" = 1 (c)

47. (a) and (c)
, rfv , dx ilx 1

49.

51.

H 1 1
\

1- ^^'^f -4v'2,^
371
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53. .V- + V- - 3.V = 55. (a- + y- + 2.v)- = 4(.v- + y-)

,/4 - .V

57. (a- + y-V- = A- - !- 59. \- = .\-<
,

\4 + A

61. ;• = (( cos- 0sn\ ti 63. r- = n-H-

65. Circle 67. Line

69. Cardioid

73. Rose curve

77.

71. Liniai,on

75. Rose cur\ e

79.

•^e

81. (a) ±-

(b) Vertical: (- 1. 0). (3. tt). (3. ± 1 .318)

Horizontal: ( -0.6X6. ±().5fiS). (2.1.%. ±2.206)

(c)

83. arctani -^^1 = 49.1°

85. r, = 1 + cos $: /, = 1 - cos $

The points of intersection are I 1.^,1 1 . ^
_ -sin- + cos e{\ + cos 0)

'"'• ~ -sin Ocos (y - sin «(1 + cos 0)

m,^ atfl.^j = 1; n,,^ at ( l.^j = -
1

sin' e + cos 0{ 1 - cos 0)

sin «cos H - sin 0(1 - cos 0)

m„at(l,|) =

1

l.n, atll.^U I

So. I and the graphs are orthogonal.

87.

A = 2|t] I (2 + cos 0)-d0= 14.14

89.

^£2
sur WcDs' 0il0 --^ 10

91.

b
d

A = 4 sm 20,10 = 4.00

93.

..'

1 f^^'\
1

II-

A = 111- I 4,10 + -\ 16cos-«,/9) = 4.91

95. S(,

97. Parabola 99. Ellipse
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101. Hyperbola 103. / = 10 sin 13.
1

(/(

105. 107.
1 - cos « 3-2 cos

P.S. Problem Solving (page 712)

1. (a)

i—i

—

h—>

(hi The slope ol the lanjzent luie lo Ihc parabola al (- 1. j) is

~2- The slope ol the tangent line to the parabola at (4. 4)

is 2. The product of the two slopes is -
I and therefore the

tangent lines are perpendicular.

(c) The directrix of the parabola is v = —
I . The equations of the

two tangent hues are v = -ta -
^ and i = 2\ - 4. They

Mitersect al the point {-.. -
1 ). which lies on the directrix.

3. Proof

5. (a) / = 2(1 tan «sni II

liil-

'"' -'

1 + ,^

lar
'

1 + /^

(c) y
2a - X

I -, ..\

7. .V - a arccos " Jla\ y-. s

\ a 1

9. oo

1. (al Area of triangle = , base height

= ilUllan (il

= , tan (1

and/4(u) = \ sec- HdH

(bl scc-HtW

tan H
(1

tan (V

= Ian H

= an (t

15. (a) First plane: .V| = cos 70(150 - 375/)

y, = sin 70(1 50 - 375/)

Second plane: .v_, = cos 45(450/ - 190)

V, = sin 45(190 - 450/)

(bl |[cos 45(450/ - 190) - cos 70(150 - 375/)]
=

+ [sm 45(19(1 - 450/) - sin 70(150 - 375/)]=!'-"

0.4145 hours; Yes

17. (- = cos 5H + II cos H

-^

.,

;

—

^1

"-_

V/
—'

-4

4

C\
cy

;

'--^ 1

4

•'—

,

'S~

-4

4

\ _.

'^

(c) -—(tan a) = sec- a
ila

II = 1,2. 3. 4. 5 produce "bells"; /;
=

produce "hearts."

-3. -4, -5
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Appendix

Appendix A {page A6)

X -4 _ T 2 4 8

y
1 4 4 6 8

dyjdx _ T Undef. n i
3

1

3. (a) Answers will \arv. (b) v = ,(i:'' + e ')

(c)

5. (a) Answers will vary.

(b) V = -cos.v + 1.8305 sinv

(C) 3

n 1

-)

3 4 5

^n 0.1 0.2 0.3 0.4 0.5

Vn
"> T t 2.43 2.693 2.9923 3.3315

n 6 7 8 9 10

^n 0.6 0.7 0.8 0.9 1.0

y,. 3.7147 4.1462 4.6308 5.1738 5.7812

II.

n 1

-)

3 4 5

x„ 0.05 0.10 0.15 0.20 0.25

y„ 3 2.7 2.4375 2.2088 2.0104 1.8393

n 6 7 8 9 10

^n 0.30 0.35 0.40 0.45 0..50

y„ 1.6929 1.5686 1.4643 1.3778 1 .3075

13.

" 1

")

3 4 5

x„ 0.1 0.2 0.3 0.4 0.5

y,. 1 1.1 1.2116 1 .3390 1 .4885 1 .6699

n 6 7 8 9 10

^n 0.6 0.7 0.8 0.9 1.0

y^ 1.9003 2.2131 2.6838 3.5398 5.9584

15. False. }•' + x\ = X- is hnear.

17. V = .V- + 2.V + -

19. ^ = e' '(.V + C)

21. V = ^(sin.v - cos.v) + Ce^

23. V = .v(ln|.v| + C)

25. y = -75(3 sin 2.V + 2 cos 2.v + a-'

27.
.v' - 3.V + C

•'

3(.v -
1

)

29. Y = e'il + tan .v) + C sec .v

31.
4 — a

33. y = 1 + 4c -™ '

35. \' = sin .V + (-V + 1 ) cos .V

37. II

".

l+-
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39. 1- = vln|v| + 12a- - 2

41. (a) 9

I / / / I

I 1 1 / I

/ 1 / 1

1

I

I

1 1

1

(b) (-2,4): V = 5a-(a- - 8)

(2.8): V = 3a(a- + 4)

(c)

1 / /- V 1 M
\\ ,

- J K-..-- . : t \ ,

4.^. / = ^ + Ce-"'"
R

45. / = Ci-
R- + co~L

AR sin ([)/ — LoL cos ojt]

49. lal S5X3.04S.()1 (b) S3. 243.606. vS

5-V (a) -r = '/
- iC

ell

,b, a ^
^ . (o„ -

f
).-

(c)

55. c 56. d

57. a 58. b
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Absolute 7,ei"o. 72

Acceleration. 126. 152. 252. 307

Acceleration due to gravit\ .
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Acceleration on the moon. 157

Acid rain. S4')

.Adiabatic expansion, 151

Air pressure. 407

Air traffic control, 150, 713, 819

Aircraft glide rate. 1 90

Aircraft separation. 252

Altitude of a plane. 152

Anamorphic art. 693

Angle of elevation. 151. 152

Angle of elevation of a camera. 1 47

.Angular rate of change. 387

Annual snovifall. 953

Annual temperature range. 849

Antenna radiation. 700

Apparent tcnipciaturc. 867

Architecture. 662

Area. 37. II 6. 125. 1 44. 2 1 6. 2 1 7. 2 1

8

Area of end of a log, 233

Area of a lot, 264, 306

Asteroid Apollo, 706

Atmospheric pressure. 323. 349. 367. 920

Auditorium lights, 734

Auditorium noise level, 368

Autocatalytic chemical reaction. 216

.Automobile aerodynamics, 29

Automobile engine, 920

Average displacement, 496

Average field strength, 514

Average speed, 86

Average velocity of a falling obicct. I 1

1

Barge tovvmg. 783

Beam deflection. 191. 661

Beam strength. 34. 2 1

8

Bessel function. 624

Boiling temperature. 35

Bouncing ball, 572. 644

Boyle's Law, 86, 125.458

Braking load. 743

Breaking strength of steel. 359

Bridge design. 662

Brinell hardness. 34

Building construction. 734

Building design. 420. 529, 977, 1031

Building a pipeline, 920

Bulb design, 448

Buovant force, 474, 479

Cable tension. 726

Camera surveillance design. 152

Capillary action, 977

Car performance, 34. 35

Carbon dating, 367

Catenai). 403

Cavalien's Theorem. 431

Center of mass of a conversion \'an

window. 468

Center of mass of a section of a boat's hull.

469

Center of pressure on a sail. 970

Centripetal acceleration. 819

Centripetal force. 819. 833

Centroid. 477

Changing shadow length. 152

Charles's Law. 72

Chemical reaction. 378. 404, 523, 931

Chemical release from a storage tank. 350

Circular motion. 810. SI 8. S35

Cissoid of Diodes. 7 1

2

Climb rate for an airplane, 406

Comparing fluid loiccs. 51 I

Constant flow rale. 28

Constructing an arch dam. 410

Construction cost. 848

Construction of the Gatewa\ Arch

in St. Louis. 405

Construction of a scnnclliplical arch. 663

Conveyer design. 16

Cornu spiral. 7 12. 834

Cross section of a canal. 220

Curtate cycloid. 673

Cycloidal motion. 809. 818

Cycloids, 674

Daily temperature, 35, 135

Deceleration, 252

Depth. 149. 150. 155. 140

Dimensions of a barn. 977

Dimensions of a box. 872. 928

Distance between cities. 783

Distance traveled. 286. 574

Doppler effect. 135

Drag force. 931

Earthquake intensity. 36S

Electric motor. 87

Electric power in a circuit. 182

Electrical charge, 1072

Electrical circuits, A6, A7

Electrical power, 875

Electrical resistance, 151, 183

Electricity, 299

Electromagnetic thcorv, 549

Electronically contiollcti thermostat, 28

Enclosing a maximum area, 215

Engine design, 239, 1031

Engine eftlcicncv, 201

Engine power, 227

Epicycloid. 674

Equilibrium. 7S()

Eruption of Old Faithful. I

Escape velocity. 91, 251

Evaporation rate, 151

Evolute, 830

Explorer 663, 708

Exploring new planets, 648

Falling object, 33

Ferris wheel. 835

Fluid flow. 155

Fluid force on a circular plate. 475. 477

Fluid force on a circular w indow. 473. 5 14

Fluid force of gasoline. 474. 475

Fluid force on a rectangular plate. 475

Fluid force on a submarine porthole. 475

Fluid toivc on a submerged metal sheet.

471.474

Fluid force on a lank wall. 474

Fluid force on a vertical gate in a dam. 472

Fluid force against a vertical irrigation

canal gate. 475

I hiid force against a \erlical region. 477

Fluid force on a vertical stern ot a boat.

