
Vol 8. No. 1 Issue 2 – May, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

181

An Intelligent Hunting Profile for Evolvable Metamorphic Malware

A.A. Ojugo
Dept. of Mathematics/Computer

Federal University of Petroleum Resources

Effurun, Nigeria

 ojugo.arnold@fupre.edu.ng

A.O. Eboka
Department of Computer Education

Federal College of Education (Technical)

Asaba, Delta State, Nigeria

andre_y2k@yahoo.com

ABSTRACT

Malware are destructive by altering host machine’s behaviour as it self-replicates its codes unto the host’s files. Some, have the

ability to change its structure on execution via mutation and other code obfuscation – to generate complex variants with same

functionality; But, different in their syntax and signature. This renders signature-based detection quite unreliable and their

detection, tedious. Our study generates evolved complex variants of the Zmist malware using memetic algorithm, we then create

an effective profile and rules trained via the Hidden Markov model, that efficiently detect the Zmist variants with high

(classification) probability; And thus, drastically reduce false-positive and true-negative rates. We use HMM clustering ability to

explore sample cluster-profiles of the Zmist metamorphic engine to help us learn the underlying code clusters from sample data,

and navigate its engine to yield faster and completely morphed variants of Zmist using memetic algorithm. Evolved variants of

were tested on and against commercial antivirus.

Keywords— Intelligent, stochastic, hunting, profile, evolutionary, clustering, markov model, virus, malware

African Journal of Computing & ICT Reference Format:

A.A. Ojugo & A.O. Eboka (2015). An Intelligent Hunting Profile for Evolvable Metamorphic Malware.

Afr J. of Comp & ICTs. Vol 7, No. 3. Pp 181-190,

1. INTRODUCTION

Computer virus is a malicious program that modifies a host

machine by attaching its code and alters behaviour of other

files. As it infects, it also modifies itself to include better and

possibly, an evolved copy of the virus [1][2][3].

[4] in [5] notes the first computer virus was a boot sector

virus created in 1986 that infects the host machine resources

such as files and macros, operating system, system sectors,

companion files and source code. Use of Internet for data

transfer has become a soft target for their widespread to wreak

havoc faster globally. Early detection of viruses is thus,

imperative to minimize the damage caused.

A. Modules of a Computer Virus
[5] Virus has 3-modules: infect, trigger and payload. Infect is

the mechanism to modify its host and contain copies of it.

Trigger details when and how to deliver payload (details the

damage to be done). Trigger and payload are optional. Fig. 1a

is virus pseudo-code; while Fig. 1b is an infect pseudo-code.

[6] Subroutine Infect selects a target from M-targets to infect

when run. Select_target details target selection criteria as same

target should not be repeatedly selected; else, reveals presence

of a virus. And, Infect_code performs actual infection by

inserting its code into the target.

Fig 1a: Virus Pseudo-code

Def Virus():

 Infect()

 If Trigger() is

TRUE then

Fig 1b: Infect Pseudo-code

Def Infect():

 Repeat M times()

 Target =

Select_target()

 If no

target() THEN

Vol 8. No. 1 Issue 2 – May, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

182

Malware self-replicates its codes onto a machine without the

user’s consent, and spreads by attaching a copy of itself to

some part of program file. It attacks system resources and is

designed to deliver a payload that aims to corrupt program,

delete files, reformat disks, crash network, destroy critical data

or embark on other damage to the host machine [7].

Viruses are classified as:

a. Simple virus replicates itself on execution in a host

machine so that it gains control, attaching a copy of itself

to host machine’s files or program as it spreads. It then

transfers back control to host program afterwards. It is

easily detected by scanning for a defined sequence of

bytes called signature [8].

b. Encrypted virus scrambles its signature to make it

unrecognizable. Its decryption routine transfers control to

its decrypted virus body so that each time it infects a new

program, it makes copy of both the decrypted body and

its related decryption routine. It encrypts a copy and

attaches both to a target system. It uses an encryption key

to encrypt its body. As the key changes, it scrambles its

body so that the virus appears different, from one

infection to another. This makes signature detection

technique difficult so that the antivirus must scan for a

constant decryption routine instead [9].

c. Polymorphics consists of scrambled body, its mutation

engine and decryption routine. Its decryption routine first

acquires control of host machine as it decrypts scrambled

body and mutation engine. It then transfers control to the

now unscrambled body to locate new file to infect – unto

which it copies its body, also copying unto the RAM its

mutation engine and invoking its mutation engine to

randomly generate a new decryption routine to decrypt its

body with little or no semblance to the previous

decryption routine. It then appends this newly encrypted

body, a mutation engine and decryption routine to the

newly infected file – so that the encrypted body and

decryption routine, varies from one infection to another.

