
Vol 8. No. 4, December, 2015
ISSN 2006-1781

African Journal of Computing & ICT

© YEAR Afr J Comp & ICT – All Rights Reserved

www.ajocict.net

209

A Survey and Comparative Analysis of Database Software Architectures

J.R. Bunakiye

1. Dept. of Mathematics/Computer Science
Faculty of Science, Niger Delta University,

Wilberforce Island, Nigeria.
jbunakiye@gmail.com

E.E. Ogheneovo

2. Department of Computer Science, Faculty of Science
University of Port Harcourt

Port Harcourt, Nigeria.
edward_ogheneovo@yahoo.com

ABSTRACT

Database software such as Database Management Systems (DBMSs) is ubiquitous and contains thebusiness rules processing,
data access, and presentation or interfaceareas of functionality. This functionality can be better understood in terms of how well
structured are the components of the software. Though a lot of design for database architectures are continually considered,
literature centered on database systems architecture are not as broadly known as they should be. This paper presents an
architectural discussion of database software in line with application architectures to come up with a comparison relating to
transactional processing and the stored program concept in a database software. It is intended to provide a common
understanding around which the quality of database software can be ensured to a certain degree of performance.

Keywords:Ubiquitous Components, Degree of Performance, Transaction Processing Monitor, Stored Program Concept

African Journal of Computing & ICT Reference Format:

J.R. Bunakiye & E.E. Ogheneovo (2015): A Survey and Comparative Analysis of Database Software Architectures. Vol 8, No. 4. Pp 209-.213.

1. INTRODUCTION

All computer applications, including database software have
three general areas of functionality: business rules processing,
data access, and presentation or interface. Business rules are
the parts of the business process that computer applications
automate. Data access concerns the code that automates the
storing, searching, and retrieving of data by computer
applications [13]. The interface allows applications to
communicate with applications and people. The ways in which
these application functions are assembled in database software
determines the flexibility of the applications, determines how
quickly they can be modified to support changes in business
and technology, and also determines how easily they interface
with people and with each other [4].

Database Management Systems, which are typical database
software, are ubiquitous and critical components of modern
computing, and their developments have spanned many
systems design techniques for scalability and reliability. While
many design considerations are increasing, discussions
centered on database systems architecture are not as broadly
known as they should be, also the coverage in the literature of
software architectures in database software that make a
Database Management System work is relatively scarce.

This paper presents a discussion on database application
functionality in terms of tiers of architectural design
principles, transaction implementation, and characteristically
shared components and utilities. Database software of today is
becoming larger and more complex [7]. More powerful ways
of structuring and assembling the areas of functionality are
subsequently required, especially about development
methodologies, structural programming, and software
architecture.

This is because database software architecture is the outline of
the system at the highest level of abstraction, describing the
main components and their most important interactions [8]. To
this end the architectural description provided in this paper
willprovide a common understanding around which the quality
of a database software can be ensured to a certain degree of
performance. The section 2 describes the related work. In
section 3, the tiers of database architectures were surveyed and
program execution parameters are given. The survey findings
and analysis are given in section 4. The approach for
comparing the tiers are given in section 5, and the conclusions
are discussed in section 6.

Vol 8. No. 4, December, 2015
ISSN 2006-1781

African Journal of Computing & ICT

© YEAR Afr J Comp & ICT – All Rights Reserved

www.ajocict.net

210

2. RELATED WORK

Several survey and analysisof software architecture have
alreadybeen documented. Architecture of a DatabaseSystem;
the authors [3] detail the critical architectural components and
the multi-user potentials of database software. They realized
that there has been many systems design techniques for
scalability and reliability relating to database software,
however database architecture coverage is scarce; in this light
they presented architectural discussion of database software
design principles, and parallel architecture. This complements
our work in the sense of the architectural frameworks
presented, the slight difference is on the areas were the current
discussion focused more on the application functionality in
terms of the tiers of architecture. Nicholas [5] in his
dissertation presented a survey of software architecture
viewpoint models.The work focused on methodology in the
documentation of software architecture.