475

Fluid force on the \ertical walls of a

swimming pool. 477. 479

Fluid force of water. 474

Force, 285, 740

Force on a concrete form, 474

Free-falling object, 67. 88

Frictional force, 827. 831

Gabriel's Horn, 546

Gravity, 92

Halley's comet, 663, 705

Hanging power cables. 398

Harmonic motion. 37. 135. 235. 349. 407

Heat flow. 1090

Heal transfer. 331

Height of a tower. 929

Highway design, 167, 190, 833

Hooke's Law. 33, 456

Horizontal motion. 154

Hours of daylight. 32

Hydraulics. 970

Hyperbolic detection system. 659

Hyperbolic mirror. 664

Ideal Gas Law. 849. 867. 883
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Illuniinatidii from a liizlit source, 219. 238

Inductance. 87.^

Inflating a balloon. 146

In.-itantaneons \elocit\. 112. 171

Investigating the ocean tloor. 845

Kepler's Law. 8,^ I

Kinetic and potential energy. 1040

Koch snow Hake. .^-^4. 589

Lawn sprinkler construclion. 167

Length. 29

Length of a catenary. 448. 477

Length of an electric cable. 44.1

Length of the Galcw a\ Arch. 448

Length of a hypotenuse. 217

Length of pursuit. 447

Length of a recording tape. 679

Linear vs. angular speed. 152

Lniear and angular \elocity. 155

Load supports. 7.^4

Load-supporting cables. 742. 74.i

Lunar gravity, 25 1

Machine design. 151.781. 96

1

Machine part. 4,18. 492

Magnetic field. 1091

Making a Mercator map. 480

Manufacturing. 426. 4-i
I

Mass of a spring. 102.1. 1029

Mass on the surface of the earth. 459

Mathematical sculpting. 1006

Maximum angle. 883

Maximum angle subtended by a camera

lens. 384

Maximum area of an alimiiniun sheet. 9I,S

Maximum area of a fitness room. 217

Maximum \'ohmie of a box. 211.217

Maximum \olume of a pLickage. 218

Maximum \okMiie of a rectangular box.

913. 917. 918

Maximum volume of a rectangular

package. 917. 928

Measuring force. 731

Mechanical design. 420. 513. 762

Meteorology. 849. 895

Minimum area. 213

Minimum distance. 213. 220. 237

Minimum force. 220

Minimum heat loss. 932

Minimum length. 214. 237. 780

Minimum length of a power line. 218

Minimum material for a lank. 932

Minimum surface area of a cylinder, 2 1

8

Minimum travel time, 219, 227

Moment of a force. 748

Motion of a liquid. 1085. 1086

Motion of a particle. 792. 819. 832

Moving ladder, 150

Na\ iaation, 664. 726

Newton's Law of Cooling, 1 16, 365, 368

Oblateness of Saturn, 439

Ohm's Law, 234

Optical illusion, 143

Optimization, 750, 751. 926

Orbital speed. 819

Orbit of the earth. 663

Orbit of the moon. 654

Oxygen le\el in a pond. 197

Packaging. 158

Path of a car. 830

Path of a heat-seeking particle. 890. 895

Path of an object. 877

Path of a projectile. 180. 674. 682

Pendulum. 135,234,875

Planetary motion, 708, 709

Planimeter, 1089

Plastics and cooling, 312

Playground slide, 792

Position of a pipe. 150

Power lines. 505

Power output of a battery. 167

Probability of iron in ore samples. 309

Producing a machine part. 430

Projectile motion. 154, 234, 514. 642. 674.

726. 806. 807. 808. 809. 817. 819.

828. 833. 8.14. 933

Projectile range. 219

Race car cornering. 784

Radioactive decay. 363. 367. 378, 407

Radioactive half-life, 351

Radio reception. 379

Radio and television reception. 662

Rainbows. 183

Rate of change, 86

Rate of change of the level of the

Connecticut River, 22

1

Rate of mass flow of a fluid, 1068, 1072

Rectilinear motion, 251, 287

Refractionof light, 928

Refrigeration, 155

Resistance, 875

Resistance of copper wire, 9

Resultant force, 722, 725

Resultant speed and direction of an

airplane, 723

Ripples, 29, 145

Roadway design, 151

Rocket velocity. 553

Rolling a ball bearing. 1S2

Roof area. 447

Rotary engine. 710

Satellite antenna, 709

Satellite orbit, 663, 833, 835

Satellite recei\ ing dish, 816

Screw efl'iciency, 238

Shape of the earth, 772

Shared load, 726

Slope of a water-ski ramp, 12

Snell's Law of Refraction, 928

Solar collector, 661

Sound intensity, 39, 323, 368

Sound location. 664

Specific gravity, 191

Speed of an aiiplane, 147

Speed of an automobile, 154

Speed of sound, 280

Sphereflake, 575

Spiral staircase, 832

Statics, 467

Stopping distance of an automobile, I 16,

126

Stress test, 37

Strophoid. 712

Surface area. 149. 155

Surface area of a honeycomb. 1 67

Surface area of a pond. 479

Surface area of a roof, 1 003

Suiface area of a satellite dish, 662

Surveying. 234

Suspension bridges. 714

Swimming speed. 40

Temperature. 323. 505. 895

Temperature conversion. 1

7

Temperature distribution. 848. 867.

894. 928

Temperature in a heat exchanger. 201

Temperature of a metal plate. 889

Tension in the rope of a tetherball. 783

Theory of relativity. 86

Thermometer reading. 409

Throwing a shot-put, 810

Tidal energy. 458

Topographic map. 143

Topography. 894. 895

Torque, 750, 78

1

Tower guy wire, 734

Trachea contraction, 182

Tractrix. 323. 401. 402. 404. 514. 683

Velocity. 1 16. 252. 307

Velocity and acceleration. 803. 804. 805.

808.810

Velocity of a baseball player. 151

Velocity of a boat. 150

Velocity of a car. 310

Velocity of a piston. 148

Velocity of a plane. 150

Velocity in a resisting medium. 538

Velocity of a shadow. 151. 155. 157

Velocity of a sliding plank, 150

Vertical motion. 115. 153. 172. 173.248.

251. 394. 404,407

Vibrating spring, 153, 496

Volume. 29. 79. 116. 125. 149. 216
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Volume of a ball bearing, 230

Volume of concrete in a ramp. 43(1

Volume of a fuel tank. 429

Volume of a gasoline tank. 477

Volume of a goblet, 830

Volume of the Great Salt Lake. 1005

Volume of a lab glas,s. 430

Volume of a piece of ice. 962

Volume of a pond. 439

Volume of a pontoon. 436

Volume of a propane tank. 848

Volume of sand. 9?4

Volume of a storage shed, 438

Volume of a storage tank, 513

Volume of a trough, 875

Volume of a \ase, 449

Volume of a water tank, 430, 663. 709

Waiikel rotar\ engine, 240

Water suppK, 299

Wave equation, 933

Wave motion, 135

Wind chill, 874

Wind speed, 1018. 1041

Witch of Agnesi, 793

Work, 306

Work done in closing a door, 741

Work done in compressing a spring. 4,^2,

456

Work done by a constant force, 456

Work done by an electric force, 458

Work done in emptying a tank of oil, 454

Work done by the engines of an aircraft,

1088

Work done by an expanding gas. 455

Work done by a force, 477

Work done by a force field, 1025, HBO,

1032, 1036. 1040. 1044. 1049. I0S8.

1091

Work done by a hydraulic cylinder, 529

Work done by a hydraulic press. 458

Work done in lifting a chain. 455, 457, 477

Work done in lifting an object, 450

Work done in mo\ ing a particle, 743

Work done ni moving a rocket in outer

space, 548

Work done in mo\ing a space module into

orbit, 453, 543

Work done by a person, 1030

Work done in propulsion, 456

Work done in pulling an object, 743, 780

Work done m pulling a wagon, 743

Work done in pumping diesel fuel, 457

Work done in pumping gasoline, 457

Work done in pumping water, 456, 457

Work done in pumping a well, 477

Work done in stretching a spring, 456, 477

Work done in using a demolition crane, 457

Work done m uindmg up a cable, 477

Work done in wood splitting, 458

Business and Economics

Advertising costs, 227

Air conditioning costs, 31 I

Annuities, 575

Apartment rental, 18

Automobile costs, 34

Average cost, 191, 201

Average price, 331

Average production le\el, 954

Average profit, 285, 954

Average sales, 285

Bankruptcy, 183

Break-even analysis, 9, 36

Budget deficit, 419

Capitalized cost, 549

Cobb-Douglas production function, 843,

848, 924. 932

Compound interest. 356. 358. 359. 3(i().

367. 406. 538. 565. 643. 644

Consumer price index. 9

Consumer surplus. 479

Cost. 136. 339

Cost of a cargo container. 928

Cost of equipment. 287

Cost of an industrial tank. 218

Cost of overnight delivery. 89

Cost of a telephone call. 55

Declining sales. 364

Demand, 237,919

Depreciation, 36. 284. 299. 348. 357. 358.

406. 574. 643

Diminishing returns, 220

Dollar value ol a product, 17

Fertilizer sales. 31 1

Fuel cost, 116, 309

Fuel economy, 407

Government expenditures, 566

Home mortgage. 323. 409

Hospital room costs, 566

Income, 575

Intlation, 358, 566

Inventory cost, 167, 191, 236

Inventory management, 79, 1 16

Inventory replenishment. 125

Investment. 565. 848. 867. A8

Investment growth. A8

Locating a distribution center. 918

Marginal cost. 867

Marginal productivity. 867

Marginal utility, 867

Marketing, 574

Maximum profit, 220, 914, 918, 931

Medical expenditures. 867

Minimum cost, 219, 220, 237. 918,

928, 93

1

National debt, 368

National defense outlays, 236

National deficit, 236

Present value. 496. 55 1 . 575

Probability of selling a product. 574

Producer surplus. 479

Product design. 977

Production level. 928, 931

Profit, 182, 234, 420

Rate of disbursement, 299

Receipts and expenditures, 420

Reimbursed expenses, 18

Reorder costs, 172

Revenue, 367,420. 741. 9|8

Sales. 173. 236. 299. 331. 368

Sales growth, 191

Sales for H, J, Hein/ Company, 566, 575

Sales increase, 409

Sales for Wal-Mart, 849

Service revenue for cellular telephone

industry, 476

Straighl-hne depreciation, IS

Tourist ^pending, 574

Value of a car, 349

Social and Behavioral Sciences

Air conditioner use, 849

Amount of money given to philanlliiopy,

359

Automobile costs, 34

Carbon dioxide concentration, 7

Cost of clean air. 89

Cost of removing pollutants, 523

Energy consumption, 33

Health maintenance organizations, 34

Illegal drugs, 86

Learning curve, 367, A8

Learning theory, 359

Mean height of American men. 549

Medical expenditures, 772

Memory model, 496

Number of MDs in the United States.

