
Vol 8. No. 2 Issue 2 – August, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

61

Determining an Optimal Energy level of the Artificial Ant in the Classical

Santa Fe Artificial Ant Problem on the Platform of ‘Genetic Programming’

D. Oghorodi
Department of Computer Science,

College of Education

Warri, Delta State, Nigeria,

oghorodiduke@yahoo.com

dukeoghorodi@gmail.com

P.O. Asagba
Department of Computer Science,

University of Port Harcourt,

Port Harcourt, River State, Nigeria

asagba.princeuniport.edu.ng

ABSTRACT

Genetic Programming researchers have used different energy levels for the Artificial Ant on the Santa Fe Trail yielding different

results. The need to determine which energy level gives optimal ability of the Artificial Ant to eat more food pallets along the

Santa Fe Trail motivated this research. The Evolutionary Methodology was adopted in this research. The Santa Fe Artificial Ant

Problem was implemented on Genetic Programming Algorithm. Using the known ant’s energy levels in literature, we observed

that the Artificial Ant’s ability to eat food pallets (program fitness) is highest when ant’s energy level is the range of 100, 200 and

300; and beyond these, the ant’s ability to eat food pallets began to drop considerably

Keywords: Genetic Programming, Santa Fe Artificial Ant Trail Problem

African Journal of Computing & ICT Reference Format:

M D. Oghorodi & P.O. Asagba (2015): Determining an Optimal Energy level of the Artificial Ant in the Classical Santa Fe Artificial Ant

Problem on the Platform of ‘Genetic Programming. Afr J. of Comp & ICTs. Vol 8, No. 2, Issue 2. Pp 61-70. .

1. INTRODUCTION

The concept of Darwin Theory of Evolution in computing that

started in mid 60s is becoming more and more popular by the

day. Evidently, in the 60s, 70s and 90s, four different

implementations of Alan Turing’s ideas of evolution in his

proposed ‘evolutionary search’ were cultivated. These

implementations which came specifically in 1966, 1973, 1975

and 1992 were ‘Evolutionary Programming’ (EP),

‘Evolutionary Strategies’ (ES), Genetic Algorithm (GA) and

‘Genetic Programming’ (GP) respectvely.

These implementations collectively designated as the

Evolutionary Algorithms form the backbone of the

‘Evolutionary Computation’ [22]. Of the different subfields of

‘evolutionary computation’, Genetic Programming is a

comparatively young and a rapidly growing research area[15].

However, evolutionary algorithm’s solutions are satisfying

‘given current resources and constraints’, but not necessarily

optimal [5]; but used traditionally for ‘solving challenging

optimization problems’ [13].

However, Genetic Algorithms is the most popular as it

provides the finest grained ‘model of evolution’ by choosing

to manipulate bit strings analogous to genes on chromosome

[1]. Surprisingly, Koza who was fascinated and indeed

inspired by Holland’s works in Genetic Algorithm overtly

criticized the algorithm as being “difficult, unnatural, and

overly restrictive to attempt to represent hierarchies of

dynamically varying ‘sizes and shapes’ with fixed length

character strings and for many problems in machine learning

and artificial intelligence, the most natural representation for a

solution is a computer program.”[14]. [22] also lend his voice

by saying that Genetic Algorithm has difficulty in handling

problems dealing with ‘deceptive’ fitness functions.

One interesting thing about Genetic programming is

problem-independent algorithm that was used to solve

many real life and artificial problems. It is also an approach

for problems that have no well defined efficient solution; and

problems that its potential solutions can be adequately

measured and compared [29]. It is also well suited to difficult

control problems where no exact solution is known or required

[12], [13].

Vol 8. No. 2 Issue 2 – August, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

62

One of the areas where GP was rigorously applied is ‘Santa Fe

Artificial Trail Problem’. Since the classical Santa Fe provides

a static environment for foraging artificial ant, one expects

that there ought to be an optimal energy level for the ant

instead of the ‘different energy levels’ used in GP literature.

Against this backdrop, this research focused on how to find

the best energy level of a foraging artificial ant that will yield

the best result in the ‘Santa Fe Artificial’ Trail Problem.

This research work is structured as follows: I: Introduction, II:

The Real Ant behaviour and Ant Optimization Algorithms;

III: ‘Santa Fe Artificial Ant Problem’, IV: Genetic

Programming: an overview; V: methodology; VI: Results,

VII: ‘Discussion of results’; and VIII: ‘Concluding Remarks’

.

