COMPONENT LOCATION IDENTIFICATION

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Legend</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BR1</td>
<td>Bridge Rectifier, mA (10A)</td>
</tr>
<tr>
<td>2</td>
<td>F1</td>
<td>Fuse, 8A</td>
</tr>
<tr>
<td>3</td>
<td>F2</td>
<td>Fuse, 8A</td>
</tr>
<tr>
<td>4</td>
<td>F3</td>
<td>Fuse, 10A</td>
</tr>
<tr>
<td>5</td>
<td>F4</td>
<td>Fuse, 2A</td>
</tr>
<tr>
<td>6</td>
<td>KV Major</td>
<td>Tap Sw., Ohmite 312-8</td>
</tr>
<tr>
<td>7</td>
<td>KV Minor</td>
<td>Tap Sw., Ohmite 312-8</td>
</tr>
<tr>
<td>8</td>
<td>RE1</td>
<td>Relay, DPDT, 120VAC HH91</td>
</tr>
<tr>
<td>9</td>
<td>RE2</td>
<td>Relay, DPDT, 120VAC HH91</td>
</tr>
<tr>
<td>10</td>
<td>RSCC</td>
<td>Resistor, 25 Ohm, 175 W</td>
</tr>
<tr>
<td>11</td>
<td>RX</td>
<td>Resistor, 100 Ohm, 175 W</td>
</tr>
<tr>
<td>12</td>
<td>TB1</td>
<td>Terminal Strip, 5 Terminals</td>
</tr>
<tr>
<td>13</td>
<td>TB2</td>
<td>Terminal Strip, 12 Terminals</td>
</tr>
<tr>
<td>14</td>
<td>TB3</td>
<td>Terminal Strip, 20 Terminals</td>
</tr>
<tr>
<td>15</td>
<td>TB4</td>
<td>Terminal Strip, 20 Terminals</td>
</tr>
<tr>
<td>16</td>
<td>TS</td>
<td>Transformer, Stabilizer (CVT), 120/120 volt</td>
</tr>
<tr>
<td>17</td>
<td>TSCC</td>
<td>Transformer, Space Charge, 300/30 volt</td>
</tr>
<tr>
<td>18</td>
<td>-----</td>
<td>Transformer, Auto</td>
</tr>
<tr>
<td>19</td>
<td>-----</td>
<td>Circuit Breaker/On-Off Switch</td>
</tr>
<tr>
<td>20</td>
<td>-----</td>
<td>SCR Block, Main</td>
</tr>
<tr>
<td>21</td>
<td>-----</td>
<td>SCR Block, Back-up</td>
</tr>
<tr>
<td>22</td>
<td>-----</td>
<td>Switch Assembly, Time Select</td>
</tr>
<tr>
<td>23</td>
<td>-----</td>
<td>Switch Assembly, mA Select</td>
</tr>
<tr>
<td>24</td>
<td>-----</td>
<td>PCB Assembly, Time Select</td>
</tr>
<tr>
<td>25</td>
<td>-----</td>
<td>PCB Assembly, kVp, Motor Start</td>
</tr>
<tr>
<td>26</td>
<td>-----</td>
<td>PCB Assembly, kVp / mAs / Interlock</td>
</tr>
<tr>
<td>27</td>
<td>C1</td>
<td>Capacitor, Rotor Start</td>
</tr>
<tr>
<td>28</td>
<td>C2</td>
<td>Capacitor, Stabilizer</td>
</tr>
<tr>
<td>Original InnoVet Part Description rev.12/06</td>
<td>Part Number</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>W300, W375, W400, W438 (Generator L802)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Cylinder, Damper for hinged generator tilt</td>
<td>W369 (Bimba 125)</td>
<td></td>
</tr>
<tr>
<td>cable, F377 to C118 Timer PCBA</td>
<td>E948</td>
<td></td>
</tr>
<tr>
<td>Cable, kVp display</td>
<td>E950</td>
<td></td>
</tr>
<tr>
<td>Cable, mAs display</td>
<td>E951</td>
<td></td>
</tr>
<tr>
<td>Curtain Strip, OlderTbST W200</td>
<td>W215</td>
