
Vol 8. No. 4, December, 2015           
ISSN 2006-1781 

African Journal of Computing & ICT 

      
© YEAR  Afr J Comp & ICT – All Rights Reserved 

www.ajocict.net   

 

 

                  

201 

 

 

Light-Weight Client/Server Transaction Processing Architecture for 

Ubiquitous Computing Environment 
 

P. Spencer 
Department of Computer Science 

Ignatius Ajuru University of Education 

Rumuolumeni, Rivers State, Nigeria.  

patsyspency2013@hotmail.co.uk 

 

E.O. Nwachukwu 
Department of Computer Science 

University of Port Harcourt 

Rivers State, Nigeria 

enoch.nwachukwu@uniport.edu.ng 

 

 

ABSTRACT 
 

Database transaction processing systems take a central position in all information-based community. As such, the correctness and 

efficiency of database management systems in ubiquitous computing environment is essential. The optimal performance of 

information processing system in ubiquitous computing environment is greatly influenced by the structural organisation of 

system components and communication technique of the system. Existing transaction processing models suffer an unbearable 

setback which may have been due to poor structural organisation or communication technique employed. For optimal realisation 

of ubiquitous computing, the structural organisation of system components and communication techniques must provide effective 

support for real-time processing. This work therefore reviews existing system architectures with the aim of identifying the most 

suitable system architecture for ubiquitous computing environment. The choice of a three-tiered, light-weight client/server system 

architecture is to provide effective load management architecture and to avoid the negative effect of short battery life and other 

issues associated with mobile user devices on transaction processing in ubiquitous computing environment.  

 

Keywords: Ubiquitous Computing, Transaction, Client, Server, Architecture, and light-weight  

  
African Journal of Computing & ICT Reference Format:  

P. Spencr & M. E.O. Nwachukwu&  (2015): Light-Weight Client/Server Transaction Processing Architecture for Ubiquitous Computing 

Environment. Vol 8, No. 3. Pp 201-.208.  

 

1. INTRODUCTION 

 

Generally, an architectural design defines a system’s pattern 

structural organisation [1]. It determines the components (That 

is, objects and methods in object-oriented design approach) 

and connectors (that is, communication infrastructure) that can 

be used in the design together with a set of limitations 

(relating to topology, structural description, and execution 

semantics) on how they can be put together.  The optimal 

performance of any information processing system is greatly 

influenced by the system’s architectural design and employed 

communication technique. Transaction processing Systems in 

ubiquitous computing environment are not left out of this 

phenomenon. However, the performance of existing 

transaction processing systems for ubiquitous computing may 

not have satisfactorily exhibited the full potentials of real-time 

processing, greatly due to poor architectural design of the 

information processing system.  

 

 

 

 

 

Focusing on the structural organisation of transaction 

processing components in ubiquitous computing environment, 

this work first takes a look at existing transaction processing 

architectures and then presents a three-tier, light-weight 

client/server architecture as the most suitable system 

architecture for ubiquitous computing environment. With this, 

the negative effect of short battery life and other unhealthy 

interferences associated with mobile user devices are taken 

care of in addition to effective system load distribution. 

. 

2. MATERIALS AND METHODS 
 

Employing an object-oriented methodology, the components 

of the proposed system architecture (mobile devices, 

Application Server, Transaction server, and Processing Units 

(data sources)) are seen as different objects coming together to 

achieve a common goal. They are treated as objects because 

they preserve the integrity of their individual representations 

in a transparent manner and communicate with each other via 



Vol 8. No. 4, December, 2015           
ISSN 2006-1781 

African Journal of Computing & ICT 

      
© YEAR  Afr J Comp & ICT – All Rights Reserved 

www.ajocict.net   

 

 

                  

202 

 

 

appropriate communication protocol and information 

management support systems [2]. This strategic organisation 

provides effective load management architecture.  

 

To appreciate the significance of the proposed architecture on 

ubiquitous computing, an overview of the evolution of 

transaction processing architectures and their impact on 

ubiquitous computing is first presented. After which a critical 

analysis of the proposed architecture and its impact on 

ubiquitous computing is emphasised on.  Ubiquitous 

computing paradigm is concerned with the ability of a user 

with a mobile computing device (wearable and handheld) to 

be able to access information residing in different computers 

as though the information is in the user’s computer [3].  

