
Vol 8. No. 4, December, 2015
ISSN 2006-1781

African Journal of Computing & ICT

© YEAR Afr J Comp & ICT – All Rights Reserved

www.ajocict.net

201

A Comparative Analysis of Static Java Bytecode

Software Watermarking Algorithms

K. Kumar1, V. Kehar2 & P. Kaur3
1Faculty of Science and Technology, ICFAI Baddi, INDIA

2 Department of Computer Science & Engineering, National Institute of technology, Hamirpur ,INDIA
 3Dept. of Computer Engg. & Technology, Guru Nanak Dev University, Amritsar,INDIA

ABSTRACT

Software Piracy is one of the biggest problem faced by software industry causing millions of dollars loss every years to the
software developing companies. The global revenue loss was estimated to be more than $62.7 billion in year 2013 due to the
software piracy. Software watermarking techniques which attempts to protect the software by embedding copyright notice or
unique identifiers into software to prove the ownership of software. Software Watermarking discourage piracy; as a proof of
purchase or authorship; also helps in tracking the source of illegal redistribution of copies of software. We have compared and
analyzed the existing watermarking algorithms by using them to watermark Java jar files and then applying the distortive attacks
to each watermarked program by applying obfuscation and optimizing. After studying the results obtained, we found that high
proportion of embedded watermarked were removed as results of transformation applied.

Keywords: obfuscation; watermarking; software piracy; Java bytecode; Software Protection;

African Journal of Computing & ICT Reference Format:

K. Kumar, V. Kehar & P. Kaur (2015): A Comparative Analysis of Static Java Bytecode. Software Watermarking Algorithms. Afr J. of Comp

& ICTs. Vol 8, No. 3. Pp 201-208.

1. INTRODUCTION

From the last decade, code of the software is distributed in an
architecturally-neutral format which has increased the ability
to reverse engineer source code from the executable. With the
availability of large amount of reversing tools on internet, it
had become easy for crackers or/ and reverse engineer to copy,
decompile and disassembling of software especially which are
made from Java and Microsoft’s common intermediate
language as they are mostly distributed through internet.
Many of the Software protection techniques can be reversed
using the model described in [5].

As per Business Software Alliance (BSA) report [1], the
commercial value of pirated software is $62.7 billion in year
2013. The rate of pirated software had been increased from 42
percent in 2011 to 43 percent in 2013 and in most of the
emerging economies this rate is high. So, Software protection
has become an important issue in current computer industry
and become a hot topic for research [3, 4]. One of the
technique to prevent the software piracy is software
watermarking. Software watermarking is technique [2] used
for embedding a unique identifier into an executable of a
program. A watermark is similar to copyright notice; it asserts
that you can claim certain rights to the program. The presence
of watermark in program would not prevent any attacker from
reverse engineering it or pirating it. However the presence of
watermark in every pirated copy later will help you to claims
the program is ours.

The embedded watermark is hidden in such a way that it can
be recognized at later by using the recognizer to prove the
ownership on pirated software [6]. The embedded watermark
should be robust that it should be resilient to semantics
preserving transformations. But it some cases it is necessary
that watermark should be fragile such that it become invalid if
the semantics preserving transformation are applied. This type
of watermark is mostly suitable for the software licensing
schemes, where if any change is made to the software which
could disable the program.

Obfuscation and encryption are used for the purpose either
preventing the decompilation or decreasing the program
understanding, while fingerprinting and watermarking
techniques are used to uniquely identify software to prove
ownership. In this paper we present a survey of existing Java
bytecode watermarking algorithms and performed a
comparative analysis of static Java bytecode watermarking
algorithms implemented in Sandmark [10] framework. Out of
14 Static watermarking algorithms we are going to compare
the results obtained from 12 static watermarking algorithms.
First section represents the details regarding the watermarking
system, types, techniques etc., In second section evaluation of
testing procedure, In third section we will presents the results
of our research work and finally fourth section contains the
results and future work.

Vol 8. No. 4, December, 2015
ISSN 2006-1781

African Journal of Computing & ICT

© YEAR Afr J Comp & ICT – All Rights Reserved

www.ajocict.net

202

2. BACKGROUND

Watermarking techniques are used extensively in the
multimedia industry to identify the multimedia files such as
video and audio files, and this concept has extended to
software industry. The purpose of watermarking is not to
make program harder as in case of obfuscation but it
discourages the software thieves from illegal distributing
copies of software as they know they could be identified [] .