344

Number of motor homes, 125

Population, 16, 367

Population density of a city, 962

Population growth, 125, A8

Probability of recall. 309

Salary increase. 419, 476, 575

Total compensation, 644

Traffic control, 216

Traffic flow, 239

University applicants, 867

Waitina in line, 350, 848
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Women in the work lorce. Li2, 919

World popLilaluin. 920

Life Sciences

Aserage population size. 529

Average rate of change of population, 12

Bacterial culture growth, 210, 356, 367

Blood now, 285

Blood types, 918

Carcinogens, 33

Career choice, 1

8

Circulatory .system, 135

Commuting, 28

Concentration of a chemical ui the

bloodstream, 182

Epidemic model, 523

Farm size, 9, 28

Forest defoliation, 359

Forestry, 848

Height vs. arm span, 30

Hyperthermia treatments for tumors, 934

lntra\enous feeding, A8
Length of warblers, 551

Life insurance policies, 514

Medicine, 227

Points of vision, 920

Population growth, 250, 331, 359, 364,

407, 647, A8

Property, 449

Rainfall, 299

Respiratory cycle, 285, 309

Running, 79, 201

Systolic blood pressure, 919

Timber yield, 359

Tree growth, 250

Weight gain, 379

Wheat yield, 919

Wildflower diversity, 904

Wildlife population, 375

General

Average scores, 18

Baseball, 875

Boating, 38

Buffon's needle experiment. 284

Cantor set, 646

Cantor's disappearing table. 576

Dog's path, 713

Estimating the number of customers, 286

Fruit consumption, 662

Lawn sprinkler, 1004

Milk consumption, 762, 867, 874

Natural gas usage, 286

Pasture fencing, 38

Probability of range for battery life, 350

Probability of tossing a coin, 631

Quiz scores, 33

Sailing, 374

Solera method, 589

Swimming pool, 79

Telephone charges, 79

Typing speed, 191, 201



Index

Ahel, Niels Hennk (lS():-182yi. 225

Absolute comergence. 543

Absolute extieniii, 905

Absolute maximum, 905

Absolute maximum value ou an interval,

160

Absolute minimum, 905

Absolute miniminii \alue on an inler\al,

160

.Absolute \alue, den\ati\e of, 320

Absolute value funetion, 22

Absolute Value Theofeni. 560

Aeceleration, 803, 826

centripetal component ot, 815

due to gravity, 123

normal component ol, 8 1

5

tangential component ot, 8 1

5

vector, 803, 814

Acctimulation function. 281

Additive interval property, 270

Agnesi, Maria (1718-1799), 195

d'Alembert, Jean Le Roiid ( 1717-1783),

859

Algebraic function, 25

limit of, 57

Algebraic properties of the cioss product,

745

Alternating series. 590

harmonic, 593

Alternating series rcnicunder, 592

Alternating Series Test, 590

Alternative form of the directional

derivative. 887

Alternative forms of Green's Theorem,

1047. 1048

Angle

between two non/ero vectors, 736

between two planes, 754

of incidence, 652

of inclination of a plane, 9(X)

of reflection, 652

Angular speed, 968

Antiderivative, 242

of a composite function, 288

notation for. 243

Antidifferentiation (or indefMiite

integration). 243

Appolonius (262-190 B.C.). 650

Arc length. 440. 441

function, 821

parameter. 821, 822

in parametric form, 678

of a polar curve. 698

of a space curve. 820

Arccosecant function. 380

Arccosine function. 380

Arccotangent function. 380

Archimedes (287-212 B.C.). 255

spiral of. 679. 686

Arcsecant function. 380

Arcsine function. 380

series for, 638

Arctangent function. 380

series for. 638

Area. 255

by an iterated integral. 938

given by a line integral. U)45

of a parametric surface. 1055

of a plane region, 256, 259, 938

in polar coordinates, 694

of a rectangle, 255

of a region between intersecting cui"ves,

414

of a region between two curves,

412,413

of a surface, 971, 972, 1055

of a surface of re\ olution, 444, 445.

680, 699

Asymptote

horizontal. 193

of a hyperbola. 657

slant. 204

vertical. 81

Average rate of change. I 2

Average value ot a lunction on an interval.

279

Average velocity. 1 I 1

Axis

conjugate, of a hyperbola. 657

major, of an ellipse. 653

minor, of an ellipse. 653

of a parabola. 651

of revolution. 421

transverse, of a hyperbola. 657

B

Banow. Isaac (1630-1677). 141

Base. 317

of an exponential function. 351

of a logarithmic function. 352

of a natural logarithm. 317

Basic differentiation rules for elementary

functions. 385

Basic equation for pailial fractions. 517

guidelines for solving. 521

Basic integration rules. 244. 391

Basic types of transfonnations. 23

Bernoulli. James ( 1654-1705). 671. 684

Bernoulli. John (1667-1748). 515

Binomial series. 637

Bisection method. 76

Boundaiy point. 850

Bounded

above, 563

below, 563

monotonic sequence, 563

region, 905

sequence, 563

Brachistochrone prohlem, 67 I

Brahe, Tycho, 705

Breteuil. Emilie de (1706 1744). 451

Buovant force. 474

c

Cancellation. 61

Cantor. Geoig ( 1845 - 1'»|8). 646

Capitalized cost, 549

Cardioid, 690

Catenary. 398

Cauchv, .AugustmcT.oiiis ( I 784-1857), 73

Cauchy-Riemann difleiential equations,

883

Cauchy-Schwar/ Inequahly, 743

Center

of curvature, 825

of an ellipse, 653

of gravity, 461, 462

of a hyperbola, 657

of mass. 460, 461, 462, 463,

965, 983

in a one-dmicnsional system,

460,461

of a planar lamina, 463

of a planar lamina ol variable

density, 9(i5

in a two-diinensional system. 462

of a power series, 616

Centered at c. 605

Central force field, 1009

Centripetal component of acceleration, 815

Centroid, 464, 965

Chain Rule, 127

functions of several variables, 876

implicit differentiation, 881

one independent variable, 876

and trigonometric lunctions. 132

two independent variables, 878

Change of variables. 291

for definite integrals. 294

for double integrals. 997

guidelines for making. 292

for homogeneous equations. 374

for an indefinite integral. 291

to polar form. 957

using a Jacobian, 995
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Change m \, 4?

Change in v. 95

Circulation. 1084

Circumscribed rectangle, 257

Cissoid of Diodes, 7 1

2

Classification of conies by eccentricity. 702

Closed curve. 1037

Closed disk, ,S_50

Closed region. 850

Closed surface. 107,^

Cobb-Douglas production funclion. S4,i

Coefficient

leading. 24

of a polynomial function. 24

Common logarithmic function. .V52

Comparing gradients, 901

Compaiison of disk and shell methods, 4.i4

Comparison Test

Direct. 58,"^

Limit. 5S5

Completeness of real numbers. 56.^

Completing the square. .^89

Component form of a \ector m the plane.

716. 717

Component functions. 786

Component of acceleration

centripetal. 815

normal. 815

tangentiLil. 815

Composite function. 25. S,i9

antiderivative of. 288

continuity of. 1?^. 855

limit of, 59

Composition of two functions, 25

Compound interest formulas, .^55

Computer graphics. 844

Concavity, 184

test for. 185

Conditional con\ergence. 59.^

Conic(s), 650

classification of, 702

degenerate, 650

in polar form, 70.^

Conjugate axis of a hyperbola, 657

Connected region, 1 035

Conservative vector fields, 1011

independence of path, 1035

test for, 1012, 1015

Constant function, 24

Constant of integration, 243

Constant Multiple Rule for

differentiation, 108

Constant of proportionality, 362

Constant rule for differentiation, 105

Constant term, 24

Constraint, 921

Continuity

on a closed interval, 71

of a composite function. 73. 8,"i,i

and differentiability, 872

of a function of three variables. 856

of a function of tv\'o \ariahles. 854

and integrability. 267

of an inverse function. 336

from the left. 71

on an open inlcr\al. 68

at a point. 57. 68

of a polynomial function. 73

properties of 73

of a radical function. 73

of a rational function. 73

from the right. 7 1

of a trigonometric function. 73

of a vector-valued function. 790

Continuous

everywhere. 68

in an open region. 854. 856

at a pcnnt. 854. 856

Continuous compounding. 355

Continuously differentiable. 440

Contour line, 841

Convergence, 557, 567

of an improper integral, 540. 543

of an infinite series, 567

absolute. 593

Alternating Series Test. 590

conditional. 593

Direct Comparison Test. 583

geometric .series. 569

Integral Test. 577

Limit Comparison Test. 585

power series. 617

of a />-series. 579

Ratio Test. 597

Root Test. 600

summary of tests. 602

interval of, 617

of Newton's Method, 224

radius of, 617

of a sequence, 557

of Taylor series, 634

Convergent sequence, 224

Convergent series, 567

Conversion

coordinate, 685

cylindrical to rectangular, 773

polar to rectangular, 685

rectangular to cylindrical, 773

rectangular to polar, 685

rectangular to spherical, 776

spherical to rectangular, 776

Coordinate conversion, 685

Coordinate system

cylindrical, 773

polar, 684

spherical, 776

three-dimensional, 727

Coordinates of a point in space, 727

Copernicus, Nicholas ( 1473-1543), 653

Cornu spiral, 712, 834

Cosecant function

deri\ati\e of 121

integral of 244, 329

inverse of, 380

Cosine function

derivative of, 1 10

integral of 244, 329

integrals involving, 497

guidelines for evaluating, 497

inverse of, 380

rational function of sine and. 527

series for, 638

Cotangent function

derivative of, 121

integral of 329

mxerse of, 380

Coulomb, Charles ( 1736-18061, 452

Coulomb's Law. 452. 1009

Critical numbers. 162

and relative extrema. 162

Critical point. 906

and relative extrema. 906

Cross product

properties of 745. 746

of two vectors. 744

Cubic function. 24

Curl of a vector field. 1014

and divergence. 1016

Curtate cycloid. 673

Curvature, 823

center of, 825

circle of 825

formulas for, 824

radius of, 825

in rectangular coordinates, 825

related to acceleration and speed, 826

in space, 824

Curve

closed, 1037

graph of, 665

Wei. 841

orientation of, 666, 1019

pieeewise smooth, 670, 1019

plane, 665

simple, 1042

smooth, 440, 670, 796, 1019

in space, 786

Curve sketching, summary of, 202

Cusps, 796

Cycloid, 670

curtate, 673

prolate, 677

Cylinder, 763

Cylindrical coordinate system, 773
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conversion to rectangular. 773

