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ABSTRACT 
 
Cloud computing has developed extensively for executing resource-intensive applications. As a result, many commercial and 
industrial services are now hosted on the cloud for computation using resources that would have been unaffordable if owned 
privately. The hosting, storage, and big data computation using cloud resources are becoming norm of the day and the pricing of 
the resources have become an important problem. Existing literature shows that a few economic models have been reported for 
pricing cloud resources using static approaches. In this paper, we address a novel application of financial option pricing theory to 
the management of distributed computing resources for pricing. First, we highlight the importance of finance models for the 
given problem and then we provide a justification for the fitness of option theory to price the distributed computing resources 
especially resources (memory, storage, software, and compute cycles) for the cloud. Second, we design and develop pricing 
model and generate pricing results for the usage of such resources. We use a large number of experiments to provide justification 
for our proposed pricing model. We compare the simulated system to real cloud trace data based on the spot price for the cloud 
resources. 
  
Keywords: Cloud resources, financial options, price volatility, compute cycles, opting pricing, cloud trace. 
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1. INTRODUCTION/BACKGROUND 
 
Many cloud resources such as CPU cycles, memory, network 
bandwidths, throughput, computing power, disks, processor, 
and various measurements and instrumentation tools exist as 
state artifacts. Their existence/availability are transient and 
their valuation can be described with the same theories that 
support financial option principles in commodity and asset 
management. Unlike tangible assets such as gold, silver, iron 
ore, crude oil, or other solid mineral resources, cloud 
resources are not easily storable. Hence, we characterize them 
as non-storable computational resources. Since they are non-
storable, their existence can only be vetted in the financial 
option computational paradigm as compute cycles or compute 
seed.  
 
Therefore, one of the means to value them is by the use of 
financial options. The pricing of cloud resources is a 
challenging and an important task because of the characteristic 
nature of cloud computational resources; (i) they are 
heterogeneous and numerous [1] (geographically dispersed 
ownership and time zones affects their availability), (ii) they 
exists as compute cycles with a high volatility of their 
availability, (iii) security of resources and policy requirement 
differs from one geo-political region to another, (iv) resource 
management policies are administered differently, (v) there is 
unreliability of resources and environments, and (vi) the 
resources are connected by heterogeneous, multi-level  

 
 
networks. These pose computation challenges for resource 
management. Among the characteristics of the cloud resources 
enumerated, (i) and (ii) accounts for a high level of volatility 
of the resources. In the existing literature, research efforts 
focus on the application of traditional methods such as 
Discounted Cash Flow (DCF) or Net Preset Value (NPV) [2] 
to value transient resources (CPU cycles, memory, network 
bandwidths, throughput, computing power, disks, processor, 
and various measurements and instrumentation tools). 
However, the valuation of non-storable compute cycles cannot 
be modeled exactly if the target model cannot manage 
heterogeneity of the resources as well as the presence of high 
volatility in their availability. In the absence of flexibility of 
pricing cloud resource and services we engage two strategies 
to develop a model to price them. First, we simulate cloud 
resources usage in order to justify our proposed pricing model 
using the CloudSim [3] toolkit. CloudSim is a framework for 
modeling and simulation of cloud computing infrastructures 
and services. In this part of the work, we integrate a financial 
option based pricing model with CloudSim framework and use 
it as a cloud simulation tool to price cloud compute resources. 
Secondly, we evaluate our proposed model using the data 
from real clouds trace data. The Analysis of usage of the cloud 
resources from simulation and real cloud trace data shows the 
feasibility of a financial option based model for pricing cloud 
resources.  
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Currently, the cost for using cloud resources especially for 
research, commercial, and industrial purposes is fixed. It 
means a flat rate is charged for executing jobs on the clouds. 
For example, supposed that a fixed cost of $2.00 is charged for 
8GB RAM, it may be considered as too expensive if the 8GB 
RAM will not be completely used up for the purpose it was 
requested. A flexible charging means paying less than $2 to 
execute the job on the cloud. Despite the current static 
charging system, there is a large interest in big data for 
computing. As a result, cloud computing is experiencing a 
mushrooming of many service providers. Amazon, for 
example, introduced a Simple Storage Service S3 [4] system 
and the Elastic Compute Cloud (EC2) ([5], [6]) for users. 
Amazon’s S3 provides data-intensive, low cost, and highly 
available data storage system. EC2 provides on-demand 
computing resource as a virtual machine. One of the 
drawbacks of these services is that the resource prices are 
static.  
 