2. ANT’S BEHAVIOUR’ AND ANT OPTIMIZATION

 ALGORITHMS

In discussing the behaviour of the artificial ant in the ‘Santa Fe

Artificial Ant’ Problem, it is also pertinent to begin our

discussion from the behaviour of the natural ant. The natural

or real ants are ‘social insect’ that lives cooperatively in a

group known as the ant colony. The ant is a ‘tiny insect’ which

when in its colony can accomplish some complex task which

is not possible with individual ant alone. However, the ant

behaviour has been a subject of research in Artificial

Intelligence till date.

A foraging ant leaves its nest to explore and exploits its

environment for food; once it finds one, it leaves a trail of

secreted chemical called trail pheromone along the source of

important food to its nest. Once ant arrives its nest, other ants

follow the trail to food source. As the ants move from its nest

to its source of food and back, a high concentration of

pheromones chemical is laid on its trail thereby stimulating

both stigmergetic behavour [20] and autocatalytic process [21]

of the ant. In the popular and impressive ‘Diamond-Shaped

Bridge’ experiment denominated as ‘the double bride’ or

‘binary bridge experiment, path optimization behaviours of

stigmergetic and autocatalytic of the ant was demonstrated.

‘Stigmergy’ is indirect ‘communication mediated’ by

modifications of the environment. It is the influence of another

ant’s due to the environment modification with its pheromone.

Autocatalytic behaviour of ant is a collective behaviour. It

means that as more ‘ants follow a trail, it becomes more

attractive for more ants to followed’ such trail which causes

‘very rapid converges’ of the ant along the trail.

The ant optimizing behaviour is an act of an ant to follow a

shorter and more reinforce path with pheromone from ‘source

of food’ to nest or vice versa. Apart from pheromone that

guides the path of the ant, [2] also demonstrated in his

experiment that position of sun, gravity, slope and reference

objects can also guide its direction. This experiment and

others on the behaviour of the real or natural ants in their

colonies stimulated several ‘ant optimization algorithms’ in

‘Artificial Intelligence’ [21]. These optimization algorithms

are Ant System, System Elitist Ant, Ant-Q, Ant Colony

System, Max-Min Ant System, Ranked-based Ant System,

Ants and Hyper Cube-ACO[27] that use the basic ideas of

search and optimization techniques.

3. THE ‘SANTA FE ARTIFICIAL ANT PROBLEM’

The Artificial ant Problem is a simulation of the natural ant

behaviour in a digital environment [21]. It is a ‘multi-agent’

method from behaviors of real ants and local search algorithm.

The Artificial Ant Problem is an optimization problem

developed by Jefferson et al in 1991 [9] [27] but popularized

by [11]. The task of the artificial ant in the simulated ant

environment is to navigate along some paths or trails in

attempts to forage for all food pellets along such trails. Certain

benchmark problems used in Genetic Programming are based

on some of the known trails [7]; amongst which are San Fe

Trail, Los Altos Hills, John Muir Trail, and Auxiliary Trail

[27]. Earlier on, [7] also mentioned the San Matco Trail which

was built upon the ideas behind the Santa Fe Trail which is the

most famous and widely used in Evolutionary Computation.

See figure1

(a) Santa Fe Trail (32x32 grid)

Source: http://dev.heuristiclab.com

(b) Los Altos Hills trails (100x100 grid)

 Source: http://citeseerx.ist.psu.edu

Vol 8. No. 2 Issue 2 – August, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

63

(a) John Muir Trail (32x32 grid)

Source: http://www.genetic-programming.com

(b) Auxiliary Trail

 Source: http://www.researchgate.net

Figure 1: Artificial Ant Trails.

The ‘Santa Fe Trail Problem’ using Genetic Programming is a

metaphor for the historic 19th-Century transportation route of

1,400 km between America and Santa Fe in ‘New Mexico’

where travelers were faced with (problem or) hardship [35].

Hence it is appropriately known in computing as Santa Fe

Artificial Ant Trail Problem [36]. Figuratively, the Santa Fe

Artificial Ant Trail Problem is a 32 x 32 toroidal square grid

having a trail length of 144 cells with 89 food pellets

distributed randomly along the trail with a total of 55cells

being gaps within the 89 food pellets and 21 turns with 10 left

and 11 right turns along the trail [15]; [36]. Generally, the

objective of the ‘Santa Fe Artificial’ Ant Problem is to evolve

programs to control the artificial ant that will find all 89 food

pellets that are located on the discrete trail [28] using a

particular energy level. In traversing the trail for food pellets,

the artificial ant begins from the cell identified by (0, 0)

coordinate on the west of the grid and moves towards the east

of the trail.