conversion of rectangular to. 773

integration in. 988

Cjlindrical surface. 763

D
Decay, 362

Decreasing function. 174

test for. 1 74

Definite integral. 267

change of \ ariables for. 294

evaluation of. 276

properties of, 270. 271

of a vector-valued function. 798

Degenerate conic. 650

Degree of a polynomial function. 24

Delta, 5, 850

neighborhood. 850

Density, 463

Density function, 963, 983

Dependent variable, 19. 838

Derivative(s)

of an absolute \ aluc function. 320

alternate form of. '->'>

of an arc length function, 82

1

for bases other than e. 353

Chain Rule. 127

Constant Multiple Rule. 108

Constant Rule. 105

of a cosecant function. 121

of a cosine function. 1 10

of a cotangent function. 121

Difterence Rule. 109

directional, 884. 885. 887. 892

of an exponential function, base a. 353

of a function. 97

General Power Rule. 129

higher-order. 123

of a hyperbolic function. 397

of an inverse cosecant function. 383

of an inverse cosine function. 383

of an inverse cotangent functiim. 383

of an inverse function. 336

of an inverse hyperbolic function. 401

of an inverse secant function. 383

of an inverse sine function. 383

of an inverse tangent function. 383

of an in\erse trigonometric function. 383

from the left. 99

of a logarithmic function, base <;, 353

of a natural exponential function. 343

of the natural logarithmic function. 318

notation. 97

in parametric form. 675

partial. 859. 1054

Power Rule (real exponents). 106

of power series. 62

1

Product Rule, 117

Quotient Rule. 1 19

from the right. 99

of a secant function. 1 2 1

second. 123

of sine function. 1 10

Sum Rule. 109

summary of rules. 133

of a tangent function. 1 2 I

third, 123

of trigonometric lunclionv. 121

of a vector-valued function. 794

Descartes, Rene ( 1596-1650). 2, 95

Determinant form of a cross product.

744

Determinate forms of a limit. 536

Difference quotient. 95

Difference Rule for differentiation. \W
Differentiability. 870

Differentiability and continuity. 99, 101,

872

Dilferentiable function. 47

on a closed interval. 99

on an open inter\al. 47

in a region. 870

in three variables. 87

1

of two variables, 870

\ector- valued, 794

Differential, 869

torm. 231

formulas. 231

operator. 1014. 1016

total. 869

of.v. 229

of V. 229

Differential equation. 243. 361

general solution of. 243. 369

homogeneous. 373

linear first-order, A4
solution of. A4

linear homogeneous. 373

logistics. 238

particular solution of. 370

separation of variables. 371

singular solution of. 369

solution of. 369

Differential form of a line integral. 1027

Differentiation. 97

implicit. 137

partial. 859

rules for elementary functions. 385

of vector-valued functions. 795

Direct Comparison Test, 583

Direct substitution, 57

Directed line segment. 716

Direction angles. 738

Direction cosines, 738

Direction field (slope field), 315. A2

Direction numbers. 752

Direction \cctor. 752

Directional derivative. 884, 885. 887. 892

alternative form, 887

of a function of three variable. 802

Directrix

of a cylinder. 763

of a parabola. 651

Dirichlet, Peter Gustav (1850-1859), 51

Dirichlet function. 51

Discontinuilv. 64

infinite. 540

nonremovable. 69

removable. 60

Disk. 421. 850

closed. 850

method. 421.422

compared to shell method. 434

open, 850

Distance

between a point and a line in space, 758

between a point and a plane in space,

757

between two points in space. 728

Distance Formula

in space. 728

Divergence. 540. 543. 557. 567

of an improper integral. 540. 543

of infinite series. 567

Direct Comparison Test. 583

geometric. 569

Integral Test, 577

Limit Comparison Tcsi. 585

(;th-Term Test for, 57 I

power, 6 1

7

/)-series. 579

Ratio Test. 597

Root Test. 600

summary of tests. 602

of a sequence. 557

series. 567

of a vector field. 1016

and curl. 1016

Divergence tree, 1016

Divergence Theorem. 1049, 1073

and tlux. 1078

Domain

of a function. 19

of a function of two variables. 838

of a vector-valued function. 787

Doomsday equation. 409

Dot product. 735

properties of 735

Double integral. 944. 945. 946

in polar coordinates. 955

properties of 946

Doyle Log Rule. 848

Dyne. 450
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e. the number. 317

Eccentricity

ot a conic. 702

of an ellipse. 655

of a hyperbola. 65S

Eight cur\e. 15(i

Electric force fields. 1009

Elementary function. 24. 385

basic differentiation rules for. 3X5

power series for. 63S

Eliminatini; the parameter. 667

Ellipse. 653

center of. 653

eccentricity ot, 655

foci of. 653

major axis of. 653

minor axis of. 653

polar lorm of equation ol, 702

i"etlecti\e propertv of. 655

standard equation of. 653

vertices of. 653

Ellipsoid. 764

Elliptic cone. 764

Elliptic paraboloid, 764

Endpoint convergence. 6|0

Endpoint extrema, 160

Energy

conser\ation of, 1038

kinetic. 103,S

potential. 1038

Epicycloid. 674. 678

Epsilon. r. 52

Equal \ectors. 717

Equation

of cylinders. 763

doomsday. 409

graph of. 2

of a horizontal line, 14

of a line. 1 1

logistics. 400

parametric. 665, 752

solution point of, 2

of a tangent plane, 897

of a vertical line, 14

Equilibrium. 460

Equipotential lines. 841

Equivalent

conditions. 1037

directed line segments. 715

Error

percent. 230

relative. 230

in Taylor's Theorem. 61

1

in Trapezoidal and Simpson's Rule. 304

EiTor propagation, 230

Euler. Leonhard (1707-1783), 19, 24, ,^41,

5 1 5, 859

Eulcr's method, A3, .A7

Evaluation

of double integrals, 947

of a function, 19

of a flux integral, 1067

of iterated integrals, 979

of a limit, 57, 60

of a surface integral, 1061

E\en function, 26

integration of, 296

E\eryvvhere continuous. 68

Existence of an inverse function, 334

Existence of a limit, 52, 71

Existence theorem, 75

Expanded about t (or centered at c). 605

Expected value, 548

Explicit form of a function, 19, 137

Exponential decay, 362

Exponential function

base </, 35 1

derivative of, 353

derivative of, 343

integration of, 345

inverse of, 341

operations with, 342

properties of. 342

series lor, 638

Exponential growth, 362

Extended Mean Value Theorem, 53 1

Extrema

absolute, 160, 905

applications of, 913

on a closed interval, 163

guidelines for finding, 163

endpoint, 160

relative, 161, 905

Extreme \alue of a function on an interval,

160

Extreme Value Theorem, 160, 905

Factorial, 559

Faraday, Michael (1791-1X67), 1038

Fertnat, Pierre de (1601-1665), 162

First Derivative Test, 1 76

First moment, 967. 983

First partial derivative, 859

notation, 860

First-order differential equation, .\4

First-order linear differential equation, A4
Fluid force. 470

Fluid pressure, 470

Flux and the Diveigence Theorem, 1078

Flux integral, 1067

Focal chord, 651

Focus of an ellipse, 653

Focus of a parabola, 651

Force, 450

buoyant, 474, 479

constant, 450

exerted by a fluid, 471

of friction, 827

variable, 451

as a vector, 722

Force fields, 1008

central, 1009

conservative, 1011

Formulas for curvature, i824

Fourier, Joseph (1768-1830), 625

Fourier Sine Series, 496

Free-falling object, 67, 88

Fresnel function, 310

Friction, 827

Ftibini, Guido (1,879-19431, 948

Fubini's Theorem, 948

for a triple integral, 979

Function, 6, 19

accumulation, 281

addition of, 25

algebraic, 25

antiderivative of, 242

average value on an interval, 279

coinponent. 786

composite, 25, 839

concave downward, 1 84

concave upward, 184

constant, 24

continuity, 68

cubic, 24

decreasing, 174

derivative of, 97

difference of, 25

differenliable, 97

domain of, 19

elementary, 24

even, 26

explicit form of, 1')
. 137

exponential, 341

extreine value of, 160

gamma, 548

graph ol. 22

guidelines for analyzing, 202

greatest integer, 70

Heavisidc, 38

homogeneous, 373

hyperbolic, 395

hyperbolic cosecant, 395

hyperbolic cosine, 395

hyperbolic cotangent, 395

hyperbolic secant, 395

hyperbolic sine, 395

hyperbolic tangent, 395

implicit form of, 19, 137

increasing. 174

integrable. 946

inverse, 332
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inverse cosecant. 380

inverse cosine. 380

inverse cotangent, 380

inverse hyperbolic. 399

inverse hyperbolic cosecant. 399

inverse hyperbolic cosine. 399

inverse hyperbolic cotangent, 399

inverse hyperbolic secant, 399

inverse hyperbolic sine, 399

inverse hyperbolic tanycnl. 399

inverse secant, 380

inverse sine, 380

inverse tangent, 380

limit of, 48

linear. 24

natural logarithmic. 314

notation. 19

odd. 26

one-to-one- 2

1

onto. 21

orthogonal. 505

polynomial. 24. 839

position. 1 1

1

potential. 1011

product of. 25

quadratic. 24

range of. 19

rational, 25. 839

relative maximum of, 1 76

relative minimum of. 176

of several variables. 838

step. 70

strictly monotonic. 175

of three variables, 892

continuity of, 856

directional derivative, 892

gradient of, 892

partial derivative of, 862

transcendental, 25

transformation of graph of. 23

of two variables. 838

continuity of. 854

domain of. 838

gradient of. 887

graph of. 840

homogeneous. 373

hmitof. 851

partial derivative of. 859

range of. 838

vector-valued. 786

velocity, 1 1

2

zero of, 26. 222

Fundamental Theorem of Calculus. 275

guidelines for using. 276

Fundamental Theorem of Calculus.

