
Vol 8. No. 4, December, 2015
ISSN 2006-1781

African Journal of Computing & ICT

© YEAR Afr J Comp & ICT – All Rights Reserved

www.ajocict.net

185

Towards The Development of a Case-Based Reasoning Framework For

Software Forensics Analysis

A. Ibitola
Department of Computer Science

Lead City Univerity

A.A. Adigun
Department of Information and Communication Technology,

Osun State University, Osogbo, Nigeria

Email: fempej2013@gmail.com

E.O. Asani
Department of Computer Science

Landmark U niversity

Omu-Aran, Nigeria

Asani.emmanuel@lmu.edu.ng

O.B. Longe
Department of Computer Science & Mathematics

Adeleke University

Ede, State of Osun, Nigeria

longeolumide@fulbrightmail.org

ABSTRACT

We propose the use of a machine learning algorithm for software forensic analysis using case-based reasoning. A reviewof

literature was carried out with the objective of identify state of the art in the domain and srtting a research agenda. In this paper,

we present preliminary research direction.

Keywords: Case-Based Reasoning, Framework, Software Forensics and Analysis.

African Journal of Computing & ICT Reference Format:

A. Ibitola, A.A. Adigun, E.O. Asani & O.B. Longe (2015): Towards The Development Of A Case-Based Reasoning Framework For Software

Forensics Analysis. Afr J. of Comp & ICTs. Vol 8, No. 3. Pp 185-189

1. INTRODUCTION

Software forensics is the use of authorship analysis

techniques to analyse computer programs for a legal or

official purpose. This generally consists of plagiarism

detection and malicious code analysis Software forensics

models can be used for identification, classification,

characterization and intent analysis. This thesis will

concentrate on new advances in software for quantitative data

analysis used in forensic authorship identification by

examining a selected sample of the art tools. The frequency

and severity of the many forms of computer-based attacks

such as viruses and worms, logic bombs, Trojan horses,

computer fraud and plagiarism of software code (both object

and source) have all become increasingly prevalent and

costly for many organizations and individuals involved with

information systems.

Part of the difficulty experienced in collecting evidence

regarding the attack or theft in such situation has been the

definition of appropriate measurements to use in models of

authorship and the development of appropriate models from

these metrics. Source code is the textual form of a computer

program that is written by a computer programmer in a

computer programming language. These programming

languages can in some respects be treated as a form of

language from a linguistic perspective or more precisely as a

series of languages of particular types, but within some

common family. In the same manner that written text can be

analysed for evidence of authorship (such as [Sallis, 1994]),

computer programs can also be examined from a forensics or

linguistics viewpoint [Sallis, et al, 1996] for information

regarding the program’s authorship.

Vol 8. No. 4, December, 2015
ISSN 2006-1781

African Journal of Computing & ICT

© YEAR Afr J Comp & ICT – All Rights Reserved

www.ajocict.net

186

The figure below shows two small code fragments that where

written in a popular programming language called C++ by

two separate programme’s both programs provide the same

functionality (calculating the mathematical function factorial

(n), normally written as n!) from the users perspective that is

to say, the same inputs will generate the same outputs for

each of these programs.

// factorial takes an integer as an input and returns

// the factorial of the input

// This routine does not deal with negative values!

Int factorial (int input)

{

 int counter;

 int fact;

 fact = 1; // initalizies fact to 1 since factorial 0 is 1

 for (counter = input; counter > 1; counters =

counter -1)

 {

 Fact = fact * counter;

}

int f (int x) {

int a, y = 1;

if (!x) return 1; else return x * f (x – 1);}

1.1 Program Segments in C++
As should be apparent each programmer has solved the same

problem in both a different manner (algorithm) and with a

different style exhibited in his/her code. The first algorithm is

a simple loop through the values from 1 through to the input

into the function (in reverse), while the second employs a

more sophisticated (but also worse performing) recursive

definition. The stylistic differences include the use of

comments, variable names, use of white space, indentation

and the levels of readability in each function.