Information processing in ubiquitous computing environment 

with inherent distributed database systems could be very 

challenging [4]. Especially, distributed systems like security 

and error handling, are inherently difficult [4]. Software 

applications developed to support ubiquitous computing are 

faced with challenges that come with the technology. The 

challenges are mainly related to mobility, interconnectivity, 

and context-awareness. These challenges affect the smooth 

flow of transaction processing activates.  

 

A transaction is a collection of several operations that form a 

single logical unit of work [4].  However, a user (That is, the 

physical user) sees a transaction as a single operation A 

review of the evolutional trend of transaction processing 

system architectural designs shows a shift from centralized 

single-user and multi-user architecture to a variations of 

client/server transaction processing architectures.  

 

Let’s look at these architectural design trends and their impact 

on ubiquitous computing. Having in mind that they all have 

the following basic transaction processing components: 

i. End-user device 

ii. Front-end program 

iii. Request controller 

iv. Transaction server 

v. Database system 

 

2.1 Centralized single-user and multi-user architecture 
Figure 2.1 represents a centralized single-user transaction 

processing architecture whereas Figure 2.2 represents a 

centralized multi-user transaction processing architecture. In 

the centralized architecture, the user module and database 

management system (including data sources) reside in the 

mobile device [5]. Every transaction management system is 

expected to ensure that the ACID (Atomic, Consistency, 

Isolation, and Durability) properties of a database are upheld. 

This means that: 

1. a transaction happens in its entirety or not at all 

should there be any kind of failure. 

2. If the database is consistent before an execution, 

even after the execution of a transaction, the 

database remains consistent. This property is also 

known as correction requirement. 

3. Multiple transactions execute concurrently (i.e. 

request CPU attention at the same time) occur 

transparently without conflict. 

4. Transaction management guarantees the successful 

completion of a transaction and ensuring that all 

updates carried out on the database persist (that is, 

remains the same) even if there is a system failure 

after the transaction completes execution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Centralized Single user transaction processing system architecture 
 

 

 

 

User device module 

Centralized 

system 

Presentation 

services 

Mobile 

Applications 

Database DBMS 



Vol 8. No. 4, December, 2015           
ISSN 2006-1781 

African Journal of Computing & ICT 

      
© YEAR  Afr J Comp & ICT – All Rights Reserved 

www.ajocict.net   

 

 

                  

203 

 

 

The centralized single user architecture of a transaction processing system is made up of the user module that deals with the 

management of presentation objects such as forms and procedures for information going to/from the user interface [5]. It also has 

the responsibility of managing user request (that is, transaction) and interaction directly with the database management system 

(DBMS).  This phenomenon creates no attention to the ACID properties of database [5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Multi- User transaction processing system architecture 
 

The centralized multi-user architecture has a system 

organization where dumb terminals are connected. The dumb 

terminals are connected via a communication link to a 

mainframe computer. Unlike the centralized single-

user architecture, in the centralized multi-user system 

architecture, the application and presentation services are 

handled in the mainframe (which serves as a server) allowing 

more than one user connection [5]. Since different user 

modules are given access to the same database items, ACID 

property check is required. The database management system 

takes responsibility of managing transactions ensuring that 

Atomicity, Isolation (possibly via interleaved schedule), and 

Durability are properly handled in order to maintain data 

integrity. Transaction processing system architectural design 

moved from the centralized (non-layered) architecture to the 

client/server (layered-layered) architecture [1] and allows the 

organisation of system components to be done in two ways.  

 

One way is by dividing the structure into two tiers and the 

other is dividing the structure into three tiers.  [6] explains that 

one of the demands of database system transaction 

management is to achieve a high degree of concurrency by 

taking into consideration the semantics of high-level 

operations and that implementing of such operations must give 

attention to conflict on the storage representation levels. In 

order to achieve these characteristics, layered system 

architecture is required. The following sub-sections present 

two variations of layered transaction processing system 

architectures (Figures 2.3 and 2.4) and the proposed system 

architecture for ubiquitous computing which is based on the 

three-tiered layered model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Two-tier client/Server transaction processing system architecture 

 

M obile 

User 

Device 

1 

M obile 

User 

Device 

n  

Dum b 

Term inals Centralized system  

User device m odule 

Database DBM S 

. . . 

Presentation 

services 

M obile 

Applications 

Presentation 

services 

M obile 

Applications 

 

D a ta b a s e  s e rv e r  s y s t e m  C lie n t  s y s te m  

D a ta b a s e  D B M S  

. . . 