Second. 282

Fundamental Theorem of Lme Integrals,

1032. 1033

Gabriel's Horn, 546

Galilei. Galileo (1564-1642). 385

Galios. Evariste ( 181 1-1832). 225

Gamma function. 548

Gauss, Carl Friedrich (1777-1855), 254,

1073

Gauss's Law, 1070

Gauss's Theorem, 1073

General antiderivati\e, 243

General form

of an equation ol a lme, 14

of an equation of a plane in space, 753

of a second-degree equation, 050

General harmonic series, 579

General Power Rule

of differentiation, 129

for integration, 293

General second-degree equation, 650

General solution of a differential equation,

243, 369

Generating curve (or directrix), 763

Geometric power series, 625

Geometric properties of the cross product,

746

Geometric property of the triple scalar

product, 749

Geometric series, 569

convergence of, 569

divergence of, 569

Gibbs. Josiah Willard (1839-1903), 745,

1019

Goldbach, Christian, 341

Golden ratio, 566

Grad, 887

Gradient

of a function of three variables, 892

of a function of two variables, 887

normal to level curves, 891

normal to level surfaces, 901

properties of. 888

Graph(s)

of common functions. 22

of a curve. 665

of an equation. 2

of a function. 22

sketching. 202

tangent line to. 95

of a function of two variables, 840

intercept of, 4

of a natural logarithmic function, 314

of a parametric equation, 665

symmetry of, 5

Gravitation, Newton's Law of Universal,

452

Gra\itational fields, 1009

Gravity

acceleration due to, 123

center of, 46 1 , 462

force due to. 806

Greatest integer function, 70

Green, George (1793-1 841 ), 1(J43

Green's Theorem, 1042

alternative forms, 1047, 1048

Gregory, James ( 1638-1675), 621, 629

Growth and decay, 362

Gyration, radius of, 968

H
Half-life, 363

Halley. Edmund ( 1656-1742), 705

Halley's Comet, 705

Hamilton, William Rowan (1805-1865),

718

Harmonic series, 579

alternating, 593

general, 579

Heaviside, Oliver (1850-1925), 38

Hcavlside function, 38

Helix. 787

Helmholt/. Hermann Ludwig (1821-1894).

1038

Herschel. Caroline (1750-1848). 659

Higher-order derivative. 123

partial. 863

Homogeneous differential equation. 373

Homogeneous function. 373

Hooke. Robert ( 1635-1703). 452

Hooke's Law, 452

Horizontal asymptote, 193

Horizontal component of a vector, 721

Horizontal line, equation of, 14

Horizontal line test, 334

Hon/onial shift of a graph of a function, 23

Horizontally simple region, 938

Huygens, Christian ( 1629-1695), 440

Hypatia (370-415), 650

Hyperbola, 657

asymptote of, 657

center of, 657

conjugate axis of, 657

eccentricity of. 658

polar form of equation of, 702

standard form of equation of, 657

transverse axis of, 657

vertex of, 657

Hyperbolic cosecant function, 395

derivative of, 397

graph of, 396

identities for, 397

integration of, 397

inverse of, 399

Hyperbolic cosine function, 395

derivative of. 397

graph of, 396

identities for. 397
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integration of, 397

inverse of. 399

Hyperbolic cotangent function. 395

derivative of. 397

graph of. 396

identities for. 397

integration of. 397

inverse of. 399

ll>'perbolic functions. 395

H_\perbolic identities. 397

Hyperbolic paraboloid. 764

Hyperbolic secant function. 395

derivative of. 397

graph of. 396

identities for. 397

integration of. 397

inverse of, 399

Hyperbolic sine function. 395

derivative of. 397

graph of. 396

identities for. 397

integration of. 397

iiiverse of. 399

Hyperbolic tangent function. 395

derivative of. 397

graph of. 396

identities for. 397

integration of. 397

inverse of, 399

Hyperboloid

of one sheet. 764

of two sheets. 764

Hypocvcloid. h74

Identities

hyperbolic. 397

IdenlUy fiuiction. 22

Image of a under /. 19

Implicit difterentiulion. 137

guidelines for, 138

Implicit form of a function. 19. 137

Implicit partial differentiation. 8X0

Improper integral, 540

convergence of. 54(1. 543

divergence of, 540, 543

v\ ith infinite discontinuities. 543

with infinite limits of integration. 540

special type of. 546

Incidence, angle of. 652

Inclination, angle of. 900

Incompressible. 1016. 1078

Increasing function. 174

test for. 174

Indefinite integral. 243

Indermile integral (or antiderivative) of a

vector-valued function. 798

Independence of path. 1035

Independent variable. 19. 838

Indeterminate form, 61, 530

Index of summation. 253

Inertia, moment of. 967, 983

polar, 967

Infmite discontinuity, 540

Infinite limit. 80

at uifinit>. 198

from the left. 80

properties of. 84

from the right. 80

Infinite series (or series). 567

alternating. 590

convergence of, 567

divergence of. 567

geometric, 569

harmonic, 579

limit at, 192

»th partial sum of, 567

properties of, 571

/i-series, 579

sequence of partial sums of, 567

sum of, 567

telescoping, 568

term of. 567

Inflection point, 186

Initial condition, 247, 370

Initial point, 716

Initial value of exponential growth and

decay models, 362

Inner partition, 944, 978

polar-. 956

Inner product. 505. 735

Inner radius. 424

Inscribed rectangle. 257

Inside limits of integration. 937

Instantaneous velocity. 112

Integrability and continuity. 267

Integrable function. 946

Integral

definite. 267

definition of. 267

double. 944. 945. 946

flux, 1067

improper. 540

indefinite. 243

iterated. 937

line. 1020

single, 946

suiface, 1061

triple, 978

Integral Test, 577

Integration, 243, 540

constant of, 243

completing the square. 389

of even and odd functions. 296

General Pov\er Rule. 293

guidelines for. 327

of a hyperbolic function. 397

involving inverse hyperbolic function,

401

involving inverse trigonometric

functions, 388

involving logarithmic functions, 324

involving secant and tangent. 500

involving sine and cosine. 497. 502

limits of, 937

Log Rule, 324

lower limit of, 267

by partial fraction, 515

by parts, 488

guidelines for, 488

summary, 493

tabular method. 493

of power series. 62

1

region of, 937

rules, 244. 391

rules for exponential functions, 345

by substitution, 288

summary of formulas, 1085

by tables, 524

of trigonometric functions. 328. 329

by trigonomeiric substitution. 506

upper limit of. 267

of a vector-valued function. 798

Integration formulas, special, 510

Intercept of a graph. 4

Interest, compound. 355

Interior point, 850, 856

Intermediate Value Theorem. 75

Interval

of convergence. 6 1

7

partition of. 266

Inverse cosecant function. 380

derivative of. 383

graph of. 38

1

Inverse cosine function. 380

derivative of. 383

graph of. 38

1

Inverse cotangent function. 380

derivative of. 383

graph of. 38

1

Inverse function. 332

continuity of. 336

derivative of. 336

existence of. 334

graph of, 333

guidelines for finding, 335

horizontal line test, 334

properties of, 352

reflective property of, 333

Inverse hyperbolic co.secant function, 399

derivative of, 401

graph of, 400

intenrals inwhiuL'. 401
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Inverse hyperbolic cosine function, 399

derivative of. 40

1

graph of". 400

integrals involving. 401

Inverse hyperbolic cotangent funclitm, 399

derivative of. 401

graph of. 400

integrals involving. 401

Inverse hyperbolic functions. 399

Inverse hyperbolic secant function, 399

derivative of, 40

1

graph of. 400

integrals involving. 401

Inverse hyperbolic sine function. 399

derivative of. 401

graph of, 400

integrals involving. 401

Inverse hyperbolic tangent function. 399

derivative of. 401

graph of. 400

integrals involving. 401

Inverse secant function. 380

derivative of. 383

graph of, 381

Inverse sine function, 380

derivative of, 383

graph of. 381

Inverse square field. 1009

Inverse tangent function. 380

deri\ative of. 383

graph of, 381

Inverse trigonometric function! s), 380

derivative of. 383

graph of. 381

integrals involving, 388

properties of. 382

Involute of a circle. 710

Irrotational. 1014

Isobars. 841

Isotherm. 841

Isothermal surfaces. 844

Iterated integral. 937

Iteration. 222

/th temi of a sum. 2.^3

Jacobi. Carl Gustav ( 1804-1851 ). 993

Jacobian. 995

loule. 450

Joule. James Pre.scott ( 1818-1889). 1038

K
Kappa curve. 141

Kepler. Johannes (1571-16.30). 656. 705

Kepler's Laws. 705

Kinetic enersv. 1038

Koch snow flake. 554. 589

Kovalevsky. Sonya ( 1850-1891 ). 850

Lagrange. Joseph Louis ( 1736-1813).

170.922

Lagrange form of the reniamder. 61 I

Lagrange multiplier. 922

method of. 921.922

with two constramts. 926

Lagrange's Theorem. 922

Lambert. Johann Heinnch ( 1728-1777).

