
Vol 8. No. 3 Issue 2 – October,  2015          
African Journal of Computing & ICT 

      
© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781 

www.ajocict.net   

 

 

1 

 

 

An  Industrial  Integrated Tool  Support   
 

Babatunde  A. O 
Department of  Computer Science 

 University of  Ilorin 

Ilorin, Nigeria  

babatunde.ao@unilorin.edu.ng 

 

Gbadeyan  J.A 

Department of  Mathematic 

University of  Ilorin 

Ilorin, Nigeria  

Gbadeyan.ja@unilorin.edu.ng 

 

Olabiyisi  S. O 
Department  of  Computer Science and  Engineering 

Lautech, Ogbomoso 

soolabiyisi@lautech.edu.ng 

 

 

ABSTRACT 

 

A Theorem Prover is a Computer Program that automates logical reasoning of finding proofs for some mathematical theorems. 

Examples of such tools are A Computational Logic for Applicative Common Lisp (ACL2) and Prototype Verification System 

(PVS). The motivation for this paper  was the observation that ACL2 tool can prove theorems in first order logic only while PVS 

tool proves theorems in higher order logic only. The above twotools which are application programs are neither flexible, nor 

scalable and therefore cannot prove some theorems within their domains. It was also observed that certain theorems exist for 

which ACL2 and PVS tools could only generate partial proofs. The  aim  of this paper was therefore to design a single tool that  

has the ability to generate proofs of some theorems of the two tools. The method used involved carrying out evaluation on the 

response of each of the tools to theorem problems. In the process, set notations were used. In particular, the tools were defined 

and represented as sets with their attributes representing members of the set. Integration was then carried out based on direct 

mapping of the two sets to obtain members of the set of the new tool. Furthermore, an algorithm was developed, and a Delphi 

Pascal programming language was used to implement the integration of the two tools. The findings showed that the developed 

tool is able to prove some theorems in set theory, e.g., equivalent set and Cartesian product set and also support proof of some 

real numbers analysis e.g. Cartesian product and relation equivalent among others . The new tool designed  called BT tool is also  

flexible and scalable. 

 

Keywords:  Industrial  Tool, Integration, Support, Computational Logic, Application Common Lisps (ACL2) & Prototype  

    Verification System (PVS) 

  
African Journal of Computing & ICT Reference Format:  

A.O Babatunde, J.A. Gbadeyan & S.O. Olabiyisi (2015): An  Industrial  Integrated Tool  Support . Afri J Comp & ICTs Vol 8, No.3 Issue 2 

Pp 1-12.        

 

INTRODUCTION 

 

Integration  describe a link between two tools that enables the 

strengths of properties of each tools to be deployed smoothly 

within a single formal development. Integration of formal 

methods can happen on many levels, including tools, 

languages, models, notations, methods, and techniques. Tool 

integration can happen on many levels. Possible choices and 

related issues  are  language extension (i.e. embedding): 

cumbersome, slow and inconvenient. , hard translation: (error 

prone) ,Point-to-point translation (i.e. features of one tool are 

added to another): does not produce elegant results, but could 

be acceptable.  

 

 

 

Generic frameworks: seems like the best approach to find 

some commonality between the tools and “glue” them 

together using this commonality. The information shared as 

the “glue” must exist in both tools. There are many possible 

commonalities between the tools, including: tools  sharing 

common language (e.g. VHDL); tools  sharing  common data; 

tools  having underlying inference systems that can be 

specified in rewriting logic. Integration of tools ought to share 

common interface. One approach is to have one tool produce 

output to be fed into another tool; another would be to be able 

to call one tool without exciting the other (i.e. have shared 

data).  



Vol 8. No. 3 Issue 2 – October,  2015          
African Journal of Computing & ICT 

      
© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781 

www.ajocict.net   

 

 

2 

 

 

The first approach is easier to implement but works more 

slowly in practice. Formal methods tools can be integrated 

into the existing “non-formal” toolkits, or can be integrated 

into separate formal toolkits such as Telelogic Tau toolkit. 

