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ABSTRACT 

 

Genetic Programming researchers have used different energy levels for the Artificial Ant on the Santa Fe Trail yielding different 

results. The need to determine which energy level gives optimal ability of the Artificial Ant to eat more food pallets along the 

Santa Fe Trail motivated this research. The Evolutionary Methodology was adopted in this research. The Santa Fe Artificial Ant 

Problem was implemented on Genetic Programming Algorithm. Using the known ant’s energy levels in  literature, we observed 

that the Artificial Ant’s ability to eat food pallets (program fitness) is highest when ant’s energy level is the range of 100, 200 and 

300; and beyond these, the ant’s ability to eat food pallets began to drop considerably  
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1. INTRODUCTION 
 

The concept of Darwin Theory of Evolution in computing that 

started in mid 60s is becoming more and more popular by the 

day. Evidently, in the 60s, 70s and 90s, four different 

implementations of Alan Turing’s ideas of evolution in his 

proposed ‘evolutionary search’ were cultivated. These  

implementations which came specifically in 1966, 1973, 1975 

and 1992 were ‘Evolutionary Programming’ (EP), 

‘Evolutionary Strategies’ (ES), Genetic Algorithm (GA) and 

‘Genetic Programming’ (GP) respectvely.  

 

These implementations collectively designated as the 

Evolutionary Algorithms form the backbone of the 

‘Evolutionary Computation’ [22]. Of the different subfields of 

‘evolutionary computation’, Genetic Programming is a 

comparatively young and a rapidly growing research area[15]. 

However, evolutionary algorithm’s solutions are satisfying 

‘given current resources and constraints’, but not necessarily 

optimal [5]; but used traditionally for ‘solving challenging 

optimization problems’ [13]. 

 

 

 

 

 

 

 

However, Genetic Algorithms is the most popular as it 

provides the finest grained ‘model of evolution’ by choosing 

to manipulate bit strings analogous to genes on chromosome 

[1]. Surprisingly, Koza who was fascinated and indeed 

inspired by Holland’s works in Genetic Algorithm overtly 

criticized the algorithm as being “difficult, unnatural, and 

overly restrictive to attempt to represent hierarchies of 

dynamically varying ‘sizes and shapes’ with fixed length 

character strings and for many problems in machine learning 

and artificial intelligence, the most natural representation for a 

solution is a computer program.”[14]. [22] also lend his voice 

by saying that  Genetic Algorithm has difficulty in handling 

problems dealing with ‘deceptive’ fitness functions.  

 

One interesting thing about Genetic programming is 

problem-independent algorithm that was used to solve 

many real life and artificial problems. It is also an approach 

for problems that have no well defined efficient solution; and 

problems that its potential solutions can be adequately 

measured and compared [29]. It is also well suited to difficult 

control problems where no exact solution is known or required 

[12], [13].  
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One of the areas where GP was rigorously applied is ‘Santa Fe 

Artificial Trail Problem’. Since the classical Santa Fe provides 

a static environment for foraging artificial ant, one expects 

that there ought to be an optimal energy level for the ant 

instead of the ‘different energy levels’ used in GP literature. 

Against this backdrop, this research focused on how to find 

the best energy level of a foraging artificial ant that will yield 

the best result in the ‘Santa Fe Artificial’ Trail Problem.  

 

This research work is structured as follows: I: Introduction, II: 

The Real Ant behaviour and Ant Optimization Algorithms; 

III: ‘Santa Fe Artificial Ant Problem’, IV: Genetic 

Programming: an overview; V: methodology; VI: Results, 

VII: ‘Discussion of results’; and  VIII: ‘Concluding Remarks’ 

.  

2.  ANT’S  BEHAVIOUR’ AND ANT OPTIMIZATION  

     ALGORITHMS 

 

In discussing the behaviour of the artificial ant in the ‘Santa Fe 

Artificial Ant’ Problem, it is also pertinent to begin our 

discussion from the behaviour of the natural ant. The natural 

or real ants are ‘social insect’ that lives cooperatively in a 

group known as the ant colony. The ant is a ‘tiny insect’ which 

when in its colony can accomplish some complex task which 

is not possible with individual ant alone. However, the ant 

behaviour has been a subject of research in Artificial 

Intelligence till date.   

