
Vol 8. No. 1 – March, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

 95

Behavior-based Retrieval of Software

Moataz Ahmed
Information and Computer Science Department

King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia

Hamza Onoruoiza Salami
Department of Computer Science

Federal University of Technology

Minna, Nigeria

moataz@kfupm.edu, ho.salami@futminna.edu.ng

ABSTRACT

Reduced software development cost and time can be achieved by reusing existing software. One of the most important activities

during reuse is retrieval. In the early stages of software development, UML state machine diagrams are used to model the

behavior of different system objects. This work describes the retrieval of software from a repository by comparing the state

machine diagrams of new and existing software systems. State machine diagrams are converted to directed graphs, which are

compared using a Genetic Algorithm-based graph matching technique. Experimental results show that the proposed approach is

effective in retrieving similar software from a repository.

Keywords- UML; state machine diagram, genetic algorithm; software retrieval; software reuse

African Journal of Computing & ICT Reference Format:

Moataz Ahmeda & Hamza Onoruoiza Salamib (2015). Behavior-based Retrieval of Software.

Afr J. of Comp & ICTs. Vol 8, No. 1. Pp95-.102.

I. INTRODUCTION

Among the benefits of software reuse are reduced risk,

development time and overall cost [1]. Even though many software

artifacts such as domain models, requirement specifications,

designs, documentation, test data and source code can be reused,

the benefits of reuse are maximized if it occurs at the early stages

of software development. The reason is that when early-stage

artifacts are reused, their corresponding later-stage artifacts can be

reused as well [2]. Software reuse can be partitioned into four

distinct tasks. It begins with the presentation of a query to the reuse

system, followed by the retrieval of the software component that is

most similar to the query, modification of the retrieved component

to meet the needs of the new software, and incorporation of the

modified component into the repository to facilitate future reuse

[3].

The Unified Modeling Language (UML) is the de facto language

for modeling systems in the early stages of software development

such as during requirement analysis and design. UML diagrams are

broadly divided into structure diagrams, which show the static

nature of objects in a system irrespective of time, and behavior

diagrams which show the dynamic behavior of the system over

time [4]. Many of the existing work on UML-based software reuse

have concentrated on class diagrams, sequence diagrams and use

case diagrams. Consequently, this work focuses on the retrieval of

state machine diagrams (SMDs). UML SMDs model the behavior

of individual system entities such as objects (i.e., instances of

classes) [4]. They show how an object responds to events

according to its current state, and how it enters new states [5].

In order to compare SMDs during retrieval, they are converted to

graphs, then a graph matching/similarity technique is used to

determine the degree of similarity of the graph representations.

Genetic algorithm (GA) is used alongside a similarity measure to

perform the graph matching/similarity assessment. Experimental

results show that this approach is effective in retrieving similar

software from a repository

The remainder of this paper is organized as follows: Section II

discusses related work. In Section III, we propose a method of

representing SMDs as graphs. The similarity measure for SMDs is

presented in Section IV. We describe how similarity between states

in two UML SMDs is computed in Section V. Matching using GA

is the subject of Section VI. We present experimental results in

Section VII and conclude the paper in Section VIII.

2. RELATED WORKS

Significant research has been carried out on UML-based software

reuse. For example, class diagram retrieval has been described in

[6-8], while sequence diagram and use case diagram retrieval is

discussed in [9-12]. In some of the existing works, graph

representations of UML diagrams have been compared during

retrieval: sequence diagrams are converted to graphs in [11, 12];

whereas class diagrams are converted to graphs in [6, 13]. To the

best of the authors’ knowledge, only Ali and Du [14] have

considered SMDs during retrieval. In [14], design models

consisting of class, sequence, activity, collaboration and state

machine diagrams were described from six perspectives using pre-

defined terms.

Vol 8. No. 1 – March, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

 96

Similarity between query and repository model was computed in

either of two ways: based on the distance of the shortest path

between the descriptive terms in a conceptual graph; or from the

degree of overlap between the descriptive terms. However, relying

on only textual descriptions to compare models results in the loss of

structural information contained in the UML diagrams [15].

Lately, some authors have used heuristic search techniques for

matching while retrieving UML diagrams. Similarity measures have

been combined with GA [13] and particle swarm optimization [6] in

order to retrieve class diagrams. Furthermore, GA-based similarity

assessment was used for retrieving sequence diagrams in [16]. This

paper follows a similar approach to that used in our previous works

(i.e., [13, 16]), by first converting SMDs to graphs, then using a

similarity measure and GA to determine the degree of similarity of

the graph representations.