“Non-formal” toolkits are widely accepted in industry.  

Theorem provers  on the other hand are computer programs 

that automate the reasoning of finding proofs within a 

mathematical theory [Woodraw et al, 1985]. Examples  of  

theorem Provers are Prototype Verification System (PVS)  and 

A computational Logic for Application Common Lisp  

(ACL2).  

 

To understand what automated reasoning is, we must first 

understand what reasoning is. Reasoning is the process of 

drawing conclusions from facts. These conclusions must 

follow inevitably from the facts from which they are drawn. In 

other words, reasoning is not concerned with some 

conclusions that has a good chance of being true when the 

facts are true. Indeed, reasoning refers to logical reasoning, 

not of common-sense reasoning or probabilistic reasoning. 

The only conclusions that are acceptable are those that follow 

logically from the supplied facts. Automated reasoning is 

concerned with the study of using the computer to assist in the 

part of problem solving that requires reasoning [Wos, 1985] 

We can easily see that automated theorem provers are t he 

product of the automated reasoning field.  The idea of 

automated in reasoning is not new. Many of the greatest 

mathematicians and computer scientists of the century had 

thought of automated reasoning. All the historical information 

about the development of logic can be found in Martin Davis’ 

survey article [Davies, 1983].  

 

Leibniz recognized the necessity of three basic elements for 

automated reasoning: 1) A formal language, 2) Formal rules of 

inferences, and 3) Knowledge. In the nineteenth century, 

George Boole developed the propositional calculus which 

provided a language and a set of inference rules in which 

much ordinary common-sense reasoning can be expressed. 

The advantage of this language was that there was a procedure 

that would determine whether any sentence in the language 

was true or false in a finite amount of time. Unfortunately, the 

language of propositional logic is not expressive enough.  In 

1879, Gottlob Frege expanded the propositional language to 

full first-order logic which allows much more complex 

statements to be expressed and verified. It was David Hilbert 

in the early 1920’s who initiated a research program in which 

one of its goals was to discover a systematic procedure that 

would decide the truth or falsity of any statement in Frege’s 

first-order logic. Unfortunately, in the 1930’s, Church and 

Turning, based in Godel’s work, independently discovered 

that there is no procedure that will decide whether any given 

statement in first-order logic is true or false [Alonzo, 1995 

and Harry et al, 1981]. The decidability of the satisfiability 

of the first-order logic can be obtained by applying a reduction 

method to translate the first-order formula to any of the special 

classes of first-order formulas known for which there exists a 

procedure to determine the truth value [Alonzo, 1995]. One of 

these translation or reduce methods is the resolution method 

proposed by Robinson [Robinson, 1965] .  

A proof is a structure or sequence of well-formed formulas 

that can be built using a procedure in a finite amount of time, 

if each of the well-formed formulas in the sequence is either 

an axiom or is immediately derived from preceding well-

formed formulas in the sequence by means of one of the rules 

of inference2 [Alonzo, 1995]. If the procedure to build a proof 

is sound then the existence of a proof implies that the sentence 

is true. If it is complete then for every true sentence there must 

be a proof. There are several sound and complete procedures 

to determine the proof of a given first-order formula, such as 

sequent calculus and tableaur calculus etc [Melvin, 1983]. 

 

1.1  Industrial Uses of Theorem Provers 

Commercial use of theorem proving is mostly concentrated in 

integrated circuit design and verification,  

e.g since the Pentium FDIV bug, the complicated floating 

point units of modern microprocessors have been designed 

with extra scrutiny for removing bugs, and in the latest 

processors from AMD, Intel, and others, automated theorem 

proving has been used to verify that division and other 

operations are correct.  

