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ABSTRACT 
 

There has been a proliferation of malicious codes or softwares directed at the destruction of organizational ICT infrastructures. 

These malicious codes are also used in numerous cyber warfare by nation states to steal valuable information. To ensure security, 

researchers has used epidemic models for better understanding of worm proagation. In this paper we explored the impact of time 

delay and node distribution on the compartments that represent worm propagation dynamics in Wireless Sensor Networks 

(WSN). This is done using a modified SEIR epidemic model with a cyber mass action incidence rate. The sensor network is 

treated as a dynamical system, and its equilibrium points studied. We derived the reproduction number using the next generation 

matrix method, performed stability analysis and using real values we simulated the system.  
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1. INTRODUCTION 
 

Wireless Sensor Networks (WSN) consists of sensor nodes 

which possess the ability to sense, process and communicate 

data and information [1]. These sensor nodes are densely 

deployed without any predetermined location. The 

applications of sensor networks are evident in the military (for 

monitoring forces/equipments, battlefield surveillance, 

reconnaissance, targeting, battle damage evaluation); the home 

and in the environment (for biocomplexity mapping, precision 

agriculture, fire and flood detection etc). Its use extends also 

to health applications (for telemonitoring of data, 

tracking/monitoring of doctors/patients and drug 

administration) and other commercial applications.  

 

The sensor nodes collect and transmit data such as 

temperature, stress/noise levels, soil constituents etc. The 

sensor nodes are distributed in a sensor field and data moves 

from sensor to sensor back to the sink in a multihop fashion as 

depicted in Figure 1. The random distribution of sensor nodes 

is mostly done in unguarded and hostile environments. Due to 

its nature, WSN is open to several security challenges such as 

limited resources (energy/battery power, bandwidth, 

computational power, storage, and communication range); 

costly packets’ authentication, and uncertainty (in mobility, 

topology control, density, sensing accuracy)[2].  

 

 

 

 

 

These challenges can result to its vulnerability to several 

attacks in the cyberspace leading to the loss of confidentiality 

and integrity of neighboring nodes. Attacks in WSN arise 

from malicious codes i.e. worms, viruses, Trojan etc. 

Malicious code attacks cause substantial damage to 

organizations. In order to proffer defense measures to the 

insecurity that plagues sensor networks, network analysts have 

proposed several analytic (mathematical models) i.e. 

differential, discrete equations etc. This is to predict malicious 

code behavior in a network environment and to possibly 

contain its propagation. 

 

 
 

Figure 1. Sensor nodes scattered in a sensor field [4] 
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2. RELATED WORKS  
 

Understanding the behavior of malicious codes in cyberspace 

can be traced to Epidemic theory or Epidemiology in public 

health. Epidemic theory investigates the contagion results of a 

susceptible population in view of the interaction between 

agent, host and environment [11]. The relationship between 

cyberspace and public health is due to the similarity in the 

spread of infection in the biological world and the propagation 

of malicious codes in the networked environment. 

Specifically, relating epidemiology to our discourse, the agent, 

host and environment equals the worm/virus, the sensor nodes 

and the wireless sensor network environment respectively. 

Malicious code modeling and analyses is necessary if network 

analysts are to elicit the factors that facilitate speedy spread.  

 

Since Kermack and McKendrick [5–7] developed their 

Susceptible-Infectious-Recovered (SIR) model, several 

models have been proposed to cater for numerous issues of the 

networked environment. Modifications of the SIR, include the 

Susceptible-Infectious-Susceptible (SIS) without recovery and 

the SIR-S where there is recovery and subsequent re-infection 

due to temporal immunity. Other modifications include SEIR 

with delay and SEIV with delay and vaccination.  

 

Here, we extend the work of [12] by adding time delay 

represented by the Exposed and Recovered compartment to 

form the Vulnerable-Exposed-Infectious-Recovered-

Vulnerable (VEIR-V). Wang et al.’s analysis was absent the 

Exposed and the Recovered compartments. This extension is 

also necessary for the model in [11]; therein their analysis 

didn’t account for time delay and the temporary immunity in 

cyberspace. However, a model similar to our (VEIR-V) i.e. 

SEIR model was proposed by [9,10] for a computer network; 

but we extend the work to WSN by adding parameters for 

distribution density and communication range. Density (σ) is 

the measurement of the sensor population per unit area while 

communication range (r) is the range over which a sensor can 

contact other sensors [8].  