2.1 Graph Representation of State Machine Diagrams

SMDs can be converted to labeled directed graphs in which each

state other than a final state is represented by a node, and all final

states are represented by a single node. Four types of edges can

connect nodes of the graph: hierarchical edges labelled H, which

connect composite states to their immediate sub states; transition

edges labelled xT, which represent transitions between states, where

x is the number of transitions from one state to another; beginning

edges labelled B, which denote transitions from the start state; and

ending edges labelled xE, which represent transitions to the end

state, where x is the number of transitions from one state to any of

the final states. Fig. 1 shows two SMDs s and t. The graph and

adjacency matrix representations of s are shown in Fig. 2 and Table

I, respectively.

3. SIMILARITY MEASURE

The degree of similarity of SMDs is computed by comparing their

adjacency matrix representations. A difference matrix DiffE acts as

a lookup table that indicates the degree of similarity between the

four different types of edges described in Section III. Table II shows

DiffE. The non-diagonal entries of DiffE are ones, indicating

maximum dissimilarity. The diagonal entries for beginning edges

and hierarchical edges are zero, signifying that identical types of

edges have no difference between them. In the case of transition

edges and ending edges, their labels indicate the number of

transitions from one state to another, hence the diagonal entries take

these numbers into account. For example, the difference between a

2T edge and a 3T edge is 1/2 – 1/3 = 0.17, whereas the difference

between a 2T edge and a 4T edge is 1/2 – 1/4 = 0.25.

Let adjS and adjT be the adjacency matrices of s and t, respectively.

adjS has ns rows while adjT has nt rows (ns ≤ nt). Let K be a

permutation vector that maps all ns nodes of adjS to ns nodes of

adjT. In essence, K is a one-to-one mapping from all the nodes of

adjS to some (or all) of the nodes of adjT. Furthermore, let adj_TK

be a ns X ns adjacency matrix containing only the edges between

nodes of adjT listed in K. The degree of similarity between s and t is

given in (1).

+

∑

=

∑

=
=

nr

ns

j

jiKadjTjiadjSDiffE
ns

i
tssim

1

)),(),,((

1
),(ns

nsnt −
λ

Eqn ………………. (1)

where

nr is the number of times there is at least one edge at corresponding

entry positions in adjS or adjTK. λ ϵ [0, 1] is a weight that

determines how the unmapped nodes in adjT affect the degree of

similarity. For example, choosing λ = 0 causes the similarity score

between s and t to be zero (indicating maximum similarity)

whenever t subsumes s. On the other hand, a large value of λ causes

the value of sim(s, t) to increase when nt > ns.

In the remainder of this section, we attempt to theoretically validate

the formula given in Eq. (1) by determining if it a similarity metric.

Similarity measures which satisfy four metric axioms (self-

similarity, minimality, symmetry and triangle inequality) are

referred to as similarity metrics [17].

3.1 Self-similarity
Since corresponding edges of identical state machine diagrams are

the same, and the diagonal entries of DiffE are either zero or reflect

the differences in number of edges, the numerator of the first

fraction in Eq. (1) is zero. Furthermore, graph representations of

identical state machine diagrams have the same number of nodes so

the numerator of the second fraction in Eq. (1) is zero. Therefore,

sim(s, s) = sim(t, t) = 0.

3.2 Minimality
There are two cases to consider:

Case 1: if s = t, it follows that sim(s, t) = sim(s, s) = 0 from the first

axiom.

Case 2: if s ≠ t, either or both of the following conditions is true: (i)

there is at least one pair of nodes whose corresponding edges in

adj_s and adj_tK are of different types or have different

multiplicities. Thus, the numerator of the first fraction in Eq. (1) is

greater than zero (ii) s and t have different number of nodes, thus

the numerator of the second fraction in Eq. (1) is greater than zero.

If condition (i) and/or (ii) is satisfied, sim(s, t) ϵ (0, 1].

Thus, sim(s, t) ≥ sim(s, s)

3.3 Symmetry

Clearly, sim(s, t) = sim(t, s) since DiffE is symmetric.

3.4 Triangular Inequality
We have not been able to prove that Eq. (1) satisfies triangular

inequality, thus, the formula in Eq. (1) shall be referred to as a

similarity measure rather than a metric.

Vol 8. No. 1 – March, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

 97

3.5 Similarity Matrix of States
This section describes a method of computing pairwise similarities between states of two SMDs. The similarity values are kept in a states’

similarity matrix SS, which will be used during matching. Each state other than a final state (all final states are listed as one state) is

represented by a 10-dimensional vector indicating 10 properties of the state.