Other initiatives include AppNexus [7], GoGrid [8], Google 
App Engine [9], Microsoft Azure Services [10], and Joyent 
Accelerator [11]. Requirement for flexibility in resource usage 
is seen from the choices made available to users. Such choices 
include the decision to use the resources at a time in the 
present or at some time in the future. It is hard to make 
decision using NPV or DCF without losing the realistic value 
of the decision [2]. To price the cloud resources, we treat them 
as computational assets and we formulate a pricing model 
using the theories of financial option to compute option value 
and the best exercise time for resource usage. 
 
1.1 Financial Options 
A financial option (see, for example [12]) can be defined as 
the right to buy or to sell an underlying asset that is traded in 
an exchange for an agreed-on sum. The right to buy or sell an 
option expires if the right is not exercised on or before a 
specified period. If this right of exercise is lost, the option 
buyer will also loose the premium paid at the beginning of the 
contract. The exercise price which is also called the strike 
price (mentioned in an option contract) is the stated price at 
which the asset can be bought or sold at a date in the future. A 
call option on the other hand, grants the holder the right (but 
not obligation) to buy the underlying asset at the specified 
strike price. Two option styles are American option and 
European option. An American option can be exercised any 
time during the life of the option contract. On the other hand, a 
European option can only be exercised at expiry. 
 
The rest of this paper is organized as follows. In Section 2 we 
review related work. Section 3 provides the model theory, 
description, and assumptions. Section 4 describes the model 
architecture and integration with CloudSim. Section 5 presents 
our experiments, results, and discussions. Section 6 ends the 
paper and provide directions for future work.  
 
 
 
 

2. RELATED WORK 

 
Earlier developments in grid computing which gave rise to 
cloud computing offered lead research efforts from security, 
distributed resources management and scheduling to grid 
market economy. Because many of the grids were production 
and research grids, services are made available free of charge 
or with minimal service charges. However, as the grid idea 
developed into cloud ideas and many commercial and 
industrial applications find computation cost saving benefits in 
cloud computing, charging (billing) became an important 
aspect of the current research efforts. A greedy approach was 
static charging for cloud resources use. Therefore, in existing 
literature, approaches for managing distributed resources 
applied resource scheduling principles.  
 
These include the Tycoon [13] and the Condor system [14]. In 
[13] and [14], it was assumed that resource requirements can 
be estimated a priori by the users. Based on these user 
estimates, a computation cost was associated. The costing 
procedure was matchmaking function by matching jobs to 
resources based on resource requirements and resource 
availability. As reported by many studies of empirical proof 
([16], [17], and [15]), the approach could be misleading 
because many users are not sincere while they estimate 
requirements for their jobs – they tend to supply inaccurate 
estimates of resources required and job runtime. As a result, 
relying on these erroneous job requirement estimates could 
lead to poor resource management. The estimates provided by 
these studies are poor because they allow users to continue to 
provide estimates even in cases where there are indications of 
strong incentives for faithful reporting. For instance, 
scheduling such as backfilling [17] schedules the first job in 
the queue that could be completed given the available 
resources. This would mean providing incentives to quote low 
runtime requirements. Similarly, jobs may be evicted from 
queue if the actual runtime is higher than the estimated 
runtime. This helps to ensure that users do not quote low 
resource and runtime estimates that are not realizable. 
 
When estimates of resource requirements are poorly 
requested, they can significantly undermine the efficiency of 
the scheduling algorithms used. The consequences of allowing 
users to provide their computation requirements is that the 
realized costs may be considerably different from their 
estimates, causing considerable ex-post regret when costs 
exceed expectations. This is also not desirable. Solutions are 
needed to address inefficiencies that is caused poor estimates 
of resource requirements so that buyers can better estimate 
costs and schedulers can better assign jobs to resources and 
resource providers can make favorable capacity decisions or 
managements. 
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On market economy, Kang et al. in [18], Sulistio et al. in [19], 
and Tan and Gurd in [20] focus research efforts on resource 
allocation and resource scheduling with references. However, 
Mutz et al. [17] has some interesting research observations.  
They critically re-examined a batched queue-environment 
which consists of a simple form of batched-queue of jobs 