 

A foraging ant leaves its nest to explore and exploits its 

environment for food; once it finds one, it leaves a trail of 

secreted chemical called trail pheromone along the source of 

important food to its nest. Once ant arrives its nest, other ants 

follow the trail to food source. As the ants move from its nest 

to its source of food and back, a high concentration of 

pheromones chemical is laid on its trail thereby stimulating 

both stigmergetic behavour [20] and autocatalytic process [21] 

of the ant. In the popular and impressive ‘Diamond-Shaped 

Bridge’ experiment denominated as ‘the double bride’ or 

‘binary bridge experiment, path optimization behaviours of 

stigmergetic and autocatalytic of the ant was demonstrated. 

‘Stigmergy’ is indirect ‘communication mediated’ by 

modifications of the environment. It is the influence of another 

ant’s due to the environment modification with its pheromone. 

Autocatalytic behaviour of ant is a collective behaviour. It 

means that as more ‘ants follow a trail, it becomes more 

attractive for more ants to followed’ such trail which causes 

‘very rapid converges’ of the ant along the trail.   

 

The ant optimizing behaviour is an act of an ant to follow a 

shorter and more reinforce path with pheromone from ‘source 

of food’ to nest or vice versa. Apart from pheromone that 

guides the path of the ant, [2] also demonstrated in his 

experiment that position of sun, gravity, slope and reference 

objects can also guide its direction. This experiment and 

others on the behaviour of the real or natural ants in their 

colonies stimulated several ‘ant optimization algorithms’ in 

‘Artificial Intelligence’ [21]. These optimization algorithms 

are Ant System, System Elitist Ant, Ant-Q, Ant Colony 

System, Max-Min Ant System, Ranked-based Ant System, 

Ants and Hyper Cube-ACO[ 27] that use the basic ideas of 

search and optimization techniques.  

  

3.  THE ‘SANTA FE ARTIFICIAL ANT PROBLEM’ 
 

The Artificial ant Problem is a simulation of the natural ant 

behaviour in a digital environment [21]. It is a ‘multi-agent’ 

method from behaviors of real ants and local search algorithm. 

The Artificial Ant Problem is an optimization problem 

developed by Jefferson et al in 1991 [9] [27] but popularized 

by [11]. The task of the artificial ant in the simulated ant 

environment is to navigate along some paths or trails in 

attempts to forage for all food pellets along such trails. Certain 

benchmark problems used in Genetic Programming are based 

on some of the known trails [7]; amongst which are San Fe 

Trail, Los Altos Hills, John Muir Trail, and Auxiliary Trail 

[27]. Earlier on, [7] also mentioned the San Matco Trail which 

was built upon the ideas behind the Santa Fe Trail which is the 

most famous and widely used in Evolutionary Computation.   

See figure1  

 

 

 
(a) Santa Fe Trail (32x32 grid) 

Source: http://dev.heuristiclab.com 

 
(b) Los Altos Hills trails (100x100 grid) 

      Source: http://citeseerx.ist.psu.edu 



Vol 8. No. 2 Issue 2 – August,  2015          
African Journal of Computing & ICT 

      
© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781 

www.ajocict.net   

 

 

63 

 

 

 
(a) John Muir Trail (32x32 grid) 

Source: http://www.genetic-programming.com 

 
(b) Auxiliary Trail 

  Source: http://www.researchgate.net 

Figure 1:  Artificial Ant Trails. 

 

 

The ‘Santa Fe Trail Problem’ using Genetic Programming is a 

metaphor for the historic 19th-Century transportation route of 

1,400 km between America and Santa Fe in ‘New Mexico’ 

where travelers were faced with (problem or) hardship [35]. 

Hence it is appropriately known in computing as Santa Fe 

Artificial Ant Trail Problem [36]. Figuratively, the Santa Fe 

Artificial Ant Trail Problem is a 32 x 32 toroidal square grid 

having a trail length of 144 cells with 89 food pellets 

distributed randomly along the trail with a total of 55cells 

being gaps within the 89 food pellets and 21 turns with 10 left 

and 11 right turns along the trail [15]; [36]. Generally, the 

objective of the ‘Santa Fe Artificial’ Ant Problem is to evolve 

programs to control the artificial ant that  will find all  89 food 

pellets that are located on the discrete trail [28] using a 

particular energy level.  In traversing the trail for food pellets, 

the artificial ant begins from the cell identified by (0, 0) 

coordinate on the west of the grid and moves towards the east 

of the trail.  