395

Lamina, planar. 463

Laplace. PieiTC Smion de (1749-1827). 988

Laplace's equation. 866, 929

Laplacian. 1018

Latus rectum. 651

Law of Conservation of Energy. 1038

Law of refraction. 928

Leading coefficient. 24

Leading coefficient test. 24

Least squares

method ot\ 9 1

5

regression line. 915, 916

regression quadratic. 919

Least upper bound of a sequence. 563

Left-handed orientation. 727

Legendre. Adnen-Marie (1752-1833). 916

Leibniz. Gottfried Wilhelm (1646-1716),

19. 231

Leibniz notation for derivatives or

differentials. 231

Lemniscate. 39. 140.690

Length

of an arc. 440. 441

of the moment arm. 460

of a scalar multiple. 720

of a vector. 716. 717

Level curves (or contour lines). 841

Lexel surfaces. 843

L'Hopital, Guillaume Fran(;ois Antoine de

(1661-1704). 531

L'Hopital's Rule. 531

Liniacon. 690

Limit

of an algebraic function. 57

of a composite function, 59

definition of. 52

determinate form. 536

evaluation of. 57

existence of. 52. 7 1

of a function. 48

of a function of two variables. 85

1

indeterminate form. 61. 530

infinite, 80

at infinitv. 192

of integration

inside. 937

outside. 937

involving e. 355

from the left. 70

of lower sum. 259

nonexistence of. 50

of (ith term of a convergent series. 57

1

one-sided. 70

of a polynomial function. 58

properties of. 57

of a radical function. 58

ol a rational function. 58

from the right. 70

of a sequence. 557

of the slope of a line. 45

of a series. 567

strategy for llnding. 60

trigonometric. 63

of a trigonometric kinction. 59

of upper sum. 259

of a vector-valued function. 78'^)

Limit Comparison Test. 585

Line(s)

general form of c(.|u,ition. 14

parallel. 14

perpendicular, 14

point-slope equation of. I I

sketching the graph of, 13

slope of. 10

slope-intercept equation. 13

in space. 752

direction number of. 752

direction vector for. 752

parametric equations of. 752

symmetric equations of. 752

Line of impact. 896

Line integral. 1020

for area. 1045

as a definite integral. 102 I

differential form of. 1027

Fundamental Theorem of. 1032. 1033

independence of path. 1035

of a vector field. 1024

Linear approximation. 228. 871

Linear combination. 72

1

Linear factors, 5 1

7

Linear function, 24

Linear regression. 7. 30

Locus. 650

Log Rule for Integration. 324

Logarithmic differentiation. 319

Logarithmic function

base a. 352

common, 352

integral involving. 324

natural. 314

Logarithmic properties. 315
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Logistics L'Lirve. 523

Logistics dittcrcntial equation, 238

Logistics equation. 409

Lower bound of a sequence. .563

Lower bound of summation. 253

Lower limit of integration. 267

Lower sum. 257

limit oL 259

M
Mucintyie, Sheila Scott (1910-1960). 497

Maclaurin. Colin ( 1698-1746). 632

Maclaurin polynomials. 607

Maclaurin series. 632

Magnitude. 716. 717

Major axis of an ellipse. 653

Marginal producti\'ity of money, 924

Mass. 459. 963

center ot. 460, 4(il, 462, 463. 965. 983

moments of, 463. 965

of a planar lamina. 963

Mathematical model. 7. 915

Maximum. 905

absolute, 160. 905

of a fimclion on an interxal. 160

relative, 161, 905. 9I)S

Maximum problems (appNcil). 212

Maxwell. James ( I S3 1 - 1 879 ). 7 1

8

Mean Value Theorem. 170

extended, 238. 53!

for integrals. 278

Measurement, system ot. 459

Method of Lagrange Multipliers, 921, 922

with two constraints, 92(i

Method of least squares. 915

Method of partial fractions. 515

Midpoint between two points in space.

728

Midpoint Rule. 2b3. 1005

Mininiuni. 905

absolute, IbO, 905

ol a tuiiction on an interval, 160

relative, 161. 905. 908

Minimum problems (applied). 212

Minor axis of an ellipse. 653

Mixed partial derivatives. 863

ei.|uality of. 864

Model, mathematical. 7. 915

Moment
first. 967. 983

ol a lorce about a point. 748

of inertia. 967. 983. 1090

polar, 967

second, 967, 983

about a line. 460

of III about the point P. 460. 748

of mass. 965

of mass of a planar lamina of variable

density, 965

about the origin. 460. 461

about a point. 460

about the .v-axis. 462. 463

about the v-axis, 462. 463

Moment arm. length of, 460

Monotoiiic. 5(i2

Monotonic function. 175

Monotonic sequence. 562

Motion of a projectile, 806

Multiple integral

iterated, 937

in nonrectangular coordinates, 955, 988

triple, 978

Mutually orthogonal. 376

II factorial. 559

Napier, John (1550-1617), 314

Natural exponential function. 341

Natural logarithmic base. 317

Natural logarithmic function, 314

base of. 3 1

7

derivative of. 318

graph of. 314

properties of. 3 1

5

series for. 638

Negative of a vector. 7 1

8

Neighborhood in the plane. 850

Newton. Isaac (1642-1727). 94. 222. 684

Newton's Law of Cooling, 365

Newton's Law of Universal Grav itation,

452

Newton's Method, 222

convergence of. 224

Newton's Second Law of Motion. 806

Node. 796

Noether. Emmy (1882-1935). 720

Nonremovable discontinuity. 69. 854

Norm

of a partition. 266. 944. 956. 978

of a V ector, 7 1

7

Normal component of acceleration. 815

Normal line to a surface, 896, 897

Normal probability density function, 548

Normal vector, 812, 1054

to a smooth parametric surface, 1054

unit, 812

Normalization of a vector, 720

;ith Maclaurin polynomial, 607

/;th partial sum, 567

;;th Taylor polynomial, 607

)ith term of a sequence, 556

;ith-Term Test for Divergence, 57

1

Number c, 317

Numerical inteijration, 300

o

Octants. 727

Odd function. 26

integration of. 296

Ohm's law, 234

One-sided limits, 70

One-to-one function. 2

1

Onto function, 21

Open disk, 850

Open interval

continuity on, 68

dilferentiable on, 97

Open region. 850. 856

Open sphere. 856

Optimization problems, 750. 751. 926

guidelines for. 212

Order ol a differential equation. 369

Order of integration. 940, 950

Orientation of a curve in the plane, 666

Orientation of a curve in space, 1019

Oriented surface. 1066

Origin. 684

symmetry, 5

Orthogonal, 505

functions. 505

projections. 739

trajectory, 376

vectors. 737

Ostrogradsky. Michel ( 1801-1861 ). 1073

Outer radius. 424

Outside limits of mtetiration, 937

Pappus

Second Theorem of. 469

Theorem of. 466

Pappus of Alexandria [ca. 300). 466

Parabola. 2. 65

1

axis of. 651

directrix of. 65 I

focal chord of. 65

1

focus of, 65 1

latus rectum of. 65 I

polar form of equation of. 702

reflective property oL 652

standard form of equation of. 65

1

vertex of. 65 1

Parabolic spandrel. 468

Paraboloid, 766

Parallel lines, 14

Parallel planes, 754

Parallel vectors, 730

Parallelepiped, volume of, 749

Parameter. 665

Parametric equations. 665. 1051

and arc lenalh. 678
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area of surface of re\ olutioii. 6bU

of a line in space, 752

for surfaces. 1053

Parametric form of the derivative. 675

Parametric surface. 1051

area of. 1055

equation for, 1 05

1

and surface integrals. 1005

Partial derivative. 1054

first, 859

of a function of three or more \ ariables.

862

of a function of two variables. 859

higher-order. 863

implicit. 880

mixed, 863

notation for. 860

Partial differentiation. 859

Partial fraction(s). 515

Partial sums, sequence of. 567

Particular solution. 247

of a differential equation. 370

Partition

inner. 944. 978

polar. 956

of an interval. 266

norm of. 266. 944. 956

regular. 266

Pascal. Blaise ( 1623-1662). 470

Pa.scars Principle. 470

Path. 851. 1019

Pattern recognition. 288

for sequences. 560

Pear-shaped cuartic, 156

Percent en'or. 230

Perpendicular lines. 14

Physical interpretation of curl. 1084

Piecewise smooth cur\e, 670. 101'-)

Planar lamina. 463

Plane(s)

distance between a poml and. 757

general equation of. 753

parallel. 754

perpendicular. 754

in space, 753

standard equation of. 753

tangent to a surface. 897

Plane curve. 665

Plane region, area of. 256. 259. 938

Point of inflection. 1 86

Point of intersection of polar graphs. 696

Point of intersection of two graphs. 6

Point-plotting method. 2

Point-slope form of an equation of a line. 1

1

Point-slope method. 2

Polar axis. 684

Polar coordinate system. 684

Polar coordinates. 684

and arc length. 698

and area. 694

area of surface of revolution. 699

conversion of rectangular to. 685

double integral. 955

equation of conies in. 703

graphing techniques for. 686

Polar graphs. 686

graphs, special. 690

and points of intersection. 69(i

Polar moment of inertia. 967

Polar sectors. 955

Pole (or origin), 684, 773

Polynomial approximation. 605

Polynomial function. 24

continuity of. 73

degree ol. 24

limit of. 58

of two variables. 839

Position function. 1 1

1

for a projectile. 807

Position vector. 806

Potential energy, 1038

Potential function. 1011

Pound mass. 459

Power Rule

for diflercntiation. 1116

General. 124

for real exponents. 354

Power series. 616

centered at c. 616

convergence of. 617

deriv ative of, 62

1

divergence of, 617

for elementary lunetions. 638

geometric. 625

integration. 621

interval of convergence. 619

operations with. 627

properties of. 621

Preservation of inequality. 272

Pressure, 470

Primary equation. 211.212

Principal unit normal vector, 812

Probability density function, 548

Procedures for fitting integrands to basic

rules. 485

Product Rule for difterentiation. I 17

Projection. 739

using the dot product. 740

Prolate cycloid. 677

Propagated error. 230

Properties

of continuity. 73

of continuous function of two variables.

854

of cross product. 745. 746

of definite integrals, 270, 271

of the derivative. 796

of the dot product. 735

of double integrals. 946

of functions defined by power

series. 62

1

of the gradient. 888

of infinite limits. 84

of infinite series. 571

of in\crse lunetions. 352

of inverse trigonometric junctions. 382

of limits. 57

of limits of sequences. 558

of the natural exponential function. 341

of the natural logarithmic lunction. 31.^

of \ector operations. 719

Pioportionalit\ constant of exponential

growth Liiid decay models. 362

/)-series. 579

convergence of. 579

divergence of. 579

Q
Quadratic factors. 519

Quadratic function. 24

Quadric surface. 764

Quotient rule for difterentiation. 1 19

Quotient of two polynomials. 25

R

Radial lines. 684

Radical function

conlinuity of 73

limit of 58

of convergence. 6 1

7

of curvature. 825

of gyration. 968

Radius 111 coincrgence. 617

Radius lunction. 769

Ramaiuijan. Srimvasa ( 1887-19201. 629

Range

of a function. 19

of a function of two variables. 838

Raphson. Joseph ( 1648-17 15). 222

Rate of change. 1

2

average. 12

instantaneous. 171

Ratio, 12

Ratio Test, 597

Rational function. 25

continuity of 73

limit of, 58

of sine and cosine. 527

of two variables. 839

Rationalization. 61
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Real-\ allied function/ of a real \aiiahle. 19

ReaiTangement of series. 594

Rectangle, area of. 2.55

Rectangular coordinates

conversion to cylindrical. 773

conversion to polar. 685

con\ersion to splierical. 776

Rectifiable. 440

Reduction formulas. 526

Reflection of grapli of a function. 23. 333

Reflective property

of an ellipse. 655

of inverse functions. 333

of a parabola. 652

Retfective surface. 652

Refraction. Snell's Law of, 928

Region in the plane

area of. 938

centroid of, 965

closed. S5()

connected. 1035

horizontally simple. 938

of integration. 937

open. 850. 856

simple solid. 1074

simply connected. 1042

between two curves, area of. 412. 413

vertically simple. 93s

Regular partition. 266

Related rates. 144

guidelines for problem soh iiig w ith.