 

1.2  Theorem Provers of ACL2 and PVS tools 
ACL2; (A Computational Logic for Applicative Common 

Lsp): is the name of a functional programming language based 

on Common Lisp, a first-order mathematical logic and a 

mechanical theorem provers. The theorem prover is used to 

prove theorems in the logic i.e theorems about functions 

defined in the programming language. ACL2, is sometimes 

called an “industrial strength version of the Boyer-Moore 

system,” a  product of Kaufmann and Moore, with many early 

design contributions by Boyer. The ACL2 theorem prover is 

interactive in the sense that the user is responsible for the 

strategy used in proofs. But it is automatic in the sense that 

once started on a problem, it proceeds without human 

assistance. In the hands of an experienced user, the theorem 

prover can produce proofs of complicated theorems.  

 

The ACL2 theorem prover is a computer program that takes 

formulas as input and tries to find mathematical proofs. It uses 

rewriting, decision procedures, mathematical induction and 

many other proof techniques to prove theorems in a first-order 

mathematical theory of recursively defined functions and 

inductively constructed objects [Alonzo, 1995]. It has been 

used for a variety of important formal methods projects of 

industrial and commercial interest, including:  Verification 

that the register-transfer level description of the AMD Athlon 

processor’s elementary floating point arithmetic circuitry 

implements the IEEE floating point standard [Russinoff, 1998 

and Russinoff et al, 2000]. Similar work has also been done 

for components of the AMD k5 processor [Moore et al, 

1998], the IBM Power 4 [Sawada, 2002] and the AMD 

Opteron processor,  verification that a micro architectural 

model of a Motorola digital signal processor (DSP) 

implements a given microcode engine [Brock et al, 1999] and 

verification that specific microcode extracted from the ROM 

implements certain DSP algorithms [Brock et al, 1999], 

verification that microcode for the Rockwell Collins AAMP7 

implements a given security policy.  



Vol 8. No. 3 Issue 2 – October,  2015          
African Journal of Computing & ICT 

      
© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781 

www.ajocict.net   

 

 

3 

 

 

This has to do with process separation [David et al, 2003], 

Verification that the JVM bytecode produced by the Sun 

compiler javac on certain simple Java classes implements the 

claimed functionality [Moore, 2003] and the verification of 

properties of importance to the Sun bytecode verifier as 

described in JSR-139 for J2ME JVMs [Liu et al, 2003], 

Verification of the soundness and completeness of a Lisp 

implementation of a BDD package that has achieved runtime 

speeds of about 60% those of the CUDD package (however, 

unlike CUDD, the verified package does not support dynamic 

variable reordering and is thus more limited in scope) 

[Sumner, 2000], Verification of the soundness of a lisp 

program that checks the proofs produced by the Ivy theorem 

prover from Argonne National Labs; Ivy proofs may thus be 

generated by unverified code but confirmed to be proofs by a 

verified Lisp function [McCune, 2000].  

 

Prototype Verification System (PVS) on the other hand  

consists of a specification language, a number of predefined 

theories, a type checker, an interactive theorem prover that 

supports the use of several decision procedures and a symbolic 

model checker, various utilities, including a code generator 

and a random tester, documentation, formalized libraries, and 

examples that illustrates different methods of using the system 

in several application areas.  It consists of specification 

language; a number of predefined theories, a theorem prover, 

of various utilities, documentation and have various examples 

illustrating deferent methods of using the system in several 

application areas. (Owrel et al, 1996). Typical applications of 

PVS include the formalization of mathematical concepts and 

proofs in areas such as analysis, graph theory, and number 

theory, the embedding of formalisms such as I/O automata, 

modal and temporal logics, the verification of hardware, 

sequential and distributed algorithms, and as a back-end 

verification tool for computer algebra as well as code 

verification systems.  

 

1.3 Related   Works 
The claim that the lack of tools is one of the major reasons for 

the difficulties of incorporating formal methods in industry is 

a misconception and a myth (Bowen and Hinchey, 1995).  