P r e s e n t a t io n  

s e r v ic e s  

M o b ile  

A p p lic a t io n s  

P r e s e n t a t io n  

s e r v ic e s  

M o b ile  

A p p lic a t io n s  

T ie r  2  T ie r  1  

M o b ile  
U s e r  

D e v ic e  
1  

M o b ile  
U s e r  

D e v ic e  
n  



Vol 8. No. 4, December, 2015           
ISSN 2006-1781 

African Journal of Computing & ICT 

      
© YEAR  Afr J Comp & ICT – All Rights Reserved 

www.ajocict.net   

 

 

                  

204 

 

 

2.2 Two-tier Client Server architecture 
Figure 2.3 represents two-tier client/server (Service user/service provider) [5] architecture of a transaction processing system. In 

this model, the stored procedure interfaces, presentation services and application services are located in the mobile user device 

found in the 1st tier while stored procedures are kept and maintained at the server site found in the 2nd tier. This phenomenon 

makes use of fewer number of communication links and reduces client related interference on the server when compared with the 

centralized architecture.  

 

2.3 Three-tier Client Ser architecture 
Figures 2.4a and 2.4b represent the varieties of three-tiered architecture. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4a: Three- tiered architecture of a transaction processing system showing the separation of the application server from 

the client machine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4b: Three- tiered architecture of a transaction processing system showing the application server and the 

transaction server forming the middle tier. 

 

 

Mobile 

User 

Device 

1 

Mobile 

User 

Device 

n 

Database server system Client system 

Database DBMS 

. . . 

Presentation 

services 

Application 

Server 

Presentation 

services 

Tier 3 Tier 2 
Tier 1 

 

Mobile 

User 

Device 

1 

Mobile 

User 

Device 

n 

Database server system Client system 

Database DBMS 

. . . 

Presentation 

services 

Presentation 

services 

Tier 3 

Global Machine 

Tier 1 

Application 

Server 

Transaction 

Server 

Tier 2 



Vol 8. No. 4, December, 2015           
ISSN 2006-1781 

African Journal of Computing & ICT 

      
© YEAR  Afr J Comp & ICT – All Rights Reserved 

www.ajocict.net   

 

 

                  

205 

 

 

Figure 2.4a is an illustration of a three-tier architecture where the application module is separated from the presentation module. 

So the client machine now holds the user interface and the presentation services only. The application services are now found in 

the application server machine. In this way, different client machines can communicate with the database server through the 

application server.  

 

Responsibilities of the Application Server are: 

i. Set transaction boundaries. 

ii. Implement user request as a sequence of tasks (that is, doing the functions of a controller). 

iii. Act as a router as it affects management of distributed transactions and load balancing. 

iv. Manage clients’ requests by applying multi-threading skills. 

 

Figure 2.4b is an illustration of a three-tier architecture where the DBMS is relieved of matters concerning stored programs. The 

stored procedures are moved from the database server to a separate server known as Transaction Server. 

Figure 2.5: A block diagram illustrating the proposed transaction processing 

architecture for ubiquitous computing environment. 

 

Tier 3 
Information 

processing 

Sensor 

supported 

APP 

Interface 

Processed 

message 

JA
V

A
-b

as
ed

 

A
p
p
li

ca
ti

o
n
 

Ubiquitous 

Device/Applicatio

Global 

Machine 

Transactio

n Server 

Applicatio

n Server 

Heterogeneous or 

Homogeneous database 

systems 

DBMS 

with API 

Connector 

Database 

A 

DBMS 

with API 

Connector 

Database 

B 

DBMS 

with API 

Connector 

Database 

n 

DBMS 

with API 

Connector 

Database 

C 

Light weight 

Mobile 

Device 
Sensor 

supported 

presentatio

n services 

Tier 2 Tier 1 



Vol 8. No. 4, December, 2015           
ISSN 2006-1781 

African Journal of Computing & ICT 

      
© YEAR  Afr J Comp & ICT – All Rights Reserved 

www.ajocict.net   

 

 

                  

206 

 

 

The transaction server is directly connected to the database server. The sole function of the transaction server is to manage 

transaction segments. The application server uses the transaction server to execute stored procedures. 