The trails is marked by black or grey fields; the black fields

represent food pallets, while the grey fields represent obstacles

which the ant must overcome to eat a food pellet [25]. In a

related study of the artificial ant using the program landscape

and schema analysis, it was concluded that the artificial ant

following the ‘Santa Fe Trail’ is a difficult task. In agreement

with this,[36] stated that the ‘Santa Fe ant problem is

seemingly simple problem, but with complicated dynamics;

and that its hardness is as a result of ‘difficulty of searching’

its fitness landscape. However [10] opined that the solution to

Santa Fe Artificial Ant Problem’s hardness is resolvable with

a reduction in the search space through the removal of

ineffective operations that consume resources like energy of

the ant.

The ‘artificial ant’ moves along the trail using a sensor that

enables it to see only adjacent cell in its current direction. In

other words, for the artificial ant to locate food pellets along

the trail, the ant uses the food sensing function, IfFoodAhead

to check the field the ant is currently facing, if it senses food

pellets, the function returns the Boolean value of ‘true’ and

then the ant moves forward into the field containing food

pellet to eat it, otherwise it returns the value ‘False’ meaning

the field is an obstacle which must be overcome. The amount

of food eaten by the ant is the fitness measure of the ant

controlling program. Apart from the Move operation, the

artificial ant can also perform the operations of turn right, or

turn left as the case may be. The speed at which artificial ant

eats all ‘89’ food pellets is important. In estimating the speed

at which the ant traverses the trail for food pellets, it is

important to know the ant’s energy unit which is quotient of

the total steps the ant takes to eat the furthest pellets over the

trail length.

While trail lengths are fixed for all grids, the total steps the

artificial ant must take to consume all the food pellets in the

trail are predetermined for all problems. For instance in a

‘Santa Fe Trail’ which has a trail length of 144 cells and with

a predetermined steps of 400 will have approximate 2.7

energy unit per cell (ie 400/144). Therefore whenever the ant

takes a step, it consumes a unit less of its total energy[30];

[36]. [15] estimated the speed of the ant as the distance along

the trail to the furthest pellet the ant eats; divided by the

energy it consumed to get to that food pellet - if it does not eat

any, then its speed is zero. The total speed of the ant therefore

is the quotient of squares in the trail over the total steps the ant

must take to eat the furthest pellets. Therefore, for ‘Santa Fe

Trail’ that has 144 fields to be traversed with 400 steps, the

speed of the ant will approximately be 0.36 units per field.

Various researches used different initial energy in their works.

Some used 400 steps as in [17], [30], 545 steps as in [25]; 600

steps as in [36], [15], and 615 steps as in [10]. In determining

the behaviour of the artificial ant in dynamic environments,

Murphy, [23] used five different energy levels: 20, 42, 60,

100, and 140 in their experiment.

Vol 8. No. 2 Issue 2 – August, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

64

The pertinent question at this juncture is: is there an optimal

energy level for the artificial ant in Santa Fe Artificial Ant

Problem since environment is static.

4. GENETIC PROGRAMMING (GP): AN OVERVIEW

The objective of the ‘Santa Fe’ Artificial Ant Problem is to

evolve programs to control the artificial ant in trail [28]. The

only efficient means through which one can evolve programs

to direct the movement of the artificial ant to find and eat all

the ‘89’ food pellets located on the trail is by GP. Genetic

Programming automatically generates program codes, rather

than using lines of codes that are hand-written by

programmers, in the familiar method that is time-consuming,

tedious and expensive.

GP was based on the principles of Darwin’s Evolution Theory.

The motivation for the concept of evolution to be applied to

artificial systems like dynamic program structures stem from

the fact that evolution is as a non-guided, goal-directed and a

preprogrammed form of growth in natural systems[11].

Historically, GP is an extension of Genetic Algorithms [6]; It

is a mathematical formulation of simulated evolution as a

type of search algorithm [11]. Even though Genetic

Programming is an extension of Genetic Algorithm, they are

similar but only differ in the ways they represent problems

[11]. Unlike Genetic Algorithm, GP uses variable length

computer program [17]. This makes GP more expressive as it

has the flexibility needed to express solutions to different

problems using computer programs; but it is ‘a-time-

intensive’ algorithm [32].

