

Method Validation

Ross Molinaro, PhD, MT(ASCP), DABCC, FACB Emory University Atlanta, GA

Learning Objectives

After this presentation, you should be able to:

- 1. Define method evaluation.
- 2. List the steps needed to complete a method evaluation study.
- 3. Define total allowable error (TEa).
- 4. Apply TEa to method evaluation.
- 5. Describe recommendations for Sigma values.

Looking to implement a clinical test?

- Establish the need
- Clinical performance
 - Clinical sensitivity
 - Clinical specificity
- Define the performance standards
 - Costs/efficiencies/space
 - Turn around times/sample requirements
 - Analytical Quality (from kit insert, references)
- Select the new method
- Evaluate the new method
- Implement the new method

What is method evaluation?

- Determination of:
 - analytical performance characteristics
 - clinical performance characteristics
- Validation
 - Objective evidence that requirements for a specific intended use can be fulfilled consistently
- Verification
 - Objective evidence that requirements have been fulfilled

What do you do?

- FDA approved?
 - Clinical Laboratory Improvement Amendments (CLIA) requirements
 - Match performance specs established by the manufacturer
 - Accuracy Should be comparable to manufacture's Precision
 - Should be smaller than CLIA requirement
 - Appropriate for patient care Reportable Range
 - Verify manufacturer's reference intervals
 - Determine test system calibration and control procedures based on specs above
 - Document all activities

Experiments to Validate?

- FDA approved?
 - Reportable Range
 - Linearity
 - Precision
 - Within-run precision
 - Total precision and QC ranges
 - Accuracy
 - Comparison of methods
 - Reference Intervals

Why?

- Clinical significance leads to accurate medical decisions
- Required by CLIA*, CAP, and The Joint Commission (*Clinical Laboratory Improvements Amendments of 1988)
- Pass proficiency testing
- Improvements over existing methodology
- Assay validation requirements vary: Non-FDA approved > FDA approved > Waived tests Today we are going to focus on FDA approved, non-waived tests

Steps in Method Validation

- 1) Define Goals
- 2) Error Assessment
- 3) Compare error vs. analytical goal

1st Step in Method Validation Define Goals

- Accept that all lab measurements contain experimental error
- What is an acceptable performance for:
 - Precision?
 - Accuracy?
 - Sensitivity?
 - Analytical measurement range?

Define Goals

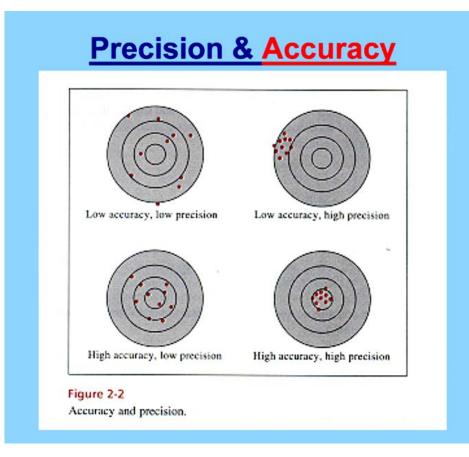
- Lab error should be:
 - smaller than CLIA (or other regulatory) requirement:
 - CLIA / 2?
 - CLIA / 3?
 - CLIA / 4?
 - CLIA / 6?
 - consistent with manufacturer's claims
 - compatible with patients' care

2nd Step in Method Validation Error Assessment

- Method validation assesses
 - Type of error
 - Magnitude of error
 - Clinical Significance of error
 - Literature guidelines
 - Physician input
 - Professional judgment