These properties are listed in Table III, while their values are given in Table IV for s. The similarity between nodes is the Euclidean distance

of their feature vectors. Table V shows SS containing the pairwise similarity values between states in s and t.

s0

s1

s2

s3

s5

s6

s7 s8

s9

s4

t0

t1

t5

t6

t7 t8

t10

t2

t4
t3

t9

Figure 1. Two state machine diagrams s and t.

Vol 8. No. 1 – March, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

 98

Figure 2. Graph representation of s

TABLE I. ADJACENCY MATRIX REPRESENTATION OF S

 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

s0 - B - - - - - - - -

s1 - - H - - H H H H 1E

s2 - - - H H - - - - -

s3 - - - - 2T - - - - -

s4 - - - - - 1T - - - -

s5 - - - - - - 1T - 1T -

s6 - - - - - - - 1T - -

s7 - - - - - - - - - -

s8 - - - - - - - - - -

s9 - - - - - - - - - -

a.
 B = beginning edge, H = hierarchical edge, xT = x

transitions, yE = y ending edges, - = no edge

TABLE II. DIFFE

 B H yT yE

B 0 1 1 1

H 1 0 1 1

xT 1 1 |1/x – 1/y| 1

yE 1 1 1 |1/x – 1/y|

b.
 B = beginning edge, H = hierarchical edge, xT or yT = x

or y transitions, xE or yE = x or y ending edges, - = no

edge, |…| = absolute value

1T

1T

1T

1T

H H

H

B

1E

s0

s1

s9
s2

s3 s4

s5

s6

s8

s7

2T

H

H

H

H

Vol 8. No. 1 – March, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

 99

TABLE III. FEATURES OF EACH STATE

Feature Description

f1 No. of transitions coming from the start state

f2 No. of transitions coming in (except from the start

state)

f3 No. of transitions to a finish state

f4 No. of transitions going out (except to finish states)

f5 No. of states whose next state is this state

f6 No. of next states

f7 No. of ancestors

f8 No. of descendants

f9 No. of child states

f10 Length of longest path from this state to its

descendants

TABLE IV. FEATURES OF S

 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

s0 0 0 0 1 0 1 0 0 0 0

s1 1 0 1 0 1 1 0 7 5 2

s2 0 0 0 0 0 0 1 2 2 1

s3 0 0 0 2 0 0 2 0 0 0

s4 0 2 0 1 0 1 2 0 0 0

s5 0 1 0 2 1 2 1 0 0 0

s6 0 1 0 1 1 1 1 0 0 0

s7 0 1 0 0 1 0 1 0 0 0

s8 0 1 0 0 1 0 1 0 0 0

s9 0 1 0 0 1 0 0 0 0 0

TABLE V. STATES’ SIMILARITY MATRIX SS

 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

s0 0.00 11.53 1.73 2.24 1.73 3.32 1.73 2.24 2.24 2.24 2.00

s1 9.06 3.32 9.33 9.11 9.11 9.75 9.11 9.11 9.11 9.11 9.06

s2 3.46 8.77 4.12 3.32 3.61 5.39 3.61 3.32 3.32 3.32 3.46

s3 2.45 11.87 2.24 2.65 2.24 3.61 2.24 2.65 2.65 2.65 3.16

s4 2.83 11.87 2.65 2.24 1.73 3.32 1.73 2.24 2.24 2.24 2.83

s5 2.24 11.75 1.41 2.83 1.41 1.41 1.41 2.83 2.83 2.83 3.00

s6 1.73 11.58 2.00 1.41 0.00 2.83 0.00 1.41 1.41 1.41 1.73

s7 2.24 11.58 3.16 0.00 1.41 4.24 1.41 0.00 0.00 0.00 1.00

s8 2.24 11.58 3.16 0.00 1.41 4.24 1.41 0.00 0.00 0.00 1.00

s9 2.00 11.53 3.32 1.00 1.73 4.36 1.73 1.00 1.00 1.00 0.00

3.6 Matching Using Genetic Algorithm

Determining the value of K that results in an optimal (i.e., smallest)

similarity value between s and t is a combinatorial optimization

problem which may involve a huge search space. This section

describes the use of GA to find a suitable value of K in order to

compute sim(s, t). GA is a powerful heuristic search algorithm that

can used to solve combinatorial optimization problems. The GA

used in this paper is similar to that used for graph matching in [18].