It uses dynamic structure that evolves ‘computer programs’ to

perform tasks by ‘means of natural selection’ [11]. GP is a

technique of generating programmed solutions to problem

automatically[29] using the genetic operations of

reproduction, crossover, and mutation [17]. Genetic

programming aspires to induce a population of computer

programs that improve automatically as they experience the

data they knew. [24] said it a machine learning method that

could automatically solve problems and producing solutions

with complex structure, including executable code. [19]

asserted that it is a set of algorithm that mimic survival of the

fittest, genetic inheritance and variation, and selectively

‘breeding’ of parent population of program codes or structures

and replacing them with more fit ‘offspring’ of programs

codes or structures. Gustafson (2004) added that GP iterates as

it finds solution close to or equal to the ideal solution in a

solution space. These computer programs that evolved are all

likely ‘candidate solutions’.

Therefore, we define Genetic Programming as the gradual

evolution of computer programs that generate intermittent

solutions known as candidate solutions in a solution space

until the ‘best-so-far’ solution is attained. “Genetic

Programming executes iteratively. It begins with initial

guesses at a solution and successfully improves a solution over

time. Once a termination criterion is attained, GP returns the

best individual so far as the solution to the problem” [4]

Genetic Programming is a probabilistic, non-deterministic, an

optimization and heuristic search technique [19]; [26]; [17];

[4]. It is probabilistic because it rarely gets a solution in

precisely the form you contemplated and same result is rarely

obtained twice as ‘anything can happen and nothing is

guaranteed’[11]. It is an optimization technique because it

searches through the ‘space of all possible’ programs for one

that has the optimal fitness [4], It is a heuristic search

technique because no obvious straight and easy path exist to

the best or optimal solution [17]. As a ‘search technique’, GP

initially explores the ‘solution space’ for good solution and

later exploits for better solution as evolution progress [3]; and

hence it is generally considered to be a very time-consuming

algorithm [31]. Consequently, [33] asserted that the massive

disadvantage of GP is the phenomenal computing resources

required before any real-world problem can be tackled. It was

observed that the need for more ‘computational resources’

may reduce GP performance with difficult problems.

However, the search for the optimal solution can only be

attained by using randomization and brute-force.

Genetic Programming is specified from Koza’s GP algorithm

thus:

Procedure GP; {
 time t = 0;

 initialize population P(time);

 evaluate P(time);

 until (done) {

 t= t + 1;

 parent selection P(t);

 recombine P(t);

 mutate P(t);

 evaluate P(t);

 survive P(t);

 }

}

A simplified flow-diagram of Genetic Programming process is

shown in figure2:

Vol 8. No. 2 Issue 2 – August, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

65

Figure2: Genetic Programming Flow-diagram.

Source: http://www.geneticprogramming.com/Tutorial

5. METHODOLOGY

In a ‘traditional software development’ process in which what to process and how to process it has to be clearly specified, a

choice of methodology could be made from standard methodologies like the ‘waterfall methodology’, spiral methodology,

prototyping, incremental methodology, ‘Object-oriented methodology’, Simulation or Structured Systems ‘Analysis and Design’

Methodology (SSADM). For this research where the program structures are made to evolve, appropriate methodology therefore

is the Evolutionary Methodology with inclination to Object-Orientation. This methodology uses the iterative process that evolves

a final solution from an initial specification of well-defined and well-understood requirements by adding new features as the

evolution progresses until a termination condition is met. However, we implemented the Santa Fe Ant Problem on Genetic

Programming as in Figure3

Vol 8. No. 2 Issue 2 – August, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

66

Figure3: Genetic Programming Engine.

The Santa Fe Artificial Ant Problem using Genetic Programming was implemented on a Microcomputer notebook with an Intel

Pentium 250 quad core processor running on 2.16 GHz speed, with a Ram size of 4GB, a Hard disk capacity of 500GB and on

Windows 8 operating system of 64-bit bus size. The Microsoft ‘Integrated Development Environment’ known as ‘Visual Studio’

was used to develop the initial software. Specifically, we used the Microsoft ‘Visual Studio 2010’ Ultimate ; and Visual C#

(pronounced Visual C sharp) as the language of implementation. This language is Microsoft’s new-generation object-orientated

programming language suitable for Window and Web applications. The parameters used are in Table1.