One method is to break upthe description into separate
perspectives that address thedifferent concerns that
stakeholders have with softwarearchitecture. These
perspectives, sometimes called viewpoints,can contain
multiple diagrams to describe the completesystem. Some
viewpoint models were given to determinethe extent to which
they cover the software architecturedomain. In this context,
this paper is more interested in comparing the architectures in
terms of robustness and application implementation. Rikard
Land [7] also carried out a brief survey of generic software
architectures. This discussion focused on software complexity,
and the requirements for more powerful ways of structuring
the complexity. Suitable component based architectures can be
designed to handle change contribute greatly to solving
software complexity elements including development
methodologies, structural programming, naming conventions,
and/or configuration management. Our focused on discussing
the stored program concept as a bases for comparing the
functionality elements in the three tiers of database software
architectures presented.

3. SURVEY OF DATABASE ARCHITECTURES

In this section we describe different tiers of application such
as one tier, two tier and three tier architectures and relate
theme to a database software. One tier or monolithic
applications are architectures where the code that implements
the business rules, data access, and user interface are all
tightly coupled together as part of a single, large computer
program [6]. A monolithic application must be deployed on a
single platform, usually a mainframe or midrange machine.
Consider a user of a desktop computer who uses Microsoft
Access to load up a list of personal addresses and phone
numbers that he or she has saved in MS Windows' "My
Documents" folder. This is an example of a one-tier database
architecture.

The application Microsoft Access runs on the user's local
machine, and references a file that is stored on that machine's
hard drive, thus using a single physical resource to access and
process information. Another example of a one-tier
architecture is a file server architecture. In this scenario, a
workgroup database is stored in a shared location on a single
machine. Workgroup members use a software package such as
Microsoft Access to load the data and then process it on their
local machine [2]. In this case, the data may be shared among
different users, but all of the processing occurs on the local
machine.

Essentially, the file-server is just an extra hard drive from
which to retrieve files. One-tier architectures can be beneficial
when we are dealing with data that is relevant to a single user
or small number of users and we have a relatively small
amount of data. They are somewhat inexpensive to deploy and
maintain. Monolithic applications are costly and time
consuming to modify. It is more difficult to integrate
applications to share services and data [9]. There is little reuse
of redundant code between applications, making it more
expensive to build and maintain applications. It is more
difficult to have applications communicate with other
applications. Deployment alternatives and interface flexibility
is limited.

3.1Two Tier Client/Server Architectures

In a two-tier client-server architecture, application
functionality is partitioned into two executable parts, or
"tiers." One tier contains both the code that implements a
graphical user interface (GUI) and the code that implements
the business rules. This tier executes on PCs or workstations
and requests data from the second application tier, which
usually executes on the machine where the application's data
is stored. Two-tier client-server applications suffer from many
of the same drawbacks as monolithic applications and they
aremore difficult and expensive to modify when business
requirements change. They are more difficult to manage than
monolithic applications. In two-tier client/server architecture,
the client solely handles the user system interface [1]. The
client communicates directly with the database server. In
contemporary two-tier architectures, the processing logic
either resides on the client or the database server in form of
stored procedures.

Two-tier architecture is one that is familiar to many of today's
computer users. A common implementation of this type of
system is that of a Microsoft Windows based client program
that accesses a server database such as Oracle or SQL Server
(see fig. 1). Users interact through a GUI to communicate with
the database server across a network via SQL (Structured
Query Language). In two-tier architectures it is important to
note that two configurations exist. A thin-client (fat-server)
configuration exists when most of the processing occurs on
the server tier [8]. Conversely, a fat-client (thin-server)
configuration exists when most of the processing occurs on
the client machine.