for waiting to access computing resources; where 

 receives service before . The resources granted is based 

on the owners’ parameters or behavior which they used to 
model a payment function. Shrma et al. [26] valuated cloud 
resources on the basis of the age of technology of the 
components that constitute the cloud. However, many of the 
cloud resources such as compute cycles and compute seed do 
not heavily relay on age. Our work is novel because we use 
the real trace data to capture the realistic figure of our option 
values which is a complete replica of real life. 
 
3. PRICING MODEL  
 
Our model is developed using three approached; (a) two basic 
assumption, (b) Trinomial lattice approach, and (c) 
introduction of price variant factor into the overall model.  
 
3.1 Assumptions 

We made the following assumptions to aid the development of 
our model.  
 

Assumption 1: We set some base prices for the cloud 
resources. These assumed prices are the prices that reflect the 
current real sale prices but discounted almost as close to 
100%.  
 
Assumption 2: Since the resources exists in non-storable 
(nonstable) states, we value them as real assets. This 
assumption qualifies them to fit into the general stream of 
investment included in the real option valuation approach. 
This assumption also justifies resources availability. Since the 
resources are nonstable, a high volatility (σ) affects the 
resources availability. This is responsible for a shorter use 
time of cloud resources compared with the life of option in 
financial valuation methods. A holder of the option to use the 
cloud resources has an obligation-free chance of exercising the 
right. The obligation-free status enables us to apply existing 
finance option valuation theory to model our pricing scheme. 
 

3.2. Trinomial Lattice Approach to Option Pricing  

Consider an asset whose price is initially  and an option on 

the asset whose current price is . Suppose the option has a 

lifetime of . It can either move up with a probability from 

 to a new level  with a payoff value of fu or move down 

to from  to a new level,  and with a payoff value of fd 

where  and . This lead to a one-step binomial. We 

have trinomial if it could also maintain a steady level (without 
either moving up or moving down), with a probability We 

define a job in the cloud as a service that need one or more of 
the resources from start to finish.  
 
 

In a trinomial approach, we apply the trinomial-tree model 
[21] to price mainly American-style and European-style 
options on a single underlying asset. Options pricing under the 
Black-Scholes model [22] requires the solution of the partial 
differential equation and satisfied by the option price. In order 
to compute the option prices, we need to build the discrete 
time and state binomial model of the asset price and then 
apply discounted expectations [23]. Suppose S is the current 
asset price and that r is the riskless and continuously 
compounded interest rate, the risk-neutral Black-Scholes 
model of an asset price paying the continuous dividend yield 
of δ for each year [12] is given by: 
 

  

 
For convenience, let , Equation (1) can be written as 

, where . Let us consider a 

trinomial model of asset price in a small interval , we set the 

asset price changes by . Suppose this change remain the 

same or changes by , with likelihood of an up movement 

pu, chance of steady move (without a change) pm, and chance 
of a downward movement pd. 
 
The drift (as a result of known reasons) and volatility (σ, 
because of unknown reasons) parameters of the asset price can 
be obtained in the simplified discrete process using 

, and pd. In a trinomial lattice the price step (with a 

choice) is given by  and imposing the unitary sum 

of the likelihoods, we obtain a relationship between the 
parameters of the continuous time and trinomial (a 
discretization of the Geometric Brownian Motion (GBM)), 
that is,  
 

 
where  is the expectation as mentioned before.  

