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ABSTRACT 
 

Malware are destructive by altering host machine’s behaviour as it self-replicates its codes unto the host’s files. Some, have the 

ability to change its structure on execution via mutation and other code obfuscation – to generate complex variants with same 

functionality; But, different in their syntax and signature. This renders signature-based detection quite unreliable and their 

detection, tedious. Our study generates evolved complex variants of the Zmist malware using memetic algorithm, we then create 

an effective profile and rules trained via the Hidden Markov model, that efficiently detect the Zmist variants with high 

(classification) probability; And thus, drastically reduce false-positive and true-negative rates. We use HMM clustering ability to 

explore sample cluster-profiles of the Zmist metamorphic engine to help us learn the underlying code clusters from sample data, 

and navigate its engine to yield faster and completely morphed variants of Zmist using memetic algorithm. Evolved variants of 

were tested on and against commercial antivirus.  
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1. INTRODUCTION 
 

Computer virus is a malicious program that modifies a host 

machine by attaching its code and alters behaviour of other 

files. As it infects, it also modifies itself to include better and 

possibly, an evolved copy of the virus [1][2][3].  

[4] in [5] notes the first computer virus was a boot sector 

virus created in 1986 that infects the host machine resources 

such as files and macros, operating system, system sectors, 

companion files and source code. Use of Internet for data 

transfer has become a soft target for their widespread to wreak 

havoc faster globally. Early detection of viruses is thus, 

imperative to minimize the damage caused.  

A. Modules of a Computer Virus 
[5] Virus has 3-modules: infect, trigger and payload. Infect is 

the mechanism to modify its host and contain copies of it. 

Trigger details when and how to deliver payload (details the 

damage to be done). Trigger and payload are optional. Fig. 1a 

is virus pseudo-code; while Fig. 1b is an infect pseudo-code. 

[6] Subroutine Infect selects a target from M-targets to infect 

when run. Select_target details target selection criteria as same 

target should not be repeatedly selected; else, reveals presence 

of a virus. And, Infect_code performs actual infection by 

inserting its code into the target. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1a: Virus Pseudo-code 

Def Virus(): 

 Infect() 

 If Trigger() is 

TRUE then 

 

Fig 1b: Infect Pseudo-code 

Def Infect(): 

 Repeat M times() 

     Target = 

Select_target() 

   If no 

target() THEN 
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Malware self-replicates its codes onto a machine without the 

user’s consent, and spreads by attaching a copy of itself to 

some part of program file. It attacks system resources and is 

designed to deliver a payload that aims to corrupt program, 

delete files, reformat disks, crash network, destroy critical data 

or embark on other damage to the host machine [7]. 

 

Viruses are classified as: 

a. Simple virus replicates itself on execution in a host 

machine so that it gains control, attaching a copy of itself 

to host machine’s files or program as it spreads. It then 

transfers back control to host program afterwards. It is 

easily detected by scanning for a defined sequence of 

bytes called signature [8]. 

b. Encrypted virus scrambles its signature to make it 

unrecognizable. Its decryption routine transfers control to 

its decrypted virus body so that each time it infects a new 

program, it makes copy of both the decrypted body and 

its related decryption routine. It encrypts a copy and 

attaches both to a target system. It uses an encryption key 

to encrypt its body. As the key changes, it scrambles its 

body so that the virus appears different, from one 

infection to another. This makes signature detection 

technique difficult so that the antivirus must scan for a 

constant decryption routine instead [9]. 

c. Polymorphics consists of scrambled body, its mutation 

engine and decryption routine. Its decryption routine first 

acquires control of host machine as it decrypts scrambled 

body and mutation engine. It then transfers control to the 

now unscrambled body to locate new file to infect – unto 

which it copies its body, also copying unto the RAM its 

mutation engine and invoking its mutation engine to 

randomly generate a new decryption routine to decrypt its 

body with little or no semblance to the previous 

decryption routine. It then appends this newly encrypted 

body, a mutation engine and decryption routine to the 

newly infected file – so that the encrypted body and 

decryption routine, varies from one infection to another. 