It has no signature and decryption routine – making any

two infections not alike [10].

d. Metamorphics avoid detection by completely rewriting

its code each time it infects new file. It accomplishes

code obfuscation and meta-morphing, which is 90% of its

assembly codes [8-10].

B. Virus Detection Mechanisms

Antivirus software detects, prevent and remove all malware,

including but not limited to viruses, worms, Trojans, spyware

and adware. Antivirus use strategies namely: heuristic search,

cyclic redundancy check, logic search and spy on processes to

scan for viruses. Detection mechanism is broadly grouped

into: (a) signature-based scans for signature, and to evade it –

virus makers create new virus strings that can alter their

structure while keeping its functionality via code obfuscation

method, and (b) code emulation creates sandbox or virtual

machine, so that files are executed within it and scanned for

virus. Once the virus is detected, it is no longer a threat – since

it is running in controlled environment that limit damage to

host machine [5, 11-12].

Antivirus often impairs system performance, and incorrect

decision may lead to security breach as it runs at the kernel of

the operating system. If an antivirus uses heuristics, its success

depends on the right balance between positives and negatives.

Today, malware may no longer be executables. Macros can

present security risk and antivirus heavily relies on signature-

detection. Metamorphic and polymorphic viruses, evades and

makes signature detection, quite ineffective [13]. Studies have

shown that anti-virus effectiveness decreased against unknown

or zero-day attacks. This problem has been magnified by the

changing intent of virus makers. Independent testing on all the

major virus scanners consistently shows none to yield 100%

detection. The best ones yield 99.6% detection, while lowest is

81.8%. Thus, all scanners can yield a false positive result as

well so that they identify benign files as malware [14-15].

C. Metamorphic Malware or Viruses

Rather than use encryption, metamorphics change its code

structure/appearance while keeping its functionality. It does

this via code obfuscation methods as in fig 2. Its engine reads

in a virus executable, locates code to be transformed using its

locate_own_code module. Each engine has its transformation

rule that defines how a particular opcode or a sequence of

opcodes is to be transformed. Decode module extracts these

rules by disassembling. Analyze module analyzes current copy

of virus and determines what transforms must be applied to

generate the next morphed copy. Mutate module performs the

actual transformations by replacing an instruction (set) with

the other its equivalent code; While, Attach module attaches

the mutated or transformed copy to a host [4-5, 9, 16-17].

Locate own

code
Decode Analyze Mutate Attach

Fig. 2: Distinct Signature of Metamorphic Virus

Vol 8. No. 1 Issue 2 – May, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

183

[18-19] note that a typical metamorphic engine may consist of:

(a) internal disassemble to disassemble binary codes, (b) a

shrinker replaces two or more codes with its single equivalent,

(c) expander replaces an instruction with code set to perform

same action, (d) swapper reorders these codes by swapping

two/more unrelated codes, (e) a relocator assigns and relocate

relative references like jump/call, (f) garbager (constructor)

inserts whitespaces (do-nothing codes) and (g) the cleaner

(destructor) undoes the actions of a garbager by removing

whitespaces instructions. [9, 17, 20] Feats of an effective

metamorphic engine includes: (i) must be able to handle any

assembly language opcode, (ii) shrinker and swapper must be

able to process more than one instruction concurrently, (iii)

garbager is used moderately, not to affect actual instructions,

and (iv) swapper analyzes each instruction so as not to affect

next instructions’ execution.

D. Metamorphic Code Obfuscation Methods
Metamorphic engine uses code obfuscation to yield morphed

copies of original program. Obfuscated code is more difficult

to understand and can generate different looking copies of a

parent file as it operates on both control flow and data section

of a program [21]. Code obfuscation is achieved via [22-23]:

a. Register Usage Exchange/Rename modifies register data

of an instruction without changing the codes itself, which

remain constant across all morphed copies. Thus, only the

operands changes.

b. Dead Code inserts whitespaces, which do not affect its

code execution via a block or single instruction so as to

change codes’ appearance while retaining functionality.

c. Subroutine Permutation aims to reorder subroutines so

that a program of many subroutines can generate (n-1)!

varied permutations, whose addition will not affect its

functionality as this is not important for its execution.

d. Equivalent Code Substitution replaces instruction with its

equivalent instruction (or blocks). A task can be achieved

in different ways. Same feat is used in equivalent code

substitution.

e. Transposition/Permutation – modifies program execution

order only if there is no dependency amongst

instructions.

f. Code Reorder inserts unconditional and conditional

branch after each instruction (or block), and defines

branching instructions to be permuted so as to change the

programs’ control-flow. Conditional branch is always

preceded by a test instruction which always forces the

execution of the branching instruction.

g. Subroutine Inline/Outline is similar to dead code

insertion in that subroutine call are replaced with its

equivalent code as Inline inserts arbitrary dead code in a

program; while outline converts block of code into

subroutine and replace the block with a call to the

subroutine. It essentially does not preserve any logical

code grouping.