2.1 Difficulties faced by Software watermarking

There are several problems are related with implementation of
software watermarks and many of the current watermarking
algorithms are vulnerable to attacks. Watermarking software
system should meet the following conditions.

1. Program size: embedded watermarks should not
increase the size of program significantly.

2. Program efficiency: efficiency of watermarked
program or software must be similar to original
program and need not be decreased significantly.

3. Robust watermarks: Embedded watermarks must be
strong enough to distortive or semantics preserving
transformations.

4. Embedded Watermarks must be well hidden, to
avoid removal of watermark by the attacker.

5. Watermarks extraction process must by unique such
that only software owner can extract the watermark.

One of the difficult problem which is need to solve is keeping
the watermark hidden from adversaries while at the same time,
allowing the software owner to efficiently extract the
embedded watermark when needed. If it easy enough then an
adversary would be able to extract watermark too. If the
watermark is hidden well then software owner may have
problem in extracting the watermark. Embedded software
watermarks need to be efficient in several ways such as:Cost
of embedding time, Cost of runtime, Cost of recognition time.

2.2 Watermarking techniques
Software watermarks can be divided into two categories: static
and dynamic [11]. Static watermarks techniques embeds the
watermark in the data/or code of the program while dynamic
techniques embeds the watermark in a data structure built at
runtime.

Static watermarks are embedded in the data and/or code of a
program. For example, embed a copyright notice into the
strings. In case of Java programs, watermarks could be
embedded within their constant pool or method bodies of java
class files. As before the academic research in the area of
software watermarking started, some of pioneer static software
watermarking techniques was presented in patents [11, 12].
The main problem with embedding a watermark as a string in
program is that useless variables could also be easily removed
by performing dead-code analysis, and most of the times when
obfuscation or optimization of code is applied many useless
method or variable names are either lost or renamed.

2.3 Types of watermark
Nagra et al. define four types of watermark [2,14]:

Authorship Marks are used to identifying a software author,
or authors. It embeds an identification- mark related to owner
in the cover object. These watermarks are mostly visible and
robust to the attacks.

Fingerprinting Marks are used to serialize the cover object
by embedding a different mark in every distributed copy. It is
used to find the method or channel of distribution, i.e. the
person who has illegally distributed the copies of software.
The watermarks are mostly robust, invisible and consist of a
unique identifier e.g. customer reference number.

Validation Marks are used by mostly end users to verify that
software product is authentic, genuine and unchanged, for
example in case of Java, digitally signed Java Applets. A
common method is to compute the digest of software product
and embeds into software as a watermark. A digest is
computed by using the MD5 or SHA-1. A validation mark
should be fragile and visible.

Licensing Marks are used to ensure the software is
authenticate against a license key. One property of these
marks are that they are fragile .The key should become useless
if the watermark is damaged.

2.4 Types of Attacks to watermarks [2]

I. Distortive attack:this type of attack involves applying the
semantics preserving transformations to a software, such as
optimizations or obfuscations, thus removing any watermark
which rely in program syntax.

II. Additive attack: In this attack, a new watermark is added
by an attacker to the already watermarked program in order to
cast doubt on which watermark was added first [7].

III. Subtractive attack: In this attack, an attacker decompiled
or disassembled the code in order to remove the watermark
from the program.

3. THE EMPIRICAL EVALUATION

We are going to evaluate and analyze static watermarking
software techniques by watermarking the 35 [20] jarfiles with
the existing watermarking algorithms implemented in
Sandmark and then applying distortive attack to each
watermarked Jar file by using obfuscation techniques. After all
the Jar files have been transformed, we try to extract the
embedded watermarks from the obfuscated jar files.It is
possible that many watermarks will be lost during the
obfuscations and attempt to find which obfuscations most
affect the watermarks. We attempt to embed and recognize the
watermark GNDU-Asr from the jar files.

Vol 8. No. 4, December, 2015
ISSN 2006-1781

African Journal of Computing & ICT

© YEAR Afr J Comp & ICT – All Rights Reserved

www.ajocict.net

203

3.1 The Watermarker
We are going to evaluate and analyze the 12 out of 14
watermarking algorithms implemented in SandMark [10].
SandMark is research framework developed Christian
Collberg et al. at the University of Arizona for research in the
area of software watermarking, code obfuscation, tamper-
proofing of Java Bytecode.