It has no signature and decryption routine – making any 

two infections not alike [10]. 

d. Metamorphics avoid detection by completely rewriting 

its code each time it infects new file. It accomplishes 

code obfuscation and meta-morphing, which is 90% of its 

assembly codes [8-10]. 

 

B. Virus Detection Mechanisms 

Antivirus software detects, prevent and remove all malware, 

including but not limited to viruses, worms, Trojans, spyware 

and adware. Antivirus use strategies namely: heuristic search, 

cyclic redundancy check, logic search and spy on processes to 

scan for viruses. Detection mechanism is broadly grouped 

into: (a) signature-based scans for signature, and to evade it – 

virus makers create new virus strings that can alter their 

structure while keeping its functionality via code obfuscation 

method, and (b) code emulation creates sandbox or virtual 

machine, so that files are executed within it and scanned for 

virus. Once the virus is detected, it is no longer a threat – since 

it is running in controlled environment that limit damage to 

host machine [5, 11-12]. 

 

Antivirus often impairs system performance, and incorrect 

decision may lead to security breach as it runs at the kernel of 

the operating system. If an antivirus uses heuristics, its success 

depends on the right balance between positives and negatives. 

Today, malware may no longer be executables. Macros can 

present security risk and antivirus heavily relies on signature-

detection. Metamorphic and polymorphic viruses, evades and 

makes signature detection, quite ineffective [13]. Studies have 

shown that anti-virus effectiveness decreased against unknown 

or zero-day attacks. This problem has been magnified by the 

changing intent of virus makers. Independent testing on all the 

major virus scanners consistently shows none to yield 100% 

detection. The best ones yield 99.6% detection, while lowest is 

81.8%. Thus, all scanners can yield a false positive result as 

well so that they identify benign files as malware [14-15]. 

 

C. Metamorphic Malware or Viruses 

Rather than use encryption, metamorphics change its code 

structure/appearance while keeping its functionality. It does 

this via code obfuscation methods as in fig 2. Its engine reads 

in a virus executable, locates code to be transformed using its 

locate_own_code module. Each engine has its transformation 

rule that defines how a particular opcode or a sequence of 

opcodes is to be transformed. Decode module extracts these 

rules by disassembling. Analyze module analyzes current copy 

of virus and determines what transforms must be applied to 

generate the next morphed copy. Mutate module performs the 

actual transformations by replacing an instruction (set) with 

the other its equivalent code; While, Attach module attaches 

the mutated or transformed copy to a host [4-5, 9, 16-17].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Locate own 

code 
Decode Analyze Mutate Attach 

Fig. 2: Distinct Signature of Metamorphic Virus 
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[18-19] note that a typical metamorphic engine may consist of: 

(a) internal disassemble to disassemble binary codes, (b) a 

shrinker replaces two or more codes with its single equivalent, 

(c) expander replaces an instruction with code set to perform 

same action, (d) swapper reorders these codes by swapping 

two/more unrelated codes, (e) a relocator assigns and relocate 

relative references like jump/call, (f) garbager (constructor) 

inserts whitespaces (do-nothing codes) and (g) the cleaner 

(destructor) undoes the actions of a garbager by removing 

whitespaces instructions. [9, 17, 20] Feats of an effective 

metamorphic engine includes: (i) must be able to handle any 

assembly language opcode, (ii) shrinker and swapper must be 

able to process more than one instruction concurrently, (iii) 

garbager is used moderately, not to affect actual instructions, 

and (iv) swapper analyzes each instruction so as not to affect 

next instructions’ execution. 