2. MATERIALS / METHODOLOGY

A. Virus Abstract Representation
The study uses the Zmist metamorphic engine (whose rules or

heuristics uses substitution, transposition and trash – all of

which are permutation) methods to build viruses of the same

functionality. The engine changes its opcode, generating new

variants from old versions (authored by Zombie and extracted

from [24]. Zmist at its release, was one of the most complex

binary viruses ever written, which uses Entry-Point Obscuring

that supports a unique code integration scheme, and

occasionally inserts jumps after each instruction in a section,

pointing to the next instruction. It extremely modifies files

from one generation to next via camouflage, which makes it

suited for the study [7, 19].

B. Machine Learning / Evolutionary Models

Statistical pattern analysis has proven a successful technique

to detect metamorphics via machine learning (soft-computing)

paradigms. Soft computing is an inexact science that uses

evolutionary optimization models to resolve tasks. It achieves

its tractability via optimization by exploiting historic data as

well as exploring human knowledge encoded via statistical

pattern analysis, mathematical models and symbolic reasoning

[25] to perform quantitative data processing and yield

qualitative knowledge as its new language. The models are

tuned to be robust, so that even with partial truth, imprecision,

uncertainty and noise applied to its input, it yields an output

guaranteed of high quality. They are mostly inspired by

behavioural patterns and evolution in biological population as

well as natural laws. They explore 3-basic feats as they seek to

unveil the underlying probability of data feats of interest

namely: (a) adaptation yield agents void of local minima and

with high-diverse random migrantion introduced into the

model to slow its convergence and create a balance between

exploitation and exploration so that learning feats of change,

biases its solution accordingly, (b) robustness estimates its

effectiveness of the model as employed in the task at hand,

and (c) decision is flexible as uncertainty feats impacts on the

model’s future state continually in forecasts while focusing on

its goal state and its ease integration [26]. Example include

models such as genetic algorithm, firefly algorithm, neural

networks, Markov model etc – all known tools and recently,

used in hunting cum effective detection of polymorphics cum

metamorphics.

C. Hidden Markov Model
[27] Consider a series of state and its associated probabilities

to each transition between states. Such state (chain) is a

Markov, if the transition probabilities depend only on the

current state (not on previous states) such that the Markov

chain has no memory. More precisely, it is a first order

Markov chain if the nth order Markov chain depends both on

current and its n–1 previous states. Also, the Markov chain has

no finite memory. The Hidden Markov model has been

successfully employed in the studies of bioinformatics as well

as molecular biology for gene sequencing.

Vol 8. No. 1 Issue 2 – May, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

184

Thus, we represent a simple DNA sequence using a Markov

chain process as: PAT is probability of the transition from state

A to T; while PTA is transition probability from state T to A,

and so on respectively given that in the DNA chemical code,

A = Adenosine, C = Cytosine, G = Guanine, and T = Thymine

as in Fig 1.

Each arrow represents transition probability of a specific base

followed by another base. Transition probability is calculated

after observing several DNA sequence and corresponding

transition probability matrix yields a compact representation

of the transition probabilities – noting that a Markov chain

process leads to a corresponding Markov model; And, that

each event depends only on the previous event. Transition

probability from state of observed symbol s to another state t

is given by Eq. 1 [28]:

where

N is the number of states and xi is the state at step i).

The sum of transition probabilities from each state equals 1

since these transitions represent a probability distribution as

the probability associated with each step of/in the model.

Following Bayes Theorem, the probability of the sequence

relative to the given model is computed using Eq. 2 noting that

P(xi) is probability of starting at first state xi, and ‘begin’/’end’

state helps accommodate first/last symbols of output sequence.

[28] Also, current event depends on more than one previous

event. An nth order Markov chain on m symbols is represented

as a first order Markov chain with mn symbols. Thus, given a

series of observations (i.e. output sequence) from a Markov

process, we wish to determine which state generated each

observation. Consider N buckets with a given distribution of

coloured balls in each. Note that we are well aware of the

distribution of the balls in each bucket as well as the rule for

determining which of the bucket to select from.