Vol 8. No. 4, December, 2015
ISSN 2006-1781

African Journal of Computing & ICT

© YEAR Afr J Comp & ICT – All Rights Reserved

www.ajocict.net

211

Figure 1 Two-Tier Client-Server Architecture

Another example of a two-tier architecture can be seen in
web-based database applications. In this case, users interact
with the database through applications that are hosted on a
web-server and displayed through a web-browser such as
Internet Explorer [11]. The web server processes the web
application, which can be written in a language such as PHP
or ASP. The web application connects to a database server to
pass along SQL statements which in turn are used to access,
view, and modify data (see fig. 2). The DB server then passes
back the requested data which is then formatted by the web
server for the user.Although this appears to be a three-tier
system because of the number of machines required to
complete the process, it is not.

The web-server does not normally house any of the business
rules and therefore should be considered part of the client tier
in partnership with the web-browser. Two-tier architectures
can prove to be beneficial when we have a relatively small
number of users on the system and when an increased level of
scalability is desired.

Figure 2 Web-Based, Two-Tier Client Architecture

3.2 Three Tier N- Tier Architectures
Most n-tier database architectures exist in a three-tier
configuration. In this architecture the client/server model
expands to include a middle tier (business tier), which is an
application server that houses the business logic [12].

This middle tier as shown in figure 3 relieves the client
application(s) and database server of some of their
processing duties by translating client calls into database
queries and translating data from the database into client
data in return. Consequently, the client and server never
talk directly to one-another.

Figure 3 Three-Tier Client-Server Architecture

A variation of the n-tier architecture is the web-based n-tier
application. These systems as illustrated in figure 4
combine the scalability benefits of n-tier client/server
systems with the rich user interface of web-based systems.
Because the middle tier in three-tier architecture contains
the business logic, there is greatly increased scalability and
isolation of the business logic, as well as added flexibility
in the choice of database vendors.

Figure 4 Web-Based, Three-Tier Client Server

Architecture

The third tier contains database management functions. Its
purpose is to optimize data and file services without having to
resort to the usage of proprietary database management
system languages. This component makes sure that the data is
consistent throughout the environment. In order to do so, it
utilizes such features as data locking, replication, and
consistency. The connectivity among tiers can be changed
dynamically, but of course this depends on the user's request
for services and data. The middle tier on the above model
provides process management services which will be shared
by multiple applications. These services may include process
enactment, process resourcing, process development, and
process monitoring [11].

Vol 8. No. 4, December, 2015
ISSN 2006-1781

African Journal of Computing & ICT

© YEAR Afr J Comp & ICT – All Rights Reserved

www.ajocict.net

212

This tier also serves so as to improve performance. It is also
called the application server. It improves scalability,
reusability, flexibility, and maintainability via the
centralization of process logic.

This centralization makes change management and
administration a lot simpler by localizing the functionality of
the system so that changes only have to be written once. They
are then placed on the central tier and made available
throughout the systems. With other architectural designs, it
would be necessary to write the change into each and every
application. The central process management tier also serves
as a controller of asynchronous queuing and transactions. This
thus ensures that transactions will be completed in a reliable
fashion [13]. The middle tier successfully manages to
distribute database integrity through a commit process that
occurs in two phases. Access to resources based on names,
rather than locations, are provided. Thus, an improvement of
flexibility and scalability results as the components of a
system are either moved or added.

4. SURVEY FINDINGS

The most basic type of three tier architecture has a middle
layer consisting of Transaction Processing (TP) monitor
technology. The TP monitor technology is a type of message
queuing, transaction scheduling, and prioritization service
where the client connects to the TP monitor (middle tier)
instead of the database server. The transaction is accepted by
the monitor, which queues it and then takes responsibility for
managing it to completion, thus freeing up the client. When
the capability is provided by third party middleware vendors it
is referred to as "TP Heavy" because it can service thousands
of users. When it is embedded in the DBMS (and could be
considered a two tier architecture), it is referred to as "TP
Light"; because usually, there is performance degradation
whenever a large number of clients up to 100 clients are
connected. TP monitor technology provides the ability to
update multiple different DBMSs in a single transaction,
provides connectivity to a variety of data sources including
flat files, non-relational DBMS, and the mainframe.It also
provides the ability to attach priorities to transactions, and
robust security [8].