 

D. Metamorphic Code Obfuscation Methods 
Metamorphic engine uses code obfuscation to yield morphed 

copies of original program. Obfuscated code is more difficult 

to understand and can generate different looking copies of a 

parent file as it operates on both control flow and data section 

of a program [21]. Code obfuscation is achieved via [22-23]: 

a. Register Usage Exchange/Rename modifies register data 

of an instruction without changing the codes itself, which 

remain constant across all morphed copies. Thus, only the 

operands changes. 

b. Dead Code inserts whitespaces, which do not affect its 

code execution via a block or single instruction so as to 

change codes’ appearance while retaining functionality.  

c. Subroutine Permutation aims to reorder subroutines so 

that a program of many subroutines can generate (n-1)! 

varied permutations, whose addition will not affect its 

functionality as this is not important for its execution.  

d. Equivalent Code Substitution replaces instruction with its 

equivalent instruction (or blocks). A task can be achieved 

in different ways. Same feat is used in equivalent code 

substitution. 

e. Transposition/Permutation – modifies program execution 

order only if there is no dependency amongst 

instructions. 

f. Code Reorder inserts unconditional and conditional 

branch after each instruction (or block), and defines 

branching instructions to be permuted so as to change the 

programs’ control-flow. Conditional branch is always 

preceded by a test instruction which always forces the 

execution of the branching instruction. 

g. Subroutine Inline/Outline is similar to dead code 

insertion in that subroutine call are replaced with its 

equivalent code as Inline inserts arbitrary dead code in a 

program; while outline converts block of code into 

subroutine and replace the block with a call to the 

subroutine. It essentially does not preserve any logical 

code grouping. 

 

 

 

 

2. MATERIALS / METHODOLOGY 
 

A. Virus Abstract Representation 
The study uses the Zmist metamorphic engine (whose rules or 

heuristics uses substitution, transposition and trash – all of 

which are permutation) methods to build viruses of the same 

functionality. The engine changes its opcode, generating new 

variants from old versions (authored by Zombie and extracted 

from [24]. Zmist at its release, was one of the most complex 

binary viruses ever written, which uses Entry-Point Obscuring 

that supports a unique code integration scheme, and 

occasionally inserts jumps after each instruction in a section, 

pointing to the next instruction. It extremely modifies files 

from one generation to next via camouflage, which makes it 

suited for the study [7, 19]. 

 

B. Machine Learning / Evolutionary Models 

Statistical pattern analysis has proven a successful technique 

to detect metamorphics via machine learning (soft-computing) 

paradigms. Soft computing is an inexact science that uses 

evolutionary optimization models to resolve tasks. It achieves 

its tractability via optimization by exploiting historic data as 

well as exploring human knowledge encoded via statistical 

pattern analysis, mathematical models and symbolic reasoning 

[25] to perform quantitative data processing and yield 

qualitative knowledge as its new language. The models are 

tuned to be robust, so that even with partial truth, imprecision, 

uncertainty and noise applied to its input, it yields an output 

guaranteed of high quality. They are mostly inspired by 

behavioural patterns and evolution in biological population as 

well as natural laws. They explore 3-basic feats as they seek to 

unveil the underlying probability of data feats of interest 

namely: (a) adaptation yield agents void of local minima and 

with high-diverse random migrantion introduced into the 

model to slow its convergence and create a balance between 

exploitation and exploration so that learning feats of change, 

biases its solution accordingly, (b) robustness estimates its 

effectiveness of the model as employed in the task at hand, 

and (c) decision is flexible as uncertainty feats impacts on the 

model’s future state continually in forecasts while focusing on 

its goal state and its ease integration [26]. Example include 

models such as genetic algorithm, firefly algorithm, neural 

networks, Markov model etc – all known tools and recently, 

used in hunting cum effective detection of polymorphics cum 

metamorphics. 

 

C. Hidden Markov Model 
[27] Consider a series of state and its associated probabilities 

to each transition between states. Such state (chain) is a 

Markov, if the transition probabilities depend only on the 

current state (not on previous states) such that the Markov 

chain has no memory. More precisely, it is a first order 

Markov chain if the nth order Markov chain depends both on 

current and its n–1 previous states. Also, the Markov chain has 

no finite memory. The Hidden Markov model has been 

successfully employed in the studies of bioinformatics as well 

as molecular biology for gene sequencing.  
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Thus, we represent a simple DNA sequence using a Markov 

chain process as: PAT is probability of the transition from state 

A to T; while PTA is transition probability from state T to A, 

and so on respectively given that in the DNA chemical code, 

A = Adenosine, C = Cytosine, G = Guanine, and T = Thymine 

as in Fig 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each arrow represents transition probability of a specific base 

followed by another base. Transition probability is calculated 

after observing several DNA sequence and corresponding 

transition probability matrix yields a compact representation 

of the transition probabilities – noting that a Markov chain 

process leads to a corresponding Markov model; And, that 

each event depends only on the previous event. Transition 

probability from state of observed symbol s to another state t 

is given by Eq. 1 [28]:  

 

 
 

where  

N is the number of states and xi is the state at step i).  