 
From Equation (2),  

 

We can present the unitary probability sum as 
, where are the 

probabilities of the price going up, down or remaining same 
respectively. We solve Equations (2), (3), and (4) to yield the 
transitional probabilities: 
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We replicate the one-step trinomial process to form an n-step 
trinomial tree. For number of time steps (horizontal level) n = 
4, the number of leaves (height) in such a tree is given by 2n + 
1. We index a node by referencing a pair (i, j) where i points at 
the level (row index) and j shows the distance from the top 
(column index). Time t is referenced from the level index 
by  (i, j) is thus connected to node (i + 1, j) 

(upward move), to node (i + 1, j + 1) (steady move), and to 
node (i + 1, j + 2) (downward move). The option price and the 
asset price at node (i, j) are given by  and 

 respectively. The number of up and down 

moves required to reach (i, j) from (0, 0) estimates the asset 
price and is given by  
 

 
 
At maturity, that is, when for European style options 

or when  for American style options, the option 

values are determined by the pay off. Therefore, for a call 
option whenever the intent is to buy an asset at a previously 
determined strike price, the payoff is given as: 
 

 
 
and for an intent to sell, the payoff is computed using 
Equation (10). 
 

 
where in Equation (9) and Equation (10) the value K 
represents the strike price at maturity for a European-

style option, and the strike price before, or on maturity for an 
American-style option. To calculate option prices, we apply 
the discounted expectations under the risk neutral assumption.  
 
For an American put option (for example), for i < n:  

 
 

For a European call option (exercised on maturity only),  

 
 
While option price starts at , we apply the expression for 

 with Equations (7), and (8) or (9) to get the option price at 

every time step and node of the trinomial-tree. We now model 
grid resources based on the transient availability of the grid 
compute cycles, the availability of compute cycles, and the 
value of volatility of prices associated with the compute 
cycles. Given maturity date t, expectation of the risk-neutral 

value , the future price F(t) of a contract on grid resources 

could be expressed as  where 

 (see for example [12]):  

 
Consider a trinomial model of asset price in a small interval 
∆t, the asset price increases by ∆x, remain the same or 
decreases by ∆x, with probabilities; probability of up 
movement pu, probability of steady move (staying at the 
middle) pm, and probability of a downward movement pd.  

To price the multi-resources system, we suppose a real option 
depends on some other variables such as the expected growth 
rate  and the volatility respectively . Then if we let 

for any number of derivatives of  such 

as (  with prices p 

 respectively, we have 

 where the variables  is the set 

of resources .  
 
Applying the price variant factor pf for pricing options, we 
have:  
 

 
 
where the stochastic term is  The value of its membership 

function (high for pf > 0) control the strength of the pf . So for 
a multi-asset problem, we have: 

 
 

 
The value of  is determined such that 

. This shows that the actual and expected 

value of S is equal to the future price, p. A user may need 
compute cycles (bandwidth) in the first quarter, second 
quarter, third quarter, and fourth quarter of the year from 
today and therefore decides to pay some amount, $p to hold a 
position for the expected increase. We show this using a 
3−step trinomial for the spot price for bandwidth as $pT bit 
per second (bps) and for the projected first quarter, second 
quarter, third quarter, and fourth quarter of the year future 
prices  and respectively. In this case, the two 

uncertainties are the quantity of bandwidth that will be 
available and the price per bit. However, we can get an 
estimate for the stochastic process for bandwidth prices by 
substituting some assumed values of pf and σ (for example, pf 
= 10%, σ = 20%) in Equation (13). Suppose represents the 

option values at l for  level and j node for 

 (for a trinomial lattice only); that is,  

represents the option value at level 1 and at pu.  
 

3.3. Price Variant Factor  
An important functionality of our model is the price variance 
factor . We define  as . Its value depends 

on changes in technological developments such as new and 
faster algorithms, faster and cheaper processors, and changes 
in access rights and policies. The certainty in predicting the 
effects caused by these is hard using crisp schemes. As a 
result, we capture the resultant changes using fuzzy logic and 
treat  as a fuzzy number. For a use time of , we 

express  as a fuzzy membership function that is, . For 

example, the cloud resources may become under used if users 
find better and faster ways to solve their computing problems.  
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Therefore, to increase the cloud resources usage with more 
capacity for computations under same technology, we set the 
value of (ut) to 0.1 and with new technology, the . 

we can then adjust the price in the use of cloud resources by 
 while providing QoS set at the Service Level 

Agreement (SLA) of the contract. 
 