<td></td>
</tr>
<tr>
<td>Foot Loop</td>
<td>K090</td>
<td></td>
</tr>
<tr>
<td>Grid Cabinet</td>
<td>W048</td>
<td></td>
</tr>
<tr>
<td>Knob with pointer</td>
<td>W344</td>
<td></td>
</tr>
<tr>
<td>Knob without pointer</td>
<td>A312</td>
<td></td>
</tr>
<tr>
<td>kVp Tap Switch (8 position)</td>
<td>02255-000</td>
<td></td>
</tr>
<tr>
<td>LED replacement kit</td>
<td>00312-000</td>
<td></td>
</tr>
<tr>
<td>mA Selector Switch assy</td>
<td>W354</td>
<td></td>
</tr>
<tr>
<td>mA selector switch cable</td>
<td>comes with W354</td>
<td></td>
</tr>
<tr>
<td>Manual - (See MASTERS = Not in OBSOLETE)</td>
<td>K186</td>
<td></td>
</tr>
<tr>
<td>On/Off Circuit Breaker</td>
<td>A365</td>
<td></td>
</tr>
<tr>
<td>pcb, kVp/mAs Interlock</td>
<td>F377</td>
<td></td>
</tr>
<tr>
<td>pcb, Motor Start (rotor control)</td>
<td>A455</td>
<td></td>
</tr>
<tr>
<td>pcb, Timer Driver</td>
<td>C118</td>
<td></td>
</tr>
<tr>
<td>Relay, RE-1 / RE-2</td>
<td>HH91</td>
<td></td>
</tr>
<tr>
<td>Relay socket assy for RE-2 (exposure)</td>
<td>W351</td>
<td></td>
</tr>
<tr>
<td>Relay socket for RE-1 (boost)</td>
<td>HH81</td>
<td></td>
</tr>
<tr>
<td>Remote exposure switch (wall mount)</td>
<td>W413</td>
<td></td>
</tr>
<tr>
<td>Resistor, Filament 100 Ohm, 175 W RX/RXS</td>
<td>A347</td>
<td></td>
</tr>
<tr>
<td>Resistor, Filament 25 Ohm, 175 W RSCC</td>
<td>A345</td>
<td></td>
</tr>
<tr>
<td>Rotor Cap 25uF, 330V</td>
<td>HAB18</td>
<td></td>
</tr>
<tr>
<td>SCR Kit (includes Instructions)</td>
<td>00424-000</td>
<td></td>
</tr>
<tr>
<td>SCR block ^ Please order with instructions ^</td>
<td>00194-000</td>
<td></td>
</tr>
<tr>
<td>Sliders, Front Grid Cabinet</td>
<td>00673-000</td>
<td></td>
</tr>
<tr>
<td>Snubber/Suppressor (Tap Switch)</td>
<td>W440</td>
<td></td>
</tr>
<tr>
<td>Stabilizer cap, C2, 660V 2.5uF</td>
<td>A343</td>
<td></td>
</tr>
<tr>
<td>Stator Capacitor, C1, 330V 25uF(formerly A351)</td>
<td>HAB18</td>
<td></td>
</tr>
<tr>
<td>Switches for RemoteAssy (Cap J783)</td>
<td>C414</td>
<td></td>
</tr>
<tr>
<td>Two position prep/exposure switch button</td>
<td>J783</td>
<td></td>
</tr>
<tr>
<td>Time encoder EPROM (for F377 Board)</td>
<td>W341</td>
<td></td>
</tr>
<tr>
<td>Time Selector Switch assy</td>
<td>J976</td>
<td></td>
</tr>
<tr>
<td>Time Selector Switch Cable</td>
<td>comes with J976</td>
<td></td>
</tr>
<tr>
<td>Transformer, Space Charge</td>
<td>L926</td>
<td></td>
</tr>
<tr>
<td>Transformer, Stabilizer, Filament</td>
<td>A342</td>
<td></td>
</tr>
<tr>
<td>TS Capacitor, C2</td>
<td>A343</td>
<td></td>
</tr>
<tr>
<td>Two position prep/exposure foot switch</td>
<td>A981</td>
<td></td>
</tr>
</tbody>
</table>
GENERAL TIPS

