
 Vol 8. No. 1 Issue 2 – May,  2015          
African Journal of Computing & ICT 

      
© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781 

www.ajocict.net   

 

 

137  

 

Model Driven Design of a DSL for Transmission Pipelines: A Roadmap 

 

J.R. Bunakiye 

Dept. of Mathematics/Computer Science 
Faculty of Science 

Niger Delta University 
Wilberforce Island, Nigeria 

jbunakiye@gmail.com 
 

E.E. Ogheneovo 

Department of Computer Science 
University of Port Harcourt 

Port Harcourt, Nigeria 
edward_ogheneovo@yahoo.com 

 

 
 
ABSTRACT 
 
This paper presents an overview of the application of domain specific modeling (DSM) approach in Model-Driven Engineering 
(MDE) technologies to describe a domain specific language (DSL) software development roadmap. An approach in which 
models of transmission pipelines in the domain of pipeline engineering systems are created and systematically transformed to 
actual implementations.  The discussion centered on some of the major transformation paths that must be undertaken in order to 
realize the impressions of the DSL development. Clearly, the full realizations of the vision for creating a DSL is made possible 
by providing language instances and modeling primitives from domain concepts that were used to significantly reduce the gap 
between design intents and the expression of such intents in several lines of syntax representations. 
 
Keywords: Domain Specific Language, Modeling, Pipeline Engineering, Design Intent, Domain Model, Meta model 
 
African Journal of Computing & ICT Reference Format:  
J.R. Bunakiye & E.E. Ogheneovo (2015): A Distributed Database Architecture For Location Independent Scheme In Mobile Networks.  
Afr  J. of Comp & ICTs. Vol 8, No. 1, Issue 1. Pp 137-144.  
 

 

1. INTRODUCTION 
 
The focus is on the development of a domain specific language 
(DSL) for modeling oil and gas pipeline systems. Traditionally 
the aim is to describe a roadmap to developing a cohesive tool 
for the design of such artefacts through the use of disparate 
tools [7]. The approach to the development of the DSL is based 
upon Model Driven Engineering (MDE) technologies. The two 
main schools of MDE are Model Driven Architecture (MDA), 
and Domain-Specific Modelling (DSM). MDA language 
specifications restrict the user to diagram definition standards 
(e.g. UML), whereas DSM languages identify the problem and 
the goal to be reached during the process provided.  
 
Primarily, the DSM approach to the complex problem of 
efficiently and effectively aiding the engineer in the design and 
implementation of pipeline configurations was adopted [9]. 
General purpose software design and development tools usually 
adhere to a protocol. For example, a particular API call 
sequence that is required to create executable commands. 
Generally, these rules are at the same level of abstractions 
within the mechanism that implements them; the problem is 
that it creates a substantial semantic gap between design intent 
and the expression of this intent in several lines of codes.  
 

 
 
 
These possibility has posed lots of problems in the pipeline 
engineering work place. The motivation is to solving this 
problem by coming up with a domain specific language 
formalism that separates the policies and the mechanisms that 
implements them. Defining a metamodel about the domain 
model is suited with focus on closing the semantic gap by 
mapping domain concepts to appropriate levels of abstractions 
so that design intents and viewpoints can be freely expressed 
through domain specific modeling (DSM).  
 
Domain-Specific Modelling (DSM) is about defining a model 
in some language formality, which is metamodeling. 
Metamodeling facilitates the rapid, inexpensive development of 
domain-specific languages (DSLs) that hides code centred 
development to a language formalism that enables simple 
expression of intents through guided notations. In the 
metamodel, each of the syntactic and semantic DSL 
components is defined precisely and completely using 
AutoCAD objects as the Pipeline Context Model representing 
typical physical components of Oil and Gas transmission 
Pipeline Systems [2].  
 
 



 Vol 8. No. 1 Issue 2 – May,  2015          
African Journal of Computing & ICT 

      
© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781 

www.ajocict.net   

 

 

138  

 

The main contribution is that it moves toward an infrastructure 
for DSL design that integrates formal specifications with 
practical pipeline engineering principles, which is in principle, 
a rule processing system based on Syntax-Directed Translation 
[10]. The remainder of this paper is organized as follows: In 
section 2 we discuss the foundation and the open problems. In 
section 3 we provide an overview about the domain 
terminology and models. In section 4 the tools set in model 
driven engineering for DSL development are described. Section 
5 describes the language idea.  Section 6 summarizes and 
concludes the paper.  
 
