
Vol 8. No. 1 – March, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

219

A User-Friendly Query Interface Based on Best Position Algorithm for

Distributed Databases

C. Ugwu & M. Abuh

Department of Computer Science

 University Of Port-Harcourt

 Port-Harcout , Nigeria.

chidiebereugwu@yahoo.com, abuhnature@yahoo.com;

ABSTRACT

The need for a user friendly query interface that helps non expert database users that use database effectively in a distributed

environment was identified as a gap to be filled. However, existing systems are still unable to provide a user friendly platform for

querying databases without the need to type codes, and an obvious implication of these, is the reduced exploitation of the ability

of database systems especially in a distributed environment, by non technical users. This paper adopts an object oriented

methodology and presents an approach that overcomes some of these flaws by using the Best Position Algorithm (BPA), which

is an efficient algorithm for the problem of answering top-k queries over sorted lists in a distributed database.

Implementation of the system was done using Java Programming language and Microsoft SQL Server 2005 as the back-end and

driven by JDBC API. The results were commonly needed queries fetched from a database and presented to the user just at the

click of a mouse. Furthermore, the automatically generated query statement executed is presented to the user so as to educate and

help build competence. These implies that users can now run queries and perform tasks on a database even in a case of complete

ignorance of the underlying query technicalities with few or no manually written query, rather just at the click of a mouse button.

Keywords: User-Friendly Query Interface (UQI), Natural Language Interface to Databases, Best Position Algorithm (BPA).

African Journal of Computing & ICT Reference Format:
C. Ugwu & M. Abuh (2015): A User-Friendly Query Interface Based on Best Position Algorithm for Distributed Databases.

Afr J. of Comp & ICTs. Vol 8, No. 1. Pp 219-224.

1. INTRODUCTION

Natural Language Query Interface to Database (NLIDB)

systems has made it easy to manipulate database systems

without the need for the user to use formal query languages

(Gabriel et al, 2013, Davis, 2014), such as SQL. Database

query languages can be difficult to non-expert users and

learning these formal queries takes a lot of

time. Query interfaces are meant to support users in

formulating a precise query against a database described by a

specific data model. Queries are specified by means

of special purpose query languages, where a query language

is a set of formally defined operators allowing requests to be

expressed to a database. (Kacprzyk, and Zadrozny, 2001).

By executing a query, the user expects that the produced

results extracted from the stored data are coherent with the

intended meaning of the request. The most widely used

database query languages have been programming languages

which require knowledge about language syntax, technical

background, and information of both the system application

domain and its interaction mechanisms. Such languages do

not help to understand the meaning of data, nor do they

provide any guidance in satisfying the user’s needs. In

general, they do not fulfill the requirements of user

friendliness and ease of use (Oussama, 2001, Hallet, 2006).

But lately, there is an overwhelming need for non-expert

users to query relational databases in their natural language

using linguistic variables and terms instead of working with

the values of the attributes. As a result, intelligent databases

and interfaces have emerged, which provides expanded and

more flexible options for manipulating queries.

2. RELATED LITERATURE

Our work has been inspired by a number of works available

in the literature related to intelligent aspects of database

systems. The field of intelligent database and information

systems has achieved remarkable growth in the last few

decades. Researches in the area of intelligent query

processing interface in a distributed database, has started to

increase the efficiency of retrieving and exchanging

information between database applications and users, and

thus have made the exploration of databases much more

embraced. Benharzallah, et al., (2001), proposed an efficient

query processing approach for semantic interoperable

information systems, they also proposed a generic multi agent

architecture that supports the approach.

Vol 8. No. 1 – March, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

220

The approach consists in the exploitation of intelligent agents

for query reformulation and the use of a new technology for

the semantic representation. The algorithm is self-adapted to

the changes of the environment, offers a wide aptitude and

solves the various data conflicts in a dynamic way; it also

reformulates the query using the schema mediation method

for the discovered systems and the context mediation for the

other systems. Neelu, et al. (2009), proposed an intelligent

layer for database which is responsible for manipulating

flexible queries. Initially, the flexible queries from users in

their natural language are submitted to intelligent layer and

this layer converts the amorphous query into a structured

SQL query. The shaped query is executed and the results are

presented to the user. Afterwards, on the basis of results,

feedback and the acceptance or rejection of the results are

requested from the user. It enables the design of a knowledge

based self learning system based the values obtained from

user, which will aid the selection of appropriate SQL query,

when a same flexible query is issued in the future. The

experimental results demonstrate the effectiveness of the

proposed intelligent database system.