 

The sum of transition probabilities from each state equals 1 

since these transitions represent a probability distribution as 

the probability associated with each step of/in the model. 

Following Bayes Theorem, the probability of the sequence 

relative to the given model is computed using Eq. 2 noting that 

P(xi) is probability of starting at first state xi, and ‘begin’/’end’ 

state helps accommodate first/last symbols of output sequence. 

 

 

 

 

 
 

[28] Also, current event depends on more than one previous 

event. An nth order Markov chain on m symbols is represented 

as a first order Markov chain with mn symbols. Thus, given a 

series of observations (i.e. output sequence) from a Markov 

process, we wish to determine which state generated each 

observation. Consider N buckets with a given distribution of 

coloured balls in each. Note that we are well aware of the 

distribution of the balls in each bucket as well as the rule for 

determining which of the bucket to select from.  

 

Being a Markov process, this rule for choosing the bucket 

from which we can select from depends on the previous 

selection. [29] Suppose, a sequence of colours correspond to 

balls selected; But, we do not know which buckets they were 

selected from. That is, the Markov process itself is hidden – 

we would like to gain information about this hidden process 

through the observations – that is, the colour of the balls 

selected. So far, we only outlined the basic structure of a 

hidden Markov model, the problem can be solved via hidden 

Markov model approach using this simple example where: 

 

� O: the observation sequence 

� T: is the length of the observation sequence 

� N: number of states in the HMM process 

� α – is the alphabet for the model 

� M: number of symbols in the alphabet 

� A: the state transition probability matrix 

� aij probability of the state transition from i to j 

� bi(k): probability of observing k in the state i 

� B: probability distribution of the observations (one 

distribution for each Markov process) 

� λ = (A,B,π) and it represents the HMM 

 

HMM is given by λ = (A,B,π) where the matrices of A,B and 

π may or may not be known, depending on the task. Thus, the 

model can be suited for any of the following tasks [29]: 

a. Problem 1: Given observations and parameters N and M, 

determine model λ = (A,B,π) that best fits sequence. We 

train model to fit data. HMM training requires no aprior 

assumptions about the model other than outline parameter 

N and M, which specifies the size of the model. 

b. Problem 2: Compute probability that the given model 

produces an observation sequence if given the model λ – 

(A,B,π) and an observation sequence O, compute P(O/ λ). 

c. Problem 3: Uncover HMM λ = (A,B,π) and observation 

sequence O to determine most likely sequence of states X 

= (x1, x2, …, xT) that could have produced the sequence. 

 

 

 

 

Fig 3: State Transition / Automata 
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Suppose – in the example of gene sequencing, we have CTAG 

states, which can occur in any number of sequence and in any 

number of times T, to generate an observation between the 

states. We have that number of symbols M = 4 (i.e. CTAG). If 

our observed sequence O = {C,T,G,A,T,T,G,G,A} from the 

base sequence (which is made visible); However, we seek to 

uncover the signature of the new variants sequence when we 

program this sequence to yield a new observation. But, we 

require these 4-symbols too to yield the new variants (unsure 

sequence) as many as 3-times the sequence we see clearly. 

Thus, there are also 4-hidden states so that N = 4 (for normal 

and hidden sequence).  

 

 

Our transition probability matrix is computed and represented 

by fig 4. From this, we have that the ratio of the base virus to 

the completely morphed copy yet to be generated as it infects 

new system is given by 1:3 and using the Maximum Expected 

Likelihood model, we arrive at this transition probability 

matrix as in fig 4. Also, we have the initial distribution π 

which specifies the probability that the Markov process begins 

with the normal observed sequence as well as a biased 

generated variant (after infecting a body or system 

respectively) – so that π = [0.3 0.7]. The values for (A,B,π) are 

all row-statistic – that is, each row is a probability distribution. 