 

The trails is  marked by black or grey fields; the black fields 

represent food pallets, while the grey fields represent obstacles 

which the ant must overcome to eat a food pellet [25]. In a 

related study of the artificial ant using the program landscape 

and schema analysis, it was concluded that the artificial ant 

following the ‘Santa Fe Trail’ is a difficult task. In agreement 

with this,[36] stated that the ‘Santa Fe ant problem is 

seemingly simple problem, but with complicated dynamics; 

and that its hardness is as a result of ‘difficulty of searching’ 

its fitness landscape. However [10] opined that the solution to 

Santa Fe Artificial Ant Problem’s hardness is resolvable with 

a reduction in the search space through the removal of 

ineffective operations that consume resources like energy of 

the ant.  

 

 

 

 

 

 

 

The ‘artificial ant’ moves along the trail using a sensor that 

enables it to see only adjacent cell in its current direction. In 

other words, for the artificial ant to locate food pellets along 

the trail, the ant uses the food sensing function, IfFoodAhead 

to check the field the ant is currently facing, if it senses food 

pellets, the function returns the Boolean value of ‘true’ and 

then the ant  moves forward into the field containing food 

pellet to eat it, otherwise it returns the value ‘False’ meaning 

the field is an obstacle which must be overcome. The amount 

of food eaten by the ant is the fitness measure of the ant 

controlling program.  Apart from the Move operation, the 

artificial ant can also perform the operations of turn right, or 

turn left as the case may be. The speed at which artificial ant 

eats all ‘89’ food pellets is important. In estimating the speed 

at which the ant traverses the trail for food pellets, it is 

important to know the ant’s energy unit which is quotient of 

the total steps the ant takes to eat the furthest pellets over the 

trail length.  

 

While trail lengths are fixed for all grids, the total steps the 

artificial ant must take to consume all the food pellets in the 

trail are predetermined for all problems.   For instance in a 

‘Santa Fe Trail’ which has a trail length of 144 cells and with 

a predetermined steps of 400 will have approximate 2.7 

energy unit per cell (ie 400/144). Therefore whenever the ant 

takes a step, it consumes a unit less of its total energy[30]; 

[36]. [15] estimated the speed of the ant as the distance along 

the trail to the furthest pellet the ant eats; divided by the 

energy it consumed to get to that food pellet - if it does not eat 

any, then its speed is zero. The total speed of the ant therefore 

is the quotient of squares in the trail over the total steps the ant 

must take to eat the furthest pellets. Therefore, for ‘Santa Fe 

Trail’ that has 144 fields to be traversed with 400 steps, the 

speed of the ant will approximately be 0.36 units per field. 

Various researches used different initial energy in their works. 

Some used 400 steps as in [17], [30], 545 steps as in [25]; 600 

steps as in [36], [15], and 615 steps as in [10].  In determining 

the behaviour of the artificial ant in dynamic environments, 

Murphy, [23] used five different energy levels: 20, 42, 60, 

100, and 140 in their experiment.  
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The pertinent question at this juncture is: is there an optimal 

energy level for the artificial ant in Santa Fe Artificial Ant 

Problem since environment is static. 

 

4.   GENETIC PROGRAMMING (GP): AN OVERVIEW 
 

The objective of the ‘Santa Fe’ Artificial Ant Problem is to 

evolve programs to control the artificial ant in trail [28]. The 

only efficient means through which one can evolve programs 

to direct the movement of the artificial ant to find and eat all 

the ‘89’ food pellets located on the trail is by GP. Genetic 

Programming automatically generates program codes, rather 

than using lines of codes that are hand-written by 

programmers, in the familiar method that is time-consuming, 

tedious and expensive.  

 

GP was based on the principles of Darwin’s Evolution Theory. 

The motivation for the concept of evolution to be applied to 

artificial systems like dynamic program structures  stem from 

the fact that evolution is as a non-guided, goal-directed and a 

preprogrammed form of growth in natural systems[11]. 

   

Historically, GP is an extension of Genetic Algorithms [6]; It 

is a mathematical formulation of simulated evolution as a 

type of search algorithm [11]. Even though Genetic 

Programming is an extension of Genetic Algorithm, they are 

similar but only differ in the ways they represent problems 

[11]. Unlike Genetic Algorithm, GP uses variable length 

computer program [17]. This makes GP more expressive as it 

has the flexibility needed to express solutions to different 

problems using computer programs; but it is ‘a-time-

intensive’ algorithm [32]. 