Being a Markov process, this rule for choosing the bucket

from which we can select from depends on the previous

selection. [29] Suppose, a sequence of colours correspond to

balls selected; But, we do not know which buckets they were

selected from. That is, the Markov process itself is hidden –

we would like to gain information about this hidden process

through the observations – that is, the colour of the balls

selected. So far, we only outlined the basic structure of a

hidden Markov model, the problem can be solved via hidden

Markov model approach using this simple example where:

� O: the observation sequence

� T: is the length of the observation sequence

� N: number of states in the HMM process

� α – is the alphabet for the model

� M: number of symbols in the alphabet

� A: the state transition probability matrix

� aij probability of the state transition from i to j

� bi(k): probability of observing k in the state i

� B: probability distribution of the observations (one

distribution for each Markov process)

� λ = (A,B,π) and it represents the HMM

HMM is given by λ = (A,B,π) where the matrices of A,B and

π may or may not be known, depending on the task. Thus, the

model can be suited for any of the following tasks [29]:

a. Problem 1: Given observations and parameters N and M,

determine model λ = (A,B,π) that best fits sequence. We

train model to fit data. HMM training requires no aprior

assumptions about the model other than outline parameter

N and M, which specifies the size of the model.

b. Problem 2: Compute probability that the given model

produces an observation sequence if given the model λ –

(A,B,π) and an observation sequence O, compute P(O/ λ).

c. Problem 3: Uncover HMM λ = (A,B,π) and observation

sequence O to determine most likely sequence of states X

= (x1, x2, …, xT) that could have produced the sequence.

Fig 3: State Transition / Automata

Diagram

PAT

PGT

PGC

PTA

PTG

PCG

PCA PAC

A T

C G

Vol 8. No. 1 Issue 2 – May, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

185

Suppose – in the example of gene sequencing, we have CTAG

states, which can occur in any number of sequence and in any

number of times T, to generate an observation between the

states. We have that number of symbols M = 4 (i.e. CTAG). If

our observed sequence O = {C,T,G,A,T,T,G,G,A} from the

base sequence (which is made visible); However, we seek to

uncover the signature of the new variants sequence when we

program this sequence to yield a new observation. But, we

require these 4-symbols too to yield the new variants (unsure

sequence) as many as 3-times the sequence we see clearly.

Thus, there are also 4-hidden states so that N = 4 (for normal

and hidden sequence).

Our transition probability matrix is computed and represented

by fig 4. From this, we have that the ratio of the base virus to

the completely morphed copy yet to be generated as it infects

new system is given by 1:3 and using the Maximum Expected

Likelihood model, we arrive at this transition probability

matrix as in fig 4. Also, we have the initial distribution π

which specifies the probability that the Markov process begins

with the normal observed sequence as well as a biased

generated variant (after infecting a body or system

respectively) – so that π = [0.3 0.7]. The values for (A,B,π) are

all row-statistic – that is, each row is a probability distribution.

Note that the series of states in the underlying Markov process

is hidden and we observe that the sequence of CTAG that

result from the process are assumed as N and M, which in this

case are known [28].

D. The Bayesian Profile Hidden Markov Model
The Hidden Markov Model is a double embedded chain that

models complex stochastic processes. The Markov process is a

chain of states with probabilities associated to each transition

between states. In n-order Markov, its transition probabilities

depend on current and n-1 previous states. A Hidden Markov

model process determines the state generated for each state

observation in a series (solution space or output sequence). In

malware, an instruction not accepted by the trained HMM,

yields high probability of being a malware [29]. Traditional

HMM scores data through clustering based on the profile

values. The probabilities of initial set of instructions are

sampled – then checked to see if such instructions are

metamorphic viruses. HMM maintains log in memory to help

reduce true-negatives (instructions that behave malware-like)

and false positives (unclassified variants of malware). Thus,

our HMM is initially trained to assimilate normal behaviour of

Zmist metamorphic engine. It then creates a profile of the

malware codes, which it classifies into low, medium and high

profile range [28-29, 41].

However, profile HMM as a variant of HMM, aims to deal

with the fundamental problems of the HMM by: (a) it makes

explicit use of positional (alignment) data contained in the

observations or sequences, and (b) it allows null transitions,

where necessary so that the model can match sequences that

includes insertion and deletions [27-29]. In malware detection,

O is each code of metamorphic engine denoted as a rule, T is

time each code takes to execute, N is number of codes in

sequence and obfuscation methods used as etched into HMM,

M is number of code access to registers contained in Zmist

engine, π is initial state (starting code) for Zmist engine, A is

the state transition probability matrix, aij is probability of a

transition from state i to another state j, B contains N-

probability distribution codes in knowledgebase from where

profiles are been created (one code for each state of the

process); while HMM λ = (A,B,π). Though, parameters for

HMM details are incomplete as above; But, the general idea is

still intact.

