
Vol 8. No. 3 – September, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

205

A Comparative Study of Consistency Theorems in Distributed Databases

C.K. Obasi, P.O. Asagba & A.I. Silas
Department of Computer Science,

University of Port Harcourt

Port Harcourt, Nigeria.

chinedu.obasi@uniport.edu.ng, pasagba@yahoo.com, abasiama_silas@uniport.edu.ng

ABSTRACT

Maintaining consistency in distributed databases requires a user or database administrator’s advanced expectation and preparation

for failure nodes during the database operation. Though ensuring consistency in a database enhances and ensures database

integrity, this integrity could only be easily achieved in centralized databases. Distributed databases requires different

mechanisms, theorems and trade-offs to guarantee that consistency can be ensured. This paper discusses and compared several

developed theorems which either implements enforced consistency, ensures high-availability consistency or even demonstrates

eventual consistency in distributed databases. It describes how several properties of distributed systems are chosen over another

in a well-fashioned manner in database designs to maintain consistency in a distributed database.

Keywords: Consistency; Latency; Partition-tolerance; distributed database; CAP; PACELC

African Journal of Computing & ICT Reference Format:

C.K. Obasi, P.O. Asagba & A.I. Silas (2015): A Comparative Study of Consistency Theorems in Distributed Databases.

Afr J. of Comp & ICTs. Vol 8, No. 3. Pp 205-208.

1. INTRODUCTION

A distributed system is a piece of software that serves to

coordinate the actions of several computers. This coordination

is achieved by exchanging messages, i.e., pieces of data

conveying information. The system relies on a network that

connects the computers and handles the routing of messages.

A distributed system is a system that operates robustly over a

wide network. A particular feature of network computing is

that network links can disappear, and there are many strategies

for managing this type of network segmentation. A distributed

database stores a logically related database over two or more

physically independent sites and the sites are connected via a

computer network.

A centralized database is a database that is maintained, stored

and located in a single location. Such locations could be a

mainframe computer or a server and can be accessed through a

network but every user accesses the same single location.

Consistency is the ability of a system to behave as if the

transaction of each user always run in isolation from other

transactions, and never fails [7]. Consider for instance a

transaction on an e-commerce site. There is a “basket” which

is progressively filled with bought items. At the end the user is

directed to a secure payment interface. Such a transaction

involves many Hypertext Transfer Protocol (HTTP) accesses,

and may last an extended period of time (typically, a few

minutes). Consistency in this context means that if the user

added an item to her basket at some point, it should remain

there until the end of the transaction. Furthermore, the item

should still be available when the time comes to pay and

deliver the product.

In centralized databases, one primary record is maintained

because the data is stored in a single location and this makes

the data very accurate and highly consistent unlike in

distributed databases where the data is stored in multiple

locations as such maintaining consistency in all locations will

require more complexity. For a distributed database

management system, to ensure data consistency across

database fragments in the Distributed Databases Management

System (DDBMS) and to encourage simultaneous data access,

complex mechanisms are required and careful planning on

how to partition a database and where to locate the database

fragments can help ensure the performance and consistency of

a distributed database.

2. CONSISTENCY THEOREMS

There are different theorems designed by developers in the

quest for building distributed database systems which will

provide maximum performance, maintain consistency and

meet the scalability requirements of distributed architectures.

This paper discusses details on these theorems to ascertain

how they affect the choice of designing distributed database

systems.

2.1 CAP Theorem

In a Symposium held on Distributed Computing, [10], [12],

proposed a conjecture that "no distributed system can

simultaneously provide consistency, availability and partition

tolerance. This was later confirmed by [13] as a theorem. The

properties gave rise to the acronym CAP (Consistency,

Availability, and Partition Tolerance):

Vol 8. No. 3 – September, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

206

a. Consistency
For the nodes of a distributed system to show consistency, all

the nodes must show a consistent view of data, meaning the

same results is yielded as the system assures that operations

have an atomic characteristic and changes are disseminated

simultaneously to all nodes [11]. This makes all database

clients to see the same data, even with concurrent updates.

b. Availability

The availability property ensures that the database clients can

access at any time part of the data. The system must always at

the end, process every request, even when failure occurs. This

must be true for both read and write operations. This theorem

has been confirmed by [11], [13] for unbounded, eventual

responses.

c. Partition Tolerance

This property shows that the system continues to operate

despite arbitrary message loss. A partition is an arbitrary split

between nodes of a system, resulting in complete message loss

in between [11].