 

2.4.Proposed Transaction Processing Architecture for ubiquitous computing 
Haven examined the advancement in architectural designs for transaction processing systems, this study proposes the deployment 

of a three-tier architecture in ubiquitous computing environment. This is because a transaction server dedicated for the 

management of transaction execution is introduced. In this way, the DNMS is now relieved of tasks relating to the functionalities 

of stored programs. The transaction server runs on top of the DBMS. Figure 2.5 is a block diagram illustrating the proposed 

transaction processing architecture for ubiquitous computing environmen 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: A block diagram illustrating the proposed transaction processing architecture for ubiquitous computing 

environment. 

 

 

 

 

 

 

 

 

 
Tier 3 

Information 

processing 

Sensor 

supported 

APP Interface 

Processed 

message 

JA
V

A
-b

a
se

d
 A

p
p

li
ca

ti
o

n
 

P
ro

g
ra

m
m

in
g

 I
n

te
rf

a
ce

 

Ubiquitous 

Device/Application 

Global 

Machine 

Transaction 

Server 

Application 

Server 

Heterogeneous or 

Homogeneous database systems 

DBMS 

with API 

Connector 

Database 

A 

DBMS 

with API 

Connector 

Database 

B 

DBMS 

with API 

Connector 

Database 

n 

DBMS 

with API 

Connector 

Database 

C 

Light weight 

Mobile Device 

Sensor 

supported 

presentation 

services 

Tier 2 Tier 1 



Vol 8. No. 4, December, 2015           
ISSN 2006-1781 

African Journal of Computing & ICT 

      
© YEAR  Afr J Comp & ICT – All Rights Reserved 

www.ajocict.net   

 

 

                  

207 

 

 

In the first tier of figure 2.5, mobile devices with inbuilt 

information management sensor are located using an agent-

based message passing technology, and effective logging 

system, user preferences are transmitted to the  application 

server saddled with the responsibility of taking log of the 

status of users requests profiles and the transmitting 
requests to the transaction server.  

 

The Application server and transaction server are located in 

the second tier. Removing the application server from the 

mobile device makes it possible for unannounced 

disconnection of the mobile device not to have effect on the 

execution of users’ request. This in turn reduces processing 

latency. Feedbacks from the transaction server are logged in 

the application server and transmitted to the mobile device 

once the mobile device reconnects to the system.  

 

The transaction server saddled with the task of managing the 

actual execution of user requests (that, transactions) connects 

to the database system via information processing sensor 

supported application interface. The transaction server on 

getting a user request from the application server broadcast 

request for readiness of database systems for a job to available 

data sources. Once that is established, the transaction server 

keeps track of the progress of active transaction until a logical 

conclusion is reached. The data sources and database 

management systems are located in the third tier of the system.  

 

3. RESULT AND DISCUSSION 
 

This study creates an effective load management mechanism 

where: 

 

The mobile user device is made a light weight processing 

device saddled with the task of: 

i. collecting location-based and non location-based 

user preferences in complex environment 

ii. Providing user preferences to the application server 

iii. Facilitate communication (via voice, text, video, 

etc.) with support agent system. 

iv. Compute/display personalized reports, choices, and 

reminders 

v. Compute/display user preferences 

vi. Compute/display errors and breakdowns.  

 

The Application Server (App Server) is saddled with the task 

of: 

i. Interfacing with support agent system for mobile 

user request, user profile and request profile 

ii. Log user and request profiles 

iii. Transmit user request (transaction) and logs to the 

transaction server 

iv. Monitor user preferences for possible online updates 

v. Transmit online updates to transaction server 

vi. Get feedback and associated logs from transaction 

server and 

vii. Prompt mobile user of success or failure of 

execution of request. 

 

The Transaction Servers (TS) is saddled with the task of: 

i. Interfacing with the application server for new 

transaction and associated logs 

ii. Interface with support back-end agent systems (That 

is. State Information management system) for the 

Identification of eligible processing units. 

iii. Distribute transaction branches to eligible 

processing units that are ready to participate in the 

execution of the new transaction 

iv. Monitor execution process for possible online 

updates, failure, migration and successful 

completion. 

v. Abort and terminate failed transactions and 

communicate transactions’ states to the application 

server. 

vi. Commit successful transactions and communicate 

result and transactions’ states to the application 

server. 

  

 

The Database System/Servers are saddled with the task of: 

i. Telemetry data (all database related activities) and 

ii. Sharing itineraries with mutual understanding 

 

The introduction of the middle tier and taking away the core 

telemetry functions from the mobile user device obviously 

takes care of the problems of increased message overhead and 

latency associated with the two-tier client/server model. 