Verify basic voltages: Line tap is correctly set for supply, 120 VAC F1 to F2, on F377 board, H6-5 to H6-6 is 14 VAC, TP9 is +5 VDC, TP11 is -5 VDC, TP10 common

Verify basic connections: P1 white, P2 black, Ground green, XL white, XS green, XC black, M1 red. Rotor 07 black, 08 red, 09 white; typically 30 ohms 07 to 09 and 60 ohms 08 to 09. Insure tight crimps, receptor studs and screw terminals.

"--E--" in mAs window

This occurs because the F377 does not know the kV, mA or time selected. It can happen from improper kV selection (above 125 or below 40 kVp), bad tap switch, timer switch, mA switch, poor cable connections from these devices, P1/P2 voltage in idle (a loose stud on transformer top), or a failure of the F377 board.

1. kVp window blank and "--E--" in the mAs window, suspect no tap switch voltage input to the F377 board. Adjust kVp tap switches so that 200 VAC is present between the common poles. Insure 200 VAC is present at pins H7-1 and H7-4 of the F377 board. Find the open connection or replace the board.

2. kVp window blank and "--E--" in the mAs window, a second cause is no mA select signal on H3 of the F377. Insure H3-1 is +5 VDC when selecting small filament, H3-2 is +5 VDC for large filament. Insure +5V on H3-3. Remove the H3 plug short pins H3-3 to H3-2 on the board. If the problem is resolved replace the selector and cable, if not, replace the board.

3. kVp is between 40 and 125 kVp but the mAs window is "--E--", the problem is related to the time station code. Monitor H1 pins 3, 4, 2, 5 and 6 (time station code) to insure binary increment count of +5 VDC as time is changed. The pins on H1 as shown above are in Most Significant Bit to Least Significant Bit sequence. Replace time selector and cable if bits are missing.

4. kVp display reads "333", or some other scrambled, invalid kVp, U18 on F377 board (part number W341) has probably been damaged from electrical noise. Cycling power may clear the problem, and replacing the W341 chip will likely clear the problem. It is important to look for sources of noise, such as arcing in the high voltage secondary, rotor circuitry, solid grounding, and so on. Putting a 0.1mfd capacitor from pin 5 to pin 7 of U6, and another from pin 21 to pin 20 of U18 may help. Confirm that in IDLE, D11 to ground is +5VDC. If less, remove U18 and confirm that D11 returns to +5V. If it does, replace U18 (part #W341--even though removing this chip may not clear the "333") during this test). If +5V does not return, replace the F377 board.
No exposure & No "beep" from timer.

The two most likely causes are a failure of the motor start board to transition from boost to run during the prep cycle (due to 50k pot R17), or an open R30 on the kVp/mAs Interlock board. To determine which is the cause, rotate the kVp tap switches while the unit is in prep. If the kVp display changes the F377 kVp/mAs interlock board resistor is bad, if it does not suspect the A455 motor start board.

1. Does LED 1 on the motor start board light? If not, check stator circuitry, stator cap, and stator connections. Replace A455 motor start board.
2. D11 on F377 board must go from +5 VDC to ground at PREP. This signal turns the time select signal into an anticipated pulse count. Most common cause for this signal to be missing is an open R30 on the F377 board. Replace it with a 12k ohm resistor of at least 3 Watts. OC1 on the board is also suspect.
3. If there is a +5V to ground transition at PREP, verify an anticipated pulse count at the J3 input of C118. Pin one of J3 is the +5V supply, pins 2, thru 11 are Most Significant to Least Significant bits of the binary code for anticipated pulse count. If code and +5/+12 VDC supplies are good, replace C118 timer.
4. Is there 120 VAC between J1-1 and J1-2 on the C118 timer board at EXPOSE? If not, check pin 11 of motor start board, connections, and exposure switch.