2.1.2 CAP Architectures
CAP basically states that in building Distributed Database

Systems, designers can choose two of three desirable

properties: consistency(C), availability (A), and partition

tolerance (P). Therefore only three architectures are possible:

only CA systems (consistent and highly available, but not

partition tolerant), CP systems (consistent and partition-

tolerant, but not highly available), and AP systems (highly

available and partition-tolerant, but not consistent) are possible

[6].

Figure1 describes the CAP Theorem:

Figure 1: CAP Theorem

i. Consistent and Available (CA) Systems

The systems grouped in this architecture ensures that the

service of availability and consistency is provided but

partitions are not tolerated. When partitions occur, the

systems will become inconsistent. The combination is also

known as high-availability consistency. Most of the

traditional relational database management systems use this

approach. To achieve high-availability consistency,

replication mechanism is important as transaction protocols

such as the two-phase commit (2PC) protocol are applied to

ensure consistency. The separation into partitions may lead to

so-called "split brain" scenarios, in which different partitions,

create conflicting replicas as a result of isolation. The system

can only recover from such scenarios by using some kind of

consensus protocol. This in turn would disallow nodes to

service requests unless a consensus is available. We would

thus convert our CA approach into a CP approach at the

sacrifice of availability. For larger distributed database

systems, the CA approach is less suitable because of the

shortcomings encountered [11].

ii. Consistent and Partition Tolerant (CP) systems
The combination of consistency and partition tolerant

properties provides a strong consistent service in distributed

systems. In the presence of a partition, consistency is

guaranteed, though if some nodes are temporarily

unreachable, it will cause the nodes of a partition not to

respond to requests, till an agreement is reached by all. This

causes availability not to be always provided. The

combination of these properties is also known as enforced

consistency [11]. In situations where distributed systems

needs to be designed and consistency maintained at all costs,

the CP approach is the best, for instance in a banking

application, where the balance of all accounts is a primary

constraint. This model has been found to be implemented in

relational database systems. Supporting consistent states even

in case of network errors requires the usage of sophisticated

algorithms for quorum and majority decisions. Such a

protocol for solving consensus is the Paxos protocol [6].

iii. Available and Partition Tolerant (AP) Systems
The AP approach in distributed systems allows availability

and tolerates partitions, though this may cause a node to be

temporarily inconsistent. The combination of these properties

results in eventual consistency [11]. Eventual consistency is a

model for database consistency in which updates to the

database will propagate through the system so that all data

copies will be consistent eventually. A well designed

distributed system might not appear robust and stable

especially when this approach shows that consistency has

been sacrificed for availability and partition tolerance, though

many applications can favour availability at all costs and

tolerate deferred consistency properties. In this case, it is

important to keep in mind potential issues due to eventual

consistent data on application level during development.

Examples of systems that follow this approach are the DNS

(Domain Name Systems) or web caches. Stale data (e.g. host

mappings respectively cached responses) are acceptable for a

Vol 8. No. 3 – September, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

207

while, but eventually the latest version of the data

disseminates and flushes older entries [11].

2.2 PACELC Model

The CAP theorem has gained serious criticisms with the rise

of the NoSQL (often interpreted as Not only SQL) movement

and the increasing interest in eventually consistent data

stores. A central issue of the CAP theorem results from the

simplifying error model that only targets network failures. It

is especially the premature dropping of consistency as the

answer to network errors that is raised to question by

members of the database community such as Stonebraker

[12].