2. FOUNDATION 
 
It is a common agreement that general purpose languages are 
extremely useful for describing software and applications. 
Despite their usefulness, they are never called modeling 
languages; the reason being that metamodeling is often lacking 
and at the same time domain specific concepts cannot be 
adequately expressed. The research roadmap in this paper is 
therefore showcasing a carefully crafted DSL design path for 
modeling pipeline systems in the domain of transmission 
pipelines engineering. Joerg.Kienzle et al. [20] discussed a 
crisis management systems showcasing a case study for aspect-
oriented modeling. The intent is to define a common case study 
for systems that help in identifying, assessing, and handling a 
crisis situation through the involvement of all parties in 
handling the crisis, by allocating and managing resources, and 
by providing access to relevant crisis-related information to 
authorized users.  
 
The systems in the crisis management system complimented 
ours but the submission of Bernhard, S., and Fortiss, G. G., 
[19] From Solution to Problem Spaces: Formal Methods in the 
Context of Model-Based Development and Domain-Specific 
Languages clarifies more on the domain specific modeling 
paradigm for providing software solutions in the domain-
oriented problem space. Markus Voelter [22], also asked a 
question in his work, Domain specific - a binary decision? In 
the subsequent arguments, the difference between general 
purpose and domain specific languages were made very clear. 
The clear indication is that domain specific design is simply 
one pattern that is continuous, declarative and productive, 
especially when it relates to a domain.  
 
 

DSLs can be graphical, constraint-based, textual or descriptive, 
and can be executable [5]. Graphical languages use diagram 
techniques with named symbols that represent concepts and 
relationships. A typical graphical modeling language is 
Behaviour Trees. Textual modeling languages use standardized 
keywords accompanied by parameters to make computer-
interpretable expressions. An example is TVL (A Text-based 
Variability Language) [16]. Constraints-based modeling 
languages do not specify a step or sequence of steps to execute, 
but rather the properties of a solution to be found. Typical 
examples include VHDL, and AutoCAD.  Executable modeling 
languages often includes the idea of code generation: 
automating the creation of executable source code directly from 
the domain-specific language models. An example is SysML 
(Systems Modelling Language). The structure and behaviour of 
the domain specific modelling language in perspective, is an 
integrated functionality allowing the user the flexibility of 
working with familiar notations, and yet able to effectively 
express the constraints and limitations of the proposed network 
[18].   
 
3. TRANSMISSION PIPELINES ENGINEERING DOMAIN  

 
This section contains the description of the domain concepts as 
a prerequisite step to the definition of the DSL metamodel. The 
description of concepts entails the characteristics, functions, 
and design criteria of a suit of AutoCAD objects as the pipeline 
physical components [3]. This is to ensure that all the objects 
are collectively seen to be the model for the DSL, and also to 
make sure the vocabulary necessary for the subsequent 
language specification are captured, which will invariably form 
the instance of the language creation. 
 

3.1 Pipeline Systems Model 
The design of a pipeline system requires the knowledge of 
physical components, physical attributes, and materials factors. 
Physical components, which are represented as AutoCAD 
objects include pipe, tee, joint and valve [2]. Tee, joint and 
valve when joined to a pipe results into a pipeline system (see 
fig. 1). Physical attributes are those parameters that govern the 
size, layout, and dimensional limits or proportions of the 
pipeline [15]. Material factors relate to pipeline design and 
highlights parameters that must be considered in completing a 
modeling process.   
 
 

 

Figure 1: Pipes Fitted with Valves and Gauges in a Pipeline (Source: Shell Nig. Ltd) 



 Vol 8. No. 1 Issue 2 – May,  2015          
African Journal of Computing & ICT 

      
© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781 

www.ajocict.net   

 

 

139  

 

3.2 Valves 
A valve is a device that regulates, directs or controls the flow of 
a fluid (gases, liquids) by opening, closing, or partially 
obstructing various passageways. In an open valve, fluid flows 
in a direction from higher pressure to lower pressure [1]. The 
valve model shown in figure 2 comprises of various 
components like: bolts and nuts, hollow pipes, flanges, a 
hollow sphere, torus, cylinder, and so on. The circular body 
that will contain the channels and vents through which fluid are 
controlled was designed first through the usage of two spheres 
of required sizes, with the smaller one subtracted from the 
bigger one to form the hollowness of the body. Next, a cone 
frustum made hollow through subtraction was attached to the 
base of the sphere (with the bigger end of the frustum facing 
the base of the sphere).  
 