3.4. Fuzzy Logic Framework  

To fuzzify the utility of the cloud, we express the quality of 
the resources availability as a function of the time when 
resources are needed and the time the resources become 
available for use. That is the resources ( , , 

where  is the life of the contract and is given as , 

and tut is the actual utilization time. A best scenario is when 
, i.e., when the resources are available when is 

needed or  (no wait time). If ,  use is “now” 

otherwise, and usage is in the future until the end of 

the contract period (say 6 months). Users often request and use 
 for computation and expects a best scenario where service 

provided meets expectations or when  for a high 

QoS. In this instance, it is hard to guarantee provision of the  

on-demand and satisfy the users’ QoS without additional  to 

satisfy the conditions named in the SLAs document. To 
capture the fuzziness of the parameters , , and QoS, we 

express them in terms of their fuzzy membership functions.  
 
That is, , and µ(QoS) respectively. If T is a fuzzy 

set, the membership function is defined (see for example [24]) 

as  To price the cloud resources, 

we consider only its heavily utilized resources. The RAM and 
CPU cycles are most requested resources provided in the Cerit 
Scientific Cloud [25]. The generated workload trace shows 
91% normalized memory availability in Cerit Scientific 
Cloud. Therefore, we use memory availability index set at 
0.91 in our simulation. This index, , can be expressed as a 

fuzzy membership function, Where  is the 

calibrated set of prices ( ) where 

. We provide the fuzzy membership 

function of the range of prices in Equation (14).  
 

 
 

 

4. MODEL ARCHITECTURE AND INTEGRATION  

    WITH CLOUDSIM  
 
In our model architecture, we normalize base prices for the 
grid resources using SLA and QoS as constraints for 
individual (local) grids. We also consider economic and 
market behaviors for resources conflict in the grid. For a 
detailed discussion on the model architecture see [1].  
 

4.1. The CloudSim Simulation Architecture 
Figure 1 shows the three main layers of the CloudSim 
architecture – the top user layer has two other sub layers (a) 
the simulation specification layer and (b) the scheduling 
policy layer. The second (middle) layer from the top is the 
CloudSim core layer. 
 

 
 

Figure 1.0: Layered CloudSim Architecture [3] 

 
It houses the (i) user interface structures, (ii) the virtual 
machine (VM) services, (iii) the cloud services, (iv) the cloud 
resources, and (v) the network architecture. The third core 
layer is the CloudSim core simulation engine. The CloudSim 
simulation specification layer provides support for modeling 
and simulation of virtualized Cloud-based data center 
environments. This include the dedicated management 
interfaces for VMs, memory, storage, and bandwidth. Other 
fundamental functions handled by the CloudSim simulation 
specification layer are provisioning of hosts to VMs, 
managing application execution, and monitoring dynamic 
system state, are handled by this layer.  
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A Cloud provider must implement strategies at this layer if the 
interest is to monitor the different policies in allocating its 
hosts to VMs (VM provisioning). Such implementation 
requires a great deal of programming that extends the core 
VM provisioning functionality. This layer is also associated 
with executing applications from the provider’s defined QoS 
levels. In the current study, we integrate the top layer of our 
pricing model (price and usage optimization level) onto the 
top layer of CloudSim. The VM manages events and 
components interaction in the CloudSim. The second layer 
consists of the infrastructure components such as network and 
resource hardware. This layer also enables the design and 
integration of user interfaces. The third and fourth layers are 
responsible for the simulation and modeling of computational 
grid entities. Simulation of the cloud resource broker takes 
place in the CloudSim layer. The top layer consists of the 
cloud scenario, user requirements, I/O interface, and 
application configuration.  
 
 

 
 

Figure 2.0: Integrated Pricing Architecture 
 
Figure 2.0 shows our adapted integrated architectural model. 
The cloud resource pricing was carried out at the user code 
level of the CloudSim architecture. The QoS/SLA monitoring 
was achieved using a fuzzy classification approach. 
 
 
 
 
 
 

5. EXPERIMENTS, RESULTS, AND DISCUSSIONS  
 
We setup the base prices for cloud resources based on real and 
current market value. For example, if a 10GB of RAM costs 
about $20. For a minimal 2 years for the 100% return on 
investment for a cloud owner, we charge $0.50 × 10−6 per day 
per MB. Similarly, suppose it costs $60.00 for 1TB hard disk 
then we fix a base price of $3.43 × 10−8 per day per MB as a 
charge for the cloud storage. Similarly, we set a base price of 
$3.43 × 10−6 per day per MHz of CPU cycles for a 1.00 GHz 
processor. These base prices that we choose are as low as 
possible because of repeated use of the cloud resources by 
many users. We use the data sets generated from Torque traces 
[26] at the national Center CERIT-SC (CERIT Scientific 
Cloud). The trace data were collected from January to April 
2015. These data sets contain over 102,657 job descriptions. 
The jobs are divided per-user, with specified batches and their 
mutual dependencies. The shared memory machines run 8 
clusters and has approximately 4,000 CPUs.  
 