These fragments are obviously far too short to make any

substantial claims. However, they do illustrate the ability for

programmers to write programs in a significantly different

manner to another programmer without any instruction to do

so. Both of these functions were written in the natural styles

of their respective authors and so should reflect the types of

differences that should be evident in general between their

programs

2. LITERATURE REVIEW

The general methodology of authorship attribution applies to

both natural and computing languages. Although source code

is much more grammatically restrictive than natural

languages, there is still a large degree of flexibility when

writing a program (Krsul and Spafford 1996). Computational

authorship attribution methodology for both natural and

computing languages requires two main steps (Krsul and

Spafford 1995; Chaski 1997, 2005; MacDonell and Gray

2001, Ding and Samadzadeh 2004). The first step is the

extraction of variables representing the author’s style. Ideally,

authorial features should have low within-author variability,

and high between-author variability (Krsul and Spafford

1996, Kilgour, Gray, Sallis and MacDonell 1997, Chaski

1997).

The second step is applying a statistical or machine learning

algorithm to these variables in order to develop models that

are capable of discriminating between several authors.

Defining the variables and discovering the best classification

algorithm for the defined variables is difficult, empirical task,

but it is feasible and prevents subjective pronouncements

which are no longer considered by courts to be acceptable

scientific forensic evidence (Chaski 1997, 2005).

Authorship Attribution Methods for Computing Languages

In general, when authorship attribution methods have been

developed for computing languages, the suggested software

features are programming language-dependent and require

either computational cost or hand-coding for their

calculation. The main focus of the previous work was the

definition of the most appropriate features for representing

the style of an author (Oman and Cook 1989; Longstaff and

Shultz 1993; Spafford and Weeber 1993; www.ijde.org

2International Journal of Digital Evidence Spring 2007,

Volume 6, Issue 1

Vol 8. No. 4, December, 2015
ISSN 2006-1781

African Journal of Computing & ICT

© YEAR Afr J Comp & ICT – All Rights Reserved

www.ajocict.net

187

Sallis, et. al. 1996). For author identification in computing

languages, proposed metrics have included, for example,

indentation, placement of comments, placement of braces,

character preferences, construct preferences, statistical

distribution of variable lengths and function name lengths,

statistical distribution of lines of code per function, ratio of

keywords per lines of code, spelling errors, the degree to

which code and comments match, and whether identifiers

used are meaningful. This list shows that many of the

previously proposed features either cannot be measured

objectively in any source code program (a condition which

also plagued natural language authorship identification

methods, until very recently) or require hand-coding.

Krsul and Spafford (1995) developed a software analyzer

program to automate the coding of software metrics. The

software analyzer extracted layout, style and structure

features from 88 C programs belonging to 29 known authors.

A tool was developed to visualize the metrics collected and

help select those metrics that exhibited little within-author

variation, but large between-author variation. Discriminant

function analysis was applied on the chosen subset of metrics

to classify the programs by author. The experiment achieved

73% overall accuracy.

MacDonell and his colleagues (Kilgour, Gray, Sallis and

MacDonell 1997; Gray, Sallis and MacDonell 1998;

MacDonell and Gray 2001) have automated authorship

identification of computer programs written in C++. Gray,

Sallis and MacDonell 1998 developed a dictionary-based

system called IDENTIFIED (Integrated Dictionary-based

Extraction of Non-language-dependent Token Information

for Forensic Identification, Examination, and Discrimination)

to extract source code metrics for authorship analysis. In

MacDonell and Gray’s 2001 work, satisfactory results were

obtained for C++ programs using case-based reasoning, feed-

forward neural network, and multiple discriminant analysis.

The best prediction accuracy – at 88% for 7 different authors-

- was achieved using Case-Based Reasoning.

Focusing on Java source code, Ding and Samadzadeh (2004)

investigated the extraction of a set of software metrics that

could be used to identify the author. A set of 56 metrics of

Java programs was proposed for authorship analysis. The

contributions of the selected metrics to authorship

identification were measured by canonical discriminant

analysis. Forty-six groups of programs were diversely

collected. They achieved a classification accuracy of 87.0%

with the use of canonical variates.

This brief review of previous work reveals four criteria for

our own research agenda. First, metrics selection is not a

trivial process and usually involves setting thresholds to

eliminate those metrics that contribute little to the

classification model. Second, some of the metrics are not

readily extracted automatically because they involve

subjective judgments. Third, many software metrics are

programming-language dependent. For example, metrics

useful for Java programs cannot be used for examining C or

Pascal programs. Fourth, even with automated feature

extraction and analysis, the classification accuracy rates do

not reach 90%.