0.95

0.7

0.75

0.7

Fig 4: State Transition or Automata Diagram

0.3

0.08

0.05

0.3

0.92

0.25

0.5
0.5

A T

C G

Vol 8. No. 1 Issue 2 – May, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

186

We can also align multiple codes (data) rules as sequence with

significant relations. Its output sequence determines if an

unknown code is related to sequence belonging to either of the

Zmist variant class (or not) as comprise in the Bayesian net.

We then use the profile HMM to score codes and make

decision. The circles are delete state that detects classified

Zmist codes in the knowledgebase, diamonds are insert states

that allow us sandbox codes that are unclassified upon which

the knowledgebase is updated for classified false-positives and

true-negative detection; while rectangles are matched states

that accurately classifies codes into Zmist variants as in the

standard HMM [28-29].

Match and insert are emission states in which an observation is

made as PHMM passes through all the states. Emission

probabilities, corresponding to B in standard HMM model is

computed based on frequency of symbols (in this case, Zmist

codes) that can be emitted at a particular state in the model;

But, are positional-dependent (in contrast to standard model).

Also, the emission probabilities are derived from the Bayesian

net, which represents our training phase. Finally, delete states

allow the model to pass through the gaps, existing in the

Bayesian network to reach other emission states. These gaps

are necessary in the model help prevent it from over-fitting of

data as in fig 5 [28]. We use the forward algorithm to compute

probabilities for each possible case recursively by reusing

scores calculated for partial sequences using Eq. 1 to Eq. 3

respectively as thus:

)

D. E. Benchmark Memetic Algorithm
Our framework is an adaptation of [30] that aims to evolve new

malware from a known virus database. The first step is high-

level of abstract representation (or genotype) of given virus that

requires great understanding of virus functionality and

structure. It determines quality of evolution achieved by

proposed framework, while including functional details of the

virus characteristics and that of the metamorphic engine in use.

Some known feats/attributes are: date, application-to-infect,

domain, port number, email attachment, mail-body, registry

variable, file extension, process terminated, peer-to-peer

propagation etc, which forms its abstract representation of the

base virus to be taken as input into system (see fig 3).

Second step is the application of the evolutionary algorithm to

the high-level representation. Thus, dataset is divided into: train

(50%), cross validation (25%) and test (25%). The fitness of

offspring as evaluated in Eq. 6 is a function of the similarity

measure of the genes (chromosomes) with that of all stages of

the framework. Individuals that evolved but do not match the

training samples, their feats are stored and forms input to the

next iteration. Thus, we have these conclusions as adopted by

[30] thus: (1) new individuals are malware to be used during

testing, whose abstract represented feats are fed-back into

model, (2) new individual is an unknown Zmist virus, and (3)

new individual is (not) Zmist virus.

End

Fig 4: PHMM with 3-Match States

Begin

D1

M1

I1 I0

D2

M2

I2

D3

M3

I3

Vol 8. No. 1 Issue 2 – May, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

187

In [29] facts 2 and 3 are established once executed within a

sandbox in an operating system at real-time. Unlike [30]

Generating Zmist virus for test as against having test data from

base virus abstract representation, invalidates the experiment to

some degree as mutation yields a better and fitter generation.

Instead, we argued that a combination of the old feats and new

feats as extracted from both dataset and metamorphic engine at

each stage of the process as well as feedback into the system to

generate newer variants to yield greater evolution (backward

compatibility w.r.t. functionality to the base virus).

CGA initializes the hybrid with an entire population of 500-

input (suitable abstract representation of base virus), computes

individual fitness of each individual via Eq. 6 as well as selects

30-individual via tournament method to yield the new sub-pool

(and determine individuals to proceed for mating). Selected

data are moved for crossover and mutation so that model or

network learns static/dynamic feats in the obtained data. With

30-individuals selected via tournament and 2-point crossover

used, other parents contribute to yield new pool whose genetic

makeup is a combination of both parents. Mutation will yield 3-

random genes that are allocated new random value that still

conforms to belief space. The number of mutation applied,

depends on how far CGA is progressed (and how fit is the best

fit individual in the pool). Thus, number of mutations equals

fitness of the fittest individual divided by 2. New individuals

replace old ones with low fitness values [28, 31, 42].

[32-34]

Each particle in PSO (30-individuals from CGA) are moved

over and encoded as a string of positions in multidimensional

space. Position/Velocity updates are performed independently

in each dimension (a merit of PSO). Though, not for such an

evolution/permutation task, as candidate solutions depends on

each other. Thus, two or more particles can have same value for

velocity and position. Particles can take values outside the

boundary after update, which breaks the rule of permutation.

[35-40].