The actual reason is the lack of adequate, powerful, user 

friendly strength tools that will aid the application of formal 

methods to industry and allow them to be fully integrated with 

existing methods (Butler, 2001). The importance of providing 

means for connecting with external tools has been widely 

recognized in the theorem proving community. Some early 

ideas for connecting different theorem provers are discussed in 

a proposal for the so-called “interface logics” [Guttman, 

1991], with the goal to connect automated reasoning tools by 

defining a single logic L such that the logics of the individual 

tools can be viewed as sub-logics of L. More recently, with the 

success of model checkers and Boolean satisfiability solvers, 

there has been significant work connecting such tools with 

interactive theorem provers. The PVS theorem prover 

provides connections with several decision procedures such as 

model checkers and SAT solvers [Rajan et al, 1995 and 

Shanker, 2001].  

The Isabelle theorem prover [Nipkow et al, 2002] uses 

unverified external tools as oracles for checking formulas as 

theorems during a proof search; this mechanism has been used 

to integrate model checkers and arithmetic decision 

procedures with Isabelle [Muller et al, 1995 and Basin et al, 

2000]. Oracles are also used in the HOL family of higher 

order logic theorem provers [Gordon et al, 1993], for 

instance, the PROSPER project [Dannis et al, 2000], uses the 

HOL98 theorem prover-as a uniform and logically-based 

coordination mechanism, between several verification tools. 

The most recent incarnation of this family of theorem provers, 

HOL4, uses an external oracle interface to decide large 

Boolean formulas through connections to state-of-the-art of 

Binary Decision Diary (BDD) tool and SAT-solving libraries 

tool [Gordon, 2002], and also uses oracle interface to connect 

HOL4 with ACL2. (Meng and Paulson , 2004], interface 

Isabelle with a resolution theorem prover.  

 

In 1991, Fink et al, described a proof manager called PM 

[George et al, 1991], that enabled HOL input to be 

transformed into “first-order assertions suited to the Boyer-

Moore prover.” In 1999 Mark Staples implemented a tool 

called ACL2PII for linking ACL2 and HOL98 [Mark, 1991]. 

ACL2PII was used by Susanto and Melham [Kong, 2003]. 

Both PM and ACL2PII provided ways of translating between 

higher-order logic and first-order logic., when translating from 

untyped Boyer-Moore logic to typed higher-order logic it can 

be hard to figure out which types to assign. Staples points out 

that the ACL2 S-expression NIL might need to be translated to 

F (Boolean type), or [ ] (list type) or NONE (option type), 

depending on context. The ACL2PII user has to set up 

“translation specifications” that are pattern-matching rewrite 

rules to perform the ACL2-to-HOL translation. These are 

encoded in ML and are thus not supported by any formal 

validation. In 2006, Mike Gordon, Warren A. and Matt 

Kaufmann also integrated HOL and ACL2.  

 

1.4 Motivation for Integrating ACL2 and PVS Tools 
Research showed that ACL2 tool can only prove theorems in 

first order logic while PVS tool prove theorems in higher 

order logic only.  The above two tools which are also 

application programs designed to prove some selected 

theorems are not flexible, not scalable and therefore cannot 

prove some theorems within their domains. It was also 

observed that certain theorems exist for which ACL2 and PVS 

tools could only generate partial solutions, hence a motivation 

for their integration. 

 

 

 

 

 

 

 

 

 

 

 

 



Vol 8. No. 3 Issue 2 – October,  2015          
African Journal of Computing & ICT 

      
© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781 

www.ajocict.net   

 

 

4 

 

 

2. MATERIAL AND METHOD  
 

The  study  worked on existing tools and carried out performance evaluation of the existing theorem provers, case study of ACL2 

and PVS tools. The evaluation was carried out based on the response of each of the tools to theorem problems for them to prove. 

And as a result, a list of attributes of each of the tools was obtained, based on the responses and performance of the provers on 

selected theorems (problems). Using set notations, the tools are defined and represented as set with their attributes representing 

members of the set. Integration was carried out based on the direct mapping of the two sets (ACL2 and PVS) to obtain the 

members of the set of the new tool. 