Note that the series of states in the underlying Markov process 

is hidden and we observe that the sequence of CTAG that 

result from the process are assumed as N and M, which in this 

case are known [28]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D. The Bayesian Profile Hidden Markov Model 
The Hidden Markov Model is a double embedded chain that 

models complex stochastic processes. The Markov process is a 

chain of states with probabilities associated to each transition 

between states. In n-order Markov, its transition probabilities 

depend on current and n-1 previous states. A Hidden Markov 

model process determines the state generated for each state 

observation in a series (solution space or output sequence). In 

malware, an instruction not accepted by the trained HMM, 

yields high probability of being a malware [29]. Traditional 

HMM scores data through clustering based on the profile 

values. The probabilities of initial set of instructions are 

sampled – then checked to see if such instructions are 

metamorphic viruses. HMM maintains log in memory to help 

reduce true-negatives (instructions that behave malware-like) 

and false positives (unclassified variants of malware). Thus, 

our HMM is initially trained to assimilate normal behaviour of 

Zmist metamorphic engine. It then creates a profile of the 

malware codes, which it classifies into low, medium and high 

profile range [28-29, 41]. 

 

 

 

 

 

 

 

 

 

 

 

However, profile HMM as a variant of HMM, aims to deal 

with the fundamental problems of the HMM by: (a) it makes 

explicit use of positional (alignment) data contained in the 

observations or sequences, and (b) it allows null transitions, 

where necessary so that the model can match sequences that 

includes insertion and deletions [27-29]. In malware detection, 

O is each code of metamorphic engine denoted as a rule, T is 

time each code takes to execute, N is number of codes in 

sequence and obfuscation methods used as etched into HMM, 

M is number of code access to registers contained in Zmist 

engine, π is initial state (starting code) for Zmist engine, A is 

the state transition probability matrix, aij is probability of a 

transition from state i to another state j, B contains N-

probability distribution codes in knowledgebase from where 

profiles are been created (one code for each state of the 

process); while HMM λ = (A,B,π). Though, parameters for 

HMM details are incomplete as above; But, the general idea is 

still intact. 
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We can also align multiple codes (data) rules as sequence with 

significant relations. Its output sequence determines if an 

unknown code is related to sequence belonging to either of the 

Zmist variant class (or not) as comprise in the Bayesian net. 

We then use the profile HMM to score codes and make 

decision. The circles are delete state that detects classified 

Zmist codes in the knowledgebase, diamonds are insert states 

that allow us sandbox codes that are unclassified upon which 

the knowledgebase is updated for classified false-positives and 

true-negative detection; while rectangles are matched states 

that accurately classifies codes into Zmist variants as in the 

standard HMM [28-29]. 

 

 

 

 

Match and insert are emission states in which an observation is 

made as PHMM passes through all the states. Emission 

probabilities, corresponding to B in standard HMM model is 

computed based on frequency of symbols (in this case, Zmist 

codes) that can be emitted at a particular state in the model; 

But, are positional-dependent (in contrast to standard model). 

Also, the emission probabilities are derived from the Bayesian 

net, which represents our training phase. Finally, delete states 

allow the model to pass through the gaps, existing in the 

Bayesian network to reach other emission states. These gaps 

are necessary in the model help prevent it from over-fitting of 

data as in fig 5 [28]. We use the forward algorithm to compute 

probabilities for each possible case recursively by reusing 

scores calculated for partial sequences using Eq. 1 to Eq. 3 

respectively as thus: 

 

 

) 

 

 
 

 
 

 
D. E. Benchmark Memetic Algorithm 
Our framework is an adaptation of [30] that aims to evolve new 

malware from a known virus database. The first step is high-

level of abstract representation (or genotype) of given virus that 

requires great understanding of virus functionality and 

structure. It determines quality of evolution achieved by 

proposed framework, while including functional details of the 

virus characteristics and that of the metamorphic engine in use. 