All conflicts are resolved using Eq. 5. With larger velocity,

particles explore more space and will likely change (though all

update formulas remain same). Velocity is limited to absolute

values, which represents the difference between particles). This

continues till an individual in the pool with a fitness of 0 is

found. Thus, solution is reached [25-26]. Selection and

mutation in GA ensures the first 3-beliefs are met; while

velocity/position updates in PSO ensures that the fourth belief

space is met, as time is of paramount interest. Also, influence

function determines number of mutations takes place; And

knowledge of how close task is to solution, has direct impact

on how model is processed. Algorithm stops when best

individual has fitness 0 [32].

F. Tradeoffs and Issues in Metamorphic Malware
Researchers designed routines to detect metamorphics (one-by-

one) and detect varied sequences of code known to be used by

given mutation engine via signature search. This method is

proved inherently impractical, time-consuming and costly as

each metamorphic requires its own detection program. Also,

the mutation engine can seemingly randomly, generate billions

variation of virus and different engines used by metamorphics

make any identification somewhat unreliable. This has led to,

mistakenly identifying one virus in place of another. Thus, our

statistical model seeks to associate signature to metamorphic

malware computed based on probability. Also, hybrid models

are quite difficult to implement. But, we resolved the encoding

via a structured learning which in turn, addresses the existing

statistical dependencies amongst its variables to yield better

pool via crossover/mutation. This feat can be adapted in areas

of software evolution. This Genetic Algorithm trained Particle

Swarm hybrid model combined with the Zmist metamorphic

engine obfuscation yields Zmist variants in the shortest time

that are highly independent, discrete and completely morphed

copies of virus. Our resulting morphed copies were tested

against normal files and against commercial virus scanners.

3. RESULTS AND FINDINGS

E. A. Result Findings and Discussion

To measure their effectiveness and classification accuracy, we

adopt the misclassification rate of each model as well as its

corresponding improvement percentages of the proposed model

in comparison with those of other classification models for the

diabetes data in both training and test data sets as summarized

in Table 2 and Table 3, respectively. The equations for the

misclassification rate and its improvement percentage of the

unsupervised (B) model against those of the supervised (A)

model, is respectively calculated as follows:

Vol 8. No. 1 Issue 2 – May, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

188

Table 2: Misclassification Rate of Each model

Model

Classification Errors

Training Data Testing Data

PHMM 23.6% 39.2%

GAPSO 48.4% 53.7%

Table 3: Improvement Percentage

Model

Improvement %

Training Data Testing Data

PHMM 56.03% 64.16%

GAPSO 42.79% 34.09%

Obtained results in tables 2 & 3, the proposed PHMM has a misclassification rate of 39.2% (resulting in false-positives and true-

negatives error rate). Implying, it has a classification accuracy of about 60.9%; While, promising and/or shows an improvement

of about 64.16%. In contrast, memetic algorithm (GAPSO) has a misclassification rate of 53.7% (resulting in false-positives and

true-negatives error rate); while it promises to improve by 34.1%. Other parameter values of PSO led to slower or non-

convergence. Generated variants viruses were tested against commercial antiviruses. Scanned with ESET, it was able to detect

56% of generated variants; while Norton Symantec detects 47% as in fig. 4a and 4b.

Fig. 4a: Evolved Variants from HMM scanned with Kaspersky

Fig. 4b: Evolved Variants via GAPSO scanned with Norton

Vol 8. No. 1 Issue 2 – May, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

189

Furthermore, metamorphic easily transform its codes as they

propagate to avoid detection by using obfuscation methods to

alters its behaviour when it detects its execution within virtual

machine (sandbox) as means to challenge a deeper analysis

(Lakhotia et al, 2004). Virus writer use weaknesses of

antiviruses which are limited to static and dynamic analysis.

Thus, they attack the following feats in a system: (a) data flow,

(b) control flow graph generations, (c) procedure abstract, (d)

property verification, and (e) disassembly – all means to

counter scans, to identify such metamorphic viruses

(Konstantinou, 2008). To mutate its code generation,

metamorphics analyze their own codes and must re-evaluate

evolved or mutated codes generated (since complexity of

transformation in the previous generation has a direct impact on

its current state, how a virus analyses and transforms code in its

current generation). Thus, they employ code conversion

algorithm that helps them detect their own obfuscation and

reordering (Ojugo, 2016).

4. CONCLUSION

In summary, with fitness function and selection common to

both GA and PSO, we note that learning rates set between 0.2

and 0.35; and PSO feats set as: φ1, = 1.5, φ2 = 2.5, MaxGen =

500 epochs and ϖ = 0.14 yields better and faster convergence

[32 – 40]. With [30], the proposed framework is posed as an

evolvable system (though is adaptable to other domain tasks) is

used in software evolution.