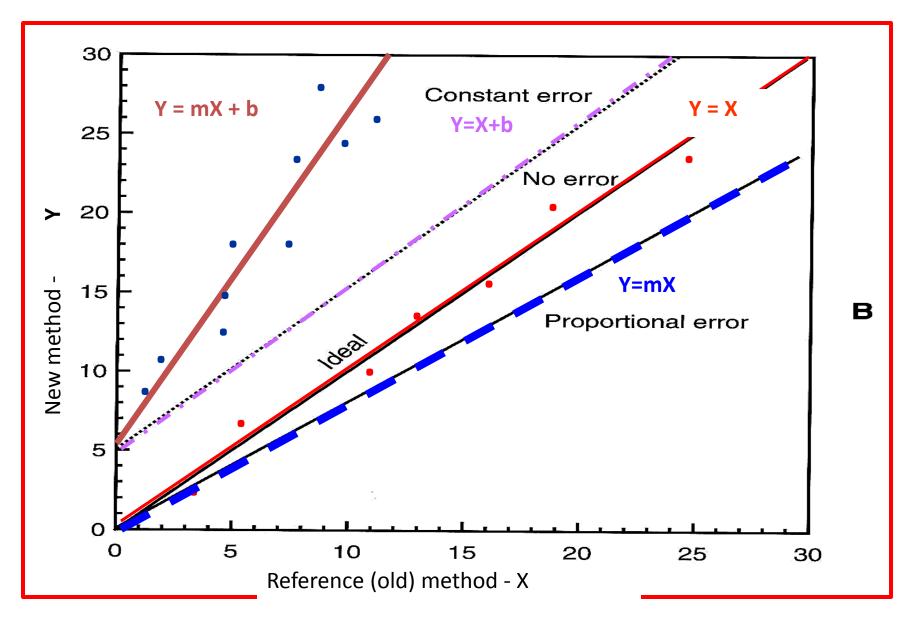
3rd Step in Method Validation Compare error vs. analytical goal

Accept or reject your new method

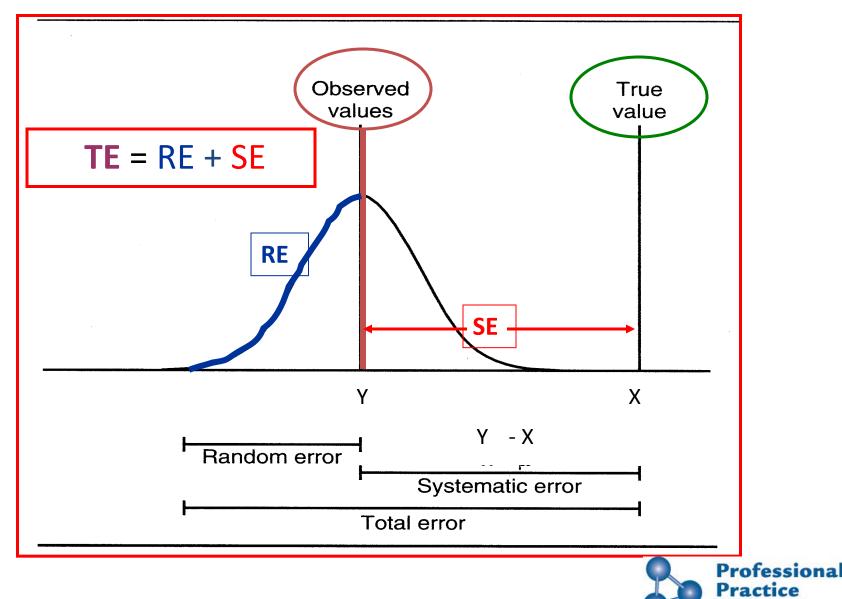


Accuracy and Precision

Accuracy – closeness of measured value to the "true" value – bias


Precision – dispersion of repeated measurements about the mean – reproducibility

Reliability – Accuracy + Precision



Systematic and Random Errors

Total Analytical Error - TE

in Clinical Chemistry

Systematic Error - Affects accuracy

<u>Systematic error (SE) -</u>Bias

- Types of systemic errors:
 - <u>Proportional</u> (indicated by slope)
 - <u>Constant</u> (indicated by intercept)
 - <u>Proportional</u> + <u>Constant</u> (Combination of both)
 - Caused by (examples): bad calibrators, bad reagents, bad pipettes, interference

Random Error (RE) - Affects precision

- May be caused by (for example):
 - Variability in volume of sample or reagent delivered
 - Changes in environment
 - Inconsistent handling of materials
- Estimated by:
 - Standard deviation (SD)
 - Coefficient of variation (CV)
 - Correlation coefficient (r)

Magnitude of Error – **TE**

- TE is the total <u>maximum</u> error of a test as <u>measured in the lab</u>
- TE is the sum of: random + systemic errors

$$TE = RE + SE$$

- Determined
 - For each given method
 - At various medical decision levels (X_c)

Total Allowable Error - TE_A

- TE_A is the total error permitted by CLIA, based on
 - <u>Medical</u> requirements
 - Best available <u>analytical method</u>
 - Compatible with proficiency testing expectations

<u>Goal</u>: Total Analytical Error < Total Allowable Error

TE < TE_▲

Determined

- Method specific
- Measured at various Medical decision levels (X_c)

Ready to Validate?

