Edexcel A level Mathematics Vectors

Section 1: Vectors in three dimensions

Notes and Examples

These notes contain subsections on

- 3-D coordinates
- Magnitude of a 3-D vector

3-D coordinates

Much the same methods can be applied to solve 3-D problems using vector geometry as were covered in year 1 / AS. In this section you will learn to work with vectors and solve problems in 3-D.

3-D coordinates can be plotted on a grid like this one:

Magnitude of a 3-D vector

The length of the vector $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ is:

$$
|\mathbf{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}
$$

\%

Example 1

The points A and B have coordinates $(4,-1,2)$ and $(-1,3,1)$ respectively.
Find $|\overrightarrow{\mathrm{AB}}|$.
Solution
$\overrightarrow{\mathrm{OA}}=\left(\begin{array}{c}4 \\ -1 \\ 2\end{array}\right)$ and $\overrightarrow{\mathrm{OB}}=\left(\begin{array}{c}-1 \\ 3 \\ 1\end{array}\right)$
$\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}$

Edexcel A level Maths Vectors 1 Notes and Examples

$$
\begin{aligned}
& \overrightarrow{\mathrm{AB}}=\left(\begin{array}{c}
-1 \\
3 \\
1
\end{array}\right)-\left(\begin{array}{c}
4 \\
-1 \\
2
\end{array}\right)=\left(\begin{array}{c}
-5 \\
4 \\
-1
\end{array}\right) \\
& |\overrightarrow{\mathrm{AB}}|=\sqrt{(-5)^{2}+4^{2}+(-1)^{2}}=\sqrt{25+16+1}=\sqrt{42}
\end{aligned}
$$