 

 
 

Figure 2: Valve 
 
A cylinder, with a plate-like height, that is almost proportionate 
to the diameter of the smaller end of the frustum was designed 
and moved through the centre point and centralized at the base 
of the smaller end of the frustum (using 2D wireframe from 
virtual style instead of realistic). The right and left side of the 
main body of the hollow sphere were also attached with the 
bigger end of the cone frustum. Flanges are also attached to the 
ends of the smaller sides of the just attached frustum, using  
move tool and picking it from centre points to centre points, 
using all the necessary views like top, left, right, and southwest 
isometric views. 
 
A sizable torus was then attached to the interface between the 
flanges and the smaller end of the frustum [2]. To design the 
control wheel of the valve, the combination of torus and 
cylinder was employed, a torus of a desired size was drawn and 
two cylinder with a diameter slightly smaller than that of the 
tube radius of the torus was drawn and laid diagonally in - to - 
in inside the drawn torus, using top, front and isometric views 
(to form the handle of the wheel). Another sizable cylinder is 
placed vertically from the centre of the just designed wheel to 
link the control wheel with a bigger cylinder placed at the top 
of the hollow sphere.  
 
 

A cylinder was used to design a plate, and another smaller 
cylinder was arrayed round this plate and was subtracted from 
the plate to form a perforated plate, which was then placed at 
the interface between the smaller and bigger cylinder between 
the wheels, picking as always from centre point to centre point 
as base points. Finally, materials are added to appropriate 
components to produce a nice finishing. 
 
1) 3.3 Tee 
A tee is a short piece of pipe with a lateral outlet, it is a 
common pipe fitting, used to either combine or split a fluid 
flow. It is a type of pipe fitting which is T-shaped having two 
outlets, at 90° to the connection to the main line. A tee is used 
for connecting pipes of different diameters or for changing the 
direction of pipe runs. They are extensively used in pipeline 
networks to transport two-phase fluid mixtures [17]. 
 

 
 

Figure 3: Tee Fitting 
 

2) Shown in figure 3 is the example tee model from 
AutoCAD. To obtain the model, a hollow pipe is sliced 
and placed at a cross-road to each other to form a shape 
like the letter “T”- from where the name was derived. The 
pipes arranged in the afore-mentioned manner are then 
union to form a single entity, before they are then finished 
by the addition of materials [2].  

 

3.4 Compression Joints 
A model of compression joints are shown in figure 4. These 
joints are used to join plain end pipe without special end 
preparations. Advantages include the ability to absorb a limited 
amount of thermal expansion and angular misalignment and the 
ability to join dissimilar piping materials, even if their outside 
diameters are slightly different [2]. 
 

 

 
 

Figure 4: Compression Joint 
 

 

 



 Vol 8. No. 1 Issue 2 – May,  2015          
African Journal of Computing & ICT 

      
© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781 

www.ajocict.net   

 

 

140  

 

3.5 Pipe Cross Section 
The pipe cross section is the major component in the pipeline, 
linked and connected by other components. To obtain our 
pipeline context model of the pipe, the nominal diameter or 
outside diameter and the inner diameter of the pipe dimensional 
standards were specified. Also specified are the pipe directions 
(from point to point), the pipe length, and slope [3]. The 
specifications were made particularly to get a simple uniform 
pipe sizing in the pipeline. Getting the model from AutoCAD, 
with the dimensions as shown in figure 5, the sweep method 
was used; by using polyline from the draw tool bar, to draw the 
required pipe length and shape. thereafter, two circles that 
represents the inner and outer diameter of the pipe was drawn 
near one end of the pipe, then, the inner and outer circles were 
each swept across the drawn line to finally get the pipe, the 
inner pipe was subtracted from the outer one to get the 
hollowed required pipe and appropriate library materials 
applied to the pipe to give it a realistic appearance [2]. 
 