3.1.1 Static watermarking algorithms are as:

1. Add Expression: this algorithm is very simple add
a bogus expression containing the watermark to a
class file.

2. Add Initialization: adds the bogus local variable to
the different methods as a string into the Constant
pool of a class file.

3. Add Method and Field:embeds the watermark by
dividing a watermark into two parts, first partis
stored in the name of a field, the second half store in
the name of a method.

4. Add Switch: In this algorithm a watermark is
embedded in the case values of a switch statement.

5. Davidson/Myhrvold [17]: watermark is embedded
by re-ordering basic blocks present in program in a
suitable method.

6. Graph Theoretic Watermark [23]: watermark is
embedded in a control-flow graph of program,
which is added to the original program.

7. Monden [41]: watermark is embedded by replacing
opcodes in a dummy method, which is generated by
Sandmark.

8. Qu/Potkonjak [38]: watermark is inserted in local
variable assignments by adding constraints to the
interference graphs.

9. Register Types: watermark is inserted by
introducing local variables of certain Java standard
library types.

10. Static Arboit [58-59]: is watermarking algorithm
that embeds the watermark via opaque predicates. A
watermark is encoded in an opaque predicate and
then appending the predicate to a selected branch.

11. Stern [39]: watermark is embedded as a statistical
object by creating a frequency vector representation
of the code.

12. String Constant: inserts the watermark in a string
of a random class.

3.2 The Transformation attacks

We are using distortive attacks to evaluate the watermarking
algorithms. Sandmark research framework contains variety of
Semantics Preserving obfuscation techniques which will be
apply transformation to watermarking algorithms. We also use
Proguard [25] to apply optimizations to test case programs. In
total there are 37 different transformations to be applied.

3.3 The Test Case Jar files

 All the test jar files are plugins for open source text editor
jEdit [20]. These test Jar files are obtained by installing jEdit
and then using built-in plugin manager to download the plugin
Jar files.

4. RESULTS

4.1 Watermarking

As a results of embedding watermark, we have obtained 336
Jar files out of an expected 420 watermarked jars. There are
some algorithms which failed to insert the specified
watermark, which may be due to some error or incompatible
program jar. For example String Constant, Add expression and
Allatori managed to correctly embed watermarks in all 35 test
Jar Program.It is about 80 % of the expected watermarked jar
files were actually produced.

Vol 8. No. 4, December, 2015
ISSN 2006-1781

African Journal of Computing & ICT

© YEAR Afr J Comp & ICT – All Rights Reserved

www.ajocict.net

204

Table 1: shows the percentage of watermarks are embedded and
failed.

Figure 1: depicts that around ~80% watermarks embeds and 20% gets failed due to some error or incompatible jar file. Out of the
336 watermarked jar files only 294 contained watermarks which were successfully recognized before the transformations attacks
were applied. This means success rate is 87.5 % of the expected watermarked jar files produced actually recognized.

Table 2: Percentage of watermark recognition before the

transformative attack applied.

Figure 2: depicts that 87.5% watermarks are recognized while 12.5% got failed before the transformative attacks are applied.

 Total Successful Failed

Watermarks

embeds

420 336 84

%age 79.76

20.24

 Total Successful Failed

Watermarks

Recognitions

336 294 42

%age 87.5

12.5

Vol 8. No. 4, December, 2015
ISSN 2006-1781

African Journal of Computing & ICT

© YEAR Afr J Comp & ICT – All Rights Reserved

www.ajocict.net

205

4.2 Obfuscation

We obfuscated 336 jar programs with36 obfuscation algorithms, and 1 optimization which should have resulted in 12432

attacked watermarked jars. There are some algorithms failed to output some jars so we actually obtained 11223 attacked

watermarked jars using 37 semantics preserving transformations. This means that only 90.28 % attacked watermarked Jar files

were actually produced.

Table 3: percentage of jar file obtained after obfuscation is

applied.

Figure 3: depicts that we have obtained around 90% jar files after successfully applying the obfuscation to the watermarked jar
files.

4.3 Recognition

Result of recognizing the watermark, embedded by different watermarking algorithms after applying the transformative attack i.e.
after applying obfuscation, the resulting obtained watermarked jar files are shown by line graph. The horizontal bar line is
marked with numbers indicating the number of successful recognitions of watermarks with respect to particular obfuscation
algorithm.
A number of zeros can be seen throughout the graph indicating that no watermarks was recognized with that combination of
transformation and watermark.

