

Improving the Sensitivity of **QC** Monitoring: Taking the leap from manufacturer's to established **QC** ranges

Mark Swartz, MT(ASCP), SMILE QA/QC Coordinator Kurt L. Michael, M. Ed., MT(ASCP), SMILE Project Manager

The presenter would like to thank:

- DAIDS -Daniella Livnat and Mike Ussery
- Johns Hopkins University
 - Dr. Robert Miller Principal Investigator
 - Kurt Michael Project Manager
 - Smile Staff
- ACTG

- To determine when and why to establish new quality control (QC) ranges
- To explain the importance of historical (cumulative) Coefficient of Variation (CV_H)
- To evaluate the quality of historical CV

- To calculate the CV of External Quality Assurance (EQA)
- To utilize historical CV, EQA CV and Manufacturer's CV in order to develop useful quality control ranges

Sum of all data divided by the total number of data points

$$\overline{X} = (X_1 + X_2 + X_3 + \dots + X_N)/N$$

Example:

8+9+7+7+9+8 =48 (Sum)

 \overline{X} = Sum/number of data points = 48/6 =8 MEAN = 8

Standard Deviation (SD) = is a measure of how much the data varies around the MEAN

$$SD = \sqrt{\frac{\Sigma(X - \overline{X})^2}{(n - 1)}}$$

where:

- $\frac{X}{X}$ = each score $\frac{X}{X}$ = the mean or average
- n = the number of values

 $\boldsymbol{\Sigma}$ means we sum across the values

CV is SD expressed as a proportion of the mean

CV = (SD / Mean) x 100

CV is expressed as a percent (%)

Utilizing CV allows you to change the SD in proportion to any MEAN value

- CV_H –Historical CV accumulated over time
- CV_{EQA} –CV derived from EQA peer data
- CV_{REF} –CV used to set QC SD ranges
- CV_{MAN} –Manufacturer's CV from QC material package insert

- When receiving a new lot of QC samples
- When receiving a new lot of reagent that significantly changes results from the old lot (reference ranges also need to be adjusted)

• As QC samples age

Defining QC ranges

- QC range limits are defined by SD values
- Typically an acceptable range is established using +/- 2 Standard Deviations (SD) around the MEAN

 Statistically this covers 95% of the expected values

A well running QC system

SD limits too large!

- All QC results pass --even unacceptable ones
- Low sensitivity –the QC will not let you know when something is wrong in the system
- The acceptable range for QC is not a sensitive indicator of result quality & provides little value

SD limits too large!

$\downarrow \downarrow \downarrow QC$ failures

	+3 SD
 Ļ	+2 SD
	+1 SD
	MEAN
	-1 SD
	-2 SD
Ť	-3 SD

SD limits too small !!

- Few QC results pass --even values that are OK
- <u>Sensitivity too high</u> --You are stopped from releasing acceptable patient results
- Wasting QC material and time

SD limits too small !!

↑↑ QC failures

- The laboratory must establish it's own limits of acceptable QC values
- The correct SD value is what makes the QC material a sensitive indicator of acceptability
- We will use Historical (Cumulative) CV (CV_{H)} to establish sensitive SD limits and QC ranges

Why not use the manufacturer's QC limits?

- Manufacturer's limits are often 2-3 times too large –Not sensitive to your laboratory conditions
- They are general guidelines that include several different instrument/method types
- If the QC range is too large you will not find problems

	Lactate U/L Roche Cobas C700							
	Your result	<u>Mean</u>	<u>SD</u>	<u>Lower</u>	<u>Upper</u>	<u>SDI</u>	Your Grade	
6	4.14	3.85	0.19	3.28	4.42	1.5	Acceptable	
7	3.52	3.20	0.19	2.63	3.77	1.7	Acceptable	
8	4.48	3.84	0.20	3.24	4.44	3.2	Unacceptable	
9	6.59	6.12	0.36	5.04	7.20	1.3	Acceptable	
10	4.91	4.26	0.21	3.63	4.89	3.1	Unacceptable	

QC run

25

		Lactate U/L Roche Cobas C700							
		<u>Your result</u>	<u>Mean</u>	<u>SD</u>	Lower	<u>Upper</u>	<u>SDI</u>	Your Grade	
	6	4.14	3.85	0.19	3.28	4.42	1.5	Acceptable	
	7	3.52	3.20	0.19	2.63	3.77	1.7	Acceptable	
	8	4.48	3.84	0.20	3.24	4.44	3.2	Unacceptable	
	9	6.59	6.12	0.36	5.04	7.20	1.3	Acceptable	
	10	4.91	4.26	0.21	3.63	4.89	3.1	Unacceptable	
		0.20 / 3.84 = 5.2%							
า									

0.21 / 4.26 = 4.9%

QC Run

How do I determine the SD limits that are correct?