 

 
                                                                               
                                                                                

Figure 5: Pipe Cross Section 

 

4 The Model Driven Tool Set in the DSL 
This section contains an extensive case study that illustrates the 
various ways of integrating language modules; these include 
what's traditionally considered "programming" and what's 
traditionally considered "modeling". The case study is from the 
embedded systems domain. Let's start with some background. 
 

4.1 Model Interactions 
Clearly, with existing modeling approaches (e.g. modelling 
with UML, AutoCAD and Programming Languages), typical 
pipeline objects are customarily explicitly described [2]. The 
custom is that, when one aspect of the model is changed, often 
several changes have to be made to satisfy design intent or the 
implicit rules of the design. This is because the software [13] 
does not keep track of the rules and the user must decide where 
and when they are broken. For example, in figures 1 to 5, when 
defining their dimensions in a pipeline design, several changes 
have to be made until the exact points of intersection are met, 
which means until the rules governing the solid behaviours for 
that design intent are met no design intent can be achieved [14]. 
The challenge with such expressions is that model interaction 
in the way of domain concepts that can produce other complete 
models with noticeable domain properties is limited. Even with 
integral third generation programming APIs such modeling 
approach, still lack sufficient linguistic power to handle domain 

complexities and hasn’t moved speedily with domain 
technologies [18]. Domain technologies in this context refers to 
model driven methodologies used to foster model interaction in 
order to create new objects that encapsulates and relates the 
details pertinent to the viewpoint of domain experts. The 
believe is that such software development efforts will enable 
stakeholders to cope with platform complexities, it will also be 
cost effective, save time, and raise levels of productivity [8]. 
Major efforts in model driven design are putting the model at 
the core of development and ignoring any detail not relevant to 
the application domain perspectives that these models represent 
[6]. Concepts associated with the domain’s technical content 
are specified and appropriate reductions are made by raising the 
abstractions and expressions of the characteristics of the 
models as they relate to the designs. Critical in the process is 
identifying the problem domain (i.e., the problem space), the 
exact needs these raised levels of abstractions are to be met and 
the task of how these different domains (the application domain 
and the problem domain) can be integrated to form a whole 
modeling DSL platform.  
 

4.2 Representation and Functionality  
The design intent of stakeholders and domain experts are 
characterized as the view points of the input parameters [6] in 
the language logic. There are competing design requirements 
among stakeholders; each one has their own set of constraints, 
objectives and responsibilities.  Whereas stakeholders’ 
objectives describe the bit of problem(s) addressed by the 
typical DSL tool, the responsibilities describe associated design 
intents. Accommodating these determining factors in the 
language design gives thorough domain representation and 
functionality with an optimal solution, so that stakeholders who 
are non-programmer pipeline engineers can be shelved from 
the complexities associated with conventional modeling to 
express their design intents easily [12]. The representation need 
to start with the domain model specifications, clearly 
identifying the vocabulary and key concepts of the problem 
domain, and also identifying the relationships and attributes of 
all the entities within the scope of the problem domain. Closely 
tied to the DSM manifesto, which says “Raise the Abstractions 
and Hide the Complexities” the language functionality has to 
move the representation further to an application model for 
design intents declaration and editing, and for artefact 
orientations [11]. 
 
5. The Language System and Case Study 
This section presents the diagrammatical description of the 
research roadmap. It also contains a case study that illustrates a 
way of expressing design intents in the DSL editor. 
 
5.1 Research Roadmap 
Adopting the Domain Specific Modeling (DSM) paradigm for 
language specifications (see figure 6), the focus is more on 
requirements within the oil and gas pipeline engineering 
domain [21]. The structure and behaviour of the prototype 
system should capture stakeholders design intents that depict 
various pipeline design scenarios prevalent in the domain under 
consideration.  