Table1: Parameters for ‘Santa Fe Artificial Ant Problem’

Problem ‘Santa Fe Artificial Ant Problem’

Objective To find a program that could direct an ‘artificial ant’ to find ‘89’ food pallets on the

‘Santa Fe Trail’.

Terminal Set (Left), (Right), (Move)

Function Set If-Food-Ahead, Prog2, Prog3

Fitness cases As in See table 2

Raw fitness Number of food pellets picked up before the artificial ant time out at its specified

energy level

Parameters Maximum population size = 500 and Generation = 51

Success Predicates A score of ‘89’ food pellets

Vol 8. No. 2 Issue 2 – August, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

67

6. RESULTS

Using the algorithm on Artificial Ant problem at the different ant’s energy levels identified in the literature, the following results

were obtained from Figure3 and presented in Table2

Table2: Artificial Ant Problem Data

Initial

Energy

Level

(Fitness

cases)

Unit

Energy

(approx.)

Trail

Length

Fitness

goal

(Food

Pellets)

Number

of

Obstacles

Best

Program

Fitness

Average

Program

Fitness

100 0.69 144 89 55 89 79.618

200 1.38 144 89 55 88 77.194

300 2,.08 144 89 55 89 77.022

400 2.77 144 89 55 36 4.41

540 3.75 144 89 55 25 3.636

545 3.78 144 89 55 26 3.092

600 4.16 144 89 55 65 4.248

615 4.27 144 89 55 26 2.978

7. DISCUSSION OF RESULTS

In the first run of the algorithm, the Artificial Ant energy level of 100 is used with a fitness goal of 89 (ie. Number of food pallets

to be eaten). Using this energy level, the ant navigated along the blue trail in Figure4 with a best program fitness at 89 meaning

that the ant ate all 89 food pallets along the trail. This is shown in associated line graph in Figure 5 with the best program fitness

indicated by a green line and the average program fitness with red waving line. This means that at the ‘ant energy level’ of 100,

the ‘artificial ant’ performed well.

(a) Figure 4. Santa Fe Artificial trail 1

(b) Figure 5 Line graph1

In the second run, the artificial ant’s energy level was increased to 200. Using this energy level, the ant navigated along the blue

trail in Figure 6 the best program fitness became 88 meaning that the ant ate 88 food pallets along the trail while the average

program fitness was ‘77. 194’. Both the best program and average program fitnesses are in Figure 7.

Vol 8. No. 2 Issue 2 – August, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

68

Figure 6 Santa Fe Artificial Ant trail 2

(b) Figure 7 Line graph2

In Figure 7, the green line shows the best program performance while the red waving line shows average program performance.

In third run, the artificial ant’s energy level was increased to 300. Using this energy level, the ant navigated along the blue trail in

Figure8 the best program fitness is 89 meaning that the ant ate all food pallets along the trail while the average program fitness

was ‘77.022’. Both the best program and average program fitness are in Figure 9.

Figure 8 Santa Fe Artificial Ant trail 3

Figure 9 Line graph 3

In Figure 9, the green line indicates the best program fitness while the red waving line is the average program fitness.

The trend in the above run is that at the three energy levels of the artificial ant at 100, 200 and 300 there are no much difference

in best program fitness and average program fitness and the artificial ant performance is at optimal level of performance. Beyond

these level of 400, 540, 545, 600 and 615, the ant ability to eat food pallets began to drop. This is clear in figure 10.

Figure 10. Ants energy level/food pallets eaten graph

Vol 8. No. 2 Issue 2 – August, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

69

In Figure 10, the first three twin bars indicate the best energy levels and food pallets eaten. Beyond these three, the food pallets

eaten drops considerably as the ant energy level began to increase.

8. CONCLUDING REMARKS

Different energy levels were used in GP literature. These energy levels have yielded different experimental results. Hitherto,

researchers used these energy levels because others have used them without reasons. However, this research shows that artificial

ant’s ability to eat food pallets along the Sante Fe Ant trail is best when the ant’s energy is at 100, 200 or 300; beyond these

levels the ant ability is drastically affected.

REFERENCES

[1] Angeline, P.J. (1994). “Genetic Programming and

emergent intelligence”. Retrieved from:

http://citeseerx.ist.psu.edu/viewdoc/download?doi

=10.1.1.15.5594&rep=rep1&type=pd

[2] Bethe, A. (1898). Recognition of nestmates, trails.