Using three tier client/server architecture with TP monitor
technology results in an environment that is considerably
more scalable than a two tier architecture with direct client to
server connection. For systems with thousands of users, TP
monitor technology (not embedded in the DBMS) has been
reported as one of the most effective solutions. The three tier
application server architecture allocates the main body of an
application to run on a shared host rather than in the user
system interface client environment [6]. The application
server does not drive the GUIs; rather it shares business logic,
computations, and a data retrieval engine. Advantages are that
with less software on the client there is less security to worry
about, applications are more scalable.

Support and installation costs are less on a single server than
maintaining each on a desktop client. This application server
design is a very necessary consideration when security,
scalability, and cost are major concerns

4.1 The Message Server and ORB Architecture
Messaging is another way to implement three tier
architectures. Messages are prioritized and processed
asynchronously. Messages consist of headers that contain
priority information, and the address and identification
number. The message server connects to the relational DBMS
and other data sources. The difference between TP monitor
technology and message server is that the message server
architecture focuses on intelligent messages, whereas the TP
Monitor environment has the intelligence inthe monitor, and
treats transactions as dumb data packets. Currently industry is
working on developing standards to improve interoperability.
Developing client/server systems using technologies that
support distributed objects holds great promise, as these
technologies support interoperability across languages and
platforms, as well as enhancing maintainability and
adaptability of the system [5].

There are currently two prominent distributed object
technologies: Common Object Request Broker Architecture
(CORBA), Component Object Model (COM), and Related
Capabilities). Industry is working on standards to improve
interoperability between CORBA and COM. Three-tier
applications are much more difficult to build than two-tier
applications. The biggest obstacle is that the software tools'
integrated development environments are not aware of the
three-tier model. As a result, much more hand-coding is
required to write a three-tier application [7]. Three-tier
applications are also harder to design, because they are
somewhat abstract compared with their more direct two-tier
counterparts. Software tool vendors are starting to release new
versions for three-tier or n-tier development support.

5. THE APPROACH FOR COMPARING DATABASE

 ARCHITECTURES

The comparison approach used in this paper is based on the
stored program concept. Stored procedures are user-written
structured query language (SQL) programs that are stored at
the data base server and can be invoked by client applications.
A stored procedure can contain most statements that an
application program usually contains. Stored procedures can
execute SQL statements at the server as well as application
logic for a specific function. A stored procedure can be written
in many different languages, and the language in which stored
procedures are written depends on the platform where the data
base server is installed. Local client applications, remote
Distributed Relational Database Architecture (DRDA), or
remote data services can invoke the stored procedure by
issuing the SQL CALL statement. The client program can pass
parameters to the stored procedure and receive parameters
from the stored procedure [10].

Vol 8. No. 4, December, 2015
ISSN 2006-1781

African Journal of Computing & ICT

© YEAR Afr J Comp & ICT – All Rights Reserved

www.ajocict.net

213

The client program and the stored procedure do not have to be
written in the same programming language. For example, a C
client program can invoke a COBOL stored procedure. In
previous releases of DRDA, the client system performed all
application logic.
The server was responsible only for SQL processing on behalf
of the client. In such an environment, all database accesses
must go across the network, resulting in poor performance in
some cases.

This is a relatively simple model, which makes the application
program easy to design and implement. Because all
application code resides at the client, a single application
programmer can take responsibility for the entire application
[3]. However, there are some disadvantages to using this
approach. Because the application logic runs only on the client
workstations, additional network input/output (I/O) operations
are required for most SQL requests. These additional
operations can result in poor performance. This approach also
requires the client program to have detailed knowledge of the
server's database design. Thus, every change in the database
design at the server requires a corresponding change in all
client programs accessing the database. Also, because the
programs run at the client workstations, it is often complicated
to manage and maintain the copies there. Stored procedures
enable you to encapsulate many of your application's SQL
statements into a program that is stored at the data base server.