The process of evolution is associated with modifying an

existent software or program with both backward cum forward

compatibility, and also to emphasizes the concept of robustness

and component reuse (Gray and Klefstad, 2005). Also, a wide

variety of replicative and non-replicative malware can also be

evolved via proposed framework to increase network security

research and study.

REFERENCES

[1] Daoud, E and Jebril, I., “Computer Virus Strategies and

Detection Methods”, International Journal of Open

Problems Computational Mathematics, 2008, Vol. 1, No.

2, [online]:

www.emis.de/journals/IJOPCM/files/IJOPCM(vol.1.2.3.

S.08).pdf

[2] Dawkins, R., “The selfish gene”, Oxford University

Press, Second Edition, 1989.

[3] Zakorzhevsky, E.R., “Monthly malware statistics”, 2011,

[online]:www.securelist.com/en/analysis/204792182/Mo

nthly_Malware_Statistics_June_2011.

[4] Allenotor, D., “An Evolvable Framework for

Metamorphics”. Computing, Information Systems,

Development Informatics and Allied Research Journal,

2016, Vol 7 No 2. Pp 33-40 Available online at

www.cisdijournal.met

[5] Ojugo, A.A., “Computer virus evolution: polymorphics

analysis and detection”, Journal of Academic Research,

2010, Vol. 15, No. 8, p34 – 46.

[6] Ye, Y., Wang, D., Li, T and Ye, D., “Intelligent malware

detection based on association mining”, Journal of

Computer Virology, 2008, Vol. 4, No. 4, p323–334, doi:

10.1007/s11416-008-0082-4.

[7] Szor, P., “The Art of Computer Virus Research and

Defense”, Addison Wesley Symantec Press. 2005, ISBN-

10: 0321304543, New Jersey.

[8] Mishra, P., “Taxonomy of software unique

transformations”, 2003,

www.cs.sjsu.edu/faculty/stamp/students/FinalReport.doc

[9] Orr, “The viral Darwinism of W32.Evol: an in-depth

analysis of a metamorphic engine”, 2006, [online]:

available at http://www.antilife.org/files/Evol.pdf

[10] Orr, “The molecular virology of Lexotan32:

Metamorphism illustrated”, 2007, [online]:

www.antilife.org/files/Lexo32.pdf

[11] Singhal, P and Raul, N., “Malware detection module

using machine learning algorithm to assist centralized

security in enterprise network”, International Journal of

Network Security and Applications, 2012, 4(1), doi:

10.5121/ijnsa.2012.4106, p61

[12] Rabek, J., Khazan, R., Lewandowski, S., Cunningham,

R., “Detection of injected, dynamic generated and

obfuscated malicious code”, In Proceedings of ACM

Workshop on Rapid Malcode, 2003, p76.

[13] Filiol, E., “Computer Viruses: from Theory to

Applications”, New York, Springer, 2005, ISBN 10:

2287-23939-1.

[14] Hashemi,S., Yang, Y., Zabihzadeh, D and Kangavari, M.,

“Detecting intrusion transactions in databases using data

item dependencies and anomaly analysis”, Expert

Systems, 2008, Vol. 25, No. 5, p460, doi:10.1111/j.1468-

0394.2008.00467.x

[15] Grimes, R., “Malicious Mobile Code: Virus Protection

for Windows”, O'Reilly and Associates, Inc., Sebastopol,

CA, USA, 2001.

[16] Cohen, F., “Computer viruses: theory and experiments”,

Computer Security, 1987, 6(1), p22-35.

[17] Sung, A., Xu, J., Chavez, P., Mukkamala, S., “Static

analyzer of vicious executables”, Proceedings of 20th

Annual Computer Security Applications Conference,

IEEE Computer Society, 2004, p326-334.

[18] Venkatesan, A., “Code obfuscation and metamorphic

Virus Detection”, Master thesis, San Jose State

University, 2006,

www.cs.sjsu.edu/faculty/students/ashwini_venkatesan_cs

298report.doc

[19] Konstantinou, E., “Metamorphic virus: analysis and

detection”, Technical report (RHUL-MA-2008-02), Dept.

of Mathematics, Royal Holloway, University of London,

2008.

[20] Walenstein, R., Mathur, M., Chouchane R., and Lakhotia,

A., “The design space of metamorphic malware”, In

Proceedings of 2nd Int. Conference on Information

Warfare, 2007, p243.