 



 Vol 8. No. 1 Issue 2 – May,  2015          
African Journal of Computing & ICT 

      
© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781 

www.ajocict.net   

 

 

141  

 

 

 
 

Figure 6: Research Roadmap 
 
Industry knowledge were sequenced through the company’s technical documents and crew engineers [6]. The acquired 
knowledge became the domain knowledge for the formal analysis and subsequent language construction via feature oriented 
domain analysis (FODA) [5]. Some of the key requirements for the system work flow include a semantic model for user 
perspectives, and a user interface component with familiar notations, permitting its users to represent their mental models about 
their design intents 
 
5.2 Components Grammar and Case Study 

The syntax and semantic definitions of the language were clearly defined to exemplify the approach and contribution to 
knowledge. The semantics are precisely defined as operational units to capture concurrency, and communication abstractions of 
the features of the pipeline product family [5]. The grammar also incorporated the vocabulary and associated attributes specified 
as denotational units representing feature relationships to be part of the solution model [4]. The theory of the internal working 
mechanism of the solution model of the system is a core component of DSM [11]. The pipeline components grammar is the 
collection of the modeling primitives and the rules connecting them as the syntactic elements [50]. They include pipeline 
components (c), pipeline fittings (f), pipeline joints (j), pipeline bed (b), pipeline supports (s), and the necessary 
interdependencies in the form of character set, expressions, and statements (see figure 7).  
 
 
 
 
 
 
 
 
 



 Vol 8. No. 1 Issue 2 – May,  2015          
African Journal of Computing & ICT 

      
© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781 

www.ajocict.net   

 

 

142  

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

� ⇒ ����, �	
���	
�, �
	�����, ��, ��� 

� ⇒ ����, �	
���	
�, �
	�����, ��, ��� 

� ⇒ ����, �	
���	
�, �
	�����, ��, ��� 

� ⇒ ���, �
���, �
���	
����, ���, ���� 

� ⇒ ����, �	
���	
�, �
	�����, ��, ��� 

���������	 ��   ����!�"�# 

��
�₁ → � & � ∗ � ∗ � ( � ) �  

��
�₂ → 	� & �� ∗ �� ∗ ��  

��
�₃	 → � & �� ∗ �� ∗ ��  

��
�₄	 → � & �� ∗ �� ∗ ��  

��
�₅ → 	� & � ∗ �� ∗ ��  

��
�₆ → 	� & �� ∗ �� ∗ ��

                /01��##23"#																																															

c-����	 ⇒ �	��, �
���, 6��6�																																												

c-����	 ⇒ 7��7�,
����, 7��8��																																																																	

c-����	 ⇒ ��	
�, ����	���, ���8																																																																														

f-����	 ⇒ �������, ���
�, ���																																									

	j-����	 ⇒ ���7��, 7�

6���	

s-����	 ⇒ <��7��, ���<
�		

b-����	 ⇒ >�|� & @A		

 
 

Figure 7:  Statements, Expressions and Character Set 

 
Figure 8 is an example of a modeling action, where a typical design intent is expressed with a resultant system curve depicting 
model selection for a particular pipeline project.  
 

 
 

Figure 8:  Expressing Stakeholder Viewpoints 



 Vol 8. No. 1 Issue 2 – May,  2015          
African Journal of Computing & ICT 

      
© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781 

www.ajocict.net   

 

 

143  

 

 
 

Figure 9:  Design Scenario System Curve for Case Study 
 
 
 
A case study for the particular design scenario signifying the 
intents of a stakeholder is given in figure 9. The case study 
illustrates pipeline physical components selection, cost 
effective control, productivity, and project quality control. 
 
 

6. CONCLUSION AND FUTURE WORK 

 
Adopting the domain specific modelling (DSM) approach, a 
methodology for creating domain specific languages based on 
domain knowledge and metamodeling is presented. Clear 
specifications of a domain model from the domain of 
transmission pipelines engineering are formalized into a 
collection of modelling primitives and the grammar rules 
connecting them. There is informal domain descriptions that 
incorporates all of the units and their relationships in the 
manner that captures user view, and depicts what the current 
systems must do in the pipeline design domain. The resultant 
effect of the internal working mechanism is that several design 
scenarios can be tested for pipeline route and pump selections. 
Each of these scenarios are case studies resulting into the 
evolution of a system curve depicting a particular pipeline 
project as viewed by a stakeholder. This approach saves time, 
does not require the engineer to have any programming or 
CAD expertise to achieve results.  
 
 
 
 
 
 
 
 
 
 
 
 

 
References 

 
[1] [1] Andrade, F.A. (2011), Asymptotic Model of the 

3D Flow in a Progressing-Cavity Pump SPE Journal 
Volume 16, Number 2, 451-462. 