145

Relation. 19

Relative error. 230

Relative extrema. Id I. 905

and critical numbers. 162

and critical points. 906

First Derivative Test for. 1 76

Second Derivative Test lor. 188

Relative maximum. 161. 905. 908

First Derivative Test for. 176

of a function. 1 76

Second Deri\ati\e Test tor, 188

Second Partials Test for. 908

Relatne minimum, 161, 905, 908

First Derivative Test for, 1 76

of a function, 1 76

Second Derivative Test tor. 188

Second Partials Test for, 908

Removable discontinuity. 69. 854

Repre.sentati\e rectangle. 412

Resultant force. 722

Resultant \ector, 7 18

Riemann, Georg Friedricli Bernhard

(1826-1866). 266

Riemann sum, 266

Riemann zeta function, 581

Right-handed orientation. 727

Rolle. Michel (1652-1719). 168

Rolle's Theorem. 168

Root Test. 600

Rose curve. 687. 690

Rotation. 1084

r-simple region. 957

Rulinvis. 763

Saddle point. 908

Scalar. 7 1

6

Scalar field. 841

Scalar multiple. 718

Scalar multiplication. 718

Scalar product. 735

Scalar quantities. 716

Secant I unction

deri\Liti\e of. 12 I

integral of. 329

inverse of. 380

and tangent, integrals involving. 500

Secant line. 45. 95

Second derivative. 123

Second Derivative Test. 188

Second Fundamental Theorem of Calculus.

282

Second moment. 9(i7. 983

Second Partials Test. 908

Second Theorem of Pappus. 469

Secondary equation. 212

Separable differential equations. 371

Separation of varuiblcs. 371

Sequence, 556

bounded. 563

convergence of. 224. 557

divergence of. 557

least upper bound. 563

limit of. 557

nionotonic, 562

mh term. 556

of partial sums. 567

pattern recognition for. 560

properties of. 558

Squeeze Theorem. 559

term of. 556

upper bound of. 563

Series. 567

absolute convergence. 593

alternating. 590

binomial. 637

convergence of. 567

guidelines for testing. 601

divergence of. 567

guidelines for testing. 601

geometric. 569

harmonic. 579

infinite. 567

Maclaurin. (i32. 633

/jth partial sum. 567

power. 6 1

6

properties of. 57

1

/i-series. 579

sequence of partial sums of. 567

sum of. 567

summary of tests for. 602

Taylor. 632. 633

telescoping, 568

term of, 567

Shell method, 432, 433

compared to the disk method, 434

Shift of a graph, 23

Sigma notation. 253

Signum function. 79

Simple curve. 1042

Simple solid region. 1074

Simply connected region. 1042

Simpson. Thomas (1710-1761). 302

Simpson's Rule. 302. 303

eiTor in. 304

Sine function

derivative of. 1 10

integral of. 329

integrals involving. 497

guidelines for evaluating. 497

inverse of. 380

series for. 638

Singular solutions of a differential

equation. 369

Sink. 1078

Sketching planes in space. 756

Slant asymptote. 204

Slope

field. 315. A2
of a graph of / at .v = c. 95

of a horizontal line. 10

of a line. 10

of parallel lines. 14

of perpendicular lines. 14

in polar form. (i88

of a surface in the .v-direction. 860

of a surface in the y-direction. 860

Slope-intercept ci.|ualion of a line. 13

Slug. 459

Smooth curve. 440. 670. 796. 1019

on an open interval. 796

Smooth surface. 1054

Snelfs Law of Refraction. 928

Solenoidal, 1016

Solid of revolution. 42

1

volume of 422. 424. 433

Solids vv ith know n cross sections. 426

Solution curves of a differential equation.

370

Solution point of an equation. 2

Somerville. Mary Fairfax (1780-1872), 838

Source, 1078

Space curve, 786
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arc length of, iS20

curvature of. 824

Special integration formulas. ?1()

Special polar graphs, 690

Speed. 112. S02, 8(l\ 826

Sphere. 728

equation of. 728

Spherical coordinate system. 776

Spherical coordinates. 776

conversion to cylindrical. 776

conversion to rectangular. 776

triple integrals in. 991

Spiral of Archimedes, 679, 686

Square root function. 22

Square root symbol. 58

Squared errors, sum of. '-)
1

5

Squeeze Theorem. 6,i

for sequences. .^59

Standard form

of an equation of an ellipse. 6.5.^

of an equation of a hyperbola. 657

of an equation of a parabola. 65 1

of an equation of a plane in space. 75.^

of an equation of a sphere. 728

of the equations of quadnc Mufaces.

764. 765. 766

of a first-order linear differential

equation. A4

Standard position of a vector. 7 I 7

Standard unit \ector. 72 I

notation. 729

in the plane, 721

in space. 729

Step functions. 70

Stokes. George Gabriel (1 8 1
9- 1 90.^ ). 1 08

1

Stokes's Theorem. 1047. 1081

Strategy for finding limits. 60

Strictly monotonic function. 175

Strophoid. 712

Substitution

integration by. 288

for rational functions of sine and

cosine. 527

Sufficient condition for differentiability. 870

Suiseth. Richard, 567

Sum
of infinite series. 567

of two functions. 25

Sum Rule for differentiation, 109

Sum of the squared errors, 915

Summary of common integrals using

integration by parts. 49.1

Summary of compound interest tVirniulas.

355

Summary of differentiation rules, 13,3

Summary of equations of lines, 14

Summary of integration formulas, 1085

Summary of line and surface integrals,

1070

Summary of tests lor series. 602

Summary of velocity, acceleration, and

curvature. 828

Summation formulas. 254

Surface. 763

closed. 1073

isothermal. 844

level. 843

orientable. 1066

orientation of. 1066

in space. 763

Surface area. 971,972, 1055

Surface integrals, 1061

Surface of re\olution. 444, 769

area of. 445. 680

area in parametric form. 680

area in polar form, 694

Symmetric equations of a line in space,

752

Symmetric with respect to {ti. h). 408

Symmetry

ol a graph, 5

u ith respect to the origin, 5

with respect to the -v-a\is, 5

u ith respect to the y-a\is, 5

tests for, 5

Table of \alues, 2

Tables, integration by, 524 ^
Tabular method, 493

,

Tangent function

derivative of, 121

integral of, 329

inverse of, 380

Tangent line. 45. M5. 675. 688

to a curve. 812

to the graph of a function. 45

at the pole. 689

vertical. 97

Tangent line approximation. 228

Tangent plane to a surface, 896. 897, 1054

equation of. 897

Tangent vector, 802. 81 I

Tangential component of acceleration. 815

Tautochrone problem. 67

1

Taylor. Brook ( 1 685-1 73 1 ). 607. 62 1 . 632

Taylor polynomials. 156. 607

remainder of. 6 1

1

Ta\ lor series. 632. 633

convergence of. 634

guidelines for finding. 636

Taylor's Theorem. 61

1

Telescoping series. 568

Term of a sequence. 556

Term of a series. 567

Terminal point. 716

of a vector, 716

Test for conca\ it\. 1 85

Test for consenative vector field. 1011

111 the plane. 1012

in space. 1015

Test for decreasing function. 174

Test for even and odd functions. 26

Test for increasing function. I 74

Test for symmetry. 5

Tests lor convergence

.'\lternatmg Series Test. 590

Direct Comparison Test. 583

Integral Test, 577

Limit Comparison Test, 585

Ratio Test, 597

Root Test, 600

summary of. 602

Theorem of Pappus. 466

H-siniple region. 057

Third derivative. 123

Thomson. William ( 1 824- 1 907 ), 1 08

1

Three-dimensional coordinate system, 727

Topographic map, 841

Torque. 461. 748

Torus, 466

Total differential, 869

Total mass, 46 1 , 462

Trace, 756

ot a Mirlace, 764

Traclrix, 401

Transcendental functions. 25

Transformation, 996

of graph of function, 23

Transverse a.xis of a hyperbola, 657

Trapezoidal Rule. 300. 301

error in. 3(i4

Triangle Inequality, 721

Trigonometric iLiiictions(s)

continuity ot, 73

deri\'ati\e of. 1 2 I

integration ol, 329

inverse. 380

limit of. 59. 63

Trigonometric substitution. 506

Triple integral. 978

in cylindrical coordinates. 988

in spherical coordinates. 991

Triple scalar product. 748

properties of. 749

Two-point gaussian quadrature

approximation. 310

u

Unit normal vector. 812

Unit tangent vector. 8 1 1

Unit vector. 717. 720

standard. 72

1

Upper bound of a sequence. 563

Upper bound of summation, 253
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Upper limit of integration, 267

Upper sum. 257

limit of. 2.'59

(/-substitution. 288

Variable

dependent. 19. 838

independent. 19. 838

of integration. 243

Vector(s)

acceleration. 803. 814

addition of. 7 i 8

angle between. 736

components. 717. 721. 739

cross product of. 744

difference of. 7 1

8

dot product of. 73.5

equality of. 717. 729

initial point. 716

length of. 716.717

linear combination of. 721

magnitude. 716. 717

negative of, 7 1

8

norm of. 717

normalization of. 720

orthogonal. 737

parallel, 730

in the plane. 716

position. 806

projection of. 739. 740

properties of. 7 1

9

resultant. 718

scalar multiple. 718

scalar multiplication. 7 1

8

in space. 729

standard position. 7 1

7

subtraction. 718

tangent, 802

terminal point of. 716

triple .scalar product. 748. 749

unit, 717, 720

velocity, 802, 803

zero, 717,729

Vector addition in space. 729

Vector field. 1008

circulation of. 1084

conservative, 1011

curl of, 1014

divergence of, 1016

divergence free, 1016

incompressible, 1016. 1078

iiTotational. 1014

line integral, of. 1024

rotation of. 1084

sink, 1078

solenoidal, 1016

source, 1078

Vector operations, 7 1

8

Vector product. 744

Vector space. 720

Vector-valued functions. 7S6

continuous on an open interval. 790

continuous at a point, 790

derivative of, 794

differentiation of, 795

doiTiain, 787

integration of, 798

limit of, 789

properties of derivative, 796

summary of properties. 828

Velocity. 802. 803

average, 1 1

1

of a free-falling object. 67

function. 1 12

instantaneous. 1 1

2

summary of acceleration and curvature.