 

3. RESEARCH METHODOLOGY 

 

Fundamentally, we perform modeling and simulation in this 

study. We would employ the extensively used procedure for 

studying epidemics in networked environments. This method 

has been used to study social, biological and communication 

systems/networks. Specifically, the network is handled like a 

dynamical system and the points of no change (Equilibriums) 

are investigated. The steps of this methodology include 

formulation of the model (i.e. the system of equations); 

deriving solutions for the equilibrium points; finding the 

Reproduction ratio; performing the proof of stability and 

finally running simulation experiments (i.e. perturbing the 

model with real values).  

 

 

 

 

 

3.1 The VEIR-V Model  
To represent the dynamics of wireless sensor network with 

respect to time we employ the Vulnerable-Exposed-Infectious-

Recovered-Vulnerable (VEIR-V) model. Generally, we 

assume that the sensors are stationary, similar and distributed 

in an area. With the help of their antennas they sense and 

transfer gathered information to neighboring nodes (within 

their communication range). In this model we assume that 

nodes are added to the network and nodes crash out due to 

malicious code infection (i.e. worm) or due to 

hardware/software failure. The total population of sensors is 

prone to attack from worms due to its nature and can acquire 

the worm infection with time (constituting the sensors in the 

Infectious class). Nodes which are compromised by worm 

attack spread alongside the gathered data through protocols to 

their neighbors causing a major collapse of the network with 

time.   

 

Prior to the full infectious stage the worm(s) in the network 

may experience a time delay (i.e. the exposed class). Sensor 

nodes may have a sleep capability wherein their (installed) 

antiviral softwares perform maintenance functions (i.e. 

infection check) [11]. Nodes can recover as a result of these 

countermeasures deployed by the network managers but due 

to temporal immunity (acquired at the recovery stage) sensor 

nodes may become vulnerable again to worm infection. 

 

The sensor population in divided into the Vulnerable (V), 

Exposed (E), Infectious (I) and Recovered (R). Therefore, N 

(t) = V (t) + E (t) + I (t) + R (t). The sensor nodes are 

stationary after its deployment in a uniformly randomly 

fashion with a density of σ  and communication range of r. 

Other parameters include  which is the inclusion rate of 

nodes into the sensor network population, � is the Infectivity 

contact rate,  is the mortality or the death rate of nodes due 

to hardware or software failure,  is the crashing rate due to 

worm attack,  is the rate at which exposed nodes become 

infectious,  is the recovery rate,  is the rate at which 

recovered nodes become susceptible to infection due to 

temporal immunity.  

 

When there is no worm attack, the sensor population 

approaches the carrying capacity , therefore 

. 

 

 

 

 

 

 

                   

 

 

                    

Figure 2. Flow of worms in WSN 
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Figure 2 depicts the dynamics of worm transmission in a 

wireless sensor network in view of our asssumtion. The 

system of ordinary differential equation (1) captures time 

delay, density and the communication range. The modified 

SEIR-S model is represented using the following system of 

differential equations; 

 

   

   

                                           (1) 

  

 

3.2 Symbolic Solutions of Equilibrium Points 

 
Equating the modified system of differential equations (1) to 

zero i.e.  we obtain two 

solutions which are the Worm-free equilibrium and the 

Endemic equilibrium points. While the Worm-free equilibrium 

( ) signifies when there is no worm in the network, the 

Endemic Equilibrium ( ) signifies the presence of worms.  

 

The solutions of equilibrium points are Worm-free equilibrium  

 

 i.e.  ;       

                          

                                 (2) 

 

and Endemic equilibrium  = ( , , , ,) i.e.  

 

  

=   

 

                 (3) 

 

  

 

3.3  The Basic Reproduction Number 
Using the next generation matrix method we would derive the 

Reproduction number commonly denoted as . The 

Reproduction number is the spectral radius or the “dominant 

eigenvalue of the matrix G = FV-1”[3]; where F is the rate of 

appearance of new infections in the Infectious compartment 

and  V is the rate of transfer of terminals into and out of the 

Infectious compartment.  

 

 

 

 

 

The Reproduction number is given as;  

 

 

  

 

 

 =                                       (4) 

 

3.4   Stability of the Worm-free Equilibrium point 

 
The Jacobian method is use to show the proof of stability at 

the worm-free equilibrium point. We would specifically show 

that the eigenvalues of the jacobian matrix have negative real 

parts.  

 

The stability of the equilibrium positions determines the 

possible worm replication in the sensor network represented 

by our VEIR-V model. In essence, when asymptotically stable 

the worm infection cease to exist otherwise an epidemic 

occurs. Using the Reproduction number notations, the worm-

free equilibrium is locally asymptotically stable if  < 1 and 

unstable if  > 1.  