4.4 Analysis of Results

We have tested the static watermarking algorithms implemented within Sandmark with respect to distortive attacks. Distortive
attacks are any semantics preserving code transformations, such as code obfuscation or optimization algorithms.
By examining the above figure it is found that many watermarks got lost due to obfuscations techniques applied.
Important observations of Comparative analysis are as:

i. Number of watermarks gets lost due to transformation applied by obfuscation algorithms.
ii. String constant watermarking algorithm produces the best result and most resilient to the distortive attacks but it can be

easily removed.
iii. Qu/Potkonjak static watermarking algorithm is the weakest algorithms while it does not successfully embedded any

watermark.
iv. Proguard optimizer produces the best results-with a lower number of watermark recognitions for all Watermarkers,

except the String Constant.

 Total Successful Failed

Obfuscation

12432 11223 1209

%age 90.28

9.72

Vol 8. No. 4, December, 2015
ISSN 2006-1781

African Journal of Computing & ICT

© YEAR Afr J Comp & ICT – All Rights Reserved

www.ajocict.net

206

Figure 4:depicts the number of successful watermarks recognized embedded by static software watermarking algorithms.

5. CONCLUSION

Software Piracy is one of biggest problem for software
industry, causing loss of millions of dollars every year to the
software industry. Software Watermarking is technique which
had proven good enough to battle against the software piracy.
The technique not protect but helps in finding the source of
illegal distribution of software and taking legal action against
them. We have described an evaluation of distortive attacks
against the static Java bytecode watermarking algorithms
implemented within SandMark and confirmed that most
watermarks embedded by these algorithms not much resilient
to the distortive attacks applied by obfuscation algorithms.

From the above results we can conclude String constant
watermarking algorithm produces best results but it can be
easily removed. Software watermarking must be incorporated
with other form of protection such as obfuscation [2,13] or
tamper-proofing techniques [6] in order to better protect
software from copyright infringement and decompilation.

6. FUTURE WORK

Future work involve extending the evaluation of static
algorithms with subtractive and additive attacks to find
resilience of these algorithms against these attacks. We would
like to use some large programs in our test cases. We will use
program slicing techniques [9] in order to perform subtractive
water attacks.

Vol 8. No. 4, December, 2015
ISSN 2006-1781

African Journal of Computing & ICT

© YEAR Afr J Comp & ICT – All Rights Reserved

www.ajocict.net

207

REFERENCES

[1] http://globalstudy.bsa.org/2013/index.html Last

accessed 20/5/2015
[2] C. Collberg and J. Nagra, "Surreptitious Software:

Obfuscation, Watermarking, and Tamper proofing
for Software Protection", Addison Wesley
Professional, 2009.

[3] L. Ertaul and S. Venkatesh, “Novel obfuscation
algorithms for software security,” in 2005
International Conference on Software Engineering
Research and Practice, SERP’05, june 2005, pp.
209–215.

[4] L. Ertaul and S. Venkatesh, “Jhide - a tool kit for
code obfuscation,” in 8th IASTED International
Conference on Software Engineering and
Applications (SEA 2004), Nov. 2004, pp. 133–138.

[5] K.Krishan, P Kaur“A Generalized Process of
Reverse Engineering in Software Protection &
Security”, IJCSMC, Vol. 4, Issue. 5, May 2015,

pg.534 – 544,, ISSN 2320–088X.
[6] G. Myles, “Using software watermarking to

discourage piracy,” Crossroads - The ACM Student
Magazine, 2004. [Online] Available:
http://www.acm.org/crossroads/xrds10-3/
watermarking.html

[7] G. Myles and C. Collberg, “Software watermarking
via opaque predicates: Implementation, analysis, and
attacks,” in ICECR-7, 2004.

[8] J. Sogiros, “Is protection software needed
watermarking versus software security,” http://bb-
articles.com/watermarkingversus- software-security,
Mar. 2010. [Online]. Available: http://bb-
articles.com/watermarking-versus-software-security.

[9] M. Weiser, “Program slicing,” in ICSE ’81:
Proceedings of the 5th international conference on
Software engineering. Piscataway, NJ, USA: IEEE
Press, 1981, p. 439449.

