

Beauty	 and	 Joy	 of	 Computing:	 Overview	 of	 Curriculum	

Overarching	 Goals	

The goal of AP Computer Science Principles is to provide a broad, inspiring overview of
computer science that is appropriate for all students who have completed Algebra 1.
The Beauty and Joy of Computing (BJC) is an adaptation of the University of California,
Berkeley computer science breadth course designed to meet the requirements of the AP
CS Principles Curriculum Framework and to be broadly accessible to a diverse
population of high school students.
In this course, students will

• create programming projects using the Snap! language,
• learn some of the most powerful ideas of computer science,
• be creative, and
• investigate the social implications of computing.

The BJC curriculum is available at http://bjc.edc.org and the Teacher Guide is available
at http://bjc.edc.org/bjc-r/teacher.

Description	 of	 Curriculum	

BJC covers the entire CS Principles Framework and addresses the seven Big Ideas in the
framework with a primary emphasis on programming (Big Idea 5) and, closely linked
with programming, on abstraction (Big Idea 2). As much as possible, BJC uses
programming as the vehicle to tell other parts of the story; for example by presenting data
(Big Idea 3) not through commercial database software but by writing programming
projects that manipulate data sets as lists.

The secondary emphasis of BJC is on the social implications of computers (Big Idea 7,
Global Impact). Social topics are included in every unit, not just one. Students are
encouraged to think critically about each application of technology. The Big Ideas of
creativity (Big Idea 1) and algorithms (Big Idea 4) are addressed throughout the units,
and there is particular attention to the Internet (Big Idea 6) in Unit 4.
Snap!, the programming language used in BJC, was developed specifically for this
curriculum. Its visual, drag-and-drop design is based on that of Scratch, so that it is
accessible to a wide audience and not intimidating, but the language, itself, is extended
with the abstraction mechanisms needed for serious computer science: first class
procedures for control abstraction and first class lists for data abstraction. These
capabilities are embodied in carefully chosen visual metaphors so that ideas traditionally
considered difficult can be understood and enjoyed by beginners.

The course is divided into seven units that cover:
1. sequential programming and loops
2. conditionals and functions

3. lists
4. the Internet and introduction to data
5. algorithms and data
6. recursive commands
7. recursive functions

The actual AP exam comes some time in Unit 6; the last two units primarily cover topics
beyond the CS Principles Framework. Note that the seven units do not correspond one
for one with the seven Big Ideas of the Framework, although Units 4 and 5 focus on Big
Ideas 3, 4, and 6. However, all seven Big Ideas of the Framework are addressed in BJC.
Recursion and functional programming are two programming techniques that go beyond
the Framework requirements, but are at the heart of what makes BJC unique. Unit 6 is
about recursive commands, mainly fractals; Unit 7 is about recursive functions,
combining the ideas of recursion, from Unit 6, and functional programming, introduced
in Unit 3 with the higher order functions on lists. One highlight of the course is the
implementation by students of three key list operations: Map, Keep, and Combine.
These ideas are important to include because they help students come to see computer
programs themselves—not just the effects produced by the programs—as things of
beauty. A key moment in developing that sense comes when students understand how a
short recursive procedure can generate a deeply complex computational process.

Computational	 Thinking	 Practices	
The BJC course includes two different kinds of online lab pages for students:
Programming Labs, in which students create and analyze programs and learn about the
technical aspects of computing, and Social Implications Labs, in which students consider,
discuss, and write about the human aspects of computing. Below we describe how each
of the computational thinking practices is addressed in the BJC curriculum.

P1: Connecting Computing—Primarily in the Social Implications Labs throughout
the course, but also in the Programming Labs of Unit 4: The Internet and Global
Impact, students consider the social impacts of computing, including connections
between technological advances and impacts on society.

P2: Creating Computational Artifacts—Throughout the BJC course, students create
many computer programs, the very foundation of computational artifacts. These
include specific assigned tasks as well as major projects entirely invented and
developed by students. Other kinds of artifacts are developed as required by the
AP CS Principles performance tasks.

P3: Abstracting—Abstraction, the central idea of computer science and of this
curriculum, is also highlighted throughout the year. BJC includes both control
abstraction (through writing procedures, generalizing patterns by adding inputs,
and using and building higher order functions) and data abstraction (writing
constructors, selectors, and mutators for abstract data types).