The client can invoke the stored procedure by using only one
SQL statement, thus reducing the network traffic to a single
send and receive operation for a series of SQL statements [5].
It is also easier to manage and maintain programs that run at
the server than it is to manage and maintain many copies at the
client machines. Stored procedures enable you to split the
application logic between the client and the server. This
technique can be used to prevent the client application from
manipulating the contents of sensitive server data. It is
therefore important to note that three tier architectures have
considerable advantage of flexibility over other architectures.

6. CONCLUSION

Typical database software are ubiquitous and contains
thebusiness rules processing, data access, and presentation or
interfaceareas of functionality. For proper database application
functionality, it is becoming more important to structure the
inter mechanisms for optimal performance. This structuring is
here discussed in line with application architectures to come
up with a comparison relating to transactional processing and
the stored program concept in a database software. It is
intended to provide a common understanding around which
the quality of a database software can be ensured to a certain
degree of performance.

REFERENCES

[1] Elliott, R. &Powers, N., (2002) (Intellex), "One -Tier,

Two-Tier, Three-Tier, A Server: Using Technology to
Solve Business Problems", http://www.pacific-
electric.comlPacificEleclProduct/whtpap04.htm

[2] Groff, J.R. and Weinberg, P.N., (Osborne McGraw Hill,
1990), Using SQL, pp. 277

[3] J. M. Hellerstein, M. Stonebraker and J. Hamilton (2007)
Architecture of a Database System Foundations and
Trendsin Databases Vol. 1, No. 2 141–259 2007 DOI:
10.1561/1900000002

[4] Paulsell, K. and Deering, B., (Sybase, Inc., 1992),
Commands Reference Manual for Sybase SQL Server,
pp. 2-76.

[5] Nicholas May (2004) A Survey of Software Architecture
Viewpoint Models dissertation expansion of Master of
Technology (Information Technology) at RMIT
University Melbourne, Australia nick
may@netlink.com.au

[6] Hemmer, F.M. (1993) "RHIC Electronic Data Collection
and survey &Alignment Database" Proceedings of the
Third International Workshop On Accelerator
Alignment, Annecy, pp197-230

[7] Rikard Land (2002), A Brief Survey of Software
Architecture Mälardalen Real-Time Research Center
(MRTC) Report Department of Computer Engineering,
Mälardalen University, Västerås, Sweden, February 2002
rikard.land@mdh.se

[8] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P.
and V.Watson, “System R: Relationalapproach to
database management,” ACM Transactions on Database

Systems(TODS), vol. 1, pp. 97–137, 1976.
[9] P. A. Bernstein and N. Goodman, “Concurrency control

in distributed databasesystems,” ACM Computing

Surveys, vol. 13, 1981.
[10] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.

Wallach, M. Burrows,T. Chandra, Fikes, and R. E.
Gruber, “Bigtable: A distributed storagesystem for
structured data,” in Symposium on Operating System

Design andImplementation (OSDI), 2006.
[11] S. Chaudhuri and U. Dayal, “An overview of data

warehousing and OLAP technology,” ACM SIGMOD

Record, March 1997.
[12] M.-S. Chen, J. Hun, and P. S. Yu, “Data mining: An

overview from a database perspective,” IEEE

Transactions on Knowledge and Data Engineering, vol.
8,1996.

[13] H.-T. Chou and D. J. DeWitt, “An evaluation of buffer
management strategiesfor relational database systems,” in
Proceedings of 11th International Conferenceon Very

Large Data Bases (VLDB), pp. 127–141, Stockholm,
Sweden,August 1985.