Arch. Gesamt, Physiology. 70, 15-100.

[3] Burke, E., Gustafson, S., and Kendall, G. (2002). “A

Survey and ‘Analysis of DiversityMeasures’ in

‘Genetic Programming’ ”. Retrieved

from:http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.2.3757

[4] Dolan, K. (2009). “Beginners’ Guild to Genetic

Programming”. Retrieved on 19-03-2013 from:

http://www.geneticprogramming.us/Further_Readin

g.html.

[5] Eberbach, E. (2005). “Toward a theory of

evolutionary computation”. BioSystems, 82(1): 1-

19. Retrieved from:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=1

0.1.1.61.9316&rep=rep1&type=pdf

[6] Folino, G., Forestiero, A., and Spezzano, G. (2006).

“A JXTA based ‘Asynchronous Peer-to-Peer

Implementation’ of Genetic Programming ”.

Retrieved from:

http://www.academypublisher.com/jsw/vol01/no02/j

sw01021223.pdf

[7] Fagan, D, Nicolau, M., Hemberg, E., O’Neill, M.,

and Brabazon, A. (2011). “Dynamic Ant:

Introducing a new benchmark for Genetic

Programming in Dynamic Environments’ ”.

Retrieved from: https://csiweb.ucd.ie/files/UCD-

CSI-2011-04.pdf

[8] Gustafson, S.M. (2004). “Analysis of Diversity in

Genetic Programming”.(Doctoral dissertation,

University of Nottingham). Retrieved from:

http://www.gustafsonresearch.com/research/

publications/ phdthesis-gustafson.pdf

[9] Jefferson, D., Collins, R., Cooper, C., Dyer, M.,

Korf, M. F.R., Taylor, C., and Wang, A. (1991).

“Evolution as a theme in artificial Life’: ‘The

genesys/tracker system’ ”. Retrieved from:

http://ftp.cs.ucla.edu/tech-report/1990-

reports/900047.pdf

[10] Karim, M. R. and Ryan, C. (2012). “Sensitive Ants

Are Sensitive Ants”. Retrieve from:

https://www.lri.fr/~hansen/proceedings/2012/GECC

O/proceedings/p775.pdf

[11] Koza, J. (1992a). “Genetic Programming: On the

Programming of Computers by Means of Natural

Selection”. Retrieved

from:http://www.amazon.com/Genetic-

Programming-Computers-Selection-

Adaptive/dp/0262111705

[12] Koza, J.R.(1992d). “A genetic approach to finding a

controller to backup a ‘tractor-trailer’ ”.

American Control Conference, Chicago, IL, USA:

IEEE, (3): 2307-2311.

[13] Koza, J.R (1992e). “A genetic approach to the ‘truck

backer upper Problem’ and the ‘inter-

twined spirals problem’ ”. Retrieved from:

http://ieeexplore.ieee.org/iel2/632/5902/00227324.p

df

[14] Koza, J. (1994h). “ ‘Genetic Programming’ as a

Means for ‘Programming Computers by Natural

Selection’ ”. Retrieved from:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=1

0.1.1.127.6987

[15] Langdon, W. B and Poli, R (1998a). “Better Trained

Ants for Genetic Programming”. Technical Report

CSRP-98-12, University of Birmingham. Retrieved

from:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=1

0.1.1.46.634&rep=rep1&type=pdf

[16] Liang W. and Huang, C. (2009). “ The ‘generic

genetic algorithm’ incorporates with ‘rough set

theory’- An application of the ‘web services

composition’ ”. Retrieved from:

http://isiarticles.com/bundles/Article/pre/pdf/29508.

pdf

[17] Luke, S. (2000). “ Issues in ‘Scaling Genetic

Programming’: ‘Breeding Strategies’,

‘TreeGeneration’, and ‘Code Bloat’ ”, PhD

Dissertation, University of Maryland, Computer

science department. Retrieved from:

https://cs.gmu.edu/~sean/papers/thesis1p.pdf

Vol 8. No. 2 Issue 2 – August, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

70

[18] Maumita B. , Ajith A., and Baikunth N. (2001). “A

Linear Genetic Programming Approach for

Modeling Electricity Demand Prediction in

Victoria.” Retrieved

from:http://www.researchgate.net/publication/22098

1219

[19] McConaghy, T., ladislavleva, E., and Riolo, R.