3.7 Chromosome Encoding and Population Initialization.

The number in the ith gene indicates which node in t is mapped to

the ith node of s. In other words, each chromosome is of the same

form as K. Figure 3 shows the how a chromosome encodes the

mapping of states in two SMDs.

The initial population is constructed in three steps: (i) the first

individual is formed by applying Munkres’ allocation algorithm

[19] on SS. (ii) A few additional individuals are generated by

mutating the first individual. (iii) All other individuals are generated

by randomly assigning values to their genes.

3.8Fitness Values

The fitness of a gene is read from SS. For example, if the ith gene of

a chromosome contains j, its fitness is SS(i, j). The fitness of a

chromosome is computed using Eq. (1).

3.9 Selection and Crossover

The selection and crossover operations are the same as those

described in [16].

3.10 Mutation

Mutation involves swapping two randomly selected genes, or

replacing a gene with a value that is not currently in the

chromosome.

3.11 Uniqueness of individuals

When the population contains identical individuals, one of them is

mutated until it becomes distinct from all other individuals in the

population.

3.12 Termination Conditions

The GA terminates when any of the following three conditions is

satisfied: the optimal similarity value of zero is obtained; the

maximum number of generations is reached; or the population’s

fitness value does not improve within a fixed number of

generations.

Vol 8. No. 1 – March, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

 100

4. EXPERIMENTAL RESULTS AND DISCUSSION

In the experiments to evaluate the proposed method of retrieving

software based on a comparison of their SMDs, we created a

repository of 16 SMDs belonging to three domains: 7 diagrams are

from the banking/business domain; 6 diagrams are from the

education domain; while the other 3 diagrams are related to

personal organization tasks such as managing diaries and

appointments. Table VI summarizes the characteristics of the

repository diagrams. 16 queries were formed by taking each of the

repository diagrams in turn. A repository diagram is relevant to a

query only if they belong to the same domain.

Retrieval quality was assessed using the Mean Average Precision

(MAP), which is widely used for evaluating information retrieval

systems. The average precision (AP) for a query is obtained using

precision values calculated at each point when a relevant document

is found. MAP for a set of queries is the mean of the AP scores for

each query [20]. MAP can be computed using Eq. (2):

∑ ∑
= =

==

N

j

Q

ij

j

irelP
QN

MAP

1 1

)(
11

 ……...(2)

Where

N is the number of queries, Qj is the number of relevant documents

for query j and P(rel = i) is the precision at the ith relevant

document.

The following parameters were used: size of population = 50;

maximum number of generations = 100; number of generations to

terminate GA if fitness value does not improve = 20; probability of

mutation of genes = 0.10; and number of individuals from initial

generation produced using Munkres’ algorithm = 3. λ was set to

0.05 in order to compute fitness values using Eq. (1). The

experiment was repeated 30 times. Table VII shows the mean MAP

over 30 runs for the 16 queries. The standard deviation of MAP is

shown in brackets. The time to search the repository is also

presented in the table. The experiment was carried out using

Matlab® computing language, on a personal computer having the

following configuration: 2.67 GHz Intel Core 2 Quad processor; 4

GB RAM; and 32-bit Windows 7 operating system.

From the results presented in Table VII, our technique was capable

of retrieving the most similar software from the repository. The

standard deviation of MAP from 30 runs is very low, suggesting

that our matching technique consistently produces good results.

5. CONCLUSION

This paper described an effective method of retrieving software for

reuse by comparing the behavior of the software. The behaviors of

software are manifested in the SMDs that show how events lead to

change in state of system objects. A graph matching/similarity

technique was used to determine the similarity of graph

representations of SMDs. Experimental results show that the

proposed method is promising.

The SMD similarity assessment technique described in this paper

did not take into account the events, guard conditions and actions of

transitions, as well as the names of states in SMDs. As a future

work, these other pieces of information can be incorporated into the

similarity assessment technique to determine if it leads to improved

retrieval quality.

ACKNOWLEDGMENT

The authors would like to acknowledge the support provided by the

Deanship of Research at King Fahd University of Petroleum and

Minerals, Saudi Arabia under Research Grant 11-INF1633-04.

Vol 8. No. 1 – March, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

 101

REFERENCES

[1] I. Sommerville, Software Engineering, 9th ed.: Pearson

Addison Wesley, 2010.

[2] J. L. Cybulski, R. D. B. Neal, A. Kram, and J. C. Allen,

"Reuse of early life-cycle artifacts: workproducts, methods

and tools," Ann. Softw. Eng., vol. 5, pp. 227-251, 1998.