 
It uses dynamic structure that evolves ‘computer programs’ to 

perform tasks by ‘means of natural selection’ [11]. GP is a 

technique of generating programmed solutions to problem 

automatically[29] using the genetic operations of 

reproduction, crossover, and mutation [17].  Genetic 

programming aspires to induce a population of computer 

programs that improve automatically as they experience the 

data they knew. [24] said it a machine learning method that 

could automatically solve problems and producing solutions 

with complex structure, including executable code. [19] 

asserted that it is a set of algorithm that mimic survival of the 

fittest, genetic inheritance and variation, and selectively 

‘breeding’ of parent population of program codes or structures 

and replacing them with more fit ‘offspring’ of programs 

codes or structures. Gustafson (2004) added that GP iterates as 

it finds solution close to or equal to the ideal solution in a 

solution space.  These computer programs that evolved are all 

likely ‘candidate solutions’.  

Therefore, we define Genetic Programming as the gradual 

evolution of computer programs that generate intermittent 

solutions known as candidate solutions in a solution space 

until the ‘best-so-far’ solution is attained.  “Genetic 

Programming executes iteratively. It begins with initial 

guesses at a solution and successfully improves a solution over 

time. Once a termination criterion is attained, GP returns the 

best individual so far as the solution to the problem” [4] 

 

Genetic Programming is a probabilistic, non-deterministic, an 

optimization and heuristic search technique [19]; [26]; [17]; 

[4]. It is probabilistic because it rarely gets a solution in 

precisely the form you contemplated and same result is rarely 

obtained twice as ‘anything can happen and nothing is 

guaranteed’[11].  It is an optimization technique because it 

searches through the ‘space of all possible’ programs for one 

that has the optimal fitness [4], It is a heuristic search 

technique because no obvious straight and easy path exist to 

the best or optimal solution [17].  As a ‘search technique’, GP 

initially explores the ‘solution space’ for good solution   and 

later exploits for better solution as evolution progress [3]; and 

hence it is generally considered to be a very time-consuming 

algorithm [31]. Consequently, [33] asserted that the massive 

disadvantage of GP is the phenomenal computing resources 

required before any real-world problem can be tackled. It was 

observed that the need for more ‘computational resources’ 

may reduce GP performance with difficult problems. 

However, the search for the optimal solution can only be 

attained by using randomization and brute-force.  

 

 

Genetic Programming is specified from Koza’s GP algorithm 

thus:  

 

Procedure GP; {  
 time t = 0; 

 initialize population P(time); 

 evaluate P(time);  

  until (done) { 

          t= t + 1; 

          parent selection P(t); 

          recombine P(t); 

          mutate P(t); 

          evaluate P(t); 

          survive P(t);  

         }  

} 

 

A simplified flow-diagram of Genetic Programming process is 

shown in figure2: 
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Figure2: Genetic Programming Flow-diagram. 

Source: http://www.geneticprogramming.com/Tutorial 

  

 

 

5.   METHODOLOGY 

 

In a ‘traditional software development’ process in which what to process and how to process it  has to be clearly specified, a 

choice of methodology could be made from standard methodologies like the ‘waterfall methodology’, spiral methodology, 

prototyping, incremental methodology, ‘Object-oriented methodology’, Simulation or Structured Systems ‘Analysis and Design’ 

Methodology (SSADM). For this research where the program structures are made to evolve, appropriate methodology therefore 

is the Evolutionary Methodology with inclination to Object-Orientation. This methodology uses the iterative process that evolves 

a final solution from an initial specification of well-defined and well-understood requirements by adding new features as the 

evolution progresses until a termination condition is met. However, we implemented the Santa Fe Ant Problem on Genetic 

Programming as in Figure3  
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Figure3: Genetic Programming Engine. 
 

The Santa Fe Artificial Ant Problem using Genetic Programming was implemented on a Microcomputer notebook with an Intel 

Pentium 250 quad core processor running on 2.16 GHz speed, with a Ram size of 4GB, a Hard disk capacity of 500GB and on 

Windows 8 operating system of 64-bit bus size. The Microsoft ‘Integrated Development Environment’ known as ‘Visual Studio’ 

was used to develop the initial software. Specifically, we used the Microsoft ‘Visual Studio 2010’ Ultimate ; and Visual C# 

(pronounced Visual C sharp) as the language of implementation. This language is Microsoft’s new-generation object-orientated 

programming language suitable for Window and Web applications. The parameters used are in Table1. 