828

Velocity field. 1008. 1009

Velocity vector. 802. 803

Vertex

of an ellipse. 653

of a hyperbola. 657

of a parabola, 65

1

Vertical asymptote, 81

Vertical component of a vector. 72

1

Vertical line, equation of. 14

Vertical line test. 22

Vertical shift of a graph of a function. 23

Vertical tangent line, 97

Vertically simple region. 938

Volume

by disk method. 422

by double integration. 946

by shell method. 433

of .solid region. 944. 946

of .solid of revolution, 422. 424. 433

of solids with known cross sections,

426

by triple integration, 978

w
Walli.s, John (1616-1703), 499

Wallis's Formulas, 499

Washer, 424

Washer inethod, 424

Wave equation. 933

Weierstrass. Karl (181,5-1897). 850, 906

Weight, 459

Witch of Agnesi, 793

Work, vector form, 74

1

Work done by a constant force, 450

Work done by a variable force, 45

1

Work given by a line integral, 1 024

Wren, Christopher, 678

X
.v-axis syinmetry. 5

.v-coordinate. 727

.v-intercept. 4

Av-plane. 727

.v,--plane. 727

y-axis symmetry. .1

y-coordinate. 727

y-intercept. 4

Young. Grace Chisholm (1868-1944).

42

v;-plane. 727

;-axis. 727

c-coordinate. 727

Zero factorial. 559

Zero vector, 717. 729

Zeros of function. 26. 222





ALGEBRA

Factors and Zeros of Polynomials

Let p(.\) = n„.v" + a„_ |.v"" ' + + fl|.v + «„ be a polynomial. If /'(</) = 0, then a is a zero of the polynomial

and a solution of the equation /)(.v) = 0. Furthermore, (a — a) is a factor of the polynomial.

Fundamental Theorem of Algebra

An ;(th degree polynomial has ii (not necessarily distinct) zeros. Although all of these zeros may be imaginary, a real

polynomial of odd degree must have at least one real zero.

Quadratic Formula

If /)(-v) = fl.v- + b\ + (, and < /)- - 4oe. then the real zeros of p arc \ =
(
— b ± ^/h- — 4ae)/2a.

Special Factors

.V- - a- = (.V - (;)(.v + (() .v' - «' = (.v - fl)(.v' + a\ + ir)

.v' + a^ = {x + fl)(.\- - u.\ + a-) .v-" - a^ = {.\- - a-)(x- + tr)

Binomial Theorem

[x + y)- = .V- + Ixy + r-

fv + y)-' = .v' + 3.\-Y + 3.vy- + y'

(.V + yV = .v^ + 4.v'y + 6.v-y- + 4.vy' + y-»

n(n - 1)
(.V + v)" = .V" + ».v" -'v + -^-— .v"--v- +

(.V - v)" = .v" — nx" 'v +
n(n - 1)

\x - yy = X- - ixy + y-

(.V - y)' = -v' - 3.v-y + 3.vy= - y'

(.V - y)^ = x^ - 4x\' + 6.v=y- - 4.vy' + y"*

+ nxy" ' ' + y"

± /!.vv" ' + v"

Rational Zero Theorem

H p(x) = ((„.v" + L\^^ __ |.v" ' + • + «|.v + fl|| has integer coefficients, then every rutional zero of p is of

the torm .v = r/s. where ;• is a factor of «,, and ,v is a factor of «„.

Factoring by Grouping

(((.v' + adx- + bcx + hd = uxHcx + d) + b(ex + d) = (aX' + b){ex + d)

Arithmetic Operations

a c ad + be a + b "
,
b

/) + cic = aib + c) 7 + -; = ~
/) d bd c e c

'A {'A
bj _ la\(A _ "d \hl a a ac

e\
"

\bl\e] ^ be c be (A ^

d, [cj

lb\ _ ab a - b b — a ab + ae
^= b +

\c)
~

c c - d d — e a

Exponents and Radicals

a" =
1, fl

7t (ab) = fl'fc" a'-a- = a

Kb)
i/a" = a-l" fl

" \

uib = !i/a yb («')' = o'

/a = a""I/"

'Vb



TRIGONOMETRY

Definition of the Six Trigonometric Functions

Right triangle definitions, where < 6 < tt/2.

opp hyp
sin d = r^ CSC 6 -

hyp

adj

hyp

adi
cos d = -. sec d

Adjacent

tan (^ = ^ cot e =

opp

hyp

adj

adj
LUl u —

adj opp

Circularfunction definitions, where 6 is any angle.

V X r
sin 6 = '- CSC 6 = ~

r y

cos 9 = - sec = ~
r .V

tan
.VX

'- cot
A- y

Reciprocal Identities

sec A = tan a =
CSC A cos A A

1 1

CSC A = -^ cos A =
Sin A sec A

cot A
tan A

Tangent and Cotangent Identities

sin A cos A
tan A = cot A = —

cos A sin A

Pythagorean Identities

sin- A + cos- A = 1

1 -I- tan- A = sec- a 1 + cot- A = esc- A

Cofunction Identities

7T \ / 77

Sin
I

— - A
I

= cos A COS
I

— — A

csc| ^ - A
I

= sec A tan( — — a |
= cot a

77 \ / 77

esc A cot| — - A
I

= tan a

Reduction Formulas

sin(
— a) = —sin A cos(— a) = cos a

csc( — a) = —esc A tan(— a) = —tan a

sec( — a) = sec A cot(— a) = —cot a

Sum and Difference Formulas

sin(;( ± v) = sin u cos v ± cos u sin v

cos(!( ± v) = cos /( cos V + sin ;/ sin v

tan u ± tan v
tan(;( ± v)

/ 1 VJ
\ 2- 2 ^-—^

1 V2 V2] y<n 2

_VA 1] A. ^ 1350'-"°

2 2i / 6 j5p.

(0. 11 ll Va

3 XI 2 • 2 )

30° 6^2-2

0° ol

(-1,0)U 180°

V--3 V^ - "5°
-' V 37r 240O

V2 V2\\ in

2 • 2 ; \^270°

360° 2nr(l,0)

-™°u./y3
,

-^'^°7, / 2 '"2
300° 2f / ^ - ^'-

Double-Angle Formulas

sin 2u = 2 sin u cos u

cos 2u ~ cos- ;/ — sin- /; = 2 cos- ;/ — 1 = 1 — 2 sin- u

2 tan »
tan 2u

1 — tan- ;(

Power-Reducing Formulas

cos- ;(

tan- /(

1 — cos 2u

1 -1- COS 2((

1 — COS 2»

1 -I- COS 2u

Sum-to-Product Formulas

sin u + sin v = 2 sin

sin (/ — sin v = 1 cos

cos ;( -f cos V = 2 cos

cos ;( — cos r

u + V

u + V

;( + V

2

u — \

U + V

1 + tan (( tan v

Product-to-Sum Formulas

sin u sin v = -[cos(;/ — v) - cos((/ + v)]

cos /( cos \' = -[cos(;/ — v) -f cos(» -I- i')]

sin u cos V = -[sin(;/ + v) -I- sin{/( — r)]

cos ;( sin v = -[sin(;( -I- v) — sin{;( — r)]
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STUDY TOOLS TO HELP YOU SUCCLED IN CALCULUS

CS lutions
Announcing a whole new suite of electronic study tools for calculus:

The Larson eSolutions for Calculus.

Calculus Learning Tools Student CD-ROM Contains Computer Algebra System Explorations, rotatable

3-D art, printable MathGraphs and MathArticles referenced throughout the text, as well as MathBios,

labs, and more.

Companion Website Includes rotatable 3-D art and other student and instructor resources. Visit

www. college, hmco.com/mat hematics.
Interactive and Internet Calculus 3.0 These two products are comprehensive multimedia courses in

calculus. To provide you with a choice, we offer Interactive Calculus 3.0 on CD-ROM and Internet

Calculus 3.0 online. Both contain the complete text of Calculus, Seventh Edition, as well as other

exciting features such as solutions to odd-numbered exercises, rotatable 3-D graphs, editable 2-D
graphs. Open Explorations using one of four computer algebra systems, animations, videos, simulations.

Try Its for every example, and more.

CalcChat.com website An on-line resource where students can access, discuss, and help each other with

step-by-step solutions to all the odd-numbered exercises in the Larson Calculus series.

EduSpace On-Line Learning Environment Instructors can easily assign, deliver, and grade homework
and other assignments based on the even-numbered exercises in the text via Houghton Mifflin's new
EduSpace platform.

Other Learning Tools
SMARTHlNKING.com live, on-line tutoring Houghton Mifflin and SMARTHINKING.com have

partnered to offer live, on-line tutoring with select Houghton Mifflin textbooks. If you did not purchase

a SMARTHINKING student password card with this text and would like to purchase one, please visit

our website or email us at college_math@hmco.com for more details.

Print Solutions •

'

.;>

!//;/v, Se\enlh Edition

• Study and Solutions Guide, Volume I - Solutions to all odd-numbered exercises in Chapters P-10

• Study and Solutions Guide, Volume II - Solutions to all odd-numbered exercises in Chapters 10-14

Calculus of a Single Variable. Seventh Edition

• Study and Solutions Guide, Volume I

Calculus II. Sc\enlh Edition

• Study and Solutions Guide, Volume I
*"

A/H/r;r(7r/a/)/f ('(//cH/i/.s, Se\enth Edition • t'

• Study and Solutions Guide, Volume II

Students: Eor availability information or if you would like to order any of the study tools described

above, visit college.hmco.com/students and choose "Go to Your Discipline" or "Visit Our Bookstore."

You can also email us at college_math@hmco.com.

AP Instructors: McDougal Littell is pleased to distribute Houghton Mifflin college-level material to high schools

for Advanced Placement, honors, and college prep courses. Our special sales department is dedicated to serving

teachers and students in these courses. To contact your AP sales specialist, call us toll free at 1-800-323-5435. For

additional text-specific support, please visit us on the Internet at vvww.coUege.hmco.com/instructors.
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