The cloud resources trace that we collected from the CERIT 
Scientific Cloud, include number of processors, memory, CPU 
time, run time, and wait time. First, we analyze these traces. 
To price the usage, we run the trinomial lattice using the 
following model parameters: For example, for a one-step 
trinomial tree we use strike price (K = $20.00, $22.50, $25.50, 
$27.50, $30.00), resources price (S = $0.80), expiration time 
(T = 90 days or 0.25 years), interest rate (r = 0.06), volatility 
(σ = 0.3), and the number of time steps ). We 

extend our study by varying the volatility σ in steps of 0.1, 
0.2, …, 0.7 starting from 0.2 and N = 0, 1, 2, 4, 8, 16, 32, 64, 
128, 256. For a 3-month contract, for example, N = 3 would 
mean a 2 month step size and N = 6 would mean a 1 week step 
size.  
 
Experiment 1: For the European call, we used two test values 
of strike price K = $20.00 and $22.50 to gauge the behavior of 
the option in the money.  For the first value of K, with the 
increase of the time step to 128 the option value converged to 
$7.34. Figure 3.0 shows that there was a jump in the value of 
the option after the first step, this could be due to the effect of 
the volatility became more pronounced in the option price at 
this period. For the second value of the strike price. In Table 
1.0 we show that the option value converged to $5.33, after 64 
time steps. There was also a jump in the option value after the 
first time step. At the later time steps, the option value 
converged smoothly to a particular value. At the money, we 
observed the option value converged to $3.62 after time step 
128, there was a downward slide in the value of the option 
after time step 1, from $3.78 to $3.38. This could be due to the 
effect of the volatility being more pronounced at this period. 
We used these two values of the strike price K = $27.50 and 
$30.00 to gauge the behavior of the option out-of-the-money. 
In  Table 1.0, we observed that for the first value of K, the 
option price converged to $2.29 after time step 128. There was 
no observable jump in the option value for this strike price.  
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For the second value of K, the option value converged to 
$1.32 after time step 32. It is observable that the option 
converged in an earlier time steps compared to other strike 
prices. This can be attributed to the option value being deep 
out-of-the-money at this period. Table 1.0 shows the time 
steps and option values for European call using .  

 
Table 1.0: Time steps and Option Values for European call 

 

Time Steps 

(N) 
0 1 2 4 8 16 32 64 128 256 

f@K=$20.0
0 

5.0
0 

7.2
6 

7.3
7 

7.3
2 

7.3
4 

7.3
3 

7.3
4 

7.3
4 

7.3
4 

7.3
4 

f@K=$22.5
0 

2.5
0 

5.4
6 

5.3
7 

5.3
8 

5.3
5 

5.3
2 

5.3
4 

5.3
3 

5.3
3 

5.3
3 

f@K=$25.0
0 

0.0
0 

3.7
6 

3.3
8 

3.4
9 

3.5
5 

3.5
9 

3.6
0 

3.6
1 

3.6
2 

3.6
2 

f@K=$27.5
0 

0.0
0 

2.0
6 

2.3
4 

2.3
3 

2.2
9 

2.2
5 

2.2
9 

2.2
8 

2.2
9 

2.2
9 

f@K=$30.0
0 

0.0
0 

0.3
6 

1.3
1 

1.1
7 

1.3
3 

1.3
3 

1.3
5 

1.3
5 

1.3
5 

1.3
5 

 

 
 

Figure 3.0: Computed Option Values for European Call. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2.0: Strike price Vs Option values for European call 

Strike Price K 
f@ 
N=0 

f@ 
N=8 

f@ 
N=64 

20.00 5.00 7.34 7.34 

22.50 2.50 5.35 5.33 

25.00 0.00 3.55 3.61 

27.50 0.00 2.25 2.28 

30.00 0.00 1.33 1.35 

 

 
Figure 4.0: Strike Price and Option Values  

for European Call 

 

 

Simulation 2: American put 
For the American call, we used two strike prices K =$27.5 and 
30.00 to gauge the behavior of the put option when it is in-the-
money, it was observed in Table 3.0 and in Figure 5 that the 
value of the option was constant at $2.50 for the first strike 
price and $5.00 for the second strike price. This could be 
attributed to the expected payoff being greater than the 
computed payoff at all time steps. It was also discovered that 
the option value converged earlier than the corresponding 
European call.  
 