 

 

      -PVS properties                        ACL2 properties 

 

                                   Direct functional tool  

                                     Evaluation 
 

 

 

 

                                   Direct mapping of 

         functional evaluated  

     attributes single tool 

 
                        

 

 

                           Integrated PVS  and ACL2 tool 
 

  
 

Fig 3.1Framework for the integration of ACL2 and PVS tools 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Vol 8. No. 3 Issue 2 – October,  2015          
African Journal of Computing & ICT 

      
© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781 

www.ajocict.net   

 

 

5 

 

 

Yes 

No 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Flowchart showing the integration of ACL2 and PVS tools 

 

 

 

 

 

Start 

Stop 

Generate the interface 

Initialize properties 

Get ACL2 Properties 

Direct Mapping of functional properties 

Tool Integration Implementation 

Reset properties and 

rework design 

Get PVS Properties 

Design tool 

evaluation 

satisfiable? 

Implement the hybrid tool interface 



Vol 8. No. 3 Issue 2 – October,  2015          
African Journal of Computing & ICT 

      
© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781 

www.ajocict.net   

 

 

6 

 

 

3.2.1  Functional system design representation 
Let x represent a logic theorem (problem). Note that a logic theorem represents the computational problem solvable or 

provable by theorem provers (ACL2, PVS) under consideration. 

Let xp(1), xp(2), xp(3), xp(4), xp(5) represent the intrinsic (characteristics) properties of X. 

Such that, X= { xp(1), xp(2), xp(3), xp(4), xp(5)} 

X is made up of sub-problems 

Challenge 
Derive a single tool (theorem prover) efficient enough to prove  xp(1), xp(2), xp(3), xp(4), xp(5) at a single evaluation 

After evaluation of the problem (theorems) using ACL2 and PVS tools 

Observation 1 
With ACL2 theorem prover 

X is partially solvable 

Assumption 

 xp(1), xp(2) are solvable using ACL2 

  xp(5), xp(3), xp(4) remain unsolvable after evaluation using ACL2. 

 

 

Observation 2 

With PVS theorem prover 

X is still partially solvable 

Assumption 

xp(1), xp(2) are unsolvable using PVS 

xp(3), xp(4), xp(5) are solvable by PVS 

Note that xp(5) is solvable by both i.e xp(5) is not a concern of this study. 

 

TASK: Integration of functional properties of ACL2 and PVS tools efficient enough to prove all the sub-problem at once. 

 

3.2.2 Mathematical representation of PVS tool using set notation 
The attributes of PVS tool are: 

i. Prove some theorem in set theory (ST) e.g. equivalent set and Cartesian product set. 

ii. Supports prove of some real numbers analysis (RN) e.g. Cartesian product and relation equivalent. 

iii. Supports prove of some quantifier reasoning (QR) e.g. expression translation from logical reasoning to English 

expressions. 

iv. Some Mathematical concepts formalization proving(MCF) e.g. character case support and Fibonacci support 

v. Support some inductive proof checking (IPC) e.g. principle of mathematical induction, well-typed functions and 

complex rational analysis. 

Let the attributes of PVS tools be represented in terms of set notation 

Thus: PVS= {ST, RN, QR, MCF, IPC} 

 

3.2.2 Algorithmic Design of the proposed integrated tools  
1. Start the design 

2. Get PVS properties 

3. Get ACL2 properties 

4. Initialize the properties 

5. Map the functional properties of the tools directly 

6. Implement tool integration modules  

7. Integrate PVS and ACL2 tool 

8. Implement the Interface  

9. Generate the interface 

10. If design tool evaluation is satisfiable goto 11 else goto 2 

11. Stop 

 

3.2.3  Mathematical representation of ACL2 using set notation 
The attributes of ACL2 tool are: 

i. Some inductive proof checking (IPC) e.g. principle of mathematical induction, well typed functions and complex 

rational analysis. 

ii.  Some complex rationales support(RCR) 

iii. Some well typed functions support (WTF) 

Let the attributes of ACL2 tool be represented in terms of set notations  



Vol 8. No. 3 Issue 2 – October,  2015          
African Journal of Computing & ICT 

      
© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781 

www.ajocict.net   

 

 

7 

 

 

Thus: ACL2= {IPC, RCR, WTF} 

3.2.4  Mathematical representation of Integrated Theorem Prover (ITP) 
Let ITP tool represent the integration of ACL2 and PVS tools. 