Some known feats/attributes are: date, application-to-infect, 

domain, port number, email attachment, mail-body, registry 

variable, file extension, process terminated, peer-to-peer 

propagation etc, which forms its abstract representation of the 

base virus to be taken as input into system (see fig 3). 

 

Second step is the application of the evolutionary algorithm to 

the high-level representation. Thus, dataset is divided into: train 

(50%), cross validation (25%) and test (25%). The fitness of 

offspring as evaluated in Eq. 6 is a function of the similarity 

measure of the genes (chromosomes) with that of all stages of 

the framework. Individuals that evolved but do not match the 

training samples, their feats are stored and forms input to the 

next iteration. Thus, we have these conclusions as adopted by 

[30] thus: (1) new individuals are malware to be used during 

testing, whose abstract represented feats are fed-back into 

model, (2) new individual is an unknown Zmist virus, and (3) 

new individual is (not) Zmist virus.  

End 

Fig 4: PHMM with 3-Match States 
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In [29] facts 2 and 3 are established once executed within a 

sandbox in an operating system at real-time. Unlike [30] 

Generating Zmist virus for test as against having test data from 

base virus abstract representation, invalidates the experiment to 

some degree as mutation yields a better and fitter generation. 

Instead, we argued that a combination of the old feats and new 

feats as extracted from both dataset and metamorphic engine at 

each stage of the process as well as feedback into the system to 

generate newer variants to yield greater evolution (backward 

compatibility w.r.t. functionality to the base virus).  

 

CGA initializes the hybrid with an entire population of 500-

input (suitable abstract representation of base virus), computes 

individual fitness of each individual via Eq. 6 as well as selects 

30-individual via tournament method to yield the new sub-pool 

(and determine individuals to proceed for mating). Selected 

data are moved for crossover and mutation so that model or 

network learns static/dynamic feats in the obtained data. With 

30-individuals selected via tournament and 2-point crossover 

used, other parents contribute to yield new pool whose genetic 

makeup is a combination of both parents. Mutation will yield 3-

random genes that are allocated new random value that still 

conforms to belief space. The number of mutation applied, 

depends on how far CGA is progressed (and how fit is the best 

fit individual in the pool). Thus, number of mutations equals 

fitness of the fittest individual divided by 2. New individuals 

replace old ones with low fitness values [28, 31, 42]. 

 

 
[32-34]  

 

Each particle in PSO (30-individuals from CGA) are moved 

over and encoded as a string of positions in multidimensional 

space. Position/Velocity updates are performed independently 

in each dimension (a merit of PSO). Though, not for such an 

evolution/permutation task, as candidate solutions depends on 

each other. Thus, two or more particles can have same value for 

velocity and position. Particles can take values outside the 

boundary after update, which breaks the rule of permutation. 

[35-40].  

 

 

 

 

 

 

 

All conflicts are resolved using Eq. 5. With larger velocity, 

particles explore more space and will likely change (though all 

update formulas remain same). Velocity is limited to absolute 

values, which represents the difference between particles). This 

continues till an individual in the pool with a fitness of 0 is 

found. Thus, solution is reached [25-26]. Selection and 

mutation in GA ensures the first 3-beliefs are met; while 

velocity/position updates in PSO ensures that the fourth belief 

space is met, as time is of paramount interest. Also, influence 

function determines number of mutations takes place; And 

knowledge of how close task is to solution, has direct impact 

on how model is processed. Algorithm stops when best 

individual has fitness 0 [32]. 