In sum, the previous work in author identification of

programming code has suffered from language-dependence,

manual coding of subjective features and accuracy rates

below 90%. In this context, our goal is to provide a fully-

automated, language-independent method with high

reliability for distinguishing authors and assigning programs

to programmers.

3. PROBLEM STATEMENT

It seems clear that there are many potential factors that could

be examined to determine authorship of a piece of software.

Ideally, this analysis would be used to identify a suspect and

then search would be made of storage and archival media to

locate incriminating sources. However, a more likely scenario

would see a set of metrics and characteristics derived from

the code remnant and then compared with representative

samples written by the suspects. This comparison must be

made with considerable care, however, to prevent

complicating factors from producing either false positive or

false negative indications.

One such complication, for instance, is the amount of code

compared. A small amount of suspect code (e.g., a computer

virus) might not be sufficient to make a reasoned comparison

unless very unusual indicators are present. Another

complication is the reuse of code. If the author has reused

code from her earlier work, or code written by others, the

effect may be to skew any metrics derived from the suspect

code. It might be enough to correctly indicate original

authorship, but that might not identify the actual culprit. In

some cases, code reuse may be obvious and it may be omitted

from the comparison. However, there may be cases where

that is not possible. Likewise, if the suspect code was written

as part of collaboration, the characteristics of the individual

authors may be subsumed or eliminated entirely.

Vol 8. No. 4, December, 2015
ISSN 2006-1781

African Journal of Computing & ICT

© YEAR Afr J Comp & ICT – All Rights Reserved

www.ajocict.net

188

A clever programmer, aware of this method, might disguise

his code. This would probably involve using different

algorithms and data structures than what he would normally

use. Although this might eliminate the possibility of a match

based on internal characteristics, it might also make the code

more likely to fail in use. This should also make the

programmer use more testing, and keep intermediate versions

of the program that could later be matched against the suspect

code.

There is also the potential that the underlying application may

have a strong influence on the overall style and nature of the

code. For instance, if we are attempting to match

characteristics of a small MS-DOS boot record virus, and the

code we compare against is for a UNIX-based screen editor,

it is unlikely that we would find much correspondence

between the two, even if they were written by the same

author. Therefore, we must be certain that we compare

similar bodies of code.

4. AIM AND OBJECTIVES

The aim of this thesis is to build some modules for analysing

the resultant metric data including case based reasoning. The

specific objectives of this research are as follows:

a) Identify the limitations or drawbacks of existing

software forensics aids in the determination of

malicious code authorship;

b) Propose an enhanced software architecture model

based on the limitations in (a);

c) Simulate and carry out performance evaluation of

the enhanced model.

6. RESEARCH METHODOLOGY

Software development methodology can be defined as a

framework or approach that is used to structure, plan and

control the process of developing a software product or

information systems. Therefore, the following method will be

employed in ach/ieving the research objectives:

a. Various and relevant extensive review of

software architecture frameworks will be carried

out from existing literature.

b. Discovery of the state-of-the-earth and state-of-

the-practice of existing software architecture

frameworks will be analyzed through the aid of

questionnaire and interview methods.

c. Analysis of information elicited from (a) and (b)

will be executed with the aid of a suitable

computational tool.

d. The proposed model will be developed with the

Unified Modeling Language (UML) using Agro

UML Computer Aided Systems Engineering

(CASE) tools and

e. The proposed model will be simulated with

DEVSJAVA simulation kit and selected parameters

will be used to evaluate the performance of the

model.

6. EXPECTED CONTRIBUTION TO KNOWLEDGE

There are many differences between handwritten prose and

computer programs. Handwriting samples are usually fixed in

an instant and prose is usually not incrementally developed,

while a program evolves over time. Multiple changes to a

section of code as a program is developed can lead to a

structure that the author would have been unlikely to create

under other circumstances.

Coding is also different in that code written by others is often

incorporated into a program. Often, a program is not the

result of the influence of only one author. We suspect that

this would severely impair the selection of writer-specific

code features without knowledge of the development of the

program.