P4: Analyzing Problems and Artifacts—Students analyze and debug programs
provided in the curriculum and also critique their own work. They discuss how a

particular program works or why a program does not work and what it would
take to fix it.

P5: Communicating—Students are regularly asked to discuss questions and topics
with their pair programming partner or (for more complex topics) another pair.
In addition, whole class discussion prompts are included in the Teacher Guide
for every unit. The first five units of BJC include topics in the social implications
of computing, which are treated through whole class and small group discussions
and writing prompts.

P6: Collaborating—Throughout the curriculum, students use pair programming.
They take turns at the keyboard and resolve programming bugs and discuss
issues together. Following the AP Create task requirements, large programming
projects are designed and partly implemented in pairs.

Big	 Ideas	
Below we describe how each of the Big Ideas in the AP CS Principles Framework is
addressed in the BJC curriculum.

Big Idea 1: Creativity—BJC’s primary attention under this heading is creativity as
expressed in computer programming. In addition to the Create
performance task, throughout the curriculum there are labs in which
students are given the core of a program and then encouraged to
embellish and vary it.

Big Idea 2: Abstraction—BJC considers abstraction to be the central idea of
computer science, and it is the central idea of this curriculum. Early in the
year, students write procedures to draw a square, draw an equilateral
triangle, draw an equilateral hexagon, and then generalize the pattern into
a general polygon procedure by adding an input for the number of sides.
Several more examples of this kind appear in the first two units. Unit 3
introduces data abstraction, using lists to represent various abstract data
types by writing constructor and selector functions. (Later examples
introduce mutators too.) Unit 4 explains the Internet as a multi-layered
abstraction over local network interface hardware. And later, students
generalize patterns of functions over lists by writing higher order
functions such as map and filter.

Big Idea 3: Data and Information—Unit 3 introduces lists, the primitive data
aggregation mechanism in Snap!. This unit models operations on data
using small data sets built into project frameworks. In Units 4 and 5, the
same techniques are used on larger data sets found on the Internet. Snap!
allows CSV data to be imported into lists of lists. The primitive list
operations make it easy to carry out selections, slices, or joins. Unit 4 also
teaches how to scrape HTML pages programmatically; the main example
is for students to find the local temperature and chance of rain by

localizing the computer’s IP address and using the result to construct a
query to a weather-reporting site.

Big Idea 4: Algorithms—Students learn to develop and use algorithms to solve
problems right at the outset in BJC, and they refine their understanding
throughout the year. Unit 5 is where the ideas about asymptotic analysis
of algorithms and computability are taught.

Big Idea 5: Programming—Programming is at the heart of BJC. Most of the learning
objectives in this category are addressed from the beginning of the year.

Big Idea 6: The Internet—Unit 4 is about the Internet. It explains the specific details
under Big Idea 6 and also uses data read from the Internet in Snap! to
introduce Big Idea 3.

Big Idea 7: Global Impact—The Social Implications labs connect the ideas of each
unit to the human experience. Students discuss innovations, benefits and
harmful effects, and cultural contexts of computing.

Required	 Computational	 Tools	

University of California, Berkeley. Snap! 4.0. http://snap.berkeley.edu/run.

Snap! is a visual, drag-and-drop programming language. It is a significantly extended
reimplementation of Scratch (a project of the Lifelong Kindergarten Group at
the MIT Media Lab) that features first class lists, first class procedures, and
continuations, and allows users to create recursive blocks. These added capabilities
make it suitable for a serious introduction to computer science for high school or
college students.

Snap! is implemented in JavaScript, so it will run on any platform with a browser,
with no explicit installation required. (Standalone versions for most platforms are
coming soon.) Because the language is developed by the some of the same team as
the BJC curriculum, teacher-reported problems are solved quickly, and curriculum-
related enhancements get priority development.

Software	 and	 Hardware	 Requirements	
Computers (preferably) or tablets with a browser new enough to support HTML5
Canvas. (The BJC and Snap! development teams generally use Chrome or Firefox but
also test on Safari, Opera, IE, and Edge.)

School	 Network	 Requirements	
Schools must whitelist berkeley.edu, edc.org, and miosoft.com (the Snap! cloud
storage provider) to access all BJC course materials.

Other	 Resources	
The curriculum itself is also accessed through a browser. The BJC curriculum is
available at http://bjc.edc.org and the Teacher Guide is at http://bjc.edc.org/bjc-
r/teacher. All materials, including the textbook Blown to Bits, are available free online
(Creative Commons licensed).

