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“Unleash America’s $50 trillion in untapped, shale, oil, and natural gas reserves, plus hundreds of years in coal reserves.”
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long after 2100 of at least 7.8°C (without large sources of amplifying feedback emissions).
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increases have not changed, the impacts are out of date now as impacts occur at lower temperature increases.
The temperature projections do not include large sources of amplifying feedbacks or weakening of the carbon sinks.
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Figure 2: Extreme (and mean) temperature changes associated with a 2 °C target.
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Droughtin a 2°C world

The Magnitude and Causes of Global Drought Changesin the Twenty-First Century undera Low—
Moderate Emissions Scenario Zao, Dai 2015
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e Surface warming has jumped to 1.2°C with no El Nifho effect (WMO 2016).

PDSI Palmer Drought Severity Index PET Potential Evapotranspiration

e Atmospheric CO2 has spiked to 405 ppm, accelerating at an unprecedented rate (>3 ppm a year). (P/PET confirms PDSI) i °
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