- FDA approved?
 - Reportable Range
 - Linearity
 - Precision
 - Within-run precision
 - Total precision and QC ranges
 - Accuracy
 - Comparison of methods
 - Reference Intervals

AMR: Linearity Study

- Analytical Measurement Range (AMR)
 - Range of analyte where results are proportional to the true concentration of analyte in the sample
 - Range over which the test can be performed w/o modification (e.g. no dilution)
- Also called: Dynamic Range, and Reportable range
- Determined in the lab by linearity experiments

AMR vs. MD/C

- Analytical Measurement Range AMR
 - Range of analyte values that a method can directly measure w/o modification (no dilutions, concentrations, other pretreatments that are not part of the usual assay process)
- <u>Maximum Dilution/Concentration (formerly</u>
 <u>Clinically Reportable Range</u> CRR)
 - Range of analyte values which are <u>clinically</u> <u>significant</u>
 - Can be reported following modification (such as dilutions)

AMR vs. MD/C

Measurement range should be medically useful if:

- MD/C > AMR
 - Value higher than AMR: report as > X or dilute
 - Value lower than AMR : report as < X or concentrate

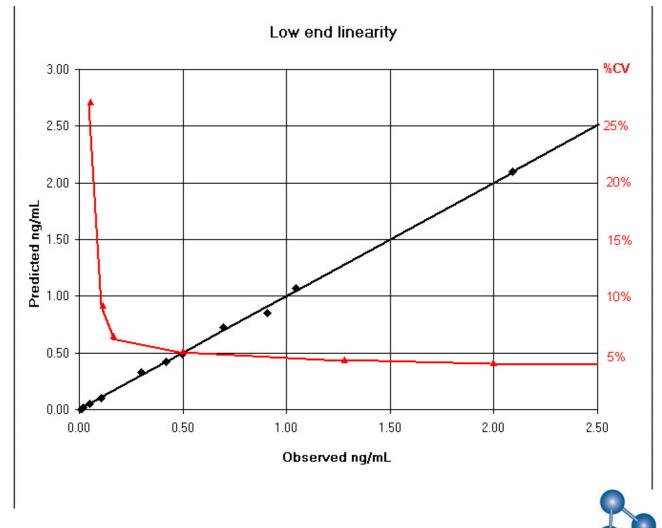
If: MD/C < AMR - Limit AMR

Linearity Study – "to do" list

- Samples:
 - Ideal: Use <u>"traceable" standards</u> in matrix matched sample
 - Mix of <u>very high</u> with <u>very low</u> pt.'s samples are OK if conc. are known
 - Dilute high samples in acceptable matrix diluent
- At least 5-7 different conc. points within the reportable range (5 – 95% of AMR), equally spaced is ideal
- Testing is performed in duplicate
- Run from lowest to highest (to avoid carryover)
- Pipetting accuracy and precision is critical

Limit of Detection

- Limit of Blank (LoB):
 - The lowest concentration that can be distinguished from background (blank, zero) noise
 - Sometimes called limit of absence.
 - Calculated as: Mean conc. of blank zero (>20 replicates) + 2SD
 - This is the number provided in most kit inserts
- Limit of Detection (LoD):
 - The lowest number that will almost always have a non-zero result (mean conc. of blank + 3 SD)
- Limit of Quantification (LoQ):
 - The lowest concentration that can be quantified reliably
 - Analyte lowest concentration where CV \leq 20% (or other error goal)
 - Results with higher CV% have large random error, thus are not useful for clinical interpretation



LOQ Experiments

- Only needed if MD/C begins
 - At or near zero
 - At or below the manufacturer's stated AMR
 - Not necessary for most assays
- Start with low end linearity study
 - Determine the low end AMR
- Follow up with precision study
 - Calculate the precision (CV) at low end concentrations

LOQ study example

Professional Practice in Clinical Chemistry

Experiments to Validate?