 In terms of set relation, ACL2 and PVS tool are subset of ITP tool 

ACL2 ϵ ITP 

PVS ϵ ITP 

ITP= {ACL2, PVS} 

ITP= ACL2 U PVS 

Thus: 

ITP = {ST, RN, QR, MCF, IPC, RCR, WTF} 
It can be said that, the union of the member of the ACL2 and PVS subset are members of the ITP set. 

 

 

3.2.5  System (pseudocode) design  
Class pvs_acl2 (pvs, acl2, bt, pvs_att, acl2_att, bt_att) 

 

begin 

pvs_att:=pvs; 

acl2_att:=acl2; 

bt_att:= nil;  

bt_att:=pvs_att + bt_att; 

bt_att:=acl2_att + bt_att; 

bt:= bt_att; 

end; 

 

 

4. RESULTS AND   DISCUSSION 

 

4.1 Implementation of the Design 

The figure 4.2  below explicitly analyses the attributes of ACL2 and PVS and then incorporated the attributes to a new tool 

defined as BT Tool. The attributes of the ACL2 tool is a shown below. The ACL2 tool takes formulae as input and find 

mathematical proofs. It uses rewriting decision procedures, mathematical induction and many other proof techniques to prove 

theorems in a first-order mathematical theory of recursively defined functions and inductively constructed objects in the 

integrated design BT tool (Alonzo, 1995). The PVS tool in the design support several decision procedures and various utilities, 

documentation and formalized libraries, that illustrates different methods of using the designed integrated BT tool for several 

application areas. It also support proofs theorems in set theory and prove of some complex rationals. It helps to translates 

quantifiers logical input of the designed BT tool to a more conceptual format. The inference rules can be supplied as inputs and 

the definitions will be generated as output by the integrated BT tool. It also takes hints or lemma as input, stimulates it and 

displays the closest related definition and the proof as output. It takes a concept definition as input, formalized it and displays the 

syntax equivalent as output in the BT tool. It also takes a set of theorems as input, stimulates the input and displays the closest 

related definition and the proof in the designed BT tool as output.  



Vol 8. No. 3 Issue 2 – October,  2015          
African Journal of Computing & ICT 

      
© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781 

www.ajocict.net   

 

 

8 

 

 

 
 

Figure 4.2: Start-Up Page for the BT Tool design 

 
The attributes of ACL2 as shown in figure 4.3  include complex rationals support ,  well-typed functions and support Inductive 

Proof Checker. These attributes as incorporated in ACL2 makes its function independently as a tool before being incorporated in 

the integrated BT tool. The function include taking formulae as input and finding it mathematical proofs. It also takes decision 

procedures, mathematical induction and many other proof techniques to prove theorems. For examples it takes real value 

numerator, real value denumerator, operator, imaginary value numerator, and imaginary value denumerator in the complex 

support prove as input to generates the detail equation as output solution. Also Figure 4.4 shows an example of  the 

implementation of operational behavior of the complex rational support attribute of ACL2. It takes RealVal Numerator, RealVar 

Denominator, Operator, Imaginary Value Numerator and Imaginary Value Denominator as input at two consecutive iterations 

and then generates the detailed equation and the overall solution to the problem as output.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Testing of the Attributes of ACL2 tool in the Design 



Vol 8. No. 3 Issue 2 – October,  2015          
African Journal of Computing & ICT 

      
© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781 

www.ajocict.net   

 

 

9 

 

 

4.5 Testing of the Attributes of PVS tool in the Design 
The figure 4.5 shows the attributes of PVS. The basic attributes include support for theorems in set theory, supports for real 

number analysis, support for quantifiers reasoning, supports for proof of analysis and support for formalization of mathematical 

concepts. These attributes are inherited in PVS tool before it is integrated in the designed BT tool. The above attributes helps to 

translate logical input to a more conceptual understanding. And also supplies inferences as input and generates the resultant 

definition as output. For example it takes a concept definition as input formalized the input and display the syntax equivalence as 

output. It also takes a set theorem as input, stimulates the input and displays the closest related definition as output.  

