Edexcel A level Mathematics Integration

Section 3: Further techniques for integration

Notes and Examples

These notes contain subsections on

- Using partial fractions in integration
- Further integration by substitution

Using partial fractions in integration

The technique of splitting a fraction into partial fractions can be used to integrate some functions involving fractions, as the following two examples illustrate.

Example 1

Find $\int \frac{1}{x^{2}+2 x-3} \mathrm{~d} x$

Solution

The integrand splits into two partial fractions, like this:

$$
\frac{1}{x^{2}+2 x-3}=\frac{1}{(x+3)(x-1)}=\frac{A}{x+3}+\frac{B}{x-1}
$$

Multiplying through by $(x+3)(x-1)$:

$$
1=A(x-1)+B(x+3)
$$

Substituting $x=1$:

$$
1=4 B \Rightarrow B=\frac{1}{4}
$$

Substituting $x=-3$:

$$
1=-4 A \Rightarrow A=-\frac{1}{4}
$$

So $\quad \frac{1}{x^{2}+2 x-3}=\frac{-1}{4(x+3)}+\frac{1}{4(x-1)}$

$$
\begin{aligned}
\int \frac{1}{x^{2}+2 x-3} \mathrm{~d} x & =\int\left(-\frac{1}{4(x+3)}+\frac{1}{4(x-1)}\right) \mathrm{d} x \\
& =\frac{1}{4} \int\left(\frac{1}{x-1}-\frac{1}{x+3}\right) \mathrm{d} x \\
& =\frac{1}{4} \ln |x-1|-\frac{1}{4} \ln |x+3|+c \\
& =\frac{1}{4} \ln \left|\frac{x-1}{x+3}\right|+c
\end{aligned}
$$

Example 2

Evaluate $\int_{1}^{2} \frac{x+1}{x^{3}+2 x^{2}} \mathrm{~d} x$, giving your answer in exact form.

Edexcel A level Maths Integration 3 Notes \& Examples

Solution

$$
\frac{x+1}{x^{3}+2 x^{2}}=\frac{x+1}{x^{2}(x+2)}=\frac{A}{x^{2}}+\frac{B}{x}+\frac{C}{x+2}
$$

Multiplying through by $x^{2}(x+2)$: $\quad x+1=A(x+2)+B x(x+2)+C x^{2}$
Substituting $x=-2: \quad-1=4 C \Rightarrow C=-\frac{1}{4}$
Substituting $x=0$: $\quad 1=2 A \Rightarrow A=\frac{1}{2}$
Equating coefficients of $x^{2}: \quad 0=B+C \Rightarrow B=\frac{1}{4}$
So $\quad \frac{x+1}{x^{3}+2 x^{2}}=\frac{1}{2 x^{2}}+\frac{1}{4 x}-\frac{1}{4(x+2)}$
$\int_{1}^{2} \frac{x+1}{x^{3}+2 x^{2}} \mathrm{~d} x=\frac{1}{4} \int_{1}^{2}\left(\frac{2}{x^{2}}+\frac{1}{x}-\frac{1}{x+2}\right) \mathrm{d} x$
$=\frac{1}{4}\left[-\frac{2}{x}+\ln x-\ln (x+2)\right]_{1}^{2}$
$=\frac{1}{4}(-1+\ln 2-\ln 4+2-\ln 1+\ln 3)$
$=\frac{1}{4}(1+\ln 2-\ln 4+\ln 3)$
$=\frac{1}{4}\left(1+\ln \frac{3}{2}\right)$

Further integration by substitution

The previous section covered the method of integration by substitution. All the integrations that were covered in that section were of the form
$\int \mathrm{f}^{\prime}(x)[\mathrm{g}(\mathrm{f}(x)] \mathrm{d} x$. In cases like these, it is easy to spot that the substitution $u=\mathrm{f}(x)$ can be used, e.g. to integrate $\sqrt{3 x-1}$ you could use $u=3 x-1$, to integrate $x \sin \left(x^{2}+1\right)$ you can use $u=x^{2}+1$, or to integrate $\cos x \mathrm{e}^{\sin x}$ you can use $u=\sin x$. All of these integrations can also be done by inspection.

However, some integrations which cannot be done by inspection can be done by substitution, as in Example 3 below.

Example 3

Find $\int x \sqrt{1+2 x} \mathrm{~d} x$.

Solution

Let $u=1+2 x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=2$

$$
\Rightarrow \mathrm{d} u=2 \mathrm{~d} x
$$

$$
\Rightarrow \mathrm{d} x=\frac{1}{2} \mathrm{~d} u
$$

Edexcel A level Maths Integration 3 Notes \& Examples

Also $x=\frac{1}{2}(u-1)$

$$
\begin{aligned}
\int x \sqrt{1+2 x} \mathrm{~d} x & =\int \frac{1}{2}(u-1) \sqrt{u} \times \frac{1}{2} \mathrm{~d} u \\
& =\frac{1}{4} \int\left(u^{3 / 2}-u^{1 / 2}\right) \mathrm{d} u \\
& =\frac{1}{4}\left[\frac{2}{5} u^{\frac{5}{2}}-\frac{2}{3} u^{\frac{3}{2}}\right]+c \\
& =\frac{1}{10}(1+2 x)^{5 / 2}-\frac{1}{6}(1+2 x)^{3 / 2}+c
\end{aligned}
$$

Notice that when the integration is indefinite, as in Example 3, you must express the final answer in terms of x, not the new variable u.