No exposure, but timer "beeps"

1. Verify line tap is correctly set; the SCR drive voltage is an unregulated supply.
2. Verify filament voltage and mA. Typically 24 VAC in idle, 52 VAC (XL to XC) for 80 kVp at 300 mA boost. If close to zero volts, look for open in control. If 120 VAC look for an open in high voltage secondary.
3. Verify primary voltage and kVp. Look for RE-2 to close, insure good connections from J2 to primary SCR, confirm primary and backup SCRs conduct. Sometimes a resistor/diode component in the harness of the RE-2 socket will be open, preventing backup SCR gating. Replace C118 timer.

kVp or mAs segments do not light

Insure good connections between the wires and the plugs at either end of the kVp/mAs display cables. Remove the spring clip cover at the plug to inspect. Switch cables at control end, then tubestand end, to determine source of the open.

Unit exposes but no mA can be measured

Verify filament voltages (see description above), lit filaments, and presence of kVp. Ensure that the spark gap is not shorted to the top of the transformer.
No Exposure condition for InnoVets and 325 / 360 generators.
A455 Motor Start Board Troubleshooting

The A455 has a quick visual indicator LED which lights when all is ok for exposure. This should light approx. 1.5 seconds after PREP begins. Does Anode energize? If yes, does LED light?

Included for you here are the collected documentation for the A455 Motor Start board, and we suggest you always consider these failure instances in the following logical sequence (slightly revised sequence from prior documents included in attachment).

1. Measure Mains voltage to generator and adjust Line Compensation if needed.
 a. Confirmation measurement, Chassis F1 to F2 should measure 120VAC, when **Generator ON**.
 b. Test DC volts measured on motor start board across C3 capacitor, typical 20 to 24volts (unregulated, only at boost/run).

2. Measure proper connection of anode motor windings with ohm Meter, generator OFF.
 You do not need to disconnect the cable unless ohms measured are incorrect.
 a. COM.09 to MAIN.07 should be lowest measured value = 25 to 30 ohms.
 b. COM.09 to AUX.08 should be approx 2x main = 50 to 60 ohms.
 c. AUX.08 to MAIN.07 should be the sum, both windings = 75 to 90 ohms.
 d. ALL windings must be Open to chassis ground, >1MEG ohm.

 (Past cases a reverse wired tube had run for 5 or 6 years, and eventually current sensing reduced to below allowable limit. In some cases correcting the wiring recovers operation without parts.)

3. The anode motor Auxiliary Capacitor (also known as Start cap or Shift cap), location C1 on generator chassis, Summit part number HAB18, 25μF 450 VAC.
 a. Measure AC Volts COM09 to MAIN07, note both boost (240v) and run (50v).
 Do not use Auto-Range option on voltmeter. Instead, pre-set meter range to 400V or higher.
 b. C1: Rarely service personnel have a meter to accurately measure this as a capacitor, so we test this as AC Volts measured COM09 to AUX08, expected are 350v boost and 70v run.
 c. In case of erroneous readings, double-check by measuring directly on C1 capacitor.
 d. Consider measured values in relation to main motor winding (07 to 09) values. MAIN winding values need to be correct before expecting AUX winding values to be correct.

4. Define Failure mode after windings and capacitor have been confirmed.
 a. Time delay for motor and filament boost:
 Generally this is confirmed with test 3a, but should be duration 1.5 seconds.
 Adjust R17 to fine tune. If R17 has no effect, check also R16, CR11, C4, IC2 (type LM358).
 b. Current sensing protection to prevent exposure to a stationary anode.
 Confirm Reference to IC1 pin6 by measuring dc volts across R7, typical 1.6vdc.
 Confirm Main sensed current by measuring dc volts across R20, typical 5.4vdc.
 Confirm Aux. sensed current by measuring dc volts across R3, typical 5.9vdc

5. Bypass current sensing options:
 c1. Short across R7 (setting reference to 0v).

6. SWAP or replace IC1 and IC2 (type LM325) - and repeat 4a and 4b to test for chip failure.
NO Exposure & No LED light on A455 Motor Start Board

FIRST - Check your line voltage and re-tap auto transformer if needed.