[21] Wong, W., “Analysis and Detection of Metamorphic

Computer Viruses”, Master’s thesis, San Jose State

University, 2006,

http://www.cs.sjsu.edu/faculty/students/Report.pdf

Vol 8. No. 1 Issue 2 – May, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

190

[22] Borello, J and Me, L., “Code obfuscation techniques for

Metamorphics, 2008, [online]: available at

www.springerlink.com/content/233883w3r2652537

[23] Aycock, J., “Computer Viruses and malware”, Springer

Science and Business Media, 2006.

[24] VX Heavens Virus Collection, [online]:

http://vx.netlux.org/

[25] Ojugo, A.A and Yoro, R.E., “Computational intelligence

in stochastic solution for Toroidal Queen”, Progress in

Intelligence Computing Applications, 2013a, Vol. 2, No.

1, doi: 10.4156/pica.vol2.issue1.4, p46

[26] Ojugo, A.A., Emudianughe, J., Yoro, R.E., Okonta, E.O

and Eboka, A.O., “Hybrid artificial neural network

gravitational search algorithm for rainfall runoff”,

Progress in Intelligence Computing and Applications,

2013b, Vol. 2, No. 1, doi: 10.4156/pica.vol2.issue1.2,

p22.

[27] Ojugo, A.A., Oyemade, D.A., Allenotor, D., Longe, O.B

and Anujeonye, C.N., “Comparative Stochastic Study for

Credit-Card Fraud Detection Models,. African Journal of

Computing and ICT, 2015, Vol 8, No. 1, Issue 2. Pp 15-

24.

[28] Ojugo, A.A., “A profile hidden markov model for

forecasting energy spread options direction and

volatility, Technical Report for Dynamic High

Performance Computing Research Group of the Federal

University of Petroleum Resources Effurun, 2013,

FUPRE-TR-DHCP-08, Pp 10-24.

[29] Ramage, D., “Hidden markov model fundamentals”,

Lecture notes in Computer Science, [online source]:

www.springerlink.com

www.springerlink.com/content/lecturen_notes/cs/235483

w3r2652537

[30] Noreen, S., Ashraf, J and Svrenahak, K., “Malware

detection using evolutionary models”, International

Journal of Virology, 2008, Vol. 23, No. 2, p123-132.

[31] Ojugo, A., A.O. Eboka., E.O. Okonta., E.R. Yoro and

F.O. Aghware., “Genetic algorithm trained rule-based

intrusion detection system”, Journal of Emerging Trends

in Computing and Information Systems, Vol. 3, No. 8,

2012, Pp 1182-1194

[32] Ursem, R., Krink, T., Jensen, M.and Michalewicz, Z.,

“Analysis and modeling of controls in dynamic systems”,

IEEE Transaction on Evolutionary Computing, 2002,

6(4), p378-389.

[33] Clerc, M., “The .Aswarm and the queen: towards a

deterministic and adaptive particle swarm optimization”,

In Proceedings of Evolutionary Computation (IEEE),

1999, 5, p123-132.

[34] Gray, J and Klefstad, R., “Adaptive and evolvable

software systems: techniques, tools and applications”,

38th Annual Hawaii Int. Conf. on System Sciences, 2005,

p274, IEEE Press.

[35] Hassan, R and Crosswley, W., “Variable population-

based sampling for probabilistic design optimization and

with a genetic algorithm”, Proceedings of 42nd

Aerospace Science, p32, Reno: NV, 2004.

[36] Hassan, R., Cohanin, B., De Wec and Venter, G.,

“Comparison of particle swarm optimization and genetic

algorithm”, In Proceeding of 44th Aerospace Science,

2004, Washington, p56.

[37] Homaifar, A.A., Turner, J and Ali, S., “N-queens problem

and genetic algorithms”, In Proceedings of the IEEE

Southeast conference, 1992, p262.

[38] Hu, X., Eberhart, R.C and Kennedy, J., “Solving

constrained nonlinear optimization problems with PSO,

In Proceedings of the Multi-conference on Systems,

Cybernetics and Informatics, 2005a, p234.

[39] Hu, X., Eberhart, R.C and Shi, Y., “Swarm intelligence

for permutation optimization: study of n-queens”,

Proceedings of IEEE Genetic Evolutionary Computing on

Memetic Algorithm, 2005b, p243

[40] Kennedy, J and Mendes, R., “Population structure and

particle swarm performance”, In Proceedings of the

IEEE Congress on Evolutionary Computation, 2002, p-

1671, Honolulu

[41] Lakhotia, A., Kapoor, A and Kumar, E.U., “Are

metamorphic computer viruses really invisible?”, 2004,

Part 1, Virus bulletin, p5-7.

[42] Reynolds, R., “An introduction to cultural algorithms”,

IEEE Transaction on Evolutionary Programming, 1994,

p131.