Khayut, et al.(2014), proposed the data, information and

knowledge based technology of Smart/Intelligent User

Interface (IUI) design, which interacts with users and

systems in natural and other languages, utilizing the

principles of Situational Control and Fuzzy Logic

theories, Artificial Intelligence, Linguistics, Knowledge

Base technologies and others. The proposed technology of

IUI design was defined by multi-agents of (a) Situational

Control of data, information and knowledge, (b) modeling of

Fuzzy Logic Inference, (c) Generalization, Representation

and Explanation of knowledge, (d) Planning and Decision-

making, (e) Dialog Control, (f) Reasoning and Systems

Thinking, (g) Fuzzy Control of organizational unit in real-

time, fuzzy conditions, heterogeneous domains, and (g)

multi-lingual communication under uncertainty and in Fuzzy

Environment.

In (Ndueso et al, 2014) An Intelligent layer for Database was

designed which is responsible for manipulating flexible

queries. Initially, the flexible queries from users in their

natural language are submitted to intelligent layer and this

layer converts the amorphous query into a structured SQL

query. The shaped query is executed and the results are

presented to the user. Afterwards, on the basis of results,

feedback and the acceptance or rejection of the results are

requested from the user. It enables the design of a knowledge

based self learning system based the values obtained from

user, which will aid the selection of appropriate SQL query,

when the same flexible query is issued in the future.

However, this requires users to formulate natural language

queries in an organized manner, so as to enable the intelligent

layer recognize, read the query, and parse. Another problem

is the time taken to match the natural language queries to

appropriate SQL commands, as well as the time taken to

formulate such queries(Ben et al, 2014 and Ben et al, 2013).

Another problem is the requirement of using additional

knowledge to extract meaningful information, the input can

have many choices and it is not easy to choose the correct

choice among target representations (one-to-many

mappings), the complexity of mapping in NL sentences if

you change a single word, the entire structure can be

changed, which is called the quantifier scoping problem.

Words such as “the,” “each,” or “what” can have several

meanings in different situations production rules for the

possibly introduced queries. Also there is another of the

identification of tables required to build. (Nittaya K. and

Kittisak K., 2012).

All these works have been major breakthroughs, but this has

also created another complex problem as to how the natural

language queries should be formulated so as to be parsed by

the compiler as well as the right structure of such queries.

This work eliminates such flaws by not allowing the user go

through the task of thinking of how to ask questions or

queries, but automatically generates the queries for the users

to select just by the click of the mouse. In this work, we

solved some of these problems by designing a framework

where users can access different databases in a server and run

queries just by clicking the mouse. JDBC API assists in

fetching all the tables and columns in a particular database

server and displays the results to the user for selection. We

are focused at building a bridge between database query

technologies and non expert users in a distributed

environment. The idea is to have a query interface that

enables the users to access heterogeneous data sources by

means of an intelligent agent (JDBC API) without having to

write many queries using the best position algorithm. The

query interface supports the users in the task of formulating

precise and accurate query without an idea of the

complexities and technicalities required to manually write

such codes

3. MATERIALS AND METHODS

In this paper, we adopted the object oriented model in

developing the User Friendly Interface. The programming

languages used was MS SQL Server 2005 and Java because

of their robustness interoperability. The database connectivity

and manipulations were driven by an intelligent tool called

JDBC API. JDBC is a Java-based data access technology

(Java Standard Edition platform) from Oracle Corporation,

and we followed the best position algorithm (BPA) for top-K

queries) (Akbarinia, 2007). In the existing system

architectures, the system will check if user question has SQL

built in functions by using semantic dictionary data if there

exists, it will get corresponding function name to determine

which function category it belongs to in the system, it covers

some categories such as mathematical and statistics functions

(Count, Sum, Max, Min, Avg, Mean, etc). It searches for

some words in user question and they are mapped into the

semantic dictionary with corresponding word in lexical

dictionary for example how many in semantic dictionary will

be converted into count in lexical dictionary, as it already has

predefined data in semantic and lexical dictionaries.