[3] A. Prasad and E. K. Park, "Reuse system: An artificial

intelligence - based approach," Journal of Systems and

Software, vol. 27, pp. 207-221, 1994.

[4] OMG, "Unified Modeling Language Superstructure

Specification V2.4.1," 2011.

[5] P. Roques, UML in Practice: The Art of Modeling Software

Systems Demonstrated through Worked Examples and

Solutions: Wiley, 2004.

[6] W. K. G. Assuncao and S. R. Vergilio, "Class Diagram

Retrieval with Particle Swarm Optimization," in The 25th

International Conference on Software Engineering and

Knowledge Engineering (SEKE 2013), 2013, pp. 632 - 637.

[7] P. Gomes, F. C. Pereira, P. Paiva, N. Seco, P. Carreiro, J. L.

Ferreira, and C. Bento, "Case Retrieval of Software Designs

using WordNet," in European Conference on Artificial

Intelligence (ECAI 02), 2002, pp. 245-249.

[8] K. Robles, A. Fraga, J. Morato, and J. Llorens, "Towards an

ontology-based retrieval of UML Class Diagrams,"

Information and Software Technology, vol. 54, pp. 72-86,

2012.

[9] M. C. Blok and J. L. Cybulski, "Reusing UML Specifications

in a Constrained Application Domain," in Proceedings of the

Fifth Asia Pacific Software Engineering Conference: IEEE

Computer Society, 1998.

[10] Y. Kotb, "Applying the Textual Entailment Approach to

Automatic Reusable Software," in The 7th International

Conference on Informatics and Systems (INFOS), 2010, pp. 1-

6.

[11] W.-J. Park and D.-H. Bae, "A two-stage framework for UML

specification matching," Inf. Softw. Technol., vol. 53, pp. 230-

244, 2010.

[12] W. N. Robinson and H. G. Woo, "Finding Reusable UML

Sequence Diagrams Automatically," IEEE Softw., vol. 21, pp.

60-67, 2004.

[13] H. O. Salami and M. Ahmed, "Class Diagram Retrieval Using

Genetic Algorithm," in 12th International Conference on

Machine Learning and Applications Miami, Florida, 2013,

pp. 96-101.

[14] F. M. Ali and W. Du, "Toward reuse of object-oriented

software design models," Information and Software

Technology, vol. 46, pp. 499 - 517, 2004.

[15] K. Wolter, T. Kreb, and L. Hotz, "Determining Similarity of

Model-based and Descriptive Requirements by Combining

Different Similarity Measures," in Proceedings of 2nd

International Workshop on Model Reuse Strategies, 2008.

[16] H. O. Salami and M. A. Ahmed, "Retrieving sequence

diagrams using genetic algorithm," in Proceedings of 11th

International Joint Conference on Computer Sciences and

Software Engineering, Chonburi, Thailand, 2014, pp. 324-330

[17] S. Santini and R. Jain, "Similarity measures," IEEE

Transactions on Pattern Analysis and Machine Intelligence,

vol. 21, pp. 871-883, 1999.

[18] Y. Wang and N. Ishii, "A genetic algorithm and its

parallelization for graph matching with similarity measures,"

Artificial Life and Robotics, vol. 2, pp. 68-73, 1998.

[19] J. Munkres, "Algorithms for the assignment and

transportation problems," Journal of the Society for Industrial

and Applied Mathematics, vol. 5, pp. 32-38, 1957.

[20] S. Teufel, "An overview of evaluation methods in TREC ad

hoc information retrieval and TREC question answering,"

Evaluation of Text and Speech Systems, pp. 163-186, 2007.

Vol 8. No. 1 – March, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

 102

Figure 3. Chromosome encoding for comparing two state machine diagrams

TABLE VI. SUMMARY DETAILS OF REPOSITORY DIAGRAMS

Banking/Business Education

Personal

Organization

No. of states 10 4 4 6 5 8 5 10 7 8 3 6 6 5 5 5

No. of

transitions
14 4 4 5 8 15 5 14 12 9 2 7 6 8 8 4

TABLE VII. RESULTS OF EXPERIMENTS

MAP (%)
time to search

repository (seconds)

73.27 (0.24) 1.32

K = (6, 4, 1, 2, 3)

s1 s2 s3 s4 s5

t6 t4 t1 t2 t3

Mapping of states

1 2 3 4 5

6 4 1 2 3

Chromosome