(2010). “Genetic ProgrammingTheory and Practice :

An Introduction”. Retrieved from:

http://www.cs.mun.ca/~tinayu/Publications_files/gpt

p2005-1.pdf

[20] Merloti, P., E. and Lewis, J. (2005). “Simulation of

Artificial Ant’s Behaviour in a Digital

Environment” Retrieved from:.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=1

0.1.1.116.7759&rep=rep1&type=pdf

[21] Merloti, P., E. (2004). “Optimization Algorithms

Inspired by Biological Ants and Swarm Behaviour”.

Retrieved from:

http://www.merlotti.com/EngHome/.../AntsSim/Ant

OptimizationAlg.pdf

[22] Mitchell, M.(1995). “Genetic Algorithm:

Overview”. Complexity,1(1)31-39. Retrieved from:

http://ohm.ecce.admu.edu.ph/wiki/pub/Main/Resear

chProjects/mitchell_GA_tutorial.pdf.
 [23] Murphy E., O’Neill, M., and Brabazon, A. (2011).

“A ‘comparison of GE and TAGE’ in ‘dynamic

environments’ ”. Proceedings of the 13th annual

conference on Genetic and evolutionary

computation held in Dublin, Ireland. p431-438.’

[24] O’Neil, M. and Brabazon, A. (2009). “Recent

Patents on GeneticProgramming”. Retrieved from:

http://www.benthamscience.com /cseng/samples

/cseng2-1/0005CSENG.pdf

[25] Oplatková, Z. and Zelinka, I (2006). “Santa Fe Trail

For Artificial Ant With Simulating Annealing –

Preliminary Study “. Retrieved from:

http://www.scs-

europe.net/services/ecms2006/ecms2006%20pdf/77-

is.pdf

[26] Poli, R. and Langdon, W.B. (1998). “On the Search

of Different ‘Crossover Operators’ in Genetic

Programming”. Retrieved from:

http://dces.essex.ac.uk/staff/rpoli/papers/Poli-

GP1998.pdf

[27] Roy, S. (2013). “Bio-‘inspired Ant Algorithms’: A

review”. Retrieved from http://www.mecs-

press.org/ijmecs/ijmecs-v5-n4/IJMECS-V5-N4-

4.pdf

[28] Salehi-Abari, A., and White T. (2009). “The Uphill

Battle Of Ant Programming Vs.

GeneticProgramming”. Retrieved from:

http://www.cs.toronto.edu/~abari/papers/UphillBattl

e.pdf

[29] Soule, T. (1998). “Code Growth in Genetic

Programming”. PhD Dissertation, College of

Graduate Studies, Computer Science Department,

University of Idaho, USA. Retrieve from:

http://www,citeseerx.ist.psu.edu/viewdoc/doi=10.1.1

.38.8938&rep=rep1&type=pdf

[30] Suguira, H., Mizuno, T., and Kita, E. (2012).” Santa

Fe Trail Problem Solution Using Grammatical

Evolution”. International Conference on Industrial

and Intelligent Information. 5 (4): 36-40. Retrieved

from: http://www.ipcsit.com/vol31/007-ICIII2012-

C0015.pdf

[31] Tsutsui, S, and Collet, P. (2013). “Massively

Parallel Evolutionary Computation onGPGPUs”.

Retrieved from:

https://www.books.google.com.ng/books?id

[32] Wei, Y. (2003). “Profitable, Return Enhancing’

Portfolio Adjustments- An Application of Genetic

Programming with Constrained Syntactic

Structures”. M.Sc. degree project of the University

College, London. Retrieved

from:http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.57.4166

[33] Walker, M. (2001). “Introduction to Genetic

Programming”. Retrieved from:

http://www.cs.montana.ed/ ~ bwall/cs586/

introduction-to-gp.pdf

[34] Wikipedia (2015).” Artificial Ants”. Retrieved from:

https://en.wikipedia.org/wiki/Artificial_ants

[35] Wikipedia (2015). “Santa Fe Trail”. Retrieved from:

https://en.wikipedia.org/wiki/Santa_Fe_Trail .

[36] Wilson, D. and Kaur, D. (2013). “How Santa Fe

Ants Evolve”. Retrieved from:

http://arxiv.org/ftp/arxiv/papers/1312/1312.1858.pdf