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Attributes of PVS tool in the Design 

. 



Vol 8. No. 3 Issue 2 – October,  2015          
African Journal of Computing & ICT 

      
© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781 

www.ajocict.net   

 

 

10 

 

 

 

 

Figure 4.6: Testing of the Attributes of the New Design BT Tool 



Vol 8. No. 3 Issue 2 – October,  2015          
African Journal of Computing & ICT 

      
© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781 

www.ajocict.net   

 

 

11 

 

 

4.7  Performance Evaluation 
Performance evaluation can be defined as assigning 

quantitative values to the indices of the performance of the 

system under study. Evaluating and analyzing integrated 

system is difficult due to the complex interaction between 

application characteristics and architectural features. To 

study the performance of the integrated BT tool designed 

and the existing PVS tool and ACL2 tool. The following 

parameters are used: 

a. Output statistics-this parameter examines the 

capabilities of the technique towards providing 

the desirable integrated tool. 

b. Accuracy-this factor evaluates the validity 

(ability of a tool to achieve its objective) and 

reliability (ability of a tool to meet its 

requirement specification) of the integrated tool. 

c. Cost/effort-this parameter investigates the cost 

and effort invested in each performance 

evaluation strategy in context with computer and 

human resources. 

d. Resource consumption-this parameter examines 

the amount of resources consumed/required by 

the performance of the new integrated tool. 

e. Time consumption- this parameter examines the 

amount of time consumed/required by the 

performance of the designed tool. 

f. Trustability/Believability- these parameters 

reveals how much one can trust on the results of 

performance of the integrated tools. 

g. Scalability complexity-this parameter examines 

the ability of the integrated tool acceptance of 

other tools attributes or complexity involved in 

scaling during performance of the integrated 

designed tool. 

h. Flexibility-this parameter examines the flexibility 

of performance towards adapting the 

modifications or inherited attributes made to the 

integrated tool and checking their effect. 

 

 

TABLE1: Showing comparison of performance evaluation techniques 

CHARACTERISTICS ACL2 PVS BT TOOL 

(INTEGRATED TOOL) 

Output Statistics Low Medium High 

Accuracy Medium Medium High 

Cost/Effort Low Medium High 

Resource consumption medium High Low 

Time consumption medium High Low 

Trustability Low Medium High 

Scalability None None High 

Flexibility None None High 

 

 

4.8.1 Analysis of Tools Performance 
From the table 1 above, it is seen that the integrated BT  

tool designed is very flexible and scalable compare to 

ACL2 and PVS tool which is neither scalable nor flexible . 

The PVS tool is also more Trustable than ACL2 tool in its 

performance. The cost and effort of getting the integrated 

BT tool designed is more than that of the PVS tool and 

ACL2 tool. Though the cost and effort of getting ACL2 

tool is lower than that of the PVS tool. The time taking for 

the performance of the integrated  BT tool design is 

however less compare to PVS tool. PVS tool also spend 

more time in its performance compare to ACL2 tool. The 

integrated BT tool design consume less resources for its 

performance compare to PVS tool (high) and ACL2 tool 

(medium). The PVS and ACL2 tools have lower 

performance output than the integrated BT tool. The above 

analysis of the three tools show that the integrated BT tool 

has overall best performance evaluation than the existing 

PVS and ACL2 tools. 