For the Spectra, this is simple operator task: hold the “Line Check” switch and turn the “Line Adjust” Tap switch so that the needle of the kV Meter is at “V” position.

Second, find which of the 2 general functions are failing, and then swap IC chips U1 and U2 to see if failure remains consistent, or if failure mode changes with change of chips then get new IC chips LM358N or equivalent.

Function 1 failure: Time Delay, Boost to Run.
Function 2 failure: Current sensing of the Rotor windings.
Failure 3: IC Chip failure.

1. Measure voltage to the Anode motor main winding
 Where?: AC volts 07 to 09, located at bottom of TB3)
 Normally 0V in idle, 240 VAC Boost (start of PREP) After 1.5 seconds 50 VAC Run (R17)

 If correct, continue on to #2 current sensing.
 If NOT correct, try adjusting the potentiometer R17. Time delay is created by R16, R17 and C4, and charging "ramp" can be checked at anode of Diode CR11.

2. Check resistance Ω of Anode windings, to be sure nothing has changed.
 Main (07 to 09) measures 25 to 30 Ohms.
 Phase (08 to 09) measures 50 to 60 Ohms.
 SUM both (07 to 08) measures 75 to 90 Ohms.
 NOTE: ALL SHOULD BE OPEN TO GROUND.

2b. Use (-) negative side of C3 capacitor for common or ground reference. Measure the following voltages during Boost or Run mode (sometimes measure separate for both boost and run), because this board is not powered at other times.

 Positive side of C3 = 20 to 24 vdc (unregulated DC supply).
 check both sides of R7. measurements should be 0 vdc, and 1.6 vdc (approx), this is your reference.

 Phase current sensing: Cathode of CR1 should be approx 5.9 vdc
 Main current sensing: Cathode of CR2 should be approx 5.4 vdc

 If Main is OK but Phase is lower, then maybe you need to replace the C1 Rotor Capacitor.

Please call if you need any additional help.

Roger Frueh
Technical Support
Summit Industries Inc.
Toll Free 1 (800) 729-9729 ext 4037
Troubleshooting the A455 Motor Start Board

FIRST – check your incoming line voltage and if needed re-tap your auto transformer.

Note that the K1 relay energizes at boost, putting 240 VAC between the "07" main and "09" common terminals on the tube stator cable. This voltage drops to 50 VAC during the run stage of PREP as K1 drops out and K2 is energized. Due to the stator capacitor, there should be about 360 VAC during boost and 70 VAC during run between "07" main and "08" phase terminals.

1. Throughout the PREP sequence (both boost and run) there must be 1.5 VDC across R7. Use the right side of R20 at top of board for ground reference. This sets the threshold voltage for minimum main and phase rotor current.

2. Throughout the PREP sequence there should be about 5 VDC on IC1 pin 3, and 8 VDC on IC1 pin 5. This is the sensed rotor current for main and phase windings respectively.

3. As a result of these voltages, IC1 pin 1 goes to 12 VDC, and IC1 pin 7 goes to 10 VDC.

4. Throughout the PREP sequence IC2 pins 2 and 6 each go to 6 VDC.

5. IC2 pin 5 charges to about 7 VDC during the PREP sequence. Once it charges to about 5 VDC, the output at IC2 pin 7 goes to 10 VDC. The time it takes to charge is controlled by R17 and C4, typically 1.5 seconds.

6. When IC2 pin 7 goes to 10 VDC, K1 drops out and K2 pulls in, the 240 VAC is removed and 50 VAC is applied to the stator as the board transitions from boost to run.