Other fall-shorts of the CAP theorem as mentioned by [3]

include the asymmetry of availability and consistency and the

generalizing trade-off between consistency and availability.

These disadvantages becomes obvious when regarding

systems in the absence of partitions. A better way of

portraying the space of potential consistency tradeoffs for

DDBSs can be achieved by rewriting CAP as PACELC

(Partition Availability Consistency Else

Latency/Consistency): if there is a partition (P), how does the

system trade off availability and consistency (A and C); else

(E), when the system is running normally in the absence of

partitions, how does the system trade off latency (L) and

consistency (C)? As a consequence, systems can now be

categorized more precisely [6].

As an example, eventually consistent systems (AP in terms of

CAP) can be split up into PA/EL or PA/CL systems, yielding

more details on their regular operational mode in the absence

of partitions.

Note that the latency/consistency tradeoff (ELC) only applies

to systems that replicate data. Otherwise, the system suffers

from availability issues upon any type of failure or

overloaded node. Because such issues are just instances of

extreme latency, the latency part of the ELC tradeoff can

incorporate the choice of whether or not to replicate data.

2.2.1 PACELC Architectures
PACELC systems can be subdivided into different types

depending on which of the properties the database systems

focuses on.

i. Partition-occurs maintain Availability Else Latency

(PA/EL) systems
In this type of systems, if a partition occurs, they give up

consistency for availability, and under normal operation they

give up consistency for lower latency. Giving up both Cs

(Consistency) in the PACELC architecture makes the design

simpler; once a system is configured to handle

inconsistencies, it makes sense to give up consistency for

both availability and lower latency. This can be observed in

the default versions of these databases namely Amazon’s

Dynamo, Facebook’s Cassandra, and Riak databases [9],

[10]. These systems employ eventual consistency as is seen

in AP systems of the CAP theorem.

ii. Partition-occurs maintain Consistency Else

Consistency (PC/EC) systems
These types of systems will refuse to give up consistency,

and will pay the availability and latency costs to achieve the

consistency in its database. It can be found in databases with

full ACID (Atomicity, Consistency, Isolation, Durability)

properties. These database systems include VoltDB/H-Store,

MegaStore, BigTable and Hbase.

iii. Partition-occurs maintain Consistency Else Latency

 (PC/EL) systems
This system cannot be said to be fully consistent, but it can

be rather said that the system does not reduce consistency

beyond the consistency level when a network partition

occurs, instead it reduces availability. This can be seen in the

PNUTS database built by Yahoo. The PACELC system can

be seen as shown in Figure 2.

Figure 2: PACELC Model

3. RECOMMENDATIONS

Building and adopting a consistency model that will deliver

stronger consistency guarantees will be very vital because

there are applications that need to justify the responses they

provide to users, such as medical systems that monitor patients

and control devices, security systems. This calls for more

research.

Vol 8. No. 3 – September, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

208

In as much as these models in some cases implement eventual

consistency, full consistency becomes a necessary property in

the development of sensitive systems because they cannot at

some point base their results on stale or incorrect data.

4. CONCLUSION

It was clearly observed that consistency, availability, and

partition tolerance cannot be guaranteed at the same time for a

distributed system. In building distributed database systems,

the trade-offs considered are so complex that neither CAP nor

PACELC can explain them all. It is important to state that

bringing in the consistency/latency tradeoffs into the modern

design of Distributed Database System Design becomes

relevant to building a more robust distributed database

systems, and unifying CAP and PACELC into a single

formulation can lead to a deeper understanding of modern

Distributed Database System designs.

REFERENCES

[1] A. Lakshman and P. Malik , “Cassandra: Structured

Storage System on a P2P Network”, Proc. 28th ACM

Symposium Principles of Distributed Computing (PODC

09), 2009, ACM, vol. 5; doi:10.1145/1582716.1582722.

[2] B.F. Cooper, R. Ramakrishnan, U. Srivastava, A.