 

F. Tradeoffs and Issues in Metamorphic Malware 
Researchers designed routines to detect metamorphics (one-by-

one) and detect varied sequences of code known to be used by 

given mutation engine via signature search. This method is 

proved inherently impractical, time-consuming and costly as 

each metamorphic requires its own detection program. Also, 

the mutation engine can seemingly randomly, generate billions 

variation of virus and different engines used by metamorphics 

make any identification somewhat unreliable. This has led to, 

mistakenly identifying one virus in place of another. Thus, our 

statistical model seeks to associate signature to metamorphic 

malware computed based on probability. Also, hybrid models 

are quite difficult to implement. But, we resolved the encoding 

via a structured learning which in turn, addresses the existing 

statistical dependencies amongst its variables to yield better 

pool via crossover/mutation. This feat can be adapted in areas 

of software evolution. This Genetic Algorithm trained Particle 

Swarm hybrid model combined with the Zmist metamorphic 

engine obfuscation yields Zmist variants in the shortest time 

that are highly independent, discrete and completely morphed 

copies of virus. Our resulting morphed copies were tested 

against normal files and against commercial virus scanners. 

 

3. RESULTS AND FINDINGS 
 

E. A. Result Findings and Discussion 

To measure their effectiveness and classification accuracy, we 

adopt the misclassification rate of each model as well as its 

corresponding improvement percentages of the proposed model 

in comparison with those of other classification models for the 

diabetes data in both training and test data sets as summarized 

in Table 2 and Table 3, respectively. The equations for the 

misclassification rate and its improvement percentage of the 

unsupervised (B) model against those of the supervised (A) 

model, is respectively calculated as follows: 
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Table 2: Misclassification Rate of Each model 

 

Model 

Classification Errors 

Training Data Testing Data 

PHMM 23.6% 39.2% 

GAPSO 48.4% 53.7% 

 

Table 3: Improvement Percentage 

 

Model 

Improvement % 

Training Data Testing Data 

PHMM 56.03% 64.16% 

GAPSO 42.79% 34.09% 

 

 

Obtained results in tables 2 & 3, the proposed PHMM has a misclassification rate of 39.2% (resulting in false-positives and true-

negatives error rate). Implying, it has a classification accuracy of about 60.9%; While, promising and/or shows an improvement 

of about 64.16%. In contrast, memetic algorithm (GAPSO) has a misclassification rate of 53.7% (resulting in false-positives and 

true-negatives error rate); while it promises to improve by 34.1%. Other parameter values of PSO led to slower or non-

convergence. Generated variants viruses were tested against commercial antiviruses. Scanned with ESET, it was able to detect 

56% of generated variants; while Norton Symantec detects 47% as in fig. 4a and 4b. 

 

 
 

Fig. 4a: Evolved Variants from HMM scanned with Kaspersky 

 

 
 

Fig. 4b: Evolved Variants via GAPSO scanned with Norton 
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Furthermore, metamorphic easily transform its codes as they 

propagate to avoid detection by using obfuscation methods to 

alters its behaviour when it detects its execution within virtual 

machine (sandbox) as means to challenge a deeper analysis 

(Lakhotia et al, 2004). Virus writer use weaknesses of 

antiviruses which are limited to static and dynamic analysis. 

Thus, they attack the following feats in a system: (a) data flow, 

(b) control flow graph generations, (c) procedure abstract, (d) 

property verification, and (e) disassembly – all means to 

counter scans, to identify such metamorphic viruses 

(Konstantinou, 2008). To mutate its code generation, 

metamorphics analyze their own codes and must re-evaluate 

evolved or mutated codes generated (since complexity of 

transformation in the previous generation has a direct impact on 

its current state, how a virus analyses and transforms code in its 

current generation). Thus, they employ code conversion 

algorithm that helps them detect their own obfuscation and 

reordering (Ojugo, 2016). 

 

4. CONCLUSION 
 

In summary, with fitness function and selection common to 

both GA and PSO, we note that learning rates set between 0.2 

and 0.35; and PSO feats set as: φ1, = 1.5, φ2 = 2.5, MaxGen = 

500 epochs and ϖ = 0.14 yields better and faster convergence 

[32 – 40]. With [30], the proposed framework is posed as an 

evolvable system (though is adaptable to other domain tasks) is 

used in software evolution.  

The process of evolution is associated with modifying an 

existent software or program with both backward cum forward 

compatibility, and also to emphasizes the concept of robustness 

and component reuse (Gray and Klefstad, 2005). Also, a wide 

variety of replicative and non-replicative malware can also be 

evolved via proposed framework to increase network security 

research and study.  
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