 

Table1:  Parameters for ‘Santa Fe Artificial Ant Problem’ 

Problem ‘Santa Fe Artificial Ant Problem’ 

Objective To find a program that could direct an ‘artificial ant’ to find ‘89’ food pallets  on the 

‘Santa Fe Trail’. 

Terminal Set (Left), (Right), (Move) 

Function Set If-Food-Ahead, Prog2, Prog3 

Fitness cases As in See table 2 

Raw fitness Number of food pellets picked up before the artificial ant time out at its specified 

energy level 

Parameters Maximum population size = 500 and Generation = 51 

Success Predicates A score of ‘89’ food pellets 
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6.   RESULTS  
 

Using the algorithm on Artificial Ant problem at the different ant’s energy levels identified in the literature, the following results 

were obtained from Figure3 and presented in Table2  

 

Table2:  Artificial Ant Problem Data 

Initial 

Energy 

Level 

(Fitness  

cases) 

Unit 

Energy 

(approx.) 

 

Trail 

Length 

 

Fitness 

goal 

(Food 

Pellets) 

Number 

of 

Obstacles 

Best 

Program 

Fitness 

Average  

Program 

Fitness 

100 0.69 144 89 55 89 79.618 

200 1.38 144 89 55 88 77.194 

300 2,.08 144 89 55 89 77.022 

400 2.77 144 89 55 36 4.41 

540 3.75 144 89 55 25 3.636 

545 3.78 144 89 55 26 3.092 

600 4.16 144 89 55 65 4.248 

615 4.27 144 89 55 26 2.978 

 

 

7. DISCUSSION OF RESULTS 

 

In the first run of the algorithm, the Artificial Ant energy level of 100 is used with a fitness goal of 89 (ie. Number of food pallets 

to be eaten).  Using this energy level, the ant navigated along the blue trail in Figure4 with a best program fitness at 89 meaning 

that the ant ate all 89 food pallets along the trail. This is shown in associated line graph in Figure 5 with the best program fitness 

indicated by a green line and the average program fitness with red waving line. This means that at the ‘ant energy level’ of 100, 

the ‘artificial ant’ performed well. 

 
 

(a) Figure 4.   Santa Fe Artificial trail 1 

 
 

(b)  Figure 5  Line graph1 

                              

 
In the second run, the artificial ant’s energy level was increased to 200. Using this energy level, the ant navigated along the blue 

trail in Figure 6 the best program fitness became 88 meaning that the ant ate 88 food pallets along the trail while the average 

program fitness was ‘77. 194’. Both the best program and average program fitnesses are in Figure 7.    
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Figure 6 Santa Fe Artificial Ant trail 2 

 
 

(b)  Figure 7  Line graph2 

       

 
In Figure 7, the green line shows the best program performance while the red waving line shows  average program performance. 

 

In third run, the artificial ant’s energy level was increased to 300. Using this energy level, the ant navigated along the blue trail in 

Figure8 the best program fitness is 89 meaning that the ant ate all food pallets along the trail while the average program fitness 

was ‘77.022’. Both the best program and average program fitness are in Figure 9.    

 

 

 
 

Figure 8 Santa Fe Artificial Ant trail 3 

 

 
 

Figure 9  Line graph 3 

 
In Figure 9, the green line indicates the best program fitness while the red waving line is the average program fitness. 

 

The trend in the above run is that at the three energy levels of the artificial ant at 100, 200 and 300 there are no much difference 

in best program fitness and average program fitness and the artificial ant performance is at optimal level of performance. Beyond 

these level of 400, 540, 545, 600 and 615, the ant ability to eat food pallets began to drop. This is clear in figure 10. 

 

 
Figure 10. Ants energy level/food pallets eaten graph 
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In Figure 10, the first three twin bars indicate the best energy levels and food pallets eaten. Beyond these three, the food pallets 

eaten drops considerably as the ant energy level began to increase. 

 

8.  CONCLUDING REMARKS 

 

Different energy levels were used in GP literature. These energy levels have yielded different experimental results. Hitherto, 

researchers used these energy levels because others have used them without reasons. However, this research shows that artificial 

ant’s  ability to eat food pallets along the Sante Fe Ant trail is best when the ant’s energy is  at 100, 200 or 300; beyond these 

levels the ant ability is drastically affected. 
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