Silberstein, P. Bohannon, H. Jacobsen, N. Puz., D.

Weaver and R. Yerneni, “PNUTS: Yahoo!’s Hosted Data

Serving Platform”, Proc. VLDB Endowment (VLDB 08),

2008, ACM, pp. 1277-1288.

[3] D.J. Abadi, “Problems with CAP, and Yahoo’s Little

Known NoSQL System”, DBMS Musings, blog, on-line

resource, 2010.

[4] D.J. Abadi, “Consistency tradeoffs in Modern Distributed

Database System Design: CAP is only part of the Story”,

IEEE CS, Issue 2, vol. 45, 2012, pp. 37-42.

[5] E. Brewer, “Towards Robust Distributed Systems”, Proc.

19th Ann. ACM Symposium Principles of Distributed

Computing. (PODC 00), ACM, 2000, pp. 7-10.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian, P.

Vosshall and W. Vogells, “Dynamo: Amazon’s Highly

Available Key-Value Store”, Proc. 21st ACM

Symposium on Operating Systems Principles (SOSP 07),

ACM, October 2007, pp. 205-220.

[7] http://webdam.inria.fr/Jorge/html/wdmch15.html.

[8] K.P. Birman, D.A. Freedman, Q. Huang and P. Dowell,

“Overcoming CAP with Consistent Soft-State

Replication”, IEEE CS, Issue 2, vol. 45, 2012, pp. 50-58.

[9] L. Lamport, “Paxos Made Simple”, SIGACT News,

Distributed Computing Column, vol. 32, Issue 4, 2001,

pp. 51-58.

[10] http://webdam.inria.fr/Jorge/html/wdmch15.html

[11]http://berb.github.io/diplomathesis/original/061_challenge.

html

[12] M. Stonebraker, “Errors in Database Systems, Eventually

Consistency, and the CAP Theorem”, blog. Comm.

ACM, 5, 2010.

[13] S. Gilbert and N. Lynch, “Brewer’s Conjecture and the

Feasibility of Consistent, Available, Partition-Tolerant

Web Services”, ACM SIGACT News, 2002, pp. 51-59.

Authors’ Briefs

Obasi Chinedu Kingsley holds a

B.Sc (Hons) in Computer Science

from Nnamdi Azikiwe University,

Awka, Anambra State, Nigeria, in

2008, a M.Sc in Computer Science at

the University of Port Harcourt,

Nigeria in 2015. His research interest

area includes Machine Learning, Distributed systems, and

Cloud Computing. He is a certified professional in

international certifications like CCNA, MCTS and STS. He is

a member of IEEE and IEEE-Computer Society. He can be

reached through chinedu.obasi@uniport.edu.ng.

Prince Oghenekaro Asagba had his

B.Sc. degree in Computer Science at

the University of Nigeria, Nsukka, in

1991, M.Sc. degree in Computer

Science at the University of Benin in

April, 1998, and a Ph.D degree in

Computer Science at the University

of Port Harcourt in March, 2009. He is a Senior Lecturer and

a visiting lecturer to several Universities in Nigeria since

2010. His research interest includes: Network Security,

Information Security, Network Analysis, Modeling, Database

Management Systems, Object-oriented Design, and

Programming. He has published several articles in Learned

Journals both in Nigeria and Internationally. He has authored

and coauthored several books in Computer Science. He is a

member of Nigeria Computer Society (NCS) and Computer

Professional Registration Council of Nigeria (CPN).

Silas Abasiama Ita holds a B.Sc Hons

in Computer Science/Mathematics at

the University of Port Harcourt, Rivers

State, Nigeria, in 2009, a M.Sc in

Computer Science at the University of

Port Harcourt, Nigeria in 2015. Her

research interest includes Distributed

Database/Distributed Processing,

Network/Data security, Modeling, Software Engineering and

Artificial Intelligence. She is an Associate member of

CISCO, member of IEEE and IEEE Computer Society. She

can be contacted via abasiama_silas@uniport.edu.ng.