[10] C. Collberg, “Sandmark algorithms,” University of
Arizona, Department of Computer Science, Tech.
Rep., Jul. 2002.

[11] C. Collberg and C. Thomborson, “Software
watermarking: Models and dynamic embeddings,”
in Proceedings of Symposium on Principles of
Programming Languages, POPL’99, 1999, pp. 311–
324.

[12] C. Collberg, C. Thomborson, and D. Low, “On the
limits of software watermarking,” in Technical
Report #164, Department of Computer Science, The
University of Auckland, 1998.

[13] K. Kumar, P. Kaur “A Thorough Investigation of

Code Obfuscation Techniques for Software
Protection”, IJCSE, Vol.-3(5), PP:158-164 May
2015.

[14] W. Zhu, C. Thomborson, and F.-Y. Wang, “A
survey of software watermarking,” in IEEE ISI
2005, ser. LNCS, vol. 3495, May 2005, pp. 454–
458.

[15] Christian S. Collberg and Clark Thombor-son.
Watermarking, tamper-proofing, and obfuscation -
tools for software protection.In IEEE Transactions
on Software Engineering, volume 28, pages 735–
746, August 2002.

[16] M.R. Stytz, J. A. Whittaker, “Software Protection-
Security’s Last Stand”, IEEE Security and Privacy,

January/February 2003, pp. 95-98.
[17] J. Nagra and C. Thomborson, “Threading software

watermarks,” in IH’04, 2004.
[18] G. Qu and M. Potkonjak. Analysis of Watermarking

Techniques for Graph Coloring Problem, Proceding
of 1998 IEEE/ACM International Conference on
Computer Aided Design, ACM Press, 1998, pp.
190-193.

[19] G. Qu and M. Potkonjak, “Hiding signatures in
graph coloring solutions,” in Information Hiding,
1999, pp. 348–367,
citeseer.nj.nec.com/308178.html.

[20] world-wide developer team, “jEdit - programmer’s
text editor,” 2015. [Online]. Available:
http://www.jedit.org/

[21] G. Arboit, “A method for watermarking java
programs via opaque predicates,” in The Fifth
International Conference on Electronic Commerce
Research (ICECR-5), 2002. [Online]. Available:
http://citeseer.nj.nec.com/arboit02method.html.

[22] [22] C. Collberg and T. R. Sahoo, “Software
watermarking in the frequency domain:
implementation, analysis, and attacks,” J.Comput.
Secur., vol. 13, no. 5, pp. 721–755, 2005.

[23] J. Nagra, C. Thomborson, and C. Collberg, “A
functional taxonomy for software watermarking,” in
Aust. Comput. Sci. Commun., M. J. Oudshoorn, Ed.
Melbourne, Australia: ACS, 2002, pp. 177–186.

[24] J. Hamilton and S. Danicic, ”An Evaluation of the
Resilience of Static Java Bytecode Watermarks
Against Distortive Attacks”, Int. J. of Computer
Science, International Association of Engineers
(IAENG), HongCong, vol. 38, no. 1, pp. 1-15, 2011.

 [25]http://proguard.sourceforge.net/
 [26] K. Krishan, P.Kaur, “A Comparative Analysis of

Static and Dynamic Java Bytecode watermarking
Algorithms” Accepted at Computer society of India
2015 Conference.

Vol 8. No. 4, December, 2015
ISSN 2006-1781

African Journal of Computing & ICT

© YEAR Afr J Comp & ICT – All Rights Reserved

www.ajocict.net

208

Authors Biography

Krishan Kumar received his B. Tech.
in Computer Science & Engineering
from Shaheed Bhagat Singh College Of
Engg. & Technology Ferozepur and
Completed M. Tech. (Software
Systems) from Guru Nanak Dev
University, Amritsar. He is working as
Assistant Professor in Department of
Science and Technology, ICFAI

University, Baddi, HP, INDIA. His area of Research is
Software Protection, Reverse engineering, Malware analysis
and Soft Computing.

Prabhpreet Kaur is working as an
Assistant Professor in the department
of Computer Engineering &
technology, Guru Nanak Dev
University, Amritsar. Her area of
research is Digital Image Processing
and Software Engineering.

Viney Kehar is working as an
Assistant Professor in Department of
Computer Science & Engineering,
National Institute of technology,
Hamirpur(HP). His area of research
is Wireless Sensor Network and
Software Engineering.