Vol 8. No. 1 – March, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

221

Though this system enables the querying process to be more

user friendly, and eases the whole querying process, it does

not completely eliminate the issues experienced by users in

querying, rather it creates its own problem of knowing the

format and structure of questions fed into the system for it to

be recognized as tokens. It likewise follows a strict set of

rules for querying, even though in natural language.

3.1 Model of the System

Our querying model includes four main modules: Database,

Intelligent/Flexible Query Components, the Flexible Query

Language Processor, and the Login/Dialog Component.

Figure 1 depicts the conceptual model of the system and

inter-relations of its main components.

As the user makes use of the system, he is first greeted by the

Login/Dialog component which is responsible for the

authentication of the user who is expected to have provided

the correct credentials, and then the Flex ible Query

Language Processor then takes over after the authentication

and connects to the remote servers in the network as well as

clients hosting the database and retrieves the data structures

and information on the host system, then passes on to the

Intelligent/Flexible Query Component which contains two

major subcomponents namely; Basic and Tables. The Basic

along with its attributes, Domains, and Associations is

responsible for connecting to Server as well as picking out all

the databases on the server for selection as well as the tables

in such databases, and then the Table subcomponent then

selects the rows and columns on the tables presented by the

Basic and presents to the user for querying.

Figure 1: Model of the Proposed System

In our proposed system architecture, we identify four main

components of the system and their interactions with the

Local Transaction Management System (LTMS) and Local

Database Management System respectively. Our User-

Friendly Query Interface operates at the application layer of

the OSI model, the software is introduced to provide the

interface with remote sites.

The User Interface manager module is responsible for the

translation of queries into global form if necessary,

determines the location of the data referenced in the queries,

and passes control to the Local Transaction Management

system (LTMS) if the transaction is local only or to the

Global Transaction Analyzer if the transaction needs access

to remotely located data as determined by the JDBC API.

This Module is also responsible for gathering all user results

generated during transaction execution and presenting the

results to the user and this actions are also executed by the

JDBC API. Transaction Plan Generator (TPG) is the module

responsible for generating an execution graph for optimizing

the performance of the arriving transactions. The Global

Transaction Execution Monitor is the module responsible for

receiving the plan generated by the TPG and responsible for

the initiation, execution, and integrity control

(synchronization, reliability) of the transaction plan.

 INTELLIGENT/FLEXIBLE QUERY

COMPONENTS

BASIC

Aattributes

Domains

Associations

TABLES
Modifiers

Quantifiers

Qualifiers

USER

DATABASE

FLEXIBLE QUERY LANGUAGE PROCESSOR

 Parser SQL

 LOGIN/ DIALOG COMPONENT

Display

Language

Action

Language

Vol 8. No. 1 – March, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

222

Figure 2: Architecture of the System

4. IMPLEMENTATION

To verify the efficiency of the proposed system, we

conducted a simulation test of systems running MS server

2005, created sample databases, tables and data on each of

the host, and deployed the proposed system for the network.

For the wide area network, our university’s intranet was used.

Laptops were used as nodes with each laptop signifying a

host server. Because of the financial implications, we opted

to telnet instead of more secured protocols like the secured

shell (SSH). We were able to interface each of the databases

on the host network servers, select available databases, and

automatically select the tables present in the database, and

could query the columns of data present in the tables one by

one, and all at once as deemed fit all without writing manual

queries, but just at the click of the mouse.

Figure 4. Flexible Query Interface module

Figure 5 The Flexible Query Interface with the Query

Result

USER

INTERFACE

MANAGER

TRANSACTION PLAN

GENERATOR (TPG)

REMOTE ACCESS

INTERFACE

LOGICAL

DATABASE

MANAGER

(LDBM)

LOCAL

TRASACTION

MANAGER (LTM)

TRANSACTION

EXECUTION

MANAGER

USER-FRIENDLY INTERFACE LAYER

 USERS
MS SQL SERVER

Vol 8. No. 1 – March, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

223

4.1 The flexible Query Interface Module.
Figure 4 shows Flexible Query Interface module. The FQI

provides the user with the server name of all the servers in

the system. From the list of server provided by the system the

user can now select the required server. The sever status will

indicate connected immediately the user is connected to the

server. All the created databases in the server will appear for

the user to select the required database. From the FQI, there

is a button that list out the entire tables that are found in

database. The user is required to select from the list of tables

and FQI still gives the user an alternative to create tables

when the desired table is not available. The user then

executes query if the desired query is already written and

there is also an alternative for the user to write his/her own

query.