Nonetheless, if there is a sufficiently large sample of code

and sufficient suspect code, if there are unusual features

present, and if we have correctly chosen our points of

comparison, this method may prove to be quite valuable.

Currently, similar ad hoc methods are used by instructors

when they compare student assignments for unauthorized

collaboration (cheating). The samples are usually not big, but

the characteristics are often distinctive enough to make valid

conclusions about authorship. Developing and applying more

formal methods should only improve the accuracy of such

methods, and make them available for more in-depth

investigations.

Not only would a formal method of software forensics aid in

the determination of malicious code authorship, it would have

other uses as well. For instance, determining authorship of

code is often central to many lawsuits involving trade secret

and patent claims. The characteristics we have outlined in

this work might be used to determine if code is, in fact,

original with an author or derived from other code. However,

a rigorous mathematical approach is needed if any of these

kinds of results are to be applied in a court of law.

We believe that if this approach is developed, it may also

prove useful in applications of reverse-engineering for reuse

and debugging. The analysis of code to determine

characteristics is, at the heart, a form of reverse-engineering.

Existing techniques, however, have focused more on how to

recover specifications and programmer decisions rather than

to determine programmer-specific characteristics.

Vol 8. No. 4, December, 2015
ISSN 2006-1781

African Journal of Computing & ICT

© YEAR Afr J Comp & ICT – All Rights Reserved

www.ajocict.net

189

Further research into this technique, based on examination of

large amounts of code, should provide further insight into the

utility of what we have proposed. This work will determine

which characteristics of code are most significant, how they

vary from programmer to programmer and how best to

measure similarities. Different programming languages and

systems will be studied to determine environment-specific

factors that may influence comparisons. And most

importantly, studies should be conducted to determine the

accuracy of this method; false negatives can be tolerated, but

false positives would indicate that the method is not useful

for any but the most obvious of cases.

REFERENCES

Andrew Gray, Philip Sallis, and Stephen MacDonell.

"Software Forensics: Extending Authorship

Analysis Techniques to Computer Programs."

Proceedings of the 3rd Biannual Conference of the

International Association of Forensic Linguists

(IAFL). Durham NC, USA, 1997

Spafford, E. H., and Weeber, S. A. (1993). “Software

forensics: tracking code to its authors.” Computers

and Security, 12:585-595.

Gray, A.R., Sallis, P.J., and MacDonell, S.G. (1998).

IDENTIFIED (Integrated Dictionary-based

Extraction of Non-language-dependent Token

Information for Forensic Identification,

Examination, and Discrimination): A dictionary-

based system for extracting source code metrics for

software forensics. Submitted to SE:E&P'98

Software Engineering: Education & Practice.

Dunedin. New Zealand.

Kilgour, R.I., Gray, A.R., Sallis, P.J., and MacDonell, S.G.

(1997). A Fuzzy Logic Approach to Computer

Software Source Code Authorship Analysis.

Accepted for The Fourth International Conference

on Neural Information Processing -- The Annual

Conference of the Asian Pacific Neural Network

Assembly (ICONIP'97).Dunedin. New Zealand.

Longstaff, T.A., and Schultz, E.E. (1993). Beyond

Preliminary Analysis of the WANK and OILZ

Worms: A Case Study of Malicious Code.

Computers & Security. 12:61-77.

Sallis, P.J. (1994). Contemporary Computing Methods for the

Authorship Characterisation Problem in

Computational Linguistics. New Zealand Journal

of Computing. 5(1):85-95.

Sallis P., Aakjaer, A., and MacDonell, S. (1996). Software

Forensics: Old Methods for a New Science.

Proceedings of SE:E&P’96 (Software Engineering:

Education and Practice). Dunedin. New Zealand.

IEEE Computer Society Press. 367-371.

Spafford, E.H. (1989). The Internet Worm Program: An

Analysis. Computer Communications Review.

19(1):17- 49.

Spafford, E.H., and Weeber, S.A. (1993). Software Forensics:

Can we track Code to its Authors? Computers &

Security. 12:585-595.

Whale, G. (1990). Software Metrics and Plagiarism

Detection. Journal of Systems and Software.

13:131-138.