- FDA approved?
 - Reportable Range
 - Linearity
 - Precision
 - Within-run precision
 - Total precision and QC ranges
 - Accuracy
 - Comparison of methods
 - Reference Intervals

Reproducibility Studies for Precision Random Error

- Use matrix matched samples
- Intra-Assay (within-run) Precision > 20x
- Inter-Assay (between-run) Precision > 20x
- Select specimens near medical decision levels
 - At least 2 control levels
- Calculate: mean, SD, CV%
- Note: If you don't have established control limits, and they are being established during the experiment, revise limits every 5 days and look for evidence of unacceptable runs.

CLSI EP5

Experiments to Validate?

- FDA approved?
 - Reportable Range
 - Linearity
 - Precision
 - Within-run precision
 - Total precision and QC ranges
 - Accuracy
 - Comparison of methods
 - Reference Intervals

Method Comparison What do I do?

- 1. List results from two methods in pairs
 - Each pair represents the same sample
 - X results of reference method
 - Y results of new method
- 2. Create a scatter plot (plot the means of duplicates) if done in duplicate)
 - May also use a difference plot to analyze data
- 3. Look for outliers and data gaps
 - Repeat both methods for outliers
 - Try to fill in gaps or eliminate highest data during analysis

Method Comparison What do I do?

 Determine the correlation coefficient Check if "r" > 0.975

Note - Linear regression analysis may not be valid if the correlation coefficient is low.

The correlation coefficient - r

- "r" a statistical term
- It indicates the <u>extent</u> of <u>linear relationship</u> between the methods
- Ideally, r should be 1.00
- "r" can ranges from +1 to -1

Characteristics of r

- "r" influenced by range of values
 - r < 0.975 may indicate that the range of data is too limited
- "r" is influenced by random errors only
- Systematic error has no effect on r
 - r is only used to assess linear relationship between methods
 - Method accuracy should not be based on r

Method Comparison What do I do?

5. Generate a "linear best fit line"

Y = mX + b

- m = slope (indicates a proportional error)
- b = intercept (indicates constant error)

Method Comparison What do I do?

6. Evaluate linear regression line:

Evaluate slope

Slope = 0.900 = -10% proportional error

Slope = 1.100 = +10% proportional error

Intercept should be close to zero (indicating very small constant bias)

May need to evaluate separate areas of the graph independently.

Method Comparison What do I do?

- 7. Calculate systematic error at medical decision levels
 - Use slope and intercept to calculate systematic error: Yc= mX + b SE = Y - X
 - Yc = Calculated result on new method
 - X = Result from existing method
 - m = Slope observed in method comparison experiment
 - b = Intercept observed in method comparison experiment

Method Comparison What do I do?

8. Compare result tracking over time. May be needed if: Results are monitored over long intervals (trends) The method comparison shows significant differences between the two methods

Experiments to Validate?

- FDA approved?
 - Reportable Range
 - Linearity
 - Precision
 - Within-run precision
 - Total precision and QC ranges
 - Accuracy
 - Comparison of methods
 - Reference Intervals
 - Normal Range

Reference Interva

The concept of reference values as recommended by the IFCC reference individuals 涱 constitute a <u>۶</u>۴ 痜 reference <u>population</u> from which is selected a 聚聚 旯 웃 reference <u>sample gr</u>øup. ት on which are determined 45 57 <u>reference values</u> on which is observed a reference distribution on which is calculated reference limits that define a reference interval 128 168 ofessional

in Clinical Chemistry

www.westgard.com

- CLIA '88 requires verification of FDA approved manufacture's reference range
- Reference range study should reflect the laboratory's patient population
- Reference interval itself <u>doesn't enter into the</u> <u>decision on method acceptability</u>
- Usually done last, but testing should be done over several days.
- Data analysis will depend upon the distribution of the results.