       

 

 

 

 

5. CONCLUSION 
 

A design and implementation of an Industrial Integrated 

Tool Support was carried out in this study. The new tool 

designed hereby called BT tool inherited the attributes of 

ACL2 and PVS tools. The new tool developed is able to 

prove theorem in set theory and  prove of some complex 

rationals. The tool developed was also flexible (integrate 

well with existing tools) and scalable (accept attributes of 

existing tools and any other tools attributes that want to 

integrate with it in the future). The new tool is of economic 

advantage to industries because it saves time and money. 

The study has been able to increase the number of formal 

methods tools in industry. 

 

 

 

 

 

 

 

 



Vol 8. No. 3 Issue 2 – October,  2015          
African Journal of Computing & ICT 

      
© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781 

www.ajocict.net   

 

 

12 

 

 

 

 

REFERENCES 
 

[1] Butler R.W. (2001) “What is Formal Methods? 

Retrieved on 2006.Michael Hollowing (2006) 

“Why Engineers should consider Formal 

Methods. 16th Digital System Conference.Clake 

E.M. 398- 401 

[2] Craigen D. Gerhart S. (1995) “Formal Methods 

reality check, Industrial usage, IEEE Trans 

Software Engineering 21(2), 90-98.   

[3] Formal Methods Europe 

http://www.fmeurope.org 

[4] Formal Methods Virtual Library. 

http://www.afm.sbu.ac.uk/ 

[5] Gordon M. (2002), “Programming Combinations 

of Deductions and BDD-based Symbolic 

Calculation, Journal of Computation and 

 Mathematics pp. 56-76.  

[6] Guttman J.D. (1991) “a Proposal Interface Logic 

for Verification Environment, Tech Rep pp. 19-

91.  

[7] Kefas, P and Kapeti, E (2000) “A Design 

Language and Tool for X machine specification” 

World Scientist Publishing Company pp 134-135. 

[8] Michael J.,Gordon C,Warren A.,and James 

 R.(2006) “An Integration of HOL and 

ACL2” IEEE Computer Society Press,pp 153-

160. 

[9] Mike G. Warren A. and Kaufman, M. 2006 “An 

integration of HOL and ACL2 fifth International 

Conference on integrated formal methods tools” 

Dec 2005 Netherland. 

[10] Moore J., Lynch T. and Kaufmann, M. (1998) “A 

Mechanically checked proof of the Correctness of 

the Kenel of the AMD5K86 floating - point 

 division Algorithm, IEEE Transactions 

on Computer 47(9), pp. 913-926. 

[11] Rojan, S. Shanker M. and Strivas K. (1995), “An 

Integration of Model Checking with Automated 

Proof Checking” Proceedings of the 8th 

International Conference on Computed Aided 

Verification Proving in Higher-order Logic 

(CAVAS), vol. 939, pp. 84-97. 

 

 

 

 

 

 

 

 

 

 

 

 

 

[12] Russinoff, D. (1998) “A Mechanically checked 

proof of IEEE compliance of a register transfer - 

level specification of the AMD-K7 floating - 

point multiplication, division and square root 

instructions” London Mathematics Journal of 

Computation and Mathematics (1) pp. 448-200.  

[13] Sawada J. (2002), “Formal Verification of Divide 

and Square root Algorithms using series 

calculation” Proceedings of the ACL2 Workshop, 

Grenoble. 

[14] Shanker, N. (2001), “Using Decision Procedures 

with Higher Order Logics,” Proceedings of the 

14th International Conference on Theorem 

Proving in Higher-Order Logics Vol. 2152 pp. 5-

26.  

[15] Somerville I. (2001) “Software Engineering, 6th 

Edition, Addison-Wesle. 

[16] Woodrow W. and Henshen L. (1985) “What is 

Automated Theorem Proving”? Journal of 

Automated Reasoning (1) 1, pp. 23-28.  

[17] Wos, L. (1985) “What is Automated Reasoning? 

Journal of Automated Reasoning. 1 (1) pp. 6-8. 

[18] World Wide Web Virtual Library on Formal 

Methods (WWWVLFM) 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