Utilizing CV_H allows you to set your QC limits based on the capability of your instrument according to its precision

It is extremely useful for the laboratory to track the CV_H

of QC data for each quantitative analyte over time

- Gather all QC data accumulated over time
 - -Across different reagent lots
 - -Across different employees
 - -Across different "normal" conditions
- Each QC level/analyte/instrument combination has a unique CV_H

- 1. Gather each analyte QC data for each type of instrument/method/QC material
- 2. Remove any data that is greater than 4 SD from the MEAN
- 3. Calculate the MEAN, SD and CV for the month and on an on-going basis for the life of the QC material

Track CV_H over time

Monitor CV_H to alert for problems

Monitor CV_H to alert for problems

Things that increase your $\ensuremath{\mathsf{CV}_{\mathsf{H}}}$

- -Day to day instrument differences
- -Electrical and power quality
- Different persons operating the instrument
- -Different reagent lots
- -QC material preparation
- -Reagent Quality

How do you determine if your CV_H is an acceptable value?

COMPARE your value to some standard

Standard 1:

Instrument/Method manufacturer's value

- The instrument manufacturer determines and publishes the instrument/reagent method CV (precision)
- If you can not achieve the precision (CV) that the manufacturer claims on your instrument, contact the manufacturer for service

Standard 2:

The External Quality Control (EQA) survey method CV

- CAP & Accutest (OWA) materials are considered an External Quality Assurance (EQA) quality indicator. (Between labs)
- This is not the same as internal QC (Within Labs)
- EQA providers publish instrument/method peer CV data with survey results. Your lab CV_H should be lower than the CV_{EQA} published

Calculating CV_{EQA}

EVALUATIO	O N							
ORIGINAL								
it	Evaluation and Comparative Meth						10d Statistic	
Init of Measure Boor Group		Your	N		Jo. of I		Limits of	
reer Group	Specimen	Result	Mean	8.D. ¹	Labs	8.D.I	Lower	
a Nitrogen (BUN)	CHM-01	19.1	18.94	0.71	236	+0.2	16.	
g/dL	CHM-02	36.9	36.14	1.07	237	+0.7	32.	
UREASE WITH GLDH	CHM-03	11.2	11.18	0.58	233	0.0	9.	
ROCHE MODULAR	CHM-04	45.3	44.36	1.27	233	+0.7	40.	
	CHM-05	36.4	36.19	1.11	237	+0.2	32.9	
CV = (0.71 ÷ 18.94) • 100	= 3.7%	K						
CV = (1.07÷36.14) • 100								
CV = (0.58÷ 11.18) • 100	C	V – (SD	± Moa		100			
CV = (1.27 ÷ 44.36) • 100	= 2.9%							
CV = (1.11 ÷ 36.19) • 100	= 3.1%							
		-						

CV relationships

QC analyte SD should be set using a reference CV_{REF} less than both manufacturer's CV_{MAN} and CV_{EQA}

 $CV_{H} < CV_{RFF} < CV_{EOA} < CV_{MAN}$

Demonstration of establishing sensitive SD limits using CV_H

- Ensure that your old lot of QC material is running inside of your current range with no bias, shifts or trends
- 2. Run new normal QC material for at least 20 data points with old QC material for at least 5 days. Ensure that your old QC material is within acceptable range for each run.
- 3. Calculate SD, MEAN & CV from data
- 4. Is the $CV \leq CV_H$ and CV_{MAN} ?

20 data points of Normal QC data -Glucose

- $\mathsf{MEAN} = 87.9$
- SD = 2.2
- CV = 2.55 from new precision data
- **Compare** CV to other CV values...
 - $>CV_{H} = 2.7$ accumulated over time $>CV_{EQA} = 3.3$ from EQA peer group $>CV_{MAN} = 3.6$ from package insert

To calculate SD for sensitive QC limits use a CV_{REF} between CV_{H} and CV_{EQA}

$$CV_{H} = 2.7 < 3.0 < CV_{EQA} = 3.3 < CV_{MAN} = 3.6$$

Reference CV_{REF} is 3.0%

$SD = MEAN \times (CV_{REF}/100)$ $SD = 87.9 \times (3.0/100)$ SD = 2.6

95.7	1	2.6 units	3 SD	
93.1			2 SD	
90.5			1 SD	
87.9			1.00	MEAN
85.3			-1 SD	
82 7			-2 SD	
02.7			3 SD	
80.1				

Questions?

mswartz4@jhmi.edu

References

- www.westgard.com
- www.cap.org
- www.dgrhoads.com
- Burtis, C.A., & Ashwood E.R. (Eds.).(1999). *Tietz Textbook of Clinical Chemistry, 3rd Edition.*
- Snyder, J. R., & Wilkinson, D.S. (Eds.). (1998). Laboratory Management, 3rd Edition.