7. The 10 VDC output of IC2 pin 7 also changes the 3.4 VDC seen at IC2 pin 3 in boost to 7 VDC, making the output of IC1 pin 1 go to 10 VDC. This 10 VDC output turns on Q4, which energizes K4, turns on the LED, and closes the connection between J6 pins 7 and 11, passing 120 VAC hot to the timer to initiate the exposure.

Please call if you need any additional help.

Best Regards,

Technical Support
Summit Industries Inc.
Toll Free 1 (800) 729-9729
Direct 1 (773) 588-2444
A455 Interfacing to the Generator

X-RAY GENERATOR

120 VAC PrepSwitch
AC COM

EXPOSURE INTERLOCK CONTACTS

Output

50 VAC
230 VAC

Common

TUBE STATOR WINDINGS

F1 0.04A
F3 20A

Time Delay and Current Sensing Logic

QC

15

14

F2 10A

13

K1

12

K2

11

K4

10

8

TIME DELAY and CURRENT SENSING LOGIC

Filament Boost Contacts

Output

1

2

3

5

9

6

1 5 3 9 6

Auto Shutoff Bypass Contacts

Output

✿ PHASE SHIFT CAPACITOR: 25μF: Summit Part Number HAB18
PARTS LAYOUT FOR MOTOR START CRCT (A455)
SCR WIRING INSTRUCTIONS

The gate terminal layout of SCR assemblies manufactured by SANREX, are slightly different from SCR assemblies manufactured by GE, WESTINGHOUSE, AEG, EUPEC, etc. Therefore, when replacing an SCR assembly with one of a different gate terminal layout, care must be taken to properly connect the corresponding gate leads. Incorrect wiring of the SCR gate terminals will not damage the SCR but will result in failure of the SCR to turn ON. It is strongly suggested that the serviceman make a wiring diagram of the original SCR, before any wires are removed. Then, using the terminal locations table indicated below, reconnect the new SCR to the proper terminals.

EUPEC SCR
A316

EUPEC SCR
ALL LEADS CONNECTED TO:

TERMINAL "1"
TERMINAL "2"
TERMINAL "3"
TERMINAL "4"
TERMINAL "2"
TERMINAL "3"
TERMINAL "1"

SANREX SCR
TO BE CONNECTED TO:

TERMINAL "3"
TERMINAL "2"
TERMINAL "1"
TERMINAL "K2"
TERMINAL "G2"
TERMINAL "K1"
TERMINAL "G1"

SANREX SCR
00194-000
SCR WIRING INSTRUCTIONS

The gate terminal layout of SCR assemblies manufactured by SANREX, are slightly different from SCR assemblies manufactured by GE, WESTINGHOUSE, AEG, EUPEC, etc. Therefore, when replacing an SCR assembly with one of a different gate terminal layout, care must be taken to properly connect the corresponding gate leads. Incorrect wiring of the SCR gate terminals will not damage the SCR but will result in failure of the SCR to turn ON. Each of the INNOVET x-ray controls, model numbers W300 & W400, contain two SCR assemblies, one as the MAIN SCR & the other as the BACK-UP SCR. The following wiring diagrams can be used to properly connect the SCR gate leads, if required:

SCRs manufactured by GE, WESTINGHOUSE, AEG, EUPEC, etc.

SCRs manufactured by SANREX
SCR (Silicon Controlled Rectifier) Block (Also Known "Phase Control Thyristor Module")

Dual SCR Package

RMS ON – State Current – 86 Amps @ 81 Degrees C.
Average ON–State Current–55 Amps @ 81 Degrees C.
Surge ON–State Current (1/2 Cycle) – 1190 Amps @ 50 Hz
– 1300 Amps @ 60 Hz

Repetitive Reverse Voltage – 800 V
Non–Repetitive Reverse Voltage – 960 V
Gate Trigger Current (Maximum Required to Assure Conduction) – 50 mA
Gate Trigger Voltage (Maximum Required to Assure Conduction) – 3 V