[2] Autodesk Inc. (2013) AutoCAD Release 2013 

Programmers Reference Manual. 
[3] Anvil International. (2012), Pipe Fitters Handbook, 

University Park, IL United States.  
[4] [4] Alfred, V. A., Ravi, S., and Jeffrey, D. U. (2007), 

Compilers Principles, Techniques, & Tools, Pearson 
Education, New York 

[5] Bontemps, Y., Heymans, P., and Schobbens, P. Y. 
(2005), Generic semantics of feature diagrams 
variants, in: Proceedings of 8th International 
Conference on Feature Interactions in 
Telecommunications and Software Systems, 58-70. 

[6] B.G. Technical LTD (2013), B.G. Technical Oil & 
Gas industry Port Harcourt, Nigeria; 

www.bgtechnical.com/ Annual Reports 2013 

[7] Bran, S. (2011), Theory and Practice of Modelling 
Language Design (for Model-Based Software 
Engineering), Proceedings of 14th  International 

Conference on Model Driven Engineering Languages 

and Systems  Wellington New Zealand, 1-18. 

[8] Batory, D. S. (2005), Feature models, grammars, and 
propositional formulas, in: Proceedings of the 9th 
International Conference on  Software Product Lines 
(SPLC’05), 7-20. 

[9] [9] Christian, H., and Klaus, F. (2009), Domain 
Specific Modeling Language for Multiagent Systems, 
German Research Institute for Artificial Intelligence 
(DFKI); Springer-Verlag Berlin Heidelberg, 56 – 66. 

 
 
 
 



 Vol 8. No. 1 Issue 2 – May,  2015          
African Journal of Computing & ICT 

      
© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781 

www.ajocict.net   

 

 

144  

 

[10] David, A. S. (1997), Denotational Semantics: A 
methodology for language development Department 

of Computing and Information  Sciences,234 Nichols 

Hall, Kansas State University, Manhattan, KS 66506. 

schmidt@cis.ksu.edu 

[11] Eric, E. (2003), Domain-Driven Design: Tackling 
Complexity in the Heart of Software Addison 
Wesley, USA. 

[12] Juha-Pekka, T. (2011), Implementing Your Own 
Domain-Specific  Modelling Languages: Hands-on, 
ICM-International Congress Centre Munich, 
Germany.  

[13] Kaskil, D. J. W., Buxton, D., and Ferguson, R. 
(2005), Ten CAD challenges, IEE Computer  
Graphics and Applications 25(2), 81-92.  

[14] Lee, E. A. and Zheng, H. (2005), Operational 
semantics of hybrid systems, in Proceedings of 
Hybrid Systems: Computation and Control (HSCC), 
vol.  LNCS 3414. Springer, 25–53. 

[15] Mark, N. (2012), Pipeline Route Selection Project, 
SR/WA Right of Way 2012. 

[16] Martin, F. (2010), Domain Specific Languages, 
Addison-Wesley Professional. USA. 

[17] Neil, C. K., Skidmore, O., and Merrill, L. P. (2007), 
Parametric Modeling in AutoCAD, AEC bytes 
Viewpoint Issue #32. 

[18] Philip, J., and Roggenbach, M. (2014), Encapsulating 
formal methods within domain specific languages: A 
solution for verifying railway scheme plans, 
Mathematics in Computer Science 8 (1) (2014) 11-
38. 

[19] Bernhard, S., and Fortiss, G. G., (2011), From 
Solution to Problem Spaces: Formal Methods in the 
Context of Model-Based Development and Domain-
Specific Languages, 35th IEEE Annual Computer 
Software and Applications Conference, 445 - 455 

[20] Joerg, K., Nicolas, G., and Sadaf, M. (2009), Crisis 
Management Systems: A Case Study for Aspect-
Oriented Modeling School of Computer Science, 
McGill University, Montreal, Canada 

[21] Bashar, N., and  Steve, E. (2000).  Requirements 
Engineering: A Roadmap Department of Computer 
Science Imperial College 180 Queen’s Gate 6 King’s 
College Road London SW7 2BZ, U.K. 

[22] Markus Voelter (2010), Domain Specific - a Binary 
Decision ? Ötztaler Strasse 3870327 Stuttgart, 
Germany voelter@acm.org 

  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 