 

We linearize the model around the equilibrium positions by 

deriving the corresponding Jacobian matrix given as  

 

 

J=     (5) 

 

J=      (6) 

 

Substituting the values of the worm-free equilibrium in the 

Jacobian matrix (5) gives (6). The diagonals of the Jacobian 

matrix are; ,  i.e. 

they all have negative real parts; hence the system is 

asymptotically stable at worm-free equilibrium.  
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4. NUMERICAL RESULTS 
 

The system of differential equation was solved using a 

numerical method called the Runge-Kutta-Fehlberg order 4 

and 5 method.  

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

Time

E
x
p
o
s
e
d
 c

la
s
s

Graph of Exposed Sensor Nodes against Time 

beta=0.1, alpha=0.1

beta=0.4, alpha=0.1

beta=0.7, alpha=0.2

 
Figure 3. Behavior of Exposed Compartment versus Time 

w.r.t. to  and  

 

Figure 3 presents the transient response of the population of 

Exposed sensor nodes E(t) as function of different parameter. 

Gradually with the passage of time E(t) increases to its peak 

point (at 63, 76 and 85 for the three responses) and slowly 

decreases to zero. The Exposed sensor nodes signify the time 

delay before sensor nodes becomes fully infectious.  
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Figure 4. Behavior of Infectious Compartment 

versus Time w.r.t. to  and  

 

Figure 4 presents the transient response of the population of 

Infectious sensor nodes I(t) as function of different parameters 

of the model. Over time I(t) increases up to its peak point and 

then decreases to zero. More nodes get infected as the rate of 

infectivity contact was increased (from 0.1 to 0.7) and rate of 

recovery kept constant at =0.1; for the first and the second 

responses.  

 

 

But slightly increasing the rate of recovery slows down the 

spread of the worm i.e. instead of a noticeable increase above 

the second response, the third response (depicted with blue) 

reduced to 30 Infectious nodes due to the increase in the rate 

of recovery. This is because containment approaches deployed 

by network managers are targeted at infectious nodes.  
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Figure 5. Behavior of Exposed Compartment Infectious 

Compartment w.r.t. to  and  

 

Figure 5 depicts clearly the relationship between the Exposed 

and the Infectious class. Here, it is clear that increasing the 

rate of infectivity contact ( ) and the rate of recovery ( ) 

increases the both the Exposed and the Infectious class. 

 

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

Time in Minutes 

E
x

p
o

s
e

d
 c

la
s

s

Graph of Exposed Sensor Nodes against Time  

density=0.2, communication range=1.0

density=0.3, communication range=1.0

density=0.3, communication range=2.0

1st

2nd

3rd

 
Figure 6. Dynamical behavior of Exposed Compartment 

versus Time w.r.t. to σ and � 
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In Figure 6 it is evident that increasing the distribution density 

and the communication range increased the sensor nodes in 

the Exposed class when the infectivity contact rate and 

recovery rate are constant. The second (green) and third (blue) 

responses are not too distinct (at their peak points) because 

their distribution density is the same (i.e. 0.3). The increase in 

communication range from 1 to 2 also increased the sensor 

nodes from above 50 nodes to 80 nodes.  
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Figure 7. Dynamical behavior of Infectious Compartment 

versus Time w.r.t. to σ and � 

 

Figure 7 shows the dynamical behavior of the Infectious 

sensor nodes with varied parameters of the distribution and the 

communication range. Aside the noticed gradual increase and 

then decrease of the Infectious class, it is clear that keeping 

the range constant (at 1.0) and increasing the density from 0.2 

to 0.3 consequently increased the Infectious class. 

Additionally, keeping the density constant (at 0.3) and 

increasing the range from 1.0 to 2.0 consequently increased 

the Infectious class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. CONCLUSION 
 

With the presence of the parameters for density and 

communication range, slowing down the rate at which the 

worm pervades the sensor network depends on the rate of 

recovery, the density and the communication range. Analysis 

using the SEIR-S (our VEIR-V) model involves this time 

delay as well as the density and range. Recovery of Infectious 

sensor nodes was obtained due to increase in the rate of 

recovery. The increase in the Infectious sensor nodes observed 

in our study is consistent with the SIR model in [11] and the 

SI model in [12]. It is also expedient to highlight that the 

expression ( ) used for the range is same with the area of 

circle; and this implies that the area for sensor deployment 

considered in our study is a circular strip.  

 

This study assumed that the sensor nodes are stationary 

therefore an extension of the work can involve sensor node 

mobility or a combination of both. Furthermore, we would 

extend our analysis to include the Media Access Control 

(MAC) mechanism as applied in [12] and other 

communication protocols using our model. Therein, we would 

check the effects of the communication protocols on the 

compartments of our study.  
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