MFR: SANREX CORP. (PORT WASHINGTON, NY)
MFR P/N: PK55F080

NOTE:
(Similar to A316)

FOR SERVICE PART
REF: 00424–000

TOLERANCE UNLESS OTHERWISE SPECIFIED

SUMMIT INDUSTRIES, INC.
2901 W. LAWRENCE AVE., CHICAGO, IL
TEL 733–588–2480 FAX 733–588–0983

TITLE
SCR BLOCK

NEXT ASY
—

MATERIAL
As Noted

SCALE
NONE

FINISH
NONE

IMPROVED DOCUMENTATION

JP 07/16/01

Dwg. By: JPP 06/05/01

Approved: Date

LTR

ECR

REV

1 OF 1

PART NO.
00194

REV B
Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>PK55FG40</th>
<th>PK55FG80</th>
<th>PK55FG120</th>
<th>PK55FG160</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PD55FG40</td>
<td>PD55FG80</td>
<td>PE55FG80</td>
<td>PE55FG160</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_RRM</td>
<td>* Repetitive Peak Reverse Voltage</td>
<td>400</td>
<td>800</td>
<td>1200</td>
<td>1600</td>
</tr>
<tr>
<td>V_RSM</td>
<td>* Non-Repetitive Peak Reverse Voltage</td>
<td>480</td>
<td>960</td>
<td>1300</td>
<td>1700</td>
</tr>
<tr>
<td>V_DRM</td>
<td>* Repetitive Peak off-state Voltage</td>
<td>400</td>
<td>800</td>
<td>1200</td>
<td>1600</td>
</tr>
</tbody>
</table>

### Symbol	Item	Conditions	Ratings	Unit
IT(AV) | *Average On-state Current | Single phase, half wave, 180° conduction, Tc=81°C | 55 | A
IT(RMS) | *R.M.S. On-state Current | Single phase, half wave, 180° conduction, Tc=81°C | 86 | A
ITSM | *Surge On-state Current | ½ Cycle, 50/60Hz, Peak Value, non-repetitive | 1190/1300 | A
I_T | *I_T | Value for one cycle surge current | 7040 | A'S
P_GM | Peak Gate Power Dissipation | | 10 | W
P_G(AV) | Average Gate Power Dissipation | | 1 | W
I_GM | Peak Gate Current | | 3 | A
V_FGM | Peak Gate Voltage (Forward) | | 10 | V
V_RGM | Peak Gate Voltage (Reverse) | | 5 | V
di/dt | Critical Rate of Rise of On-state Current | I_g=100mA, V_D=½V_DRM, di/dt=0.1A/µs | 100 | A/µs
V_SD | *Isolation Breakdown Voltage (R.M.S.) | A.C. 1minute | 2500 | V
Tj | *Operating Junction Temperature | | −40 to +125 | °C
Tstg | *Storage Temperature | | −40 to +125 | °C

Electrical Characteristics

Symbol	Item	Conditions	Ratings	Unit
IDRM | Repetitive Peak off-state Current, max | Tj=125°C, V_D=V_DRM | 15 | mA
I_RRM | *Repetitive Peak Reverse Current, max | Tj=125°C, V_D=V_DRM | 15 | mA
V_TM | *On-state Voltage, max | I_T=165A | 1.6 | V
I_GT | Gate Trigger Current, max | V_D=6V, I_T=1A | 50 | mA
V_GT | Gate Trigger Voltage, max | V_D=6V, I_T=1A | 3 | V
V_G | Gate Trigger Voltage, min | Tj=125°C, V_D=½V_DRM | 0.25 | V
dv/dt | Critical Rate of Rise of off-state Voltage, min | Tj=125°C, V_D=½V_DRM | 1000 | V/µs
Rth(J-C) | *Thermal Impedance, max | Junction to case | 0.5 | °C/W

* mark : Thyristor and Diode part. No mark : Thyristor part