Making the transaction server proactive (through agent 

technology) in managing database transactions further 

enhances the performance of the proposed architecture in 

terms of giving effective support to location dependent 

transactions and avoidance of possible failure of active 

transactions that may be caused by network failure or system 

breakdowns [7].. 

4. CONTRIBUTIONS TO KNOWLEDGE 
 

The importance of database management in all information-

based systems can never be over emphasised. So the 

correctness and efficiency of database transaction 

management systems especially in ubiquitous computing 

environment is essential. This paper gives a clear 

understanding of how structural organisation of components of 

transaction processing systems impact on the performance of 

transaction processing systems in ubiquitous computing 

environment. After a critical analysis of the operational 

principles of existing centralised, two-tier client/server and 

three-tier client/server system architectures on which 

ubiquitous computing is deployed, this paper identified poor 

load balancing and unnecessary data communication latency 

as major setbacks associated with the centralised and two-tier 

client/server system architectures. The paper then proposes a 

light-weight (as it affects responsibility) client on a three-tier 

client/server system architecture. Locating just the client 



Vol 8. No. 4, December, 2015           
ISSN 2006-1781 

African Journal of Computing & ICT 

      
© YEAR  Afr J Comp & ICT – All Rights Reserved 

www.ajocict.net   

 

 

                  

208 

 

 

presentation programmes in the first-tier; the client application 

programmes (server) and the database server in the second-

tier;  and then the database system in the third-tier, have 

shown that the proposed three-tier system architecture 

effectively manages system load and data transfer latency 

better than the centralised and two-tier system architecture. 

 

5. CONCLUSION 
 

This work presents an overview of transaction processing 

system architectures then presents the three-tier transaction 

processing architecture as the most befitting system 

architecture for ubiquitous computing environment where the 

mobile user device is located in the 1st tier, the Application 

and Transaction Server are located in the 2nd tier and the 

database system and associated tools are located in the 3rd 

tier. The proposed three-tier transaction processing 

architectural design for ubiquitous computing environment is 

shown to effectively support ubiquitous computing as it 

supports effective management of system load which in turn 

takes care of the problems of increased message overhead and 

latency associated with the two-tier client/server model. 

 

6. RECOMMENDATION 
 

The proposed system architecture for ubiquitous computing is 

recommended for researchers’ consideration. It is also 

recommended for deployment in information-based support 

system by software developers.  

 

7. FUTURE WORK 
 

Future study will attempt to look for the appropriate 

communication technique to implement on the proposed three-

tier structural 

design for ubiquitous computing environment 

 

Acknowledgement 
Thanks to Enoch O. Nwachukwu, Japhet R. Bunakiye, and 

Emmanuel Nyoho for their technical support and helpful 

discussions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES 
 

[1] Garlan, D., & Shaw, M. (1993). Introduction to 

Software  Architecture. Ambriola, V., & Tortora, G. 

(Eds.). Advances in  

[2] Software Engineering and Knowledge Engineering 

(vol. 2). World Scientific, Singapore. 

 

[3] [Filip, M. J., Karunungan, K. L., Kramer, J. C., Lee, 

L. C., Moore, D. L., Shih, C. C., &  Sydir, J. J. 

(1995). U.S. Patent No.  

[4] 5,414,812. Washington, DC: U.S. Patent and 

Trademark Office. 

 

[5] Nwachukwu, E. O. (2010). Information Technology: 

The Albatross of Our Time:An Inaugural Lecture. 

University of Port Harcourt. 

 

[6] Puder, A., Römer, K., & Pilhofer, F. (2006).  

Distributed systems architecture: A Middleware 

Aproach. Elsevier, UK 

 

[7] Gray, J. and Reuter, A., (1992). The architecture of 

Transaction Processing  Systems. In Transaction 

Processing   

[8] Concepts and techniques chapter 23.  Burlington, 

Massachusetts, US 

 

[9] ilberschatz, A., Korth, H. F., &  Sudarshan, S. 

(2006) Database System Concepts McGraw Hill, 

NewYork. 

 

[10] Weikum, G. (1991). Principles and 

Realizationstrategies Of Multilevel Transaction 

Management. ACM Transactions on Database 

Systems (TODS), 16(1), 132-180. 

 

[11] Chong, C. Y., & Kumar, S. P. (2003). Sensor 

Networks: Evolution, Opportunities, and 

Challenges. Proceedings of the IEEE,  91(8), 1247-

1256. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