- Validating a reference range: The number of samples needed if age/sex not a factor:
 - Verification of manufacturer's range N \geq 20
 - Used if using the manufacturer's range and the test will be used in the exact manner described by the manufacturer.
 - Estimating a reference range $N = 40-\underline{60}$
 - Used if the manufacturer's range is not adequate or if the use of the test not conform exactly to the manufacturer's intended use.
 - Establishing a reference range N \geq 120
 - Non-FDA approved tests or if there will be significant changes to the use of the method.

- Transferring a reference range:
 - New reference range is calculated based on the systematic analytical differences between the two methods.
 - Can be done if the lab has previously established a reference range and is changing methodology
 - Acceptable, but not recommended method.
 - Should be verified by running at least 20 samples.
 - To reduce errors introduced by drift, transference calculations should be limited to one method change.

- "Divine judgment" of the Lab Director
 - Use only when all other options are unavailable.
 - May be needed for sub-population ranges.
 - Use published data from respected sources.

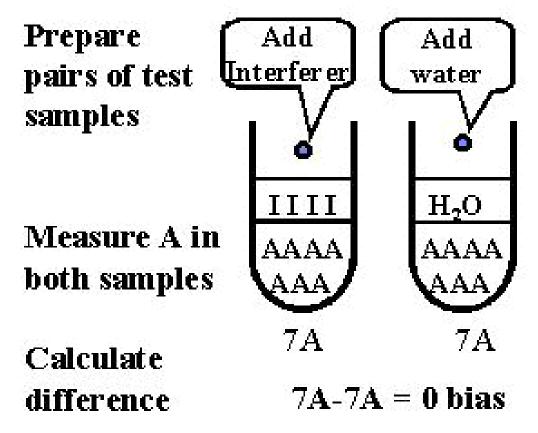
Experiments to Validate?

- FDA approved?
 - Reportable Range
 - Linearity
 - Precision
 - Within-run precision
 - Total precision and QC ranges
 - Accuracy
 - Comparison of methods
 - Reference Intervals

Interference Studies

Materials in patient specimen that cause errors which are independent of analyte concentration

- Include substances commonly found in serum or plasma, such as:
 - Lipids (Lipemia)
 - Hemoglobin (Hemolysis)
 - Bilirubin (Icterus)
- Less common substances:
 - Drugs


• Immunoassay Interferences:

- HAMA and other heterophile antibodies
- Specific antibodies
- Rheumatoid Factors
- Non-specific binding of immunoglobulins (sticky serum, "anti-plastic")
- Anticoagulants

Interference Studies

The Interference Experiment

From: www.westgard.com

Interference Studies – "to do" list

- The interfering substance is "spiked" into a known sample (no analyte added)
- Added volume < 10%
- Run in duplicates
- Calculate interference (bias):

Bias = (sample + interference) - baseline sample

(sample + buffer/water)

Interferences in Immunoassays

- Non-specific binding
 - High levels of immunoglobulins
 - Immune complexes
- Interfering antibodies
 - Rheumatoid factor
 - Specific antibodies to the analyte
 - Heterophile antibodies (antibodies to reagent nonhuman proteins)
- High concentrations of these types of substances may be difficult to obtain. Interference studies may require "mixing experiments".

Put Method On Line

- Write and test a procedure!
 - CLSI protocol (GP2)
 - Maintenance
 - Calibration
 - Control system
- Staff training
- Document Method Evaluation experiments according to appropriate regulations
- Start routine service
- Monitor performance

Self Assessment Questions

- 1. Which of the following is a step in method validation?
 - a) Error assessment
 - b) Vendor consultation
 - c) FDA approval
 - d) Dissociative statistics

- 2. The lower limit of quantitation is defined as:
 - a) The lowest number that will almost always have a non-zero result
 - b) The lowest concentration that can be distinguished from background
 - c) The lowest concentration that can be quantified reliably
 - d) None of the above

- 3. The range of analyte where results are proportional to the true concentration of analyte in the sample without modification defines which of the following?
 - a) Clinical reportable range
 - b) Precision
 - c) Analytical measurement range
 - d) Accuracy

- 4. When evaluating a linear regression line (y = mx + b), which of the following denotes the lowest level of proportional and constant bias?
 - a) y = .28x + .94
 b) y = 1.15x + .25
 c) y = 1.05x .04
 d) y = .34x + 1.00