4.2 The Flexible Query Interface with the Query Result

Figure 5 shows the flexible query interface (FQI) with the

query result. After successfully executing a query for queries

that are often executed, you can save such query as a script

file with the save script button for further execution. The

execute query from script button allows you to execute

queries that are saved on script file. After every successful

execution of queries (e.g THE SELECT STATEMENTS) the

result are displayed on the Result Set Table but for other

queries like the DDL or DML, a message dialog box displays

the success/error message.

4.3 Experimentations and Results

Table 1: The Result Set for the Query

 (Select*from accounts)

Table 2 the Result Set for the query (select*from

customerLedger)

5. DISCUSSION OF RESULTS

In table 1 the Result Set for the query (select*from accounts)

was displayed by just clicking a button. The columns that

were displayed include the account number, customer

identity, account type, branch and balance. In table 2 the

Result Set for the query (select*from ComputeProfit) was

displayed by just clicking a button. The columns that were

displayed include the account number, account type, profit

and DateUpdated.

6. CONCLUSION

A user friendly interface for a distributed database for an

efficient and flexible database query processing model has

been developed. The model represents the first step towards

the support of more diverse and richer set of queries and

presents the techniques for flexible query processing. We also

described the algorithms of query processing unstructured

system to obtain high quality answers while minimizing the

communication cost.

Vol 8. No. 1 – March, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

224

REFERENCES

1. Akbarinia R., Pacitti, E., and Valduriez P.(2007), “Best

Position Algorithms for Top-K Queries” Proceeding of

the 33rd International conference on Very Large

Database ’07, Vienna. Pg 142-151

2. Ben K., Kazar O., and Caplat G., (2011) “intelligent

query processing for semantic interoperable information

systems”. 16th International Conference on Computer

Modelling and Simulation. 978- 982

3. Benharzallah S, Kazar O, and Caplat G. (2013)

“Intelligent Query Processing for Semantic

Interoperable Information Systems” The 5th

International Conference on Information Technology.

Vol. 14(1): 67–78.

4. Davis U.C, (2014). “Optimizing Query Processing in

Catch Aware Wireless Sensor Network”. Information

Systems vol 36(2) 267-291.

5. Gharib M., Mohamed R., and Zahraa E., (2013)

“Intelligent Multidimensional Database Interface”

International Journal of Scientific & Engineering

Research, Volume 4, 202-212

6. Hallett C., (2006) “Generic Querying of Relational

Databases using Natural Language Generation

Techniques”, Proceedings of the Fourth International

Natural Language Generation Conference, pages 95-

102.

7. Ilyas I, Beskales G., Mohamed S., and David R. (2008)

“A Survey of Top-kQuery Processing Techniques in

Relational Database Systems” ACM Computing

Surveys, Vol. 40, 58-67
8. Kacprzyk, J., and Zadrozny, S. (2001). “Computing

with words in intelligent database querying: standalone

and Internet-based applications, Information Sciences”

134, Elsevier, pp.71-109

9. Ndueso, Etukudo Ekefre, and Asagba Oghenekaro,

(2014), “A Database Query Processing Model in Peer-

to-Peer Network” Journal of Applied Science and

Environmental Management. Vol 8, 249-253.

10. Neelu N., Sanjay S., and Mahesh M. (2009) “Design of

an intelligent layer for flexible querying in database”

International Journal on Computer Science and

Engineering Vol.1(2), 30-39.

11. Neelu N., Sanjay S., and Mahesh M.(2010), “An

Intelligent Interface for relational databases”

International Journal on Computer Science and

Engineering Vol.1(5), 330-340

12. Nittaya K. and Kittisak K., (2012) “Semantic-based

query answering supported association patterns and

materialized views” International Journal of Database

Theory and Application. Vol. 5, 62-71.

13. Oussama Tuli, Minyar S., and Habib O. (2001)

“Intelligent Database Flexible Querying by

Approximate Query Processing (AQP)”. Transactions

on Large-Scale Data- and Knowledge-Centered

Systems. Pages 1-27.

14. Paolo Dongilli and Enrico Franconi (2006). “An

Intelligent Query Interface with Natural Language

Support” American Association for Artificial

Intelligence