This substantiates the early exercise of American options at-
the-money. Table 3.0 shows the option value converged at 
time step 15 with $1.10. There was a no remarkable jump in 
the option value at the various time steps. The spot price of the 
option was nil. At this price, for example, we interpret this 
cost to mean that there is a benefit/leverage for the user for 
using cloud resources. Therefore, the cost of using cloud 
resources could be priced at any value as low as $1.10 for the 
favor of the user and the provider without any losses. 
 
For the out-of-the-money, we used 2 strike prices K = $20.00 
and $22.50 to estimate the behavior of this option. Table 3.0 
shows that using the first strike price the option value 
converged at time step 15 at $0.09. There was no unusual 
behavior observed, except for the early convergence of the 
option price compared to the European call. The option value 
converged at time step 15 at 0.38. Figure 5.0 shows the results 
obtained gives credence to the early exercise of American put 
options. Table 3.0 shows the simulated number of time step 
and option values for the American put option using  
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Table 3.0: Time steps and Option Values for American Put  

Time Steps (N) 0 1 2 3 5 7 9 12 15 17 19 
f@K=$20.00 0.00 0.00 0.10 0.09 0.09 0.08 0.09 0.08 0.09 0.09 0.09 

f@K=$22.50 0.00 0.42 0.33 0.34 0.34 0.35 0.36 0.37 0.37 0.37 0.37 

f@K=$25.00 0.00 0.94 0.99 1.12 1.07 1.09 1.11 1.09 1.10 1.10 1.10 

f@K=$27.50 2.50 2.50 2.50 2.50 2.52 2.52 2.55 2.56 2.59 2.59 2.59 

f@K=$30.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 

 
 

 
 

Figure 5.0: Computed Option Values for American Put at Various Time Steps. 

 
 

 

Figure 6.0: Computed Option Values for American Put at Differing Strike Price 

 

 

Table 4.0: Strike price Vs Option values for American Put 

Strike Price K 
f@ 

N=1 

f@ 

N=3 

f@ 

N=9 

f@ 

N=19 

20.00 0.00 0.09 0.09 0.09 

22.50 0.42 0.34 0.36 0.37 

25.00 0.94 1.12 1.11 1.10 

27.50 2.50 2.50 2.55 2.59 

30.00 5.00 5.00 5.00 5.00 
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6. CONCLUSIONS AND FUTURE WORK  
 
In this paper, we have studied, analyzed, and made 
comparison for cloud resources utilizing using traces from 
CERIT Scientific Cloud. Our results show that it is possible to 
offer cloud compute resources to the user at a high value at 
one time and unable to support the same application at other 
times. In other words, resources availability varies while a 
measure of their certainty is hard to guarantee. The computed 
option value for cloud resources usage and to select the best 
point of exercise of the option to utilize any of the grid 
resources. This helps the user as well as the grid resources 
provider to optimize resources for profitability; in other words, 
we achieve an equilibrium condition; (ii) our study also 
incorporate a price varying function pf which controls the 
price of the resources and ensure the grid users gets the 
maximum at best prices and the resources provider also make 
reasonable revenue at the current base price settings. At the 
same time cloud operators do not unduly over-commit cloud 
resources whether the system is in-the-money or out-of-the-
money conditions from the user perspective.  
Future work will focus on the larger problem of pricing cloud 
resources for applications that use diverse resources across 
various clouds simultaneously. This will have to deal with a 
more complex, computationally intensive, and a 
multidimensional option pricing problem. This would need a 
more complex optimization of the solution space of the cloud 
resources usage as well as finding out the best node (time) to 
exercise the option (utilize the resources).  
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